

[AMD Public Use]

AMD64 Technology

AMD64 Architecture

Programmer’s Manual:

Volumes 1-5

 Publication # 40332 Revision: 4.03
 Issue Date: March 2021

[AMD Public Use]

[AMD Public Use]

© 2020-2021 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. Any

unauthorized copying, alteration, distribution, transmission, performance, display or other use of this material is

prohibited.

Trademarks

AMD, the AMD Arrow logo, AMD AllDay, AMD Virtualization, AMD-V, PowerPlay, Vari-Bright, and

combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication

are for identification purposes only and may be trademarks of their respective companies.

Reverse engineering or disassembly is prohibited.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG ACTUAL OR DE FACTO

VIDEO AND/OR AUDIO STANDARDS IS EXPRESSLY PROHIBITED WITHOUT ALL NECESSARY

LICENSES UNDER APPLICABLE PATENTS. SUCH LICENSES MAY BE ACQUIRED FROM VARIOUS

THIRD PARTIES INCLUDING, BUT NOT LIMITED TO, IN THE MPEG PATENT PORTFOLIO, WHICH

LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,

GREENWOOD VILLAGE, COLORADO 80111.

[AMD Public Use]

Advanced Micro Devices

Publication No. Revision Date
24592 3.23 October 2020

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 1:
Application Programming

Publication No. Revision Date
24592 3.23 October 2020

[AMD Public Use]

© 2013 – 2020 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale. Any unauthorized copying, alteration, distribution,
transmission, performance, display or other use of this material is prohibited.
Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and 3DNow! are trademarks of Advanced
Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

[AMD Public Use]

Contents i

24592—Rev. 3.23—October 2020 AMD64 Technology

Contents

Contents . i

Figures. ix

Tables . xiii

Revision History. xv

Preface. xvii
About This Book. xvii
Audience . xvii
Organization . xvii
Conventions and Definitions . xviii

Notational Conventions . xviii
Definitions . xix
Registers . xxvii
Endian Order . xxx

Related Documents . xxx

1 Overview of the AMD64 Architecture .1
1.1 Introduction . 1

1.1.1 AMD64 Features. 1
1.1.2 Registers . 3
1.1.3 Instruction Set. 4
1.1.4 Media Instructions . 4
1.1.5 Floating-Point Instructions . 5

1.2 Modes of Operation . 6
1.2.1 Long Mode . 6
1.2.2 64-Bit Mode . 6
1.2.3 Compatibility Mode . 7
1.2.4 Legacy Mode . 7

2 Memory Model .9
2.1 Memory Organization . 9

2.1.1 Virtual Memory. 9
2.1.2 Segment Registers . 10
2.1.3 Physical Memory . 11
2.1.4 Memory Management. 11

2.2 Memory Addressing . 14
2.2.1 Byte Ordering . 14
2.2.2 64-Bit Canonical Addresses . 15
2.2.3 Effective Addresses. 15
2.2.4 Address-Size Prefix . 17
2.2.5 RIP-Relative Addressing . 18

2.3 Pointers . 19
2.3.1 Near and Far Pointers . 19

2.4 Stack Operation . 19

[AMD Public Use]

ii Contents

AMD64 Technology 24592—Rev. 3.23—October 2020

2.5 Instruction Pointer . 20

3 General-Purpose Programming .23
3.1 Registers . 23

3.1.1 Legacy Registers. 24
3.1.2 64-Bit-Mode Registers . 26
3.1.3 Implicit Uses of GPRs . 30
3.1.4 Flags Register . 34
3.1.5 Instruction Pointer Register . 36

3.2 Operands . 36
3.2.1 Fundamental Data Types . 36
3.2.2 General-Purpose Instruction Data types . 38
3.2.3 Operand Sizes and Overrides . 41
3.2.4 Operand Addressing . 43
3.2.5 Data Alignment. 43

3.3 Instruction Summary . 44
3.3.1 Syntax . 44
3.3.2 Data Transfer . 45
3.3.3 Data Conversion . 49
3.3.4 Load Segment Registers . 52
3.3.5 Load Effective Address. 52
3.3.6 Arithmetic . 53
3.3.7 Rotate and Shift . 55
3.3.8 Bit Manipulation. 56
3.3.9 Compare and Test . 59
3.3.10 Logical . 61
3.3.11 String. 62
3.3.12 Control Transfer . 63
3.3.13 Flags . 67
3.3.14 Input/Output . 69
3.3.15 Semaphores. 70
3.3.16 Processor Information. 70
3.3.17 Cache and Memory Management . 71
3.3.18 No Operation . 72
3.3.19 System Calls . 72
3.3.20 Application-Targeted Accelerator Instructions . 72

3.4 General Rules for Instructions in 64-Bit Mode . 73
3.4.1 Address Size . 73
3.4.2 Canonical Address Format . 73
3.4.3 Branch-Displacement Size . 73
3.4.4 Operand Size. 73
3.4.5 High 32 Bits . 74
3.4.6 Invalid and Reassigned Instructions . 74
3.4.7 Instructions with 64-Bit Default Operand Size . 75

3.5 Instruction Prefixes . 76
3.5.1 Legacy Prefixes . 77
3.5.2 REX Prefixes . 79
3.5.3 VEX and XOP Prefixes . 80

[AMD Public Use]

Contents iii

24592—Rev. 3.23—October 2020 AMD64 Technology

3.6 Feature Detection. 80
3.6.1 Feature Detection in a Virtualized Environment . 80

3.7 Control Transfers . 81
3.7.1 Overview. 81
3.7.2 Privilege Levels . 81
3.7.3 Procedure Stack . 82
3.7.4 Jumps . 82
3.7.5 Procedure Calls. 83
3.7.6 Returning from Procedures. 87
3.7.7 System Calls . 89
3.7.8 General Considerations for Branching . 90
3.7.9 Branching in 64-Bit Mode . 91
3.7.10 Interrupts and Exceptions . 92

3.8 Input/Output. 96
3.8.1 I/O Addressing . 96
3.8.2 I/O Ordering . 97
3.8.3 Protected-Mode I/O . 98

3.9 Memory Optimization . 99
3.9.1 Accessing Memory . 99
3.9.2 Forcing Memory Order. 101
3.9.3 Caches. 102
3.9.4 Cache Operation . 104
3.9.5 Cache Pollution. 105
3.9.6 Cache-Control Instructions. 105

3.10 Performance Considerations . 107
3.10.1 Use Large Operand Sizes . 107
3.10.2 Use Short Instructions. 108
3.10.3 Align Data . 108
3.10.4 Avoid Branches . 108
3.10.5 Prefetch Data . 108
3.10.6 Keep Common Operands in Registers . 108
3.10.7 Avoid True Dependencies . 108
3.10.8 Avoid Store-to-Load Dependencies . 108
3.10.9 Optimize Stack Allocation . 109
3.10.10 Consider Repeat-Prefix Setup Time . 109
3.10.11 Replace GPR with Media Instructions . 109
3.10.12 Organize Data in Memory Blocks . 109

4 Streaming SIMD Extensions Media and Scientific Programming111
4.1 Overview . 111

4.1.1 Capabilities . 111
4.1.2 Origins . 112
4.1.3 Compatibility . 113

4.2 Registers . 113
4.2.1 SSE Registers . 113
4.2.2 MXCSR Register . 115
4.2.3 Other Data Registers. 117
4.2.4 Effect on rFLAGS Register . 118

[AMD Public Use]

iv Contents

AMD64 Technology 24592—Rev. 3.23—October 2020

4.3 Operands . 118
4.3.1 Operand Addressing . 118
4.3.2 Data Alignment. 120
4.3.3 SSE Instruction Data Types . 121
4.3.4 Operand Sizes and Overrides . 136

4.4 Vector Operations . 136
4.4.1 Integer Vector Operations . 136
4.4.2 Floating-Point Vector Operations . 137

4.5 Instruction Overview . 138
4.5.1 Instruction Syntax. 138
4.5.2 Mnemonics . 140
4.5.3 Move Operations . 141
4.5.4 Data Conversion and Reordering . 144
4.5.5 Matrix and Special Arithmetic Operations . 145
4.5.6 Branch Removal . 147

4.6 Instruction Summary—Integer Instructions . 149
4.6.1 Data Transfer . 150
4.6.2 Data Conversion . 155
4.6.3 Data Reordering . 157
4.6.4 Arithmetic . 164
4.6.5 Enhanced Media . 170
4.6.6 Shift and Rotate . 175
4.6.7 Compare . 177
4.6.8 Logical . 182
4.6.9 Save and Restore State . 183

4.7 Instruction Summary—Floating-Point Instructions . 184
4.7.1 Data Transfer . 185
4.7.2 Data Conversion . 190
4.7.3 Data Reordering . 194
4.7.4 Arithmetic . 197
4.7.5 Fused Multiply-Add Instructions . 206
4.7.6 Compare . 213
4.7.7 Logical . 216

4.8 Instruction Prefixes . 217
4.8.1 Supported Prefixes . 217

4.9 Feature Detection. 218
4.10 Exceptions . 218

4.10.1 General-Purpose Exceptions. 219
4.10.2 SIMD Floating-Point Exception Causes. 220
4.10.3 SIMD Floating-Point Exception Priority . 224
4.10.4 SIMD Floating-Point Exception Masking . 226

4.11 Saving, Clearing, and Passing State . 231
4.11.1 Saving and Restoring State . 231
4.11.2 Parameter Passing . 231
4.11.3 Accessing Operands in MMX™ Registers . 232

4.12 Performance Considerations . 232
4.12.1 Use Small Operand Sizes . 232

[AMD Public Use]

Contents v

24592—Rev. 3.23—October 2020 AMD64 Technology

4.12.2 Reorganize Data for Parallel Operations . 232
4.12.3 Remove Branches . 232
4.12.4 Use Streaming Loads and Stores . 233
4.12.5 Align Data . 236
4.12.6 Organize Data for Cacheability . 236
4.12.7 Prefetch Data . 236
4.12.8 Use SSE Code for Moving Data. 236
4.12.9 Retain Intermediate Results in SSE Registers . 236
4.12.10 Replace GPR Code with SSE Code.. 237
4.12.11 Replace x87 Code with SSE Code . 237

5 64-Bit Media Programming .239
5.1 Origins . 239
5.2 Compatibility . 239
5.3 Capabilities . 240

5.3.1 Parallel Operations . 240
5.3.2 Data Conversion and Reordering . 241
5.3.3 Matrix Operations . 242
5.3.4 Saturation . 243
5.3.5 Branch Removal . 244
5.3.6 Floating-Point (3DNow!™) Vector Operations . 245

5.4 Registers . 246
5.4.1 MMX™ Registers. 246
5.4.2 Other Registers . 246

5.5 Operands . 247
5.5.1 Data Types . 247
5.5.2 Operand Sizes and Overrides . 249
5.5.3 Operand Addressing . 249
5.5.4 Data Alignment. 249
5.5.5 Integer Data Types . 250
5.5.6 Floating-Point Data Types . 251

5.6 Instruction Summary—Integer Instructions . 253
5.6.1 Syntax . 254
5.6.2 Exit Media State . 255
5.6.3 Data Transfer . 256
5.6.4 Data Conversion . 257
5.6.5 Data Reordering . 258
5.6.6 Arithmetic . 262
5.6.7 Shift. 266
5.6.8 Compare . 267
5.6.9 Logical . 268
5.6.10 Save and Restore State . 269

5.7 Instruction Summary—Floating-Point Instructions . 270
5.7.1 Syntax . 270
5.7.2 Data Conversion . 271
5.7.3 Arithmetic . 272
5.7.4 Compare . 274

5.8 Instruction Effects on Flags . 275

[AMD Public Use]

vi Contents

AMD64 Technology 24592—Rev. 3.23—October 2020

5.9 Instruction Prefixes . 275
5.9.1 Supported Prefixes . 275
5.9.2 Special-Use and Reserved Prefixes . 276
5.9.3 Prefixes That Cause Exceptions . 276

5.10 Feature Detection. 276
5.11 Exceptions . 277

5.11.1 General-Purpose Exceptions. 277
5.11.2 x87 Floating-Point Exceptions (#MF) . 278

5.12 Actions Taken on Executing 64-Bit Media Instructions . 278
5.13 Mixing Media Code with x87 Code . 280

5.13.1 Mixing Code . 280
5.13.2 Clearing MMX™ State. 280

5.14 State-Saving. 280
5.14.1 Saving and Restoring State . 280
5.14.2 State-Saving Instructions . 281

5.15 Performance Considerations . 282
5.15.1 Use Small Operand Sizes . 282
5.15.2 Reorganize Data for Parallel Operations . 282
5.15.3 Remove Branches . 282
5.15.4 Align Data . 282
5.15.5 Organize Data for Cacheability . 283
5.15.6 Prefetch Data . 283
5.15.7 Retain Intermediate Results in MMX™ Registers . 283

6 x87 Floating-Point Programming. .285
6.1 Overview . 285

6.1.1 Capabilities . 285
6.1.2 Origins . 286
6.1.3 Compatibility . 286

6.2 Registers . 286
6.2.1 x87 Data Registers . 287
6.2.2 x87 Status Word Register (FSW) . 289
6.2.3 x87 Control Word Register (FCW). 292
6.2.4 x87 Tag Word Register (FTW) . 294
6.2.5 Pointers and Opcode State . 295
6.2.6 x87 Environment . 297
6.2.7 Floating-Point Emulation (CR0.EM) . 298

6.3 Operands . 298
6.3.1 Operand Addressing . 298
6.3.2 Data Types . 299
6.3.3 Number Representation . 302
6.3.4 Number Encodings . 305
6.3.5 Precision . 309
6.3.6 Rounding. 309

6.4 Instruction Summary . 310
6.4.1 Syntax . 311
6.4.2 Data Transfer and Conversion . 312
6.4.3 Load Constants . 314

[AMD Public Use]

Contents vii

24592—Rev. 3.23—October 2020 AMD64 Technology

6.4.4 Arithmetic . 315
6.4.5 Transcendental Functions . 318
6.4.6 Compare and Test . 320
6.4.7 Stack Management . 322
6.4.8 No Operation . 322
6.4.9 Control . 323

6.5 Instruction Effects on rFLAGS . 326
6.6 Instruction Prefixes . 326
6.7 Feature Detection. 327
6.8 Exceptions . 327

6.8.1 General-Purpose Exceptions. 328
6.8.2 x87 Floating-Point Exception Causes. 329
6.8.3 x87 Floating-Point Exception Priority . 332
6.8.4 x87 Floating-Point Exception Masking . 333

6.9 State-Saving. 339
6.9.1 State-Saving Instructions . 339

6.10 Performance Considerations . 340
6.10.1 Replace x87 Code with 128-Bit Media Code . 340
6.10.2 Use FCOMI-FCMOVx Branching . 341
6.10.3 Use FSINCOS Instead of FSIN and FCOS . 341
6.10.4 Break Up Dependency Chains . 341

Index . 343

[AMD Public Use]

viii Contents

AMD64 Technology 24592—Rev. 3.23—October 2020

[AMD Public Use]

Figures ix

24592—Rev. 3.23—October 2020 AMD64 Technology

Figures
Figure 1-1. Application-Programming Register Set . 2

Figure 2-1. Virtual-Memory Segmentation . 10

Figure 2-2. Segment Registers. 11

Figure 2-3. Long-Mode Memory Management . 12

Figure 2-4. Legacy-Mode Memory Management . 13

Figure 2-5. Byte Ordering . 14

Figure 2-6. Example of 10-Byte Instruction in Memory . 15

Figure 2-7. Complex Address Calculation (Protected Mode) . 16

Figure 2-8. Near and Far Pointers . 19

Figure 2-9. Stack Pointer Mechanism . 20

Figure 2-10. Instruction Pointer (rIP) Register . 21

Figure 3-1. General-Purpose Programming Registers. 24

Figure 3-2. General Registers in Legacy and Compatibility Modes . 25

Figure 3-3. General Purpose Registers in 64-Bit Mode. 27

Figure 3-4. GPRs in 64-Bit Mode . 28

Figure 3-5. rFLAGS Register—Flags Visible to Application Software . 34

Figure 3-6. General-Purpose Data Types . 39

Figure 3-7. Mnemonic Syntax Example . 44

Figure 3-8. BSWAP Doubleword Exchange . 51

Figure 3-9. Privilege-Level Relationships . 81

Figure 3-10. Procedure Stack, Near Call . 84

Figure 3-11. Procedure Stack, Far Call to Same Privilege . 85

Figure 3-12. Procedure Stack, Far Call to Greater Privilege . 86

Figure 3-13. Procedure Stack, Near Return. 87

Figure 3-14. Procedure Stack, Far Return from Same Privilege . 88

Figure 3-15. Procedure Stack, Far Return from Less Privilege. 89

Figure 3-16. Procedure Stack, Interrupt to Same Privilege . 95

Figure 3-17. Procedure Stack, Interrupt to Higher Privilege. 95

Figure 3-18. I/O Address Space. 97

Figure 3-19. Memory Hierarchy Example. 103

Figure 4-1. SSE Registers . 114

[AMD Public Use]

x Figures

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-2. Media eXtension Control and Status Register (MXCSR) . 115

Figure 4-3. Vector (Packed) Data in Memory . 119

Figure 4-4. Floating-Point Data Types . 123

Figure 4-5. 16-Bit Floating-Point Data Type. 130

Figure 4-6. 128-Bit Media Data Types . 133

Figure 4-7. 256-Bit Media Data Types . 134

Figure 4-8. 256-Bit Media Data Types (Continued) . 135

Figure 4-9. Mathematical Operations on Integer Vectors . 137

Figure 4-10. Mathematical Operations on Floating-Point Vectors . 138

Figure 4-11. Mnemonic Syntax for Typical Legacy SSE Instruction . 139

Figure 4-12. Mnemonic Syntax for Typical Extended SSE Instruction . 139

Figure 4-13. XMM Move Operations . 142

Figure 4-14. YMM Move Operations . 143

Figure 4-15. Move Mask Operation . 143

Figure 4-16. Unpack and Interleave Operation . 144

Figure 4-17. Pack Operation . 144

Figure 4-18. Shuffle Operation . 145

Figure 4-19. Multiply-Add Operation . 146

Figure 4-20. Sum-of-Absolute-Differences Operation . 146

Figure 4-21. Branch-Removal Sequence . 148

Figure 4-22. Move Mask Operation . 148

Figure 4-23. Integer Move Operations . 152

Figure 4-24. (V)MASKMOVDQU Move Mask Operation . 154

Figure 4-25. (V)PMOVMSKB Move Mask Operation . 154

Figure 4-26. (V)PACKSSDW Pack Operation . 158

Figure 4-27. (V)PUNPCKLWD Unpack and Interleave Operation . 160

Figure 4-28. (V)PINSRD Operation . 162

Figure 4-29. (V)PSHUFD Shuffle Operation . 163

Figure 4-30. (V)PSHUFHW Shuffle Operation . 164

Figure 4-31. Unary Vector Arithmetic Operation . 164

Figure 4-32. Binary Vector Arithmetic Operation. 165

Figure 4-33. (V)PMULHW, (V)PMULLW, and (V)PMULHRSW Instructions . 168

Figure 4-34. (V)PMULUDQ Multiply Operation . 168

[AMD Public Use]

Figures xi

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-35. (V)PMADDWD Multiply-Add Operation . 170

Figure 4-36. Operation of Multiply and Accumulate Instructions . 171

Figure 4-37. Operation of Multiply, Add and Accumulate Instructions . 172

Figure 4-38. (V)PSADBW Sum-of-Absolute-Differences Operation. 174

Figure 4-39. (V)PCMPEQx Compare Operation. 178

Figure 4-40. Floating-Point Move Operations. 187

Figure 4-41. (V)MOVMSKPS Move Mask Operation . 190

Figure 4-42. (V)UNPCKLPS Unpack and Interleave Operation . 195

Figure 4-43. (V)SHUFPS Shuffle Operation. 196

Figure 4-44. Vector Arithmetic Operation . 197

Figure 4-45. (V)ADDPS Arithmetic Operation. 198

Figure 4-46. Scalar FMA Instructions . 207

Figure 4-47. Vector FMA Instructions . 208

Figure 4-48. Operand Source / Destination Specification . 210

Figure 4-49. (V)CMPPD Compare Operation. 214

Figure 4-50. (V)COMISD Compare Operation. 216

Figure 4-51. SIMD Floating-Point Detection Process. 225

Figure 5-1. Parallel Integer Operations on Elements of Vectors. 241

Figure 5-2. Unpack and Interleave Operation . 242

Figure 5-3. Shuffle Operation (1 of 256) . 242

Figure 5-4. Multiply-Add Operation . 243

Figure 5-5. Branch-Removal Sequence . 244

Figure 5-6. Floating-Point (3DNow!™ Instruction) Operations . 245

Figure 5-7. 64-Bit Media Registers . 246

Figure 5-8. 64-Bit Media Data Types . 248

Figure 5-9. 64-Bit Floating-Point (3DNow!™) Vector Operand . 252

Figure 5-10. Mnemonic Syntax for Typical Instruction . 254

Figure 5-11. MASKMOVQ Move Mask Operation . 257

Figure 5-12. PACKSSDW Pack Operation . 259

Figure 5-13. PUNPCKLWD Unpack and Interleave Operation . 260

Figure 5-14. PSHUFW Shuffle Operation. 261

Figure 5-15. PSWAPD Swap Operation . 262

Figure 5-16. PMADDWD Multiply-Add Operation . 265

[AMD Public Use]

xii Figures

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 5-17. PFACC Accumulate Operation. 273

Figure 6-1. x87 Registers. 287

Figure 6-2. x87 Physical and Stack Registers . 288

Figure 6-3. x87 Status Word Register (FSW) . 290

Figure 6-4. x87 Control Word Register (FCW). 293

Figure 6-5. x87 Tag Word Register (FTW). 295

Figure 6-6. x87 Pointers and Opcode State . 296

Figure 6-7. x87 Data Types . 299

Figure 6-8. x87 Floating-Point Data Types . 300

Figure 6-9. x87 Packed Decimal Data Type . 302

Figure 6-10. Mnemonic Syntax for Typical Instruction . 311

[AMD Public Use]

Tables xiii

24592—Rev. 3.22—October 2020 AMD64 Technology

Tables
Table 1-1. Operating Modes. 2
Table 1-2. Application Registers and Stack, by Operating Mode . 3
Table 2-1. Address-Size Prefixes . 18
Table 3-1. Implicit Uses of GPRs. 31
Table 3-2. Representable Values of General-Purpose Data Types . 40
Table 3-3. Operand-Size Overrides . 42
Table 3-4. rFLAGS for CMOVcc Instructions. 46
Table 3-5. rFLAGS for SETcc Instructions . 60
Table 3-6. rFLAGS for Jcc Instructions . 64
Table 3-7. Legacy Instruction Prefixes . 77
Table 3-8. Instructions that Implicitly Reference RSP in 64-Bit Mode . 83
Table 3-9. Near Branches in 64-Bit Mode . 91
Table 3-10. Interrupts and Exceptions . 93
Table 4-1. Range of Values of Integer Data Types . 122
Table 4-2. Saturation Examples . 122
Table 4-3. Range of Values in Normalized Floating-Point Data Types. 124
Table 4-4. Example of Denormalization . 126
Table 4-5. NaN Results . 127
Table 4-6. Supported Floating-Point Encodings . 128
Table 4-7. Indefinite-Value Encodings . 129
Table 4-8. Types of Rounding . 129
Table 4-9. Supported 16-Bit Floating-Point Encodings . 131
Table 4-10. Immediate Operand Values for Unsigned Vector Comparison Operations 180
Table 4-11. Example PANDN Bit Values . 182
Table 4-12. SIMD Floating-Point Exception Flags . 221
Table 4-13. Invalid-Operation Exception (IE) Causes . 222
Table 4-14. Priority of SIMD Floating-Point Exceptions . 224
Table 4-15. SIMD Floating-Point Exception Masks . 226
Table 4-16. Masked Responses to SIMD Floating-Point Exceptions . 227
Table 5-1. Range of Values in 64-Bit Media Integer Data Types . 250
Table 5-2. Saturation Examples . 251
Table 5-3. Range of Values in 64-Bit Media Floating-Point Data Types . 252
Table 5-4. 64-Bit Floating-Point Exponent Ranges . 253
Table 5-5. Example PANDN Bit Values . 269

[AMD Public Use]

xiv Tables

AMD64 Technology 24592—Rev. 3.22—October 2020

Table 5-6. Mapping Between Internal and Software-Visible Tag Bits . 279
Table 6-1. Precision Control (PC) Summary . 294
Table 6-2. Types of Rounding . 294
Table 6-3. Mapping Between Internal and Software-Visible Tag Bits . 295
Table 6-4. Instructions that Access the x87 Environment . 297
Table 6-5. Range of Finite Floating-Point Values . 301
Table 6-6. Example of Denormalization . 304
Table 6-7. NaN Results from NaN Source Operands. 306
Table 6-8. Supported Floating-Point Encodings . 307
Table 6-9. Unsupported Floating-Point Encodings . 308
Table 6-10. Indefinite-Value Encodings . 309
Table 6-11. Precision Control Field (PC) Values and Bit Precision . 309
Table 6-12. Types of Rounding . 310
Table 6-13. rFLAGS Conditions for FCMOVcc . 314
Table 6-14. rFLAGS Values for FCOMI Instruction. 320
Table 6-15. Condition-Code Settings for FXAM. 322
Table 6-16. Instruction Effects on rFLAGS. 326
Table 6-17. x87 Floating-Point (#MF) Exception Flags . 329
Table 6-18. Invalid-Operation Exception (IE) Causes . 330
Table 6-19. Priority of x87 Floating-Point Exceptions . 332
Table 6-20. x87 Floating-Point (#MF) Exception Masks . 333
Table 6-21. Masked Responses to x87 Floating-Point Exceptions . 334
Table 6-22. Unmasked Responses to x87 Floating-Point Exceptions . 337

[AMD Public Use]

Revision History xv

24592—Rev. 3.23—October 2020 AMD64 Technology

Revision History

Date Revision Description

October 2020 3.23

Added Shadow Stack support.
Preface: Added updates.
Chapter 2: Memory Model. Added content.
Chapter 3: General-Purpose Programming. Added content.

December 2017 3.22

Clarified Items in Notational Conventions in the Preface.
Clarified Memory Fence, Serializing Instructions and Internal Caches in
Chapter 3.
Added Instruction Cache Coherency in Chapter 3.
Removed redundant information Section 3.11.
Corrected description of streaming instructions in section 4.12.4.

October 2013 3.21 Integrated the AVX2 instruction subset into Chapter 4, “Streaming SIMD
Extensions Media and Scientific Programming,” on page 111.

May 2013 3.20 Clarified Section 3.11. “Cross-Modifying Code” on page 107.

March 2012 3.19 Added description of the MOVBE instruction to discussion of move
instructions on page 45.

December 2011 3.18
Added corrections and clarifications to “Legacy Prefixes” on page 76.
Corrected some formatting issues on figure titles in Chapter 4.

September 2011 3.17 Completed integration of extended SSE instruction set into application
programming discussion.

May 2011 3.16

Updated application programming model to include the YMM Registers.
Added descriptions for SSE4.1 and SSE4.2 instructions. Added F16C to
Section 4.6.3. Added BMI and TBM instructions to Section 3.3. Added
descriptive information for XOP instructions in appropriate section 4.5
locations. Added description of 256-bit data types to Section 4.4.

November 2009 3.15

Modified description of the Auxiliary Carry Flag.
Clarified section, “Load Segment Registers.”
Added section “Atomicity of accesses.”
Revised section, “Cross-Modifying Code.”

September 2007 3.14 Incorporated minor clarifications and formatting changes.

[AMD Public Use]

xvi Revision History

AMD64 Technology 24592—Rev. 3.23—October 2020

July 2007 3.13

Revised rFLAGS register table.
Added section “Cross-Modifying Code.”
Added section “Feature Detection in a Virtualized Environment”.
Merged table of MXCSR register reset values into Figure.
Added “Misaligned Exception Mask (MM)”.
Revised indefinite-value encodings in tables.
Revised section “Precision.”
Made minor editorial changes for purposes of clarification.

September 2006 3.12 Incorporated minor clarifications and formatting changes.

December 2005 3.11 Updated index entries.

February 2005 3.10

Clarified section “Self-Modifying Code.” Added general descriptions of
SSE3 instructions to Chapter 4. Added description of the CMPXCHG16B
instruction to Chapter 3. Elaborated explanation of PREFETCHlevel
instructions.

September 2003 3.09 Corrected several factual errors.

September 2002 3.07

Corrected minor organizational problems in sections dealing with ‘Prefetch’
instructions in Chapters 3, 4, and 5. Clarified the general description of the
operation of certain 128-bit media instructions in Chapter 1. Corrected a
factual error in the description of the FNINIT/FINIT instructions in Chapter 6.
Corrected operand descriptions for the CMOVcc instructions in Chapter 3.
Added Revision History. Corrected marketing denotations.

Date Revision Description

[AMD Public Use]

Preface xvii

24592—Rev. 3.23—October 2020 AMD64 Technology

Preface

About This Book
This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience
This volume is intended for programmers writing application programs, compilers, or assemblers. It
assumes prior experience in microprocessor programming, although it does not assume prior
experience with the legacy x86 or AMD64 microprocessor architecture.

This volume describes the AMD64 architecture’s resources and functions that are accessible to
application software, including memory, registers, instructions, operands, I/O facilities, and
application-software aspects of control transfers (including interrupts and exceptions) and
performance optimization.

System-programming topics—including the use of instructions running at a current privilege level
(CPL) of 0 (most-privileged)—are described in Volume 2. Details about each instruction are described
in Volumes 3, 4, and 5.

Organization
This volume begins with an overview of the architecture and its memory organization and is followed
by chapters that describe the four application-programming models available in the AMD64
architecture:

• General-Purpose Programming—This model uses the integer general-purpose registers (GPRs).
The chapter describing it also describes the basic application environment for exceptions, control
transfers, I/O, and memory optimization that applies to all other application-programming models.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

[AMD Public Use]

xviii Preface

AMD64 Technology 24592—Rev. 3.23—October 2020

• Streaming SIMD Extensions (SSE) Programming—This model uses the SSE (YMM/XMM)
registers and supports integer and floating-point operations on vector (packed) and scalar data
types.

• Multimedia Extensions (MMX™) Programming—This model uses the 64-bit MMX registers and
supports integer and floating-point operations on vector (packed) and scalar data types.

• x87 Floating-Point Programming—This model uses the 80-bit x87 registers and supports floating-
point operations on scalar data types.

The index at the end of this volume cross-references topics within the volume. For other topics relating
to the AMD64 architecture, see the tables of contents and indexes of the other volumes.

Conventions and Definitions
The following section Notational Conventions describes notational conventions used in this volume
and in the remaining volumes of this AMD64 Architecture Programmer’s Manual. This is followed by
a Definitions section which lists a number of terms used in the manual along with their technical
definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See “Related
Documents” on page xxx for further information about the legacy x86 architecture. Finally, the
Registers section lists the registers which are a part of the application programming model.

Notational Conventions

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value—in this example, a 4-bit value.

F0EA_0B02h
A hexadecimal value. Underscore characters may be inserted to improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CR0–CR4
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0[PE], CR0.PE
Notation for referring to a field within a register—in this case, the PE field of the CR0 register.

[AMD Public Use]

Preface xix

24592—Rev. 3.23—October 2020 AMD64 Technology

CR0[PE] = 1, CR0.PE = 1
The PE field of the CR0 register is set (contains the value 1).

EFER[LME] = 0, EFER.LME = 0
The LME field of the EFER register is cleared (contains a value of 0).

DS:SI
A far pointer or logical address. The real address or segment descriptor specified by the segment
register (DS in this example) is combined with the offset contained in the second register (SI in this
example) to form a real or virtual address.

RFLAGS[13:12]
A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

128-bit media instructions
Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instructions
Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions
Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX and 3DNow!™ instruction sets and their extensions, with some additional instructions from
the SSE1 and SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute
Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

[AMD Public Use]

xx Preface

AMD64 Technology 24592—Rev. 3.23—October 2020

AES
Advance Encryption Standard (AES) algorithm acceleration instructions; part of Streaming SIMD
Extensions (SSE).

ASID
Address space identifier.

AVX
Extension of the SSE instruction set supporting 128- and 256-bit vector (packed) operands. See
Streaming SIMD Extensions.

AVX2
Extension of the AVX instruction subset that adds more support for 256-bit vector (mostly packed
integer) operands and a few new SIMD instructions. See Streaming SIMD Extensions.

biased exponent
The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct
Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

[AMD Public Use]

Preface xxi

24592—Rev. 3.23—October 2020 AMD64 Technology

displacement
A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size
The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except SSE
floating-point exceptions and x87 floating-point exceptions, control is transferred to the handler
(or service routine) for that exception, as defined by the exception’s vector. For floating-point
exceptions defined by the IEEE 754 standard, there are both masked and unmasked responses.
When unmasked, the exception handler is called, and when masked, a default response is provided
instead of calling the handler.

extended SSE
Enhanced set of SIMD instructions supporting 256-bit vector data types and allowing the
specification of up to four operands. A subset of the Streaming SIMD Extensions (SSE). Includes
the AVX, AVX2, FMA, FMA4, and XOP instructions. Compare legacy SSE.

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

FMA4
Fused Multiply Add, four operand. Part of the extended SSE instruction set.

FMA
Fused Multiply Add. Part of the extended SSE instruction set.

[AMD Public Use]

xxii Preface

AMD64 Technology 24592—Rev. 3.23—October 2020

GDT
Global descriptor table.

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN
Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on page xxx for descriptions of the legacy
x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

legacy SSE
A subset of the Streaming SIMD Extensions (SSE) composed of the SSE1, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, and SSE4A instruction sets. Compare extended SSE.

LIP
Linear Instruction Pointer. LIP = (CS.base + rIP).

[AMD Public Use]

Preface xxiii

24592—Rev. 3.23—October 2020 AMD64 Technology

long mode
An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs. See reserved.

memory
Unless otherwise specified, main memory.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
Those instructions that operate simultaneously on multiple elements within a vector data type.
Comprises the 256-bit media instructions, 128-bit media instructions, and 64-bit media
instructions.

octword
Same as double quadword.

offset
Same as displacement.

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

[AMD Public Use]

xxiv Preface

AMD64 Technology 24592—Rev. 3.23—October 2020

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

procedure stack
A portion of a stack segment in memory that is used to link procedures. Also known as a program
stack.

program stack
See procedure stack.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. (See reserved)

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.
To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

[AMD Public Use]

Preface xxv

24592—Rev. 3.23—October 2020 AMD64 Technology

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.
Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX
An instruction encoding prefix that specifies a 64-bit operand size and provides access to
additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

SBZ
Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

scalar
An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

set
To write a bit value of 1. Compare clear.

shadow stack
A shadow stack is a separate, protected stack that is conceptually parallel to the procedure stack
and used only by the shadow stack feature.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD
Single instruction, multiple data. See vector.

Streaming SIMD Extensions (SSE)
Instructions that operate on scalar or vector (packed) integer and floating point numbers. The SSE
instruction set comprises the legacy SSE and extended SSE instruction sets.

SSE1
Original SSE instruction set. Includes instructions that operate on vector operands in both the
MMX and the XMM registers.

SSE2
Extensions to the SSE instruction set.

SSE3
Further extensions to the SSE instruction set.

[AMD Public Use]

xxvi Preface

AMD64 Technology 24592—Rev. 3.23—October 2020

SSSE3
Further extensions to the SSE instruction set.

SSE4.1
Further extensions to the SSE instruction set.

SSE4.2
Further extensions to the SSE instruction set.

SSE4A
A minor extension to the SSE instruction set adding the instructions EXTRQ, INSERTQ,
MOVNTSS, and MOVNTSD.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the media instructions support vectors as operands. Vectors are also called packed or
SIMD (single-instruction multiple-data) operands.
(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

VEX
An instruction encoding escape prefix that opens a new extended instruction encoding space,
specifies a 64-bit operand size, and provides access to additional registers. See XOP prefix.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

[AMD Public Use]

Preface xxvii

24592—Rev. 3.23—October 2020 AMD64 Technology

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

XOP instructions
Part of the extended SSE instruction set using the XOP prefix. See Streaming SIMD Extensions.

XOP prefix
Extended instruction identifier prefix, used by XOP instructions allowing the specification of up to
four operands and 128 or 256-bit operand widths.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

[AMD Public Use]

xxviii Preface

AMD64 Technology 24592—Rev. 3.23—October 2020

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

[AMD Public Use]

Preface xxix

24592—Rev. 3.23—October 2020 AMD64 Technology

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

SSP
Shadow-stack pointer register.

TPR
Task priority register (CR8), a new register introduced in the AMD64 architecture to speed
interrupt management.

[AMD Public Use]

xxx Preface

AMD64 Technology 24592—Rev. 3.23—October 2020

TR
Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.
• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood

Cliffs, NJ, 1991.
• AMD data sheets and application notes for particular hardware implementations of the AMD64

architecture.
• AMD, Software Optimization Guide for AMD Family 15h Processors, order number 47414.
• AMD, AMD-K6® MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
• AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.
• AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.
• Don Anderson and Tom Shanley, Pentium® Processor System Architecture, Addison-Wesley, New

York, 1995.
• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,

1992.
• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,

Macmillan Publishing Co., New York, 1994.
• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,

Prentice-Hall, Englewood Cliffs, NJ, 1995.
• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.
• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest

McGraw-Hill, 1993.
• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.
• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and

Technologies, Inc., San Jose, 1992.
• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.
• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,

1995.

[AMD Public Use]

Preface xxxi

24592—Rev. 3.23—October 2020 AMD64 Technology

• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.
• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,

TX, 1996.
• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.
• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,

NY, 1991.
• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New

York, 1991.
• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.
• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,

San Mateo, CA, 1996.
• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.
• Hal Katircioglu, Inside the 486, Pentium®, and Pentium Pro, Peer-to-Peer Communications,

Menlo Park, CA, 1997.
• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,

1993.
• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,

1993.
• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex

Junction, VT, 1995.
• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,

VT, 1995.
• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,

1994.
• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point

Arithmetic, ANSI/IEEE Std 754-1985.
• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-

Point Arithmetic, ANSI/IEEE Std 854-1987.
• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,

Prentice-Hall, Englewood Cliffs, NJ, 1997.
• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.
• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel

Pentium®, Oxford University Press, New York, 1999.
• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &

Sons, New York, 1987.
• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

[AMD Public Use]

xxxii Preface

AMD64 Technology 24592—Rev. 3.23—October 2020

• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium® III,
www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.

• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft® Press,
Redmond, WA, 1993.

• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.
• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,

New York, 1993.
• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite

class, 1992.
• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.
• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson

Corporation, 1995.
• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
• Web sites and newsgroups:

- www.amd.com
- news.comp.arch
- news.comp.lang.asm.x86
- news.intel.microprocessors
- news.microsoft

[AMD Public Use]

http://www.amd.com

Overview of the AMD64 Architecture 1

24592—Rev. 3.23—October 2020 AMD64 Technology

1 Overview of the AMD64 Architecture

1.1 Introduction
The AMD64 architecture is a simple yet powerful 64-bit, backward-compatible extension of the
industry-standard (legacy) x86 architecture. It adds 64-bit addressing and expands register resources
to support higher performance for recompiled 64-bit programs, while supporting legacy 16-bit and 32-
bit applications and operating systems without modification or recompilation. It is the architectural
basis on which new processors can provide seamless, high-performance support for both the vast body
of existing software and 64-bit software required for higher-performance applications.

The need for a 64-bit x86 architecture is driven by applications that address large amounts of virtual
and physical memory, such as high-performance servers, database management systems, and CAD
tools. These applications benefit from both 64-bit addresses and an increased number of registers. The
small number of registers available in the legacy x86 architecture limits performance in computation-
intensive applications. Increasing the number of registers provides a performance boost to many such
applications.

1.1.1 AMD64 Features

The AMD64 architecture includes these features:

• Register Extensions (see Figure 1-1 on page 2):
- 8 additional general-purpose registers (GPRs).
- All 16 GPRs are 64 bits wide.
- 8 additional YMM/XMM registers.
- Uniform byte-register addressing for all GPRs.
- An instruction prefix (REX) accesses the extended registers.

• Long Mode (see Table 1-1 on page 2):
- Up to 64 bits of virtual address.
- 64-bit instruction pointer (RIP).
- Instruction-pointer-relative data-addressing mode.
- Flat address space.

[AMD Public Use]

2 Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 1-1. Application-Programming Register Set

Table 1-1. Operating Modes

Operating Mode Operating
System Required

Application
Recompile
Required

Defaults
Register

Extensions

Typical
 Address

Size
(bits)

Operand
Size
(bits)

GPR
Width (bits)

Long
Mode

64-Bit
Mode

64-bit OS
yes 64

32
yes 64

Compatibility
Mode no

32
no

32
16 16 16

Legacy
Mode

Protected
Mode

Legacy 32-bit OS
no

32 32

no

32
16 16

Virtual-8086
Mode

16 16 16
Real
Mode Legacy 16-bit OS

Flags Register

Instruction Pointer

General-Purpose
Registers (GPRs)

64-Bit Media and
Floating-Point Registers

Legacy x86 registers, supported in all modes

63 0 63 0

63 0

79 0

Register extensions, supported in 64-bit mode

RAX
RBX
RCX
RDX
RBP
RSI
RDI
RSP
R8
R9
R10
R11
R12
R13
R14
R15

MMX0/FPR0
MMX1/FPR1
MMX2/FPR2
MMX3/FPR3
MMX4/FPR4
MMX5/FPR5
MMX6/FPR6
MMX7/FPR7

0 RFLAGS

RIP

EFLAGS

EIP

SSE Media
Registers

Application-programming registers not shown include
Media eXension Control and Status Register (MXCSR) and
x87 tag-word, control-word, and status-word registers

255 0

YMM/XMM0
YMM/XMM1
YMM/XMM2
YMM/XMM3
YMM/XMM4
YMM/XMM5
YMM/XMM6
YMM/XMM7
YMM/XMM8
YMM/XMM9
YMM/XMM10
YMM/XMM11
YMM/XMM12
YMM/XMM13
YMM/XMM14
YMM/XMM15

127

[AMD Public Use]

Overview of the AMD64 Architecture 3

24592—Rev. 3.23—October 2020 AMD64 Technology

1.1.2 Registers

Table 1-2 compares the register and stack resources available to application software, by operating
mode. The left set of columns shows the legacy x86 resources, which are available in the AMD64
architecture’s legacy and compatibility modes. The right set of columns shows the comparable
resources in 64-bit mode. Gray shading indicates differences between the modes. These register
differences (not including stack-width difference) represent the register extensions shown in
Figure 1-1.

As Table 1-2 shows, the legacy x86 architecture (called legacy mode in the AMD64 architecture)
supports eight GPRs. In reality, however, the general use of at least four registers (EBP, ESI, EDI, and
ESP) is compromised because they serve special purposes when executing many instructions. The
AMD64 architecture’s addition of eight GPRs—and the increased width of these registers from 32 bits
to 64 bits—allows compilers to substantially improve software performance. Compilers have more
flexibility in using registers to hold variables. Compilers can also minimize memory traffic—and thus
boost performance—by localizing work within the GPRs.

Table 1-2. Application Registers and Stack, by Operating Mode

Register
or Stack

Legacy and Compatibility Modes 64-Bit Mode1

Name Number Size (bits) Name Number Size (bits)

General-Purpose
Registers (GPRs)2

EAX, EBX, ECX,
EDX, EBP, ESI,

EDI, ESP
8 32

RAX, RBX, RCX,
RDX, RBP, RSI,

RDI, RSP,
R8–R15

16 64

256-bit YMM
Registers YMM0–YMM73 8 256 YMM0–YMM153 16 256

128-Bit XMM
Registers XMM0–XMM73 8 128 XMM0–XMM153 16 128

64-Bit MMX
Registers MMX0–MMX74 8 64 MMX0–MMX74 8 64

x87 Registers FPR0–FPR74 8 80 FPR0–FPR74 8 80

Instruction Pointer2 EIP 1 32 RIP 1 64

Flags2 EFLAGS 1 32 RFLAGS 1 64

Stack — 16 or 32 — 64
Note:

1. Gray-shaded entries indicate differences between the modes. These differences (except stack-width difference) are
the AMD64 architecture’s register extensions.

2. GPRs are listed using their full-width names. In legacy and compatibility modes,16-bit and 8-bit mappings of the
registers are also accessible. In 64-bit mode, 32-bit, 16-bit, and 8-bit mappings of the registers are accessible. See
Section 3.1. “Registers” on page 23.

3. The XMM registers overlay the lower octword of the YMM registers. See Section 4.2. “Registers” on page 113.
4. The MMX0–MMX7 registers are mapped onto the FPR0–FPR7 physical registers, as shown in Figure 1-1. The x87

stack registers, ST(0)–ST(7), are the logical mappings of the FPR0–FPR7 physical registers.

[AMD Public Use]

4 Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.23—October 2020

1.1.3 Instruction Set

The AMD64 architecture supports the full legacy x86 instruction set, with additional instructions to
support long mode (see Table 1-1 on page 2 for a summary of operating modes). The application-
programming instructions are organized into four subsets, as follows:

• General-Purpose Instructions—These are the basic x86 integer instructions used in virtually all
programs. Most of these instructions load, store, or operate on data located in the general-purpose
registers (GPRs) or memory. Some of the instructions alter sequential program flow by branching
to other program locations.

• Streaming SIMD Extensions Instructions (SSE)—These instructions load, store, or operate on data
located primarily in the YMM/XMM registers. 128-bit media instructions operate on the lower
half of the YMM registers. SSE instructions perform integer and floating-point operations on
vector (packed) and scalar data types. Because the vector instructions can independently and
simultaneously perform a single operation on multiple sets of data, they are called single-
instruction, multiple-data (SIMD) instructions. They are useful for high-performance media and
scientific applications that operate on blocks of data.

• Multimedia Extension Instructions—These include the MMX™ technology and AMD 3DNow!™
technology instructions. These instructions load, store, or operate on data located primarily in the
64-bit MMX registers which are mapped onto the 80-bit x87 floating-point registers. Like the SSE
instructions, they perform integer and floating-point operations on vector (packed) and scalar data
types. These instructions are useful in media applications that do not require high precision.
Multimedia Extension Instructions use saturating mathematical operations that do not generate
operation exceptions. AMD has de-emphasized the use of 3DNow! instructions, which have been
superceded by their more efficient SSE counterparts. Relevant recommendations are provided in
Chapter 5, “64-Bit Media Programming” on page 239, and in the AMD64 Programmer’s Manual
Volume 4: 64-Bit Media and x87 Floating-Point Instructions.

• x87 Floating-Point Instructions—These are the floating-point instructions used in legacy x87
applications. They load, store, or operate on data located in the 80-bit x87 registers.

Some of these application-programming instructions bridge two or more of the above subsets. For
example, there are instructions that move data between the general-purpose registers and the
YMM/XMM or MMX registers, and many of the integer vector (packed) instructions can operate on
either YMM/XMM or MMX registers, although not simultaneously. If instructions bridge two or more
subsets, their descriptions are repeated in all subsets to which they apply.

1.1.4 Media Instructions

Media applications—such as image processing, music synthesis, speech recognition, full-motion
video, and 3D graphics rendering—share certain characteristics:

• They process large amounts of data.
• They often perform the same sequence of operations repeatedly across the data.
• The data are often represented as small quantities, such as 8 bits for pixel values, 16 bits for audio

samples, and 32 bits for object coordinates in floating-point format.

[AMD Public Use]

Overview of the AMD64 Architecture 5

24592—Rev. 3.23—October 2020 AMD64 Technology

SSE and MMX instructions are designed to accelerate these applications. The instructions use a form
of vector (or packed) parallel processing known as single-instruction, multiple data (SIMD)
processing. This vector technology has the following characteristics:

• A single register can hold multiple independent pieces of data. For example, a single YMM
register can hold 32 8-bit integer data elements, or eight 32-bit single-precision floating-point data
elements.

• The vector instructions can operate on all data elements in a register, independently and
simultaneously. For example, a PADDB instruction operating on byte elements of two vector
operands in 128-bit XMM registers performs 16 simultaneous additions and returns 16
independent results in a single operation.

SSE and MMX instructions take SIMD vector technology a step further by including special
instructions that perform operations commonly found in media applications. For example, a graphics
application that adds the brightness values of two pixels must prevent the add operation from wrapping
around to a small value if the result overflows the destination register, because an overflow result can
produce unexpected effects such as a dark pixel where a bright one is expected. These instructions
include saturating-arithmetic instructions to simplify this type of operation. A result that otherwise
would wrap around due to overflow or underflow is instead forced to saturate at the largest or smallest
value that can be represented in the destination register.

1.1.5 Floating-Point Instructions

The AMD64 architecture provides three floating-point instruction subsets, using three distinct register
sets:

• SSE instructions support 32-bit single-precision and 64-bit double-precision floating-point
operations, in addition to integer operations. Operations on both vector data and scalar data are
supported, with a dedicated floating-point exception-reporting mechanism. These floating-point
operations comply with the IEEE-754 standard.

• MMX Instructions support single-precision floating-point operations. Operations on both vector
data and scalar data are supported, but these instructions do not support floating-point exception
reporting.

• x87 Floating-Point Instructions support single-precision, double-precision, and 80-bit extended-
precision floating-point operations. Only scalar data are supported, with a dedicated floating-point
exception-reporting mechanism. The x87 floating-point instructions contain special instructions
for performing trigonometric and logarithmic transcendental operations. The single-precision and
double-precision floating-point operations comply with the IEEE-754 standard.

Maximum floating-point performance can be achieved using the 256-bit media instructions. One of
these vector instructions can support up to eight single-precision (or four double-precision) operations
in parallel. A total of 16 256-bit YMM registers, available in 64-bit mode, speeds up applications by
providing more registers to hold intermediate results, thus reducing the need to store these results in
memory. Fewer loads and stores results in better performance.

[AMD Public Use]

6 Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.23—October 2020

1.2 Modes of Operation
Table 1-1 on page 2 summarizes the modes of operation supported by the AMD64 architecture. In
most cases, the default address and operand sizes can be overridden with instruction prefixes. The
register extensions shown in the second-from-right column of Table 1-1 are those illustrated in
Figure 1-1 on page 2.

1.2.1 Long Mode

Long mode is an extension of legacy protected mode. Long mode consists of two submodes: 64-bit
mode and compatibility mode. 64-bit mode supports all of the features and register extensions of the
AMD64 architecture. Compatibility mode supports binary compatibility with existing 16-bit and 32-
bit applications. Long mode does not support legacy real mode or legacy virtual-8086 mode, and it
does not support hardware task switching.

Throughout this document, references to long mode refer to both 64-bit mode and compatibility mode.
If a function is specific to either of these submodes, then the name of the specific submode is used
instead of the name long mode.

1.2.2 64-Bit Mode

64-bit mode—a submode of long mode—supports the full range of 64-bit virtual-addressing and
register-extension features. This mode is enabled by the operating system on an individual code-
segment basis. Because 64-bit mode supports a 64-bit virtual-address space, it requires a 64-bit
operating system and tool chain. Existing application binaries can run without recompilation in
compatibility mode, under an operating system that runs in 64-bit mode, or the applications can also be
recompiled to run in 64-bit mode.

Addressing features include a 64-bit instruction pointer (RIP) and an RIP-relative data-addressing
mode. This mode accommodates modern operating systems by supporting only a flat address space,
with single code, data, and stack space.

Register Extensions. 64-bit mode implements register extensions through a group of instruction
prefixes, called REX prefixes. These extensions add eight GPRs (R8–R15), widen all GPRs to 64 bits,
and add eight YMM/XMM registers (YMM/XMM8–15).

The REX instruction prefixes also provide a byte-register capability that makes the low byte of any of
the sixteen GPRs available for byte operations. This results in a uniform set of byte, word,
doubleword, and quadword registers that is better suited to compiler register-allocation.

64-Bit Addresses and Operands. In 64-bit mode, the default virtual-address size is 64 bits
(implementations can have fewer). The default operand size for most instructions is 32 bits. For most
instructions, these defaults can be overridden on an instruction-by-instruction basis using instruction
prefixes. REX prefixes specify the 64-bit operand size and register extensions.

RIP-Relative Data Addressing. 64-bit mode supports data addressing relative to the 64-bit
instruction pointer (RIP). The legacy x86 architecture supports IP-relative addressing only in control-

[AMD Public Use]

Overview of the AMD64 Architecture 7

24592—Rev. 3.23—October 2020 AMD64 Technology

transfer instructions. RIP-relative addressing improves the efficiency of position-independent code
and code that addresses global data.

Opcodes. A few instruction opcodes and prefix bytes are redefined to allow register extensions and
64-bit addressing. These differences are described in Appendix B “General-Purpose Instructions in
64-Bit Mode” and Appendix C “Differences Between Long Mode and Legacy Mode” in Volume 3.

1.2.3 Compatibility Mode

Compatibility mode—the second submode of long mode—allows 64-bit operating systems to run
existing 16-bit and 32-bit x86 applications. These legacy applications run in compatibility mode
without recompilation.

Applications running in compatibility mode use 32-bit or 16-bit addressing and can access the first
4GB of virtual-address space. Legacy x86 instruction prefixes toggle between 16-bit and 32-bit
address and operand sizes.

As with 64-bit mode, compatibility mode is enabled by the operating system on an individual code-
segment basis. Unlike 64-bit mode, however, x86 segmentation functions the same as in the legacy
x86 architecture, using 16-bit or 32-bit protected-mode semantics. From the application viewpoint,
compatibility mode looks like the legacy x86 protected-mode environment. From the operating-
system viewpoint, however, address translation, interrupt and exception handling, and system data
structures use the 64-bit long-mode mechanisms.

1.2.4 Legacy Mode

Legacy mode preserves binary compatibility not only with existing 16-bit and 32-bit applications but
also with existing 16-bit and 32-bit operating systems. Legacy mode consists of the following three
submodes:

• Protected Mode—Protected mode supports 16-bit and 32-bit programs with memory
segmentation, optional paging, and privilege-checking. Programs running in protected mode can
access up to 4GB of memory space.

• Virtual-8086 Mode—Virtual-8086 mode supports 16-bit real-mode programs running as tasks
under protected mode. It uses a simple form of memory segmentation, optional paging, and limited
protection-checking. Programs running in virtual-8086 mode can access up to 1MB of memory
space.

• Real Mode—Real mode supports 16-bit programs using simple register-based memory
segmentation. It does not support paging or protection-checking. Programs running in real mode
can access up to 1MB of memory space.

Legacy mode is compatible with existing 32-bit processor implementations of the x86 architecture.
Processors that implement the AMD64 architecture boot in legacy real mode, just like processors that
implement the legacy x86 architecture.

[AMD Public Use]

8 Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.23—October 2020

Throughout this document, references to legacy mode refer to all three submodes—protected mode,
virtual-8086 mode, and real mode. If a function is specific to either of these submodes, then the name
of the specific submode is used instead of the name legacy mode.

[AMD Public Use]

Memory Model 9

24592—Rev. 3.23—October 2020 AMD64 Technology

2 Memory Model

This chapter describes the memory characteristics that apply to application software in the various
operating modes of the AMD64 architecture. These characteristics apply to all instructions in the
architecture. Several additional system-level details about memory and cache management are
described in Volume 2.

2.1 Memory Organization
2.1.1 Virtual Memory

Virtual memory consists of the entire address space available to programs. It is a large linear-address
space that is translated by a combination of hardware and operating-system software to a smaller
physical-address space, parts of which are located in memory and parts on disk or other external
storage media.

Figure 2-1 on page 10 shows how the virtual-memory space is treated in the two submodes of long
mode:

• 64-bit mode—This mode uses a flat segmentation model of virtual memory. The 64-bit virtual-
memory space is treated as a single, flat (unsegmented) address space. Program addresses access
locations that can be anywhere in the linear 64-bit address space. The operating system can use
separate selectors for code, stack, and data segments for memory-protection purposes, but the base
address of all these segments is always 0. (For an exception to this general rule, see “FS and GS as
Base of Address Calculation” on page 17.)

• Compatibility mode—This mode uses a protected, multi-segment model of virtual memory, just as
in legacy protected mode. The 32-bit virtual-memory space is treated as a segmented set of address
spaces for code, stack, and data segments, each with its own base address and protection
parameters. A segmented space is specified by adding a segment selector to an address.

[AMD Public Use]

10 Memory Model

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 2-1. Virtual-Memory Segmentation

Operating systems have used segmented memory as a method to isolate programs from the data they
used, in an effort to increase the reliability of systems running multiple programs simultaneously.
However, most modern operating systems do not use the segmentation features available in the legacy
x86 architecture. Instead, these operating systems handle segmentation functions entirely in software.
For this reason, the AMD64 architecture dispenses with most of the legacy segmentation functions in
64-bit mode. This allows 64-bit operating systems to be coded more simply, and it supports more
efficient management of multi-tasking environments than is possible in the legacy x86 architecture.

2.1.2 Segment Registers

Segment registers hold the selectors used to access memory segments. Figure 2-2 on page 11 shows
the application-visible portion of the segment registers. In legacy and compatibility modes, all
segment registers are accessible to software. In 64-bit mode, only the CS, FS, and GS segments are
recognized by the processor, and software can use the FS and GS segment-base registers as base
registers for address calculation, as described in “FS and GS as Base of Address Calculation” on
page 17. For references to the DS, ES, or SS segments in 64-bit mode, the processor assumes that the
base for each of these segments is zero, neither their segment limit nor attributes are checked, and the
processor simply checks that all such addresses are in canonical form, as described in “64-Bit
Canonical Addresses” on page 15.

264 - 1

0

Base Address for
All Segments

Code Segment (CS) Base

Stack Segment (SS) Base

Data Segment (DS) Base

64-Bit Mode
(Flat Segmentation Model)

Legacy and Compatibility Mode
(Multi-Segment Model)

232 - 1

0

data

code

stack

[AMD Public Use]

Memory Model 11

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 2-2. Segment Registers

For details on segmentation and the segment registers, see “Segmented Virtual Memory” in Volume 2.

2.1.3 Physical Memory

Physical memory is the installed memory (excluding cache memory) in a particular computer system
that can be accessed through the processor’s bus interface. The maximum size of the physical memory
space is determined by the number of address bits on the bus interface. In a virtual-memory system, the
large virtual-address space (also called linear-address space) is translated to a smaller physical-
address space by a combination of segmentation and paging hardware and software.

Segmentation is illustrated in Figure 2-1 on page 10. Paging is a mechanism for translating linear
(virtual) addresses into fixed-size blocks called pages, which the operating system can move, as
needed, between memory and external storage media (typically disk). The AMD64 architecture
supports an expanded version of the legacy x86 paging mechanism, one that is able to translate the full
64-bit virtual-address space into the physical-address space supported by the particular
implementation.

2.1.4 Memory Management

Memory management strategies translate addresses generated by programs into addresses in physical
memory using segmentation and/or paging. Memory management is not visible to application
programs. It is handled by the operating system and processor hardware. The following description
gives a very brief overview of these functions. Details are given in “System-Management
Instructions” in Volume 2.

2.1.4.1 Long-Mode Memory Management

Figure 2-3 shows the flow, from top to bottom, of memory management functions performed in the
two submodes of long mode.

15 0

ES

FS

GS

SS

CS

DS

15 0

FS
(Base only)

GS
(Base only)

CS
(Attributes only)

Legacy Mode and
Compatibility Mode

64-Bit
Mode

ignored

ignored

ignored

[AMD Public Use]

12 Memory Model

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 2-3. Long-Mode Memory Management

In 64-bit mode, programs generate virtual (linear) addresses that can be up to 64 bits in size. The
virtual addresses are passed to the long-mode paging function, which generates physical addresses that
can be up to 52 bits in size. (Specific implementations of the architecture can support smaller virtual-
address and physical-address sizes.)

In compatibility mode, legacy 16-bit and 32-bit applications run using legacy x86 protected-mode
segmentation semantics. The 16-bit or 32-bit effective addresses generated by programs are combined
with their segments to produce 32-bit virtual (linear) addresses that are zero-extended to a maximum
of 64 bits. The paging that follows is the same long-mode paging function used in 64-bit mode. It
translates the virtual addresses into physical addresses. The combination of segment selector and
effective address is also called a logical address or far pointer. The virtual address is also called the
linear address.

2.1.4.2 Legacy-Mode Memory Management

Figure 2-4 on page 13 shows the memory-management functions performed in the three submodes of
legacy mode.

051

64-Bit Mode

63 0

Paging

051

Compatibility Mode

Segmentation

Paging

031015

Physical Address

Virtual (Linear) Address

Physical Address

Effective AddressSelector

0313263

Virtual Address0

[AMD Public Use]

Memory Model 13

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 2-4. Legacy-Mode Memory Management

The memory-management functions differ, depending on the submode, as follows:

• Protected Mode—Protected mode supports 16-bit and 32-bit programs with table-based memory
segmentation, paging, and privilege-checking. The segmentation function takes 32-bit effective
addresses and 16-bit segment selectors and produces 32-bit linear addresses into one of 16K
memory segments, each of which can be up to 4GB in size. Paging is optional. The 32-bit physical
addresses are either produced by the paging function or the linear addresses are used without
modification as physical addresses.

• Virtual-8086 Mode—Virtual-8086 mode supports 16-bit programs running as tasks under
protected mode. 20-bit linear addresses are formed in the same way as in real mode, but they can
optionally be translated through the paging function to form 32-bit physical addresses that access
up to 4GB of memory space.

• Real Mode—Real mode supports 16-bit programs using register-based shift-and-add
segmentation, but it does not support paging. Sixteen-bit effective addresses are zero-extended and
added to a 16-bit segment-base address that is left-shifted four bits, producing a 20-bit linear
address. The linear address is zero-extended to a 32-bit physical address that can access up to 1MB
of memory space.

031

Protected Mode

031

Paging

Physical Address (PA)

Linear Address

Virtual-8086 Mode

019

031

Paging

Linear Address

Physical Address (PA)

Real Mode

019

19 031

Linear Address

0 PA

Segmentation

031015

Effective Address (EA)Selector

015

EA

Segmentation

015

Selector

015

EA

Segmentation

015

Selector

[AMD Public Use]

14 Memory Model

AMD64 Technology 24592—Rev. 3.23—October 2020

2.2 Memory Addressing
2.2.1 Byte Ordering

Instructions and data are stored in memory in little-endian byte order. Little-endian ordering places the
least-significant byte of the instruction or data item at the lowest memory address and the most-
significant byte at the highest memory address.

Figure 2-5 shows a generalization of little-endian memory and register images of a quadword data
type. The least-significant byte is at the lowest address in memory and at the right-most byte location
of the register image.

Figure 2-5. Byte Ordering

Figure 2-6 on page 15 shows the memory image of a 10-byte instruction. Instructions are byte data
types. They are read from memory one byte at a time, starting with the least-significant byte (lowest
address). For example, the following instruction specifies the 64-bit instruction MOV RAX,
1122334455667788 instruction that consists of the following ten bytes:

48 B8 8877665544332211

48 is a REX instruction prefix that specifies a 64-bit operand size, B8 is the opcode that—together
with the REX prefix—specifies the 64-bit RAX destination register, and 8877665544332211 is the 8-
byte immediate value to be moved, where 88 represents the eighth (least-significant) byte and 11
represents the first (most-significant) byte. In memory, the REX prefix byte (48) would be stored at the
lowest address, and the first immediate byte (11) would be stored at the highest instruction address.

Quadword in Memory

Quadword in General-Purpose Register

00hbyte 0

01hbyte 1

02hbyte 2

03hbyte 3

04hbyte 4

05hbyte 5

06hbyte 6

07hbyte 7

063

byte 0byte 1byte 2byte 3byte 4byte 5byte 6byte 7

High (most-significant) Low (least-significant)

High (most-significant)

Low (least-significant)

[AMD Public Use]

Memory Model 15

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 2-6. Example of 10-Byte Instruction in Memory

2.2.2 64-Bit Canonical Addresses

Long mode defines 64 bits of virtual address, but implementations of the AMD64 architecture may
support fewer bits of virtual address. Although implementations might not use all 64 bits of the virtual
address, they check bits 63 through the most-significant implemented bit to see if those bits are all
zeros or all ones. An address that complies with this property is said to be in canonical address form. If
a virtual-memory reference is not in canonical form, the implementation causes a general-protection
exception or stack fault.

2.2.3 Effective Addresses

Programs provide effective addresses to the hardware prior to segmentation and paging translations.
Long-mode effective addresses are a maximum of 64 bits wide, as shown in Figure 2-3 on page 12.
Programs running in compatibility mode generate (by default) 32-bit effective addresses, which the
hardware zero-extends to 64 bits. Legacy-mode effective addresses, with no address-size override, are
32 or 16 bits wide, as shown in Figure 2-4 on page 13. These sizes can be overridden with an address-
size instruction prefix, as described in “Instruction Prefixes” on page 76.

There are five methods for generating effective addresses, depending on the specific instruction
encoding:

• Absolute Addresses—These addresses are given as displacements (or offsets) from the base
address of a data segment. They point directly to a memory location in the data segment.

• Instruction-Relative Addresses—These addresses are given as displacements (or offsets) from the
current instruction pointer (IP), also called the program counter (PC). They are generated by
control-transfer instructions. A displacement in the instruction encoding, or one read from

00h

01h

02h

03h

04h

05h

06h

07h

08h22

09h11 High (most-significant)

Low (least-significant)48

B8

88

77

66

55

44

33

[AMD Public Use]

16 Memory Model

AMD64 Technology 24592—Rev. 3.23—October 2020

memory, serves as an offset from the address that follows the transfer. See “RIP-Relative
Addressing” on page 18 for details about RIP-relative addressing in 64-bit mode.

• Indexed Register-Indirect Addresses—These addresses are calculated off a base address contained
in a general-purpose register specified by the instruction (base). Different encodings allow offsets
from this base using a signed displacement or using the sum of the displacement and a scaled index
value. Instruction encodings may utilize up to ten bytes—the ModRM byte, the optional SIB
(scale, index, base) byte and a variable length displacement—to specify the values to be used in the
effective address calculation. The base and index values are contained in general-purpose registers
specified by the SIB byte. The scale and displacement values are specified directly in the
instruction encoding. Figure 2-7 shows the components of the address calculation. The resultant
effective address is added to the data-segment base address to form a linear address, as described in
“Segmented Virtual Memory” in Volume 2. “Instruction Formats” in Volume 3 gives further
details on specifying this form of address.

Figure 2-7. Complex Address Calculation (Protected Mode)

• Stack Addresses—PUSH, POP, CALL, RET, IRET, and INT instructions implicitly use the stack
pointer, which contains the address of the procedure stack. See “Stack Operation” on page 19 for
details about the size of the stack pointer.

• String Addresses—String instructions generate sequential addresses using the rDI and rSI registers,
as described in “Implicit Uses of GPRs” on page 30.

In 64-bit mode, with no address-size override, the size of effective-address calculations is 64 bits. An
effective-address calculation uses 64-bit base and index registers and sign-extends displacements to 64
bits. Due to the flat address space in 64-bit mode, virtual addresses are equal to effective addresses.
(For an exception to this general rule, see “FS and GS as Base of Address Calculation” on page 17.)

2.2.3.1 Long-Mode Zero-Extension of 16-Bit and 32-Bit Addresses

In long mode, all 16-bit and 32-bit address calculations are zero-extended to form 64-bit addresses.
Address calculations are first truncated to the effective-address size of the current mode (64-bit mode
or compatibility mode), as overridden by any address-size prefix. The result is then zero-extended to
the full 64-bit address width.

+

*

Effective Address

DisplacementIndex

Scale by 1, 2, 4, or 8

Base

[AMD Public Use]

Memory Model 17

24592—Rev. 3.23—October 2020 AMD64 Technology

Because of this, 16-bit and 32-bit applications running in compatibility mode can access only the low
4GB of the long-mode virtual-address space. Likewise, a 32-bit address generated in 64-bit mode can
access only the low 4GB of the long-mode virtual-address space.

2.2.3.2 Displacements and Immediates

In general, the maximum size of address displacements and immediate operands is 32 bits. They can
be 8, 16, or 32 bits in size, depending on the instruction or, for displacements, the effective address
size. In 64-bit mode, displacements are sign-extended to 64 bits during use, but their actual size (for
value representation) remains a maximum of 32 bits. The same is true for immediates in 64-bit mode,
when the operand size is 64 bits. However, support is provided in 64-bit mode for some 64-bit
displacement and immediate forms of the MOV instruction.

2.2.3.3 FS and GS as Base of Address Calculation

In 64-bit mode, the FS and GS segment-base registers (unlike the DS, ES, and SS segment-base
registers) can be used as non-zero data-segment base registers for address calculations, as described in
“Segmented Virtual Memory” in Volume 2. 64-bit mode assumes all other data-segment registers (DS,
ES, and SS) have a base address of 0.

2.2.4 Address-Size Prefix

The default address size of an instruction is determined by the default-size (D) bit and long-mode (L)
bit in the current code-segment descriptor (for details, see “Segmented Virtual Memory” in Volume 2).
Application software can override the default address size in any operating mode by using the 67h
address-size instruction prefix byte. The address-size prefix allows mixing 32-bit and 64-bit addresses
on an instruction-by-instruction basis.

Table 2-1 on page 18 shows the effects of using the address-size prefix in all operating modes. In 64-
bit mode, the default address size is 64 bits. The address size can be overridden to 32 bits. 16-bit
addresses are not supported in 64-bit mode. In compatibility and legacy modes, the address-size prefix
works the same as in the legacy x86 architecture.

[AMD Public Use]

18 Memory Model

AMD64 Technology 24592—Rev. 3.23—October 2020

2.2.5 RIP-Relative Addressing

RIP-relative addressing—that is, addressing relative to the 64-bit instruction pointer (also called
program counter)—is available in 64-bit mode. The effective address is formed by adding the
displacement to the 64-bit RIP of the next instruction.

In the legacy x86 architecture, addressing relative to the instruction pointer (IP or EIP) is available
only in control-transfer instructions. In the 64-bit mode, any instruction that uses ModRM addressing
(see “ModRM and SIB Bytes” in Volume 3) can use RIP-relative addressing. The feature is
particularly useful for addressing data in position-independent code and for code that addresses global
data.

Programs usually have many references to data, especially global data, that are not register-based. To
load such a program, the loader typically selects a location for the program in memory and then adjusts
the program’s references to global data based on the load location. RIP-relative addressing of data
makes this adjustment unnecessary.

2.2.5.1 Range of RIP-Relative Addressing

Without RIP-relative addressing, instructions encoded with a ModRM byte address memory relative
to zero. With RIP-relative addressing, instructions with a ModRM byte can address memory relative to
the 64-bit RIP using a signed 32-bit displacement. This provides an offset range of 2 GBytes from the
RIP.

Table 2-1. Address-Size Prefixes

Operating Mode
Default

Address
Size (Bits)

Effective
Address Size

(Bits)

Address-
Size Prefix

(67h)1

Required?

Long Mode

64-Bit Mode 64
64 no
32 yes

Compatibility Mode
32

32 no
16 yes

16
32 yes
16 no

Legacy Mode
(Protected, Virtual-8086, or Real
Mode)

32
32 no
16 yes

16
32 yes
16 no

Note:
1. “No” indicates that the default address size is used.

[AMD Public Use]

Memory Model 19

24592—Rev. 3.23—October 2020 AMD64 Technology

2.2.5.2 Effect of Address-Size Prefix on RIP-Relative Addressing

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. Conversely, use of the
address-size prefix does not disable RIP-relative addressing. The effect of the address-size prefix is to
truncate and zero-extend the computed effective address to 32 bits, like any other addressing mode.

2.2.5.3 Encoding

For details on instruction encoding of RIP-relative addressing, see in “Encoding for RIP-Relative
Addressing” in Volume 3.

2.3 Pointers
Pointers are variables that contain addresses rather than data. They are used by instructions to
reference memory. Instructions access data using near and far pointers. Stack pointers locate the
current stack.

2.3.1 Near and Far Pointers

Near pointers contain only an effective address, which is used as an offset into the current segment. Far
pointers contain both an effective address and a segment selector that specifies one of several
segments. Figure 2-8 illustrates the two types of pointers.

Figure 2-8. Near and Far Pointers

In 64-bit mode, the AMD64 architecture supports only the flat-memory model in which there is only
one data segment, so the effective address is used as the virtual (linear) address and far pointers are not
needed. In compatibility mode and legacy protected mode, the AMD64 architecture supports multiple
memory segments, so effective addresses can be combined with segment selectors to form far pointers,
and the terms logical address (segment selector and effective address) and far pointer are synonyms.
Near pointers can also be used in compatibility mode and legacy mode.

2.4 Stack Operation
A procedure stack (also known as a ‘program stack’) is a portion of a stack segment in memory that is
used to link procedures. Software conventions typically define stacks using a stack frame, which
consists of two registers—a stack-frame base pointer (rBP) and a stack pointer (rSP)—as shown in
Figure 2-9 on page 20. These stack pointers can be either near pointers or far pointers.

Far PointerNear Pointer

Effective Address (EA) Effective Address (EA)Selector

[AMD Public Use]

20 Memory Model

AMD64 Technology 24592—Rev. 3.23—October 2020

The stack-segment (SS) register, points to the base address of the current stack segment. The stack
pointers contain offsets from the base address of the current stack segment. All instructions that
address memory using the rBP or rSP registers cause the processor to access the current stack segment.

Figure 2-9. Stack Pointer Mechanism

In typical APIs, the stack-frame base pointer and the stack pointer point to the same location before a
procedure call (the top-of-stack of the prior stack frame). After data is pushed onto the procedure
stack, the stack-frame base pointer remains where it was and the stack pointer advances downward to
the address below the pushed data, where it becomes the new top-of-stack.

In legacy and compatibility modes, the default stack pointer size is 16 bits (SP) or 32 bits (ESP),
depending on the default-size (B) bit in the stack-segment descriptor, and multiple stacks can be
maintained in separate stack segments. In 64-bit mode, stack pointers are always 64 bits wide (RSP).

Further application-programming details on the procedure stack mechanism are described in “Control
Transfers” on page 80. System-programming details on the stack segments are described in
“Segmented Virtual Memory” in Volume 2.

A shadow stack is a separate, protected stack that is conceptually parallel to the procedure stack and
used only by the shadow stack feature. When enabled by system software, the shadow stack feature
provides, in a manner that is transparent to application software, protection against a class of computer
exploit known as 'return oriented programming'. System-programming details on the shadow stack
feature are described in “Shadow Stacks” in Volume 2.

2.5 Instruction Pointer
The instruction pointer is used in conjunction with the code-segment (CS) register to locate the next
instruction in memory. The instruction-pointer register contains the displacement (offset)—from the
base address of the current CS segment, or from address 0 in 64-bit mode—to the next instruction to be
executed. The pointer is incremented sequentially, except for branch instructions, as described in
“Control Transfers” on page 80.

Stack-Segment (SS) Base Address

Stack-Frame Base Pointer (rBP)
and Stack Pointer (rSP)

Stack-Segment (SS) Base Address

Stack-Frame Base Pointer (rBP)
Stack Pointer (rSP)

passed data

Stack Frame Before Procedure Call Stack Frame After Procedure Call

[AMD Public Use]

Memory Model 21

24592—Rev. 3.23—October 2020 AMD64 Technology

In legacy and compatibility modes, the instruction pointer is a 16-bit (IP) or 32-bit (EIP) register. In
64-bit mode, the instruction pointer is extended to a 64-bit (RIP) register to support 64-bit offsets. The
case-sensitive acronym, rIP, is used to refer to any of these three instruction-pointer sizes, depending
on the software context.

Figure 2-10 on page 21 shows the relationship between RIP, EIP, and IP. The 64-bit RIP can be used
for RIP-relative addressing, as described in “RIP-Relative Addressing” on page 18.

Figure 2-10. Instruction Pointer (rIP) Register

The contents of the rIP are not directly readable by software. However, the rIP is pushed onto the stack
by a call instruction.

The memory model described in this chapter is used by all of the programming environments that
make up the AMD64 architecture. The next four chapters of this volume describe the application
programming environments, which include:

• General-purpose programming (Chapter 3 on page 23).
• Streaming SIMD extensions used in media and scientific programming (Chapter 4 on page 111).
• 64-bit media programming (Chapter 5 on page 239).
• x87 floating-point programming (Chapter 6 on page 285).

63 31 032

IP

EIP

RIP

rIP

[AMD Public Use]

22 Memory Model

AMD64 Technology 24592—Rev. 3.23—October 2020

[AMD Public Use]

General-Purpose Programming 23

24592—Rev. 3.23—October 2020 AMD64 Technology

3 General-Purpose Programming

The general-purpose programming model includes the general-purpose registers (GPRs), integer
instructions and operands that use the GPRs, program-flow control methods, memory optimization
methods, and I/O. This programming model includes the original x86 integer-programming
architecture, plus 64-bit extensions and a few additional instructions. Only the application-
programming instructions and resources are described in this chapter. Integer instructions typically
used in system programming, including all of the privileged instructions, are described in Volume 2,
along with other system-programming topics.

The general-purpose programming model is used to some extent by almost all programs, including
programs consisting primarily of 256-bit or 128-bit media instructions, 64-bit media instructions, x87
floating-point instructions, or system instructions. For this reason, an understanding of the general-
purpose programming model is essential for any programming work using the AMD64 instruction set
architecture.

3.1 Registers
Figure 3-1 on page 24 shows an overview of the registers used in general-purpose application
programming. They include the general-purpose registers (GPRs), segment registers, flags register,
and instruction-pointer register. The number and width of available registers depends on the operating
mode.

The registers and register ranges shaded light gray in Figure 3-1 on page 24 are available only in 64-
bit mode. Those shaded dark gray are available only in legacy mode and compatibility mode. Thus, in
64-bit mode, the 32-bit general-purpose, flags, and instruction-pointer registers available in legacy
mode and compatibility mode are extended to 64-bit widths, eight new GPRs are available, and the
DS, ES, and SS segment registers are ignored.

When naming registers, if reference is made to multiple register widths, a lower-case r notation is
used. For example, the notation rAX refers to the 16-bit AX, 32-bit EAX, or 64-bit RAX register,
depending on an instruction’s effective operand size.

[AMD Public Use]

24 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 3-1. General-Purpose Programming Registers

3.1.1 Legacy Registers

In legacy and compatibility modes, all of the legacy x86 registers are available. Figure 3-2 on page 25
shows a detailed view of the GPR, flag, and instruction-pointer registers.

63 31 032

R8

R9

R10

R11

R12

R13

R14

R15

rAX

rBX

rCX

rDX

rBP

rSI

rDI

rSP

63 31 032

rFLAGS

rIP

Available to sofware in all modes

Available to sofware only in 64-bit mode

Ignored by hardware in 64-bit mode

15 0

FS

GS

CS

Segment
Registers

General-Purpose Registers (GPRs)

Flags and Instruction Pointer Registers

ES

SS

DS

[AMD Public Use]

General-Purpose Programming 25

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 3-2. General Registers in Legacy and Compatibility Modes

The legacy GPRs include:

• Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL).
• Eight 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP).
• Eight 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP).

The size of register used by an instruction depends on the effective operand size or, for certain
instructions, the opcode, address size, or stack size. The 16-bit and 32-bit registers are encoded as 0
through 7 in Figure 3-2. For opcodes that specify a byte operand, registers encoded as 0 through 3 refer
to the low-byte registers (AL, BL, CL, DL) and registers encoded as 4 through 7 refer to the high-byte
registers (AH, BH, CH, DH).

The 16-bit FLAGS register, which is also the low 16 bits of the 32-bit EFLAGS register, shown in
Figure 3-2, contains control and status bits accessible to application software, as described in
Section 3.1.4, “Flags Register,” on page 34. The 16-bit IP or 32-bit EIP instruction-pointer register
contains the address of the next instruction to be executed, as described in Section 2.5, “Instruction
Pointer,” on page 20.

31 15 016

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

AX

16-bit
low
8-bit

high
8-bit 32-bit

BX

CX

DX

SI

DI

BP

SP

AH (4)

BH (7)

CH (5)

DH (6)

AL

BL

CL

DL

SI

DI

BP

SP

FLAGS

IP

31 0

FLAGS

IP

EFLAGS

EIP

0

3

1

2

6

7

5

4

register
encoding

[AMD Public Use]

26 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.1.2 64-Bit-Mode Registers

In 64-bit mode, eight new GPRs are added to the eight legacy GPRs, all 16 GPRs are 64 bits wide, and
the low bytes of all registers are accessible. Figure 3-3 on page 27 shows the GPRs, flags register, and
instruction-pointer register available in 64-bit mode. The GPRs include:

• Sixteen 8-bit low-byte registers (AL, BL, CL, DL, SIL, DIL, BPL, SPL, R8B, R9B, R10B, R11B,
R12B, R13B, R14B, R15B).

• Four 8-bit high-byte registers (AH, BH, CH, DH), addressable only when no REX prefix is used.
• Sixteen 16-bit registers (AX, BX, CX, DX, DI, SI, BP, SP, R8W, R9W, R10W, R11W, R12W,

R13W, R14W, R15W).
• Sixteen 32-bit registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D, R9D, R10D, R11D,

R12D, R13D, R14D, R15D).
• Sixteen 64-bit registers (RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8, R9, R10, R11, R12,

R13, R14, R15).

The size of register used by an instruction depends on the effective operand size or, for certain
instructions, the opcode, address size, or stack size. For most instructions, access to the extended
GPRs requires a REX prefix (Section 3.5.2, “REX Prefixes,” on page 79). The four high-byte registers
(AH, BH, CH, DH) available in legacy mode are not addressable when a REX prefix is used.

In general, byte and word operands are stored in the low 8 or 16 bits of GPRs without modifying their
high 56 or 48 bits, respectively. Doubleword operands, however, are normally stored in the low 32 bits
of GPRs and zero-extended to 64 bits.

The 64-bit RFLAGS register, shown in Figure 3-3 on page 27, contains the legacy EFLAGS in its low
32-bit range. The high 32 bits are reserved. They can be written with anything but they always read as
zero (RAZ). The 64-bit RIP instruction-pointer register contains the address of the next instruction to
be executed, as described in Section 3.1.5, “Instruction Pointer Register,” on page 36.

[AMD Public Use]

General-Purpose Programming 27

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 3-3. General Purpose Registers in 64-Bit Mode

Figure 3-4 on page 28 illustrates another way of viewing the 64-bit-mode GPRs, showing how the
legacy GPRs overlay the extended GPRs. Gray-shaded bits are not modified in 64-bit mode.

R8D

R9D

R10D

R11D

R12D

R13D

R14D

R15D

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

32-bit

R8

R9

R10

R11

R12

R13

R14

R15

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

64-bit

R8W

R9W

R10W

R11W

R12W

R13W

R14W

R15W

AX

16-bit

BX

CX

DX

SI

DI

BP

SP

63 31 15 7 081632

8

9

10

11

12

13

14

15

0

3

1

2

6

7

5

4

zero-extended
for 32-bit operands

not modified for 8-bit operands
not modified for 16-bit operands low

8 bits

BPL**

AH*

BH*

CH*

DH*

AL

BL

CL

DL

R8B

R9B

R10B

R11B

R12B

R13B

R14B

R15B

SIL**

DIL**

SPL**

63 31 032

RFLAGS

RIP

0

* Not addressable in REX prefix instruction forms
** Only addressable in REX prefix instruction forms

Re
g

is
te

r E
n

co
d

in
g

[AMD Public Use]

28 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 3-4. GPRs in 64-Bit Mode

[AMD Public Use]

General-Purpose Programming 29

24592—Rev. 3.23—October 2020 AMD64 Technology

3.1.2.1 Default Operand Size

For most instructions, the default operand size in 64-bit mode is 32 bits. To access 16-bit operand
sizes, an instruction must contain an operand-size prefix (66h), as described in Section 3.2.3,
“Operand Sizes and Overrides,” on page 41. To access the full 64-bit operand size, most instructions
must contain a REX prefix.

For details on operand size, see Section 3.2.3, “Operand Sizes and Overrides,” on page 41.

3.1.2.2 Byte Registers

64-bit mode provides a uniform set of low-byte, low-word, low-doubleword, and quadword registers
that is well-suited for register allocation by compilers. Access to the four new low-byte registers in the
legacy-GPR range (SIL, DIL, BPL, SPL), or any of the low-byte registers in the extended registers
(R8B–R15B), requires a REX instruction prefix. However, the legacy high-byte registers (AH, BH,
CH, DH) are not accessible when a REX prefix is used.

3.1.2.3 Zero-Extension of 32-Bit Results

As Figure 3-3 on page 27 and Figure 3-4 on page 28 show, when performing 32-bit operations with a
GPR destination in 64-bit mode, the processor zero-extends the 32-bit result into the full 64-bit
destination. 8-bit and 16-bit operations on GPRs preserve all unwritten upper bits of the destination
GPR. This is consistent with legacy 16-bit and 32-bit semantics for partial-width results.

Software should explicitly sign-extend the results of 8-bit, 16-bit, and 32-bit operations to the full 64-
bit width before using the results in 64-bit address calculations.

The following four code examples show how 64-bit, 32-bit, 16-bit, and 8-bit ADDs work. In these
examples, “48” is a REX prefix specifying 64-bit operand size, and “01C3” and “00C3” are the
opcode and ModRM bytes of each instruction (see “Opcode Syntax” in Volume 3 for details on the
opcode and ModRM encoding).

Example 1: 64-bit Add:
Before:RAX =0002_0001_8000_2201

 RBX =0002_0002_0123_3301

 48 01C3 ADD RBX,RAX ;48 is a REX prefix for size.

Result:RBX = 0004_0003_8123_5502

Example 2: 32-bit Add:
Before:RAX = 0002_0001_8000_2201

 RBX = 0002_0002_0123_3301

 01C3 ADD EBX,EAX ;32-bit add

 Result:RBX = 0000_0000_8123_5502
 (32-bit result is zero extended)

[AMD Public Use]

30 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Example 3: 16-bit Add:
Before:RAX = 0002_0001_8000_2201

 RBX = 0002_0002_0123_3301

 66 01C3 ADD BX,AX ;66 is 16-bit size override

Result:RBX = 0002_0002_0123_5502
 (bits 63:16 are preserved)

Example 4: 8-bit Add:
Before:RAX = 0002_0001_8000_2201

 RBX = 0002_0002_0123_3301

 00C3 ADD BL,AL ;8-bit add

 Result:RBX = 0002_0002_0123_3302
 (bits 63:08 are preserved)

3.1.2.4 GPR High 32 Bits Across Mode Switches

The processor does not preserve the upper 32 bits of the 64-bit GPRs across switches from 64-bit mode
to compatibility or legacy modes. When using 32-bit operands in compatibility or legacy mode, the
high 32 bits of GPRs are undefined. Software must not rely on these undefined bits, because they can
change from one implementation to the next or even on a cycle-to-cycle basis within a given
implementation. The undefined bits are not a function of the data left by any previously running
process.

3.1.3 Implicit Uses of GPRs

Most instructions can use any of the GPRs for operands. However, as Figure 3-1 on page 31 shows,
some instructions use some GPRs implicitly. Details about implicit use of GPRs are described in
“General-Purpose Instructions in 64-Bit Mode” in Volume 3.

Table 3-1 on page 31 shows implicit register uses only for application instructions. Certain system
instructions also make implicit use of registers. These system instructions are described in “System
Instruction Reference” in Volume 3.

[AMD Public Use]

General-Purpose Programming 31

24592—Rev. 3.23—October 2020 AMD64 Technology

Table 3-1. Implicit Uses of GPRs

Registers1
Name Implicit Uses

Low 8-Bit 16-Bit 32-Bit 64-Bit

AL AX EAX RAX2 Accumulator

• Operand for decimal
arithmetic, multiply, divide,
string, compare-and-
exchange, table-translation,
and I/O instructions.

• Special accumulator encoding
for ADD, XOR, and MOV
instructions.

• Used with EDX to hold double-
precision operands.

• CPUID processor-feature
information.

BL BX EBX RBX2 Base

• Address generation in 16-bit
code.

• Memory address for XLAT
instruction.

• CPUID processor-feature
information.

CL CX ECX RCX2 Count

• Bit index for shift and rotate
instructions.

• Iteration count for loop and
repeated string instructions.

• Jump conditional if zero.
• CPUID processor-feature

information.

DL DX EDX RDX2 I/O Address

• Operand for multiply and
divide instructions.

• Port number for I/O
instructions.

• Used with EAX to hold double-
precision operands.

• CPUID processor-feature
information.

SIL2 SI ESI RSI2 Source Index

• Memory address of source
operand for string instructions.

• Memory index for 16-bit
addresses.

Note:
1. Gray-shaded registers have no implicit uses.
2. Accessible only in 64-bit mode.

[AMD Public Use]

32 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.1.3.1 Arithmetic Operations

Several forms of the add, subtract, multiply, and divide instructions use AL or rAX implicitly. The
multiply and divide instructions also use the concatenation of rDX:rAX for double-sized results
(multiplies) or quotient and remainder (divides).

3.1.3.2 Sign-Extensions

The instructions that double the size of operands by sign extension (for example, CBW, CWDE,
CDQE, CWD, CDQ, CQO) use rAX register implicitly for the operand. The CWD, CDQ, and CQO
instructions also uses the rDX register.

3.1.3.3 Special MOVs

The MOV instruction has several opcodes that implicitly use the AL or rAX register for one operand.

3.1.3.4 String Operations

Many types of string instructions use the accumulators implicitly. Load string, store string, and scan
string instructions use AL or rAX for data and rDI or rSI for the offset of a memory address.

3.1.3.5 I/O-Address-Space Operations.

The I/O and string I/O instructions use rAX to hold data that is received from or sent to a device
located in the I/O-address space. DX holds the device I/O-address (the port number).

DIL2 DI EDI RDI2 Destination
Index

• Memory address of destination
operand for string instructions.

• Memory index for 16-bit
addresses.

BPL2 BP EBP RBP2 Base Pointer • Memory address of stack-
frame base pointer.

SPL2 SP ESP RSP2 Stack Pointer • Memory address of last stack
entry (top of stack).

R8B–R10B2 R8W–R10W2 R8D–R10D2 R8–R102 None No implicit uses

R11B2 R11W2 R11D2 R112 None • Holds the value of RFLAGS on
SYSCALL/SYSRET.

R12B–R15B2 R12W–R15W2 R12D–R15D2 R12–R152 None No implicit uses

Table 3-1. Implicit Uses of GPRs (continued)

Registers1
Name Implicit Uses

Low 8-Bit 16-Bit 32-Bit 64-Bit

Note:
1. Gray-shaded registers have no implicit uses.
2. Accessible only in 64-bit mode.

[AMD Public Use]

General-Purpose Programming 33

24592—Rev. 3.23—October 2020 AMD64 Technology

3.1.3.6 Table Translations

The table translate instruction (XLATB) uses AL for an memory index and rBX for memory base
address.

3.1.3.7 Compares and Exchanges

Compare and exchange instructions (CMPXCHG) use the AL or rAX register for one operand.

3.1.3.8 Decimal Arithmetic

The decimal arithmetic instructions (AAA, AAD, AAM, AAS, DAA, DAS) that adjust binary-coded
decimal (BCD) operands implicitly use the AL and AH register for their operations.

3.1.3.9 Shifts and Rotates

Shift and rotate instructions can use the CL register to specify the number of bits an operand is to be
shifted or rotated.

3.1.3.10 Conditional Jumps

Special conditional-jump instructions use the rCX register instead of flags. The JCXZ and JrCXZ
instructions check the value of the rCX register and pass control to the target instruction when the
value of rCX register reaches 0.

3.1.3.11 Repeated String Operations

With the exception of I/O string instructions, all string operations use rSI as the source-operand pointer
and rDI as the destination-operand pointer. I/O string instructions use rDX to specify the input-port or
output-port number. For repeated string operations (those preceded with a repeat-instruction prefix),
the rSI and rDI registers are incremented or decremented as the string elements are moved from the
source location to the destination. Repeat-string operations also use rCX to hold the string length, and
decrement it as data is moved from one location to the other.

3.1.3.12 Stack Operations

Stack operations make implicit use of the rSP register, and in some cases, the rBP register. The rSP
register is used to hold the top-of-stack pointer (or simply, stack pointer). rSP is decremented when
items are pushed onto the stack, and incremented when they are popped off the stack. The ENTER and
LEAVE instructions use rBP as a stack-frame base pointer. Here, rBP points to the last entry in a data
structure that is passed from one block-structured procedure to another.

The use of rSP or rBP as a base register in an address calculation implies the use of SS (stack segment)
as the default segment. Using any other GPR as a base register without a segment-override prefix
implies the use of the DS data segment as the default segment.

The push all and pop all instructions (PUSHA, PUSHAD, POPA, POPAD) implicitly use all of the
GPRs.

[AMD Public Use]

34 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.1.3.13 CPUID Information

The CPUID instruction makes implicit use of the EAX, EBX, ECX, and EDX registers. Software
loads a function code into EAX and, for some function codes, a sub-function code in ECX, executes
the CPUID instruction, and then reads the associated processor-feature information in EAX, EBX,
ECX, and EDX.

3.1.4 Flags Register

Figure 3-5 on page 34 shows the 64-bit RFLAGS register and the flag bits visible to application
software. Bits 15:0 are the FLAGS register (accessed in legacy real and virtual-8086 modes), bits 31:0
are the EFLAGS register (accessed in legacy protected mode and compatibility mode), and bits 63:0
are the RFLAGS register (accessed in 64-bit mode). The name rFLAGS refers to any of the three
register widths, depending on the current software context.

Figure 3-5. rFLAGS Register—Flags Visible to Application Software

The low 16 bits (FLAGS portion) of rFLAGS are accessible by application software and hold the
following flags:

• One control flag (the direction flag DF).
• Six status flags (carry flag CF, parity flag PF, auxiliary carry flag AF, zero flag ZF, sign flag SF,

and overflow flag OF).

The direction flag (DF) controls the direction of string operations. The status flags provide result
information from logical and arithmetic operations and control information for conditional move and
jump instructions.

63 32

Reserved, RAZ

31 12 11 10 9 8 7 6 5 4 3 2 1 0

See Volume 2 for System Flags O
F

D
F

S
F

Z
F

A
F

P
F

C
F

Bits Mnemonic Description R/W
11 OF Overflow Flag R/W
10 DF Direction Flag R/W
7 SF Sign Flag R/W
6 ZF Zero Flag R/W
4 AF Auxiliary Carry Flag R/W
2 PF Parity Flag R/W
0 CF Carry Flag R/W

[AMD Public Use]

General-Purpose Programming 35

24592—Rev. 3.23—October 2020 AMD64 Technology

Bits 31:16 of the rFLAGS register contain flags that are accessible only to system software. These
flags are described in “System Registers” in Volume 2. The highest 32 bits of RFLAGS are reserved.
In 64-bit mode, writes to these bits are ignored. They are read as zeros (RAZ). The rFLAGS register is
initialized to 02h on reset, so that all of the programmable bits are cleared to zero.

The effects that rFLAGS bit-values have on instructions are summarized in the following places:

• Conditional Moves (CMOVcc)—Table 3-4 on page 46.
• Conditional Jumps (Jcc)—Table 3-5 on page 60.
• Conditional Sets (SETcc)—Table 3-6 on page 64.

The effects that instructions have on rFLAGS bit-values are summarized in “Instruction Effects on
RFLAGS” in Volume 3.

The sections below describe each application-visible flag. All of these flags are readable and writable.
For example, the POPF, POPFD, POPFQ, IRET, IRETD, and IRETQ instructions write all flags. The
carry and direction flags are writable by dedicated application instructions. Other application-visible
flags are written indirectly by specific instructions. Reserved bits and bits whose writability is
prevented by the current values of system flags, current privilege level (CPL), or the current operating
mode, are unaffected by the POPFx instructions.

Carry Flag (CF). Bit 0. Hardware sets the carry flag to 1 if the last integer addition or subtraction
operation resulted in a carry (for addition) or a borrow (for subtraction) out of the most-significant bit
position of the result. Otherwise, hardware clears the flag to 0.

The increment and decrement instructions—unlike the addition and subtraction instructions—do not
affect the carry flag. The bit shift and bit rotate instructions shift bits of operands into the carry flag.
Logical instructions like AND, OR, XOR clear the carry flag. Bit-test instructions (BTx) set the value
of the carry flag depending on the value of the tested bit of the operand.

Software can set or clear the carry flag with the STC and CLC instructions, respectively. Software can
complement the flag with the CMC instruction.

Parity Flag (PF). Bit 2. Hardware sets the parity flag to 1 if there is an even number of 1 bits in the
least-significant byte of the last result of certain operations. Otherwise (i.e., for an odd number of 1
bits), hardware clears the flag to 0. Software can read the flag to implement parity checking.

Auxiliary Carry Flag (AF). Bit 4. Hardware sets the auxiliary carry flag if an arithmetic operation or
a binary-coded decimal (BCD) operation generates a carry (in the case of an addition) or a borrow (in
the case of a subtraction) out of bit 3 of the result. Otherwise, AF is cleared to zero.

The main application of this flag is to support decimal arithmetic operations. Most commonly, this flag
is used internally by correction commands for decimal addition (AAA) and subtraction (AAS).

Zero Flag (ZF). Bit 6. Hardware sets the zero flag to 1 if the last arithmetic operation resulted in a
value of zero. Otherwise (for a non-zero result), hardware clears the flag to 0. The compare and test
instructions also affect the zero flag.

[AMD Public Use]

36 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The zero flag is typically used to test whether the result of an arithmetic or logical operation is zero, or
to test whether two operands are equal.

Sign Flag (SF). Bit 7. Hardware sets the sign flag to 1 if the last arithmetic operation resulted in a
negative value. Otherwise (for a positive-valued result), hardware clears the flag to 0. Thus, in such
operations, the value of the sign flag is set equal to the value of the most-significant bit of the result.
Depending on the size of operands, the most-significant bit is bit 7 (for bytes), bit 15 (for words), bit 31
(for doublewords), or bit 63 (for quadwords).

Direction Flag (DF). Bit 10. The direction flag determines the order in which strings are processed.
Software can set the direction flag to 1 to specify decrementing the data pointer for the next string
instruction (LODSx, STOSx, MOVSx, SCASx, CMPSx, OUTSx, or INSx). Clearing the direction flag
to 0 specifies incrementing the data pointer. The pointers are stored in the rSI or rDI register. Software
can set or clear the flag with the STD and CLD instructions, respectively.

Overflow Flag (OF). Bit 11. Hardware sets the overflow flag to 1 to indicate that the most-significant
(sign) bit of the result of the last signed integer operation differed from the signs of both source
operands. Otherwise, hardware clears the flag to 0. A set overflow flag means that the magnitude of
the positive or negative result is too big (overflow) or too small (underflow) to fit its defined data type.

The OF flag is undefined after the DIV instruction and after a shift of more than one bit. Logical
instructions clear the overflow flag.

3.1.5 Instruction Pointer Register

The instruction pointer register—IP, EIP, or RIP, or simply rIP for any of the three depending on the
context—is used in conjunction with the code-segment (CS) register to locate the next instruction in
memory. See Section 2.5, “Instruction Pointer,” on page 20 for details.

3.2 Operands
Operands are either referenced by an instruction's encoding or included as an immediate value in the
instruction encoding. Depending on the instruction, referenced operands can be located in registers,
memory locations, or I/O ports.

3.2.1 Fundamental Data Types

At the most fundamental level, a datum is an ordered string of a specific length composed of binary
digits (bits). Bits are indexed from 0 to length-1. While technically the size of a datum is not restricted,
for convenience in storing and manipulating data the Architecture defines a finite number of data
objects of specific size and names them.

A datum of length 1 is simply a bit. A datum of length 4 is a nibble, a datum of length 8 is a byte, a
datum of length 16 is a word, a datum of length 32 is a doubleword, a datum of length 64 is a
quadword, a datum of length 128 is a double quadword (also called an octword), a datum of length 256
is a double octword.

[AMD Public Use]

General-Purpose Programming 37

24592—Rev. 3.23—October 2020 AMD64 Technology

For instructions that move or reorder data, the significance of each bit within the datum is immaterial.
An instruction of this type may operate on bits, bytes, words, doublewords, and so on. The majority of
instructions, however, expect operand data to be of a specific format. The format assigns a particular
significance to each bit based on its position within the datum. This assignment of significance or
meaning to each bit is called data typing.

The Architecture defines the following fundamental data types:

• Untyped data objects
- bit
- nibble (4 bits)
- byte (8 bits)
- word (16 bits)
- doubleword (32 bits)
- quadword (64 bits)
- double quadword (octword) (128 bits)
- double octword (256 bits)

• Unsigned integers
- 8-bit (byte) unsigned integer
- 16-bit (word) unsigned integer
- 32-bit (doubleword) unsigned integer
- 64-bit (quadword) unsigned integer
- 128-bit (octword) unsigned integer

• Signed (two's-complement) integers
- 8-bit (byte) signed integer
- 16-bit (word) signed integer
- 32-bit (doubleword) signed integer
- 64-bit (quadword) signed integer
- 128-bit (octword) signed integer

• Binary coded decimal (BCD) digits
• Floating-point data types

- half-precision floating point (16 bits)
- single-precision floating point (32 bits)
- double-precision floating point (64 bits)

These fundamental data types may be aggregated into composite data types. The defined composite
data types are:

• strings

[AMD Public Use]

38 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

- character strings (composed of bytes or words)
- doubleword and quadword

• packed BCD
• packed signed and unsigned integers (also called integer vectors)
• packed single- or double-precision floating point (also called floating-point vectors)

Integer, BCD, and string data types are described in the following section. The floating-point and
vector data types are discussed in Section 4.3.3, “SSE Instruction Data Types,” on page 121.

3.2.2 General-Purpose Instruction Data types

The following data types are supported in the general-purpose programming environment:

• Signed (two's-complement) integers.
• Unsigned integers.
• BCD digits.
• Packed BCD digits.
• Strings, including bit strings.
• Untyped data objects.

Figure 3-6 on page 39 illustrates the data types used by most general-purpose instructions. Software
can define data types in ways other than those shown, but the AMD64 architecture does not directly
support such interpretations and software must handle them entirely on its own. Note that the bit
positions are numbered from right to left starting with 0 and ending with length-1. The untyped data
objects bit, nibble, byte, word, doubleword, quadword, and octword are not shown.

[AMD Public Use]

General-Purpose Programming 39

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 3-6. General-Purpose Data Types

3.2.2.1 Signed and Unsigned Integers

The architecture supports signed and unsigned 1-byte, 2-byte, 4- byte, 8-byte, and 16-byte integers.
The sign bit (S) occupies the most significant bit (datum bit position length-1). Signed integers are
represented in two’s complement format. S = 0 represents positive numbers and S = 1 negative
numbers.

The table below presents the representable range of values for each integer data type and the BCD data
types discussed in the following section:

127

63

63

31

15

7 0

Quadword

Double
Quadword

Doubleword

Word

Byte

0

s

s

s

s

Quadword

Unsigned Integer

Signed Integer

Doubleword

Word

Byte

Bit

8 bytes (64-bit mode only)

16 bytes (64-bit mode only)

127
Double
Quadword

0

16 bytes (64-bit mode only)

4 bytes

2 bytes

31

15

7 3

Packed BCD

BCD Digit

0

8 bytes (64-bit mode only)

4 bytes

2 bytes

S

[AMD Public Use]

40 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

In 64-bit mode, the double quadword (octword) integer data type is supported in the RDX:RAX
registers by the MUL, IMUL, DIV, IDIV, and CQO instructions.

3.2.2.2 Binary-Coded-Decimal (BCD) Digits

BCD digits have values ranging from 0 to 9. These values can be represented in binary encoding with
four bits. For example, 0000b represents the decimal number 0 and 1001b represents the decimal
number 9. Values ranging from 1010b to 1111b are invalid for this data type. Because a byte contains
eight bits, two BCD digits can be stored in a single byte. This is referred to as packed-BCD. If a single
BCD digit is stored per byte, it is referred to as unpacked-BCD. In the x87 floating-point programming
environment (described in Section 6, “x87 Floating-Point Programming,” on page 285) an 80-bit
packed BCD data type is also supported, along with conversions between floating-point and BCD data
types, so that data expressed in the BCD format can be operated on as floating-point values.

Integer add, subtract, multiply, and divide instructions can be used to operate on single (unpacked)
BCD digits. The result must be adjusted to produce a correct BCD representation. For unpacked BCD
numbers, the ASCII-adjust instructions are provided to simplify that correction. In the case of division,
the adjustment must be made prior to executing the integer-divide instruction.

Similarly, integer add and subtract instructions can be used to operate on packed-BCD digits. The
result must be adjusted to produce a correct packed-BCD representation. Decimal-adjust instructions
are provided to simplify packed-BCD result corrections.

3.2.2.3 Strings

Strings are a continuous sequence of a single data type. The string instructions can be used to operate
on byte, word, doubleword, or quadword data types. The maximum length of a string of any data type
is 232–1 bytes, in legacy or compatibility modes, or 264–1 bytes in 64-bit mode. One of the more
common types of strings used by applications are byte data-type strings known as ASCII strings,
which can be used to represent character data.

Table 3-2. Representable Values of General-Purpose Data Types

Data Type Byte Word Doubleword Quadword
Double

Quadword2

Signed Integers1 -27 to +(27 -1) -215 to +(215 -1) -231 to +(231 -1) -263 to +(263 -1) -2127 to +(2127 -1)

Unsigned Integers 0 to +28-1
(0 to 255)

0 to +216-1
(0 to 65,535)

0 to +232-1
(0 to 4.29 x 109)

0 to +264-1
(0 to 1.84 x 1019)

0 to +2128-1
(0 to 3.40 x 1038)

Packed BCD
Digits 00 to 99 multiple packed BCD-digit bytes

BCD Digit 0 to 9 multiple BCD-digit bytes
Note:

1. The sign bit is the most-significant bit (e.g., bit 7 for a byte, bit 15 for a word, etc.).
2. The double quadword data type is supported in the RDX:RAX registers by the MUL, IMUL, DIV, IDIV, and CQO

instructions.

[AMD Public Use]

General-Purpose Programming 41

24592—Rev. 3.23—October 2020 AMD64 Technology

Bit strings are also supported by instructions that operate specifically on bit strings. In general, bit
strings can start and end at any bit location within any byte, although the BTx bit-string instructions
assume that strings start on a byte boundary. The length of a bit string can range in size from a single
bit up to 232–1 bits, in legacy or compatibility modes, or 264–1 bits in 64-bit mode.

3.2.2.4 Untyped Data Objects

Move instructions: register to register, memory to register (load) or register to memory (store); pack,
unpack, swap, permutate, and merge instructions operate on data without regard to data type.

SIMD instructions operate on vector data types based on the fundamental data types described above.
See Section 4.3. “Operands” on page 118 for a discussion of vector data types

3.2.3 Operand Sizes and Overrides

3.2.3.1 Default Operand Size

In legacy and compatibility modes, the default operand size is either 16 bits or 32 bits, as determined
by the default-size (D) bit in the current code-segment descriptor (for details, see “Segmented Virtual
Memory” in Volume 2). In 64-bit mode, the default operand size for most instructions is 32 bits.

Application software can override the default operand size by using an operand-size instruction prefix.
Table 3-3 shows the instruction prefixes for operand-size overrides in all operating modes. In 64-bit
mode, the default operand size for most instructions is 32 bits. A REX prefix (see Section 3.5.2, “REX
Prefixes,” on page 79) specifies a 64-bit operand size, and a 66h prefix specifies a 16-bit operand size.
The REX prefix takes precedence over the 66h prefix.

[AMD Public Use]

42 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

There are several exceptions to the 32-bit operand-size default in 64-bit mode, including near branches
and instructions that implicitly reference the RSP stack pointer. For example, the near CALL, near
JMP, Jcc, LOOPcc, POP, and PUSH instructions all default to a 64-bit operand size in 64-bit mode.
Such instructions do not need a REX prefix for the 64-bit operand size. For details, see “General-
Purpose Instructions in 64-Bit Mode” in Volume 3.

3.2.3.2 Effective Operand Size

The term effective operand size describes the operand size for the current instruction, after accounting
for the instruction’s default operand size and any operand-size override or REX prefix that is used with
the instruction.

3.2.3.3 Immediate Operand Size

In legacy mode and compatibility modes, the size of immediate operands can be 8, 16, or 32 bits,
depending on the instruction. In 64-bit mode, the maximum size of an immediate operand is also 32
bits, except that 64-bit immediates can be copied into a 64-bit GPR using the MOV instruction.

When the operand size of a MOV instruction is 64 bits, the processor sign-extends immediates to 64
bits before using them. Support for true 64-bit immediates is accomplished by expanding the
semantics of the MOV reg, imm16/32 instructions. In legacy and compatibility modes, these
instructions—opcodes B8h through BFh—copy a 16-bit or 32-bit immediate (depending on the

Table 3-3. Operand-Size Overrides

Operating Mode
Default

Operand
Size (Bits)

Effective
Operand

Size
(Bits)

Instruction Prefix

66h1 REX

Long
Mode

64-Bit
Mode 322

64 x yes
32 no no
16 yes no

Compatibility
Mode

32
32 no

Not
Applicable

16 yes

16
32 yes
16 no

Legacy Mode
(Protected, Virtual-8086,
or Real Mode)

32
32 no
16 yes

16
32 yes
16 no

Note:
1. A “no” indicates that the default operand size is used. An “x” means “don’t care.”
2. Near branches, instructions that implicitly reference the stack pointer, and certain

other instructions default to 64-bit operand size. See “General-Purpose Instructions
in 64-Bit Mode” in Volume 3

[AMD Public Use]

General-Purpose Programming 43

24592—Rev. 3.23—October 2020 AMD64 Technology

effective operand size) into a GPR. In 64-bit mode, if the operand size is 64 bits (requires a REX
prefix), these instructions can be used to copy a true 64-bit immediate into a GPR.

3.2.4 Operand Addressing

Operands for general-purpose instructions are referenced by the instruction's syntax or they are
incorporated in the instruction as an immediate value. Referenced operands can be in registers,
memory, or I/O ports.

3.2.4.1 Register Operands

Most general-purpose instructions that take register operands reference the general-purpose registers
(GPRs). A few general-purpose instructions reference operands in the RFLAGS register, XMM
registers, or MMX™ registers.

The type of register addressed is specified in the instruction syntax. When addressing GPRs or XMM
registers, the REX instruction prefix can be used to access the extended GPRs or XMM registers, as
described in Section 3.5, “Instruction Prefixes,” on page 76.

3.2.4.2 Memory Operands

Many general-purpose instructions can access operands in memory. Section 2.2, “Memory
Addressing,” on page 14 describes the general methods and conditions for addressing memory
operands.

3.2.4.3 I/O Ports

Operands in I/O ports are referenced according to the conventions described in Section 3.8,
“Input/Output,” on page 95.

3.2.4.4 Immediate Operands

In certain instructions, a source operand—called an immediate operand, or simply immediate—is
included as part of the instruction rather than being accessed from a register or memory location. For
details on the size of immediate operands, see “Immediate Operand Size” on page 42.

3.2.5 Data Alignment

A data access is aligned if its address is a multiple of its operand size, in bytes. The following
examples illustrate this definition:

• Byte accesses are always aligned. Bytes are the smallest addressable parts of memory.
• Word (two-byte) accesses are aligned if their address is a multiple of 2.
• Doubleword (four-byte) accesses are aligned if their address is a multiple of 4.
• Quadword (eight-byte) accesses are aligned if their address is a multiple of 8.

The AMD64 architecture does not impose data-alignment requirements for accessing data in memory.
However, depending on the location of the misaligned operand with respect to the width of the data

[AMD Public Use]

44 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

bus and other aspects of the hardware implementation (such as store-to-load forwarding mechanisms),
a misaligned memory access can require more bus cycles than an aligned access. For maximum
performance, avoid misaligned memory accesses.

Performance on many hardware implementations will benefit from observing the following operand-
alignment and operand-size conventions:

• Avoid misaligned data accesses.
• Maintain consistent use of operand size across all loads and stores. Larger operand sizes

(doubleword and quadword) tend to make more efficient use of the data bus and any data-
forwarding features that are implemented by the hardware.

• When using word or byte stores, avoid loading data from the same doubleword of memory, other
than the identical start addresses of the stores.

3.3 Instruction Summary
This section summarizes the functions of the general-purpose instructions. The instructions are
organized by functional group—such as, data-transfer instructions, arithmetic instructions, and so on.
Details on individual instructions are given in the alphabetically organized “General-Purpose
Instructions in 64-Bit Mode” in Volume 3.

3.3.1 Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data. Figure 3-7 shows an example of the mnemonic
syntax for a compare (CMP) instruction. In this example, the CMP mnemonic is followed by two
operands, a 32-bit register or memory operand and an 8-bit immediate operand.

Figure 3-7. Mnemonic Syntax Example

In most instructions that take two operands, the first (left-most) operand is both a source operand and
the destination operand. The second (right-most) operand serves only as a source. Instructions can
have one or more prefixes that modify default instruction functions or operand properties. These

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

CMP reg/mem32, imm8

[AMD Public Use]

General-Purpose Programming 45

24592—Rev. 3.23—October 2020 AMD64 Technology

prefixes are summarized in Section 3.5, “Instruction Prefixes,” on page 76. Instructions that access
64-bit operands in a general-purpose register (GPR) or any of the extended GPR or XMM registers
require a REX instruction prefix.

Unless otherwise stated in this section, the word register means a general-purpose register (GPR).
Several instructions affect the flag bits in the RFLAGS register. “Instruction Effects on RFLAGS” in
Volume 3 summarizes the effects that instructions have on rFLAGS bits.

3.3.2 Data Transfer

The data-transfer instructions copy data between registers and memory.

Move
• MOV—Move
• MOVBE—Move Big-Endian
• MOVSX—Move with Sign-Extend
• MOVZX—Move with Zero-Extend
• MOVD—Move Doubleword or Quadword
• MOVNTI—Move Non-temporal Doubleword or Quadword

The move instructions copy a byte, word, doubleword, or quadword from a register or memory
location to a register or memory location. The source and destination cannot both be memory
locations. For MOVBE, both operands cannot be registers and the operand size must be greater than
one byte. MOVBE performs a reordering of the bytes within the source operand as it is copied.

An immediate constant can be used as a source operand with the MOV instruction. For most move
instructions, the destination must be of the same size as the source, but the MOVSX and MOVZX
instructions copy values of smaller size to a larger size by using sign-extension or zero-extension
respectively. The MOVD instruction copies a doubleword or quadword between a general-purpose
register or memory and an XMM or MMX register.

The MOV instruction is in many aspects similar to the assignment operator in high-level languages.
The simplest example of their use is to initialize variables. To initialize a register to 0, rather than using
a MOV instruction it may be more efficient to use the XOR instruction with identical destination and
source operands.

The MOVNTI instruction stores a doubleword or quadword from a register into memory as “non-
temporal” data, which assumes a single access (as opposed to frequent subsequent accesses of
“temporal data”). The operation therefore minimizes cache pollution. The exact method by which
cache pollution is minimized depends on the hardware implementation of the instruction. For further
information, see Section 3.9, “Memory Optimization,” on page 98.

Conditional Move
• CMOVcc—Conditional Move If condition

[AMD Public Use]

46 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The CMOVcc instructions conditionally copy a word, doubleword, or quadword from a register or
memory location to a register location. The source and destination must be of the same size.

The CMOVcc instructions perform the same task as MOV but work conditionally, depending on the
state of status flags in the RFLAGS register. If the condition is not satisfied, the instruction has no
effect and control is passed to the next instruction. The mnemonics of CMOVcc instructions indicate
the condition that must be satisfied. Several mnemonics are often used for one opcode to make the
mnemonics easier to remember. For example, CMOVE (conditional move if equal) and CMOVZ
(conditional move if zero) are aliases and compile to the same opcode. Table 3-4 shows the RFLAGS
values required for each CMOVcc instruction.

In assembly languages, the conditional move instructions correspond to small conditional statements
like:

IF a = b THEN x = y

CMOVcc instructions can replace two instructions—a conditional jump and a move. For example, to
perform a high-level statement like:

IF ECX = 5 THEN EAX = EBX

without a CMOVcc instruction, the code would look like:
cmp ecx, 5 ; test if ecx equals 5
jnz Continue ; test condition and skip if not met
mov eax, ebx ; move
Continue: ; continuation

but with a CMOVcc instruction, the code would look like:
cmp ecx, 5 ; test if ecx equals to 5
cmovz eax, ebx ; test condition and move

Replacing conditional jumps with conditional moves also has the advantage that it can avoid branch-
prediction penalties that may be caused by conditional jumps.

Support for CMOVcc instructions depends on the processor implementation. To find out if a processor
is able to perform CMOVcc instructions, use the CPUID instruction. For more information on using
the CPUID instruction, see Section 3.6, “Feature Detection,” on page 79.

Table 3-4. rFLAGS for CMOVcc Instructions
Mnemonic Required Flag State Description

CMOVO OF = 1 Conditional move if overflow
CMOVNO OF = 0 Conditional move if not overflow
CMOVB
CMOVC
CMOVNAE

CF = 1
Conditional move if below
Conditional move if carry
Conditional move if not above or equal

[AMD Public Use]

General-Purpose Programming 47

24592—Rev. 3.23—October 2020 AMD64 Technology

Stack Operations
• POP—Pop Stack
• POPA—Pop All to GPR Words
• POPAD—Pop All to GPR Doublewords
• PUSH—Push onto Stack
• PUSHA—Push All GPR Words onto Stack
• PUSHAD—Push All GPR Doublewords onto Stack
• ENTER—Create Procedure Stack Frame
• LEAVE—Delete Procedure Stack Frame

PUSH copies the specified register, memory location, or immediate value to the top of stack. This
instruction decrements the stack pointer by 2, 4, or 8, depending on the operand size, and then copies
the operand into the memory location pointed to by SS:rSP.

CMOVAE
CMOVNB
CMOVNC

CF = 0
Conditional move if above or equal
Conditional move if not below
Conditional move if not carry

CMOVE
CMOVZ ZF = 1 Conditional move if equal

Conditional move if zero
CMOVNE
CMOVNZ ZF = 0 Conditional move if not equal

Conditional move if not zero
CMOVBE
CMOVNA CF = 1 or ZF = 1 Conditional move if below or equal

Conditional move if not above
CMOVA
CMOVNBE CF = 0 and ZF = 0 Conditional move if not below or equal

Conditional move if not below or equal
CMOVS SF = 1 Conditional move if sign
CMOVNS SF = 0 Conditional move if not sign
CMOVP
CMOVPE PF = 1 Conditional move if parity

Conditional move if parity even
CMOVNP
CMOVPO PF = 0 Conditional move if not parity

Conditional move if parity odd
CMOVL
CMOVNGE SF <> OF Conditional move if less

Conditional move if not greater or equal
CMOVGE
CMOVNL SF = OF Conditional move if greater or equal

Conditional move if not less
CMOVLE
CMOVNG ZF = 1 or SF <> OF Conditional move if less or equal

Conditional move if not greater
CMOVG
CMOVNLE ZF = 0 and SF = OF Conditional move if greater

Conditional move if not less or equal

Table 3-4. rFLAGS for CMOVcc Instructions (continued)
Mnemonic Required Flag State Description

[AMD Public Use]

48 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

POP copies a word, doubleword, or quadword from the memory location pointed to by the SS:rSP
registers (the top of stack) to a specified register or memory location. Then, the rSP register is
incremented by 2, 4, or 8. After the POP operation, rSP points to the new top of stack.

PUSHA or PUSHAD stores eight word-sized or doubleword-sized registers onto the stack: eAX, eCX,
eDX, eBX, eSP, eBP, eSI and eDI, in that order. The stored value of eSP is sampled at the moment
when the PUSHA instruction started. The resulting stack-pointer value is decremented by 16 or 32.

POPA or POPAD extracts eight word-sized or doubleword-sized registers from the stack: eDI, eSI,
eBP, eSP, eBX, eDX, eCX and eAX, in that order (which is the reverse of the order used in the PUSHA
instruction). The stored eSP value is ignored by the POPA instruction. The resulting stack pointer
value is incremented by 16 or 32.

It is a common practice to use PUSH instructions to pass parameters (via the stack) to functions and
subroutines. The typical instruction sequence used at the beginning of a subroutine looks like:

push ebp ; save current EBP
mov ebp, esp ; set stack frame pointer value
sub esp, N ; allocate space for local variables

The rBP register is used as a stack frame pointer—a base address of the stack area used for parameters
passed to subroutines and local variables. Positive offsets of the stack frame pointed to by rBP provide
access to parameters passed while negative offsets give access to local variables. This technique
allows creating re-entrant subroutines.

The ENTER and LEAVE instructions provide support for procedure calls, and are mainly used in high-
level languages. The ENTER instruction is typically the first instruction of the procedure, and the
LEAVE instruction is the last before the RET instruction.

The ENTER instruction creates a stack frame for a procedure. The first operand, size, specifies the
number of bytes allocated in the stack. The second operand, depth, specifies the number of stack-frame
pointers copied from the calling procedure’s stack (i.e., the nesting level). The depth should be an
integer in the range 0–31.

Typically, when a procedure is called, the stack contains the following four components:

• Parameters passed to the called procedure (created by the calling procedure).
• Return address (created by the CALL instruction).
• Array of stack-frame pointers (pointers to stack frames of procedures with smaller nesting-level

depth) which are used to access the local variables of such procedures.
• Local variables used by the called procedure.

All these data are called the stack frame. The ENTER instruction simplifies management of the last
two components of a stack frame. First, the current value of the rBP register is pushed onto the stack.
The value of the rSP register at that moment is a frame pointer for the current procedure: positive
offsets from this pointer give access to the parameters passed to the procedure, and negative offsets
give access to the local variables which will be allocated later. During procedure execution, the value
of the frame pointer is stored in the rBP register, which at that moment contains a frame pointer of the

[AMD Public Use]

General-Purpose Programming 49

24592—Rev. 3.23—October 2020 AMD64 Technology

calling procedure. This frame pointer is saved in a temporary register. If the depth operand is greater
than one, the array of depth-1 frame pointers of procedures with smaller nesting level is pushed onto
the stack. This array is copied from the stack frame of the calling procedure, and it is addressed by the
rBP register from the calling procedure. If the depth operand is greater than zero, the saved frame
pointer of the current procedure is pushed onto the stack (forming an array of depth frame pointers).
Finally, the saved value of the frame pointer is copied to the rBP register, and the rSP register is
decremented by the value of the first operand, allocating space for local variables used in the
procedure. See “Stack Operations” on page 47 for a parameter-passing instruction sequence using
PUSH that is equivalent to ENTER.

The LEAVE instruction removes local variables and the array of frame pointers, allocated by the
previous ENTER instruction, from the stack frame. This is accomplished by the following two steps:
first, the value of the frame pointer is copied from the rBP register to the rSP register. This releases the
space allocated by local variables and an array of frame pointers of procedures with smaller nesting
levels. Second, the rBP register is popped from the stack, restoring the previous value of the frame
pointer (or simply the value of the rBP register, if the depth operand is zero). Thus, the LEAVE
instruction is equivalent to the following code:

mov rSP, rBP
pop rBP

3.3.3 Data Conversion

The data-conversion instructions perform various transformations of data, such as operand-size
doubling by sign extension, conversion of little-endian to big-endian format, extraction of sign masks,
searching a table, and support for operations with decimal numbers.

Sign Extension
• CBW—Convert Byte to Word
• CWDE—Convert Word to Doubleword
• CDQE—Convert Doubleword to Quadword
• CWD—Convert Word to Doubleword
• CDQ—Convert Doubleword to Quadword
• CQO—Convert Quadword to Octword

The CBW, CWDE, and CDQE instructions sign-extend the AL, AX, or EAX register to the upper half
of the AX, EAX, or RAX register, respectively. By doing so, these instructions create a double-sized
destination operand in rAX that has the same numerical value as the source operand. The CBW,
CWDE, and CDQE instructions have the same opcode, and the action taken depends on the effective
operand size.

The CWD, CDQ and CQO instructions sign-extend the AX, EAX, or RAX register to all bit positions
of the DX, EDX, or RDX register, respectively. By doing so, these instructions create a double-sized
destination operand in rDX:rAX that has the same numerical value as the source operand. The CWD,

[AMD Public Use]

50 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

CDQ, and CQO instructions have the same opcode, and the action taken depends on the effective
operand size.

Flags are not affected by these instructions. The instructions can be used to prepare an operand for
signed division (performed by the IDIV instruction) by doubling its storage size.

Extract Sign Mask
• (V)MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask
• (V)MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

The MOVMSKPS instruction moves the sign bits of four packed single-precision floating-point
values in an XMM register to the four low-order bits of a general-purpose register, with zero-
extension. MOVMSKPD does a similar operation for two packed double-precision floating-point
values: it moves the two sign bits to the two low-order bits of a general-purpose register, with zero-
extension. The result of either instruction is a sign-bit mask.

Translate
• XLAT—Translate Table Index

The XLAT instruction replaces the value stored in the AL register with a table element. The initial
value in AL serves as an unsigned index into the table, and the start (base) of table is specified by the
DS:rBX registers (depending on the effective address size).

This instruction is not recommended. The following instruction serves to replace it:
MOV AL,[rBX + AL]

ASCII Adjust
• AAA—ASCII Adjust After Addition
• AAD—ASCII Adjust Before Division
• AAM—ASCII Adjust After Multiply
• AAS—ASCII Adjust After Subtraction

The AAA, AAD, AAM, and AAS instructions perform corrections of arithmetic operations with non-
packed BCD values (i.e., when the decimal digit is stored in a byte register). There are no instructions
which directly operate on decimal numbers (either packed or non-packed BCD). However, the ASCII-
adjust instructions correct decimal-arithmetic results. These instructions assume that an arithmetic
instruction, such as ADD, was performed on two BCD operands, and that the result was stored in the
AL or AX register. This result can be incorrect or it can be a non-BCD value (for example, when a
decimal carry occurs). After executing the proper ASCII-adjust instruction, the AX register contains a
correct BCD representation of the result. (The AAD instruction is an exception to this, because it
should be applied before a DIV instruction, as explained below). All of the ASCII-adjust instructions
are able to operate with multiple-precision decimal values.

AAA should be applied after addition of two non-packed decimal digits. AAS should be applied after
subtraction of two non-packed decimal digits. AAM should be applied after multiplication of two non-

[AMD Public Use]

General-Purpose Programming 51

24592—Rev. 3.23—October 2020 AMD64 Technology

packed decimal digits. AAD should be applied before the division of two non-packed decimal
numbers.

Although the base of the numeration for ASCII-adjust instructions is assumed to be 10, the AAM and
AAD instructions can be used to correct multiplication and division with other bases.

BCD Adjust
• DAA—Decimal Adjust after Addition
• DAS—Decimal Adjust after Subtraction

The DAA and DAS instructions perform corrections of addition and subtraction operations on packed
BCD values. (Packed BCD values have two decimal digits stored in a byte register, with the higher
digit in the higher four bits, and the lower one in the lower four bits.) There are no instructions for
correction of multiplication and division with packed BCD values.

DAA should be applied after addition of two packed-BCD numbers. DAS should be applied after
subtraction of two packed-BCD numbers.

DAA and DAS can be used in a loop to perform addition or subtraction of two multiple-precision
decimal numbers stored in packed-BCD format. Each loop cycle would operate on corresponding
bytes (containing two decimal digits) of operands.

Endian Conversion
• BSWAP—Byte Swap

The BSWAP instruction changes the byte order of a doubleword or quadword operand in a register, as
shown in Figure 3-8. In a doubleword, bits 7:0 are exchanged with bits 31:24, and bits 15:8 are
exchanged with bits 23:16. In a quadword, bits 7:0 are exchanged with bits 63:56, bits 15:8 with bits
55:48, bits 23:16 with bits 47:40, and bits 31:24 with bits 39:32. See the following illustration.

Figure 3-8. BSWAP Doubleword Exchange

A second application of the BSWAP instruction to the same operand restores its original value. The
result of applying the BSWAP instruction to a 16-bit register is undefined. To swap bytes of a 16-bit
register, use the XCHG instruction.

The BSWAP instruction is used to convert data between little-endian and big-endian byte order.

07815162331 24

07815162331 24

[AMD Public Use]

52 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.3.4 Load Segment Registers

These instructions load segment registers.

• LDS, LES, LFS, LGS, LSS—Load Far Pointer
• MOV segReg—Move Segment Register
• POP segReg—Pop Stack Into Segment Register

The LDS, LES, LFD, LGS, and LSS instructions atomically (with respect to interrupts only, not
contending memory accesses) load the two parts of a far pointer into a segment register and a general-
purpose register. A far pointer is a 16-bit segment selector and a 16-bit or 32-bit offset. The load copies
the segment-selector portion of the pointer from memory into the segment register and the offset
portion of the pointer from memory into a general-purpose register.

The effective operand size determines the size of the offset loaded by the LDS, LES, LFD, LGS, and
LSS instructions. The instructions load not only the software-visible segment selector into the segment
register, but they also cause the hardware to load the associated segment-descriptor information into
the software-invisible (hidden) portion of that segment register.

The MOV segReg and POP segReg instructions load a segment selector from a general-purpose
register or memory (for MOV segReg) or from the top of the stack (for POP segReg) to a segment
register. These instructions not only load the software-visible segment selector into the segment
register but also cause the hardware to load the associated segment-descriptor information into the
software-invisible (hidden) portion of that segment register.

In 64-bit mode, the POP DS, POP ES, and POP SS instructions are invalid.

3.3.5 Load Effective Address
• LEA—Load Effective Address

The LEA instruction calculates and loads the effective address (offset within a given segment) of a
source operand and places it in a general-purpose register.

LEA is related to MOV, which copies data from a memory location to a register, but LEA takes the
address of the source operand, whereas MOV takes the contents of the memory location specified by
the source operand. In the simplest cases, LEA can be replaced with MOV. For example:

lea eax, [ebx]

has the same effect as:
mov eax, ebx

However, LEA allows software to use any valid addressing mode for the source operand. For example:
lea eax, [ebx+edi]

loads the sum of EBX and EDI registers into the EAX register. This could not be accomplished by a
single MOV instruction.

[AMD Public Use]

General-Purpose Programming 53

24592—Rev. 3.23—October 2020 AMD64 Technology

LEA has a limited capability to perform multiplication of operands in general-purpose registers using
scaled-index addressing. For example:

lea eax, [ebx+ebx*8]

loads the value of the EBX register, multiplied by 9, into the EAX register.

3.3.6 Arithmetic

The arithmetic instructions perform basic arithmetic operations, such as addition, subtraction,
multiplication, and division on integer operands.

Add and Subtract
• ADC—Add with Carry
• ADD—Signed or Unsigned Add
• SBB—Subtract with Borrow
• SUB—Subtract
• NEG—Two’s Complement Negation

The ADD instruction performs addition of two integer operands. There are opcodes that add an
immediate value to a byte, word, doubleword, or quadword register or a memory location. In these
opcodes, if the size of the immediate is smaller than that of the destination, the immediate is first sign-
extended to the size of the destination operand. The arithmetic flags (OF, SF, ZF, AF, CF, PF) are set
according to the resulting value of the destination operand.

The ADC instruction performs addition of two integer operands, plus 1 if the carry flag (CF) is set.

The SUB instruction performs subtraction of two integer operands.

The SBB instruction performs subtraction of two integer operands, and it also subtracts an additional 1
if the carry flag is set.

The ADC and SBB instructions simplify addition and subtraction of multiple-precision integer
operands, because they correctly handle carries (and borrows) between parts of a multiple-precision
operand.

The NEG instruction performs negation of an integer operand. The value of the operand is replaced
with the result of subtracting the operand from zero.

Multiply and Divide
• MUL—Multiply Unsigned
• IMUL—Signed Multiply
• DIV—Unsigned Divide
• IDIV—Signed Divide

[AMD Public Use]

54 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The MUL instruction performs multiplication of unsigned integer operands. The size of operands can
be byte, word, doubleword, or quadword. The product is stored in a destination which is double the
size of the source operands (multiplicand and factor).

The MUL instruction's mnemonic has only one operand, which is a factor. The multiplicand operand is
always assumed to be an accumulator register. For byte-sized multiplies, AL contains the
multiplicand, and the result is stored in AX. For word-sized, doubleword-sized, and quadword-sized
multiplies, rAX contains the multiplicand, and the result is stored in rDX and rAX. In 64-bit mode

The IMUL instruction performs multiplication of signed integer operands. There are forms of the
IMUL instruction with one, two, and three operands, and it is thus more powerful than the MUL
instruction. The one-operand form of the IMUL instruction behaves similarly to the MUL instruction,
except that the operands and product are signed integer values. In the two-operand form of IMUL, the
multiplicand and product use the same register (the first operand), and the factor is specified in the
second operand. In the three-operand form of IMUL, the product is stored in the first operand, the
multiplicand is specified in the second operand, and the factor is specified in the third operand.

The DIV instruction performs division of unsigned integers. The instruction divides a double-sized
dividend in AH:AL or rDX:rAX by the divisor specified in the operand of the instruction. It stores the
quotient in AL or rAX and the remainder in AH or rDX.

The IDIV instruction performs division of signed integers. It behaves similarly to DIV, with the
exception that the operands are treated as signed integer values.

Division is the slowest of all integer arithmetic operations and should be avoided wherever possible.
One possibility for improving performance is to replace division with multiplication, such as by
replacing i/j/k with i/(j*k). This replacement is possible if no overflow occurs during the computation
of the product. This can be determined by considering the possible ranges of the divisors.

Increment and Decrement
• DEC—Decrement by 1
• INC—Increment by 1

The INC and DEC instructions are used to increment and decrement, respectively, an integer operand
by one. For both instructions, an operand can be a byte, word, doubleword, or quadword register or
memory location.

These instructions behave in all respects like the corresponding ADD and SUB instructions, with the
second operand as an immediate value equal to 1. The only exception is that the carry flag (CF) is not
affected by the INC and DEC instructions.

Apart from their obvious arithmetic uses, the INC and DEC instructions are often used to modify
addresses of operands. In this case it can be desirable to preserve the value of the carry flag (to use it
later), so these instructions do not modify the carry flag.

[AMD Public Use]

General-Purpose Programming 55

24592—Rev. 3.23—October 2020 AMD64 Technology

3.3.7 Rotate and Shift

The rotate and shift instructions perform cyclic rotation or non-cyclic shift, by a given number of bits
(called the count), in a given byte-sized, word-sized, doubleword-sized or quadword-sized operand.

When the count is greater than 1, the result of the rotate and shift instructions can be considered as an
iteration of the same 1-bit operation by count number of times. Because of this, the descriptions below
describe the result of 1-bit operations.

The count can be 1, the value of the CL register, or an immediate 8-bit value. To avoid redundancy and
make rotation and shifting quicker, the count is masked to the 5 or 6 least-significant bits, depending
on the effective operand size, so that its value does not exceed 31 or 63 before the rotation or shift takes
place.

Rotate
• RCL—Rotate Through Carry Left
• RCR—Rotate Through Carry Right
• ROL—Rotate Left
• ROR—Rotate Right

The RCx instructions rotate the bits of the first operand to the left or right by the number of bits
specified by the source (count) operand. The bits rotated out of the destination operand are rotated into
the carry flag (CF) and the carry flag is rotated into the opposite end of the first operand.

The ROx instructions rotate the bits of the first operand to the left or right by the number of bits
specified by the source operand. Bits rotated out are rotated back in at the opposite end. The value of
the CF flag is determined by the value of the last bit rotated out. In single-bit left-rotates, the overflow
flag (OF) is set to the XOR of the CF flag after rotation and the most-significant bit of the result. In
single-bit right-rotates, the OF flag is set to the XOR of the two most-significant bits. Thus, in both
cases, the OF flag is set to 1 if the single-bit rotation changed the value of the most-significant bit (sign
bit) of the operand. The value of the OF flag is undefined for multi-bit rotates.

Bit-rotation instructions provide many ways to reorder bits in an operand. This can be useful, for
example, in character conversion, including cryptography techniques.

Shift
• SAL—Shift Arithmetic Left
• SAR—Shift Arithmetic Right
• SHL—Shift Left
• SHR—Shift Right
• SHLD—Shift Left Double
• SHRD—Shift Right Double

[AMD Public Use]

56 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The SHx instructions (including SHxD) perform shift operations on unsigned operands. The SAx
instructions operate with signed operands.

SHL and SAL instructions effectively perform multiplication of an operand by a power of 2, in which
case they work as more-efficient alternatives to the MUL instruction. Similarly, SHR and SAR
instructions can be used to divide an operand (signed or unsigned, depending on the instruction used)
by a power of 2.

Although the SAR instruction divides the operand by a power of 2, the behavior is different from the
IDIV instruction. For example, shifting –11 (FFFFFFF5h) by two bits to the right (i.e. divide –11 by
4), gives a result of FFFFFFFDh, or –3, whereas the IDIV instruction for dividing –11 by 4 gives a
result of –2. This is because the IDIV instruction rounds off the quotient to zero, whereas the SAR
instruction rounds off the remainder to zero for positive dividends, and to negative infinity for negative
dividends. This means that, for positive operands, SAR behaves like the corresponding IDIV
instruction, and for negative operands, it gives the same result if and only if all the shifted-out bits are
zeroes, and otherwise the result is smaller by 1.

The SAR instruction treats the most-significant bit (msb) of an operand in a special way: the msb (the
sign bit) is not changed, but is copied to the next bit, preserving the sign of the result. The least-
significant bit (lsb) is shifted out to the CF flag. In the SAL instruction, the msb is shifted out to CF
flag, and the lsb is cleared to 0.

The SHx instructions perform logical shift, i.e. without special treatment of the sign bit. SHL is the
same as SAL (in fact, their opcodes are the same). SHR copies 0 into the most-significant bit, and
shifts the least-significant bit to the CF flag.

The SHxD instructions perform a double shift. These instructions perform left and right shift of the
destination operand, taking the bits to copy into the most-significant bit (for the SHRD instruction) or
into the least-significant bit (for the SHLD instruction) from the source operand. These instructions
behave like SHx, but use bits from the source operand instead of zero bits to shift into the destination
operand. The source operand is not changed.

3.3.8 Bit Manipulation

The bit manipulation instructions manipulate individual bits in a register for purposes such as
controlling low-level devices, correcting algorithms, and detecting errors. Following are descriptions
of supported bit manipulation instructions.

Extract Bit Field
• BEXTR—Bit Field Extract (register form is a BMI instruction)
• BEXTR—Bit Field Extract (immediate version is a TBM instruction)

The BEXTR instruction (register form and immediate version) extracts a contiguous field of bits from
the first source operand, as specified by the control field setting in the second source operand and puts
the extracted field into the least significant bit positions of the destination. The remaining bits in the
destination register are cleared to 0.

[AMD Public Use]

General-Purpose Programming 57

24592—Rev. 3.23—October 2020 AMD64 Technology

Fill Bit
• BLCFILL—Fill From Lowest Clear Bit
• BLSFILL—Fill From Lowest Set Bit

The BLCFILL instruction finds the least significant zero bit in the source operand, clears all bits below
that bit to 0 and writes the result to the destination. If there is no zero bit in the source operand, the
destination is written with all zeros.

The BLSFILL instruction finds the least significant one bit in the source operand, sets all bits below
that bit to 1 and writes the result to the destination. If there is no one bit in the source operand, the
destination is written with all ones.

Isolate Bit
• BLSI— Isolate Lowest Set Bit
• BLCI—Isolate Lowest Clear Bit
• BLCIC—Bit Lowest Clear Isolate Complemented
• BLCS—Set Lowest Clear Bit
• BLSIC— Isolate Lowest Set Bit and Complement

The BLSI instruction clears all bits in the source operand except for the least significant bit that is set
to 1 and writes the result to the destination.

The BLCI instruction finds the least significant zero bit in the source operand, sets all other bits to 1
and writes the result to the destination. If there is no zero bit in the source operand, the destination is
written with all ones.

The BLCIC instruction finds the least significant zero bit in the source operand, sets that bit to 1, clears
all other bits to 0 and writes the result to the destination. If there is no zero bit in the source operand,
the destination is written with all zeros.

The BLCS instruction finds the least significant zero bit in the source operand, sets that bit to 1 and
writes the result to the destination. If there is no zero bit in the source operand, the source is copied to
the destination (and CF in rFLAGS is set to 1).

The BLSIC instruction finds the least significant bit that is set to 1 in the source operand, clears that bit
to 0, sets all other bits to 1 and writes the result to the destination. If there is no one bit in the source
operand, the destination is written with all ones.

Mask Bit
• BLSMSK—Mask from Lowest Set Bit
• BLCMSK—Mask From Lowest Clear Bit
• T1MSKC — Inverse Mask From Trailing Ones
• TZMSK—Mask From Trailing Zeros

[AMD Public Use]

58 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The BLSMSK instruction forms a mask with bits set to 1 from bit 0 up to and including the least
significant bit position that is set to 1 in the source operand and writes the mask to the destination.

The BLCMSK instruction finds the least significant zero bit in the source operand, sets that bit to 1,
clears all bits above that bit to 0 and writes the result to the destination. If there is no zero bit in the
source operand, the destination is written with all ones.

The T1MSKC instruction finds the least significant zero bit in the source operand, clears all bits below
that bit to 0, sets all other bits to 1 (including the found bit) and writes the result to the destination. If
the least significant bit of the source operand is 0, the destination is written with all ones.

The TZMSK instruction finds the least significant one bit in the source operand, sets all bits below that
bit to 1, clears all other bits to 0 (including the found bit) and writes the result to the destination. If the
least significant bit of the source operand is 1, the destination is written with all zeros.

Population and Zero Counts
• POPCNT—Bit Population Count
• LZCNT—Count Leading Zeros
• TZCNT—Trailing Zero Count

The POPCNT instruction counts the number of bits having a value of 1 in the source operand and
places the total in the destination register.

The LZCNT instruction counts the number of leading zero bits in the 16-, 32-, or 64-bit general
purpose register or memory source operand. Counting starts downward from the most significant bit
and stops when the highest bit having a value of 1 is encountered or when the least significant bit is
encountered. The count is written to the destination register.

The TZCNT instruction counts the number of trailing zero bits in the 16-, 32-, or 64-bit general
purpose register or memory source operand. Counting starts upward from the least significant bit and
stops when the lowest bit having a value of 1 is encountered or when the most significant bit is
encountered. The count is written to the destination register.

Reset Bit
• BLSR—Reset Lowest Set Bit

The BLSR instruction clears the least-significant bit that is set to 1 in the input operand and writes the
modified operand to the destination.

Scan Bit
• BSF—Bit Scan Forward
• BSR—Bit Scan Reverse

The BSF and BSR instructions search a source operand for the least-significant (BSF) or most-
significant (BSR) bit that is set to 1. If a set bit is found, its bit index is loaded into the destination

[AMD Public Use]

General-Purpose Programming 59

24592—Rev. 3.23—October 2020 AMD64 Technology

operand, and the zero flag (ZF) is set. If no set bit is found, the zero flag is cleared and the contents of
the destination are undefined.

3.3.9 Compare and Test

The compare and test instructions perform arithmetic and logical comparison of operands and set
corresponding flags, depending on the result of comparison. These instruction are used in conjunction
with conditional instructions such as Jcc or SETcc to organize branching and conditionally executing
blocks in programs. Assembler equivalents of conditional operators in high-level languages
(do…while, if…then…else, and similar) also include compare and test instructions.

Compare
• CMP—Compare

The CMP instruction performs subtraction of the second operand (source) from the first operand
(destination), like the SUB instruction, but it does not store the resulting value in the destination
operand. It leaves both operands intact. The only effect of the CMP instruction is to set or clear the
arithmetic flags (OF, SF, ZF, AF, CF, PF) according to the result of subtraction.

The CMP instruction is often used together with the conditional jump instructions (Jcc), conditional
SET instructions (SETcc) and other instructions such as conditional loops (LOOPcc) whose behavior
depends on flag state.

Test
• TEST—Test Bits

The TEST instruction is in many ways similar to the AND instruction: it performs logical conjunction
of the corresponding bits of both operands, but unlike the AND instruction it leaves the operands
unchanged. The purpose of this instruction is to update flags for further testing.

The TEST instruction is often used to test whether one or more bits in an operand are zero. In this case,
one of the instruction operands would contain a mask in which all bits are cleared to zero except the
bits being tested. For more advanced bit testing and bit modification, use the BTx instructions.

Bit Test
• BT—Bit Test
• BTC—Bit Test and Complement
• BTR—Bit Test and Reset
• BTS—Bit Test and Set

The BTx instructions copy a specified bit in the first operand to the carry flag (CF) and leave the source
bit unchanged (BT), or complement the source bit (BTC), or clear the source bit to 0 (BTR), or set the
source bit to 1 (BTS).

These instructions are useful for implementing semaphore arrays. Unlike the XCHG instruction, the
BTx instructions set the carry flag, so no additional test or compare instruction is needed. Also,

[AMD Public Use]

60 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

because these instructions operate directly on bits rather than larger data types, the semaphore arrays
can be smaller than is possible when using XCHG. In such semaphore applications, bit-test
instructions should be preceded by the LOCK prefix.

Set Byte on Condition
• SETcc—Set Byte if condition

The SETcc instructions store a 1 or 0 value to their byte operand depending on whether their condition
(represented by certain rFLAGS bits) is true or false, respectively. Table 3-5 shows the rFLAGS values
required for each SETcc instruction.

Table 3-5. rFLAGS for SETcc Instructions
Mnemonic Required Flag State Description

SETO OF = 1 Set byte if overflow
SETNO OF = 0 Set byte if not overflow
SETB
SETC
SETNAE

CF = 1
Set byte if below
Set byte if carry
Set byte if not above or equal (unsigned operands)

SETAE
SETNB
SETNC

CF = 0
Set byte if above or equal
Set byte if not below
Set byte if not carry (unsigned operands)

SETE
SETZ ZF = 1 Set byte if equal

Set byte if zero
SETNE
SETNZ ZF = 0 Set byte if not equal

Set byte if not zero
SETBE
SETNA CF = 1 or ZF = 1 Set byte if below or equal

Set byte if not above (unsigned operands)
SETA
SETNBE CF = 0 and ZF = 0 Set byte if not below or equal

Set byte if not below or equal (unsigned operands)
SETS SF = 1 Set byte if sign
SETNS SF = 0 Set byte if not sign
SETP
SETPE PF = 1 Set byte if parity

Set byte if parity even
SETNP
SETPO PF = 0 Set byte if not parity

Set byte if parity odd
SETL
SETNGE SF <> OF Set byte if less

Set byte if not greater or equal (signed operands)
SETGE
SETNL SF = OF Set byte if greater or equal

Set byte if not less (signed operands)
SETLE
SETNG ZF = 1 or SF <> OF Set byte if less or equal

Set byte if not greater (signed operands)
SETG
SETNLE ZF = 0 and SF = OF Set byte if greater

Set byte if not less or equal (signed operands)

[AMD Public Use]

General-Purpose Programming 61

24592—Rev. 3.23—October 2020 AMD64 Technology

SETcc instructions are often used to set logical indicators. Like CMOVcc instructions (page 45),
SETcc instructions can replace two instructions—a conditional jump and a move. Replacing
conditional jumps with conditional sets can help avoid branch-prediction penalties that may be caused
by conditional jumps.

If the logical value True (logical 1) is represented in a high-level language as an integer with all bits set
to 1, software can accomplish such representation by first executing the opposite SETcc instruction—
for example, the opposite of SETZ is SETNZ—and then decrementing the result.

Bounds
• BOUND—Check Array Bounds

The BOUND instruction checks whether the value of the first operand, a signed integer index into an
array, is within the minimal and maximal bound values pointed to by the second operand. The values
of array bounds are often stored at the beginning of the array. If the bounds of the range are exceeded,
the processor generates a bound-range exception.

The primary disadvantage of using the BOUND instruction is its use of the time-consuming exception
mechanism to signal a failure of the bounds test.

3.3.10 Logical

The logical instructions perform bitwise operations.

• AND—Logical AND
• OR—Logical OR
• XOR—Exclusive OR
• NOT—One’s Complement Negation
• ANDN—And Not

The AND, OR, and XOR instructions perform their respective logical operations on the corresponding
bits of both operands and store the result in the first operand. The CF flag and OF flag are cleared to 0,
and the ZF flag, SF flag, and PF flag are set according to the resulting value of the first operand.

The NOT instruction performs logical inversion of all bits of its operand. Each zero bit becomes one
and vice versa. All flags remain unchanged.

The ANDN instruction performs a bitwise AND of the second source operand and the one's
complement of the first source operand and stores the result into the destination operand.

Apart from performing logical operations, AND and OR can test a register for a zero or non-zero
value, sign (negative or positive), and parity status of its lowest byte. To do this, both operands must be
the same register. The XOR instruction with two identical operands is an efficient way of loading the
value 0 into a register.

[AMD Public Use]

62 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.3.11 String

The string instructions perform common string operations such as copying, moving, comparing, or
searching strings. These instructions are widely used for processing text.

Compare Strings
• CMPS—Compare Strings
• CMPSB—Compare Strings by Byte
• CMPSW—Compare Strings by Word
• CMPSD—Compare Strings by Doubleword
• CMPSQ—Compare Strings by Quadword

The CMPSx instructions compare the values of two implicit operands of the same size located at
seg:[rSI] and ES:[rDI]. After the copy, both the rSI and rDI registers are auto-incremented (if the DF
flag is 0) or auto-decremented (if the DF flag is 1).

Scan String
• SCAS—Scan String
• SCASB—Scan String as Bytes
• SCASW—Scan String as Words
• SCASD—Scan String as Doubleword
• SCASQ—Scan String as Quadword

The SCASx instructions compare the values of a memory operands in ES:rDI to a value of the same
size in the AL/rAX register. Bits in rFLAGS are set to indicate the outcome of the comparison. After
the comparison, the rDI register is auto-incremented (if the DF flag is 0) or auto-decremented (if the
DF flag is 1).

Move String
• MOVS—Move String
• MOVSB—Move String Byte
• MOVSW—Move String Word
• MOVSD—Move String Doubleword
• MOVSQ—Move String Quadword

The MOVSx instructions copy an operand from the memory location seg:[rSI] to the memory location
ES:[rDI]. After the copy, both the rSI and rDI registers are auto-incremented (if the DF flag is 0) or
auto-decremented (if the DF flag is 1).

Load String
• LODS—Load String

[AMD Public Use]

General-Purpose Programming 63

24592—Rev. 3.23—October 2020 AMD64 Technology

• LODSB—Load String Byte
• LODSW—Load String Word
• LODSD—Load String Doubleword
• LODSQ—Load String Quadword

The LODSx instructions load a value from the memory location seg:[rSI] to the accumulator register
(AL or rAX). After the load, the rSI register is auto-incremented (if the DF flag is 0) or auto-
decremented (if the DF flag is 1).

Store String
• STOS—Store String
• STOSB—Store String Bytes
• STOSW—Store String Words
• STOSD—Store String Doublewords
• STOSQ—Store String Quadword

The STOSx instructions copy the accumulator register (AL or rAX) to a memory location ES:[rDI].
After the copy, the rDI register is auto-incremented (if the DF flag is 0) or auto-decremented (if the DF
flag is 1).

3.3.12 Control Transfer

Control-transfer instructions, or branches, are used to iterate through loops and move through
conditional program logic.

Jump
• JMP—Jump

JMP performs an unconditional jump to the specified address. There are several ways to specify the
target address.

• Relative Short Jump and Relative Near Jump—The target address is determined by adding an 8-bit
(short jump) or 16-bit or 32-bit (near jump) signed displacement to the rIP of the instruction
following the JMP. The jump is performed within the current code segment (CS).

• Register-Indirect and Memory-Indirect Near Jump—The target rIP value is contained in a register
or in a memory location. The jump is performed within the current CS.

• Direct Far Jump—For all far jumps, the target address is outside the current code segment. Here,
the instruction specifies the 16-bit target-address code segment and the 16-bit or 32-bit offset as an
immediate value. The direct far jump form is invalid in 64-bit mode.

• Memory-Indirect Far Jump—For this form, the target address (CS:rIP) is in a address outside the
current code segment. A 32-bit or 48-bit far pointer in a specified memory location points to the
target address.

The size of the target rIP is determined by the effective operand size for the JMP instruction.

[AMD Public Use]

64 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

For far jumps, the target selector can specify a code-segment selector, in which case it is loaded into
CS, and a 16-bit or 32-bit target offset is loaded into rIP. The target selector can also be a call-gate
selector or a task-state-segment (TSS) selector, used for performing task switches. In these cases, the
target offset of the JMP instruction is ignored, and the new values loaded into CS and rIP are taken
from the call gate or from the TSS.

Conditional Jump
• Jcc—Jump if condition

Conditional jump instructions jump to an instruction specified by the operand, depending on the state
of flags in the rFLAGS register. The operands specifies a signed relative offset from the current
contents of the rIP. If the state of the corresponding flags meets the condition, a conditional jump
instruction passes control to the target instruction, otherwise control is passed to the instruction
following the conditional jump instruction. The flags tested by a specific Jcc instruction depend on the
opcode. In several cases, multiple mnemonics correspond to one opcode.

Table 3-6 shows the rFLAGS values required for each Jcc instruction.

Table 3-6. rFLAGS for Jcc Instructions
Mnemonic Required Flag State Description

JO OF = 1 Jump near if overflow
JNO OF = 0 Jump near if not overflow
JB
JC
JNAE

CF = 1
Jump near if below
Jump near if carry
Jump near if not above or equal

JNB
JNC
JAE

CF = 0
Jump near if not below
Jump near if not carry
Jump near if above or equal

JZ
JE ZF = 1 Jump near if 0

Jump near if equal
JNZ
JNE ZF = 0 Jump near if not zero

Jump near if not equal
JNA
JBE CF = 1 or ZF = 1 Jump near if not above

Jump near if below or equal
JNBE
JA CF = 0 and ZF = 0 Jump near if not below or equal

Jump near if above
JS SF = 1 Jump near if sign
JNS SF = 0 Jump near if not sign
JP
JPE PF = 1 Jump near if parity

Jump near if parity even
JNP
JPO PF = 0 Jump near if not parity

Jump near if parity odd
JL
JNGE SF <> OF Jump near if less

Jump near if not greater or equal

[AMD Public Use]

General-Purpose Programming 65

24592—Rev. 3.23—October 2020 AMD64 Technology

Unlike the unconditional jump (JMP), conditional jump instructions have only two forms—near
conditional jumps and short conditional jumps. To create a far-conditional-jump code sequence
corresponding to a high-level language statement like:

IF A = B THEN GOTO FarLabel

where FarLabel is located in another code segment, use the opposite condition in a conditional short
jump before the unconditional far jump. For example:

cmp A,B ; compare operands
jne NextInstr ; continue program if not equal
jmp far ptr WhenNE ; far jump if operands are equal

NextInstr: ; continue program

Three special conditional jump instructions use the rCX register instead of flags. The JCXZ, JECXZ,
and JRCXZ instructions check the value of the CX, ECX, and RCX registers, respectively, and pass
control to the target instruction when the value of rCX register reaches 0. These instructions are often
used to control safe cycles, preventing execution when the value in rCX reaches 0.

Loop
• LOOPcc—Loop if condition

The LOOPcc instructions include LOOPE, LOOPNE, LOOPNZ, and LOOPZ. These instructions
decrement the rCX register by 1 without changing any flags, and then check to see if the loop condition
is met. If the condition is met, the program jumps to the specified target code.

LOOPE and LOOPZ are synonyms. Their loop condition is met if the value of the rCX register is non-
zero and the zero flag (ZF) is set to 1 when the instruction starts. LOOPNE and LOOPNZ are also
synonyms. Their loop condition is met if the value of the rCX register is non-zero and the ZF flag is
cleared to 0 when the instruction starts. LOOP, unlike the other mnemonics, does not check the ZF
flag. Its loop condition is met if the value of the rCX register is non-zero.

Call
• CALL—Procedure Call

The CALL instruction performs a call to a procedure whose address is specified in the operand. The
return address is placed on the stack by the CALL, and points to the instruction immediately following

JGE
JNL SF = OF Jump near if greater or equal

Jump near if not less
JNG
JLE ZF = 1 or SF <> OF Jump near if not greater

Jump near if less or equal
JNLE
JG ZF = 0 and SF = OF Jump near if not less or equal

Jump near if greater

Table 3-6. rFLAGS for Jcc Instructions (continued)
Mnemonic Required Flag State Description

[AMD Public Use]

66 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

the CALL. When the called procedure finishes execution and is exited using a return instruction,
control is transferred to the return address saved on the stack.

The CALL instruction has the same forms as the JMP instruction, except that CALL lacks the short-
relative (1-byte offset) form.

• Relative Near Call—These specify an offset relative to the instruction following the CALL
instruction. The operand is an immediate 16-bit or 32-bit offset from the called procedure, within
the same code segment.

• Register-Indirect and Memory-Indirect Near Call—These specify a target address contained in a
register or memory location.

• Direct Far Call—These specify a target address outside the current code segment. The address is
pointed to by a 32-bit or 48-bit far-pointer specified by the instruction, which consists of a 16-bit
code selector and a 16-bit or 32-bit offset. The direct far call form is invalid in 64-bit mode.

• Memory-Indirect Far Call—These specify a target address outside the current code segment. The
address is pointed to by a 32-bit or 48-bit far pointer in a specified memory location.

The size of the rIP is in all cases determined by the operand-size attribute of the CALL instruction.
CALLs push the return address to the stack. The data pushed on the stack depends on whether a near or
far call is performed, and whether a privilege change occurs. See Section 3.7.5, “Procedure Calls,” on
page 83 for further information.

For far CALLs, the selector portion of the target address can specify a code-segment selector (in which
case the selector is loaded into the CS register), or a call-gate selector, (used for calls that change
privilege level), or a task-state-segment (TSS) selector (used for task switches). In the latter two cases,
the offset portion of the CALL instruction’s target address is ignored, and the new values loaded into
CS and rIP are taken from the call gate or TSS.

Return
• RET—Return from Call

The RET instruction returns from a procedure originally called using the CALL instruction. CALL
places a return address (which points to the instruction following the CALL) on the stack. RET takes
the return address from the stack and transfers control to the instruction located at that address.

Like CALL instructions, RET instructions have both a near and far form. An optional immediate
operand for the RET specifies the number of bytes to be popped from the procedure stack for
parameters placed on the stack. See Section 3.7.6, “Returning from Procedures,” on page 86 for
additional information.

Interrupts and Exceptions
• INT—Interrupt to Vector Number
• INTO—Interrupt to Overflow Vector
• IRET—Interrupt Return Word
• IRETD—Interrupt Return Doubleword

[AMD Public Use]

General-Purpose Programming 67

24592—Rev. 3.23—October 2020 AMD64 Technology

• IRETQ—Interrupt Return Quadword

The INT instruction implements a software interrupt by calling an interrupt handler. The operand of
the INT instruction is an immediate byte value specifying an index in the interrupt descriptor table
(IDT), which contains addresses of interrupt handlers (see Section 3.7.10, “Interrupts and
Exceptions,” on page 91 for further information on the IDT).

The 1-byte INTO instruction calls interrupt 4 (the overflow exception, #OF), if the overflow flag in
RFLAGS is set to 1, otherwise it does nothing. Signed arithmetic instructions can be followed by the
INTO instruction if the result of the arithmetic operation can potentially overflow. (The 1-byte INT 3
instruction is considered a system instruction and is therefore not described in this volume).

IRET, IRETD, and IRETQ perform a return from an interrupt handler. The mnemonic specifies the
operand size, which determines the format of the return addresses popped from the stack (IRET for 16-
bit operand size, IRETD for 32-bit operand size, and IRETQ for 64-bit operand size). However, some
assemblers can use the IRET mnemonic for all operand sizes. Actions performed by IRET are opposite
to actions performed by an interrupt or exception. In real and protected mode, IRET pops the rIP, CS,
and RFLAGS contents from the stack, and it pops SS:rSP if a privilege-level change occurs or if it
executes from 64-bit mode. In protected mode, the IRET instruction can also cause a task switch if the
nested task (NT) bit in the RFLAGS register is set. For details on using IRET to switch tasks, see “Task
Management” in Volume 2.

3.3.13 Flags

The flags instructions read and write bits of the RFLAGS register that are visible to application
software. “Flags Register” on page 34 illustrates the RFLAGS register.

Push and Pop Flags
• POPF—Pop to FLAGS Word
• POPFD—Pop to EFLAGS Doubleword
• POPFQ—Pop to RFLAGS Quadword
• PUSHF—Push FLAGS Word onto Stack
• PUSHFD—Push EFLAGS Doubleword onto Stack
• PUSHFQ—Push RFLAGS Quadword onto Stack

The push and pop flags instructions copy data between the rFLAGS register and the stack. POPF and
PUSHF copy 16 bits of data between the stack and the FLAGS register (the low 16 bits of EFLAGS),
leaving the high 48 bits of RFLAGS unchanged. POPFD and PUSHFD copy 32 bits between the stack
and the RFLAGS register. POPFQ and PUSHFQ copy 64 bits between the stack and the RFLAGS
register. Only the bits illustrated in Figure 3-5 on page 34 are affected. Reserved bits and bits that are
write protected by the current values of system flags, current privilege level (CPL), or current
operating mode are unaffected by the POPF, POPFQ, and POPFD instructions.

For details on stack operations, see “Control Transfers” on page 80.

[AMD Public Use]

68 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Set and Clear Flags
• CLC—Clear Carry Flag
• CMC—Complement Carry Flag
• STC—Set Carry Flag
• CLD—Clear Direction Flag
• STD—Set Direction Flag
• CLI—Clear Interrupt Flag
• STI—Set Interrupt Flag

These instructions change the value of a flag in the rFLAGS register that is visible to application
software. Each instruction affects only one specific flag.

The CLC, CMC, and STC instructions change the carry flag (CF). CLC clears the flag to 0, STC sets
the flag to 1, and CMC inverts the flag. These instructions are useful prior to executing instructions
whose behavior depends on the CF flag—for example, shift and rotate instructions.

The CLD and STD instructions change the direction flag (DF) and influence the function of string
instructions (CMPSx, SCASx, MOVSx, LODSx, STOSx, INSx, OUTSx). CLD clears the flag to 0,
and STD sets the flag to 1. A cleared DF flag indicates the forward direction in string sequences, and a
set DF flag indicates the backward direction. Thus, in string instructions, the rSI and/or rDI register
values are auto-incremented when DF = 0 and auto-decremented when DF = 1.

Two other instructions, CLI and STI, clear and set the interrupt flag (IF). CLI clears the flag, causing
the processor to ignore external maskable interrupts. STI sets the flag, allowing the processor to
recognize maskable external interrupts. These instructions are used primarily by system software—
especially, interrupt handlers—and are described in “Exceptions and Interrupts” in Volume 2.

Load and Store Flags
• LAHF—Load Status Flags into AH Register
• SAHF—Store AH into Flags

LAHF loads the lowest byte of the RFLAGS register into the AH register. This byte contains the carry
flag (CF), parity flag (PF), auxiliary flag (AF), zero flag (ZF), and sign flag (SF). SAHF stores the AH
register into the lowest byte of the RFLAGS register.

3.3.14 Input/Output

The I/O instructions perform reads and writes of bytes, words, and doublewords from and to the I/O
address space. This address space can be used to access and manage external devices, and is
independent of the main-memory address space. By contrast, memory-mapped I/O uses the main-
memory address space and is accessed using the MOV instructions rather than the I/O instructions.

[AMD Public Use]

General-Purpose Programming 69

24592—Rev. 3.23—October 2020 AMD64 Technology

When operating in legacy protected mode or in long mode, the RFLAGS register’s I/O privilege level
(IOPL) field and the I/O-permission bitmap in the current task-state segment (TSS) are used to control
access to the I/O addresses (called I/O ports). See “Input/Output” on page 95 for further information.

General I/O
• IN—Input from Port
• OUT—Output to Port

The IN instruction reads a byte, word, or doubleword from the I/O port address specified by the source
operand, and loads it into the accumulator register (AL or eAX). The source operand can be an
immediate byte or the DX register.

The OUT instruction writes a byte, word, or doubleword from the accumulator register (AL or eAX) to
the I/O port address specified by the destination operand, which can be either an immediate byte or the
DX register.

If the I/O port address is specified with an immediate operand, the range of port addresses accessible
by the IN and OUT instructions is limited to ports 0 through 255. If the I/O port address is specified by
a value in the DX register, all 65,536 ports are accessible.

String I/O
• INS—Input String
• INSB—Input String Byte
• INSW—Input String Word
• INSD—Input String Doubleword
• OUTS—Output String
• OUTSB—Output String Byte
• OUTSW—Output String Word
• OUTSD—Output String Doubleword

The INSx instructions (INSB, INSW, INSD) read a byte, word, or doubleword from the I/O port
specified by the DX register, and load it into the memory location specified by ES:[rDI].

The OUTSx instructions (OUTSB, OUTSW, OUTSD) write a byte, word, or doubleword from an
implicit memory location specified by seg:[rSI], to the I/O port address stored in the DX register.

The INSx and OUTSx instructions are commonly used with a repeat prefix to transfer blocks of data.
The memory pointer address is not incremented or decremented. This usage is intended for peripheral
I/O devices that are expecting a stream of data.

3.3.15 Semaphores

The semaphore instructions support the implementation of reliable signaling between processors in a
multi-processing environment, usually for the purpose of sharing resources.

[AMD Public Use]

70 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• CMPXCHG—Compare and Exchange
• CMPXCHG8B—Compare and Exchange Eight Bytes
• CMPXCHG16B—Compare and Exchange Sixteen Bytes
• XADD—Exchange and Add
• XCHG—Exchange

The CMPXCHG instruction compares a value in the AL or rAX register with the first (destination)
operand, and sets the arithmetic flags (ZF, OF, SF, AF, CF, PF) according to the result. If the compared
values are equal, the source operand is loaded into the destination operand. If they are not equal, the
first operand is loaded into the accumulator. CMPXCHG can be used to try to intercept a semaphore,
i.e. test if its state is free, and if so, load a new value into the semaphore, making its state busy. The test
and load are performed atomically, so that concurrent processes or threads which use the semaphore to
access a shared object will not conflict.

The CMPXCHG8B instruction compares the 64-bit values in the EDX:EAX registers with a 64-bit
memory location. If the values are equal, the zero flag (ZF) is set, and the ECX:EBX value is copied to
the memory location. Otherwise, the ZF flag is cleared, and the memory value is copied to EDX:EAX.

The CMPXCHG16B instruction compares the 128-bit value in the RDX:RAX and RCX:RBX
registers with a 128-bit memory location. If the values are equal, the zero flag (ZF) is set, and the
RCX:RBX value is copied to the memory location. Otherwise, the ZF flag is cleared, and the memory
value is copied to rDX:rAX.

The XADD instruction exchanges the values of its two operands, then it stores their sum in the first
(destination) operand.

A LOCK prefix can be used to make the CMPXCHG, CMPXCHG8B and XADD instructions atomic
if one of the operands is a memory location.

The XCHG instruction exchanges the values of its two operands. If one of the operands is in memory,
the processor’s bus-locking mechanism is engaged automatically during the exchange, whether or not
the LOCK prefix is used.

3.3.16 Processor Information
• CPUID—Processor Identification

The CPUID instruction returns information about the processor implementation and its support for
instruction subsets and architectural features. Software operating at any privilege level can execute the
CPUID instruction to read this information. After the information is read, software can select
procedures that optimize performance for a particular hardware implementation.

Some processor implementations may not support the CPUID instruction. Support for the CPUID
instruction is determined by testing the RFLAGS.ID bit. If software can write this bit, then the CPUID
instruction is supported by the processor implementation. Otherwise, execution of CPUID results in an
invalid-opcode exception.

[AMD Public Use]

General-Purpose Programming 71

24592—Rev. 3.23—October 2020 AMD64 Technology

See Section 3.6, “Feature Detection,” on page 79 for details about using the CPUID instruction.

3.3.17 Cache and Memory Management

Applications can use the cache and memory-management instructions to control memory reads and
writes to influence the caching of read/write data. “Memory Optimization” on page 98 describes how
these instructions interact with the memory subsystem.

• LFENCE—Load Fence
• SFENCE—Store Fence
• MFENCE—Memory Fence
• PREFETCHlevel—Prefetch Data to Cache Level level
• PREFETCH—Prefetch L1 Data-Cache Line
• PREFETCHW—Prefetch L1 Data-Cache Line for Write
• CLFLUSH—Cache Line Invalidate
• CLWB—Cache Line Writeback

The LFENCE, SFENCE, and MFENCE instructions can be used to force ordering on memory
accesses. The order of memory accesses can be important when the reads and writes are to a memory-
mapped I/O device, and in multiprocessor environments where memory synchronization is required.
LFENCE affects ordering on memory reads, but not writes. SFENCE affects ordering on memory
writes, but not reads. MFENCE orders both memory reads and writes. These instructions do not take
operands. They are simply inserted between the memory references that are to be ordered. For details
about the fence instructions, see “Forcing Memory Order” on page 100.

The PREFETCHlevel, PREFETCH, and PREFETCHW instructions load data from memory into one
or more cache levels. PREFETCHlevel loads a memory block into a specified level in the data-cache
hierarchy (including a non-temporal caching level). The size of the memory block is implementation
dependent. PREFETCH loads a cache line into the L1 data cache. PREFETCHW loads a cache line
into the L1 data cache and sets the cache line’s memory-coherency state to modified, in anticipation of
subsequent data writes to that line. (Both PREFETCH and PREFETCHW are 3DNow!™
instructions.) For details about the prefetch instructions, see “Cache-Control Instructions” on
page 105. For a description of MOESI memory-coherency states, see “Memory System” in Volume 2.

The CLFLUSH instruction writes unsaved data back to memory for the specified cache line from all
processor caches, invalidates the specified cache, and causes the processor to send a bus cycle which
signals external caching devices to write back and invalidate their copies of the cache line. CLFLUSH
provides a finer-grained mechanism than the WBINVD instruction, which writes back and invalidates
all cache lines. Moreover, CLFLUSH can be used at all privilege levels, unlike WBINVD which can
be used only by system software running at privilege level 0.

Similarly, the unprivileged CLWB instruction can be used to force individual modified cache lines to
be written to memory without invalidating them in the cache (leaving them in non-modified state),
whereas the privileged WBNOINVD instruction operates on entire caches.

[AMD Public Use]

72 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.3.18 No Operation
• NOP—No Operation

The NOP instructions performs no operation (except incrementing the instruction pointer rIP by one).
It is an alternative mnemonic for the XCHG rAX, rAX instruction. Depending on the hardware
implementation, the NOP instruction may use one or more cycles of processor time.

3.3.19 System Calls

System Call and Return

• SYSENTER—System Call
• SYSEXIT—System Return
• SYSCALL—Fast System Call
• SYSRET—Fast System Return

The SYSENTER and SYSCALL instructions perform a call to a routine running at current privilege
level (CPL) 0—for example, a kernel procedure—from a user level program (CPL 3). The addresses
of the target procedure and (for SYSENTER) the target stack are specified implicitly through the
model-specific registers (MSRs). Control returns from the operating system to the caller when the
operating system executes a SYSEXIT or SYSRET instruction. SYSEXIT are SYSRET are privileged
instructions and thus can be issued only by a privilege-level-0 procedure.

The SYSENTER and SYSEXIT instructions form a complementary pair, as do SYSCALL and
SYSRET. SYSENTER and SYSEXIT are invalid in 64-bit mode. In this case, use the faster
SYSCALL and SYSRET instructions.

For details on these on other system-related instructions, see “System-Management Instructions” in
Volume 2 and “System Instruction Reference” in Volume 3.

3.3.20 Application-Targeted Accelerator Instructions
• CRC32—Provides hardware acceleration to calculate cyclic redundancy checks for fast and

efficient implementation of data integrity protocols.
• POPCNT—Accelerates software performance in the searching of bit patterns. This instruction

calculates the number of bits set to 1 in the second operand (source) and returns the count in the
first operand (destination register).

3.4 General Rules for Instructions in 64-Bit Mode
This section provides details of the general-purpose instructions in 64-bit mode, and how they differ
from the same instructions in legacy and compatibility modes. The differences apply only to general-
purpose instructions. Most of them do not apply to SIMD or x87 floating-point instructions.

[AMD Public Use]

General-Purpose Programming 73

24592—Rev. 3.23—October 2020 AMD64 Technology

3.4.1 Address Size

In 64-bit mode, the following rules apply to address size:

• Defaults to 64 bits.
• Can be overridden to 32 bits (by means of opcode prefix 67h).
• Can’t be overridden to 16 bits.

3.4.2 Canonical Address Format

Bits 63 through the most-significant implemented virtual-address bit must be all zeros or all ones in
any memory reference. See “64-Bit Canonical Addresses” on page 15 for details. (This rule applies to
long mode, which includes both 64-bit mode and compatibility mode.)

3.4.3 Branch-Displacement Size

Branch-address displacements are 8 bits or 32 bits, as in legacy mode, but are sign-extended to 64 bits
prior to using them for address computations. See “Displacements and Immediates” on page 17 for
details.

3.4.4 Operand Size

In 64-bit mode, the following rules apply to operand size:

• 64-Bit Operand Size Option: If an instruction’s operand size (16-bit or 32-bit) in legacy mode
depends on the default-size (D) bit in the current code-segment descriptor and the operand-size
prefix, then the operand-size choices in 64-bit mode are extended from 16-bit and 32-bit to include
64 bits (with a REX prefix), or the operand size is fixed at 64 bits. See “General-Purpose
Instructions in 64-Bit Mode” in Volume 3 for details.

• Default Operand Size: The default operand size for most instructions is 32 bits, and a REX prefix
must be used to change the operand size to 64 bits. However, two groups of instructions default to
64-bit operand size and do not need a REX prefix: (1) near branches and (2) all instructions, except
far branches, that implicitly reference the RSP. See “General-Purpose Instructions in 64-Bit Mode”
in Volume 3 for details.

• Fixed Operand Size: If an instruction’s operand size is fixed in legacy mode, that operand size is
usually fixed at the same size in 64-bit mode. (There are some exceptions.) For example, the
CPUID instruction always operates on 32-bit operands, irrespective of attempts to override the
operand size. See “General-Purpose Instructions in 64-Bit Mode” in Volume 3 for details.

• Immediate Operand Size: The maximum size of immediate operands is 32 bits, as in legacy
mode, except that 64-bit immediates can be MOVed into 64-bit GPRs. When the operand size is 64
bits, immediates are sign-extended to 64 bits prior to using them. See “Immediate Operand Size”
on page 42 for details.

• Shift-Count and Rotate-Count Operand Size: When the operand size is 64 bits, shifts and
rotates use one additional bit (6 bits total) to specify shift-count or rotate-count, allowing 64-bit
shifts and rotates.

[AMD Public Use]

74 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.4.5 High 32 Bits

In 64-bit mode, the following rules apply to extension of results into the high 32 bits when results
smaller than 64 bits are written:

• Zero-Extension of 32-Bit Results: 32-bit results are zero-extended into the high 32 bits of 64-bit
GPR destination registers.

• No Extension of 8-Bit and 16-Bit Results: 8-bit and 16-bit results leave the high 56 or 48 bits,
respectively, of 64-bit GPR destination registers unchanged.

• Undefined High 32 Bits After Mode Change: The processor does not preserve the upper 32 bits
of the 64-bit GPRs across changes from 64-bit mode to compatibility or legacy modes. In
compatibility and legacy mode, the upper 32 bits of the GPRs are undefined and not accessible to
software.

3.4.6 Invalid and Reassigned Instructions

The following general-purpose instructions are invalid in 64-bit mode:

• AAA—ASCII Adjust After Addition
• AAD—ASCII Adjust Before Division
• AAM—ASCII Adjust After Multiply
• AAS—ASCII Adjust After Subtraction
• BOUND—Check Array Bounds
• CALL (far absolute)—Procedure Call Far
• DAA—Decimal Adjust after Addition
• DAS—Decimal Adjust after Subtraction
• INTO—Interrupt to Overflow Vector
• JMP (far absolute)—Jump Far
• POP DS—Pop Stack into DS Segment
• POP ES—Pop Stack into ES Segment
• POP SS—Pop Stack into SS Segment
• POPA, POPAD—Pop All to GPR Words or Doublewords
• PUSH CS—Push CS Segment Selector onto Stack
• PUSH DS—Push DS Segment Selector onto Stack
• PUSH ES—Push ES Segment Selector onto Stack
• PUSH SS—Push SS Segment Selector onto Stack
• PUSHA, PUSHAD—Push All to GPR Words or Doublewords

The following general-purpose instructions are invalid in long mode (64-bit mode and compatibility
mode):

[AMD Public Use]

General-Purpose Programming 75

24592—Rev. 3.23—October 2020 AMD64 Technology

• SYSENTER—System Call (use SYSCALL instead)
• SYSEXIT—System Exit (use SYSRET instead)

The opcodes for the following general-purpose instructions are reassigned in 64-bit mode:

• ARPL—Adjust Requestor Privilege Level. Opcode becomes the MOVSXD instruction.
• DEC (one-byte opcode only)—Decrement by 1. Opcode becomes a REX prefix. Use the two-byte

DEC opcode instead.
• INC (one-byte opcode only)—Increment by 1. Opcode becomes a REX prefix. Use the two-byte

INC opcode instead.
• LDS—Load DS Segment Register
• LES—Load ES Segment Register

3.4.7 Instructions with 64-Bit Default Operand Size

Most instructions default to 32-bit operand size in 64-bit mode. However, the following near branches
instructions and instructions that implicitly reference the stack pointer (RSP) default to 64-bit operand
size in 64-bit mode:

• Near Branches:
- Jcc—Jump Conditional Near
- JMP—Jump Near
- LOOP—Loop
- LOOPcc—Loop Conditional

• Instructions That Implicitly Reference RSP:
- ENTER—Create Procedure Stack Frame
- LEAVE—Delete Procedure Stack Frame
- POP reg/mem—Pop Stack (register or memory)
- POP reg—Pop Stack (register)
- POP FS—Pop Stack into FS Segment Register
- POP GS—Pop Stack into GS Segment Register
- POPF, POPFD, POPFQ—Pop to rFLAGS Word, Doubleword, or Quadword
- PUSH imm32—Push onto Stack (sign-extended doubleword)
- PUSH imm8—Push onto Stack (sign-extended byte)
- PUSH reg/mem—Push onto Stack (register or memory)
- PUSH reg—Push onto Stack (register)
- PUSH FS—Push FS Segment Register onto Stack
- PUSH GS—Push GS Segment Register onto Stack
- PUSHF, PUSHFD, PUSHFQ—Push rFLAGS Word, Doubleword, or Quadword onto Stack

[AMD Public Use]

76 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The default 64-bit operand size eliminates the need for a REX prefix with these instructions when
registers RAX–RSP (the first set of eight GPRs) are used as operands. A REX prefix is still required if
R8–R15 (the extended set of eight GPRs) are used as operands, because the prefix is required to
address the extended registers.

The 64-bit default operand size can be overridden to 16 bits using the 66h operand-size override.
However, it is not possible to override the operand size to 32 bits, because there is no 32-bit operand-
size override prefix for 64-bit mode. For details on the operand-size prefix, see “Legacy Instruction
Prefixes” in Volume 3.

For details on near branches, see “Near Branches in 64-Bit Mode” on page 90. For details on
instructions that implicitly reference RSP, see “Stack Operand-Size in 64-Bit Mode” on page 82.

For details on opcodes and operand-size overrides, see “General-Purpose Instructions in 64-Bit Mode”
in Volume 3.

3.5 Instruction Prefixes
An instruction prefix is a byte that precedes an instruction’s opcode and modifies the instruction’s
operation or operands. Instruction prefixes are of three types:

• Legacy Prefixes
• REX Prefixes
• Extended Prefixes

Legacy prefixes are organized into five groups, in which each prefix has a unique value. REX prefixes,
which enable use of the AMD64 register extensions in 64-bit mode, are organized as a single group in
which the value of the prefix indicates the combination of register-extension features to be enabled.
The extended prefixes provide an escape mechanism that opens entirely new instruction encoding
spaces for instructions with new capabilities. Currently there are two sets of extended prefixes—VEX
and XOP. VEX is used to encode the AVX instructions and XOP is used to encode the XOP
instructions.

3.5.1 Legacy Prefixes

Table 3-7 on page 77 shows the legacy prefixes. These are organized into five groups, as shown in the
left-most column of the table. Each prefix has a unique hexadecimal value. The legacy prefixes can
appear in any order in the instruction, but only one prefix from each of the five groups can be used in a
single instruction. The result of using multiple prefixes from a single group is undefined.

There are several restrictions on the use of prefixes. For example, the address-size override prefix
(67h) changes the address size used in the read or write access of a single memory operand and applies
only to the instruction immediately following the prefix. In general, the operand-size prefix cannot be
used with x87 floating-point instructions. When used in the encoding of SSE or 64-bit media
instructions, the 66h prefix is repurposed to modify the opcode. The repeat prefixes cause repetition
only with certain string instructions. When used in the encoding of SSE or 64-bit media instructions,

[AMD Public Use]

General-Purpose Programming 77

24592—Rev. 3.23—October 2020 AMD64 Technology

the prefixes are repurposed to modify the opcode. The lock prefix can be used with only a small
number of general-purpose instructions.

Table 3-7 on page 77 summarizes the functionality of instruction prefixes. Details about the prefixes
and their restrictions are given in “Legacy Instruction Prefixes” in Volume 3.

3.5.1.1 Operand-Size and Address-Size Prefixes

The operand-size and address-size prefixes allow mixing of data and address sizes on an instruction-
by-instruction basis. An instruction’s default address size can be overridden in any operating mode by
using the 67h address-size prefix.

Table 3-3 on page 42 shows the operand-size overrides for all operating modes. In 64-bit mode, the
default operand size for most general-purpose instructions is 32 bits. A REX prefix (described in
“REX Prefixes” on page 79) specifies a 64-bit operand size, and a 66h prefix specifies a 16-bit
operand size. The REX prefix takes precedence over the 66h prefix.

Table 2-1 on page 18 shows the address-size overrides for all operating modes. In 64-bit mode, the
default address size is 64 bits. The address size can be overridden to 32 bits. 16-bit addresses are not

Table 3-7. Legacy Instruction Prefixes

Prefix Group Mnemonic Prefix Code
(Hex) Description

Operand-Size
Override none 661 Changes the default operand size of a memory or register

operand, as shown in Table 3-3 on page 42.
Address-Size
Override none 67 Changes the default address size of a memory operand,

as shown in Table 2-1 on page 18.

Segment
Override

CS 2E Forces use of the CS segment for memory operands.
DS 3E Forces use of the DS segment for memory operands.
ES 26 Forces use of the ES segment for memory operands.
FS 64 Forces use of the FS segment for memory operands.
GS 65 Forces use of the GS segment for memory operands.
SS 36 Forces use of the SS segment for memory operands.

Lock LOCK F0 Causes certain read-modify-write instructions on memory
to occur atomically.

Repeat

REP

F31

Repeats a string operation (INS, MOVS, OUTS, LODS,
and STOS) until the rCX register equals 0.

REPE or
REPZ

Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is cleared to 0.

REPNE or
REPNZ F21

Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is set to 1.

Note:
1. When used with SSE or 64-bit media instructions, this prefix is repurposed to modify the opcode.

[AMD Public Use]

78 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

supported in 64-bit mode. In compatibility mode, the address-size prefix works the same as in the
legacy x86 architecture.

For further details on these prefixes, see “Operand-Size Override Prefix” and “Address-Size Override
Prefix” in Volume 3.

3.5.1.2 Segment Override Prefix

The DS segment is the default segment for most memory operands. Many instructions allow this
default data segment to be overridden using one of the six segment-override prefixes shown in
Table 3-7 on page 77. Data-segment overrides will be ignored when accessing data in the following
cases:

• When a stack reference is made that pushes data onto or pops data off of the stack. In those cases,
the SS segment is always used.

• When the destination of a string is memory it is always referenced using the ES segment.

Instruction fetches from the CS segment cannot be overridden. However, the CS segment-override
prefix can be used to access instructions as data objects and to access data stored in the code segment.

For further details on these prefixes, see “Segment-Override Prefixes” in Volume 3.

3.5.1.3 Lock Prefix

The LOCK prefix causes certain read-modify-write instructions that access memory to occur
atomically. The mechanism for doing so is implementation-dependent (for example, the mechanism
may involve locking of data-cache lines that contain copies of the referenced memory operands,
and/or bus signaling or packet-messaging on the bus). The prefix is intended to give the processor
exclusive use of shared memory operands in a multiprocessor system.

The prefix can only be used with forms of the following instructions that write a memory operand:
ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT, OR, SBB,
SUB, XADD, XCHG, and XOR. An invalid-opcode exception occurs if LOCK is used with any other
instruction.

For further details on these prefixes, see “Lock Prefix” in Volume 3.

3.5.1.4 Repeat Prefixes

There are two repeat prefixes byte codes, F3h and F2h. Byte code F3h is the more general and is
usually treated as two distinct instructions by assemblers. Byte code F2h is only used with CMPSx and
SCASx instructions:

• REP (F3h)—This more generalized repeat prefix repeats its associated string instruction the
number of times specified in the counter register (rCX). Repetition stops when the value in rCX
reaches 0. This prefix is used with the INS, LODS, MOVS, OUTS, and STOS instructions.

• REPE or REPZ (F3h)—This version of REP prefix repeats its associated string instruction the
number of times specified in the counter register (rCX). Repetition stops when the value in rCX

[AMD Public Use]

General-Purpose Programming 79

24592—Rev. 3.23—October 2020 AMD64 Technology

reaches 0 or when the zero flag (ZF) is cleared to 0. The prefix can only be used with the CMPSx
and SCASx instructions.

• REPNE or REPNZ (F2h)—The REPNE or REPNZ prefix repeats its associated string instruction
the number of times specified in the counter register (rCX). Repetition stops when the value in rCX
reaches 0 or when the zero flag (ZF) is set to 1. The prefix can only be used with the CMPSx and
SCASx instructions.

The size of the rCX counter is determined by the effective address size. For further details about these
prefixes, including optimization of their use, see “Repeat Prefixes” in Volume 3.

3.5.2 REX Prefixes

REX prefixes can be used only in 64-bit mode. They enable the 64-bit register extensions. REX
prefixes specify the following features:

• Use of an extended GPR register, shown in Figure 3-3 on page 27.
• Use of an extended YMM/XMM register, shown in Figure 4-1 on page 114.
• Use of a 64-bit (quadword) operand size, as described in “Operands” on page 36.
• Use of extended control and debug registers, as described in Volume 2.

REX prefix bytes have a value in the range 40h to 4Fh, depending on the particular combination of
register extensions desired. With few exceptions, a REX prefix is required in order to access a 64-bit
GPR or one of the extended GPR or XMM registers. A few instructions (described in “General-
Purpose Instructions in 64-Bit Mode” in Volume 3) default to 64-bit operand size and do not need the
REX prefix to access an extended 64-bit GPR.

Only one REX prefix is needed to express the full selection of 64-bit-mode register extension features.
When used, the REX prefix must immediately precede the opcode byte of an instruction, or opcode
map escape prefix if present. Any other placement of a REX prefix is ignored.

For further details on the REX prefixes, see “REX Prefixes” in Volume 3.

3.5.3 VEX and XOP Prefixes

The VEX and XOP prefixes extend instruction encoding and operand specification capabilities
beyond those of the REX prefixes. They allow the encoding of new instructions and the specification
of three, four, or five operands. The VEX prefixes are C4h and C5h and the XOP prefix is 8Eh.

For further details on the VEX and XOP prefixes, see “Encoding Using the VEX and XOP Prefixes” in
Volume 3.

3.6 Feature Detection
The CPUID instruction provides information about the processor implementation and its capabilities.
Software operating at any privilege level can execute the CPUID instruction to collect this

[AMD Public Use]

80 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

information. After the information is collected, software can select procedures that optimize
performance for a particular hardware implementation.

Support for the CPUID instruction is implementation-dependent, as determined by software’s ability
to write the RFLAGS.ID bit. After software has determined that the processor implementation
supports the CPUID instruction, software can test for support for a specific feature by loading the
appropriate function number into the EAX register and executing the CPUID instruction. Processor
feature information is returned in the EAX, EBX, ECX, and EDX registers.

See “CPUID” in the AMD64 Architecture Programmer’s Manual Volume 3: General Purpose and
System Instructions, order# 24594, for a full description of the CPUID instruction. See Appendix D of
Volume 3 for a description of processor feature flags associated with instruction support and Appendix
E for an exhaustive list of all processor information accessible via the CPUID instruction.

3.6.1 Feature Detection in a Virtualized Environment

Software writers must assume that their software may be executed as a guest in a virtualized
environment. A virtualized guest may be migrated between processors of differing capabilities, so the
CPUID indication of a feature's presence must be respected. Operating systems, user programs and
libraries must all ensure that the CPUID instruction indicates a feature is present before using that
feature. The hypervisor is responsible for ensuring consistent CPUID values across the system.

For example, an OS, program, or library typically detects a feature during initialization and then
configures code paths or internal copies of feature indications based on the detection of that feature,
with the feature detection occurring once per initialization. In this case, the feature must be detected by
use of the CPUID instruction rather than by ignoring CPUID and testing for the presence of that
feature.

To ensure guest migration between processors across multiple generations of processors, while
allowing for features to be deprecated in future generations of processors, it is imperative that software
check the CPUID bit once per program or library initialization before using instructions that are
indicated by a CPUID bit; otherwise inconsistent behavior may result.

3.7 Control Transfers
3.7.1 Overview

From the application-program’s viewpoint, program-control flow is sequential—that is, instructions
are addressed and executed sequentially—except when a branch instruction (a call, return, jump,
interrupt, or return from interrupt) is encountered, in which case program flow changes to the branch
instruction’s target address. Branches are used to iterate through loops and move through conditional
program logic. Branches cause a new instruction pointer to be loaded into the rIP register, and
sometimes cause the CS register to point to a different code segment. The CS:rIP values can be
specified as part of a branch instruction, or they can be read from a register or memory.

[AMD Public Use]

General-Purpose Programming 81

24592—Rev. 3.23—October 2020 AMD64 Technology

Branches can also be used to transfer control to another program or procedure running at a different
privilege level. In such cases, the processor automatically checks the source program and target
program privileges to ensure that the transfer is allowed before loading CS:rIP with the new values.

3.7.2 Privilege Levels

The processor’s protected modes include legacy protected mode and long mode (both compatibility
mode and 64-bit mode). In all protected modes and virtual x86 mode, privilege levels are used to
isolate and protect programs and data from each other. The privilege levels are designated with a
numerical value from 0 to 3, with 0 being the most privileged and 3 being the least privileged.
Privilege 0 is normally reserved for critical system-software components that require direct access to,
and control over, all processor and system resources. Privilege 3 is used by application software. The
intermediate privilege levels (1 and 2) are used, for example, by device drivers and library routines
that access and control a limited set of processor and system resources.

Figure 3-9 shows the relationship of the four privilege-levels to each other. The protection scheme is
implemented using the segmented memory-management mechanism described in “Segmented Virtual
Memory” in Volume 2.

Figure 3-9. Privilege-Level Relationships

3.7.3 Procedure Stack

A procedure stack (also known as ‘program stack’) is often used by control transfer operations,
particularly those that change privilege levels. Information from the calling program is passed to the
target program on the procedure stack. CALL instructions, interrupts, and exceptions all push
information onto the procedure stack. The pushed information includes a return pointer to the calling
program and, for call instructions, optionally includes parameters. When a privilege-level change
occurs, the calling program’s stack pointer (the pointer to the top of the stack) is pushed onto the stack.
Interrupts and exceptions also push a copy of the calling program’s rFLAGs register and, in some
cases, an error code associated with the interrupt or exception.

Application Programs

Memory Management
File Allocation
Interrupt Handling

Device-Drivers
Library Routines

Privilege
0

Privilege 1

Privilege 2

Privilege 3

[AMD Public Use]

82 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The RET or IRET control-transfer instructions reverse the operation of CALLs, interrupts, and
exceptions. These return instructions pop the return pointer off the stack and transfer control back to
the calling program. If the calling program’s stack pointer was pushed, it is restored by popping the
saved values off the stack and into the SS and rSP registers.

3.7.3.1 Stack Alignment

Control-transfer performance can degrade significantly when the stack pointer is not aligned properly.
Stack pointers should be word aligned in 16-bit segments, doubleword aligned in 32-bit segments, and
quadword aligned in 64-bit mode.

3.7.3.2 Stack Operand-Size in 64-Bit Mode

In 64-bit mode, the stack pointer size is always 64 bits. The stack size is not controlled by the default-
size (B) bit in the SS descriptor, as it is in compatibility and legacy modes, nor can it be overridden by
an instruction prefix. Address-size overrides are ignored for implicit stack references.

Except for far branches, all instructions that implicitly reference the stack pointer default to 64-bit
operand size in 64-bit mode. Table 3-8 on page 83 lists these instructions.

The default 64-bit operand size eliminates the need for a REX prefix with these instructions. However,
a REX prefix is still required if R8–R15 (the extended set of eight GPRs) are used as operands,
because the prefix is required to address the extended registers. Pushes and pops of 32-bit stack values
are not possible in 64-bit mode with these instructions, because there is no 32-bit operand-size
override prefix for 64-bit mode.

3.7.4 Jumps

Jump instructions provide a simple means for transferring program control from one location to
another. Jumps do not affect the procedure stack, and return instructions cannot transfer control back
to the instruction following a jump. Two general types of jump instruction are available: unconditional
(JMP) and conditional (Jcc).

There are two types of unconditional jumps (JMP):

• Near Jumps—When the target address is within the current code segment.
• Far Jumps—When the target address is outside the current code segment.

Although unconditional jumps can be used to change code segments, they cannot be used to change
privilege levels.

Conditional jumps (Jcc) test the state of various bits in the rFLAGS register (or rCX) and jump to a
target location based on the results of that test. Only near forms of conditional jumps are available, so
Jcc cannot be used to transfer control to another code segment.

[AMD Public Use]

General-Purpose Programming 83

24592—Rev. 3.23—October 2020 AMD64 Technology

3.7.5 Procedure Calls

The CALL instruction transfers control unconditionally to a new address, but unlike jump instructions,
it saves a return pointer (CS:rIP) on the stack. The called procedure can use the RET instruction to pop
the return pointers to the calling procedure from the stack and continue execution with the instruction
following the CALL.

There are four types of CALL:

• Near Call—When the target address is within the current code segment.
• Far Call—When the target address is outside the current code segment.
• Interprivilege-Level Far Call—A far call that changes privilege level.
• Task Switch—A call to a target address in another task.

Table 3-8. Instructions that Implicitly Reference RSP in 64-Bit Mode

Mnemonic Opcode
(hex) Description

Operand Size (bits)

Default
Possible

Overrides1

CALL E8, FF /2 Call Procedure Near

64 16

ENTER C8 Create Procedure Stack Frame
LEAVE C9 Delete Procedure Stack Frame
POP reg/mem 8F /0 Pop Stack (register or memory)
POP reg 58 to 5F Pop Stack (register)
POP FS 0F A1 Pop Stack into FS Segment Register
POP GS 0F A9 Pop Stack into GS Segment Register
POPF
POPFQ 9D Pop to EFLAGS Word or Quadword

PUSH imm32 68 Push onto Stack (sign-extended doubleword)
PUSH imm8 6A Push onto Stack (sign-extended byte)
PUSH reg/mem FF /6 Push onto Stack (register or memory)
PUSH reg 50–57 Push onto Stack (register)
PUSH FS 0F A0 Push FS Segment Register onto Stack
PUSH GS 0F A8 Push GS Segment Register onto Stack
PUSHF
PUSHFQ 9C Push rFLAGS Word or Quadword onto Stack

RET C2, C3 Return From Call (near)
Note:

1. There is no 32-bit operand-size override prefix in 64-bit mode.

[AMD Public Use]

84 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.7.5.1 Near Call

When a near CALL is executed, only the calling procedure’s rIP (the return offset) is pushed onto the
stack. After the rIP is pushed, control is transferred to the new rIP value specified by the CALL
instruction. Parameters can be pushed onto the stack by the calling procedure prior to executing the
CALL instruction. Figure 3-10 shows the stack pointer before (old rSP value) and after (new rSP
value) the CALL. The stack segment (SS) is not changed.

Figure 3-10. Procedure Stack, Near Call

When shadow stacks are enabled at the current privilege level, a near CALL pushes the calling
procedure's LIP (CS base + rIP) onto the shadow stack, in addition to pushing the rIP onto the
procedure stack.

3.7.5.2 Far Call, Same Privilege

A far CALL changes the code segment, so the full return pointer (CS:rIP) is pushed onto the stack.
After the return pointer is pushed, control is transferred to the new CS:rIP value specified by the
CALL instruction. Parameters can be pushed onto the stack by the calling procedure prior to executing
the CALL instruction. Figure 3-11 shows the stack pointer before (old rSP value) and after (new rSP
value) the CALL. The stack segment (SS) is not changed.

Figure 3-11. Procedure Stack, Far Call to Same Privilege

If the shadow stack feature is enabled at the current privilege level, a far CALL to the same privilege
pushes the calling procedure's CS and LIP (CS.base + rIP) onto the shadow stack, in addition to

Procedure
Stack

New rSPReturn rIP
Old rSP

Parameters . . .

Procedure
Stack

Return CS
Old rSP

New rSP

Parameters

Return rIP

. . .

[AMD Public Use]

General-Purpose Programming 85

24592—Rev. 3.23—October 2020 AMD64 Technology

pushing the CS:rIP onto the procedure stack. For a detailed description of shadow stack operations, see
“Shadow Stacks” in Volume 2.

3.7.5.3 Far Call, Greater Privilege

A far CALL to a more-privileged procedure performs a stack switch prior to transferring control to the
called procedure. Switching stacks isolates the more-privileged procedure’s stack from the less-
privileged procedure’s stack, and it provides a mechanism for saving the return pointer back to the
procedure that initiated the call.

Calls to more-privileged software can only take place through a system descriptor called a call-gate
descriptor. Call-gate descriptors are created and maintained by system software. In 64-bit mode, only
indirect far calls (those whose target memory address is in a register or other memory location) are
supported. Absolute far calls (those that reference the base of the code segment) are not supported in
64-bit mode.

When a call to a more-privileged procedure occurs, the processor locates the new procedure’s stack
pointer from its task-state segment (TSS). The old stack pointer (SS:rSP) is pushed onto the new stack,
and (in legacy mode only) any parameters specified by the count field in the call-gate descriptor are
copied from the old stack to the new stack (long mode does not support this automatic parameter
copying). The return pointer (CS:rIP) is then pushed, and control is transferred to the new procedure.
Figure 3-12 shows an example of a stack switch resulting from a call to a more-privileged procedure.
“Segmented Virtual Memory” in Volume 2 provides additional information on privilege-changing
CALLs.

Figure 3-12. Procedure Stack, Far Call to Greater Privilege

Old
Procedure

Stack

Old SS:rSP
Parameters . . .

Called
Procedure

Stack

New SS:rSP

Parameters *

* Parameters are copied only in
Legacy Mode, not in Long Mode.

Return CS
Return rIP

. . .

Return SS
Return rSP

[AMD Public Use]

86 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

If the shadow stack feature is enabled at the target CPL, a far call to a more-privileged level also
switches to a new shadow stack. Depending on the target CPL, the old SSP and the CS and LIP may
be pushed onto the new shadow stack.

If starting at CPL=3:

 - the current SSP is saved to MSR PL3_SSP.

 - a new SSP is loaded from PLn_SSP MSR (where n = the target CPL 0, 1 or 2).

 - the CS and LIP are not pushed onto the new shadow stack.

If starting at CPL =1 or 2:

 - the new SSP is loaded from MSR PLn_SSP, (where n = the target CPL 0 or 1).

 - the CS, LIP and old SSP are pushed onto the new shadow stack.

 For a detailed description of shadow stack operations, see “Shadow Stacks” in Volume 2.

3.7.5.4 Task Switch

In legacy mode, when a call to a new task occurs, the processor suspends the currently-executing task
and stores the processor-state information at the point of suspension in the current task’s task-state
segment (TSS). The new task’s state information is loaded from its TSS, and the processor resumes
execution within the new task.

In long mode, hardware task switching is disabled. Task switching is fully described in “Segmented
Virtual Memory” in Volume 2.

3.7.6 Returning from Procedures

The RET instruction reverses the effect of a CALL instruction. The return address is popped off the
procedure stack, transferring control unconditionally back to the calling procedure at the instruction
following the CALL. A return that changes privilege levels also switches stacks.

The three types of RET are:

• Near Return—Transfers control back to the calling procedure within the current code segment.
• Far Return—Transfers control back to the calling procedure outside the current code segment.
• Interprivilege-Level Far Return—A far return that changes privilege levels.

All of the RET instruction types can be used with an immediate operand indicating the number of
parameter bytes present on the stack. These parameters are released from the stack—that is, the stack
pointer is adjusted by the value of the immediate operand—but the parameter bytes are not actually
popped off of the stack (i.e., read into a register or memory location).

[AMD Public Use]

General-Purpose Programming 87

24592—Rev. 3.23—October 2020 AMD64 Technology

3.7.6.1 Near Return

When a near RET is executed, the calling procedure’s return offset is popped off of the stack and into
the rIP register. Execution begins from the newly-loaded offset. If an immediate operand is included
with the RET instruction, the stack pointer is adjusted by the number of bytes indicated. Figure 3-13
shows the stack pointer before (old rSP value) and after (new rSP value) the RET. The stack segment
(SS) is not changed.

Figure 3-13. Procedure Stack, Near Return

If the shadow stack feature is enabled at the current CPL, a near RET pops the return LIP from the
shadow stack and compares it to the return address read from the procedure stack. If the comparison
fails, a control-protection (#CP fault) is generated. For a detailed description of shadow stack
operations, see “Shadow Stacks” in Volume 2.

3.7.6.2 Far Return, Same Privilege

A far RET changes the code segment, so the full return pointer is popped off the stack and into the CS
and rIP registers. Execution begins from the newly-loaded segment and offset. If an immediate
operand is included with the RET instruction, the stack pointer is adjusted by the number of bytes
indicated. Figure 3-14 on page 87 shows the stack pointer before (old rSP value) and after (new rSP
value) the RET. The stack segment (SS) is not changed.

Figure 3-14. Procedure Stack, Far Return from Same Privilege

Procedure
Stack

Old rSPReturn rIP

New rSP

Parameters . . .

Procedure
Stack

Return CS

New rSP

Old rSP

Parameters

Return rIP

. . .

[AMD Public Use]

88 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

If the shadow stacks feature is enabled at the current CPL, a far RET to the same CPL pops the old SSP
and the return LIP from the shadow stack. The return address is compared with the return address read
from the procedure stack. If the comparison fails, a control-protection (#CP fault) is generated. For a
detailed description of shadow stack operations, see “Shadow Stacks” in Volume 2.

3.7.6.3 Far Return, Less Privilege

Privilege-changing far RETs can only return to less-privileged code segments, otherwise a general-
protection exception occurs. The full return pointer is popped off the stack and into the CS and rIP
registers, and execution begins from the newly-loaded segment and offset. A far RET that changes
privilege levels also switches stacks. The return procedure’s stack pointer is popped off the stack and
into the SS and rSP registers. If an immediate operand is included with the RET instruction, the newly-
loaded stack pointer is adjusted by the number of bytes indicated. Figure 3-15 shows the stack pointer
before (old SS:rSP value) and after (new SS:rSP value) the RET. “Segmented Virtual Memory” in
Volume 2 provides additional information on privilege-changing RETs.

Figure 3-15. Procedure Stack, Far Return from Less Privilege

If the shadow stack feature is enabled, the operation of the shadow stack for a far return from a less-
privileged level depends on the target CPL.

If returning to CPL 3:

 - the old SSP is restored from PL3_SSP.

 - the return address is not checked against the shadow stack.

If returning to CPL 1 or 2:

 - the old SSP is popped and restored from the current shadow stack.

Return
Procedure

Stack

New SS:rSP

Parameters . . .

Old
Procedure

Stack

Old SS:rSP

Parameters

Return CS
Return rIP

. . .

Return SS
Return rSP

[AMD Public Use]

General-Purpose Programming 89

24592—Rev. 3.23—October 2020 AMD64 Technology

 - the return CS and LIP are popped from the current shadow stack and compared with the return
address read from the procedure stack. If the comparison fails, a control-protection (#CP fault) is
generated.

 For a detailed description of shadow stack operations, see “Shadow Stacks” in Volume 2.

3.7.7 System Calls

A disadvantage of far CALLs and far RETs is that they use segment-based protection and privilege-
checking. This involves significant overhead associated with loading new segment selectors and their
corresponding descriptors into the segment registers. The overhead includes not only the time required
to load the descriptors from memory but also the time required to perform the privilege, type, and limit
checks. Privilege-changing CALLs to the operating system are slowed further by the control transfer
through a gate descriptor.

3.7.7.1 SYSCALL and SYSRET

SYSCALL and SYSRET are low-latency system-call and system-return control-transfer instructions.
They can be used in protected mode. These instructions eliminate segment-based privilege checking
by using pre-determined target and return code segments and stack segments. The operating system
sets up and maintains the predetermined segments using special registers within the processor, so the
segment descriptors do not need to be fetched from memory when the instructions are used. The
simplifications made to privilege checking allow SYSCALL and SYSRET to complete in far fewer
processor clock cycles than CALL and RET.

SYSRET can only be used to return from CPL = 0 procedures and is not available to application
software. SYSCALL can be used by applications to call operating system service routines running at
CPL = 0. The SYSCALL instruction does not take operands. Linkage conventions are initialized and
maintained by the operating system. “System-Management Instructions” in Volume 2 contains
detailed information on the operation of SYSCALL and SYSRET.

Because SYSCALL and SYSRET do not use the program stack for return address linkage, the shadow
stack mechanism is not used to validate their return addresses. However, when the shadow stacks
feature is enabled, SYSCALL and SYSRET save and restore the current SSP. See "SYSCALL and
SYSRET" section 6.1.1, Volume 2 for more information.

3.7.7.2 SYSENTER and SYSEXIT

The SYSENTER and SYSEXIT instructions provide similar capabilities to SYSCALL and SYSRET.
However, these instructions can be used only in legacy mode and are not supported in long mode.
SYSCALL and SYSRET are the preferred instructions for calling privileged software. See “System-
Management Instructions” in Volume 2 for further information on SYSENTER and SYSEXIT.

[AMD Public Use]

90 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.7.8 General Considerations for Branching

Branching causes delays which are a function of the hardware-implementation’s branch-prediction
capabilities. Sequential flow avoids the delays caused by branching but is still exposed to delays
caused by cache misses, memory bus bandwidth, and other factors.

In general, branching code should be replaced with sequential code whenever practical. This is
especially important if the branch body is small (resulting in frequent branching) and when branches
depend on random data (resulting in frequent mispredictions of the branch target). In certain hardware
implementations, far branches (as opposed to near branches) may not be predictable by the hardware,
and recursive functions (those that call themselves) may overflow a return-address stack.

All calls and returns should be paired for optimal performance. Hardware implementations that
include a return-address stack can lose stack synchronization if calls and returns are not paired.

3.7.9 Branching in 64-Bit Mode

3.7.9.1 Near Branches in 64-Bit Mode

The long-mode architecture expands the near-branch mechanisms to accommodate branches in the full
64-bit virtual-address space. In 64-bit mode, the operand size for all near branches defaults to 64 bits,
so these instructions update the full 64-bit RIP.

Table 3-9 lists the near-branch instructions.

The default 64-bit operand size eliminates the need for a REX prefix with these instructions when
registers RAX–RSP (the first set of eight GPRs) are used as operands. A REX prefix is still required if

Table 3-9. Near Branches in 64-Bit Mode

Mnemonic Opcode (hex) Description
Operand Size (bits)

Default
Possible

Overrides1

CALL E8, FF /2 Call Procedure Near

64 16

Jcc 70 to 7F,
0F 80 to 0F 8F Jump Conditional

JCXZ
JECXZ
JRCXZ

E3 Jump on CX/ECX/RCX Zero

JMP EB, E9, FF /4 Jump Near
LOOP E2 Loop
LOOPcc E0, E1 Loop if Zero/Equal or Not Zero/Equal
RET C2, C3 Return From Call (near)
Note:

1. There is no 32-bit operand-size override prefix in 64-bit mode.

[AMD Public Use]

General-Purpose Programming 91

24592—Rev. 3.23—October 2020 AMD64 Technology

R8–R15 (the extended set of eight GPRs) are used as operands, because the prefix is required to
address the extended registers.

The following aspects of near branches are controlled by the effective operand size:

• Truncation of the instruction pointer.
• Size of a stack pop or push, resulting from a CALL or RET.
• Size of a stack-pointer increment or decrement, resulting from a CALL or RET.
• Indirect-branch operand size.

In 64-bit mode, all of the above actions are forced to 64 bits. However, the size of the displacement
field for relative branches is still limited to 32 bits.

The operand size of near branches is fixed at 64 bits without the need for a REX prefix. However, the
address size of near branches is not forced in 64-bit mode. Such addresses are 64 bits by default, but
they can be overridden to 32 bits by a prefix.

3.7.9.2 Branches to 64-Bit Offsets

Because immediates are generally limited to 32 bits, the only way a full 64-bit absolute RIP can be
specified in 64-bit mode is with an indirect branch. For this reason, direct forms of far branches are
invalid in 64-bit mode.

3.7.10 Interrupts and Exceptions

Interrupts and exceptions are a form of control transfer operation. They are used to call special system-
service routines, called interrupt handlers, which are designed to respond to the interrupt or exception
condition. Pointers to the interrupt handlers are stored by the operating system in an interrupt-
descriptor table, or IDT. In legacy real mode, the IDT contains an array of 4-byte far pointers to
interrupt handlers. In legacy protected mode, the IDT contains an array of 8-byte gate descriptors. In
long mode, the gate descriptors are 16 bytes. Interrupt gates, task gates, and trap gates can be stored in
the IDT, but not call gates.

Interrupt handlers are usually privileged software because they typically require access to restricted
system resources. System software is responsible for creating the interrupt gates and storing them in
the IDT. “Exceptions and Interrupts” in Volume 2 contains detailed information on the interrupt
mechanism and the requirements on system software for managing the mechanism.

The IDT is indexed using the interrupt number, or vector. How the vector is specified depends on the
source, as described below. The first 32 of the available 256 interrupt vectors are reserved for internal
use by the processor—for exceptions (as described below) and other purposes.

Interrupts are caused either by software or hardware. The INT, INT3, and INTO instructions
implement a software interrupt by calling an interrupt handler directly. These are general-purpose
(privilege-level-3) instructions. The operand of the INT instruction is an immediate byte value
specifying the interrupt vector used to index the IDT. INT3 and INTO are specific forms of software
interrupts used to call interrupt 3 and interrupt 4, respectively. External interrupts are produced by

[AMD Public Use]

92 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

system logic which passes the IDT index to the processor via input signals. External interrupts can be
either maskable or non-maskable.

Exceptions usually occur as a result of software execution errors or other internal-processor errors.
Exceptions can also occur in non-error situations, such as debug-program single-stepping or address-
breakpoint detection. In the case of exceptions, the processor produces the IDT index based on the
detected condition. The handlers for interrupts and exceptions are identical for a given vector.

The processor’s response to an exception depends on the type of the exception. For all exceptions
except SSE and x87 floating-point exceptions, control automatically transfers to the handler (or
service routine) for that exception, as defined by the exceptions vector. For 128-bit-media and x87
floating-point exceptions, there is both a masked and unmasked response. When unmasked, these
exceptions invoke their exception handler. When masked, a default masked response is provided
instead of invoking the exception handler.

Exceptions and software-initiated interrupts occur synchronously with respect to the processor clock.
There are three types of exceptions:

• Faults—A fault is a precise exception that is reported on the boundary before the interrupted
instruction. Generally, faults are caused by an undesirable error condition involving the interrupted
instruction, although some faults (such as page faults) are common and normal occurrences. After
the service routine completes, the machine state prior to the faulting instruction is restored, and the
instruction is retried.

• Traps—A trap is a precise exception that is reported on the boundary following the interrupted
instruction. The instruction causing the exception finishes before the service routine is invoked.
Software interrupts and certain breakpoint exceptions used in debugging are traps.

• Aborts—Aborts are imprecise exceptions. The instruction causing the exception, and possibly an
indeterminate additional number of instructions, complete execution before the service routine is
invoked. Because they are imprecise, aborts typically do not allow reliable program restart.

Table 3-10 shows the interrupts and exceptions that can occur, together with their vector numbers,
mnemonics, source, and causes. For a detailed description of interrupts and exceptions, see
“Exceptions and Interrupts” in Volume 2.

Control transfers to interrupt handlers are similar to far calls, except that for the former, the rFLAGS
register is pushed onto the stack before the return address. Interrupts and exceptions to several of the
first 32 interrupts can also push an error code onto the stack. No parameters are passed by an interrupt.
As with CALLs, interrupts that cause a privilege change also perform a stack switch.

[AMD Public Use]

General-Purpose Programming 93

24592—Rev. 3.23—October 2020 AMD64 Technology

Table 3-10. Interrupts and Exceptions

Vector Interrupt (Exception) Mnemonic Source Cause

Generated
By General-

Purpose
Instructions

0 Divide-By-Zero-Error #DE Software DIV, IDIV instructions yes

1 Debug #DB Internal Instruction accesses and
data accesses yes

2 Non-Maskable-Interrupt NMI External External NMI signal no
3 Breakpoint #BP Software INT3 instruction yes
4 Overflow #OF Software INTO instruction yes
5 Bound-Range #BR Software BOUND instruction yes
6 Invalid-Opcode #UD Internal Invalid instructions yes
7 Device-Not-Available #NM Internal x87 instructions no

8 Double-Fault #DF Internal Exception during an
interrupt/exception transfer indirectly

9 Coprocessor-Segment-
Overrun — External Unsupported (reserved)

10 Invalid-TSS #TS Internal Task-state segment access
and task switch yes

11 Segment-Not-Present #NP Internal Segment access through a
descriptor yes

12 Stack #SS Internal SS register loads and stack
references yes

13 General-Protection #GP Internal Memory accesses and
protection checks yes

14 Page-Fault #PF Internal Memory accesses when
paging enabled yes

15 Reserved —

16 x87 Floating-Point
Exception-Pending #MF Software

x87 floating-point and 64-bit
media floating-point
instructions

no

17 Alignment-Check #AC Internal Memory accesses yes

18 Machine-Check #MC
Internal
External

Model specific yes

19 SIMD Floating-Point #XF Internal 128-bit media floating-point
instructions no

20 Reserved —
21 Control-Protection #CP Internal Control transfers yes

22—31 Reserved (Internal and
External) —

[AMD Public Use]

94 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.7.10.1 Interrupt to Same Privilege in Legacy Mode

When an interrupt to a handler running at the same privilege occurs, the processor pushes a copy of the
rFLAGS register, followed by the return pointer (CS:rIP), onto the stack. If the interrupt generates an
error code, it is pushed onto the stack as the last item. Control is then transferred to the interrupt
handler. Figure 3-16 on page 94 shows the stack pointer before (old rSP value) and after (new rSP
value) the interrupt. The stack segment (SS) is not changed.

Figure 3-16. Procedure Stack, Interrupt to Same Privilege

If the shadow stack feature is enabled for the current CPL, an interrupt to a handler at the same
privilege pushes the interrupted procedure’s CS and LIP (linear return IP) onto the shadow stack, in
addition to pushing the CS:rIP onto the procedure stack stack. For a detailed description of shadow
stack operations, see “Shadow Stacks” in Volume 2.

3.7.10.2 Interrupt to More Privilege or in Long Mode

When an interrupt to a more-privileged handler occurs or the processor is operating in long mode the
processor locates the handler’s stack pointer from the TSS. The old stack pointer (SS:rSP) is pushed
onto the new stack, along with a copy of the rFLAGS register. The return pointer (CS:rIP) to the
interrupted program is then copied to the stack. If the interrupt generates an error code, it is pushed
onto the stack as the last item. Control is then transferred to the interrupt handler. Figure 3-17 shows an
example of a stack switch resulting from an interrupt with a change in privilege.

30 Security #SX External Security exception no
31 Reserved —

0–255 External Interrupts
(Maskable) — External External interrupt signaling no

0–255 Software Interrupts — Software INT instruction yes

Table 3-10. Interrupts and Exceptions (continued)

Vector Interrupt (Exception) Mnemonic Source Cause

Generated
By General-

Purpose
Instructions

Old rSP

Interrupt
Handler

Stack

New rSP

Return CS
Return rIP

rFLAGS

Error Code

[AMD Public Use]

General-Purpose Programming 95

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 3-17. Procedure Stack, Interrupt to Higher Privilege

If the shadow stack feature is enabled at the target CPL, an interrupt to a more-privileged level also
switches to a new shadow stack. Depending on the CPL of the interrupt procedure, the old SSP and the
CS and LIP may be pushed onto the new shadow stack. For a detailed description of shadow stack
operations, see “Shadow Stacks” in Volume 2.

3.7.10.3 Interrupt Returns

The IRET, IRETD, and IRETQ instructions are used to return from an interrupt handler. Prior to
executing an IRET, the interrupt handler must pop the error code off of the stack if one was pushed by
the interrupt or exception. IRET restores the interrupted program’s rIP, CS, and rFLAGS by popping
their saved values off of the stack and into their respective registers. If a privilege change occurs or
IRET is executed in 64-bit mode, the interrupted program’s stack pointer (SS:rSP) is also popped off
of the stack. Control is then transferred back to the interrupted program.

If the shadow stack feature is enabled at the current CPL, an IRET to the same CPL pops the old SSP,
return CS and return LIP from the shadow stack. The CS and return address are compared with the
values read from the procedure stack. If the comparison fails, a control-protection (#CP) fault is
generated. If IRET is returning to a different CPL, the operation of the shadow stack depends on the
CPL of the procedure to which IRET is returning. If the return CPL is 1 or 2, the old SSP, return CS
and return LIP are popped from the shadow stack. The CS and return address are compared with the
values read from the procedure stack. If the comparison fails, a control-protection (#CP) fault is
generated. If the return CPL is 3, the old SSP is restored from PL3_SSP and the return address is not
checked against the shadow stack. For a detailed description of shadow stack operations, see “Shadow
Stacks” in Volume 2.

3.8 Input/Output
I/O devices allow the processor to communicate with the outside world, usually to a human or to
another system. In fact, a system without I/O has little utility. Typical I/O devices include a keyboard,
mouse, LAN connection, printer, storage devices, and monitor. The speeds these devices must operate

Old
Procedure

Stack

Old SS:rSP

Interrupt
Handler

Stack

New SS:rSP

Return CS
Return rIP

rFLAGS

Return SS
Return rSP

Error Code

[AMD Public Use]

96 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

at vary greatly, and usually depend on whether the communication is to a human (slow) or to another
machine (fast). There are exceptions. For example, humans can consume graphics data at very high
rates.

There are two methods for communicating with I/O devices in AMD64 processor implementations.
One method involves accessing I/O through ports located in I/O-address space (“I/O Addressing” on
page 96), and the other method involves accessing I/O devices located in the memory-address space
(“Memory Organization” on page 9). The address spaces are separate and independent of each other.

I/O-address space was originally introduced as an optimized means for accessing I/O-device control
ports. Then, systems usually had few I/O devices, devices tended to be relatively low-speed, device
accesses needed to be strongly ordered to guarantee proper operation, and device protection
requirements were minimal or non-existent. Memory-mapped I/O has largely supplanted I/O-address
space access as the preferred means for modern operating systems to interface with I/O devices.
Memory-mapped I/O offers greater flexibility in protection, vastly more I/O ports, higher speeds, and
strong or weak ordering to suit the device requirements.

3.8.1 I/O Addressing

Access to I/O-address space is provided by the IN and OUT instructions, and the string variants of
these instructions, INS and OUTS. The operation of these instructions are described in “Input/Output”
on page 68. Although not required, processor implementations generally transmit I/O-port addresses
and I/O data over the same external signals used for memory addressing and memory data. Different
bus-cycles generated by the processor differentiate I/O-address space accesses from memory-address
space accesses.

3.8.1.1 I/O-Address Space

Figure 3-18 on page 96 shows the 64 Kbyte I/O-address space. I/O ports can be addressed as bytes,
words, or doublewords. As with memory addressing, word-I/O and doubleword-I/O ports are simply
two or four consecutively-addressed byte-I/O ports. Word and doubleword I/O ports can be aligned on
any byte boundary, but there is typically a performance penalty for unaligned accesses. Performance is
optimized by aligning word-I/O ports on word boundaries, and doubleword-I/O ports on doubleword
boundaries.

Figure 3-18. I/O Address Space

0000

FFFF 216 - 1

0

[AMD Public Use]

General-Purpose Programming 97

24592—Rev. 3.23—October 2020 AMD64 Technology

3.8.1.2 Memory-Mapped I/O

Memory-mapped I/O devices are attached to the system memory bus and respond to memory
transactions as if they were memory devices, such as DRAM. Access to memory-mapped I/O devices
can be performed using any instruction that accesses memory, but typically MOV instructions are used
to transfer data between the processor and the device. Some I/O devices may have restrictions on read-
modify-write accesses.

Any location in memory can be used as a memory-mapped I/O address. System software can use the
paging facilities to virtualize memory devices and protect them from unauthorized access. See
“System-Management Instructions” in Volume 2 for a discussion of memory virtualization and
paging.

3.8.2 I/O Ordering

The order of read and write accesses between the processor and an I/O device is usually important for
properly controlling device operation. Accesses to I/O-address space and memory-address space differ
in the default ordering enforced by the processor and the ability of software to control ordering.

3.8.2.1 I/O-Address Space

The processor always orders I/O-address space operations strongly, with respect to other I/O and
memory operations. Software cannot modify the I/O ordering enforced by the processor. IN
instructions are not executed until all previous writes to I/O space and memory have completed. OUT
instructions delay execution of the following instruction until all writes—including the write
performed by the OUT—have completed. Unlike memory writes, writes to I/O addresses are never
buffered by the processor.

The processor can use more than one bus transaction to access an unaligned, multi-byte I/O port.
Unaligned accesses to I/O-address space do not have a defined bus transaction ordering, and that
ordering can change from one implementation to another. If the use of an unaligned I/O port is
required, and the order of bus transactions to that port is important, software should decompose the
access into multiple, smaller aligned accesses.

3.8.2.2 Memory-Mapped I/O

To maximize software performance, processor implementations can execute instructions out of
program order. This can cause the sequence of memory accesses to also be out of program order, called
weakly ordered. As described in “Accessing Memory” on page 99, the processor can perform memory
reads in any order, it can perform reads without knowing whether it requires the result (speculation),
and it can reorder reads ahead of writes. In the case of writes, multiple writes to memory locations in
close proximity to each other can be combined into a single write or a burst of multiple writes. Writes
can also be delayed, or buffered, by the processor.

Application software that needs to force memory ordering to memory-mapped I/O devices can do so
using the read/write barrier instructions: LFENCE, SFENCE, and MFENCE. These instructions are
described in “Forcing Memory Order” on page 100. Serializing instructions, I/O instructions, and

[AMD Public Use]

98 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

locked instructions can also be used as read/write barriers, but they modify program state and are an
inferior method for enforcing strong-memory ordering.

Typically, the operating system controls access to memory-mapped I/O devices. The AMD64
architecture provides facilities for system software to specify the types of accesses and their ordering
for entire regions of memory. These facilities are also used to manage the cacheability of memory
regions. See “System-Management Instructions” in Volume 2 for further information.

3.8.3 Protected-Mode I/O

In protected mode, access to the I/O-address space is governed by the I/O privilege level (IOPL) field
in the rFLAGS register, and the I/O-permission bitmap in the current task-state segment (TSS).

3.8.3.1 I/O-Privilege Level

RFLAGS.IOPL governs access to IOPL-sensitive instructions. All of the I/O instructions (IN, INS,
OUT, and OUTS) are IOPL-sensitive. IOPL-sensitive instructions cannot be executed by a program
unless the program’s current-privilege level (CPL) is numerically less (more privileged) than or equal
to the RFLAGS.IOPL field, otherwise a general-protection exception (#GP) occurs.

Only software running at CPL = 0 can change the RFLAGS.IOPL field. Two instructions, POPF and
IRET, can be used to change the field. If application software (or any software running at CPL>0)
attempts to change RFLAGS.IOPL, the attempt is ignored.

System software uses RFLAGS.IOPL to control the privilege level required to access I/O-address
space devices. Access can be granted on a program-by-program basis using different copies of
RFLAGS for every program, each with a different IOPL. RFLAGS.IOPL acts as a global control over
a program’s access to I/O-address space devices. System software can grant less-privileged programs
access to individual I/O devices (overriding RFLAGS.IOPL) by using the I/O-permission bitmap
stored in a program’s TSS. For details about the I/O-permission bitmap, see “I/O-Permission Bitmap”
in Volume 2.

3.9 Memory Optimization
Generally, application software is unaware of the memory hierarchy implemented within a particular
system design. The application simply sees a homogenous address space within a single level of
memory. In reality, both system and processor implementations can use any number of techniques to
speed up accesses into memory, doing so in a manner that is transparent to applications. Application
software can be written to maximize this speed-up even though the methods used by the hardware are
not visible to the application. This section gives an overview of the memory hierarchy and access
techniques that can be implemented within a system design, and how applications can optimize their
use.

[AMD Public Use]

General-Purpose Programming 99

24592—Rev. 3.23—October 2020 AMD64 Technology

3.9.1 Accessing Memory

Implementations of the AMD64 architecture commit the results of each instruction—that is, store the
result of the executed instruction in software-visible resources, such as a register (including flags), the
data cache, an internal write buffer, or memory—in program order, which is the order specified by the
instruction sequence in a program. Transparent to the application, implementations can execute
instructions in any order and temporarily hold out-of-order results until the instructions are committed.
Implementations can also speculatively execute instructions—executing instructions before knowing
their results will be used (for example, executing both sides of a branch). By executing instructions
out-of-order and speculatively, a processor can boost application performance by executing
instructions that are ready, rather than delaying them behind instructions that are waiting for data.
However, the processor commits results in program order (the order expected by software).

When executing instructions out-of-order and speculatively, processor implementations often find it
useful to also allow out-of-order and speculative memory accesses. However, such memory accesses
are potentially visible to software and system devices. The following sections describe the
architectural rules for memory accesses. See “Memory System” in Volume 2 for information on how
system software can further specify the flexibility of memory accesses.

3.9.1.1 Read Ordering

The ordering of memory reads does not usually affect program execution because the ordering does
not usually affect the state of software-visible resources. The rules governing read ordering are:

• Out-of-order reads are allowed. Out-of-order reads can occur as a result of out-of-order instruction
execution. The processor can read memory out-of-order to prevent stalling instructions that are
executed out-of-order.

• Speculative reads are allowed. A speculative read occurs when the processor begins executing a
memory-read instruction before it knows whether the instruction’s result will actually be needed.
For example, the processor can predict a branch to occur and begin executing instructions
following the predicted branch, before it knows whether the prediction is valid. When one of the
speculative instructions reads data from memory, the read itself is speculative.

• Reads can usually be reordered ahead of writes. Reads are generally given a higher priority by the
processor than writes because instruction execution stalls if the read data required by an instruction
is not immediately available. Allowing reads ahead of writes usually maximizes software
performance.
Reads can be reordered ahead of writes, except that a read cannot be reordered ahead of a prior
write if the read is from the same location as the prior write. In this case, the read instruction stalls
until the write instruction is committed. This is because the result of the write instruction is
required by the read instruction for software to operate correctly.

Some system devices might be sensitive to reads. Normally, applications do not have direct access to
system devices, but instead call an operating-system service routine to perform the access on the
application’s behalf. In this case, it is system software’s responsibility to enforce strong read-ordering.

[AMD Public Use]

100 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.9.1.2 Write Ordering

Writes affect program order because they affect the state of software-visible resources. The rules
governing write ordering are restrictive:

• Generally, out-of-order writes are not allowed. Write instructions executed out-of-order cannot
commit (write) their result to memory until all previous instructions have completed in program
order. The processor can, however, hold the result of an out-of-order write instruction in a private
buffer (not visible to software) until that result can be committed to memory.
System software can create non-cacheable write-combining regions in memory when the order of
writes is known to not affect system devices. When writes are performed to write-combining
memory, they can appear to complete out of order relative to other writes. See “Memory System”
in Volume 2 for additional information.

• Speculative writes are not allowed. As with out-of-order writes, speculative write instructions
cannot commit their result to memory until all previous instructions have completed in program
order. Processors can hold the result in a private buffer (not visible to software) until the result can
be committed.

3.9.1.3 Atomicity of accesses.

Single load or store operations (from instructions that do just a single load or store) are naturally
atomic on any AMD64 processor as long as they do not cross an aligned 8-byte boundary. Accesses up
to eight bytes in size which do cross such a boundary may be performed atomically using certain
instructions with a lock prefix, such as XCHG, CMPXCHG or CMPXCHG8B, as long as all such
accesses are done using the same technique. (Note that misaligned locked accesses may be subject to
heavy performance penalties.) CMPXCHG16B can be used to perform 16-byte atomic accesses in 64-
bit mode (with certain alignment restrictions).

3.9.2 Forcing Memory Order

Special instructions are provided for application software to force memory ordering in situations
where such ordering is important. These instructions are:

• Load Fence—The LFENCE instruction forces ordering of memory loads (reads). All memory
loads preceding the LFENCE (in program order) are completed prior to completing memory loads
following the LFENCE. Memory loads cannot be reordered around an LFENCE instruction, but
other non-serializing instructions (such as memory writes) can be reordered around the LFENCE.

• Store Fence—The SFENCE instruction forces ordering of memory stores (writes). All memory
stores preceding the SFENCE (in program order) are completed prior to completing memory
stores following the SFENCE. Memory stores cannot be reordered around an SFENCE instruction,
but other non-serializing instructions (such as memory loads) can be reordered around the
SFENCE.

• Memory Fence—The MFENCE instruction forces ordering of all memory accesses (reads and
writes). All memory accesses preceding the MFENCE (in program order) are completed prior to
completing any memory access following the MFENCE. Memory accesses cannot be reordered

[AMD Public Use]

General-Purpose Programming 101

24592—Rev. 3.23—October 2020 AMD64 Technology

around an MFENCE instruction. Additionally in AMD64 processors, MFENCE is a serializing
instruction (see below).

Although they serve different purposes, other instructions can be used as read/write barriers when the
order of memory accesses must be strictly enforced. These read/write barrier instructions force all
prior reads and writes to complete before subsequent reads or writes are executed. Unlike the fence
instructions listed above, these other instructions alter the software-visible state. This makes these
instructions less general and more difficult to use as read/write barriers than the fence instructions,
although their use may reduce the total number of instructions executed. The following instructions
are usable as read/write barriers:

• Serializing instructions—Serializing instructions force the processor to commit the serializing
instruction and all previous instructions, then restart instruction fetching at the next instruction.
This flushes any speculatively fetched instructions that may be in execution behind the serializing
instruction. The serializing instructions available to applications (aside from MFENCE; see above)
are CPUID and IRET. A serializing instruction is committed when the following operations are
complete:
- The instruction has executed.
- All registers modified by the instruction are updated.
- All memory updates performed by the instruction are complete.
- All data held in the write buffers have been written to memory. (Write buffers are described in

“Write Buffering” on page 103).
• I/O instructions—Reads from and writes to I/O-address space use the IN and OUT instructions,

respectively. When the processor executes an I/O instruction, it orders it with respect to other loads
and stores, depending on the instruction:
- IN instructions (IN, INS, and REP INS) are not executed until all previous stores to memory

and I/O-address space are complete.
- Instructions following an OUT instruction (OUT, OUTS, or REP OUTS) are not executed until

all previous stores to memory and I/O-address space are complete, including the store
performed by the OUT.

• Locked instructions—A locked instruction is one that contains the LOCK instruction prefix. A
locked instruction is used to perform an atomic read-modify-write operation on a memory
operand, so it needs exclusive access to the memory location for the duration of the operation.
Locked instructions order memory accesses in the following way:
- All previous loads and stores (in program order) are completed prior to executing the locked

instruction.
- The locked instruction is completed before allowing loads and stores for subsequent

instructions (in program order) to occur.

Only certain instructions can be locked. See “Lock Prefix” in Volume 3 for a list of instructions that
can use the LOCK prefix.

[AMD Public Use]

102 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.9.3 Caches

Depending on the instruction, operands can be encoded in the instruction opcode or located in
registers, I/O ports, or memory locations. An operand that is located in memory can actually be
physically present in one or more locations within a system’s memory hierarchy.

3.9.3.1 Memory Hierarchy

A system’s memory hierarchy may have some or all of the following levels:

• Main Memory—Main memory is external to the processor chip and is the memory-hierarchy level
farthest from the processor’s execution units. All physical-memory addresses are present in main
memory, which is implemented using relatively slow, but high-density memory devices.

• External Caches—External caches are external to the processor chip, but are implemented using
lower-capacity, higher-performance memory devices than system memory. The system uses
external caches to hold copies of frequently-used instructions and data found in main memory. A
subset of the physical-memory addresses can be present in the external caches at any time. A
system can contain any number of external caches, or none at all.

• Internal Caches—Internal caches are present on the processor chip itself, and are the closest
memory-hierarchy level to the processor’s execution units. Because of their presence on the
processor chip, access to internal caches is very fast. Internal caches contain copies of the most
frequently-used instructions and data found in main memory and external caches, and their
capacities are relatively small in comparison to external caches. A processor implementation can
contain any number of internal caches, or none at all. Implementations often contain a first-level
instruction cache and first-level data (operand) cache, and they may also contain a higher-capacity
(and slower) second- and even third-level internal cache for storing both instructions and data.

Figure 3-19 on page 103 shows an example of a four-level memory hierarchy that combines main
memory, external third-level (L3) cache, and internal second-level (L2) and two first-level (L1)
caches. As the figure shows, the first-level and second-level caches are implemented on the processor
chip, and the third-level cache is external to the processor. The first-level cache is a split cache, with
separate caches used for instructions and data. The second-level and third-level caches are unified
(they contain both instructions and data). Memory at the highest levels of the hierarchy have greater
capacity (larger size), but have slower access, than memory at the lowest levels.

Using caches to store frequently used instructions and data can result in significantly improved
software performance by avoiding accesses to the slower main memory. Applications function
identically on systems without caches and on systems with caches, although cacheless systems
typically execute applications more slowly. Application software can, however, be optimized to make
efficient use of caches when they are present, as described later in this section.

[AMD Public Use]

General-Purpose Programming 103

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 3-19. Memory Hierarchy Example

3.9.3.2 Write Buffering

Processor implementations can contain write-buffers attached to the internal caches. Write buffers can
also be present on the interface used to communicate with the external portions of the memory
hierarchy. Write buffers temporarily hold data writes when main memory or the caches are busy
responding to other memory-system accesses. The existence of write buffers is transparent to software.
However, some of the instructions used to optimize memory-hierarchy performance can affect the
write buffers, as described in “Forcing Memory Order” on page 100.

3.9.4 Cache Operation

Although the existence of caches is transparent to application software, a simple understanding how
caches are accessed can assist application developers in optimizing their code to run efficiently when
caches are present.

Caches are divided into fixed-size blocks, called cache lines. Typically, implementations have either
32-byte or 64-byte cache lines. The processor allocates a cache line to correspond to an identically-
sized region in main memory. After a cache line is allocated, the addresses in the corresponding region
of main memory are used as addresses into the cache line. It is the processor’s responsibility to keep
the contents of the allocated cache line coherent with main memory. Should another system device

Processor

L3 Cache

Main Memory

L2 Cache

L1 Instruction
Cache

L1 Data
Cache

System

Faster
Access

Larger
Size

[AMD Public Use]

104 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

access a memory address that is cached, the processor maintains coherency by providing the correct
data back to the device and main memory.

When a memory-read occurs as a result of an instruction fetch or operand access, the processor first
checks the cache to see if the requested information is available. A read hit occurs if the information is
available in the cache, and a read miss occurs if the information is not available. Likewise, a write hit
occurs if a memory write can be stored in the cache, and a write miss occurs if it cannot be stored in the
cache.

A read miss or write miss can result in the allocation of a cache line, followed by a cache-line fill. Even
if only a single byte is needed, all bytes in a cache line are loaded from memory by a cache-line fill.
Typically, a cache-line fill must write over an existing cache line in a process called a cache-line
replacement. In this case, if the existing cache line is modified, the processor performs a cache-line
writeback to main memory prior to performing the cache-line fill.

Cache-line writebacks help maintain coherency between the caches and main memory. Internally, the
processor can also maintain cache coherency by internally probing (checking) the other caches and
write buffers for a more recent version of the requested data. External devices can also check a
processor’s caches and write buffers for more recent versions of data by externally probing the
processor. All coherency operations are performed in hardware and are completely transparent to
applications.

3.9.4.1 Cache Coherency and MOESI

Implementations of the AMD64 architecture maintain coherency between memory and caches using a
five-state protocol known as MOESI. The five MOESI states are modified, owned, exclusive, shared,
and invalid. See “Memory System” in Volume 2 for additional information on MOESI and cache
coherency.

3.9.4.2 Instruction Cache Coherency

Instruction caches in AMD64 processors do not support in-cache updates. Any stores that hit a line in
an instruction cache will cause that line to be invalidated by hardware to maintain coherency of the
cache contents. The line may then be re-fetched and loaded into the cache as needed by the instruction
fetch logic, reflecting the update. Special considerations for self-modifying code (code which writes
into its own pending instruction stream) and cross-modifying code (code which writes into the active
instruction stream of anotherthread) may be found in Volume 2, Section 7.6.1.

3.9.5 Cache Pollution

Because cache sizes are limited, caches should be filled only with data that is frequently used by an
application. Data that is used infrequently, or not at all, is said to pollute the cache because it occupies
otherwise useful cache lines. Ideally, the best data to cache is data that adheres to the principle of
locality. This principle has two components: temporal locality and spatial locality.

• Temporal locality refers to data that is likely to be used more than once in a short period of time. It
is useful to cache temporal data because subsequent accesses can retrieve the data quickly. Non-

[AMD Public Use]

General-Purpose Programming 105

24592—Rev. 3.23—October 2020 AMD64 Technology

temporal data is assumed to be used once, and then not used again for a long period of time, or ever.
Caching of non-temporal data pollutes the cache and should be avoided.
Cache-control instructions (“Cache-Control Instructions” on page 105) are available to
applications to minimize cache pollution caused by non-temporal data.

• Spatial locality refers to data that resides at addresses adjacent to or very close to the data being
referenced. Typically, when data is accessed, it is likely the data at nearby addresses will be
accessed in a short period of time. Caches perform cache-line fills in order to take advantage of
spatial locality. During a cache-line fill, the referenced data and nearest neighbors are loaded into
the cache. If the characteristics of spacial locality do not fit the data used by an application, then
the cache becomes polluted with a large amount of unreferenced data.
Applications can avoid problems with this type of cache pollution by using data structures with
good spatial-locality characteristics.

Another form of cache pollution is stale data. Data that adheres to the principle of locality can become
stale when it is no longer used by the program, or won’t be used again for a long time. Applications can
use the CLFLUSH instruction to remove stale data from the cache.

3.9.6 Cache-Control Instructions

General control and management of the caches is performed by system software and not application
software. System software uses special registers to assign memory types to physical-address ranges,
and page-attribute tables are used to assign memory types to virtual address ranges. Memory types
define the cacheability characteristics of memory regions and how coherency is maintained with main
memory. See “Memory System” in Volume 2 for additional information on memory typing.

Instructions are available that allow application software to control the cacheability of data it uses on a
more limited basis. These instructions can be used to boost an application’s performance by
prefetching data into the cache, and by avoiding cache pollution. Run-time analysis tools and
compilers may be able to suggest the use of cache-control instructions for critical sections of
application code.

3.9.6.1 Cache Prefetching

Applications can prefetch entire cache lines into the caching hierarchy using one of the prefetch
instructions. The prefetch should be performed in advance, so that the data is available in the cache
when needed. Although load instructions can mimic the prefetch function, they do not offer the same
performance advantage, because a load instruction may cause a subsequent instruction to stall until the
load completes, but a prefetch instruction will never cause such a stall. Load instructions also
unnecessarily require the use of a register, but prefetch instructions do not.

The instructions available in the AMD64 architecture for cache-line prefetching include one SSE
instruction and two 3DNow! instructions:

• PREFETCHlevel—(an SSE instruction) Prefetches read/write data into a specific level of the
cache hierarchy. If the requested data is already in the desired cache level or closer to the processor
(lower cache-hierarchy level), the data is not prefetched. If the operand specifies an invalid

[AMD Public Use]

106 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

memory address, no exception occurs, and the instruction has no effect. Attempts to prefetch data
from non-cacheable memory, such as video frame buffers, or data from write-combining memory,
are also ignored. The exact actions performed by the PREFETCHlevel instructions depend on the
processor implementation. Current AMD processor families map all PREFETCHlevel instructions
to a PREFETCH. Refer to the Optimization Guide for AMD Athlon™ 64 and AMD Opteron™
Processors, order# 25112, for details relating to a particular processor family, brand or model.
- PREFETCHT0—Prefetches temporal data into the entire cache hierarchy.
- PREFETCHT1—Prefetches temporal data into the second-level (L2) and higher-level caches,

but not into the L1 cache.
- PREFETCHT2—Prefetches temporal data into the third-level (L3) and higher-level caches,

but not into the L1 or L2 cache.
- PREFETCHNTA—Prefetches non-temporal data into the processor, minimizing cache

pollution. The specific technique for minimizing cache pollution is implementation-dependent
and can include such techniques as allocating space in a software-invisible buffer, allocating a
cache line in a single cache or a specific way of a cache, etc.

• PREFETCH—(a 3DNow! instruction) Prefetches read data into the L1 data cache. Data can be
written to such a cache line, but doing so can result in additional delay because the processor must
signal externally to negotiate the right to change the cache line’s cache-coherency state for the
purpose of writing to it.

• PREFETCHW—(a 3DNow! instruction) Prefetches write data into the L1 data cache. Data can be
written to the cache line without additional delay, because the data is already prefetched in the
modified cache-coherency state. Data can also be read from the cache line without additional delay.
However, prefetching write data takes longer than prefetching read data if the processor must wait
for another caching master to first write-back its modified copy of the requested data to memory
before the prefetch request is satisfied.

The PREFETCHW instruction provides a hint to the processor that the cache line is to be modified,
and is intended for use when the cache line will be written to shortly after the prefetch is performed.
The processor can place the cache line in the modified state when it is prefetched, but before it is
actually written. Doing so can save time compared to a PREFETCH instruction, followed by a
subsequent cache-state change due to a write.

To prevent a false-store dependency from stalling a prefetch instruction, prefetched data should be
located at least one cache-line away from the address of any surrounding data write. For example, if
the cache-line size is 32 bytes, avoid prefetching from data addresses within 32 bytes of the data
address in a preceding write instruction.

3.9.6.2 Non-Temporal Stores

Non-temporal store instructions are provided to prevent memory writes from being stored in the cache,
thereby reducing cache pollution. These non-temporal store instructions are specific to the type of
register they write:

• GPR Non-temporal Stores—MOVNTI.

[AMD Public Use]

General-Purpose Programming 107

24592—Rev. 3.23—October 2020 AMD64 Technology

• YMM/XMM Non-temporal Stores—(V)MASKMOVDQU, (V)MOVNTDQ, (V)MOVNTPD, and
(V)MOVNTPS.

• MMX Non-temporal Stores—MASKMOVQ and MOVNTQ.

3.9.6.3 Removing Stale Cache Lines

When cache data becomes stale, it occupies space in the cache that could be used to store frequently-
accessed data. Applications can use the CLFLUSH instruction to free a stale cache-line for use by
other data. CLFLUSH writes the contents of a cache line to memory and then invalidates the line in the
cache and in all other caches in the cache hierarchy that contain the line. Once invalidated, the line is
available for use by the processor and can be filled with other data.

3.10 Performance Considerations
In addition to typical code optimization techniques, such as those affecting loops and the inlining of
function calls, the following considerations may help improve the performance of application
programs written with general-purpose instructions.

These are implementation-independent performance considerations. Other considerations depend on
the hardware implementation. For information about such implementation-dependent considerations
and for more information about application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware implementations.

3.10.1 Use Large Operand Sizes

Loading, storing, and moving data with the largest relevant operand size maximizes the memory
bandwidth of these instructions.

3.10.2 Use Short Instructions

Use the shortest possible form of an instruction (the form with fewest opcode bytes). This increases
the number of instructions that can be decoded at any one time, and it reduces overall code size.

3.10.3 Align Data

Data alignment directly affects memory-access performance. Data alignment is particularly important
when accessing streaming (also called non-temporal) data—data that will not be reused and therefore
should not be cached. Data alignment is also important in cases where data that is written by one
instruction is subsequently read by a subsequent instruction soon after the write.

3.10.4 Avoid Branches

Branching can be very time-consuming. If the body of a branch is small, the branch may be
replaceable with conditional move (CMOVcc) instructions, or with 128-bit or 64-bit media
instructions that simulate predicated parallel execution or parallel conditional moves.

[AMD Public Use]

108 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

3.10.5 Prefetch Data

Memory latency can be substantially reduced—especially for data that will be used multiple times—
by prefetching such data into various levels of the cache hierarchy. Software can use the PREFETCHx
instructions very effectively in such cases. One PREFETCHx per cache line should be used.

Some of the best places to use prefetch instructions are inside loops that process large amounts of data.
If the loop goes through less than one cache line of data per iteration, partially unroll the loop. Try to
use virtually all of the prefetched data. This usually requires unit-stride memory accesses—those in
which all accesses are to contiguous memory locations.

For data that will be used only once in a procedure, consider using non-temporal accesses. Such
accesses are not burdened by the overhead of cache protocols.

3.10.6 Keep Common Operands in Registers

Keep frequently used values in registers rather than in memory. This avoids the comparatively long
latencies for accessing memory.

3.10.7 Avoid True Dependencies

Spread out true dependencies (write-read or flow dependencies) to increase the opportunities for
parallel execution. This spreading out is not necessary for anti-dependencies and output dependencies.

3.10.8 Avoid Store-to-Load Dependencies

Store-to-load dependencies occur when data is stored to memory, only to be read back shortly
thereafter. Hardware implementations of the architecture may contain means of accelerating such
store-to-load dependencies, allowing the load to obtain the store data before it has been written to
memory. However, this acceleration might be available only when the addresses and operand sizes of
the store and the dependent load are matched, and when both memory accesses are aligned.
Performance is typically optimized by avoiding such dependencies altogether and keeping the data,
including temporary variables, in registers.

3.10.9 Optimize Stack Allocation

When allocating space on the stack for local variables and/or outgoing parameters within a procedure,
adjust the stack pointer and use moves rather than pushes. This method of allocation allows random
access to the outgoing parameters, so that they can be set up when they are calculated instead of being
held in a register or memory until the procedure call. This method also reduces stack-pointer
dependencies.

3.10.10 Consider Repeat-Prefix Setup Time

The repeat instruction prefixes have a setup overhead. If the repeated count is variable, the overhead
can sometimes be avoided by substituting a simple loop to move or store the data. Repeated string
instructions can be expanded into equivalent sequences of inline loads and stores. For details, see
“Repeat Prefixes” in Volume 3.

[AMD Public Use]

General-Purpose Programming 109

24592—Rev. 3.23—October 2020 AMD64 Technology

3.10.11 Replace GPR with Media Instructions

Some integer-based programs can be made to run faster by using 128-bit media or 64-bit media
instructions. These instructions have their own register sets. Because of this, they relieve register
pressure on the GPR registers. For loads, stores, adds, shifts, etc., media instructions may be good
substitutes for general-purpose integer instructions. GPR registers are freed up, and the media
instructions increase opportunities for parallel operations.

3.10.12 Organize Data in Memory Blocks

Organize frequently accessed constants and coefficients into cache-line-size blocks and prefetch them.
Procedures that access data arranged in memory-bus-sized blocks, or memory-burst-sized blocks, can
make optimum use of the available memory bandwidth.

[AMD Public Use]

110 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 111

24592—Rev. 3.23—October 2020 AMD64 Technology

4 Streaming SIMD Extensions Media and
Scientific Programming

This chapter describes the programming model and instructions that make up the Streaming SIMD
Extensions (SSE). SSE instructions perform integer and floating-point operations primarily on vector
operands (a subset of the instructions take scalar operands) held in the YMM/XMM registers or loaded
from memory. They can speed up certain types of procedures—typically high-performance media and
scientific procedures—by substantial factors, depending on data element size and the regularity and
locality of data accessed from memory.

4.1 Overview
Most of the SSE arithmetic instructions perform parallel operations on pairs of vectors. Vector
operations are also called packed or SIMD (single-instruction, multiple-data) operations. They take
vector operands consisting of multiple elements and all elements are operated on in parallel. Some
SSE instructions operate on scalars instead of vectors.

4.1.1 Capabilities

The SSE instructions are designed to support media and scientific applications. Many physical and
mathematical objects can be modeled as a set of numbers (elements) that quantify a fixed number of
attributes related to that object. These elements are then aggregated together into what is called a
vector. The SSE instructions allow applications to perform mathematical operations on vectors. In a
vector instruction, each element of the one or more vector operands is operated upon in parallel using
the same mathematical function. The elements can be integers (from bytes to octwords) or floating-
point values (either single-precision or double-precision). Arithmetic operations produce signed,
unsigned, and/or saturating results.

The availability of several types of vector move instructions and (in 64-bit mode) twice the number of
YMM/XMM registers (a total of 16) can drastically reduce memory-access overhead, making a
substantial difference in performance.

Types of Applications

Applications well-suited to the SSE programming model include a broad range of audio, video, and
graphics programs. For example, music synthesis, speech synthesis, speech recognition, audio and
video compression (encoding) and decompression (decoding), 2D and 3D graphics, streaming video
(up to high-definition TV), and digital signal processing (DSP) kernels are all likely to experience
higher performance using SSE instructions than using other types of instructions in AMD64
architecture.

Such applications commonly use small-sized integer or single-precision floating-point data elements
in repetitive loops, in which the typical operations are inherently parallel. For example, 8-bit and 16-
bit data elements are commonly used for pixel information in graphics applications, in which each of

[AMD Public Use]

112 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

the RGB pixel components (red, green, blue, and alpha) are represented by an 8-bit or 16-bit integer.
16-bit data elements are also commonly used for audio sampling.

The SSE instructions allow multiple data elements like these to be packed into 256-bit or 128-bit
vector operands located in YMM/XMM registers or memory. The instructions operate in parallel on
each of the elements in these vectors. For example, 32 elements of 8-bit data can be packed into a 256-
bit vector operand, so that all 32 byte elements are operated on simultaneously, and in pairs of source
operands, by a single instruction.

The SSE instructions also support a broad spectrum of scientific applications. For example, their
ability to operate in parallel on double-precision floating-point vector elements makes them well-
suited to computations like dense systems of linear equations, including matrix and vector-space
operations with real and complex numbers. In professional CAD applications, for example, high-
performance physical-modeling algorithms can be implemented to simulate processes such as heat
transfer or fluid dynamics.

4.1.2 Origins

The SSE instruction set includes instructions originally introduced as the Streaming SIMD Extensions
(Herein referred to as SSE1), and instructions added in subsequent extensions (SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, SSE4A, AES, AVX, AVX2, CLMUL, FMA4, FMA, and XOP).

Collectively the SSE1, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, and SSE4A subsets are referred to as the
legacy SSE instructions. All legacy SSE instructions support 128-bit vector operands. The extended
SSE instructions include the AES, AVX, AVX2, CLMUL, FMA4, FMA, and XOP subsets. All
extended SSE instructions provide support for 128-bit vector operands and most also support 256-bit
operands.

Legacy SSE instructions support the specification of two vector operands, the AVX and AVX2 subsets
support three, and AMD’s FMA4 and XOP instruction sets support the specification of four 128-bit or
256-bit vector operands.

Each AVX instruction mirrors one of the legacy SSE instructions but presents different exception
behavior. Most AVX instructions that operate on vector floating-point data types provide support for
256-bit vector widths. AVX2 adds support for 256-bit widths to most vector integer AVX instructions.

AVX, AVX2, FMA4, FMA, and XOP support the specification of a distinct destination register. This is
called a non-destructive operation because none of the source operands is overwritten as a result of the
execution of the instruction.

The assembler mnemonic for each AVX and AVX2 instruction is distinguished from the
corresponding legacy form by prepending the letter V . In the discussion below, mnemonics for
instructions which have both and a legacy SSE and an AVX form will be written (V)mnemonic (for
example, (V)ADDPD). The mnemonics for the other extended SSE instructions also begin with the
letter V.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 113

24592—Rev. 3.23—October 2020 AMD64 Technology

4.1.3 Compatibility

The SSE instructions can be executed in any of the architecture’s operating modes. Existing SSE
binary programs run in legacy and compatibility modes without modification. The support provided
by the AMD64 architecture for such binaries is identical to that provided by legacy x86 architectures.

To run in 64-bit mode, legacy SSE programs must be recompiled. The recompilation has no side
effects on such programs, other than to provide access to the following additional resources:

• Eight additional YMM/XMM registers (for a total of 16).
• Eight additional general-purpose registers (for a total of 16 GPRs).
• Extended 64-bit width of all GPRs.
• 64-bit virtual address space.
• RIP-relative addressing mode.

The SSE instructions use data registers, a control and status register (MXCSR), rounding control, and
an exception reporting and response mechanism that are distinct from and functionally independent of
those used by the x87 floating-point instructions. Because of this, SSE programming support usually
requires exception handlers that are distinct from those used for x87 exceptions. This support is
provided by virtually all legacy operating systems for the x86 architecture.

4.2 Registers
The SSE programming model introduced the 128-bit XMM registers. In the extended SSE
programming model these registers double in width to 256 bits and are designated YMM0–15. Rather
than defining a separate array of registers, the extended SSE model overlays the YMM registers on the
XMM registers, with each XMM register occupying the lower 128 bits of the corresponding YMM
register. When referring to these registers in general, they are designated YMM/XMM0–15.

4.2.1 SSE Registers

The YMM/XMM registers are diagrammed in Figure 4-1 below. Most SSE instructions read operands
from these registers or memory and store results in these registers. Operation of the SSE instructions is
supported by the Media eXtension Control and Status Register (MXCSR) described below. A few SSE
instructions—those that perform data conversion or move operations—can have operands located in
MMX registers or general-purpose registers (GPRs).

Sixteen 256-bit YMM data registers, YMM0–YMM15, support the 256-bit media instructions.
Sixteen 128-bit XMM data registers, XMM0–XMM15, support the 128-bit media instructions. They
can hold operands for both vector and scalar operations utilizing the 128-bit and 256-bit integer and
floating-point data types. The high eight YMM/XMM registers, YMM/XMM8–15, are available to
software running in 64-bit mode for instructions that use a REX, VEX, or XOP prefix. For a discussion
of the REX prefix, see “REX Prefixes” on page 79. For a discussion of VEX and XOP, see “VEX and
XOP Prefixes” on page 79).

[AMD Public Use]

114 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-1. SSE Registers

Upon power-on reset, all 16 YMM/XMM registers are cleared to +0.0. However, initialization by
means of the #INIT external input signal does not change the state of the YMM/XMM registers.

Handling of Upper Octword

128-bit media instructions read source operands from and write results to XMM registers, while the
256-bit media instructions use the 256-bit YMM registers. This raises the question—what is the
disposition of the upper octword of a YMM register when the result of a 128-bit media instruction is
written into the lower octword (the XMM register)? The answer differs depending on whether the
instruction is a legacy SSE instruction or an extended SSE instruction. When a legacy SSE instruction
writes a 128-bit result to an XMM register, the upper octword of the corresponding YMM register

255 127 0

YMM0

YMM1

YMM2

YMM3

YMM4

YMM5

YMM6

YMM7

YMM8

YMM9

YMM10

YMM11

YMM12

YMM13

YMM14

YMM15

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

XMM8

XMM9

XMM10

XMM11

XMM12

XMM13

XMM14

XMM15

Available in all modes

Available only in 64-bit mode

31 0

MXCSRMedia eXtension Control and Status Register

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 115

24592—Rev. 3.23—October 2020 AMD64 Technology

remains unchanged. However, when the 128-bit form of an extended SSE instruction writes its result,
the upper octword of the YMM register is cleared.

4.2.2 MXCSR Register

Figure 4-2 below shows a detailed view of the Media eXtension Control and Status Register
(MXCSR). All defined fields in this register are read/write. The fields within the MXCSR apply only
to operations performed by 256-bit and 128-bit media instructions. Software can load the register from
memory using the XRSTOR, XRSTORS, FXRSTOR or LDMXCSR instructions, and it can store the
register to memory using the XSAVE, XSAVEOPT, XSAVEC, XSAVES, FXSAVE or STMXCSR
instructions.

Figure 4-2. Media eXtension Control and Status Register (MXCSR)

On power-on reset, all bits are initialized to the values indicated above. However, initialization by
means of the #INIT external input signal does not change the state of the MXCSR.

The six exception flags (IE, DE, ZE, OE, UE, PE) are sticky bits. (Once set by the processor, such a bit
remains set until software clears it.) For details about the causes of SIMD floating-point exceptions

31 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved, MBZ M
M

R
e
s

F
Z

R
C

P
M

U
M

O
M

Z
M

D
M

I
M

D
A
Z

P
E

U
E

O
E

Z
E

D
E

I
E

Bits Mnemonic Description Reset Bit-Value
31:18 – Reserved, MBZ

17 MM Misaligned Exception Mask 0
16 – Reserved, MBZ
15 FZ Flush-to-Zero for Masked Underflow 0

14:13 RC Floating-Point Rounding Control 00
Exception Masks

12 PM Precision Exception Mask 1
11 UM Underflow Exception Mask 1
10 OM Overflow Exception Mask 1
9 ZM Zero-Divide Exception Mask 1
8 DM Denormalized-Operand Exception Mask 1
7 IM Invalid-Operation Exception Mask 1
6 DAZ Denormals Are Zeros 0

Exception Flags
5 PE Precision Exception 0
4 UE Underflow Exception 0
3 OE Overflow Exception 0
2 ZE Zero-Divide Exception 0
1 DE Denormalized-Operand Exception 0
0 IE Invalid-Operation Exception 0

[AMD Public Use]

116 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

indicated by bits 5:0, see “SIMD Floating-Point Exception Causes” on page 220. For details about the
masking of these exceptions, see “SIMD Floating-Point Exception Masking” on page 226.

Invalid-Operation Exception (IE). Bit 0. The processor sets this bit to 1 when an invalid-operation
exception occurs. These exceptions are caused by many types of errors, such as an invalid operand.

Denormalized-Operand Exception (DE). Bit 1. The processor sets this bit to 1 when one of the
source operands of an instruction is in denormalized form, except that if software has set the
denormals are zeros (DAZ) bit, the processor does not set the DE bit. (See “Denormalized (Tiny)
Numbers” on page 125.)

Zero-Divide Exception (ZE). Bit 2. The processor sets this bit to 1 when a non-zero number is
divided by zero.

Overflow Exception (OE). Bit 3. The processor sets this bit to 1 when the absolute value of a
rounded result is larger than the largest representable normalized floating-point number for the
destination format. (See “Normalized Numbers” on page 125.)

Underflow Exception (UE). Bit 4. The processor sets this bit to 1 when the absolute value of a
rounded non-zero result is too small to be represented as a normalized floating-point number for the
destination format. (See “Normalized Numbers” on page 125.)

When masked by the UM bit, the processor reports a UE exception only if the UE occurs together with
a precision exception (PE). Also, see bit 15, the flush-to-zero (FZ) bit.

Precision Exception (PE). Bit 5. The processor sets this bit to 1 when a floating-point result, after
rounding, differs from the infinitely precise result and thus cannot be represented exactly in the
specified destination format. The PE exception is also called the inexact-result exception.

Denormals Are Zeros (DAZ). Bit 6. Software can set this bit to 1 to enable the DAZ mode, if the
hardware implementation supports this mode. In the DAZ mode, when the processor encounters
source operands in the denormalized format it converts them to signed zero values, with the sign of the
denormalized source operand, before operating on them, and the processor does not set the
denormalized-operand exception (DE) bit, regardless of whether such exceptions are masked or
unmasked. DAZ mode does not comply with the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754).

Support for the DAZ bit is indicated by the MXCSR_MASK field in the FXSAVE memory save area
or the low 512 bytes of the XSAVE extended save area. See “Saving Media and x87 State” in
Volume 2.

Exception Masks (PM, UM, OM, ZM, DM, IM). Bits 12:7. Software can set these bits to mask, or
clear this bits to unmask, the corresponding six types of SIMD floating-point exceptions (PE, UE, OE,
ZE, DE, IE). A bit masks its exception type when set to 1, and unmasks it when cleared to 0.

In general, masking a type of exception causes the processor to handle all subsequent instances of the
exception type in a default way (the UE exception has an unusual behavior). Unmasking the exception

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 117

24592—Rev. 3.23—October 2020 AMD64 Technology

type causes the processor to branch to the SIMD floating-point exception service routine when an
exception occurs. For details about the processor’s responses to masked and unmasked exceptions, see
“SIMD Floating-Point Exception Masking” on page 226.

Floating-Point Rounding Control (RC). Bits 14:13. Software uses these bits to specify the rounding
method for SSE floating-point operations. The choices are:

• 00 = round to nearest (default)
• 01 = round down
• 10 = round up
• 11 = round toward zero

For details, see “Floating-Point Rounding” on page 129.

Flush-to-Zero (FZ). Bit 15. If the rounded result is tiny and the underflow mask is set, the FTZ bit
causes the result to be flushed to zero. This naturally causes the result to be inexact, which causes both
PE and UE to be set. The sign returned with the zero is the sign of the true result. The FTZ bit does not
have any effect if the underflow mask is 0.

This response does not comply with the IEEE 754 standard, but it may offer higher performance than
can be achieved by responding to an underflow in this circumstance. The FZ bit is only effective if the
UM bit is set to 1. If the UM bit is cleared to 0, the FZ bit is ignored. For details, see Table 4-16 on
page 227.

Misaligned Exception Mask (MM). Bit 17. This bit is applicable to processors that support
Misaligned SSE Mode. For these processors, MM controls the exception behavior triggered by an
attempt to access a misaligned vector memory operand. If the misaligned exception mask (MM) is set
to 1, an attempt to access a non-aligned vector memory operand does not cause a #GP exception, but is
instead subject to alignment checking. When MM is set and alignment checking is enabled, a #AC
exception is generated, if the memory operand is not aligned. When MM is set and alignment checking
is not enabled, no exception is triggered by accessing a non-aligned vector operand.

Support for Misaligned SSE Mode is indicated by CPUID Fn8000_0001_ECX[MisAlignSse] = 1. For
details on alignment requirements, see “Data Alignment” on page 120.

The corresponding MXCSR_MASK bit (17) is 1, regardless of whether MM is set or not. For details
on MXCSR and MXCSR_MASK, see “SSE, MMX, and x87 Programming” in Volume 2 of this
manual.

4.2.3 Other Data Registers

Some SSE instructions that perform data transfer, data conversion or data reordering operations (“Data
Transfer” on page 150, “Data Conversion” on page 155, and “Data Reordering” on page 157) can
access operands in the MMX or general-purpose registers (GPRs). When addressing GPRs registers in
64-bit mode, the REX instruction prefix can be used to access the extended GPRs, as described in
“REX Prefixes” on page 79.

[AMD Public Use]

118 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

For a description of the GPR registers, see “Registers” on page 23. For a description of the MMX
registers, see “MMX™ Registers” on page 246.

4.2.4 Effect on rFLAGS Register

The execution of most SSE instructions have no effect on the rFLAGS register. However, some SSE
instructions, such as COMISS and PTEST, do write flag bits based on the results of a comparison. For
a description of the rFLAGS register, see “Flags Register” on page 34.

4.3 Operands
Operands for most SSE instructions are held in the YMM/XMM registers, sourced from memory, or
encoded in the instruction as an immediate value. Instructions operate on two distinct operand widths
— either 256 bits or 128 bits. 256-bit operands may be held in one or more of the YMM registers. 128-
bit operands may be held in one or more of the XMM registers. As shown in Figure 4-1 on page 114,
the 128-bit XMM registers overlay the lower octword of the 256-bit YMM registers. The data types of
these operands include scalar integers, integer vectors, and scalar and floating-point vectors.

4.3.1 Operand Addressing

Depending on the instruction, referenced operands may be in registers or memory.

4.3.1.1 Register Operands

Most SSE instructions can access source and destination operands in YMM or XMM registers. A few
of these instructions access the MMX registers, GPR registers, rFLAGS register, or MXCSR register.
The type of register addressed is specified in the instruction syntax. When addressing a GPR or
YMM/XMM register, the REX instruction prefix can be used to access the eight additional GPR or
YMM/XMM registers, as described in “Instruction Prefixes” on page 217. Instructions encoded with
the VEX/XOP prefix can utilize an immediate byte to provide the specification of additional operands.

4.3.1.2 Memory Operands

Most SSE instructions can read memory for source operands, and some of the instructions can write
results to memory. Figure 4-3 below illustrates how a vector operand is stored in memory relative to its
arrangement in an SSE register.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 119

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-3. Vector (Packed) Data in Memory

This specific example shows a 256-bit double-precision floating-point vector.

This particular data type is composed of four 64-bit double-precision floating-point values
(abbreviated “DP FP”, in the figure) packed into 256 bits. The four values comprise the four elements
of the vector. Elements are numbered right to left. Element 0 is defined to occupy the least significant
(right-most) position. Element 1 is in the next most significant position and 2 the next. Element 3
occupies the most significant (left-most) position. When held in a YMM register the elements are laid
out as shown in the figure.

When stored in memory, element 0 is stored at the lowest address (60h in this example). Element 1 is
stored at that address incremented by the element size in bytes (each double-precision floating-point
value is 8 bytes long). Element 2 is located at the initial address plus 16 (10h) and element 3 is stored at
the initial address plus 24 (18h). Each element is stored based on the rules for the fundament data type
of the element (double-precision floating-point in this example). See Section 4.3.3.3 “Floating-Point
Data Types” on page 123 for details on how double-precision floating-point values are represented in
registers and memory.

The address of a vector is the same as the address of element 0 (60h in this example). This vector is
said to be naturally aligned (or, simply, aligned) because it is located at an address that is an integer
multiple of its size in bytes (32, in this case). Alignment of vector operands is not required. See “Data
Alignment” below.

Other vector data types are stored in memory in an analogous fashion with the lowest indexed element
placed at the lowest address.

4.3.1.3 Immediate Operands

Immediate operands are used in certain data-conversion, vector-shift, and vector-compare
instructions. Such instructions take 8-bit immediates, which provide control for the operation.

DP FP element 3

DP FP element 2

DP FP element 1

DP FP element 0 60h

68h

70h

78h Highest address
256-bit Double-

Precision Floating-Point
Vector in Memory

(aligned)

Double-Precision Floating-Point Vector in YMM Register

High (most-significant) Low (least-significant)

DP FP element 3 DP FP element 2 DP FP element 1 DP FP element 0

Lowest address
Defines address of vector

[AMD Public Use]

120 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

4.3.1.4 I/O Ports

I/O ports in the I/O address space cannot be directly addressed by SSE instructions, and although
memory-mapped I/O ports can be addressed by such instructions, doing so may produce unpredictable
results, depending on the hardware implementation of the architecture.

4.3.2 Data Alignment

Generally, legacy SSE instructions that attempt to access a vector operand in memory that is not
naturally aligned trigger a general-protection exception (#GP).

AMD processors that support Misaligned SSE Mode may be programmed to disable this exception
behavior for legacy load/execute SSE instructions. For these processors, exception behavior on
misaligned memory access for vector operands of load/execute instructions is controlled by the
MXCSR.MM bit. If MM is not set, the default behavior occurs (a #GP results).

If MXCSR.MM is set, the #GP is inhibited and the exception behavior depends on the alignment
checking mechanism. If alignment checking is enabled (CR0.AM = 1 and rFLAGS.AC = 1), a
misaligned memory access to a vector operand will trigger an #AC exception. On the other hand, if
alignment checking is disabled, no exception will be triggered.

Support for Misaligned SSE Mode is indicated by CPUID Fn8000_0001_ECX[MisAlignSse] = 1. For
information on using the CPUID instruction to determine support for Misaligned SSE Mode, see the
description of the CPUID instruction in Volume 3 and the definition of the MisAlignSse feature flag in
Appendix E of Volume 3.

The FXSAVE, FXRSTOR, (V)MOVAPD, (V)MOVAPS, and (V)MOVDQA, (V)MOVNTDQ,
(V)MOVNTPD and (V)MOVNTPS instructions do not support misaligned accesses. These
instructions always generate an exception when attempting to access misaligned data. See individual
instruction listings for specific alignment requirements.

Legacy SSE instructions that manipulate scalar operands never trigger a #GP due to data
misalignment, nor do any of the following instructions:

• LDDQU—Load Unaligned Double Quadword
• MASKMOVDQU—Masked Move Double Quadword Unaligned.
• MOVDQU—Move Unaligned Double Quadword.
• MOVUPD—Move Unaligned Packed Double-Precision Floating-Point.
• MOVUPS—Move Unaligned Packed Single-Precision Floating-Point.
• PCMPESTRI—Packed Compare Explicit Length Strings Return Index
• PCMPESTRM—Packed Compare Explicit Length Strings Return Mask
• PCMPISTRI—Packed Compare Implicit Length Strings Return Index
• PCMPISTRM—Packed Compare Implicit Length Strings Return Mask

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 121

24592—Rev. 3.23—October 2020 AMD64 Technology

For extended SSE instructions, the MXCSR.MM bit does not control exception behavior. Only those
extended SSE instructions that explicitly require aligned memory operands (VMOVAPS/PD,
VMOVDQA, VMOVNTPS/PD, and VMOVNTDQ) will result in a general protection exception
(#GP) when attempting to access unaligned memory operands.

For all other extended SSE instructions, unaligned memory accesses do not result in a #GP. However,
software can enable alignment checking, where misaligned memory accesses cause an #AC exception,
by the means specified above.

While the architecture does not impose data-alignment requirements for SSE instructions (except for
those that explicitly demand it), the consequence of storing operands at unaligned locations is that
accesses to those operands may require more processor and bus cycles than for aligned accesses. See
“Data Alignment” on page 43 for details.

4.3.3 SSE Instruction Data Types

Most SSE instructions operate on packed (also called vector) data. These data types are aggregations
of the fundamental data types—signed and unsigned integers and single- and double-precision
floating-point numbers. The following sections describe the encoding and characteristics of these data
types.

4.3.3.1 Integer Data Types

The architecture defines signed and unsigned integers in sizes from 8 to 128 bits. The characteristics of
these data types are described below.

Sign. The sign bit is the most-significant bit—bit 7 for a byte, bit 15 for a word, bit 31 for a
doubleword, bit 63 for a quadword, or bit 127 for a double quadword. Arithmetic instructions that are
not specifically named as unsigned perform signed two’s-complement arithmetic.

Range of Representable Values. Table 4-1 below shows the range of representable values for the
integer data types.

[AMD Public Use]

122 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Saturation. Saturating (also called limiting or clamping) instructions limit the value of a result to the
maximum or minimum value representable by the applicable data type. Saturating versions of integer
vector-arithmetic instructions operate on byte-sized and word-sized elements. These instructions—for
example, (V)PACKx, (V)PADDSx, (V)PADDUSx, (V)PSUBSx, and (V)PSUBUSx—saturate signed
or unsigned data at the vector-element level when the element reaches its maximum or minimum
representable value. Saturation avoids overflow or underflow errors. Many of the integer multiply and
accumulate instructions saturate the cumulative results of the multiplication and addition
(accumulation) operations before writing the final results to the destination (accumulator) register.

Note, however, that not all multiply and accumulate instructions saturate results.

The examples in Table 4-2 below illustrate saturating and non-saturating results with word operands.
Saturation for other data-type sizes follows similar rules. Once saturated, the saturated value is treated
like any other value of its type. For example, if 0001h is subtracted from the saturated value, 7FFFh,
the result is 7FFEh.

Table 4-1. Range of Values of Integer Data Types
Data-Type

Interpretation Byte Word Doubleword Quadword Double
Quadword

Unsigned
integers

Base-2
(exact) 0 to +28–1 0 to +216–1 0 to +232–1 0 to +264–1 0 to +2128–1

Base-10
(approx.) 0 to 255 0 to 65,535 0 to 4.29 * 109 0 to 1.84 * 1019 0 to 3.40 * 1038

Signed
integers1

Base-2
(exact) –27 to +(27 –1) –215 to

+(215–1) –231 to +(231 –1) –263 to +(263 –1) –2127 to +(2127–1)

Base-10
(approx.) -128 to +127 -32,768 to

+32,767
-2.14 * 109 to
+2.14 * 109

–9.22 * 1018
to +9.22 * 1018

–1.70 * 1038
to +1.70 * 1038

Note:
1. The sign bit is the most-significant bit (bit 7 for a byte, bit 15 for a word, bit 31 for doubleword, bit 63 for quadword,

bit 127 for double quadword.).

Table 4-2. Saturation Examples

Operation
Non-Saturated

Infinitely Precise
Result

Saturated
Signed Result

Saturated
Unsigned Result

7000h + 2000h 9000h 7FFFh 9000h
7000h + 7000h E000h 7FFFh E000h
F000h + F000h 1E000h E000h FFFFh
9000h + 9000h 12000h 8000h FFFFh
7FFFh + 0100h 80FFh 7FFFh 80FFh
7FFFh + FF00h 17EFFh 7EFFh FFFFh

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 123

24592—Rev. 3.23—October 2020 AMD64 Technology

Arithmetic instructions not specifically designated as saturating perform non-saturating, twos-
complement arithmetic.

4.3.3.2 Other Fixed-Point Operands

The architecture provides specific support only for integer fixed-point operands—those in which an
implied binary point is always located to the right of bit 0. Nevertheless, software may use fixed-point
operands in which the implied binary point is located in any position. In such cases, software is
responsible for managing the interpretation of such implied binary points, as well as any redundant
sign bits that may occur during multiplication.

4.3.3.3 Floating-Point Data Types

The floating-point data types, shown in Figure 4-4 below, include 32-bit single precision and 64-bit
double precision. Both formats are fully compatible with the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754). The SSE instructions operate internally on floating-point data types
in the precision specified by each instruction.

Figure 4-4. Floating-Point Data Types

Both of the floating-point data types consist of a sign (0 = positive, 1 = negative), a biased exponent
(base-2), and a significand, which represents the integer and fractional parts of the number. The integer
bit (also called the J bit) is implied (called a hidden integer bit). The value of an implied integer bit can
be inferred from number encodings, as described in Section “Floating-Point Number Encodings” on
page 127. The bias of the exponent is a constant that makes the exponent always positive and allows
reciprocation, without overflow, of the smallest normalized number representable by that data type.

Specifically, the data types are formatted as follows:

063Double Precision

31 0Single Precision 2223

S
Biased

Exponent

5152

Biased
ExponentS

30

62

S = Sign Bit

S = Sign Bit

Significand
(also Fraction)

Significand
(also Fraction)

[AMD Public Use]

124 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• Single-Precision Format—This format includes a 1-bit sign, an 8-bit biased exponent whose value
is 127, and a 23-bit significand. The integer bit is implied, making a total of 24 bits in the
significand.

• Double-Precision Format—This format includes a 1-bit sign, an 11-bit biased exponent whose
value is 1023, and a 52-bit significand. The integer bit is implied, making a total of 53 bits in the
significand.

Table 4-3 shows the range of finite values representable by the two floating-point data types.

For example, in the single-precision format, the largest normal number representable has an exponent
of FEh and a significand of 7FFFFFh, with a numerical value of 2127 * (2 – 2–23). Results that
overflow above the maximum representable value return either the maximum representable
normalized number (see “Normalized Numbers” on page 125) or infinity, with the sign of the true
result, depending on the rounding mode specified in the rounding control (RC) field of the MXCSR
register. Results that underflow below the minimum representable value return either the minimum
representable normalized number or a denormalized number (see “Denormalized (Tiny) Numbers” on
page 125), with the sign of the true result, or a result determined by the SIMD floating-point exception
handler, depending on the rounding mode and the underflow-exception mask (UM) in the MXCSR
register (see “Unmasked Responses” on page 229).

Compatibility with x87 Floating-Point Data Types

The results produced by SSE floating-point instructions comply fully with the IEEE Standard for
Binary Floating-Point Arithmetic (ANSI/IEEE Std 754), because these instructions represent data in
the single-precision or double-precision data types throughout their operations. The x87 floating-point
instructions, however, by default perform operations in the double-extended-precision format.
Because of this, x87 instructions operating on the same source operands as SSE floating-point
instructions may return results that are slightly different in their least-significant bits.

Floating-Point Number Types

A SSE floating-point value can be one of five types, as follows:

• Normal
• Denormal (Tiny)
• Zero

Table 4-3. Range of Values in Normalized Floating-Point Data Types

Data Type Range of Normalized1 Values
Base 2 (exact) Base 10 (approximate)

Single Precision 2–126 to 2127 * (2 – 2–23) 1.17 * 10–38 to +3.40 * 1038

Double Precision 2–1022 to 21023 * (2 – 2–52) 2.23 * 10–308 to +1.79 * 10308

Note:
1. See “Normalized Numbers” on page 125 for a definition of “normalized”.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 125

24592—Rev. 3.23—October 2020 AMD64 Technology

• Infinity
• Not a Number (NaN)

In common engineering and scientific usage, floating-point numbers—also called real numbers—are
represented in base (radix) 10. A non-zero number consists of a sign, a normalized significand, and a
signed exponent, as in:

+2.71828 e0

Both large and small numbers are representable in this notation, subject to the limits of data-type
precision. For example, a million in base-10 notation appears as +1.00000 e6 and -0.0000383 is
represented as -3.83000 e-5. A non-zero number can always be written in normalized form—that is,
with a leading non-zero digit immediately before the decimal point. Thus, a normalized significand in
base-10 notation is a number in the range [1,10). The signed exponent specifies the number of
positions that the decimal point is shifted.

Unlike the common engineering and scientific usage described above, SSE floating-point numbers are
represented in base (radix) 2. Like its base-10 counterpart, a normalized base-2 significand is written
with its leading non-zero digit immediately to the left of the radix point. In base-2 arithmetic, a non-
zero digit is always a one, so the range of a binary significand is [1,2):

+1.fraction exponent

The leading non-zero digit is called the integer bit. As shown in Figure 4-4 on page 123, the integer bit
is omitted (and called the hidden integer bit) in the single-precision and the double-precision floating-
point formats, because its implied value is always 1 in a normalized significand (0 in a denormalized
significand), and the omission allows an extra bit of precision.

Floating-Point Representations

The following sections describe the number representations.

Normalized Numbers. Normalized floating-point numbers are the most frequent operands for SSE
instructions. These are finite, non-zero, positive or negative numbers in which the integer bit is 1, the
biased exponent is non-zero and non-maximum, and the fraction is any representable value. Thus, the
significand is within the range of [1, 2). Whenever possible, the processor represents a floating-point
result as a normalized number.

Denormalized (Tiny) Numbers. Denormalized numbers (also called tiny numbers) are smaller than
the smallest representable normalized numbers. They arise through an underflow condition, when the
exponent of a result lies below the representable minimum exponent. These are finite, non-zero,
positive or negative numbers in which the integer bit is 0, the biased exponent is 0, and the fraction is
non-zero.

The processor generates a denormalized-operand exception (DE) when an instruction uses a
denormalized source operand. The processor may generate an underflow exception (UE) when an
instruction produces a rounded, non-zero result that is too small to be represented as a normalized
floating-point number in the destination format, and thus is represented as a denormalized number. If a

[AMD Public Use]

126 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

result, after rounding, is too small to be represented as the minimum denormalized number, it is
represented as zero. (See “Exceptions” on page 218 for specific details.)

Denormalization may correct the exponent by placing leading zeros in the significand. This may cause
a loss of precision, because the number of significant bits in the fraction is reduced by the leading
zeros. In the single-precision floating-point format, for example, normalized numbers have biased
exponents ranging from 1 to 254 (the unbiased exponent range is from –126 to +127). A true result
with an exponent of, say, –130, undergoes denormalization by right-shifting the significand by the
difference between the normalized exponent and the minimum exponent, as shown in Table 4-4 below.

Zero. The floating-point zero is a finite, positive or negative number in which the integer bit is 0, the
biased exponent is 0, and the fraction is 0. The sign of a zero result depends on the operation being
performed and the selected rounding mode. It may indicate the direction from which an underflow
occurred, or it may reflect the result of a division by + or –.

Infinity. Infinity is a positive or negative number, + and –, in which the integer bit is 1, the biased
exponent is maximum, and the fraction is 0. The infinities are the maximum numbers that can be
represented in floating-point format. Negative infinity is less than any finite number and positive
infinity is greater than any finite number (i.e., the affine sense).

An infinite result is produced when a non-zero, non-infinite number is divided by 0 or multiplied by
infinity, or when infinity is added to infinity or to 0. Arithmetic on infinities is exact. For example,
adding any floating-point number to + gives a result of +. Arithmetic comparisons work correctly
on infinities. Exceptions occur only when the use of an infinity as a source operand constitutes an
invalid operation.

Not a Number (NaN). NaNs are non-numbers, lying outside the range of representable floating-point
values. The integer bit is 1, the biased exponent is maximum, and the fraction is non-zero. NaNs are of
two types:

• Signaling NaN (SNaN)
• Quiet NaN (QNaN)

A QNaN is a NaN with the most-significant fraction bit set to 1, and an SNaN is a NaN with the most-
significant fraction bit cleared to 0. When the processor encounters an SNaN as a source operand for
an instruction, an invalid-operation exception (IE) occurs and a QNaN is produced as the result, if the
exception is masked. In general, when the processor encounters a QNaN as a source operand for an
instruction, the processor does not generate an exception but generates a QNaN as the result.

Table 4-4. Example of Denormalization
Significand (base 2) Exponent Result Type
1.0011010000000000 –130 True result
0.0001001101000000 –126 Denormalized result

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 127

24592—Rev. 3.23—October 2020 AMD64 Technology

The processor never generates an SNaN as a result of a floating-point operation. When an invalid-
operation exception (IE) occurs due to an SNaN operand, the invalid-operation exception mask (IM)
bit determines the processor’s response, as described in “SIMD Floating-Point Exception Masking” on
page 226.

When a floating-point operation or exception produces a QNaN result, its value is determined by the
rules in Table 4-5 below.

Floating-Point Number Encodings

Supported Encodings. Table 4-6 below shows the floating-point encodings of supported numbers
and non-numbers. The number categories are ordered from large to small. In this affine ordering,
positive infinity is larger than any positive normalized number, which in turn is larger than any
positive denormalized number, which is larger than positive zero, and so forth. Thus, the ordinary rules
of comparison apply between categories as well as within categories, so that comparison of any two
numbers is well-defined.

The actual exponent field length is 8 or 11 bits, and the fraction field length is 23 or 52 bits, depending
on operand precision. The single-precision and double-precision formats do not include the integer bit
in the significand (the value of the integer bit can be inferred from number encodings). Exponents of
both types are encoded in biased format, with respective biasing constants of 127 and 1023.

Table 4-5. NaN Results
Source Operands
(in either order) NaN Result1

QNaN Any non-NaN floating-point value, or
single-operand instructions Value of QNaN

SNaN Any non-NaN floating-point value, or
single-operand instructions Value of SNaN converted to a QNaN2

QNaN QNaN
Value of operand 1

QNaN SNaN
SNaN QNaN Value of operand 1 converted to a QNaN, if

necessary2SNaN SNaN

Invalid-Operation Exception (IE) occurs without QNaN
or SNaN source operands

Floating-point indefinite value3 (a special
form of QNaN)

Note:
1. The NaN result is produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.
3. See “Indefinite Values” on page 128.

[AMD Public Use]

128 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Indefinite Values. Floating-point and integer data type each have a unique encoding that represents
an indefinite value. The processor returns an indefinite value when a masked invalid-operation
exception (IE) occurs.

For example, if a floating-point division operation is attempted using source operands that are both
zero, and IE exceptions are masked, the floating-point indefinite value is returned as the result. Or, if a

Table 4-6. Supported Floating-Point Encodings

Classification Sign
 Biased

Exponent1 Significand2

Positive
Non-Numbers

SNaN 0 111 ... 111

1.011 ... 111

to

1.000 ... 001

QNaN 0 111 ... 111

1.111 ... 111

to

1.100 ... 000

Positive
Floating-Point
Numbers

Positive Infinity (+) 0 111 ... 111 1.000 ... 000

Positive Normal 0

111 ... 110

to

000 ... 001

1.111 ... 111

to

1.000 ... 000

Positive Denormal 0 000 ... 000

0.111 ... 111

to

0.000 ... 001

Positive Zero 0 000 ... 000 0.000 ... 000

Negative
Floating-Point
Numbers

Negative Zero 1 000 ... 000 0.000 ... 000

Negative Denormal 1 000 ... 000

0.000 ... 001

to

0.111 ... 111

Negative Normal 1

000 ... 001

to

111 ... 110

1.000 ... 000

to

1.111 ... 111

Negative Infinity (–) 1 111 ... 111 1.000 ... 000

Negative
Non-Numbers

SNaN 1 111 ... 111

1.000 ... 001

to

1.011 ... 111

QNaN3 1 111 ... 111

1.100 ... 000

to

1.111 ... 111

Note:
1. The actual exponent field length is 8 or 11 bits, depending on operand precision.
2. The “1.” and “0.” prefixes represent the implicit integer bit. The actual fraction field

length is 23 or 52 bits, depending on operand precision.
3. The floating-point indefinite value is a QNaN with a negative sign and a significand

whose value is 1.100 ... 000.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 129

24592—Rev. 3.23—October 2020 AMD64 Technology

floating-point-to-integer data conversion overflows its destination integer data type, and IE exceptions
are masked, the integer indefinite value is returned as the result.

Table 4-7 shows the encodings of the indefinite values for each data type. For floating-point numbers,
the indefinite value is a special form of QNaN. For integers, the indefinite value is the largest
representable negative twos-complement number, 80...00h. (This value is the largest representable
negative number, except when a masked IE exception occurs, in which case it is generated as the
indefinite value.)

Floating-Point Rounding

The floating-point rounding control (RC) field comprises bits [14:13] of the MXCSR. This field which
specifies how the results of floating-point computations are rounded. Rounding modes apply to most
arithmetic operations. When rounding occurs, the processor generates a precision exception (PE).
Rounding is not applied to operations that produce NaN results.

The IEEE 754 standard defines the four rounding modes as shown in Table 4-8 below.

Round to nearest is the default rounding mode. It provides a statistically unbiased estimate of the true
result, and is suitable for most applications. The other rounding modes are directed roundings: round
up (toward +, round down (toward –), and round toward zero. Round up and round down are used
in interval arithmetic, in which upper and lower bounds bracket the true result of a computation.
Round toward zero takes the smaller in magnitude, that is, always truncates.

Table 4-7. Indefinite-Value Encodings
Data Type Indefinite Encoding

Single-Precision Floating-Point FFC0_0000h
Double-Precision Floating-Point FFF8_0000_0000_0000h
16-Bit Integer 8000h
32-Bit Integer 8000_0000h
64-Bit Integer 8000_0000_0000_0000h

Table 4-8. Types of Rounding
RC Value Mode Type of Rounding

00
(default)

Round to nearest
The rounded result is the representable value closest to the infinitely
precise result. If equally close, the even value (with least-significant bit 0)
is taken.

01 Round down The rounded result is closest to, but no greater than, the infinitely precise
result.

10 Round up The rounded result is closest to, but no less than, the infinitely precise
result.

11 Round toward zero The rounded result is closest to, but no greater in absolute value than,
the infinitely precise result.

[AMD Public Use]

130 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The processor produces a floating-point result defined by the IEEE standard to be infinitely precise.
This result may not be representable exactly in the destination format, because only a subset of the
continuum of real numbers finds exact representation in any particular floating-point format.
Rounding modifies such a result to conform to the destination format, thereby making the result
inexact and also generating a precision exception (PE), as described in “SIMD Floating-Point
Exception Causes” on page 220.

Suppose, for example, the following 24-bit result is to be represented in single-precision format, where
“E2 1010” represents the biased exponent:

1.0011 0101 0000 0001 0010 0111 E2 1010

This result has no exact representation, because the least-significant 1 does not fit into the single-
precision format, which allows for only 23 bits of fraction. The rounding control field determines the
direction of rounding. Rounding introduces an error in a result that is less than one unit in the last place
(ulp), that is, the least-significant bit position of the floating-point representation.

Half-Precision Floating-Point Data Type

The architecture supports a half-precision floating-point data type. This representation requires only
16 bits and is used primarily to save space when floating-point values are stored in memory. One
instruction converts packed half-precision floating-point numbers loaded from memory to packed
single-precision floating-point numbers and another converts packed single-precision numbers in a
YMM/XMM register to packed half-precision numbers in preparation for storage. See Section 4.7.2.5
“Half-Precision Floating-Point Conversion” on page 193 for more information on these instructions.

The 16-bit floating-point data type, shown in Figure 4-5, includes a 1-bit sign, a 5-bit exponent with a
bias of 15 and a 10-bit significand. The integer bit is implied, making a total of 11 bits in the
significand. The value of the integer bit can be inferred from the number encoding. Table 4-9 on
page 131 shows the floating-point encodings of supported numbers and non-numbers.

Figure 4-5. 16-Bit Floating-Point Data Type

 S Biased Exponent Significand

09101415

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 131

24592—Rev. 3.23—October 2020 AMD64 Technology

Table 4-9. Supported 16-Bit Floating-Point Encodings

4.3.3.4 Vector and Scalar Data Types

Most SSE instructions accept vector or scalar operands. These data types are composites of the
fundamental data types discussed above. The following data types are supported:

• Vector (packed) single-precision (32-bit) floating-point numbers
• Vector (packed) double-precision (64-bit) floating-point numbers
• Vector (packed) signed (two's-complement) integers
• Vector (packed) unsigned integers
• Scalar single- and double-precision floating-point numbers
• Scalar signed (two's-complement) integers
• Scalar unsigned integers

Hardware does not check or enforce the data types for instructions. Software is responsible for
ensuring that each operand for an instruction is of the correct data type. If data produced by a previous
instruction is of a type different from that used by the current instruction, and the current instruction

Sign
Bias

Exponent Significanda

a. The “1.” and “0.” prefixes represent the implicit integer bit.

Classification
0 1 1111 1.00 0000 0000

Positive Floating-Point
Numbers

Positive Infinity

0
1 1110

to
0 0001

1.11 1111 1111
to

1.00 0000 0000
Positive Normal

0 0 0000
0.11 1111 1111

to
0.00 0000 0001

Positive Denormal

0 0 0000 0.00 0000 0000 Positive Zero
1 0 0000 0.00 0000 0000

Negative Floating-Point
Numbers

Negative Zero

1 0 0000
0.00 0000 0001

to
0.11 1111 1111

Negative Denormal

1
0 0001

to
1 1110

1.00 0000 0000
to

1.11 1111 1111
Negative Normal

1 1 1111 1.00 0000 0000 Negative Infinity

X 1 1111
1.00 0000 0001

to
1.01 1111 1111

Non-Number

SNaN

X 1 1111
1.10 0000 0000

to
1.11 1111 1111

QNaN

[AMD Public Use]

132 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

sources such data, the current instruction may incur a latency penalty, depending on the hardware
implementation.

For the sake of identifying a specific element within a vector (packed) data type, the elements are
numbered from right to left starting with 0 and ending with (vector_size/element_size) −1. Some
instructions operate on even and odd pairs of elements. The even elements are (0, 2, 4 ...) and the odd
elements are (1,3,5 ...).

Software can interpret data in ways other than those listed —such fixed-point or fractional numbers—
but the SSE instructions do not directly support such interpretations and software must handle them
entirely on its own.

128-bit Vector Data Types

Figure 4-6 below illustrates the 128-bit vector data types.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 133

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-6. 128-Bit Media Data Types

s

s

s

Scalar Floating-Point – Double Precision and Single Precision

significand

exp significand

63 51 exp

s

31 22 0

0

127 0

Scalar Unsigned Integers

127

double quadword (octword)

15

31

63

quadword

doubleword

word

7

byte

0

bit

sss

s

31 2263 5495 86127 118 0

Vector (Packed) Floating-Point – Double Precision and Single Precision

significand

exp significand

063 51127 115

exp significand

expsignificandexpsignificandexpsignificandexp

s

s

71523313947556371798795103111119127 0

quadwordquadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

Vector (Packed) Signed Integer – Quadword, Doubleword, Word, Byte

s s s s s sssss

s

s s

ss

s

s

s

s s

s

s

s s

s

s

s

s

byte byte byte byte byte byte byte byte byte byte byte byte byte bytebytebytes s

71523313947556371798795103111119127 0

Vector (Packed) Unsigned Integer – Quadword, Doubleword, Word, Byte

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

doubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

quadword

doubleword

Scalar Signed Integers

127

double quadword (octword)

15

31

63

quadword

doubleword

word

7

byte

ss

s

s

s

s

1

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

[AMD Public Use]

134 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

256-bit Vector Data Types

Figure 4-7 and Figure 4-8 below illustrate the 256-bit vector data types.

Figure 4-7. 256-Bit Media Data Types

Vector (Packed) Floating-Point – Double Precision and Single Precision

ssss

ss

ssss

ss

31 2263 5495 86127 118 0

significand

exp significand

063 51127 115

exp significand

expsignificandexpsignificandexpsignificandexp

ssss

ss

ssss

ss

159 150191 182223 214255 246 128

significand

exp significand

128191 179255 243

exp significand

expsignificandexpsignificandexpsignificandexp

Vector (Packed) Signed Integer – Double Quadword, Quadword, Doubleword, Word, Byte

ssssssss

ssss

ss

ssssssssssssssss

ssssssss

ssss

ss

s

ssssssssssssssss

135143151159167175183191199207215223231239247255 128

quadword

double quadword (octword)

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

ssssssss

ssss

s

ssssssssssssssss

ssssssss

ssss

ss

ssssssssssssssss

71523313947556371798795103111119127 0

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

s

quadword

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 135

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-8. 256-Bit Media Data Types (Continued)

Vector (Packed) Unsigned Integer – Double Quadword, Quadword, Doubleword, Word, ByteVector (Packed) Unsigned Integer – Double Quadword, Quadword, Doubleword, Word, Byte

135143151159167175183191199207215223231239247255 128

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

71523313947556371798795103111119127 0

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

127 0

Scalar Unsigned Integers

127

double quadword

15

31

63

quadword

doubleword

word

7

0

byte

bit

Scalar Signed Integers

127

double quadword

15

31

63

quadword

doubleword

word

7 0

byte

ss

s

s

s

s

s

s

s

s

31 22 0

Scalar Floating-Point – Double Precision and Single Precision

significand

exp significand
63 51 exp

1

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

[AMD Public Use]

136 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Software can interpret the data types in ways other than those shown—such as bit fields or fractional
numbers—but the instructions do not directly support such interpretations and software must handle
them entirely on its own.

4.3.4 Operand Sizes and Overrides

Operand sizes for SSE instructions are determined by instruction opcodes. Some of these opcodes
include an operand-size override prefix, but this prefix acts in a special way to modify the opcode and
is considered an integral part of the opcode. The general use of the 66h operand-size override prefix
described in “Instruction Prefixes” on page 76 does not apply to SSE instructions.

For details on the use of operand-size override prefixes in SSE instructions, see “Volume 4: 128-Bit
and 256-Bit Media Instructions”.

4.4 Vector Operations
4.4.1 Integer Vector Operations

Figure 4-9 below shows an example of a typical two operand integer vector operation. In this example,
each n-bit wide vector contains 16 integer elements. Note that the same mathematical operation is
performed on all 16 elements in parallel. The computation of one element of the result vector does not
affect the computation of any of the other result elements. For example, a carry out that could occur as
a result of computing a sum is not added into the sum of the next most significant element of the
vector.

In general, the result of a vector operation is a vector of the same width as the operands with the same
number of elements. (Although there are instructions which increase or decrease the width and number
of elements in the result.) There are instructions that operate on vectors of words, doublewords,
quadwords and octwords. Both 128-bit and 256-bit wide vectors are supported. See Section 4.6
“Instruction Summary—Integer Instructions” on page 149 for more information on the supported 128-
bit and 256-bit integer data types.

Most legacy SSE instructions support the specification of two operands. For these instructions the
result overwrites the first operand as shown. The extended SSE set includes instructions that support
two, three, or four vector operands. In these instructions, the result is generally written to a destination
register specified by the instruction encoding.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 137

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-9. Mathematical Operations on Integer Vectors

The SSE instruction set also supports a vector form of the unary arithmetic operation absolute value.
In these instructions the absolute value operation is applied independently to all the elements of the
source operand to produce the result.

4.4.2 Floating-Point Vector Operations

The SSE instruction set supports vectors of both single-precision and double-precision floating-point
values in both 128-bit and 256-bit vector widths. See Section 4.6 “Instruction Summary—Integer
Instructions” on page 149 for more information on the supported 128-bit and 256-bit data types.

Figure 4-10 shows an example of a parallel operation on two 256-bit vectors, each containing four 64-
bit double-precision floating-point values. As in the integer vector operation, each element of the
vector result is the product of the mathematical operation applied to corresponding elements of the
source operands. The number of elements and parallel operations is 2, 4, or 8 depending on vector and
element size.

Some SSE floating-point instructions support the specification of only two operands. For most of these
instructions the result overwrites the first operand. The extended SSE instructions include instructions
that support three or four operands. In most three and four operand instructions, the result is written to
a separate destination register specified by the instruction encoding.

operand 1

.

.

n-1 0
operand 2

n-1 0

operation
operation

resultn-1 0

[AMD Public Use]

138 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-10. Mathematical Operations on Floating-Point Vectors

Integer and floating-point instructions can be freely intermixed in the same procedure. The floating-
point instructions allow media applications such as 3D graphics to accelerate geometry, clipping, and
lighting calculations. Pixel data are typically integer-based, although both integer and floating-point
instructions are often required to operate completely on the data. For example, software can change the
viewing perspective of a 3D scene through transformation matrices by using floating-point
instructions in the same procedure that contains integer operations on other aspects of the graphics
data.

For media and scientific programs that demand floating-point operations, it is often easier and more
powerful to use SSE instructions. Such programs perform better than x87 floating-point programs,
because the YMM/XMM register file is flat rather than stack-oriented, there are twice as many
registers (in 64-bit mode), and SSE instructions can operate on four or eight times the number of
floating-point operands as can x87 instructions. This ability to operate in parallel on multiple pairs of
floating-point elements often makes it possible to remove local temporary variables that would
otherwise be needed in x87 floating-point code.

4.5 Instruction Overview
4.5.1 Instruction Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data.

Legacy SSE Instructions

The legacy SSE instructions accept two operands and generally have the following syntax:
MNEMONIC xmm1, xmm2/mem128

result255 0
DP FPDP FP DP FPDP FP

operand 1255 0
DP FPDP FP DP FPDP FP

operand 2255 0
DP FPDP FP DP FPDP FP

op

op

op

op

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 139

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-11 below shows an example of the mnemonic syntax for a packed add bytes (PADDB)
instruction.

Figure 4-11. Mnemonic Syntax for Typical Legacy SSE Instruction

This example shows the PADDB mnemonic followed by two operands, a 128-bit XMM register
operand and another 128-bit XMM register or 128-bit memory operand. In most instructions that take
two operands, the first (left-most) operand is both a source operand and the destination operand. The
second (right-most) operand serves only as a source. Some instructions can have one or more prefixes
that modify default properties, as described in “Instruction Prefixes” on page 217.

Extended SSE Instructions

The extended SSE instructions support operands of either 128 bits or 256 bits. They also support the
specification of two, three, four, or five operands sourced from YMM/XMM registers, memory or
immediate bytes. A three-operand 128-bit extended SSE instruction has the following syntax:

MNEMONIC xmm1, xmm2, xmm3/mem128

A three-operand 256-bit extended SSE instruction has the following syntax:
MNEMONIC ymm1, ymm2, ymm3/mem256

Figure 4-12 below shows an example of the mnemonic syntax for the packed add bytes (VPADDB)
instruction.

Figure 4-12. Mnemonic Syntax for Typical Extended SSE Instruction

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

PADDB xmm1, xmm2/mem128

Mnemonic

Destination Operand

First Source Operand

Second Source Operand

VPADDB xmm1, xmm2, xmm3/mem128

[AMD Public Use]

140 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

This example shows the VPADDB mnemonic followed by three operands—a destination XMM
register and two source operands. Instruction operand number 2 located in an XMM register is actually
the first source operand and operand 3 is the second source operand. The second source operand may
be located in an XMM register or in memory. The result of the vector add operation is placed in the
specified destination register. Some instructions can have one or more prefixes that modify default
properties, as described in “Instruction Prefixes” on page 217.

4.5.2 Mnemonics

Most mnemonics follow some general conventions:

As noted above, a V prepended to a mnemonic means that it is an extended SEE instruction.

The initial character string of the mnemonic (immediately after the possibly prepended V) represents
the operation the instruction performs. An initial P in the string representing the operation stands for
“Packed.” Subsequent character strings in various combinations either refer to operand types or
indicate a variant of the basic operation. The following lists most of these conventions:

• A—Aligned
• B—Byte
• D—Doubleword
• DQ—Double quadword
• HL—High to low
• LH—Low to high
• L—Left
• PD—Packed double-precision floating-point
• PI—Packed integer
• PS—Packed single-precision floating-point
• Q—Quadword
• R—Right
• S—Signed, or Saturation, or Shift
• SD—Scalar double-precision floating-point
• SI—Signed integer
• SS—Scalar single-precision floating-point, or Signed saturation
• U—Unsigned, or Unordered, or Unaligned
• US—Unsigned saturation
• V—Intial letter designates an extended SSE instruction
• W—Word
• 2—to. Used in data type conversion instruction mnemonics.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 141

24592—Rev. 3.23—October 2020 AMD64 Technology

Consider the example VPMULHUW. The initial V indicates that the instruction is an extended SSE
instruction (in this case, an AVX instruction). It is a packed (that is, vector) multiply (P for packed and
MUL for multiply) of unsigned words (U for unsigned and W for Word). Finally, the H refers to the
fact that the high word of each intermediate double word result is written to the destination vector
element.

4.5.3 Move Operations

Move instructions—along with unpack instructions—are among the most frequently used instructions
in media procedures.

When moving between XMM registers, or between an XMM register and memory, each integer move
instruction can copy up to 16 bytes of data. When moving between an XMM register and an MMX or
GPR register, an integer move instruction can move up to 8 bytes of data. The packed floating-point
move instructions can copy vectors of four single-precision or two double-precision floating-point
operands in parallel.

Figure 4-13 below provides an overview of the basic move operations involving the XMM registers.
Crosshatching in the figure represents bits in the destination register which may either be zero-
extended or left unchanged in the move operation based on the instruction or (for one instruction) the
source of the data. Data written to memory is never zero-extended. The AVX subset provides a number
of 3-operand variants of the basic move instructions that merge additional data from a XMM register
into the destination register. These are not shown in this figure nor are those instructions that extend
fields in the destination register by duplicating bits from the source register.

[AMD Public Use]

142 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-13. XMM Move Operations

MMX Register XMM

XMM MMX Register

XMM XMM

Bits copied

Unchanged

m
em

or
y

XMM or Memory XMM

0

XMM GPR or Memory

m
em

or
y0

0

GPR or Memory XMM

m
em

or
y

XMM

m
em

or
y

XMM or Memory

Unchanged / 0 extend

0 extend0

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 143

24592—Rev. 3.23—October 2020 AMD64 Technology

The extended SSE instruction set provides instructions that load a YMM register from memory, store
the contents of a YMM register to memory, or move 256 bits from one register to another. Figure 4-14
below provides a schematic representation of these operations.

Figure 4-14. YMM Move Operations

Streaming-store versions of the move instructions (also known as non-temporal moves) bypass the
cache when storing data that is accessed only once. This maximizes memory-bus utilization and
minimizes cache pollution.

The move-mask instruction stores specific bytes from one vector, as selected by mask values in a
second vector. Figure 4-15 below shows the (V)MASKMOVDQU operation. It can be used, for
example, to handle end cases in block copies and block fills based on streaming stores.

Figure 4-15. Move Mask Operation

YMM

YMM or Memory

m
em

or
y

m
em

or
y YMM

YMM or Memory

operand 1

write buffer

.

127 0 operand 2127 0

store address
DS:rDI

0/1

0/1

memory

write
combining

[AMD Public Use]

144 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

4.5.4 Data Conversion and Reordering

SSE instructions support data conversion of vector elements, including conversions between integer
and floating-point data types—located in YMM/XMM registers, MMX™ registers, GPR registers, or
memory—and conversions of element-ordering or precision.

For example, the unpack instructions take two vector operands and interleave their low or high
elements. Figure 4-16 shows an unpack and interleave operation on word-sized elements. This this
case, (V)PUNPCKLWD. If operand 1 is a vector of unsigned integers and the left-hand source operand
has elements whose value is zero, the operation converts each element in the low half of operand 1 to
an integer data type of twice its original width. This would be a useful step prior to multiplying two
integer vectors together to ensure that no overflow can occur during a vector multiply operation.

Figure 4-16. Unpack and Interleave Operation

There are also pack instructions, such as (V)PACKSSDW shown below in Figure 4-17, that convert
each element in a pair of integer vectors to lower precision and pack them into the result vector.

Figure 4-17. Pack Operation

Vector-shift instructions are also provided. These instructions may be used to scale each element in an
integer vector up or down.

Figure 4-18 shows one of many types of shuffle operations; in this case, PSHUFD. Here the second
operand is a vector containing doubleword elements, and an immediate byte provides shuffle control
for up to 256 permutations of the elements. Shuffles are useful, for example, in color imaging when

operand 1

result

127 0
operand 2

127 0

127 0

2 operand form

operand 1

result

127 0

127 0

operand 2127 0

2 operand form

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 145

24592—Rev. 3.23—October 2020 AMD64 Technology

computing alpha saturation of RGB values. In this case, a shuffle instruction can replicate an alpha
value in a register so that parallel comparisons with three RGB values can be performed.

Figure 4-18. Shuffle Operation

The (V)PINSRB, (V)PINSRW, (V)PINSRD, and (V)PINSRQ instructions insert a byte, word,
doubleword or quadword from a general-purpose register or memory into an XMM register, at a
specified location. The legacy instructions leave the other elements in the XMM register unmodified.
The extended instructions fill in the other elements from a second XMM source operand.

4.5.5 Matrix and Special Arithmetic Operations

The instruction set provides a broad assortment of vector add, subtract, multiply, divide, and square-
root operations for use on matrices and other data structures common to media and scientific
applications. It also provides special arithmetic operations including multiply-add, average, sum-of-
absolute differences, reciprocal square-root, and reciprocal estimation.

SSE integer and floating-point instructions can perform several types of matrix-vector or matrix-
matrix operations, such as addition, subtraction, multiplication, and accumulation. Efficient matrix
multiplication is further supported with instructions that can first transpose the elements of matrix
rows and columns. These transpositions can make subsequent accesses to memory or cache more
efficient when performing arithmetic matrix operations.

Figure 4-19 on page 146 shows a Packed Multiply and Add instruction ((V)PMADDWD) which
multiplies vectors of 16-bit integer elements to yield intermediate results of 32-bit elements, which are
then summed pair-wise to yield four 32-bit elements. This operation can be used with one source
operand (for example, a coefficient) taken from memory and the other source operand (for example,
the data to be multiplied by that coefficient) taken from an XMM register. It can also be used together
with a vector-add operation to accumulate dot product results (also called inner or scalar products),
which are used in many media algorithms such as those required for finite impulse response (FIR)
filters, one of the commonly used DSP algorithms.

result

operand 1127 0

127 0

operand 2127 0

[AMD Public Use]

146 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-19. Multiply-Add Operation

See Section 4.7.5 “Fused Multiply-Add Instructions” on page 206 for a discussion of floating-point
fused multiply-add instructions.

The sum-of-absolute-differences instruction ((V)PSADBW), shown in Figure 4-20 is useful, for
example, in computing motion-estimation algorithms for video compression.

Figure 4-20. Sum-of-Absolute-Differences Operation

There is an instruction for computing the average of unsigned bytes or words. The instruction is useful
for MPEG decoding, in which motion compensation involves many byte-averaging operations

operand 1

result

127 0 operand 2

127 0

127 0

intermediate result
255 0. . . .

× × × ×

+ + + +

2 operand form

.

.

.

127 0operand 1 operand 2127 0

result
00

127 0

low-order
intermediate result

high-order
intermediate result

ABS Δ ABS Δ ABS Δ ABS Δ

Σ Σ

2 operand form

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 147

24592—Rev. 3.23—October 2020 AMD64 Technology

between and within macroblocks. In addition to speeding up these operations, the instruction also frees
up registers and makes it possible to unroll the averaging loops.

Some of the arithmetic and pack instructions produce vector results in which each element saturates
independently of the other elements in the result vector. Such results are clamped (limited) to the
maximum or minimum value representable by the destination data type when the true result exceeds
that maximum or minimum representable value. Saturating data is useful for representing physical-
world data, such as sound and color. It is used, for example, when combining values for pixel coloring.

4.5.6 Branch Removal

Branching is a time-consuming operation that, unlike most SSE vector operations, does not exhibit
parallel behavior (there is only one branch target, not multiple targets, per branch instruction). In many
media applications, a branch involves selecting between only a few (often only two) cases. Such
branches can be replaced with SSE vector compare and vector logical instructions that simulate
predicated execution or conditional moves.

Figure 4-21 shows an example of a non-branching sequence that implements a two-way multiplexer—
one that is equivalent to the ternary operator “?:” in C and C++. The comparable code sequence is
explained in “Compare and Write Mask” on page 177.

The sequence begins with a vector compare instruction that compares the elements of two source
operands in parallel and produces a mask vector containing elements of all 1s or 0s. This mask vector
is ANDed with one source operand and ANDed-Not with the other source operand to isolate the
desired elements of both operands. These results are then ORed to select the relevant elements from
each operand. A similar branch-removal operation can be done using floating-point source operands.

[AMD Public Use]

148 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-21. Branch-Removal Sequence

The min/max compare instructions, for example, are useful for clamping, such as color clamping in 3D
graphics, without the need for branching. Figure 4-22 on page 148 illustrates a move-mask instruction
((V)PMOVMSKB) that copies sign bits to a general-purpose register (GPR). The instruction can
extract bits from mask patterns, or zero values from quantized data, or sign bits—resulting in a byte
that can be used for data-dependent branching.

Figure 4-22. Move Mask Operation

operand 1 operand 2

FFFF 0000 0000 FFFFFFFF 0000 0000 FFFF

a3 a2 a1 a0a7 a6 a5 a4 b3 b2 b1 b0b7 b6 b5 b4

a3 0000 0000 a0a7 0000 0000 a4 0000 b2 b1 00000000 b6 b5 0000

And And-Not

Compare and Write Mask

a3 b2 b1 a0a7 b6 b5 a4

Or

127 0 127 0

127 0

513 157 eps

GPR XMM127 0

concatenate 16 most-significant bits

0

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 149

24592—Rev. 3.23—October 2020 AMD64 Technology

4.6 Instruction Summary—Integer Instructions
This section summarizes the SSE instructions that operate on scalar and packed integers. Software
running at any privilege level can use any of the instructions discussed below given that hardware and
system software support is provided and the appropriate instruction subset is enabled. Detection and
enablement of instruction subsets is normally handled by operating system software. Hardware
support for each instruction subset is indicated by processor feature bits. These are accessed via the
CPUID instruction. See Volume 3 for details on the CPUID instruction and the feature bits associated
with the SSE instruction set.

The SSE instructions discussed below include those that use the YMM/XMM registers as well as
instructions that convert data from integer to floating-point formats. For more detail on each
instruction, see individual instruction reference pages in the Instruction Reference chapter of Volume
4, “128-Bit and 256-Bit Media Instructions.”

For a summary of the floating-point instructions including instructions that convert from floating-
point to integer formats, see “Instruction Summary—Floating-Point Instructions” on page 184.

The following subsections are organized by functional groups. These are:

• Data Transfer
• Data Conversion
• Data Reordering
• Arithmetic
• Enhanced Media
• Shift and Rotate
• Compare
• Logical
• Save and Restore

Most of the instructions described below have both a legacy and an AVX form. Generally the AVX
form is functionally equivalent to the legacy form except for the affect of the instruction on the upper
octword of the destination YMM register. The legacy form of an instruction leaves the upper octword
of the YMM register that overlays the destination XMM register unchanged, while the AVX form
always clears the upper octword.

The descriptions that follow apply equally to the legacy instruction and its 128-bit AVX form. Many of
the AVX instructions also support a 256-bit version of the instruction that operates on the 256-bit data
types. For the instructions which accept vector operands, the only difference in functionality between
the 128-bit form and the 256-bit form is the number of elements operated upon in parallel (that is, the
number of elements doubles). Other differences will be noted at the end of the discussion.

[AMD Public Use]

150 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

4.6.1 Data Transfer

The data-transfer instructions copy data between a memory location, a YMM/XMM register, an MMX
register, or a GPR. The MOV mnemonic, which stands for move, is a misnomer. A copy function is
actually performed instead of a move. A new copy of the source value is created at the destination
address, and the original copy remains unchanged at its source location.

4.6.1.1 Move
• (V)MOVD—Move Doubleword or Quadword
• (V)MOVQ—Move Quadword
• (V)MOVDQA—Move Aligned Double Quadword
• (V)MOVDQU—Move Unaligned Double Quadword
• MOVDQ2Q—Move Quadword to Quadword
• MOVQ2DQ—Move Quadword to Quadword
• (V)LDDQU—Load Double Quadword Unaligned

When copying between YMM registers, or between a YMM register and memory, a move instruction
can copy up to 32 bytes of data. When copying between XMM registers, or between an XMM register
and memory, a move instruction can copy up to 16 bytes of data. When copying between an XMM
register and an MMX or GPR register, a move instruction can copy up to 8 bytes of data.

The (V)MOVD instruction copies a 32-bit or 64-bit value from a GPR register or memory location to
the low-order 32 or 64 bits of an XMM register, or from the low-order 32 or 64 bits of an XMM
register to a 32-bit or 64-bit GPR or memory location. If the source operand is a GPR or memory
location, the source is zero-extended to 128 bits in the XMM register. If the source is an XMM register,
only the low-order 32 or 64 bits of the source are copied to the destination.The 64-bit (long) form of
(V)MOVD is aliased as (V)MOVQ.

The (V)MOVQ instruction copies a 64-bit value from memory to the low quadword of an XMM
register, or from the low quadword of an XMM register to memory, or between the low quadwords of
two XMM registers. If the source is in memory and the destination is an XMM register, the source is
zero-extended to 128 bits in the XMM register.

The (V)MOVDQA instruction copies a 128-bit value from memory to an XMM register, or from an
XMM register to memory, or between two XMM registers. If either the source or destination is a
memory location, the memory address must be aligned. The (V)MOVDQU instruction does the same,
except for unaligned operands. The (V)LDDQU instruction is virtually identical in operation to the
(V)MOVDQU instruction. The (V)LDDQU instruction moves a double quadword of data from a 128-
bit memory operand into a destination XMM register.

The VMOVDQA and VMOVDQU instructions have 256-bit forms which copy a 256-bit value from
memory to a YMM register, or from a YMM register to memory, or between two YMM registers.
VLDDQU has a 256-bit form that loads a 256-bit value from memory.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 151

24592—Rev. 3.23—October 2020 AMD64 Technology

The MOVDQ2Q instruction copies the low-order 64-bit value in an XMM register to an MMX
register. The MOVQ2DQ instruction copies a 64-bit value from an MMX register to the low-order 64
bits of an XMM register, with zero-extension to 128 bits.

Figure 4-23 below diagrams the capabilities of these instructions. (V)LDDQU and the 128-bit forms
of the extended instructions are not shown.

[AMD Public Use]

152 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-23. Integer Move Operations

MOVDQ2Q

XMM Register
127 0

MMX Register
63 0

Destination Source
YMM Register or MemoryYMM Register

m
em

or
y

256 0256 0
VMOVDQA
VMOVDQU

YMM Register or Memory YMM Register

m
em

or
y VMOVDQA

VMOVDQU

MOVQ

MOVD

XMM Register
127 0

GPR Register or Memory
63 0

m
em

or
y

MOVQ

MOVD

XMM Register127 0
GPR Register or Memory

63 0

m
em

or
y0

0

MOVQ2DQ

XMM Register
127 0

MMX Register
63 0

0

Bits copiedBits not copied 0 extend0

MOVDQA
MOVDQU

MOVQ

127 0

m
em

or
y

127 0 XMM Register or MemoryXMM Register

0

MOVDQA
MOVDQU

MOVQ

127 0XMM Register

m
em

or
y

127 0XMM Register or Memory

0

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 153

24592—Rev. 3.23—October 2020 AMD64 Technology

The move instructions are in many respects similar to the assignment operator in high-level languages.
The simplest example of their use is for initializing variables. To initialize a register to 0, however,
rather than using a MOVx instruction it may be more efficient to use the (V)PXOR instruction with
identical destination and source operands.

4.6.1.2 Move Non-Temporal

The move non-temporal instructions are streaming-store instructions. They minimize pollution of the
cache.

• (V)MOVNTDQ—Move Non-temporal Double Quadword
• (V)MOVNTDQA—Move Non-temporal Double Quadword Aligned
• (V)MASKMOVDQU—Masked Move Double Quadword Unaligned

The (V)MOVNTDQ instruction stores its source operand (a 128-bit XMM register value or a 256-bit
YMM register value) to a 128-bit or 256-bit memory location. (V)MOVNTDQ indicates to the
processor that its data is non-temporal, which assumes that the referenced data will be used only once
and is therefore not subject to cache-related overhead (as opposed to temporal data, which assumes
that the data will be accessed again soon and should be cached). The non-temporal instructions use
weakly-ordered, write-combining buffering of write data, and they minimize cache pollution. The
exact method by which cache pollution is minimized depends on the hardware implementation of the
instruction. For further information, see “Memory Optimization” on page 98 and “Use Streaming
Loads and Stores” on page 233.

The MOVNTDQA instruction loads an XMM register from an aligned 128-bit memory location.
VMOVNTDQA loads either an XMM or a YMM register from an aligned 128-bit or 256-bit memory
location. An attempt by MOVNTDQA to read from an unaligned memory address causes a #GP or
invokes the alignment checking mechanism depending on the setting of the MXCSR[MM] bit. An
attempt by the VMOVNTDQA to read from an unaligned memory address causes a #GP.

(V)MASKMOVDQU is also a non-temporal instruction. It stores bytes from the first operand, as
selected by the mask value in the second operand. Bytes are written to a memory location specified in
the rDI and DS registers. The first and second operands are both XMM registers. The address may be
unaligned. Figure 4-24 shows the (V)MASKMOVDQU operation. It is useful for the handling of end
cases in block copies and block fills based on streaming stores.

[AMD Public Use]

154 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-24. (V)MASKMOVDQU Move Mask Operation

4.6.1.3 Move Mask
• (V)PMOVMSKB—Packed Move Mask Byte

The (V)PMOVMSKB instruction moves the most-significant bit of each byte in an XMM register to
the low-order word of a 32-bit or 64-bit general-purpose register, with zero-extension. The instruction
is useful for extracting bits from mask patterns, or zero values from quantized data, or sign bits—
resulting in a byte that can be used for data-dependent branching. Figure 4-25 below shows the
(V)PMOVMSKB operation using the example of a 128-bit source operand held in an XMM register.

Figure 4-25. (V)PMOVMSKB Move Mask Operation

AVX2 adds support for a 256-bit source operand held in a YMM register. The 32-bit results is zero-
extended to 64 bits.

operand 1

write buffer

.

127 0 operand 2127 0

store address
DS:rDI

0/1

0/1

memory

write
combining

513 157

GPR XMM127 0

concatenate 16 most-significant bits

0

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 155

24592—Rev. 3.23—October 2020 AMD64 Technology

4.6.1.4 Vector Conditional Moves

XOP instruction set includes the vector conditional move instructions:

• VPCMOV—Vector Conditional Moves
• VPPERM—Packed Permute Bytes

The VPCMOV instruction implements the C/C++ language ternary ‘?’ operator a bit level. Each bit of
the destination YMM/XMM register is copied from the corresponding bit of either the first or second
source operand based on the value of the corresponding bit of a third source operand. This instruction
has both 128-bit and 256-bit forms. The VPCMOV instruction allows either the second or the third
operand to be source from memory, based on the XOP.W bit.

The VPPERM instruction performs vector permutation on a packed array of 32 bytes composed of two
16-byte input operands. The VPPERM instruction replaces each destination byte with 00h, FFh, or one
of the 32 bytes of the packed array. A byte selected from the array may have an additional operation
such as NOT or bit reversal applied to it, before it is written to the destination. The action for each
destination byte is determined by a corresponding control byte. The VPPERM instruction allows
either the second 16-byte input array or the control array to be memory based, per the XOP.W bit.

4.6.2 Data Conversion

The integer data-conversion instructions convert integer operands to floating-point operands. These
instructions take integer source operands. For data-conversion instructions that take floating-point
source operands, see “Data Conversion” on page 190. For data-conversion instructions that take 64-bit
source operands, see Section 5.6.4 “Data Conversion” on page 257 and Section 5.7.2 “Data
Conversion” on page 271.

4.6.2.1 Convert Integer to Floating-Point

These instructions convert integer data types in a YMM/XMM register or memory into floating-point
data types in a YMM/XMM register.

• (V)CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point

• (V)CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-
Point

The (V)CVTDQ2PS instruction converts four (eight, for 256-bit form) 32-bit signed integer values in
the second operand to four (eight) single-precision floating-point values and writes the converted
values to the specified XMM (YMM) register. If the result of the conversion is an inexact value, the
value is rounded. The (V)CVTDQ2PD instruction is analogous to (V)CVTDQ2PS except that it
converts two (four) 64-bit signed integer values to two (four) double-precision floating-point values.

4.6.2.2 Convert MMX Integer to Floating-Point

These instructions convert integer data types in MMX registers or memory into floating-point data
types in XMM registers.

[AMD Public Use]

156 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point
• CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point

The CVTPI2PS instruction converts two 32-bit signed integer values in an MMX register or a 64-bit
memory location to two single-precision floating-point values and writes the converted values in the
low-order 64 bits of an XMM register. The high-order 64 bits of the XMM register are not modified.

The CVTPI2PD instruction is analogous to CVTPI2PS except that it converts two 32-bit signed
integer values to two double-precision floating-point values and writes the converted values in the full
128 bits of an XMM register.

Before executing a CVTPI2x instruction, software should ensure that the MMX registers are properly
initialized so as to prevent conflict with their aliased use by x87 floating-point instructions. This may
require clearing the MMX state, as described in “Accessing Operands in MMX™ Registers” on
page 232.

For a description of SSE instructions that convert in the opposite direction—floating-point to integer
in MMX registers—see “Convert Floating-Point to MMX™ Integer” on page 192. For a summary of
instructions that operate on MMX registers, see Chapter 5, “64-Bit Media Programming.”

4.6.2.3 Convert GPR Integer to Floating-Point

These instructions convert integer data types in GPR registers or memory into floating-point data types
in XMM registers.

• (V)CVTSI2SS—Convert Signed Doubleword or Quadword Integer to Scalar Single-Precision
Floating-Point

• (V)CVTSI2SD—Convert Signed Doubleword or Quadword Integer to Scalar Double-Precision
Floating-Point

The (V)CVTSI2SS instruction converts a 32-bit or 64-bit signed integer value in a general-purpose
register or memory location to a single-precision floating-point value and writes the converted value to
the low-order 32 bits of an XMM register. The legacy version of the instruction leaves the three high-
order doublewords of the destination XMM register unmodified. The extended version of the
instruction copies the three high-order doublewords of another XMM register (specified in the first
source operand) to the destination.

The (V)CVTSI2SD instruction converts a 32-bit or 64-bit signed integer value in a general-purpose
register or memory location to a double-precision floating-point value and writes the converted value
to the low-order 64 bits of an XMM register. The legacy version of the instruction leaves the high-
order 64 bits in the destination XMM register unmodified. The extended version of the instruction
copies the upper 64 bits of another XMM register (specified in the first source operand) to the
destination.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 157

24592—Rev. 3.23—October 2020 AMD64 Technology

4.6.2.4 Convert Packed Integer Format

A common operation on packed integers is the conversion by zero or sign extension of packed integers
into wider data types. These instructions convert from a smaller packed integer type to a larger integer
type. Only the number of integers that will fit in the destination XMM or YMM register are converted
starting with the least-significant integer in the source operand.

• (V)PMOVSXBW—Sign extend 8-bit integers in the source operand to 16 bits and pack into
destination register.

• (V)PMOVZXBW—Zero extend 8-bit integers in the source operand to 16 bits and pack into
destination register.

• (V)PMOVSXBD—Sign extend 8-bit integers in the source operand to 32 bits and pack into
destination register.

• (V)PMOVZXBD—Zero extend 8-bit integers in the source operand to 32 bits and pack into
destination register.

• (V)PMOVSXWD—Sign extend 16-bit integers in the source operand to 32 bits and pack into
destination register.

• (V)PMOVZXWD—Zero extend 16-bit integers in the source operand to 32 bits and pack into
destination register.

• (V)PMOVSXBQ—Sign extend 8-bit integers in the source operand to 64 bits and pack into
destination register.

• (V)PMOVZXBQ—Zero extend 8-bit integers in the source operand to 64 bits and pack into
destination register.

• (V)PMOVSXWQ—Sign extend 16-bit integers in the source operand to 64 bits and pack into
destination register.

• (V)PMOVZXWQ—Zero extend 16-bit integers in the source operand to 64 bits and pack into
destination register.

• (V)PMOVSXDQ—Sign extend 32-bit integers in the source operand to 64 bits and pack into
destination register.

• (V)PMOVZXDQ—Zero extend 32-bit integers in the source operand to 64 bits and pack into
destination register.

The source operand is an XMM/YMM register or a 128-bit or 256-bit memory location. The
destination is an XMM/YMM register. When accessing memory, no alignment is required for any of
the instructions unless alignment checking is enabled. In which case, all conversions must be aligned
to the width of the memory reference. The legacy form of these instructions support 128-bit operands.
AVX2 adds support for 256-bit operands to the extended forms.

4.6.3 Data Reordering

The integer data-reordering instructions pack, unpack, interleave, extract, insert, and shuffle the
elements of vector operands.

[AMD Public Use]

158 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

4.6.3.1 Pack with Saturation

These instructions pack larger data types into smaller data types, thus halving the precision of each
element in a vector operand.

• (V)PACKSSDW—Pack with Saturation Signed Doubleword to Word
• (V)PACKUSDW—Pack with Unsigned Saturation Doubleword to Word
• (V)PACKSSWB—Pack with Saturation Signed Word to Byte
• (V)PACKUSWB—Pack with Saturation Signed Word to Unsigned Byte

PACKSSDW and the 128-bit form of VPACKSSDW convert each of the four signed doubleword
integers in two source operands (an XMM register, and another XMM register or 128-bit memory
location) into signed word integers and packs the converted values into the destination register. The
256-bit form of VPACKSSDW performs this operation separately on the upper and lower 128 bits of
its operands. The (V)PACKUSDW instruction does the same operation except that it converts signed
doubleword integers into unsigned (rather than signed) word integers.

PACKSSWB and the 128-bit form of VPACKSSWB convert each of the eight signed word integers in
two source operands (an XMM register, and another XMM register or 128-bit memory location) into
signed 8-bit integers and packs the converted values into the destination register. The 256-bit form of
VPACKSSDW performs this operation separately on the upper and lower 128 bits of its operands. The
(V)PACKUSWB instruction does the same operation except that it converts signed word integers into
unsigned (rather than signed) bytes.

Figure 4-26 shows an example of a (V)PACKSSDW instruction using the example of 128-bit vector
operands. The operation merges vector elements of 2x size into vector elements of 1x size, thus
reducing the precision of the vector-element data types. Any results that would otherwise overflow or
underflow are saturated (clamped) at the maximum or minimum representable value, respectively, as
described in “Saturation” on page 122.

Figure 4-26. (V)PACKSSDW Pack Operation

Conversion from higher-to-lower precision is often needed, for example, by multiplication operations
in which the higher-precision format is used for source operands in order to prevent possible overflow,
and the lower-precision format is the desired format for the next operation.

operand 1

result

127 0

127 0

operand 2
127 0

2 operand form

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 159

24592—Rev. 3.23—October 2020 AMD64 Technology

4.6.3.2 Packed Blend

These instructions select vector elements from one of two source operands to be copied to the
corresponding elements of the destination.

• (V)PBLENDVB—Variable Blend Packed Bytes
• (V)PBLENDW—Blend Packed Words

(V)PBLENDVB and (V)PBLENDW instructions copy bytes or words from either of two sources to
the specified destination register based on selector bits in a mask. If the mask bit is a 0 the
corresponding element is copied from the first source operand. If the mask bit is a 1, the element is
copied from the second source operand.

For (V)PBLENDVB the mask is composed of the most significant bits of the elements of a third
source operand. For the legacy instruction PBLENDVB, the mask is contained in the implicit operand
register XMM0. For the extended form, the mask is contained in an XMM or YMM register specified
via encoding in the instruction. For (V)PBLENDW the mask is specified via an immediate byte.

For the legacy form and the 128-bit extended form of these instructions, the first source operand is an
XMM register and the second source operand is either an XMM register or a 128-bit memory location.
For the 256-bit extended form, the first source operand is an YMM register and the second source
operand is either an YMM register or a 256-bit memory location.

For the legacy instructions, the destination is also the first source operand. For the extended forms, the
destination is a separately specified YMM/XMM register.

AVX2 adds support for 256-bit operands to the AVX forms of these instructions.

4.6.3.3 Unpack and Interleave

These instructions interleave vector elements from either the high or low halves of two source
operands.

• (V)PUNPCKHBW—Unpack and Interleave High Bytes
• (V)PUNPCKHWD—Unpack and Interleave High Words
• (V)PUNPCKHDQ—Unpack and Interleave High Doublewords
• (V)PUNPCKHQDQ—Unpack and Interleave High Quadwords
• (V)PUNPCKLBW—Unpack and Interleave Low Bytes
• (V)PUNPCKLWD—Unpack and Interleave Low Words
• (V)PUNPCKLDQ—Unpack and Interleave Low Doublewords
• (V)PUNPCKLQDQ—Unpack and Interleave Low Quadwords

The (V)PUNPCKHBW instruction copies the eight high-order bytes from its two source operands and
interleaves them into the destination register. The bytes in the low-order half of the source operands
are ignored. The (V)PUNPCKHWD, (V)PUNPCKHDQ, and (V)PUNPCKHQDQ instructions
perform analogous operations for words, doublewords, and quadwords in the source operands,

[AMD Public Use]

160 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

packing them into interleaved words, interleaved doublewords, and interleaved quadwords in the
destination.

The (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ, and (V)PUNPCKLQDQ instructions
are analogous to their high-element counterparts except that they take elements from the low
quadword of each source vector and ignore elements in the high quadword.

Depending on the hardware implementation, if the second source operand is located in memory, the 64
bits of the operand not required to perform the operation may or may not be read.

Figure 4-27 shows an example of the (V)PUNPCKLWD instruction using the example of 128-bit
vector operands. The elements are taken from the low half of the source operands. Elements from the
second source operand are placed to the left of elements from first source operand.

Figure 4-27. (V)PUNPCKLWD Unpack and Interleave Operation

If operand 2 is a vector consisting of all zero-valued elements, the unpack instructions perform the
function of expanding vector elements of 1x size into vector elements of 2x size. Conversion from
lower-to-higher precision is often needed, for example, prior to multiplication operations in which the
higher-precision format is used for source operands in order to prevent possible overflow during
multiplication.

If both source operands are of identical value, the unpack instructions can perform the function of
duplicating adjacent elements in a vector.

The (V)PUNPCKx instructions can be used in a repeating sequence to transpose rows and columns of
an array. For example, such a sequence could begin with (V)PUNPCKxWD and be followed by
(V)PUNPCKxQD. These instructions can also be used to convert pixel representation from RGB
format to color-plane format, or to interleave interpolation elements into a vector.

AVX2 adds support for 256-bit operands. When the operand size is 256 bits, the unpack and interleave
operation is performed independently on the upper and lower halves of the source operands and the
results written to the respective 128 bits of the destination YMM register.

operand 1

result

127 0
operand 2

127 0

127 0

. .. .
2 operand form

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 161

24592—Rev. 3.23—October 2020 AMD64 Technology

4.6.3.4 Extract and Insert

These instructions copy a word element from a vector, in a manner specified by an immediate operand.

• EXTRQ—Extract Field from Register
• INSERTQ—Insert Field
• (V)PEXTRB—Extract Packed Byte
• (V)PEXTRW—Extract Packed Word
• (V)PEXTRD—Extract Packed Doubleword
• (V)PEXTRQ—Extract Packed Quadword
• (V)PINSRB—Packed Insert Byte
• (V)PINSRW—Packed Insert Word
• (V)PINSRD—Packed Insert Doubleword
• (V)PINSRQ—Packed Insert Quadword

The EXTRQ instruction extracts specified bits from the lower 64 bits of the destination XMM register.
The extracted bits are saved in the least-significant bit positions of the destination and the remaining
bits in the lower 64 bits of the destination register are cleared to 0. The upper 64 bits of the destination
register are undefined.

The INSERTQ instruction inserts a specified number of bits from the lower 64 bits of the source
operand into a specified bit position of the lower 64 bits of the destination operand. No other bits in the
lower 64 bits of the destination are modified. The upper 64 bits of the destination are undefined.

The (V)PEXTRB, (V)PEXTRW, (V)PEXTRD, and (V)PEXTRQ instructions extract a single byte,
word, doubleword, or quadword from an XMM register, as selected by the immediate-byte operand,
and write it to memory or to the low-order bits of a general-purpose register with zero-extension to 32
bit or 64 bits as required. These instructions are useful for loading computed values, such as table-
lookup indices, into general-purpose registers where the values can be used for addressing tables in
memory.

The (V)PINSRB, (V)PINSRW, (V)PINSRD, and (V)PINSRQ instructions insert a byte, word, or
doubleword value from the low-order bits of a general-purpose register or from a memory location
into an XMM register. The location in the destination register is selected by the immediate-byte
operand. For the legacy form, the other elements of the destination register are not modified. For the
extended form, the other elements are filled in from a second source XMM register. As an example of
these instructions, Figure 4-28 below provides a schematic the (V)PINSRD instruction.

[AMD Public Use]

162 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-28. (V)PINSRD Operation

4.6.3.5 Shuffle

These instructions reorder the elements of a vector.

• (V)PSHUFB—Packed Shuffle Byte
• (V)PSHUFD—Packed Shuffle Doublewords
• (V)PSHUFHW—Packed Shuffle High Words
• (V)PSHUFLW—Packed Shuffle Low Words

The (V)PSHUFB instruction copies bytes from the first source operand to the destination or clears
bytes in the destination as specified by control bytes in the second source operand. Each byte in the
second operand controls how the corresponding byte is the destination is selected or cleared.

For PSHUFB and the 128-bit version of VPSHUFB, the first source operand is an XMM register and
the second source operand is either an XMM register or a 128-bit memory location. For the 256-bit
version of the extended form, the first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. For the legacy form, the first source
XMM register is also the destination. For the extended form, a separate destination register is specified
in the instruction.

The (V)PSHUFD instruction fills each doubleword of the destination register by copying any one of
the doublewords in the source operand . An immediate byte operand specifies for each double word of
the destination which doubleword to copy. For the 256-bit version of the extended form, the immediate
byte is reused to specify the shuffle operation for the upper four doublewords of the destination YMM
register.

The ordering of the shuffle can occur in one of 256 possible ways for a 128-bit destination or for each
half of a 256-bit destination.

127 0
DWDW DWDW

Source operand 2 (extended form)127 0
DWDW DWDW

 Source operand 1

DW

m
em

or
yGPR

Immediate

select

Destination
XMM Register

XMM Register

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 163

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-29 below shows one of the 256 possible shuffle operations using the example of a 128-bit
source and destination.

Figure 4-29. (V)PSHUFD Shuffle Operation

For the PSHUFD and the 128-bit version of VPSHUFD, the source operand is an XMM register or a
128-bit memory location and the destination is an XMM register. For the 256-bit version of
VPSHUFD, the source operand is a YMM register or a 256-bit memory location and the destination is
a YMM register.

The (V)PSHUFHW and (V)PSHUFLW instructions are analogous to (V)PSHUFD, except that they
fill each word of the high or low quadword, respectively, of the destination register by copying any one
of the four words in the high or low quadword of the source operand. The 256-bit version of the
extended form of these instructions repeats the same operation on the high or low quadword,
respectively, of the upper half of the destination YMM register using either the high or low quadword
of the upper half of the source operand.

Figure 4-30 shows the (V)PSHUFHW operation using the example of a 128-bit source and
destination.

result

operand 1
127 0

127 0

operand 2
127 0

[AMD Public Use]

164 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-30. (V)PSHUFHW Shuffle Operation

(V)PSHUFHW and (V)PSHUFLW are useful, for example, in color imaging when computing alpha
saturation of RGB values. In this case, (V)PSHUFxW can replicate an alpha value in a register so that
parallel comparisons with three RGB values can be performed.

AVX2 adds support for 256-bit operands to the AVX forms of these instructions.

4.6.4 Arithmetic

Arithmetic operations can be unary or binary. A unary operation has a single operand and produces a
single result. A binary operation has two operands that are combined arithmetically to produce a result.
A vector arithmetic operation applies the same operation independently to all elements of a vector.

Figure 4-31 shows a typical unary vector operation. Figure 4-32 on page 165 shows a typical binary
vector arithmetic operation.

Figure 4-31. Unary Vector Arithmetic Operation

result

operand 1
127 0

127 0

operand 2
127 0

Source operand

.

n-1 0

.

resultn-1 0

operation operation

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 165

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-32. Binary Vector Arithmetic Operation

4.6.4.1 Absolute Value
• (V)PABSB—Packed Absolute Value Signed Byte
• (V)PABSW—Packed Absolute Value Signed Word
• (V)PABSD—Packed Absolute Value Signed Doubleword

These instructions operate on a vector of signed 8-bit, 16-bit, or 32-bit integers and produce a vector of
unsigned integers of the same data width. Each element of the result is the absolute value of the
corresponding element of the source operand. The AVX form of these instructions supports 128-bit
operands and the AVX2 form supports 256-bit operands.

4.6.4.2 Addition
• (V)PADDB—Packed Add Bytes
• (V)PADDW—Packed Add Words
• (V)PADDD—Packed Add Doublewords
• (V)PADDQ—Packed Add Quadwords
• (V)PADDSB—Packed Add with Saturation Bytes
• (V)PADDSW—Packed Add with Saturation Words
• (V)PADDUSB—Packed Add Unsigned with Saturation Bytes
• (V)PADDUSW—Packed Add Unsigned with Saturation Words

The (V)PADDB, (V)PADDW, (V)PADDD, and (V)PADDQ instructions add each packed 8-bit
((V)PADDB), 16-bit ((V)PADDW), 32-bit ((V)PADDD), or 64-bit ((V)PADDQ) integer element in
the second source operand to the corresponding same-sized integer element in the first source operand
and write the integer result to the corresponding, same-sized element of the destination. Figure 4-32
diagrams a (V)PADDB operation (where the operation is addition). These instructions operate on both
signed and unsigned integers. However, if the result overflows, the carry is ignored and only the low-
order byte, word, doubleword, or quadword of each result is written to the destination. The

Source operand 1

.

.

n-1 0 Source operand 2n-1 0

operation
operation

resultn-1 0

[AMD Public Use]

166 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

(V)PADDD instruction can be used together with (V)PMADDWD (page 169) to implement dot
products.

The (V)PADDSB and (V)PADDSW instructions add each 8-bit ((V)PADDSB) or 16-bit
((V)PADDSW) signed integer element in the second source operand to the corresponding, same-sized
signed integer element in the first source operand and write the signed integer result to the
corresponding same-sized element of the destination. For each result in the destination, if the result is
larger than the largest, or smaller than the smallest, representable 8-bit ((V)PADDSB) or 16-bit
((V)PADDSW) signed integer, the result is saturated to the largest or smallest representable value,
respectively.

The (V)PADDUSB and (V)PADDUSW instructions perform saturating-add operations analogous to
the (V)PADDSB and (V)PADDSW instructions, except on unsigned integer elements.

For the legacy form and 128-bit extended form of these instructions, the first source operand is an
XMM register and the second source operand is either an XMM register or a 128-bit memory location.
For the 256-bit extended form, the first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. For the legacy form, the first source
XMM register is also the destination. For the extended form, a separate destination register is specified
in the instruction.

AVX2 adds support for 256-bit operands to the AVX forms of these instructions.

4.6.4.3 Subtraction
• (V)PSUBB—Packed Subtract Bytes
• (V)PSUBW—Packed Subtract Words
• (V)PSUBD—Packed Subtract Doublewords
• (V)PSUBQ—Packed Subtract Quadword
• (V)PSUBSB—Packed Subtract with Saturation Bytes
• (V)PSUBSW—Packed Subtract with Saturation Words
• (V)PSUBUSB—Packed Subtract Unsigned and Saturate Bytes
• (V)PSUBUSW—Packed Subtract Unsigned and Saturate Words

The subtraction instructions perform operations analogous to the addition instructions.

The (V)PSUBB, (V)PSUBW, (V)PSUBD, and (V)PSUBQ instructions subtract each 8-bit
((V)PSUBB), 16-bit ((V)PSUBW), 32-bit ((V)PSUBD), or 64-bit ((V)PSUBQ) integer element in the
second operand from the corresponding, same-sized integer element in the first operand and write the
integer result to the corresponding, same-sized element of the destination. For vectors of n number of
elements, the operation is:

result[i] = operand1[i] - operand2[i]

where: i = 0 to n – 1

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 167

24592—Rev. 3.23—October 2020 AMD64 Technology

These instructions operate on both signed and unsigned integers. However, if the result underflows,
the borrow is ignored and only the low-order byte, word, doubleword, or quadword of each result is
written to the destination.

The (V)PSUBSB and (V)PSUBSW instructions subtract each 8-bit ((V)PSUBSB) or 16-bit
((V)PSUBSW) signed integer element in the second operand from the corresponding, same-sized
signed integer element in the first operand and write the signed integer result to the corresponding,
same-sized element of the destination. For each result in the destination, if the result is larger than the
largest, or smaller than the smallest, representable 8-bit ((V)PSUBSB) or 16-bit ((V)PSUBSW) signed
integer, the result is saturated to the largest or smallest representable value, respectively.

The (V)PSUBUSB and (V)PSUBUSW instructions perform saturating-add operations analogous to
the (V)PSUBSB and (V)PSUBSW instructions, except on unsigned integer elements.

For the legacy form and 128-bit extended form of these instructions, the first source operand is an
XMM register and the second source operand is either an XMM register or a 128-bit memory location.
For the 256-bit extended form, the first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. For the legacy form, the first source
XMM register is also the destination. For the extended form, a separate destination register is specified
in the instruction.

AVX2 adds support for 256-bit operands to the AVX forms of these instructions.

4.6.4.4 Multiplication
• (V)PMULHW—Packed Multiply High Signed Word
• (V)PMULHRSW—Packed Multiply High with Round and Scale Words
• (V)PMULLW—Packed Multiply Low Signed Word
• (V)PMULHUW—Packed Multiply High Unsigned Word
• (V)PMULUDQ—Packed Multiply Unsigned Doubleword to Quadword
• (V)PMULLD—Packed Multiply Low Signed Doubleword
• (V)PMULDQ—Packed Multiply Double Quadword

The (V)PMULHW instruction multiplies each 16-bit signed integer value in the first operand by the
corresponding 16-bit integer in the second operand, producing a 32-bit intermediate result. The
instruction then writes the high-order 16 bits of the 32-bit intermediate result of each multiplication to
the corresponding word of the destination. The (V)PMULHRSW instruction performs the same
multiplication as (V)PMULHW but rounds and scales the 32-bit intermediate result prior to truncating
it to 16 bits. The (V)PMULLW instruction performs the same multiplication as (V)PMULHW but
writes the low-order 16 bits of the 32-bit intermediate result to the corresponding word of the
destination.

Figure 4-33 below shows the (V)PMULHW, (V)PMULLW, and (V)PMULHW instruction operations.
The difference between the instructions is the manner in which the intermediate element result is
reduced to 16 bits prior writing it to the destination.

[AMD Public Use]

168 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-33. (V)PMULHW, (V)PMULLW, and (V)PMULHRSW Instructions

The (V)PMULHUW instruction performs the same multiplication as (V)PMULHW but on unsigned
operands. Without this instruction, it is difficult to perform unsigned integer multiplies using SSE
instructions. The instruction is useful in 3D rasterization, which operates on unsigned pixel values.

The (V)PMULUDQ instruction preserves the full precision of results by multiplying only half of the
source-vector elements. It multiplies together the least significant doubleword (treating each as an
unsigned 32-bit integer) of each quadword in the two source operands, writes the full 64-bit result of
the low-order multiply to the low-order quadword of the destination, and writes the high-order product
to the high-order quadword of the destination. Figure 4-34 below shows a (V)PMULUDQ operation
using the example of 128-bit operands.

Figure 4-34. (V)PMULUDQ Multiply Operation

The 256-bit form of VPMULUDQ instruction performs the same operation on each half of the source
operands to produce a 256-bit packed quadword result.

operand 1

result

127 0 operand 2

127 0

127 0

intermediate result
255 0. . . .

. . . .

× × × ×

2 operand form

operand 1

result

127 0 operand 2

127 0

127 0

× ×
2 operand form

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 169

24592—Rev. 3.23—October 2020 AMD64 Technology

The (V)PMULLD instruction writes the lower 32 bits of the 64-bit product of a signed 32-bit integer
multiplication of the corresponding doublewords of the source operands to each element of the
destination.

PMULDQ and the 128-bit form of VPMULDQ writes the 64-bit signed product of the least-significant
doubleword of the two source operands to the low quadword of the result and the 64-bit signed product
of the low doubleword of the upper quadword of two source operands (bits [95:64]) to the upper
quadword of the result. The 256-bit form of VPMULDQ performs similar operations on the upper 128
bits of the source operands to produce the upper 128 bits of the result.

For the legacy form and 128-bit extended form of these instructions, the first source operand is an
XMM register and the second source operand is either an XMM register or a 128-bit memory location.
For the 256-bit extended form, the first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. For the legacy form, the first source
XMM register is also the destination. For the extended form, a separate destination register is specified
in the instruction.

AVX2 adds support for 256-bit operands to the AVX forms of these instructions.

See “Shift and Rotate” on page 175 for shift instructions that can be used to perform multiplication and
division by powers of 2.

4.6.4.5 Multiply-Add

This instruction multiplies the elements of two source vectors and adds their intermediate results in a
single operation.

• (V)PMADDWD—Packed Multiply Words and Add Doublewords

The (V)PMADDWD instruction multiplies each 16-bit signed value in the first source operand by the
corresponding 16-bit signed value in the second source operand. The instruction then adds the adjacent
32-bit intermediate results of each multiplication, and writes the 32-bit result of each addition into the
corresponding doubleword of the destination. For vectors of n number of source elements (src), m
number of destination elements (dst), and n = 2m, the operation is:

dst[j] = ((src1[i] * src2[i]) + (src1[i+1] * src2[i+1]))

where: j = 0 to m – 1
i = 2j

(V)PMADDWD thus performs four or eight signed multiply-adds in parallel. Figure 4-35 below
diagrams the operation using the example of 128-bit operands.

[AMD Public Use]

170 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-35. (V)PMADDWD Multiply-Add Operation

(V)PMADDWD can be used with one source operand (for example, a coefficient) taken from memory
and the other source operand (for example, the data to be multiplied by that coefficient) taken from an
XMM/YMM register. The instruction can also be used together with the (V)PADDD instruction
(page 165) to compute dot products. Scaling can be done, before or after the multiply, using a vector-
shift instruction (page 175).

For PMADDWD, the first source XMM register is also the destination. VPMADDWD specifies a
separate destination XMM/YMM register encoded in the instruction. AVX2 adds support for 256-bit
operands to the AVX forms of these instructions.

4.6.5 Enhanced Media

4.6.5.1 Multiply-Add and Accumulate

The multiply and accumulate and multiply, add and accumulate instructions operate on and produce
packed signed integer values. These instructions allow the accumulation of results from (possibly)
many iterations of similar operations without a separate intermediate addition operation to update the
accumulator register.

The operation of a typical XOP integer multiply and accumulate instruction is shown in Figure 4-36
on page 171. The multiply and accumulate instructions operate on and produce packed signed integer
values. These instructions first multiply the value in the first source operand by the corresponding
value in the second source operand. Each signed integer product is then added to the corresponding
value in the third source operand, which is the accumulator and is identical to the destination operand.
The results may or may not be saturated prior to being written to the destination register, depending on
the instruction.

operand 1

result

127 0 operand 2

127 0

127 0

intermediate result
255 0. . . .

× × × ×

+ + + +

2 operand form

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 171

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-36. Operation of Multiply and Accumulate Instructions

The XOP instruction extensions provide the following integer multiply and accumulate instructions.

• VPMACSSWW—Packed Multiply Accumulate Signed Word to Signed Word with Saturation
• VPMACSWW—Packed Multiply Accumulate Signed Word to Signed Word
• VPMACSSWD—Packed Multiply Accumulate Signed Word to Signed Doubleword with

Saturation
• VPMACSWD—Packed Multiply Accumulate Signed Word to Signed Doubleword
• VPMACSSDD—Packed Multiply Accumulate Signed Doubleword to Signed Doubleword with

Saturation
• VPMACSDD—Packed Multiply Accumulate Signed Doubleword to Signed Doubleword
• VPMACSSDQL—Packed Multiply Accumulate Signed Low Doubleword to Signed Quadword

with Saturation
• VPMACSSDQH—Packed Multiply Accumulate Signed High Doubleword to Signed Quadword

with Saturation
• VPMACSDQL—Packed Multiply Accumulate Signed Low Doubleword to Signed Quadword
• VPMACSDQH—Packed Multiply Accumulate Signed High Doubleword to Signed Quadword

The operation of the multiply, add and accumulate instructions is illustrated in Figure 4-37.

 src1

127 96 95 64 63 32 31 0

 src2

src3
127 96 95 64 63 32 31 0

(saturate)

 dest
127 96 95 64 63 32 31 0

multiply

add

 multiply

add

(saturate)

multiply
multiply

 add

add(accumulate)
(accumulate)

(accumulate)
(accumulate)

(saturate) (saturate)

127 96 95 64 63 32 31 0

[AMD Public Use]

172 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The multiply, add and accumulate instructions first multiply each packed signed integer value in the
first source operand by the corresponding packed signed integer value in the second source operand.
The odd and even adjacent resulting products are then added. Each resulting sum is then added to the
corresponding packed signed integer value in the third source operand.

Figure 4-37. Operation of Multiply, Add and Accumulate Instructions

The XOP instruction set provides the following integer multiply, add and accumulate instructions.

• VPMADCSSWD—Packed Multiply Add and Accumulate Signed Word to Signed Doubleword
with Saturation

• VPMADCSWD—Packed Multiply Add and Accumulate Signed Word to Signed Doubleword

4.6.5.2 Packed Integer Horizontal Add and Subtract

The packed horizontal add and subtract signed byte instructions successively add adjacent pairs of
signed integer values from the source XMM register or 128-bit memory operand and pack the (sign
extended) integer result of each addition in the destination.

• VPHADDBW—Packed Horizontal Add Signed Byte to Signed Word
• VPHADDBD—Packed Horizontal Add Signed Byte to Signed Doubleword
• VPHADDBQ—Packed Horizontal Add Signed Byte to Signed Quadword
• VPHADDDQ—Packed Horizontal Add Signed Doubleword to Signed Quadword

 src1
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src2
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

 src3

127 96 95 64 63 32 31 0

multiply
multiply

multiply
multiply

multiply
 multiply

multiply
multiply

 add

 add

dest
127 96 95 64 63 32 31 0

(saturate)

 add
 add

add

(saturate)

add

(saturate)

add

(saturate)

add

[accumulate]
[accumulate]

[accumulate]
[accumulate]

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 173

24592—Rev. 3.23—October 2020 AMD64 Technology

• VPHADDUBW—Packed Horizontal Add Unsigned Byte to Word
• VPHADDUBD—Packed Horizontal Add Unsigned Byte to Doubleword
• VPHADDUBQ—Packed Horizontal Add Unsigned Byte to Quadword
• VPHADDUWD—Packed Horizontal Add Unsigned Word to Doubleword
• VPHADDUWQ—Packed Horizontal Add Unsigned Word to Quadword
• VPHADDUDQ—Packed Horizontal Add Unsigned Doubleword to Quadword
• VPHADDWD—Packed Horizontal Add Signed Word to Signed Doubleword
• VPHADDWQ—Packed Horizontal Add Signed Word to Signed Quadword
• VPHSUBBW—Packed Horizontal Subtract Signed Byte to Signed Word
• VPHSUBWD—Packed Horizontal Subtract Signed Word to Signed Doubleword
• VPHSUBDQ—Packed Horizontal Subtract Signed Doubleword to Signed Quadword

4.6.5.3 Average
• (V)PAVGB—Packed Average Unsigned Bytes
• (V)PAVGW—Packed Average Unsigned Words

The (V)PAVGx instructions compute the rounded average of each unsigned 8-bit ((V)PAVGB) or 16-
bit ((V)PAVGW) integer value in the first operand and the corresponding, same-sized unsigned integer
in the second operand and write the result in the corresponding, same-sized element of the destination.
The rounded average is computed by adding each pair of operands, adding 1 to the temporary sum, and
then right-shifting the temporary sum by one bit-position. For vectors of n number of elements, the
operation is:

operand1[i] = ((operand1[i] + operand2[i]) + 1) 2

where: i = 0 to n – 1

The (V)PAVGB instruction is useful for MPEG decoding, in which motion compensation performs
many byte-averaging operations between and within macroblocks. In addition to speeding up these
operations, (V)PAVGB can free up registers and make it possible to unroll the averaging loops.

The legacy form of these instructions support 128-bit operands. AVX2 adds support for 256-bit
operands to the AVX forms of these instructions.

4.6.5.4 Sum of Absolute Differences
• (V)PSADBW—Packed Sum of Absolute Differences of Bytes into a Word

The (V)PSADBW instruction computes the absolute values of the differences of corresponding 8-bit
signed integer values in the two quadword halves of both source operands, sums the differences for
each quadword half, and writes the two unsigned 16-bit integer results in the destination. The sum for
the high-order half is written in the least-significant word of the destination’s high-order quadword,
with the remaining bytes cleared to all 0s. The sum for the low-order half is written in the least-
significant word of the destination’s low-order quadword, with the remaining bytes cleared to all 0s.

[AMD Public Use]

174 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-38 shows the (V)PSADBW operation. Sums of absolute differences are useful, for example,
in computing the L1 norm in motion-estimation algorithms for video compression.

Figure 4-38. (V)PSADBW Sum-of-Absolute-Differences Operation

For PSADBW, the first source XMM register is also the destination. VPSADBW specifies a separate
destination YMM/XMM register encoded in the instruction.

AVX2 extends the function of VPSADBW to operate on 256-bit operands and produce 4 sums of
absolute differences.

4.6.5.5 Improved Sums of Absolute Differences for 4-Byte Blocks
• (V)MPSADBW—Performs eight 4-byte wide Sum of Absolute Differences (SAD) operations to

produce eight word integers.

The (V)MPSADBW instruction performs eight 4-byte wide SAD operations per instruction to produce
eight results. Compared to (V)PSADBW, (V)MPSADBW operates on smaller chunks (4-byte instead
of 8-byte chunks). This makes the instruction better suited to video coding standards such as VC.1 and
H.264.

(V)MPSADBW performs four times the number of absolute difference operations than that of
(V)PSADBW (per instruction). This can improve performance for dense motion searches.

(V)MPSADBW uses a 4-byte wide field from a source operand. The offset of the 4-byte field within
the 128-bit source operand is specified by two immediate control bits. (V)MPSADBW produces eight
16-bit SAD results. Each 16-bit SAD result is formed from overlapping pairs of 4 bytes in the
destination with the 4-byte field from the source operand. (V)MPSADBW uses eleven consecutive
bytes in the destination operand. Its offset is specified by a control bit in the immediate byte (i.e. the
offset can be from byte 0 or from byte 4).

.

.

.

127 0operand 1 operand 2127 0

result
00

127 0

low-order
intermediate result

high-order
intermediate result

ABS Δ ABS Δ ABS Δ ABS Δ

Σ Σ

2 operand form

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 175

24592—Rev. 3.23—October 2020 AMD64 Technology

For MPSADBW, the first source XMM register is also the destination. VMPSADBW specifies a
separate destination YMM/XMM register encoded in the instruction.

AVX2 extends the function of VMPSADBW to operate on 256-bit operands and produce 16 sums of
absolute differences.

4.6.6 Shift and Rotate

The vector-shift instructions are useful for scaling vector elements to higher or lower precision,
packing and unpacking vector elements, and multiplying and dividing vector elements by powers of 2.

4.6.6.1 Left Logical Shift
• (V)PSLLW—Packed Shift Left Logical Words
• (V)PSLLD—Packed Shift Left Logical Doublewords
• (V)PSLLQ—Packed Shift Left Logical Quadwords
• (V)PSLLDQ—Packed Shift Left Logical Double Quadword

The (V)PSLLW, (V)PSLLD, and (V)PSLLQ instructions left-shift each of the 16-bit, 32-bit, or 64-bit
values, respectively, in the first source operand by the number of bits specified in the second source
operand. The instructions then write each shifted value into the corresponding, same-sized element of
the destination. The low-order bits that are emptied by the shift operation are cleared to 0. The shift
count (second source operand) is specified by the contents of a register, a value loaded from memory,
or an immediate byte.

In integer arithmetic, left logical shifts effectively multiply unsigned operands by positive powers of 2.
Thus, for vectors of n number of elements, the operation is:

operand1[i] = operand1[i] * 2operand2

where: i = 0 to n – 1

The (V)PSLLDQ instruction differs from the other three left-shift instructions because it operates on
bytes rather than bits. It left-shifts the value in a YMM/XMM register by the number of bytes specified
in an immediate byte value.

In the legacy form of these instructions, the first source XMM register is also the destination. The
extended form specifies a separate destination YMM/XMM register encoded in the instruction. AVX2
adds support for 256-bit operands to the extended form of these instructions.

4.6.6.2 Right Logical Shift
• (V)PSRLW—Packed Shift Right Logical Words
• (V)PSRLD—Packed Shift Right Logical Doublewords
• (V)PSRLQ—Packed Shift Right Logical Quadwords
• (V)PSRLDQ—Packed Shift Right Logical Double Quadword

[AMD Public Use]

176 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The (V)PSRLW, (V)PSRLD, and (V)PSRLQ instructions right-shift each of the 16-bit, 32-bit, or 64-
bit values, respectively, in the first source operand by the number of bits specified in the second source
operand. The instructions then write each shifted value into the corresponding, same-sized element of
the destination. The high-order bits that are emptied by the shift operation are cleared to 0. The shift
count (second source operand) is specified by the contents of a register, a value loaded from memory,
or an immediate byte.

In integer arithmetic, right logical bit-shifts effectively divide unsigned or positive-signed operands by
positive powers of 2. Thus, for vectors of n number of elements, the operation is:

operand1[i] = operand1[i] 2operand2

where: i = 0 to n – 1

The (V)PSRLDQ instruction differs from the other three right-shift instructions because it operates on
bytes rather than bits. It right-shifts the value in a YMM/XMM register by the number of bytes
specified in an immediate byte value. (V)PSRLDQ can be used, for example, to move the high 8 bytes
of an XMM register to the low 8 bytes of the register. In some implementations, however,
(V)PUNPCKHQDQ may be a better choice for this operation.

In the legacy form of these instructions, the first source XMM register is also the destination. The
extended form specifies a separate destination YMM/XMM register encoded in the instruction. AVX2
adds support for 256-bit operands to the extended form of these instructions.

4.6.6.3 Right Arithmetic Shift
• (V)PSRAW—Packed Shift Right Arithmetic Words
• (V)PSRAD—Packed Shift Right Arithmetic Doublewords

The (V)PSRAx instructions right-shift each of the 16-bit ((V)PSRAW) or 32-bit ((V)PSRAD) values
in the first operand by the number of bits specified in the second operand. The instructions then write
each shifted value into the corresponding, same-sized element of the destination. The high-order bits
that are emptied by the shift operation are filled with the sign bit of the initial value.

In integer arithmetic, right arithmetic shifts effectively divide signed operands by positive powers of 2.
Thus, for vectors of n number of elements, the operation is:

operand1[i] = operand1[i] 2operand2

where: i = 0 to n – 1

In the legacy form of these instructions, the first source XMM register is also the destination. The
extended form specifies a separate destination YMM/XMM register encoded in the instruction. AVX2
adds support for 256-bit operands to the extended form of these instructions.

4.6.6.4 Packed Integer Shifts

The packed integer shift instructions shift each element of the vector in the first source XMM or 128-
bit memory operand by the amount specified by a control byte contained in the least significant byte of
the corresponding element of the second source operand. The result of each shift operation is returned

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 177

24592—Rev. 3.23—October 2020 AMD64 Technology

in the destination XMM register. This allows load-and-shift from memory operations, with either the
source operand or the shift-count operand being memory-based, as indicated by the XOP.W bit. The
XOP instruction set provides the following packed integer shift instructions:

• VPSHLB—Packed Shift Logical Bytes
• VPSHLW—Packed Shift Logical Words
• VPSHLD—Packed Shift Logical Doublewords
• VPSHLQ—Packed Shift Logical Quadwords
• VPSHAB—Packed Shift Arithmetic Bytes
• VPSHAW—Packed Shift Arithmetic Words
• VPSHAD—Packed Shift Arithmetic Doublewords
• VPSHAQ—Packed Shift Arithmetic Quadwords

There is no legacy form for these instructions.

4.6.6.5 Packed Integer Rotate

There are two variants of the packed integer rotate instructions. The first is identical to that described
above (see “Packed Integer Shifts”). In the second variant, the control byte is supplied as an 8-bit
immediate operand that specifies a single rotate amount for every element in the first source operand.

The XOP instruction set provides the following packed integer rotate instructions:

• VPROTB—Packed Rotate Bytes
• VPROTW—Packed Rotate Words
• VPROTD—Packed Rotate Doublewords
• VPROTQ—Packed Rotate Quadwords

There is no legacy form for these instructions.

4.6.7 Compare

The integer vector-compare instructions compare two operands and either write a mask or the
maximum or minimum value.

4.6.7.1 Compare and Write Mask
• (V)PCMPEQB—Packed Compare Equal Bytes
• (V)PCMPEQW—Packed Compare Equal Words
• (V)PCMPEQD—Packed Compare Equal Doublewords
• (V)PCMPEQQ—Packed Compare Equal Quadwords
• (V)PCMPGTB—Packed Compare Greater Than Signed Bytes
• (V)PCMPGTW—Packed Compare Greater Than Signed Words
• (V)PCMPGTD—Packed Compare Greater Than Signed Doublewords

[AMD Public Use]

178 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• (V)PCMPGTQ—Packed Compare Greater Than Signed Quadwords

The (V)PCMPEQx and (V)PCMPGTx instructions compare corresponding bytes, words,
doublewords, or quadwords in the two source operands. The instructions then write a mask of all 1s or
0s for each compare into the corresponding, same-sized element of the destination. Figure 4-39 shows
a (V)PCMPEQx compare operation.

Figure 4-39. (V)PCMPEQx Compare Operation

For the (V)PCMPEQx instructions, if the compared values are equal, the result mask is all 1s. If the
values are not equal, the result mask is all 0s. For the (V)PCMPGTx instructions, if the signed value in
the first operand is greater than the signed value in the second operand, the result mask is all 1s. If the
value in the first operand is less than or equal to the value in the second operand, the result mask is all
0s.

For the legacy form and the 128-bit extended form of these instructions, the first source operand is an
XMM register and the second source operand is either an XMM register or a 128-bit memory location.
For the 256-bit extended form, the first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. In the legacy form of these
instructions, the first source XMM register is also the destination. The extended form specifies a
separate destination YMM/XMM register encoded in the instruction.

By specifying the same register for both operands, (V)PCMPEQx can be used to set the bits in a
register to all 1s.

Figure 4-21 on page 148 shows an example of a non-branching sequence that implements a two-way
multiplexer—one that is equivalent to the following sequence of ternary operators in C or C++:
r0 = a0 > b0 ? a0 : b0
r1 = a1 > b1 ? a1 : b1
r2 = a2 > b2 ? a2 : b2
r3 = a3 > b3 ? a3 : b3
r4 = a4 > b4 ? a4 : b4
r5 = a5 > b5 ? a5 : b5

.

.

operand 1

result

operand 2

= ?
= ?

all 1s all 0s

NY
NY

all 1s all 0s

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 179

24592—Rev. 3.23—October 2020 AMD64 Technology

r6 = a6 > b6 ? a6 : b6
r7 = a7 > b7 ? a7 : b7

Assuming xmm0 contains the vector a, and xmm1 contains the vector b, the above C sequence can be
implemented with the following assembler sequence:
MOVQ xmm3, xmm0
PCMPGTW xmm3, xmm1 ; a > b ? 0xffff : 0
PAND xmm0, xmm3 ; a > b ? a: 0
PANDN xmm3, xmm1 ; a > b ? 0 : b
POR xmm0, xmm3 ; r = a > b ? a: b

In the above sequence, (V)PCMPGTW, (V)PAND, (V)PANDN, and (V)POR operate, in parallel, on
all four elements of the vectors.

4.6.7.2 Compare and Write Minimum or Maximum
• (V)PMAXUB—Packed Maximum Unsigned Bytes
• (V)PMAXUW—Packed Maximum Unsigned Words
• (V)PMAXUD— Packed Maximum Unsigned Doublewords
• (V)PMAXSB—Packed Maximum Signed Bytes
• (V)PMAXSW—Packed Maximum Signed Words
• (V)PMAXSD—Packed Maximum Signed Doublewords
• (V)PMINUB—Packed Minimum Unsigned Bytes
• (V)PMINUW—Packed Minimum Unsigned Words
• (V)PMINUD—Packed Minimum Unsigned Doublewords
• (V)PMINSB—Packed Minimum Signed Bytes
• (V)PMINSW—Packed Minimum Signed Words
• (V)PMINSD—Packed Minimum Signed Doublewords

The (V)PMAXUB, (V)PMAXUW, and (V)PMAXUD and the (V)PMINUB, (V)PMINUW,
(V)PMINUD instructions compare each of the 8-bit, 16-bit, or 32-bit unsigned integer values in the
first operand with the corresponding 8-bit, 16-bit, or 32-bit unsigned integer values in the second
operand. The instructions then write the maximum ((V)PMAXUx) or minimum ((V)PMINUx) of the
two values for each comparison into the corresponding element of the destination.

The (V)PMAXSB, (V)PMAXSW, (V)PMAXSD and the (V)PMINSB, (V)PMINSW, (V)PMINSD
instructions perform operations analogous to the (V)PMAXUx and (V)PMINUx instructions, except
on 16-bit signed integer values.

For the legacy form and the 128-bit extended form of these instructions, the first source operand is an
XMM register and the second source operand is either an XMM register or a 128-bit memory location.
For the 256-bit extended form, the first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. In the legacy form of these

[AMD Public Use]

180 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

instructions, the first source XMM register is also the destination. The extended form specifies a
separate destination YMM/XMM register encoded in the instruction.

4.6.7.3 Packed Integer Comparison and Predicate Generation
• VPCOMUB—Compare Vector Unsigned Bytes
• VPCOMUW—Compare Vector Unsigned Words
• VPCOMUD—Compare Vector Unsigned Doublewords
• VPCOMUQ—Compare Vector Unsigned Quadwords
• VPCOMB—Compare Vector Signed Bytes
• VPCOMW—Compare Vector Signed Words
• VPCOMD—Compare Vector Signed Doublewords
• VPCOMQ—Compare Vector Signed Quadwords

These XOP comparison instructions compare packed integer values in the first source XMM register
with corresponding packed integer values in the second source XMM register or 128-bit memory. The
type of comparison is specified by the immediate-byte operand. The resulting predicate is placed in the
destination XMM register. If the condition is true, all bits in the corresponding field in the destination
register are set to 1s; otherwise all bits in the field are set to 0s.

Table 4-10. Immediate Operand Values for Unsigned Vector Comparison Operations

The integer comparison and predicate generation instructions compare corresponding packed signed
or unsigned bytes in the first and second source operands and write the result of each comparison in the
corresponding element of the destination. The result of each comparison is a value of all 1s (TRUE) or
all 0s (FALSE). The type of comparison is specified by the three low-order bits of the immediate-byte
operand.

4.6.7.4 String and Text Processing Instructions
• (V)PCMPESTRI — Packed compare explicit-length strings, return index in ECX/RCX

Immediate Operand
Byte Comparison Operation

Bits 7:3 Bits 2:0

00000b

000b Less Than
001b Less Than or Equal
010b Greater Than
011b Greater Than or Equal
100b Equal
101b Not Equal
110b False
111b True

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 181

24592—Rev. 3.23—October 2020 AMD64 Technology

• (V)PCMPESTRM — Packed compare explicit-length strings, return mask in XMM0
• (V)PCMPISTRI — Packed compare implicit-length strings, return index in ECX/RCX
• (V)PCMPISTRM — Packed compare implicit-length strings, return mask in XMM0

These four instructions use XMM registers to process string or text elements of up to 128-bits (16
bytes or 8 words). Each instruction uses an immediate byte to support an extensive set of
programmable controls. These instructions return the result of processing each pair of string elements
using either an index or a mask. Each instruction has an extended SSE (AVX) counterpart with the
same functionality.

The capabilities of these instructions include:

• Handling string/text fragments consisting of bytes or words, either signed or unsigned
• Support for partial string or fragments less than 16 bytes in length, using either explicit length or

implicit null-termination
• Four types of string compare operations on word/byte elements
• Up to 256 compare operations performed in a single instruction on all string/text element pairs
• Built-in aggregation of intermediate results from comparisons
• Programmable control of processing on intermediate results
• Programmable control of output formats in terms of an index or mask
• Bidirectional support for the index format
• Support for two mask formats: bit or natural element width
• Does not require 16-byte alignment for memory operand

All four instructions require the use of an immediate byte to control operation. The first source
operand is an XMM register The second source operand can be either an XMM register or a 128-bit
memory location. The immediate byte provides programmable control with the following attributes:

• Input data format
• Compare operation mode
• Intermediate result processing
• Output selection

Depending on the output format associated with the instruction, the text/string processing instructions
implicitly uses either a general-purpose register (ECX/RCX) or an XMM register (XMM0) to return
the final result. Neither of the source operands are modified.

Two of the four text-string processing instructions specify string length explicitly. They use two
general-purpose registers (EDX, EAX) to specify the number of valid data elements (either word or
byte) in the source operands. The other two instructions specify valid string elements using null
termination. A data element is considered valid only if it has a lower index than the least significant
null data element.

[AMD Public Use]

182 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

These instructions do not perform alignment checking on memory operands.

4.6.8 Logical

The vector-logic instructions perform Boolean logic operations, including AND, OR, and exclusive
OR.

4.6.8.1 AND
• (V)PAND—Packed Logical Bitwise AND
• (V)PANDN—Packed Logical Bitwise AND NOT
• (V)PTEST—Packed Bit Test

The (V)PAND instruction performs a logical bitwise AND of the values in the first and second
operands and writes the result to the destination.

The (V)PANDN instruction inverts the first operand (creating a ones-complement of the operand),
ANDs it with the second operand, and writes the result to the destination. Table 4-11 shows an
example.

For the legacy form and the 128-bit extended form of (V)PAND and (V)PANDN, the first source
operand is an XMM register and the second source operand is either an XMM register or a 128-bit
memory location. For the 256-bit extended form, the first source operand is a YMM register and the
second source operand is either a YMM register or a 256-bit memory location. In the legacy form of
these instructions, the first source XMM register is also the destination. The extended form specifies a
separate destination YMM/XMM register encoded in the instruction.

AVX2 adds support for 256-bit operands to the VPAND and VPANDN instructions.

The packed bit test instruction (V)PTEST is similar to the general-purpose instruction TEST. Using
the first source operand as a bit mask, (V)PTEST may be used to test whether the bits in the second
source operand that correspond to the set bits in the mask are all zeros. If this is true rFLAGS[ZF] is
set. If all the bits in the second source operand that correspond to the cleared bits in the mask are all
zeros, then the rFLAGS[CF] bit is set.

Because neither source operand is modified, (V)PTEST simplifies branching operations, such as
branching on signs of packed floating-point numbers, or branching on zero fields.

Table 4-11. Example PANDN Bit Values

Operand1 Bit Operand1 Bit
(Inverted) Operand2 Bit PANDN

Result Bit
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 183

24592—Rev. 3.23—October 2020 AMD64 Technology

The AVX instruction VPTEST has both a 128-bit and a 256-bit form.

4.6.8.2 OR and Exclusive OR
• (V)POR—Packed Logical Bitwise OR
• (V)PXOR—Packed Logical Bitwise Exclusive OR

The (V)POR instruction performs a logical bitwise OR of the values in the first and second operands
and writes the result to the destination.

The (V)PXOR instruction is analogous to (V)POR except it performs a bit-wise exclusive OR of the
two source operands. (V)PXOR can be used to clear all bits in an XMM register by specifying the
same register for both operands.

For the legacy form and the 128-bit extended form of these instructions, the first source operand is an
XMM register and the second source operand is either an XMM register or a 128-bit memory location.
For the 256-bit extended form, the first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. In the legacy form of these
instructions, the first source XMM register is also the destination. The extended form specifies a
separate destination YMM/XMM register encoded in the instruction.

AVX2 adds support for 256-bit operands to the extended forms of these instructions.

4.6.9 Save and Restore State

These instructions save and restore the entire processor state for legacy SSE instructions.

4.6.9.1 Save and Restore 128-Bit, 64-Bit, and x87 State
• FXSAVE—Save XMM, MMX, and x87 State
• FXRSTOR—Restore XMM, MMX, and x87 State

The FXSAVE and FXRSTOR instructions save and restore the entire 512-byte processor state for
legacy SSE instructions, 64-bit media instructions, and x87 floating-point instructions. The
architecture supports two memory formats for FXSAVE and FXRSTOR, a 512-byte 32-bit legacy
format and a 512-byte 64-bit format. Selection of the 32-bit or 64-bit format is determined by the
effective operand size for the FXSAVE and FXRSTOR instructions. For details, see “FXSAVE and
FXRSTOR Instructions” in Volume 2.

4.6.9.2 Save and Restore Extended Processor Context
• XSAVE—Save Extended Processor Context.
• XRSTOR—Restore Extended Processor Context.

The XSAVE and XRSTOR instructions provide a flexible means of saving and restoring not only the
x87, 64-bit media, and legacy SSE state, but also the extended SSE context. The first 512 bytes of the
save area supports the FXSAVE/FXRSTOR 512-byte 64-bit format. Subsequent bytes support an
extensible data structure to be used for extended processor context such as the extended SSE context
including the contents of the YMM registers. XSAVEOPT, XSAVEC, XSAVES and XRSTORS are

[AMD Public Use]

184 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

optional optimized variants of XSAVE and XRSTOR. For details, see the descriptions of these
instructions in Volume 4.

4.6.9.3 Save and Restore Control and Status
• (V)STMXCSR—Store MXCSR Control/Status Register
• (V)LDMXCSR—Load MXCSR Control/Status Register

The (V)STMXCSR and (V)LDMXCSR instructions save and restore the 32-bit contents of the
MXCSR register. For further information, see Section 4.2.2 “MXCSR Register” on page 115.

4.7 Instruction Summary—Floating-Point Instructions
This section summarizes the SSE instructions that operate on scalar and packed floating-point values.
Software running at any privilege level can use any of the instructions discussed below, given that
hardware and system software support is provided and the appropriate instruction subset is enabled.
Detection and enablement of instruction subsets is normally handled by operating system software.
Hardware support for each instruction subset is indicated by processor feature bits. These are accessed
via the CPUID instruction. See Volume 3 for details on the CPUID instruction and the feature bits
associated with the SSE instruction set.

The SSE instructions discussed below include those that use the YMM/XMM registers as well as
instructions that convert data from floating-point to integer formats. For more detail on each
instruction, see individual instruction reference pages in the Instruction Reference chapter of Volume
4, “128-Bit and 256-Bit Media Instructions.”

For a summary of the integer SSE instructions including instructions that convert from integer to
floating-point formats, see Section 4.6 “Instruction Summary—Integer Instructions” on page 149.

For a summary of the 64-bit media floating-point instructions, see “Instruction Summary—Floating-
Point Instructions” on page 270. For a summary of the x87 floating-point instructions, see “Instruction
Summary” on page 310.

The following subsections are organized by functional groups. These are:

• Data Transfer
• Data Conversion
• Data Reordering
• Arithmetic
• Fused Multiply-Add Instructions
• Compare
• Logical

Most of the instructions described below have both legacy and AVX versions. For the 128-bit media
instructions, the extended version is functionally equivalent to the legacy version except legacy

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 185

24592—Rev. 3.23—October 2020 AMD64 Technology

instructions leave the upper octword of the YMM register that overlays the destination XMM register
unchanged, while the 128-bit AVX instruction always clears the upper octword. The descriptions that
follow apply equally to the legacy instruction and its extended AVX version. Generally, for those
extended instructions that have 256-bit variants, the number of elements operated upon in parallel
doubles. Other differences will be noted at the end of the discussion.

4.7.1 Data Transfer

The data-transfer instructions copy 32-bit, 64-bit, 128-bit, or 256-bit data from memory to a
YMM/XMM register, from a YMM/XMM register to memory, or from one register to another. The
MOV mnemonic, which stands for move, is a misnomer. A copy function is actually performed instead
of a move. A new copy of the source value is created at the destination address, and the original copy
remains unchanged at its source location.

4.7.1.1 Move
• (V)MOVAPS—Move Aligned Packed Single-Precision Floating-Point
• (V)MOVAPD—Move Aligned Packed Double-Precision Floating-Point
• (V)MOVUPS—Move Unaligned Packed Single-Precision Floating-Point
• (V)MOVUPD—Move Unaligned Packed Double-Precision Floating-Point
• (V)MOVHPS—Move High Packed Single-Precision Floating-Point
• (V)MOVHPD—Move High Packed Double-Precision Floating-Point
• (V)MOVLPS—Move Low Packed Single-Precision Floating-Point
• (V)MOVLPD—Move Low Packed Double-Precision Floating-Point
• (V)MOVHLPS—Move Packed Single-Precision Floating-Point High to Low
• (V)MOVLHPS—Move Packed Single-Precision Floating-Point Low to High
• (V)MOVSS—Move Scalar Single-Precision Floating-Point
• (V)MOVSD—Move Scalar Double-Precision Floating-Point
• (V)MOVDDUP—Move Double-Precision and Duplicate
• (V)MOVSLDUP—Move Single-Precision High and Duplicate
• (V)MOVSHDUP—Move Single-Precision Low and Duplicate

Figure 4-40 on page 187 summarizes the capabilities of the floating-point move instructions except
(V)MOVDDUP, (V)MOVSLDUP, (V)MOVSHDUP which are described in the following section.

The (V)MOVAPx instructions copy a vector of four (eight, for 256-bit form) single-precision floating-
point values ((V)MOVAPS) or a vector of two (four) double-precision floating-point values
((V)MOVAPD) from the second operand to the first operand—i.e., from an YMM/XMM register or
128-bit (256-bit) memory location or to another YMM/XMM register, or vice versa. A general-
protection exception occurs if a memory operand is not aligned on a 16-byte (32-byte) boundary,
unless alternate alignment checking behavior is enabled by setting MSCSR[MM]. See Section 4.3.2
“Data Alignment” on page 120.

[AMD Public Use]

186 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The (V)MOVUPx instructions perform operations analogous to the (V)MOVAPx instructions, except
that unaligned memory operands do not cause a general-protection exception or invoke the alignment
checking mechanism.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 187

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-40. Floating-Point Move Operations

Unchanged Bits copied

Destination Source
YMM Register or Memory

YMM Register or Memory

YMM Register

YMM Register m
em

or
y

m
em

or
y

256 0256 0
VMOVAPS
VMOVAPD
VMOVUPS
VMOVUPD

MOVAPS
MOVAPD
MOVUPS
MOVUPD

127 0

m
em

or
y

127 0

MOVSD

XMM Register or MemoryXMM Register

MOVSS

MOVLHPS

MOVHLPS

127 1270 0XMM RegisterXMM Register

MOVAPS
MOVAPD
MOVUPS
MOVUPD

127 0

m
em

or
y

127 0

MOVSD

XMM Register or Memory XMM Register

MOVSS

127 0XMM Register
MOVLPD/PS

MOVHPD/PS

memory

127 0XMM Register
MOVLPD/PS

MOVHPD/PS

memory

[AMD Public Use]

188 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The (V)MOVHPS and (V)MOVHPD instructions copy a vector of two single-precision floating-point
values ((V)MOVHPS) or one double-precision floating-point value ((V)MOVHPD) from a 64-bit
memory location to the high-order 64 bits of an XMM register, or from the high-order 64 bits of an
XMM register to a 64-bit memory location. In the memory-to-register case, the low-order 64 bits of
the destination XMM register are not modified.

The (V)MOVLPS and (V)MOVLPD instructions copy a vector of two single-precision floating-point
values ((V)MOVLPS) or one double-precision floating-point value ((V)MOVLPD) from a 64-bit
memory location to the low-order 64 bits of an XMM register, or from the low-order 64 bits of an
XMM register to a 64-bit memory location. In the memory-to-register case, the high-order 64 bits of
the destination XMM register are not modified.

The (V)MOVHLPS instruction copies a vector of two single-precision floating-point values from the
high-order 64 bits of an XMM register to the low-order 64 bits of another XMM register. The high-
order 64 bits of the destination XMM register are not modified. The (V)MOVLHPS instruction
performs an analogous operation except in the opposite direct (low-order to high-order), and the low-
order 64 bits of the destination XMM register are not modified.

The (V)MOVSS instruction copies a scalar single-precision floating-point value from the low-order
32 bits of an XMM register or a 32-bit memory location to the low-order 32 bits of another XMM
register, or vice versa. If the source operand is an XMM register, the high-order 96 bits of the
destination XMM register are either cleared or left unmodified based on the instruction encoding. If
the source operand is a 32-bit memory location, the high-order 96 bits of the destination XMM register
are cleared to all 0s.

The (V)MOVSD instruction copies a scalar double-precision floating-point value from the low-order
64 bits of an XMM register or a 64-bit memory location to the low-order 64 bits of another XMM
register, or vice versa. If the source operand is an XMM register, the high-order 64 bits of the
destination XMM register are not modified. If the source operand is a memory location, the high-order
64 bits of the destination XMM register are cleared to all 0s.

The above MOVSD instruction should not be confused with the same-mnemonic MOVSD (move
string doubleword) instruction in the general-purpose instruction set. Assemblers distinguish the two
instructions by their operand data types.

The basic function of each corresponding extended (V) form instruction is the same as the legacy
form. The instructions VMOVSS, VMOVSD, VMOVHPS, VMOVHPD, VMOVLPS, VMOVHLPS,
VMOVLHPS provide additional function, supporting the merging in of bits from a second register
source operand.

4.7.1.2 Move with Duplication

These instructions move two copies of the affected data segments from the source XMM register or
128-bit memory operand to the target destination register.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 189

24592—Rev. 3.23—October 2020 AMD64 Technology

The (V)MOVDDUP moves one copy of the lower quadword of the source operand into each
quadword half of the destination operand. The 256-bit version of VMOVDDUP copies and duplicates
the two even-indexed quadwords.

The (V)MOVSLDUP instruction moves two copies of the first (least significant) doubleword of the
source operand into the first two doubleword segments of the destination operand and moves two
copies of the third doubleword of the source operand into the third and fourth doubleword segments of
the destination operand. The 256-bit version of VMOVSLDUP writes two copies the even-indexed
doubleword elements of the source YMM register to ascending quadwords of the destination YMM
register.

The (V)MOVSHDUP instruction moves two copies of the second doubleword of the source operand
into the first two doubleword segments of the destination operand and moves two copies of the fourth
doubleword of the source operand into the upper two doubleword segments of the destination operand.
The 256-bit version of VMOVSHDUP writes two copies the odd-indexed doubleword elements of the
source YMM register to ascending quadwords of the destination YMM register.

4.7.1.3 Move Non-Temporal

The move non-temporal instructions are streaming-store instructions. They minimize pollution of the
cache.

• (V)MOVNTPD—Move Non-temporal Packed Double-Precision Floating-Point
• (V)MOVNTPS—Move Non-temporal Packed Single-Precision Floating-Point
• MOVNTSD—Move Non-temporal Scalar Double-Precision Floating-Point
• MOVNTSS—Move Non-temporal Scalar Single-Precision Floating-Point

These instructions indicate to the processor that their data is non-temporal, which assumes that the
data they reference will be used only once and is therefore not subject to cache-related overhead (as
opposed to temporal data, which assumes that the data will be accessed again soon and should be
cached). The non-temporal instructions use weakly-ordered, write-combining buffering of write data,
and they minimize cache pollution. The exact method by which cache pollution is minimized depends
on the hardware implementation of the instruction. For further information, see “Memory
Optimization” on page 98.

The (V)MOVNTPx instructions copy four packed single-precision floating-point ((V)MOVNTPS) or
two packed double-precision floating-point ((V)MOVNTPD) values from an XMM register into a
128-bit memory location. The 256-bit form of the VMOVNTPx instructions store the contents of the
specified source YMM register to memory.

The MOVNTSx instructions store one double precision floating point XMM register value into a 64
bit memory location or one single precision floating point XMM register value into a 32-bit memory
location.

4.7.1.4 Move Mask
• (V)MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

[AMD Public Use]

190 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• (V)MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

The (V)MOVMSKPS instruction copies the sign bits of four (eight, for the 256-bit form) single-
precision floating-point values in an XMM (YMM) register to the four (eight) low-order bits of a 32-
bit or 64-bit general-purpose register, with zero-extension. The (V)MOVMSKPD instruction copies
the sign bits of two (four) double-precision floating-point values in an XMM (YMM) register to the
two (four) low-order bits of a general-purpose register, with zero-extension. The result of either
instruction is a sign-bit mask that can be used for data-dependent branching. Figure 4-41 shows the
MOVMSKPS operation.

Figure 4-41. (V)MOVMSKPS Move Mask Operation

4.7.2 Data Conversion

The floating-point data-conversion instructions convert floating-point operands to integer operands.

These data-conversion instructions take 128-bit floating-point source operands. For data-conversion
instructions that take 128-bit integer source operands, see “Data Conversion” on page 155. For data-
conversion instructions that take 64-bit source operands, see “Data Conversion” on page 257 and
“Data Conversion” on page 271.

4.7.2.1 Convert Floating-Point to Floating-Point

These instructions convert floating-point data types in XMM registers or memory into different
floating-point data types in XMM registers.

• (V)CVTPS2PD—Convert Packed Single-Precision Floating-Point to Packed Double-Precision
Floating-Point

• (V)CVTPD2PS—Convert Packed Double-Precision Floating-Point to Packed Single-Precision
Floating-Point

• (V)CVTSS2SD—Convert Scalar Single-Precision Floating-Point to Scalar Double-Precision
Floating-Point

• (V)CVTSD2SS—Convert Scalar Double-Precision Floating-Point to Scalar Single-Precision
Floating-Point

The (V)CVTPS2PD instruction converts two (four, for the 256-bit form) single-precision floating-
point values in the low-order 64 bits (entire 128 bits) of the source operand–either a XMM register or a

513 158

GPR XMM127 0

concatenate 4 sign bits

0

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 191

24592—Rev. 3.23—October 2020 AMD64 Technology

64-bit (128-bit) memory location–to two (four) double-precision floating-point values in the
destination operand–an XMM (YMM) register.

The (V)CVTPD2PS instruction converts two (four, for the 256-bit form) double-precision floating-
point values in the source operand –either an XMM (YMM) register or a 64-bit (128-bit) memory
location–to two (four) single-precision floating-point values. The 128-bit form zero-extends the 64-bit
packed result to 128 bits before writing it to the destination XMM register. The 256-bit form writes the
128-bit packed result to the destination XMM register. If the result of the conversion is an inexact
value, the value is rounded.

The (V)CVTSS2SD instruction converts a single-precision floating-point value in the low-order 32
bits of the source operand to a double-precision floating-point value in the low-order 64 bits of the
destination. For the legacy form of the instruction, the high-order 64 bits in the destination XMM
register are not modified. In the extended form, the high-order 64 bits are copied from another source
XMM register.

The (V)CVTSD2SS instruction converts a double-precision floating-point value in the low-order 64
bits of the source operand to a single-precision floating-point value in the low-order 32 bits of the
destination. For the legacy form of the instruction, the three high-order doublewords in the destination
XMM register are not modified. In the extended form, the three high-order doublewords are copied
from another source XMM register. If the result of the conversion is an inexact value, the value is
rounded.

4.7.2.2 Convert Floating-Point to XMM Integer

These instructions convert floating-point data types in YMM/XMM registers or memory into integer
data types in YMM/XMM registers.

• (V)CVTPS2DQ—Convert Packed Single-Precision Floating-Point to Packed Doubleword
Integers

• (V)CVTPD2DQ—Convert Packed Double-Precision Floating-Point to Packed Doubleword
Integers

• (V)CVTTPS2DQ—Convert Packed Single-Precision Floating-Point to Packed Doubleword
Integers, Truncated

• (V)CVTTPD2DQ—Convert Packed Double-Precision Floating-Point to Packed Doubleword
Integers, Truncated

The (V)CVTPS2DQ and (V)CVTTPS2DQ instructions convert four (eight, in the 256-bit version)
single-precision floating-point values in the source operand to four (eight) 32-bit signed integer values
in the destination. For the 128-bit form, the source operand is either an XMM register or a 128-bit
memory location and the destination is an XMM register. For the 256-bit form, the source operand is
either a YMM register or a 256-bit memory location and the destination is a YMM register. For the
(V)CVTPS2DQ instruction, if the result of the conversion is an inexact value, the value is rounded, but
for the (V)CVTTPS2DQ instruction such a result is truncated (rounded toward zero).

[AMD Public Use]

192 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The (V)CVTPD2DQ and (V)CVTTPD2DQ instructions convert two (four, in 256-bit version) double-
precision floating-point values in the source operand to two (four) 32-bit signed integer values in the
destination. For the 128-bit form, the source operand is either an XMM register or a 128-bit memory
location and the destination is the low-order 64 bits of an XMM register. The high-order 64 bits in the
destination XMM register are cleared to all 0s. For the 256-bit form, the source operand is either a
YMM register or a 256-bit memory location and the destination is a XMM register. For the
(V)CVTPD2DQ instruction, if the result of the conversion is an inexact value, the value is rounded,
but for the (V)CVTTPD2DQ instruction such a result is truncated (rounded toward zero).

For a description of SSE instructions that convert in the opposite direction—integer to floating-
point—see “Convert Integer to Floating-Point” on page 155.

4.7.2.3 Convert Floating-Point to MMX™ Integer

These instructions convert floating-point data types in XMM registers or memory into integer data
types in MMX registers.

• CVTPS2PI—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers
• CVTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers
• CVTTPS2PI—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers,

Truncated
• CVTTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers,

Truncated

The CVTPS2PI and CVTTPS2PI instructions convert two single-precision floating-point values in the
low-order 64 bits of an XMM register or a 64-bit memory location to two 32-bit signed integer values
in an MMX register. For the CVTPS2PI instruction, if the result of the conversion is an inexact value,
the value is rounded, but for the CVTTPS2PI instruction such a result is truncated (rounded toward
zero).

The CVTPD2PI and CVTTPD2PI instructions convert two double-precision floating-point values in
an XMM register or a 128-bit memory location to two 32-bit signed integer values in an MMX
register. For the CVTPD2PI instruction, if the result of the conversion is an inexact value, the value is
rounded, but for the CVTTPD2PI instruction such a result is truncated (rounded toward zero).

Before executing a CVTxPS2PI or CVTxPD2PI instruction, software should ensure that the MMX
registers are properly initialized so as to prevent conflict with their aliased use by x87 floating-point
instructions. This may require clearing the MMX state, as described in “Accessing Operands in
MMX™ Registers” on page 232.

For a description of SSE instructions that convert in the opposite direction—integer in MMX registers
to floating-point in XMM registers—see “Convert MMX Integer to Floating-Point” on page 155. For
a summary of instructions that operate on MMX registers, see Chapter 5, “64-Bit Media
Programming.”

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 193

24592—Rev. 3.23—October 2020 AMD64 Technology

4.7.2.4 Convert Floating-Point to GPR Integer

These instructions convert floating-point data types in XMM registers or memory into integer data
types in GPR registers.

• (V)CVTSS2SI—Convert Scalar Single-Precision Floating-Point to Signed Doubleword or
Quadword Integer

• (V)CVTSD2SI—Convert Scalar Double-Precision Floating-Point to Signed Doubleword or
Quadword Integer

• (V)CVTTSS2SI—Convert Scalar Single-Precision Floating-Point to Signed Doubleword or
Quadword Integer, Truncated

• (V)CVTTSD2SI—Convert Scalar Double-Precision Floating-Point to Signed Doubleword or
Quadword Integer, Truncated

The (V)CVTSS2SI and (V)CVTTSS2SI instructions convert a single-precision floating-point value in
the low-order 32 bits of an XMM register or a 32-bit memory location to a 32-bit or 64-bit signed
integer value in a general-purpose register. For the (V)CVTSS2SI instruction, if the result of the
conversion is an inexact value, the value is rounded, but for the (V)CVTTSS2SI instruction such a
result is truncated (rounded toward zero).

The (V)CVTSD2SI and (V)CVTTSD2SI instructions convert a double-precision floating-point value
in the low-order 64 bits of an XMM register or a 64-bit memory location to a 32-bit or 64-bit signed
integer value in a general-purpose register. For the (V)CVTSD2SI instruction, if the result of the
conversion is an inexact value, the value is rounded, but for the (V)CVTTSD2SI instruction such a
result is truncated (rounded toward zero).

For a description of SSE instructions that convert in the opposite direction—integer in GPR registers
to floating-point in XMM registers—see “Convert GPR Integer to Floating-Point” on page 156. For a
summary of instructions that operate on GPR registers, see Chapter 3, “General-Purpose
Programming.”

4.7.2.5 Half-Precision Floating-Point Conversion

The F16C instruction subset supports the 16-bit floating-point data type with two instructions
(VCVTPH2PS and VCVTPS2PH) to convert 16-bit floating-point values to and from single-precision
format. The half-precision floating point data type is discussed in “Half-Precision Floating-Point Data
Type” on page 130.

• VCVTPH2PS—Convert Half-Precision Floating-Point to Single-Precision Floating Point
• VCVTPS2PH—Convert Single-Precision Floating-Point to Half-Precision Floating Point

These two instructions are provided for the purpose of moving data to or from memory, while
converting a single-precision floating point operand to a half-precision floating-point operand or vice
versa in one instruction. These instructions allow the storage of floating point data in half-precision
format, thereby conserving memory space. These instructions have both 128-bit and 256-bit forms
utilizing the three-byte VEX prefix (C4h).

[AMD Public Use]

194 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

4.7.3 Data Reordering

The floating-point data-reordering instructions insert, extract, pack, unpack and interleave, or shuffle
the elements of vector operands.

4.7.3.1 Insertion and Extraction from XMM Registers

These instructions simplify data insertion and extraction between general-purpose registers (GPR) and
XMM registers. When accessing memory, no alignment is required for these instructions (unless
alignment checking is enabled).

• (V)EXTRACTPS—Extracts a single-precision floating-point value from any doubleword offset in
an XMM register and stores the result to memory or a general-purpose register.

• (V)INSERTPS—Inserts a single floating-point value from either a 32-bit memory location or from
a specified element in an XMM register to a selected element in the destination XMM register
based on a mask specified in an immediate byte. In addition, the ZMASK field in the mask allows
the insertion of +0.0 into any element in the destination. In the legacy form, any doublewords in
destination that do not receive either a selected doubleword from the source or +0.0 based on the
ZMASK field are not modified. In the extended form, these doublewords are copied from another
XMM register.

4.7.3.2 Packed Blending

These instructions conditionally copy a data element in a source operand to the same element in the
destination.

• (V)BLENDPS—Packed Single-Precision Floating-Point
• (V)BLENDPD—Packed Double-Precision Floating-Point
• (V)BLENDVPS—Packed Variable Blend Single-Precision Floating-Point
• (V)BLENDVPD—Packed Variable Blend Double-Precision Floating-Point

(V)BLENDPS, (V)BLENDPD, (V)BLENDVPS, and (V)BLENDVPD copy single- or double-
precision floating point elements from either of two source operands to the specified destination
register based on selector bits in a mask. The mask for (V)BLENDPS, (V)BLENDPD is contained in
an immediate byte. For (V)BLENDVPS and (V)BLENDVPD the mask is composed of the sign bits of
the floating-point elements of an operand register. The variable blend instructions BLENDVPS and
PBLENDVPD use the implicit operand XMM0 to provide the selector mask.

In the legacy form of these instructions, the first source XMM register is also the destination. The
extended form specifies a separate destination XMM register encoded in the instruction.

The VBLENDPS, VBLENDVPS, VBLENDPD, and VBLENDVPD instructions have 256-bit forms
which copy eight or four selected floating-point elements from one of two 256-bit source operands to
the destination YMM register.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 195

24592—Rev. 3.23—October 2020 AMD64 Technology

4.7.3.3 Unpack and Interleave

These instructions interleave vector elements from the high or low halves of two floating-point source
operands.

• (V)UNPCKHPS—Unpack High Single-Precision Floating-Point
• (V)UNPCKHPD—Unpack High Double-Precision Floating-Point
• (V)UNPCKLPS—Unpack Low Single-Precision Floating-Point
• (V)UNPCKLPD—Unpack Low Double-Precision Floating-Point

The (V)UNPCKHPx instructions copy the high-order two (four, in the 256-bit form) single-precision
floating-point values ((V)UNPCKHPS) or one (two) double-precision floating-point value(s)
((V)UNPCKHPD) in the first and second source operands and interleave them in the destination
register. The low-order 64 bits of the source operands are ignored. The first source is an XMM (YMM)
register and the second is either an XMM (YMM) or a 128-bit (256-bit) memory location.

The (V)UNPCKLPx instructions are analogous to their high-element counterparts except that they
take elements from the low quadword of each source vector and ignore elements in the high quadword.

In the legacy form of these instructions, the first source XMM register is also the destination. In the
extended form, a separate destination XMM (YMM) register is specified via the instruction encoding.

Figure 4-42 below shows an example of one of these instructions, (V)UNPCKLPS. The elements
written to the destination register are taken from the low half of the source operands. Note that
elements from operand 2 are placed to the left of elements from operand 1.

Figure 4-42. (V)UNPCKLPS Unpack and Interleave Operation

4.7.3.4 Shuffle

These instructions reorder the elements of a vector.

• (V)SHUFPS—Shuffle Packed Single-Precision Floating-Point
• (V)SHUFPD—Shuffle Packed Double-Precision Floating-Point

The (V)SHUFPS instruction moves any two of the four single-precision floating-point values in the
first source operand to the low-order quadword of the destination and moves any two of the four

operand 1

result

127 0
operand 2

127 0

127 0

2 operand form

[AMD Public Use]

196 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

single-precision floating-point values in the second source operand to the high-order quadword of the
destination. The source element selected for each doubleword of the destination is determined by a 2-
bit field in an immediate byte.

Figure 4-43 below shows the (V)SHUFPS shuffle operation. (V)SHUFPS is useful, for example, in
color imaging when computing alpha saturation of RGB values. In this case, (V)SHUFPS can replicate
an alpha value in a register so that parallel comparisons with three RGB values can be performed.

Figure 4-43. (V)SHUFPS Shuffle Operation

The (V)SHUFPD instruction moves either of the two double-precision floating-point values in the first
source operand to the low-order quadword of the destination and moves either of the two double-
precision floating-point values in the second source operand to the high-order quadword of the
destination. The source element selected for each doubleword of the destination is determined by a bit
field in an immediate byte.

For both instructions the first source operand is an XMM register and the second is either an XMM
register or a 128-bit memory location. In the legacy form of these instructions, the first source XMM
register is also the destination. In the extended form, a separate destination XMM register is specified
via the instruction encoding.

The 256-bit forms of VSHFPS and VSHUFPD replicate the operation of each instruction’s 128-bit
form on the high-order octword of the 256-bit operands. The destination is a YMM register.

4.7.3.5 Fraction Extract

The fraction extract instructions isolate the fractional portions of vector or scalar floating point
operands. The XOP instruction set provides the following fraction extract instructions:

• VFRCZPD—Extract Fraction Packed Double-Precision Floating-Point
• VFRCZPS—Extract Fraction Packed Single-Precision Floating-Point

Source operand 2127 0

result127 0

 Source operand 1127 0

mux mux mux mux
01

imm8

23

imm8

45

imm8

67

imm8

2 operand form

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 197

24592—Rev. 3.23—October 2020 AMD64 Technology

• VFRCZSD— Extract Fraction Scalar Double-Precision Floating-Point
• VFRCZSS— Extract Fraction Scalar Single-Precision Floating Point

The result of the VFRCZPD and VFRCZPS instructions is a vector of integer numbers. The result of
the VFRCZSD and VFRCZSS instructions is a scalar integer number.

The VFRCZPD and VFRCZPS instructions extract the fractional portions of a vector of double-
precision or single-precision floating-point values in an XMM or YMM register or a 128-bit or 256-bit
memory location and write the results in the corresponding field in the destination register.

The VFRCZSS and VFRCZSD instructions extract the fractional portion of the single-precision or
double-precision scalar floating-point value in an XMM register or 32-bit or 64-bit memory location
and writes the result in the lower element of the destination register. The upper elements of the
destination XMM register are unaffected by the operation, while the upper 128 bits of the
corresponding YMM register are cleared to zeros.

4.7.4 Arithmetic

The floating-point arithmetic instructions operate on two vector or scalar floating-point operands and
produce a floating-point result of the same data type. For two operand forms, the result overwrites the
first source operand. Vector arithmetic instructions apply the same arithmetic operation on pairs of
elements from two floating-point vector operands and produce a vector result. Figure 4-44 below
provides a schematic for the vector floating-point arithmetic instructions. The figure depicts 4
elements in each operand, but the actual number can be 2, 4, or 8 depending on the element size (either
single precision or double precision) and vector size (128 bits or 256 bits). Each arithmetic instruction
performs a unique arithmetic operation.

Figure 4-44. Vector Arithmetic Operation

The extended SSE versions of the arithmetic instructions that operate on packed data types support
256-bit data types. For the vector instructions this means that both the operands and the results have

result

operand 1 operand 2

op

op

op

op

FP value FP value FP value FP value FP value

FP value FP value FP value FP value

FP value FP value FP value

2 operand form

[AMD Public Use]

198 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

twice the number of elements as the 128-bit forms. Legacy SSE instructions and extended scalar
instructions support only 128-bit operands.

4.7.4.1 Addition
• (V)ADDPS—Add Packed Single-Precision Floating-Point
• (V)ADDPD—Add Packed Double-Precision Floating-Point
• (V)ADDSS—Add Scalar Single-Precision Floating-Point
• (V)ADDSD—Add Scalar Double-Precision Floating-Point

The (V)ADDPS instruction adds each of four (eight, for 256-bit form) single-precision floating-point
values in the first source operand (an XMM or YMM register) to the corresponding single-precision
floating-point values in the second source operand (either a YMM/XMM register or a 128-bit or 256-
bit memory location) and writes the result in the corresponding doubleword of the destination.

Figure 4-45 below provides a schematic representation of the (V)ADDPS instruction. The instruction
performs four addition operations in parallel. The 256-bit form of VADDPS doubles the number of
operations and result elements to eight.

Figure 4-45. (V)ADDPS Arithmetic Operation

The (V)ADDPD instruction performs an analogous operation for double-precision floating-point
values.

(V)ADDSS and (V)ADDSD operate respectively on single-precision and double-precision floating-
point (scalar) values in the low-order bits of their operands. Each adds two floating-point values
together and produces a single floating-point result. These extended instructions VADDSS and
VADDSD have no 256-bit form.

The (V)ADDSS instruction adds the single-precision floating-point value in the first source operand
(an XMM register) to the single-precision floating-point value in the second source operand (an XMM
register or a doubleword memory location) and writes the result in the low-order doubleword of the

result127 0
SP FPSP FP SP FPSP FP

operand 1127 0
SP FPSP FP SP FPSP FP

operand 2127 0
SP FPSP FP SP FPSP FP

2 operand form

+

+

+

+

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 199

24592—Rev. 3.23—October 2020 AMD64 Technology

destination XMM register. For the legacy form, the three high-order doublewords of the destination
are not modified. VADDSS copies the three high-order doublewords of the source operand to the
destination.

The (V)ADDSD instruction adds the double-precision floating-point value in the first source operand
(an XMM register) to the double-precision floating-point value in the low-order quadword of the
second source operand (an XMM register or quadword memory location) and writes the result in the
low-order quadword of the destination XMM register. For the legacy form, the high-order quadword
of the destination is not modified. VADDSD copies the high-order quadword of the source operand to
the destination.

For the legacy instructions, the first source register is also the destination. In the extended form, a
separate destination XMM or YMM register is specified via the instruction encoding.

4.7.4.2 Horizontal Addition
• (V)HADDPS—Horizontal Add Packed Single-Precision Floating-Point
• (V)HADDPD—Horizontal Subtract Packed Double-Precision Floating-Point

The (V)HADDPS instruction adds the single-precision floating point values in the first and second
doublewords of the first source operand (an XMM register) and stores the sum in the first doubleword
of the destination XMM register. It adds the single-precision floating point values in the third and
fourth doublewords of the first source operand and stores the sum in the second doubleword of the
destination XMM register. It adds the single-precision floating point values in the first and second
doublewords of the second source operand (either an XMM register or a 128-bit memory location) and
stores the sum in the third doubleword of the destination XMM register. It adds single-precision
floating point values in the third and fourth doublewords of the second source operand and stores the
sum in the fourth doubleword of the destination XMM register.

The (V)HADDPD instruction adds the two double-precision floating point values in the upper and
lower quadwords of the first source operand (an XMM register) and stores the sum in the first
quadword of the destination XMM register. It adds the two values in the upper and lower quadwords of
the second source operand (either an XMM register or a 128-bit memory location) and stores the sum
in the second quadword of the destination XMM register.

The 256-bit forms of VHADDPS and VHADDPD perform the same operation as described on both
the upper and lower octword of the 256-bit source operands and store the result to the destination
YMM register.

For the legacy instructions, the first source register is also the destination. For the extended
instructions, a separate destination register is specified by the instruction encoding.

4.7.4.3 Subtraction
• (V)SUBPS—Subtract Packed Single-Precision Floating-Point
• (V)SUBPD—Subtract Packed Double-Precision Floating-Point
• (V)SUBSS—Subtract Scalar Single-Precision Floating-Point

[AMD Public Use]

200 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• (V)SUBSD—Subtract Scalar Double-Precision Floating-Point

The (V)SUBPS instruction subtracts each of four (eight, for 256-bit form) single-precision floating-
point values in the second source operand (either a YMM/XMM register or a 128-bit or 256-bit
memory location) from the corresponding single-precision floating-point value in the first source
operand (an XMM or YMM register) and writes the result in the corresponding quadword of the
destination XMM or YMM register. For vectors of n number of elements, the operations are:

operand1[i] = operand1[i] - operand2[i]

where: i = 0 to n – 1

The (V)SUBPD instruction performs an analogous operation for two (four, for 256-bit form) double-
precision floating-point values.

(V)SUBSS and (V)SUBSD operate respectively on single-precision and double-precision floating-
point (scalar) values in the low-order bits of their operands. Each subtracts the floating-point value in
the second source operand from the first and produces a single floating-point result. The extended
instructions VADDSS and VADDSD have no 256-bit form.

The (V)SUBSS instruction subtracts the single-precision floating-point value in the second source
operand (an XMM register or a doubleword memory location) from the single-precision floating-point
value in the first source operand (an XMM register) and writes the result in the low-order doubleword
of the destination (an XMM register). In the legacy form, the three high-order doublewords of the
destination are not modified. VADDSS copies the upper three doublewords of the source to the
destination.

The (V)SUBSD instruction subtracts the double-precision floating-point value in the second source
operand (an XMM register or a quadword memory location) from the double-precision floating-point
value in the first source operand (an XMM register) and writes the result in the low-order quadword of
the destination. In the legacy form, the high-order quadword of the destination is not modified.
VADDSD copies the upper quadword of the source to the destination.

For the legacy instructions, the first source register is also the destination. In the extended form, a
separate destination register is specified via the instruction encoding.

4.7.4.4 Horizontal Subtraction
• (V)HSUBPS—Horizontal Subtract Packed Single-Precision Floating-Point
• (V)HSUBPD—Horizontal Subtract Packed Double-Precision Floating-Point

The (V)HSUBPS instruction subtracts the single-precision floating-point value in the second
doubleword of the first source operand (an XMM register) from that in the first doubleword of the first
source operand and stores the result in the first doubleword of the destination XMM register. It
subtracts the fourth doubleword of the first source operand from the third doubleword of the first
source operand and stores the result in the second doubleword of the destination. It subtracts the
single-precision floating-point value in the second doubleword of the second source operand (an
XMM register or 128-bit memory location) from that in the first doubleword of the second source

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 201

24592—Rev. 3.23—October 2020 AMD64 Technology

operand and stores the result in the third doubleword of the destination register. It subtracts the fourth
doubleword of the second source operand from the third doubleword of the second source operand and
stores the result in the fourth doubleword of the destination.

The (V)HSUBPD instruction subtracts the double-precision floating-point value in the upper
quadword of the first source operand (an XMM register) from that in the lower quadword of the first
source operand and stores the difference in the low-order quadword of the destination XMM register.
The difference from the subtraction of the double-precision floating-point value in the upper quadword
of the second source operand (an XMM register or 128-bit memory location) from that in the lower
quadword of the second source operand is stored in the second quadword of the destination operand.

VHSUBPS and VHSUBPD each have a 256-bit form. For these instructions the first source operand is
a YMM register and the second is either a YMM or a 256-bit memory location. These instructions
perform the same operation as their 128-bit counterparts on both the lower and upper quadword of
their operands.

For the legacy instructions, the first source register is also the destination. For the extended
instructions, a separate destination register is specified by the instruction encoding.

4.7.4.5 Horizontal Search
• (V)PHMINPOSUW—Packed Horizontal Minimum and Position Unsigned Word

(V)PHMINPOSUW finds the value and location of the minimum unsigned word from one of 8
horizontally packed unsigned words in its source operand (an XMM register or a 128-bit memory
location). The resulting value and location (offset within the source) are packed into the low
doubleword of the destination XMM register. Video encoding can be improved by using
(V)MPSADBW and (V)PHMINPOSUW together.

4.7.4.6 Simultaneous Addition and Subtraction
• (V)ADDSUBPS—Add/Subtract Packed Single-Precision Floating-Point
• (V)ADDSUBPD—Add/Subtract Packed Double-Precision Floating-Point

The (V)ADDSUBPS instruction adds two (four, for the 256-bit form) pairs of odd-indexed single-
precision floating-point elements from the source operands and writes the sums to the corresponding
elements of the destination; subtracts the even-indexed elements of the second operand from the
corresponding elements of the first operand and writes the differences to the corresponding elements
of the destination. The first source operand is an XMM (YMM) register and the second operand is
either an XMM (YMM) register or a 128-bit (256-bit) memory location. For the legacy instruction, the
first source operand is also the destination. For the extended forms, the result is written to the specified
separate destination YMM/XMM register.

The (V)ADDSUBPS instruction adds one (two, for the 256-bit form) pair(s) of odd-indexed double-
precision floating-point elements from the source operands and writes the sums to the corresponding
elements of the destination; subtracts the even-indexed elements of the second operand from the
corresponding elements of the first operand and writes the differences to the corresponding elements
of the destination.The first source operand is an XMM (YMM) register and the second operand is

[AMD Public Use]

202 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

either an XMM (YMM) register or a 128-bit (256-bit) memory location. For the legacy instruction, the
first source operand is also the destination. For the extended forms, the result is written to the specified
separate destination YMM/XMM register.

4.7.4.7 Multiplication
• (V)MULPS—Multiply Packed Single-Precision Floating-Point
• (V)MULPD—Multiply Packed Double-Precision Floating-Point
• (V)MULSS—Multiply Scalar Single-Precision Floating-Point
• (V)MULSD—Multiply Scalar Double-Precision Floating-Point

The (V)MULPS instruction multiplies each of four (eight for the 256-bit form) single-precision
floating-point values in the first source operand (XMM or YMM register) operand by the
corresponding single-precision floating-point value in the second source operand (either a register or a
memory location) and writes the result to the corresponding doubleword of the destination XMM
(YMM) register. The (V)MULPD instruction performs an analogous operation for two (four) double-
precision floating-point values.

VMULSS and VMULLSD have no 256-bit form.

The (V)MULSS instruction multiplies the single-precision floating-point value in the low-order
doubleword of the first source operand (an XMM register) by the single-precision floating-point value
in the low-order doubleword of the second source operand (an XMM register or a 32-bit memory
location) and writes the result in the low-order doubleword of the destination XMM register. MULSS
leaves the three high-order doublewords of the destination unmodified. VMULSS copies the three
high-order doublewords of the first source operand to the destination.

The (V)MULSD instruction multiplies the double-precision floating-point value in the low-order
quadword of the first source operand (an XMM register) by the double-precision floating-point value
in the low-order quadword of the second source operand (an XMM register or a 64-bit memory
location) and writes the result in the low-order quadword of the destination XMM register. MULSD
leaves the high-order quadword of the destination unmodified. VMULSD copies the upper quadword
of the first source operand to the destination.

For the legacy instructions, the first source register is also the destination. For the extended
instructions, a separate destination register is specified by the instruction encoding.

4.7.4.8 Division
• (V)DIVPS—Divide Packed Single-Precision Floating-Point
• (V)DIVPD—Divide Packed Double-Precision Floating-Point
• (V)DIVSS—Divide Scalar Single-Precision Floating-Point
• (V)DIVSD—Divide Scalar Double-Precision Floating-Point

The (V)DIVPS instruction divides each of the four (eight for the 256-bit form) single-precision
floating-point values in the first source operand (an XMM or a YMM register) by the corresponding

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 203

24592—Rev. 3.23—October 2020 AMD64 Technology

single-precision floating-point value in the second source operand (either a register or a memory
location) and writes the result in the corresponding doubleword of the destination XMM (YMM)
register. For vectors of n number of elements, the operations are:

operand1[i] = operand1[i] operand2[i]

where: i = 0 to n – 1

The (V)DIVPD instruction performs an analogous operation for two (four) double-precision floating-
point values.

VDIVSS and VDIVSD have no 256-bit form.

The (V)DIVSS instruction divides the single-precision floating-point value in the low-order
doubleword of the first source operand (an XMM register) by the single-precision floating-point value
in the low-order doubleword of the second source operand (an XMM register or a 32-bit memory
location) and writes the result in the low-order doubleword of the destination XMM register. DIVSS
leaves the three high-order doublewords of the destination unmodified. VDIVSS copies the three high-
order doublewords of the first source operand to the destination.

The (V)DIVSD instruction divides the double-precision floating-point value in the low-order
quadword of the first source operand (an XMM register) by the double-precision floating-point value
in the low-order quadword of the second source operand (an XMM register or a 64-bit memory
location) and writes the result in the low-order quadword of the destination XMM register. DIVSS
leaves the high-order quadword of the destination unmodified. VDIVSD copies the upper quadword of
the first source operand to the destination.

For the legacy instructions, the first source XMM register is also the destination. For the extended
instructions, a separate destination register is specified by the instruction encoding.

If accuracy requirements allow, convert floating-point division by a constant to a multiply by the
reciprocal. Divisors that are powers of two and their reciprocals are exactly representable, and
therefore do not cause an accuracy issue, except for the rare cases in which the reciprocal overflows or
underflows.

4.7.4.9 Square Root
• (V)SQRTPS—Square Root Packed Single-Precision Floating-Point
• (V)SQRTPD—Square Root Packed Double-Precision Floating-Point
• (V)SQRTSS—Square Root Scalar Single-Precision Floating-Point
• (V)SQRTSD—Square Root Scalar Double-Precision Floating-Point

The (V)SQRTPS instruction computes the square root of each of four (eight for the 256-bit form)
single-precision floating-point values in the source operand (an XMM register or 128-bit memory
location) and writes the result in the corresponding doubleword of the destination XMM (YMM)
register. The (V)SQRTPD instruction performs an analogous operation for two double-precision
floating-point values.

[AMD Public Use]

204 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

VSQRTSS and VSQRTSD have no 256-bit form.

The (V)SQRTSS instruction computes the square root of the low-order single-precision floating-point
value in the source operand (an XMM register or 32-bit memory location) and writes the result in the
low-order doubleword of the destination XMM register. SQRTSS leaves the three high-order
doublewords of the destination XMM register unmodified. VSQRTSS copies the three high-order
doublewords of the first source operand to the destination.

The (V)SQRTSD instruction computes the square root of the low-order double-precision floating-
point value in the source operand (an XMM register or 64-bit memory location) and writes the result in
the low-order quadword of the destination XMM register. SQRTSD leaves the high-order quadword of
the destination XMM register unmodified. VSQRTSD copies the upper quadword of the first source
operand to the destination.

For the legacy instructions, the first source XMM register is also the destination. For the extended
instructions, a separate destination register is specified by the instruction encoding.

4.7.4.10 Reciprocal Square Root
• (V)RSQRTPS—Reciprocal Square Root Packed Single-Precision Floating-Point
• (V)RSQRTSS—Reciprocal Square Root Scalar Single-Precision Floating-Point

The (V)RSQRTPS instruction computes the approximate reciprocal of the square root of each of four
(eight for the 256-bit form) single-precision floating-point values in the source operand (an XMM
register or 128-bit memory location) and writes the result in the corresponding doubleword of the
destination XMM (YMM) register.

The (V)RSQRTSS instruction computes the approximate reciprocal of the square root of the low-order
single-precision floating-point value in the source operand (an XMM register or 32-bit memory
location) and writes the result in the low-order doubleword of the destination XMM register.
RSQRTSS leaves the three high-order doublewords in the destination XMM register unmodified.
VRSQRTSS copies the three high-order doublewords from the source operand to the destination.

For the legacy instructions, the first source register is also the destination. For the extended
instructions, a separate destination register is specified by the instruction encoding.

For both (V)RSQRTPS and (V)RSQRTSS, the maximum relative error is less than or equal to 1.5 *
2–12.

4.7.4.11 Reciprocal Estimation
• (V)RCPPS—Reciprocal Packed Single-Precision Floating-Point
• (V)RCPSS—Reciprocal Scalar Single-Precision Floating-Point

The (V)RCPPS instruction computes the approximate reciprocal of each of the four (eight, for the 256-
bit form) single-precision floating-point values in the source operand (an XMM register or 128-bit
memory location) and writes the result in the corresponding doubleword of the destination XMM
(YMM) register.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 205

24592—Rev. 3.23—October 2020 AMD64 Technology

The (V)RCPSS instruction computes the approximate reciprocal of the low-order single-precision
floating-point value in the source operand (an XMM register or 32-bit memory location) and writes the
result in the low-order doubleword of the destination XMM register. RCPSS leaves the three high-
order doublewords in the destination unmodified. VRCPSS copies the three high-order doublewords
from the source to the destination

For the legacy instructions, the first source register is also the destination. For the extended
instructions, a separate destination register is specified by the instruction encoding.

For both (V)RCPPS and (V)RCPSS, the maximum relative error is less than or equal to 1.5 * 2–12.

4.7.4.12 Dot Product
• (V)DPPS—Dot Product Single-Precision Floating-Point
• (V)DPPD—Dot Product Double-Precision Floating-Point

The (V)DPPS instruction computes one (two, for the 256-bit form) single-precision dot product(s),
selectively summing one, two, three, or four products of the corresponding source elements of the
source operands and then copies this dot product to any combination of four elements in (the upper and
lower octword of) the destination. An immediate byte selects which products are computed and to
which elements of the destination the dot product is copied. The 256-bit form utilizes the single
immediate byte to control the computation of both the upper and the lower octword of the result.

The first source operand is an XMM (YMM) register. The second source operand is either an XMM
register or a 128-bit memory location (YMM register or a 256-bit memory location). For the legacy
instructions, the first source register is also the destination. For the extended instructions, a separate
destination register is specified by the instruction encoding.

The (V)DPPD instruction performs the analogous operation on packed double-precision floating-point
operands.

As an example, a single DPPS instruction can be used to compute a two, three, or four element dot
product. A single 256-bit VDPPS instruction can be used to compute two dot products of up to four
elements each.

4.7.4.13 Floating-Point Round Instructions with Selectable Rounding Mode
• (V)ROUNDPS—Round Packed Single-Precision Floating-Point
• (V)ROUNDPD—Round Packed Double-Precision Floating-Point
• (V)ROUNDSS—Round Scalar Single-Precision
• (V)ROUNDSD—Round Scalar Double-Precision

High level languages and libraries often expose rounding operations that have a variety of numeric
rounding and exception behaviors. These four rounding instructions cover scalar and packed single
and double-precision floating-point operands. The rounding mode can be selected using one of the
IEEE-754 modes (Nearest, -Inf, +Inf, and Truncate) without changing the current rounding mode.
Alternately, the instruction can be forced to use the current rounding mode.

[AMD Public Use]

206 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The (V)ROUNDPS and (V)ROUNDPD instructions round each of the four (eight, for the 256-bit
form) single-precision values or two (four) double-precision values in the source operand (either an
XMM register or a 128-bit memory location or, for the 256-bit form, a YMM register or 256-bit
memory location) based on controls in an immediate byte and write the results to the respective
elements of the destination XMM (YMM) register.

The (V)ROUNDSS and (V)ROUNDSD instructions round the single-precision or double-precision
floating-point value from the source operand based on the rounding control specified in an immediate
byte and write the results to the low-order doubleword or quadword of an XMM register. The source
operand is either the low-order doubleword or quadword of an XMM register or a 32-bit or 64-bit
memory location. For the legacy forms of these instructions, the upper three doublewords or high-
order quadword of the destination are not modified. VROUNDSS copies the upper three doublewords
of a second XMM register to the destination. VROUNDSD copies the high-order quadword of a
second XMM register to the destination.

4.7.5 Fused Multiply-Add Instructions

The fused multiply-add (FMA) instructions comprise AMD’s four operand FMA4 instruction set and
the three operand FMA instruction set.

The FMA instructions provide a set of fused multiply-add mathematical operations. The basic FMA
instruction performs a multiply of two floating-point scalar or vector operands followed by a second
operation in which the product of the first operation is added to a third scalar or vector floating-point
operand. The result is rounded to the precision of the source operands and stored in either a distinct
destination register or in the register that sourced the first operand. Variants of the basic FMA
operation allow for the negation (sign inversion) of the products and the negation of the third scalar
operand or elements within the third vector operand.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 207

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-46 below provides a schematic representation of the scalar FMA instructions. Note that the
(1/-1) operator in the diagram denotes a negation (sign inversion) operation performed in some of
the instructions.

Figure 4-46. Scalar FMA Instructions

Resultn 0

n 0Scalar FP Value c

n 0Scalar FP Value a n 0Scalar FP Value b

×

× 1/-1

+

× 1/-1

Intermediate Result

x 0

ROUND

[AMD Public Use]

208 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-47 below provides a schematic representation of the vector FMA instructions. Note that the
(1/-1) operator in the diagram denotes a negation (sign inversion) operation performed in some of
the instructions. For illustrative purposes, four-element vectors are shown in the figure. The 128- and
256-bit data types support from 2 to 8 elements per vector.

Figure 4-47. Vector FMA Instructions

Fused multiply-add instructions can improve the performance and accuracy of many computations
that involve the accumulation of multiple products, such as the dot product operation and matrix
multiplication. Intermediate results may utilize a non-standard (higher) precision (using more
significant bits) than the standard single-precision or double-precision floating-point formats allow. A
fused multiply-add can be faster and more precise than the equivalent operations performed serially
because the step of rounding intermediate results can be skipped.

The FMA4 instructions support the specification of three operand sources (YMM/XMM registers or
memory) and a distinct destination register. This enables non-destructive computations where the
result does not overwrite one of the source operand registers. For the three operand FMA instructions
the result always overwrites the first source register. Variants within the set allow for the negation (sign
inversion) of operands or vector operand elements and/or intermediate values.

Six basic instruction variants are defined. These are:

Intermediate Result

x 0
element 2element 3 element 0element 1

n 0
element 2element 3 element 0element 1

Vector an 0
element 2element 3 element 0element 1

Vector cn 0
element 2element 3 element 0element 1

Vector bn 0
element 2element 3 element 0element 1

×

++++

×
×

×

× 1/-1 × 1/-1 × 1/-1 × 1/-1

× 1/-1 × 1/-1 × 1/-1 × 1/-1

ROUND

Result

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 209

24592—Rev. 3.23—October 2020 AMD64 Technology

• Fused multiply-add of scalar and vector (packed) single- and double-precision floating-point
values:

• Fused multiply-alternating add/subtract of vector (packed) single- and double-precision floating-
point values

• Fused multiply-alternating subtract/add of vector (packed) single- and double-precision floating-
point values

• Fused multiply-subtract of scalar and vector (packed) single- and double-precision floating-point
values

• Fused negative multiply-add of scalar and vector (packed) single- and double-precision floating-
point values

• Fused negative multiply-subtract of scalar and vector (packed) single- and double-precision
floating-point values

Note that a scalar operation is not defined for the fused multiply-alternating add/subtract and the fused
multiply-alternating subtract/add instructions. Each variant will be discussed below.

4.7.5.1 Operand Source Specification

Each instruction operates on three operands to produce a result. Individual instruction forms within a
variant allow either the second or third operand to be sourced from memory. In the following
descriptions, the first operand will be referred to as operand a, the second will be referred to as operand
b and the third operand c.

The instruction syntax for specifying this alternate sourcing of the second and third operands differs
between the FMA4 and the three operand FMA instructions.

The FMA4 instructions use the same instruction mnemonic allowing the memory operand source to
appear in either the second or third operand position:

VF(N)Moptxx dest_reg, src_reg1, src_reg2/mem, src_reg3
VF(N)Moptxx dest_reg, src_reg1, src_reg2, src_reg3/mem

The three-operand instructions utilize three different instruction mnemonics having the following
syntax:

VF(N)Mopt132xx src_reg1, src_reg2, src_reg3/mem
VF(N)Mopt213xx src_reg1, src_reg2, src_reg3/mem
VF(N)Mopt231xx src_reg1, src_reg2, src_reg3/mem

Where opt represents the instruction operation and xx represents the operand data type.

Operand sourcing for each instruction form is described in the following table:

[AMD Public Use]

210 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The specific operations performed by the six variants are described in the next sections.

4.7.5.2 Multiply and Add Instructions

VFMADDPD / VFMADD132PD / VFMADD213PD / VFMADD231PD

Multiplies together the double-precision floating-point vectors a and b, adds the product to the double-
precision floating-point vector c, and performs rounding to produce the double-precision floating-
point vector result.

VFMADDPS / VFMADD132PS / VFMADD213PS / VFMADD231PS

Multiplies together the single-precision floating-point vectors a and b, adds the product to the single-
precision floating-point vector c, and performs rounding to produce the single-precision floating-point
vector result.

VFMADDSD / VFMADD132SD / VFMADD213SD / VFMADD231SD

Multiplies together the double-precision floating-point scalars a and b, adds the product to the double-
precision floating-point scalar c, and performs rounding to produce the double-precision floating-point
scalar result.

VFMADDSS / VFMADD132SS / VFMADD213SS / VFMADD231SS

Multiplies together the single-precision floating-point scalars a and b, adds the product to the single-
precision floating-point scalar c, and performs rounding to produce the single-precision floating-point
scalar result.

4.7.5.3 Multiply with Alternating Add/Subtract Instructions

VFMADDSUBPD / VFMADDSUB132PD / VFMADDSUB213PD / VFMADDSUB231PD

Multiplies together the double-precision floating-point vectors a and b, adds each odd-numbered
element of the double-precision floating-point vector c to the corresponding element of the product,
subtracts each even-numbered element of double-precision floating-point vector c from the
corresponding element of the product, and performs rounding to produce the double-precision
floating-point vector result.

Figure 4-48. Operand Source / Destination Specification
Instruction Operand a Operand b Operand c Result

VF(N)Moptxx src_reg1 src_reg2 / mem src_reg3 dest_reg
VF(N)Moptxx src_reg1 src_reg2 src_reg3 / mem dest_reg
VF(N)Mopt132xx src_reg1 src_reg3 / mem src_reg2 src_reg1
VF(N)Mopt213xx src_reg2 src_reg1 src_reg3 / mem src_reg1
VF(N)Mopt231xx src_reg2 src_reg3 / mem src_reg1 src_reg1

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 211

24592—Rev. 3.23—October 2020 AMD64 Technology

VFMADDSUBPS / VFMADDSUB132PS / VFMADDSUB213PS / VFMADDSUB231PS

Multiplies together the single-precision floating-point vectors a and b, adds each odd-numbered
element of the single-precision floating-point vector c to the corresponding element of the product,
subtracts each even-numbered element of single-precision floating-point vector c from the
corresponding element of the product, and performs rounding to produce the single-precision floating-
point vector result.

4.7.5.4 Multiply with Alternating Subtract/Add Instructions

VFMSUBADDPD / VFMSUBADD132PD / VFMSUBADD213PD / VFMSUBADD231PD

Multiplies together the double-precision floating-point vectors a and b, adds each even-numbered
element of the double-precision floating-point vector c to the corresponding element of the product,
subtracts each odd-numbered element of double-precision floating-point vector c from the
corresponding element of the product, and performs rounding to produce the double-precision
floating-point vector result.

VFMSUBADDPS / VFMSUBADD132PS / VFMSUBADD213PS / VFMSUBADD231PS

Multiplies together the single-precision floating-point vectors a and b, adds each even-numbered
element of the single-precision floating-point vector c to the corresponding element of the product,
subtracts each odd-numbered element of single-precision floating-point vector c from the
corresponding element of the product, and performs rounding to produce the single-precision floating-
point vector result.

4.7.5.5 Multiply and Subtract Instructions

VFMSUBPD / VFMSUB132PD / VFMSUB213PD / VFMSUB231PD

Multiplies together the double-precision floating-point vectors a and b, subtracts the double-precision
floating-point vector c from the product, and performs rounding to produce the double-precision
floating-point vector result.

VFMSUBPS / VFMSUB132PS / VFMSUB213PS / VFMSUB231PS

Multiplies together the single-precision floating-point vectors a and b, subtracts the single-precision
floating-point vector c from the product, and performs rounding to produce the single-precision
floating-point vector result.

VFMSUBSD / VFMSUB132SD / VFMSUB213SD / VFMSUB231SD

Multiplies together the double-precision floating-point scalars a and b, subtracts the double-precision
floating-point scalar c from the product, and performs rounding to produce the double-precision
floating-point result.

[AMD Public Use]

212 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

VFMSUBSS / VFMSUB132SS / VFMSUB213SS / VFMSUB231SS

Multiplies together the single-precision floating-point scalars a and b, subtracts the single-precision
floating-point scalar c from the product, and performs rounding to produce the single-precision
floating-point result.

4.7.5.6 Negative Multiply and Add Instructions

VFNMADDPD / VFNMADD132PD / VFNMADD213PD / VFNMADD231PD

Multiplies together the double-precision floating-point vectors a and b, negates (inverts the sign) the
product, adds this intermediate result to the double-precision floating-point vector c, and performs
rounding to produce the double-precision floating-point vector result.

VFNMADDPS / VFNMADD132PS / VFNMADD213PS / VFNMADD231PS

Multiplies together the single-precision floating-point vectors a and b, negates (inverts the sign) the
product, adds this intermediate result to the single-precision floating-point vector c, and performs
rounding to produce the single-precision floating-point vector result.

VFNMADDSD / VFNMADD132SD / VFNMADD213SD / VFNMADD231SD

Multiplies together the double-precision floating-point scalars a and b, negates (inverts the sign) the
product, adds this intermediate result to the double-precision floating-point scalar c, and performs
rounding to produce the double-precision floating-point result.

VFNMADDSS / VFNMADD132SS / VFNMADD213SS / VFNMADD231SS

Multiplies together the single-precision floating-point scalars a and b, negates (inverts the sign) the
product, adds this intermediate result to the single-precision floating-point scalar c, and performs
rounding to produce the single-precision floating-point result.

4.7.5.7 Negative Multiply and Subtract Instructions

VFNMSUBPD / VFNMSUB132PD / VFNMSUB213PD / VFNMSUB231PD

Multiplies together the double-precision floating-point vectors a and b, negates the product (inverts
the sign), adds this intermediate result to the negated double-precision floating-point vector c, and
performs rounding to produce the double-precision floating-point vector result.

VFNMSUBPS / VFNMSUB132PS / VFNMSUB213PS / VFNMSUB231PS

Multiplies together the single-precision floating-point vectors a and b, negates the product (inverts the
sign), adds this intermediate result to the negated single-precision floating-point vector c, and
performs rounding to produce the single-precision floating-point vector result.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 213

24592—Rev. 3.23—October 2020 AMD64 Technology

VFNMSUBSD / VFNMSUB132SD / VFNMSUB213SD / VFNMSUB231SD

Multiplies together the double-precision floating-point scalars a and b, negates the product (inverts the
sign), adds this intermediate result to the negated double-precision floating-point scalar c, and
performs rounding to produce the double-precision floating-point result.

VFNMSUBSS / VFNMSUB132SS / VFNMSUB213SS / VFNMSUB231SS

Multiplies together the single-precision floating-point scalars a and b, negates the product (inverts the
sign), adds this intermediate result to the negated single-precision floating-point scalar c, and performs
rounding to produce the single-precision floating-point result.

4.7.6 Compare

The floating-point vector-compare instructions compare two operands, and they either write a mask, or
they write the maximum or minimum value, or they set flags. Compare instructions can be used to
avoid branches. Figure 4-21 on page 148 shows an example of using compare instructions.

4.7.6.1 Compare and Write Mask
• (V)CMPPS—Compare Packed Single-Precision Floating-Point
• (V)CMPPD—Compare Packed Double-Precision Floating-Point
• (V)CMPSS—Compare Scalar Single-Precision Floating-Point
• (V)CMPSD—Compare Scalar Double-Precision Floating-Point

The (V)CMPPS instruction compares each of four (eight, for 256-bit form) single-precision floating-
point values in the first source operand with the corresponding single-precision floating-point value in
the second source operand and writes the result in the corresponding 32 bits of the destination. The
type of comparison is specified by the three (five, for the AVX forms) low-order bits of the immediate-
byte operand. The result of each compare is a 32-bit value of all 1s (TRUE) or all 0s (FALSE). Some
compare operations that are not directly supported by the immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands before executing the
compare.

The (V)CMPPD instruction performs an analogous operation for two (four, for the 256-bit form)
double-precision floating-point values.

The first source operand is an XMM (YMM) register. The second source operand is either an XMM
register or a 128-bit memory location (YMM register or a 256-bit memory location). For the legacy
form of the instructions, the first source register is also the destination. The extended form of the
instructions encodes a separate destination XMM (YMM) register.

The (V)CMPSS instruction performs an analogous operation for single-precision floating-point
values. The first source operand is the low-order doubleword of an XMM register. The second source
operand is either the low-order doubleword of an XMM register or a 32-bit memory location. CMPSS
leaves the three high-order doublewords of the destination unmodified. VCMPSS copies the three

[AMD Public Use]

214 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

high-order doublewords of the first source operand to the destination. For CMPSS the first source
operand is also the destination.

The (V)CMPSD instruction performs an analogous operation on double-precision floating-point
values. CMPSD leaves the high-order quadword of the destination XMM register unmodified.
VCMPSD copies the high-order quadword of the first source operand to the destination.

Figure 4-49 shows a (V)CMPPD compare operation.

Figure 4-49. (V)CMPPD Compare Operation

4.7.6.2 Compare and Write Minimum or Maximum
• (V)MAXPS—Maximum Packed Single-Precision Floating-Point
• (V)MAXPD—Maximum Packed Double-Precision Floating-Point
• (V)MAXSS—Maximum Scalar Single-Precision Floating-Point
• (V)MAXSD—Maximum Scalar Double-Precision Floating-Point
• (V)MINPS—Minimum Packed Single-Precision Floating-Point
• (V)MINPD—Minimum Packed Double-Precision Floating-Point
• (V)MINSS—Minimum Scalar Single-Precision Floating-Point
• (V)MINSD—Minimum Scalar Double-Precision Floating-Point

The (V)MAXPS and (V)MINPS instructions compare each of four (eight, for the 256-bit form) single-
precision floating-point values in the first source operand with the corresponding single-precision
floating-point value in the second source operand and write the maximum or minimum, respectively,
of the two (four) values to the corresponding doubleword of the destination. The (V)MAXPD and
(V)MINPD instructions perform analogous operations on pairs of double-precision floating-point

result

operand 1
127 0

127 0

operand 2
127 0

imm8

compare

all 1s or 0s all 1s or 0s

compare

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 215

24592—Rev. 3.23—October 2020 AMD64 Technology

values. The first source operand is an XMM (YMM) register and the second is either an XMM register
or a 128-bit memory location (or for the 256-bit form, a YMM register or a 256-bit memory location).
The destination for the legacy forms is the source operand register. The extended instructions specify a
separate destination register in their encoding.

The (V)MAXSS and (V)MINSS instructions compare the single-precision floating-point value of the
first source operand with the single-precision floating-point value in the second source operand and
write the maximum or minimum, respectively, of the two values to the low-order 32 bits of the
destination XMM register. The first source operand is the low-order doubleword of an XMM register
and the second is either the low-order doubleword of an XMM register or a 32-bit memory location.
The legacy forms do not modify the three high-order doublewords of the destination. The extended
forms merge in the corresponding bits from an additional XMM source operand.

The (V)MAXSD and (V)MINSD instructions compare the double-precision floating-point value of
the first source operand with the double-precision floating-point value in the second source operand
and write the maximum or minimum, respectively, of the two values to the low-order quadword of the
destination XMM register. The first source operand is the low-order doubleword of an XMM register
and the second is either the low-order doubleword of an XMM register or a 32-bit memory location.
The legacy forms do not modify the high-order quadword of the destination XMM register. The
extended forms merge in the corresponding bits from an additional XMM source operand.

The destination for the legacy forms is the source operand register. The extended instructions specify a
separate destination register in their encoding.

The (V)MINx and (V)MAXx instructions are useful for clamping (saturating) values, such as color
values in 3D geometry and rasterization.

4.7.6.3 Compare and Write rFLAGS
• (V)COMISS—Compare Ordered Scalar Single-Precision Floating-Point
• (V)COMISD—Compare Ordered Scalar Double-Precision Floating-Point
• (V)UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point
• (V)UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point

The (V)COMISS instruction performs an ordered compare of the single-precision floating-point value
in the low-order 32 bits of the first operand with the single-precision floating-point value in the second
operand (either the low-order 32 bits of an XMM register or a 32-bit memory location) and sets the
zero flag (ZF), parity flag (PF), and carry flag (CF) bits in the rFLAGS register to reflect the result of
the compare. The OF, AF, and SF bits in rFLAGS are set to zero.

The (V)COMISD instruction performs an analogous operation on the double-precision floating-point
source operands. The (V)UCOMISS and (V)UCOMISD instructions perform an analogous, but
unordered, compare operations. Figure 4-50 on page 216 shows a (V)COMISD compare operation.

[AMD Public Use]

216 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 4-50. (V)COMISD Compare Operation

The difference between an ordered and unordered comparison has to do with the conditions under
which a floating-point invalid-operation exception (IE) occurs. In an ordered comparison
((V)COMISS or (V)COMISD), an IE exception occurs if either of the source operands is either type of
NaN (QNaN or SNaN). In an unordered comparison, the exception occurs only if a source operand is
an SNaN. For a description of NaNs, see Section “Floating-Point Number Types” on page 124. For a
description of exceptions, see “Exceptions” on page 218.

4.7.7 Logical

The vector-logic instructions perform Boolean logic operations, including AND, OR, and exclusive
OR. The extended forms of the instructions support both 128-bit and 256-bit operands.

4.7.7.1 And
• (V)ANDPS—Logical Bitwise AND Packed Single-Precision Floating-Point
• (V)ANDPD—Logical Bitwise AND Packed Double-Precision Floating-Point
• (V)ANDNPS—Logical Bitwise AND NOT Packed Single-Precision Floating-Point
• (V)ANDNPD—Logical Bitwise AND NOT Packed Double-Precision Floating-Point

The (V)ANDPS instruction performs a logical bitwise AND of the four (eight, for the 256-bit form)
packed single-precision floating-point values in the first source operand and the corresponding four
(eight) single-precision floating-point values in the second source operand and writes the result to the
destination. The (V)ANDPD instruction performs an analogous operation on the two (four) packed
double-precision floating-point values. The (V)ANDNPS and (V)ANDNPD instructions invert the
elements of the first source vector (creating a one’s complement of each element), AND them with the
elements of the second source vector, and write the result to the destination. The first source operand is
an XMM (YMM) register. The second source operand is either another XMM (YMM) register or a
128-bit (256-bit) memory location. For the legacy instructions, the destination is also the first source
operand. For the extended forms, the destination is a separately specified XMM (YMM) register.

operand 1
127 0

operand 2
127 0

compare

03163

rFLAGS0

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 217

24592—Rev. 3.23—October 2020 AMD64 Technology

4.7.7.2 Or
• (V)ORPS—Logical Bitwise OR Packed Single-Precision Floating-Point
• (V)ORPD—Logical Bitwise OR Packed Double-Precision Floating-Point

The (V)ORPS instruction performs a logical bitwise OR of four (eight, for the 256-bit form) single-
precision floating-point values in the first source operand and the corresponding four (eight) single-
precision floating-point values in the second operand and writes the result to the destination. The
(V)ORPD instruction performs an analogous operation on pairs of two double-precision floating-point
values. The first source operand is an XMM (YMM) register. The second source operand is either
another XMM (YMM) register or a 128-bit (256-bit) memory location. For the legacy instructions, the
destination is also the first source operand. For the extended forms, the destination is a separately
specified XMM (YMM) register.

4.7.7.3 Exclusive Or
• (V)XORPS—Logical Bitwise Exclusive OR Packed Single-Precision Floating-Point
• (V)XORPD—Logical Bitwise Exclusive OR Packed Double-Precision Floating-Point

The (V)XORPS instruction performs a logical bitwise exclusive OR of four (eight, for the 256-bit
form) single-precision floating-point values in the first operand and the corresponding four (eight)
single-precision floating-point values in the second operand and writes the result to the destination.
The (V)XORPD instruction performs an analogous operation on pairs of two double-precision
floating-point values. The first source operand is an XMM (YMM) register. The second source
operand is either another XMM (YMM) register or a 128-bit (256-bit) memory location. For the
legacy instructions, the destination is also the first source operand. For the extended forms, the
destination is a separately specified XMM (YMM) register.

4.8 Instruction Prefixes
Instruction prefixes, in general, are described in “Instruction Prefixes” on page 76. The following
restrictions apply to the use of instruction prefixes with SSE instructions.

4.8.1 Supported Prefixes

The following prefixes can be used with SSE instructions:

• Address-Size Override—The 67h prefix affects only operands in memory. The prefix is ignored by
all other SSE instructions.

• Operand-Size Override—The 66h prefix is used to form the opcodes of certain SSE instructions.
The prefix is ignored by all other SSE instructions.

• Segment Overrides—The 2Eh (CS), 36h (SS), 3Eh (DS), 26h (ES), 64h (FS), and 65h (GS)
prefixes affect only operands in memory. In 64-bit mode, the contents of the CS, DS, ES, SS
segment registers are ignored.

[AMD Public Use]

218 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• REP—The F2 and F3h prefixes do not function as repeat prefixes for the SSE instructions. Instead,
they are used to form the opcodes of certain SSE instructions. The prefixes are ignored by all other
SSE instructions.

• REX—The REX prefixes affect operands that reference a GPR or XMM register when running in
64-bit mode. It allows access to the full 64-bit width of any of the 16 extended GPRs and to any of
the 16 extended XMM registers. The REX prefix also affects the FXSAVE and FXRSTOR
instructions, in which it selects between two types of 512-byte memory-image format, as described
in “Media and x87 Processor State” in Volume 2. The prefix is ignored by all other SSE
instructions.

4.8.1.1 Special-Use and Reserved Prefixes

The following prefixes are used as opcode bytes in some SSE instructions and are reserved in all other
SSE instructions:

• Operand-Size Override—The 66h prefix.
• REP—The F2 and F3h prefixes.

4.8.1.2 Prefixes That Cause Exceptions

The following prefixes cause an exception:

• LOCK—The F0h prefix causes an invalid-opcode exception when used with SSE instructions.

4.9 Feature Detection
As discussed in Section 4.1.2 “Origins” on page 112, the SSE instruction set is composed of a large
number of subsets. To avoid a #UD fault when attempting to execute any of these instructions,
hardware must support the instruction subset, system software must indicate its support of SSE context
management, and the subset must be enabled. Hardware support for each subset is indicated by a
processor feature bit. These are accessed via the CPUID instruction. See Volume 3 for details on the
CPUID instruction and the feature bits associated with the SSE Instruction set.

4.10 Exceptions
Types of Exceptions

SSE instructions can generate two types of exceptions:

• General-Purpose Exceptions, described below in “General-Purpose Exceptions”
• SIMD Floating-Point Exception, described below in “SIMD Floating-Point Exception Causes” on

page 220

Relation to x87 Exceptions

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 219

24592—Rev. 3.23—October 2020 AMD64 Technology

Although the SSE instructions and the x87 floating-point instructions each have certain exceptions
with the same names, the exception-reporting and exception-handling methods used by the two
instruction subsets are distinct and independent of each other. If procedures using both types of
instructions are run in the same operating environment, separate services routines should be provided
for the exceptions of each type of instruction subset.

4.10.1 General-Purpose Exceptions

The sections below list general-purpose exceptions generated and not generated by SSE instructions.
For a summary of the general-purpose exception mechanism, see “Interrupts and Exceptions” on
page 91. For details about each exception and its potential causes, see “Exceptions and Interrupts” in
Volume 2.

4.10.1.1 Exceptions Generated

The SSE instructions can generate the following general-purpose exceptions:

• #DB—Debug Exception (Vector 1)
• #UD—Invalid-Opcode Exception (Vector 6)
• #NM—Device-Not-Available Exception (Vector 7)
• #DF—Double-Fault Exception (Vector 8)
• #SS—Stack Exception (Vector 12)
• #GP—General-Protection Exception (Vector 13)
• #PF—Page-Fault Exception (Vector 14)
• #MF—x87 Floating-Point Exception-Pending (Vector 16)
• #AC—Alignment-Check Exception (Vector 17)
• #MC—Machine-Check Exception (Vector 18)
• #XF—SIMD Floating-Point Exception (Vector 19)

A device not available exception (#NM) can occur if:

• an attempt is made to execute a SSE instruction when the task switch bit (TS) of the control
register (CR0) is set to 1 (CR0.TS = 1), or

• an attempt is made to execute an FXSAVE or FXRSTOR instruction when the floating-point
software-emulation (EM) bit in control register 0 is set to 1 (CR0.EM = 1).

An invalid-opcode exception (#UD) can occur if:

• a CPUID feature flag indicates that a feature is not supported (see “Feature Detection” on
page 218), or

• a SIMD floating-point exception occurs when the operating-system XMM exception support bit
(OSXMMEXCPT) in control register 4 is cleared to 0 (CR4.OSXMMEXCPT = 0).

• an instruction subset is supported but not enabled.

[AMD Public Use]

220 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Only the following SSE instructions, all of which can access an MMX register, can cause an #MF
exception:

• Data Conversion: CVTPD2PI, CVTPS2PI, CPTPI2PD, CVTPI2PS, CVTTPD2PI, CVTTPS2PI.
• Data Transfer: MOVDQ2Q, MOVQ2DQ.

For details on the system control-register bits, see “System-Control Registers” in Volume 2. For
details on the machine-check mechanism, see “Machine Check Mechanism” in Volume 2.

For details on #XF exceptions, see “SIMD Floating-Point Exception Causes” on page 220.

4.10.1.2 Exceptions Not Generated

The SSE instructions do not generate the following general-purpose exceptions:

• #DE—Divide-by-zero-error exception (Vector 0)
• Non-Maskable-Interrupt Exception (Vector 2)
• #BP—Breakpoint Exception (Vector 3)
• #OF—Overflow exception (Vector 4)
• #BR—Bound-range exception (Vector 5)
• Coprocessor-segment-overrun exception (Vector 9)
• #TS—Invalid-TSS exception (Vector 10)
• #NP—Segment-not-present exception (Vector 11)
• #MC—Machine-check exception (Vector 18)

For details on all general-purpose exceptions, see “Exceptions and Interrupts” in Volume 2.

4.10.2 SIMD Floating-Point Exception Causes

The SIMD floating-point exception is the logical OR of the six floating-point exceptions (IE, DE, ZE,
OE, UE, PE) that are reported (signalled) in the MXCSR register’s exception flags (See Section 4.2.2
“MXCSR Register” on page 115). Each of these six exceptions can be either masked or unmasked by
software, using the mask bits in the MXCSR register.

4.10.2.1 Exception Vectors

The SIMD floating-point exception is listed above as #XF (Vector 19) but it actually causes either an
#XF exception or a #UD (Vector 6) exception, if an unmasked IE, DE, ZE, OE, UE, or PE exception is
reported. The choice of exception vector is determined by the operating-system XMM exception
support bit (OSXMMEXCPT) in control register 4 (CR4):

• When CR4.OSXMMEXCPT = 1, a #XF exception occurs.
• When CR4.OSXMMEXCPT = 0, a #UD exception occurs.

SIMD floating-point exceptions are precise. If an exception occurs when it is masked, the processor
responds in a default way that does not invoke the SIMD floating-point exception service routine. If an

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 221

24592—Rev. 3.23—October 2020 AMD64 Technology

exception occurs when it is unmasked, the processor suspends processing of the faulting instruction
precisely and invokes the exception service routine.

4.10.2.2 Exception Types and Flags

SIMD floating-point exceptions are differentiated into six types, five of which are mandated by the
IEEE 754 standard. These six types and their bit-flags in the MXCSR register are shown in Table 4-12.
The causes and handling of such exceptions are described below.

The sections below describe the causes for the SIMD floating-point exceptions. The pseudocode
equations in these descriptions assume logical TRUE = 1 and the following definitions:

Maxnormal
The largest normalized number that can be represented in the destination format. This is equal to
the format’s largest representable finite, positive or negative value. (Normal numbers are described
in “Normalized Numbers” on page 125.)

Minnormal
The smallest normalized number that can be represented in the destination format. This is equal to
the format’s smallest precisely representable positive or negative value with an unbiased exponent
of 1.

Resultinfinite
A result of infinite precision, which is representable when the width of the exponent and the width
of the significand are both infinite.

Resultround
A result, after rounding, whose unbiased exponent is infinitely wide and whose significand is the
width specified for the destination format. (Rounding is described in “Floating-Point Rounding”
on page 129.)

Table 4-12. SIMD Floating-Point Exception Flags
Exception and

Mnemonic MXCSR Bit1
Comparable IEEE 754

Exception
Invalid-operation exception (IE) 0 Invalid Operation
Denormalized operation exception (DE) 1 none
Zero-divide exception (ZE) 2 Division by Zero
Overflow exception (OE) 3 Overflow
Underflow exception (UE) 4 Underflow
Precision exception (PE) 5 Inexact
Note:

1. See “MXCSR Register” on page 115 for a summary of each exception.

[AMD Public Use]

222 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Resultround, denormal
A result, after rounding and denormalization. (Denormalization is described in “Denormalized
(Tiny) Numbers” on page 125.)

Masked and unmasked responses to the exceptions are described in “SIMD Floating-Point Exception
Masking” on page 226. The priority of the exceptions is described in “SIMD Floating-Point Exception
Priority” on page 224.

4.10.2.3 Invalid-Operation Exception (IE)

The IE exception occurs due to one of the attempted invalid operations shown in Table 4-13.

4.10.2.4 Denormalized-Operand Exception (DE)

The DE exception occurs when one of the source operands of an instruction is in denormalized form,
as described in “Denormalized (Tiny) Numbers” on page 125.

4.10.2.5 Zero-Divide Exception (ZE)

The ZE exception occurs when an instruction attempts to divide zero into a non-zero finite dividend.

Table 4-13. Invalid-Operation Exception (IE) Causes
Operation Condition

Any Arithmetic Operation, and
(V)CVTPS2PD, (V)CVTPD2PS, (V)CVTSS2SD,
(V)CVTSD2SS

A source operand is an SNaN

(V)MAXPS, (V)MAXPD, (V)MAXSS, (V)MAXSD
(V)MINPS, (V)MINPD, (V)MINSS, (V)MINSD
(V)CMPPS, (V)CMPPD, (V)CMPSS, (V)CMPSD
(V)COMISS, (V)COMISD

A source operand is a NaN (QNaN or SNaN)

(V)ADDPS, (V)ADDPD, (V)ADDSS, (V)ADDSD,
(V)ADDSUBPS. (V)ADDSUBPD, (V)HADDPS,
(V)HADDPD

Source operands are infinities with opposite signs

(V)SUBPS, (V)SUBPD, (V)SUBSS, (V)SUBSD,
(V)ADDSUBPS, (V)ADDSUBPD, (V)HSUBPS,
(V)HSUBPD

Source operands are infinities with same sign

(V)MULPS, (V)MULPD, (V)MULSS, (V)MULSD Source operands are zero and infinity
(V)DIVPS, (V)DIVPD, (V)DIVSS, (V)DIVSD Source operands are both infinity or both zero

(V)SQRTPS, (V)SQRTPD, (V)SQRTSS, (V)SQRTSD Source operand is less than zero (except ±0, which
returns ±0)

Data conversion from floating-point to integer:
CVTPS2PI, CVTPD2PI, (V)CVTSS2SI, (V)CVTSD2SI,
(V)CVTPS2DQ, (V)CVTPD2DQ, CVTTPS2PI,
CVTTPD2PI, (V)CVTTPD2DQ, (V)CVTTPS2DQ,
(V)CVTTSS2SI, (V)CVTTSD2SI)

Source operand is a NaN, infinite, or not
representable in destination data type

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 223

24592—Rev. 3.23—October 2020 AMD64 Technology

4.10.2.6 Overflow Exception (OE)

The OE exception occurs when the value of a rounded floating-point result is larger than the largest
representable normalized positive or negative floating-point number in the destination format.
Specifically:
OE = Resultround > Maxnormal

An overflow can occur through computation or through conversion of higher-precision numbers to
lower-precision numbers.

4.10.2.7 Underflow Exception (UE)

The UE exception occurs when the value of a rounded, non-zero floating-point result is too small to be
represented as a normalized positive or negative floating-point number in the destination format. Such
a result is called a tiny number, associated with the Precision Exception (PE) described immediately
below.

If UE exceptions are masked by the underflow mask (UM) bit, a UE exception occurs only if the
denormalized form of the rounded result is imprecise. Specifically:
UE = ((UM=0 and (Resultround < Minnormal) or

((UM=1 and (Resultround, denormal)!= Resultinfinite)

Underflows can occur, for example, by taking the reciprocal of the largest representable number, or by
converting small numbers in double-precision format to a single-precision format, or simply through
repeated division. The flush-to-zero (FZ) bit in the MXCSR offers additional control of underflows
that are masked. See Section 4.2.2 “MXCSR Register” on page 115 for details.

4.10.2.8 Precision Exception (PE)

The PE exception, also called the inexact-result exception, occurs when a rounded floating-point result
differs from the infinitely precise result and thus cannot be represented precisely in the destination
format. This exception is caused by—among other things—rounding of underflow or overflow results
according to the rounding control (RC) field in the MXCSR, as described in “Floating-Point
Rounding” on page 129.

If an overflow or underflow occurs and the OE or UE exceptions are masked by the overflow mask
(OM) or underflow mask (UM) bit, a PE exception occurs only if the rounded result (for OE) or the
denormalized form of the rounded result (for UE) is imprecise. Specifically:
PE = ((Resultround, denormal or Resultround)!= Resultinfinite) or

(OM=1 and (Resultround > Maxnormal)) or
(UM=1 and (Resultround, denormal < Minnormal))

Software that does not require exact results normally masks this exception.

[AMD Public Use]

224 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

4.10.3 SIMD Floating-Point Exception Priority

Figure 4-14 on page 224 shows the priority with which the processor recognizes multiple,
simultaneous SIMD floating-point exceptions and operations involving QNaN operands. Each
exception type is characterized by its timing, as follows:

• Pre-Computation—an exception that is recognized before an instruction begins its operation.
• Post-Computation—an exception that is recognized after an instruction completes its operation.

For masked (but not unmasked) post-computation exceptions, a result may be written to the
destination, depending on the type of exception. Operations involving QNaNs do not necessarily cause
exceptions, but the processor handles them with the priority shown in Table 4-14 relative to the
handling of exceptions.

Figure 4-51 on page 225 shows the prioritized procedure used by the processor to detect and report
SIMD floating-point exceptions. Each of the two types of exceptions—pre-computation and post-
computation—is handled independently and completely in the sequence shown. If there are no
unmasked exceptions, the processor responds to masked exceptions. Because of this two-step process,
up to two exceptions—one pre-computation and one post-computation—can be caused by each
operation performed by a single SIMD instruction.

Table 4-14. Priority of SIMD Floating-Point Exceptions
Priority Exception or Operation Timing

1 Invalid-operation exception (IE) when accessing
SNaN operand Pre-Computation

2 Operation involving a QNaN operand1 —

3
Any other type of invalid-operation exception (IE) Pre-Computation

Zero-divide exception (ZE) Pre-Computation
4 Denormalized operation exception (DE) Pre-Computation

5
Overflow exception (OE) Post-Computation

Underflow exception (UE) Post-Computation
6 Precision (inexact) exception (PE) Post-Computation

Note:
1. Operations involving QNaN operands do not, in themselves, cause exceptions but they are

handled with this priority relative to the handling of exceptions.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 225

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 4-51. SIMD Floating-Point Detection Process

Continue Execution

Test For
Pre-Computation

Exceptions

Set MXCSR
Exception Flags

Yes

No

No

For Each
Vector
Element

For Each
Exception
Type

Any
Unmasked Exceptions

?

Test For
Pre-Computation

Exceptions

Set MXCSR
Exception Flags

Default
Response

Invoke Exception
Service Routine

Yes

For Each
Vector
Element

For Each
Exception
Type

Any
Unmasked Exceptions

?

No

YesAny
Masked Exceptions

?

[AMD Public Use]

226 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

4.10.4 SIMD Floating-Point Exception Masking

The six floating-point exception flags have corresponding exception-flag masks in the MXCSR
register, as shown in Table 4-15.

Each mask bit, when set to 1, inhibits invocation of the exception handler for that exception and
instead causes a default response. Thus, an unmasked exception is one that invokes its exception
handler when it occurs, whereas a masked exception continues normal execution using the default
response for the exception type. During power-on initialization, all exception-mask bits in the
MXCSR register are set to 1 (masked).

4.10.4.1 Masked Responses

The occurrence of a masked exception does not invoke its exception handler when the exception
condition occurs. Instead, the processor handles masked exceptions in a default way, as shown in
Table 4-16 on page 227.

Table 4-15. SIMD Floating-Point Exception Masks
Exception Mask
and Mnemonic MXCSR Bit Comparable IEEE 754

Exception
Invalid-operation exception mask (IM) 7 Invalid Operation
Denormalized-operand exception mask (DM) 8 none
Zero-divide exception mask (ZM) 9 Division by Zero
Overflow exception mask (OM) 10 Overflow
Underflow exception mask (UM) 11 Underflow
Precision exception mask (PM) 12 Inexact

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 227

24592—Rev. 3.23—October 2020 AMD64 Technology

Table 4-16. Masked Responses to SIMD Floating-Point Exceptions
Exception Operation1 Processor Response2

Invalid-
operation
exception (IE)

Any of the following, in which one or both operands is an SNaN:
• Addition: (V)ADDPS, (V)ADDPD, (V)ADDSS, (V)ADDSD,

(V)ADDSUBPD, (V)ADDSUBPS, (V)HADDPS, (V)HADDPD
• Subtraction: (V)SUBPS, (V)SUBPD, (V)SUBSS, (V)SUBSD,

(V)ADDSUBPD, (V)ADDSUBPS, (V)HSUBPD, (V)HSUBPS
• Multiplication: (V)MULPS, (V)MULPD, (V)MULSS, (V)MULSD
• Division: (V)DIVPS, (V)DIVPD, (V)DIVSS, (V)DIVSD
• Square-root: (V)SQRTPS, (V)SQRTPD, (V)SQRTSS,

(V)SQRTSD
• Data conversion of floating-point to floating-point:

(V)CVTPS2PD, (V)CVTPD2PS, (V)CVTSS2SD,
(V)CVTSD2SS

Return a QNaN, based
on the rules in Table 4-5
on page 127.

• Addition of infinities with opposite sign: (V)ADDPS, (V)ADDPD,
(V)ADDSS, (V)ADDSD, (V)ADDSUBPS, (V)ADDSUBPD,
(V)HADDPD, (V)HADDPS

• Subtraction of infinities with same sign: (V)SUBPS, (V)SUBPD,
(V)SUBSS, (V)SUBSD, (V)ADDSUBPS, (V)ADDSUBPD,
(V)HSUBPS, (V)HSUBPD

• Multiplication of zero by infinity: (V)MULPS, (V)MULPD,
(V)MULSS, (V)MULSD

• Division of zero by zero or infinity by infinity: (V)DIVPS,
(V)DIVPD, (V)DIVSS, (V)DIVSD

• Square-root in which the operand is non-zero negative:
(V)SQRTPS, (V)SQRTPD, (V)SQRTSS, (V)SQRTSD

Return the floating-point
indefinite value.

Any of the following, in which one or both operands is a NaN:
• Maximum or Minimum: (V)MAXPS, (V)MAXPD, (V)MAXSS,

(V)MAXSD, (V)MINPS, (V)MINPD, (V)MINSS, (V)MINSD

Return second source
operand.

Compare, in which one or both
operands is a NaN:
(V)CMPPS, (V)CMPPD,
(V)CMPSS, (V)CMPSD

Compare is unordered or not-
equal Return mask of all 1s.

All other compares Return mask of all 0s.

Note:
1. For complete details about operations, see “SIMD Floating-Point Exception Causes” on page 220.
2. In all cases, the processor sets the associated exception flag in MXCSR. For details about number representation,

see “Floating-Point Number Types” on page 124 and “Floating-Point Number Encodings” on page 127.
3. This response does not comply with the IEEE 754 standard, but it offers higher performance.

[AMD Public Use]

228 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Invalid-
operation
exception (IE)

Ordered or unordered scalar compare, in which one or both
operands is a NaN ((V)COMISS, (V)COMISD, (V)UCOMISS,
(V)UCOMISD).

Sets the result in rFLAGS
to “unordered.”
Clear the overflow (OF),
sign (SF), and auxiliary
carry (AF) flags in
rFLAGS.

Data conversion from floating-point to integer, in which source
operand is a NaN, infinity, or is larger than the representable
value of the destination (CVTPS2PI, CVTPD2PI, (V)CVTSS2SI,
(V)CVTSD2SI, (V)CVTPS2DQ, (V)CVTPD2DQ, CVTTPS2PI,
CVTTPD2PI, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)CVTTSS2SI,
(V)CVTTSD2SI).

Return the integer
indefinite value.

Denormalized
-operand
exception
(DE)

One or both operands is denormal Return the result using
the denormal operand(s).

Zero-divide
exception
(ZE)

Divide (DIVx) zero with non-zero finite dividend
Return signed infinity,
with sign bit = XOR of the
operand sign bits.

Overflow
exception
(OE)

Overflow when rounding mode
= round to nearest

Sign of result is positive Return +.

Sign of result is negative Return –.

Overflow when rounding mode
= round toward +

Sign of result is positive Return +.

Sign of result is negative
Return finite negative
number with largest
magnitude.

Overflow when rounding mode
= round toward -

Sign of result is positive
Return finite positive
number with largest
magnitude.

Sign of result is negative Return –.

Overflow when rounding mode
= round toward 0

Sign of result is positive
Return finite positive
number with largest
magnitude.

Sign of result is negative
Return finite negative
number with largest
magnitude.

Table 4-16. Masked Responses to SIMD Floating-Point Exceptions (continued)
Exception Operation1 Processor Response2

Note:
1. For complete details about operations, see “SIMD Floating-Point Exception Causes” on page 220.
2. In all cases, the processor sets the associated exception flag in MXCSR. For details about number representation,

see “Floating-Point Number Types” on page 124 and “Floating-Point Number Encodings” on page 127.
3. This response does not comply with the IEEE 754 standard, but it offers higher performance.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 229

24592—Rev. 3.23—October 2020 AMD64 Technology

4.10.4.2 Unmasked Responses

If the processor detects an unmasked exception, it sets the associated exception flag in the MXCSR
register and invokes the SIMD floating-point exception handler. The processor does not write a result
or change any of the source operands for any type of unmasked exception. The exception handler must
determine which exception occurred (by examining the exception flags in the MXCSR register) and
take appropriate action.

In all cases of unmasked exceptions, before calling the exception handler, the processor examines the
CR4.OSXMMEXCPT bit to see if it is set to 1. If it is set, the processor calls the #XF exception (vector
19). If it is cleared, the processor calls the #UD exception (vector 6). See “System-Control Registers”
in Volume 2 for details.

For details about the operations that can cause unmasked exceptions, see “SIMD Floating-Point
Exception Causes” on page 220 and Table 4-16 on page 227.

4.10.4.3 Using NaNs in IE Diagnostic Exceptions

Both SNaNs and QNaNs can be encoded with many different values to carry diagnostic information.
By means of appropriate masking and unmasking of the invalid-operation exception (IE), software can
use signaling NaNs to invoke an exception handler. Within the constraints imposed by the encoding of
SNaNs and QNaNs, software may freely assign the bits in the significand of a NaN. See Section
“Floating-Point Number Encodings” on page 127 for format details.

For example, software can pre-load each element of an array with a signaling NaN that encodes the
array index. When an application accesses an uninitialized array element, the invalid-operation
exception is invoked and the service routine can identify that element. A service routine can store

Underflow
exception
(UE)

Inexact denormalized result

MXCSR flush-to-zero (FZ) bit = 0 Set PE flag and return
denormalized result.

MXCSR flush-to-zero (FZ) bit = 1
Set PE flag and return
zero, with sign of true
result.3

Precision
exception
(PE)

Inexact normalized or
denormalized result

Without OE or UE exception Return rounded result.
With masked OE or UE
exception

Respond as for OE or UE
exception.

With unmasked OE or UE
exception

Respond as for OE or UE
exception, and invoke
SIMD exception handler.

Table 4-16. Masked Responses to SIMD Floating-Point Exceptions (continued)
Exception Operation1 Processor Response2

Note:
1. For complete details about operations, see “SIMD Floating-Point Exception Causes” on page 220.
2. In all cases, the processor sets the associated exception flag in MXCSR. For details about number representation,

see “Floating-Point Number Types” on page 124 and “Floating-Point Number Encodings” on page 127.
3. This response does not comply with the IEEE 754 standard, but it offers higher performance.

[AMD Public Use]

230 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

debug information in memory as the exceptions occur. The routine can create a QNaN that references
its associated debug area in memory. As the program runs, the service routine can create a different
QNaN for each error condition, so that a single test-run can identify a collection of errors.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 231

24592—Rev. 3.23—October 2020 AMD64 Technology

4.11 Saving, Clearing, and Passing State
4.11.1 Saving and Restoring State

In general, system software should save and restore SSE state between task switches or other
interventions in the execution of SSE procedures. Virtually all modern operating systems running on
x86 processors implement preemptive multitasking that handle saving and restoring of state across
task switches, independent of hardware task-switch support. However, application procedures are also
free to save and restore SSE state at any time they deem useful.

Software running at any privilege level may save and restore legacy SSE state by executing the
FXSAVE instruction, which saves not only legacy SSE state but also x87 floating-point state. To save
and restore the entire SSE context, including the contents of the YMM registers, software must use the
XSAVE/XRSTOR instructions (or their optimized variants). These instructions are discussed in
Volume 4. Alternatively, software may use multiple move instructions for saving only the contents of
selected SSE data registers, or the STMXCSR instruction for saving the MXCSR register state. For
details, see “Save and Restore State” on page 183.

4.11.2 Parameter Passing

SSE procedures can use (V)MOVx instructions to pass data to other such procedures. This can be done
directly, via the YMM/XMM registers, or indirectly by storing data on the procedure stack. When
storing to the stack, software should use the rSP register for the memory address and, after the save,
explicitly decrement rSP by 16 for each 128-bit XMM register parameter stored on the stack or by 32
for each 256-bit YMM register parameter stored on the stack. Likewise, to load a 128-bit XMM
register from the stack, software should increment rSP by 16 after the load or by 32 for each 256-bit
YMM register. There is a choice of (V)MOVx instructions designed for aligned and unaligned moves,
as described in “Data Transfer” on page 150 and “Data Transfer” on page 185.

The processor does not check the data type of instruction operands prior to executing instructions. It
only checks them at the point of execution. For example, if the processor executes an arithmetic
instruction that takes double-precision operands but is provided with single-precision operands by
MOVx instructions, the processor will first convert the operands from single precision to double
precision prior to executing the arithmetic operation, and the result will be correct. However, the
required conversion may cause degradation of performance.

Because of this possibility of data-type mismatching between (V)MOVx instructions used to pass
parameters and the instructions in the called procedure that subsequently operate on the moved data,
the calling procedure should save its own state prior to the call. The called procedure cannot determine
the caller’s data types, and thus it cannot optimize its choice of instructions for storing a caller’s state.

For further information, see the software optimization documentation for particular hardware
implementations.

[AMD Public Use]

232 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

4.11.3 Accessing Operands in MMX™ Registers

Software may freely mix SSE instructions (integer or floating-point) with 64-bit media instructions
(integer or floating-point) and general-purpose instructions in a single procedure. There are no
restrictions on transitioning from SSE procedures to x87 procedures, except when a SSE procedure
accesses an MMX register by means of a data-transfer or data-conversion instruction.

In such cases, software should separate such procedures or dynamic link libraries (DLLs) from x87
floating-point procedures or DLLs by clearing the MMX state with the EMMS instruction, as
described in Section 5.6.2 “Exit Media State” on page 255. For further details, see Section 5.13
“Mixing Media Code with x87 Code” on page 280.

4.12 Performance Considerations
In addition to typical code optimization techniques, such as those affecting loops and the inlining of
function calls, the following considerations may help improve the performance of application
programs written with SSE instructions.

These are implementation-independent performance considerations. Other considerations depend on
the hardware implementation. For information about such implementation-dependent considerations
and for more information about application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware implementations.

4.12.1 Use Small Operand Sizes

The performance advantages available with SSE operations is to some extent a function of the data
sizes operated upon. The smaller the data size, the more data elements that can be packed into a single
vector. The parallelism of computation increases as the number of elements per vector increases.

4.12.2 Reorganize Data for Parallel Operations

Much of the performance benefit from the SSE instructions comes from the parallelism inherent in
vector operations. It can be advantageous to reorganize data before performing arithmetic operations
so that its layout after reorganization maximizes the parallelism of the arithmetic operations.

The speed of memory access is particularly important for certain types of computation, such as
graphics rendering, that depend on the regularity and locality of data-memory accesses. For example,
in matrix operations, performance is high when operating on the rows of the matrix, because row bytes
are contiguous in memory, but lower when operating on the columns of the matrix, because column
bytes are not contiguous in memory and accessing them can result in cache misses. To improve
performance for operations on such columns, the matrix should first be transposed. Such
transpositions can, for example, be done using a sequence of unpacking or shuffle instructions.

4.12.3 Remove Branches

Branch can be replaced with SSE instructions that simulate predicated execution or conditional moves,
as described in “Branch Removal” on page 147. The branch can be replaced with SSE instructions that

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 233

24592—Rev. 3.23—October 2020 AMD64 Technology

simulate predicated execution or conditional moves. Figure 4-21 on page 148 shows an example of a
non-branching sequence that implements a two-way multiplexer.

Where possible, break long dependency chains into several shorter dependency chains that can be
executed in parallel. This is especially important for floating-point instructions because of their longer
latencies.

4.12.4 Use Streaming Loads and Stores

The (V)MOVNTDQ, (V)MOVNTDQA and (V)MASKMOVDQU instructions load or store
streaming (non-temporal) data from or to memory. These instructions indicate to the processor that the
data they reference will be used only once and is therefore not subject to cache-related overhead (such
as write-allocation). A typical case benefitting from streaming stores occurs when data written by the
processor is never read by the processor, such as data written to a graphics frame buffer.

CPU read accesses of WC memory type regions normally have significantly lower throughput than
accesses to cacheable memory. However, the (V)MOVNTDQA instruction provides a non-temporal
hint that can cause adjacent 16-byte items within an aligned 64-byte region of WC memory type (a
streaming line) to be fetched and held in a small set of temporary buffers (streaming load buffers).
Subsequent streaming loads to other aligned 16-byte items in the same streaming line may be supplied
from the streaming load buffer and can improve throughput.

The following programming practices can improve efficiency of (V)MOVNTDQA streaming loads
from WC memory:

• Streaming loads must be 16-byte aligned.
• Group streaming loads of the same streaming cache line for effective use of the small number of

streaming load buffers. If loads to the same streaming line are excessively spaced apart, it may
cause the streaming line to be re-fetched from memory.

• Group streaming loads from at most a few streaming lines together. The number of streaming load
buffers is small; grouping a modest number of streams will avoid running out of streaming load
buffers and the resultant re-fetching of streaming lines from memory.

• Avoid writing to a streaming line until all 16-byte-aligned reads from the streaming line have
occurred. Reading a 16-byte item from a streaming line that has been written, may cause the
streaming line to be re-fetched.

• Avoid reading a given 16-byte item within a streaming line more than once; repeated loads of a
particular 16-byte item are likely to cause the streaming line to be re-fetched.

• Streaming load buffers, reflecting the WC memory type characteristics, are not required to be
snooped by operations from other agents. Software should not rely upon such coherency actions to
provide any data coherency with respect to other logical processors or bus agents. Rather, software
must insure the consistency of WC memory accesses between producers and consumers.

• Streaming loads may be weakly ordered and may appear to software to execute out of order with
respect to other memory operations. Software must explicitly use fences (e.g. MFENCE) if it

[AMD Public Use]

234 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

needs to preserve order among streaming loads or between streaming loads and other memory
operations.

• Streaming loads must not be used to reference memory addresses that are mapped to I/O devices
having side effects or when reads to these devices are destructive. This is because MOVNTDQA is
speculative in nature.

The following two code examples demonstrate the basic assembly sequences that depict the principles
of using MOVNTDQA with a producer-consumer pair accessing a WC memory region.

Example 1: Using MOVNTDQA with a Consumer and PCI Producer
// P0: producer is a PCI device writing into the WC space
the PCI device updates status through a UC flag, "u_dev_status"
the protocol for "u_dev_status" : 0: produce; 1: consume; 2: all done
mov eax, $0
mov [u_dev_status], eax

producerStart:
mov eax, [u_dev_status] # poll status flag to see if consumer is requesting data
cmp eax, $0
jne done # no longer need to produce commence PCI writes to WC region
mov eax, $1 # producer ready to notify the consumer via status flag
mov [u_dev_status], eax

now wait for consumer to signal its status
spinloop:
cmp [u_dev_status], $1 # was signal received from consumer
jne producerStart # yes
jmp spinloop # check again

done:
// producer is finished at this point

// P1: consumer check PCI status flag to consume WC data
mov eax, $0 # request to the producer
mov [u_dev_status], eax

consumerStart:
mov; eax, [u_dev_status] # reads the value of the PCI status
cmp eax, $1 # has producer written
jne consumerStart # tight loop; make it more efficient with pause, etc.
mfence # producer finished device writes to WC, ensure WC region is coherent

ntread:
movntdqa xmm0, [addr]
movntdqa xmm1, [addr + 16]
movntdqa xmm2, [addr + 32]
movntdqa xmm3, [addr + 48]
… # do more NT reads as needed
mfence # ensure PCI device reads the correct value of [u_dev_status]

now decide whether done or need the producer to produce more data
if done write a 2 into the variable, otherwise write a 0 into the variable
mov eax, $0/$2 # end or continue producing
mov [u_dev_status], eax

to consume again jump back to consumerStart after storing a 0 into eax
otherwise, done

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 235

24592—Rev. 3.23—October 2020 AMD64 Technology

Example 2: Using MOVNTDQA with Producer-Consumer Threads
// P0: producer writes into the WC space
xchg is an implicitly locked operation
producerStart:
use a locked operation to prevent races between producer and consumer
updating this variable. Assume initial value is 0
mov eax, $0
xchg eax, [signalVariable] # signalVariable is used for communicating
cmp eax, $0 # am I supposed to be writing for the consumer
jne done # I no longer need to produce
movntdq [addr1], xmm0 # producer writes the data
movntdq [addr2], xmm1 # ...

Again use a locked instruction. Serves 2 purposes. Updated value signals
to consumer and serialization of the lock flushes all WC stores to memory
mov eax, $1
xchg [signalVariable], eax # signal to the consumer

a more efficient spin loop can be done using PAUSE
spinloop:
cmp [signalVariable], $1 # did I get signal from consumer
jne producerStart # yes
jmp spinloop # check again

done:
// producer is finished at this point

// P1: consumer reads from write combining space
mov eax, $0

consumerStart:
lock; xadd [signalVariable], eax # reads the value of the signal variable in
cmp eax, $1 # has producer written to signal its state
jne consumerStart # simple loop; replace with PAUSE to make it more efficient

read data from WC memory space with MOVNTDQA to achieve higher throughput
ntread: # keep reads from same cache line as close together as possible
movntdqa xmm0, [addr]
movntdqa xmm1, [addr + 16]
movntdqa xmm2, [addr + 32]
movntdqa xmm3, [addr + 48]

since a lock prevents younger MOVNTDQA from passing it, the
above non temporal loads will happen only after producer has signaled

… # do more NT reads as needed

now decide whether done or need producer to produce more data
if done, write a 2 into the variable, otherwise write a 0 into the variable
mov eax, $0/$2 # end or continue producing
xchg [signalVariable], eax

to consume again, jump back to consumerStart after storing a 0 into eax
otherwise, done

[AMD Public Use]

236 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

4.12.5 Align Data

Data alignment is particularly important for performance when data written by one instruction is read
by a subsequent instruction soon after the write, or when accessing streaming (non-temporal) data.
These cases may occur frequently in 256-bit and 128-bit media procedures.

Accesses to data stored at unaligned locations may benefit from on-the-fly software alignment or from
repetition of data at different alignment boundaries, as required by different loops that process the data.

4.12.6 Organize Data for Cacheability

Pack small data structures into cache-line-size blocks. Organize frequently accessed constants and
coefficients into cache-line-size blocks and prefetch them. Procedures that access data arranged in
memory-bus-sized blocks, or memory-burst-sized blocks, can make optimum use of the available
memory bandwidth.

For data that will be used only once in a procedure, consider using non-cacheable memory. Accesses to
such memory are not burdened by the overhead of cache protocols.

4.12.7 Prefetch Data

Media applications typically operate on large data sets. Because of this, they make intensive use of the
memory bus. Memory latency can be substantially reduced—especially for data that will be used only
once—by prefetching such data into various levels of the cache hierarchy. Software can use the
PREFETCHx instructions very effectively in such cases, as described in “Cache and Memory
Management” on page 71.

Some of the best places to use prefetch instructions are inside loops that process large amounts of data.
If the loop goes through less than one cache line of data per iteration, partially unroll the loop. Try to
use virtually all of the prefetched data. This usually requires unit-stride memory accesses—those in
which all accesses are to contiguous memory locations. Exactly one PREFETCHx instruction per
cache line must be used. For further details, see the Optimization Guide for AMD Athlon™ 64 and
AMD Opteron™ Processors, order# 25112.

4.12.8 Use SSE Code for Moving Data

Movements of data between memory, GPR, XMM, and MMX registers can take advantage of the
parallel vector operations supported by the SSE MOVx instructions. Figure 4-13 on page 142
illustrates the range of move operations available.

4.12.9 Retain Intermediate Results in SSE Registers

Keep intermediate results in the SSE (YMM/XMM) registers as much as possible, especially if the
intermediate results are used shortly after they have been produced. Avoid spilling intermediate results
to memory and reusing them shortly thereafter. Take advantage of the increased number of addressable
SSE registers available in 64-bit mode.

[AMD Public Use]

Streaming SIMD Extensions Media and Scientific Programming 237

24592—Rev. 3.23—October 2020 AMD64 Technology

4.12.10 Replace GPR Code with SSE Code.

In 64-bit mode, the AMD64 architecture provides twice the number of general-purpose registers
(GPRs) as the legacy x86 architecture, thereby reducing potential pressure on GPRs. Nevertheless,
general-purpose instructions do not operate in parallel on vectors of elements, as do SSE instructions.
Thus, SSE code supports parallel operations and can perform better with algorithms and data that are
organized for parallel operations.

4.12.11 Replace x87 Code with SSE Code

One of the most useful advantages of SSE instructions is the ability to intermix integer and floating-
point instructions in the same procedure, using a register set that is separate from the GPR, MMX, and
x87 register sets. Code written with SSE floating-point instructions can operate in parallel on eight
times as many single-precision floating-point operands as can x87 floating-point code. This achieves
potentially eight times the computational work of x87 instructions that take single-precision operands.
Also, the higher density of SSE floating-point operands may make it possible to remove local
temporary variables that would otherwise be needed in x87 floating-point code. SSE code is also easier
to write than x87 floating-point code, because the SSE register file is flat, rather than stack-oriented,
and in 64-bit mode there are twice the number of SSE registers as x87 registers. Moreover, when
integer and floating-point instructions must be used together, SSE floating-point instructions avoid the
potential need to save and restore state between integer operations and floating-point procedures.

[AMD Public Use]

238 Streaming SIMD Extensions Media and Scientific Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

[AMD Public Use]

64-Bit Media Programming 239

24592—Rev. 3.23—October 2020 AMD64 Technology

5 64-Bit Media Programming

This chapter describes the 64-bit media programming model. This model includes all instructions that
access the MMX™ registers, including the MMX and 3DNow!™ instructions. Subsequent extensions,
part of the Streaming SIMD Extensions (SSE), added new instructions that also utilize MMX registers.

The 64-bit media instructions perform integer and floating-point operations primarily on vector
operands (a few of the instructions take scalar operands). The MMX integer operations produce
signed, unsigned, and/or saturating results. The 3DNow! floating-point operations take single-
precision operands and produce saturating results without generating floating-point exceptions. The
instructions that take vector operands can speed up certain types of procedures by significant factors,
depending on data-element size and the regularity and locality of data accesses to memory.

The term 64-bit is used in two different contexts within the AMD64 architecture: the 64-bit media
instructions, described in this chapter, and the 64-bit operating mode, described in “64-Bit Mode” on
page 6.

5.1 Origins
The 64-bit media instructions were introduced in the following extensions to the legacy x86
architecture:

• MMX. The original MMX programming model defined eight 64-bit MMX registers and a number
of vector instructions that operate on packed integers held in the MMX registers or sourced from
memory. This subset was subsequently extended.

• 3DNow!. Added vector floating-point instructions, most of which take vector operands in MMX
registers or memory locations. This instruction set was subsequently extended.

• SSE. The original Steaming SIMD Extensions (SSE1) and the subsequent SSE2 added instructions
that perform conversions between operands in the 64-bit MMX registers and other registers.

For details on the extension-set origin of each instruction, see “Instruction Subsets vs. CPUID Feature
Sets” in Volume 3.

5.2 Compatibility
64-bit media instructions can be executed in any of the architecture’s operating modes. Existing MMX
and 3DNow! binary programs run in legacy and compatibility modes without modification. The
support provided by the AMD64 architecture for such binaries is identical to that provided by legacy
x86 architectures.

To run in 64-bit mode, 64-bit media programs must be recompiled. The recompilation has no side
effects on such programs, other than to make available the extended general-purpose registers and 64-
bit virtual address space.

[AMD Public Use]

240 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The MMX and 3DNow! instructions introduce no additional registers, status bits, or other processor
state to the legacy x86 architecture. Instead, they use the x87 floating-point registers that have long
been a part of most x86 architectures. Because of this, 64-bit media procedures require no special
operating-system support or exception handlers. When state-saves are required between procedures,
the same instructions that system software uses to save and restore x87 floating-point state also save
and restore the 64-bit media-programming state.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. Relevant recommendations are provided below and in the
AMD64 Programmer’s Manual Volume 4: 64-Bit Media and x87 Floating-Point Instructions.

5.3 Capabilities
The 64-bit media instructions are designed to support multimedia and communication applications
that operate on vectors of small-sized data elements. For example, 8-bit and 16-bit integer data
elements are commonly used for pixel information in graphics applications, and 16-bit integer data
elements are used for audio sampling. The 64-bit media instructions allow multiple data elements like
these to be packed into single 64-bit vector operands located in an MMX register or in memory. The
instructions operate in parallel on each of the elements in these vectors. For example, 8-bit integer data
can be packed in vectors of eight elements in a single 64-bit register, so that a single instruction can
operated on all eight byte elements simultaneously.

Typical applications of the 64-bit media integer instructions include music synthesis, speech synthesis,
speech recognition, audio and video compression (encoding) and decompression (decoding), 2D and
3D graphics (including 3D texture mapping), and streaming video. Typical applications of the 64-bit
media floating-point instructions include digital signal processing (DSP) kernels and front-end 3D
graphics algorithms, such as geometry, clipping, and lighting.

These types of applications are referred to as media applications. Such applications commonly use
small data elements in repetitive loops, in which the typical operations are inherently parallel. In 256-
color video applications, for example, 8-bit operands in 64-bit MMX registers can be used to compute
transformations on eight pixels per instruction.

5.3.1 Parallel Operations

Most of the 64-bit media instructions perform parallel operations on vectors of operands. Vector
operations are also called packed or SIMD (single-instruction, multiple-data) operations. They take
operands consisting of multiple elements and operate on all elements in parallel. Figure 5-1 on
page 241 shows an example of an integer operation on two vectors, each containing 16-bit (word)
elements. There are also 64-bit media instructions that operate on vectors of byte or doubleword
elements.

[AMD Public Use]

64-Bit Media Programming 241

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 5-1. Parallel Integer Operations on Elements of Vectors

5.3.2 Data Conversion and Reordering

The 64-bit media instructions support conversions of various integer data types to floating-point data
types, and vice versa.

There are also instructions that reorder vector-element ordering or the bit-width of vector elements.
For example, the unpack instructions take two vector operands and interleave their low or high
elements. Figure 5-2 on page 242 shows an unpack operation (PUNPCKLWD) that interleaves low-
order elements of each source operand. If each element of operand 2 has the value zero, the operation
zero-extends each element of operand 1 to twice its original width. This may be useful, for example,
prior to an arithmetic operation in which the data-conversion result must be paired with another source
operand containing vector elements that are twice the width of the pre-conversion (half-size) elements.
There are also pack instructions that convert each element of 2x size in a pair of vectors to elements of
1x size, with saturation at maximum and minimum values.

operand 1

result

63 0

63 0

operand 2
63 0

op op op op

[AMD Public Use]

242 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 5-2. Unpack and Interleave Operation

Figure 5-3 shows a shuffle operation (PSHUFW), in which one of the operands provides vector data,
and an immediate byte provides shuffle control for up to 256 permutations of the data.

Figure 5-3. Shuffle Operation (1 of 256)

5.3.3 Matrix Operations

Media applications often multiply and accumulate vector and matrix data. In 3D graphics applications,
for example, objects are typically represented by triangles, each of whose vertices are located in 3D
space by a matrix of coordinate values, and matrix transforms are performed to simulate object
movement.

The 64-bit media integer and floating-point instructions can perform several types of matrix-vector or
matrix-matrix operations, such as addition, subtraction, multiplication, and accumulation. The integer

operand 1

result

63 0

63 0

operand 2
63 0

operand 2operand 1

result

63 0

63 0

63 0

[AMD Public Use]

64-Bit Media Programming 243

24592—Rev. 3.23—October 2020 AMD64 Technology

instructions can also perform multiply-accumulate operations. Efficient matrix multiplication is
further supported with instructions that can first transpose the elements of matrix rows and columns.
These transpositions can make subsequent accesses to memory or cache more efficient when
performing arithmetic matrix operations.

Figure 5-4 shows a vector multiply-add instruction (PMADDWD) that multiplies vectors of 16-bit
integer elements to yield intermediate results of 32-bit elements, which are then summed pair-wise to
yield two 32-bit elements.

Figure 5-4. Multiply-Add Operation

The operation shown in Figure 5-4 can be used together with transpose and vector-add operations (see
“Addition” on page 262) to accumulate dot product results (also called inner or scalar products),
which are used in many media algorithms.

5.3.4 Saturation

Several of the 64-bit media integer instructions and most of the 64-bit media floating-point
instructions produce vector results in which each element saturates independently of the other
elements in the result vector. Such results are clamped (limited) to the maximum or minimum value
representable by the destination data type when the true result exceeds that maximum or minimum
representable value.

Saturation avoids the need for code that tests for potential overflow or underflow. Saturating data is
useful for representing physical-world data, such as sound and color. It is used, for example, when
combining values for pixel coloring.

operand 1

result

63 0

63 0

operand 2
63 0

127 0

*

+ +

[AMD Public Use]

244 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

5.3.5 Branch Removal

Branching is a time-consuming operation that, unlike most 64-bit media vector operations, does not
exhibit parallel behavior (there is only one branch target, not multiple targets, per branch instruction).
In many media applications, a branch involves selecting between only a few (often only two) cases.
Such branches can be replaced with 64-bit media vector compare and vector logical instructions that
simulate predicated execution or conditional moves.

Figure 5-5 shows an example of a non-branching sequence that implements a two-way multiplexer—
one that is equivalent to the ternary operator “?:” in C and C++. The comparable code sequence is
explained in “Compare and Write Mask” on page 267.

The sequence in Figure 5-5 begins with a vector compare instruction that compares the elements of
two source operands in parallel and produces a mask vector containing elements of all 1s or 0s. This
mask vector is ANDed with one source operand and ANDed-Not with the other source operand to
isolate the desired elements of both operands. These results are then ORed to select the relevant
elements from each operand. A similar branch-removal operation can be done using floating-point
source operands.

Figure 5-5. Branch-Removal Sequence

operand 1
63 0

operand 2
63 0

FFFF 0000 0000 FFFF

a3 a2 a1 a0 b3 b2 b1 b0

a3 0000 0000 a0 0000 b2 b1 0000

And And-Not

Compare

a3 b2 b1 a0

Or

[AMD Public Use]

64-Bit Media Programming 245

24592—Rev. 3.23—October 2020 AMD64 Technology

5.3.6 Floating-Point (3DNow!™) Vector Operations

Floating-point vector instructions using the MMX registers were introduced by AMD with the
3DNow! technology. These instructions take 64-bit vector operands consisting of two 32-bit single-
precision floating-point numbers, shown as FP single in Figure 5-6.

Figure 5-6. Floating-Point (3DNow!™ Instruction) Operations

The AMD64 architecture’s 3DNow! floating-point instructions provide a unique advantage over
legacy x87 floating-point instructions: They allow integer and floating-point instructions to be
intermixed in the same procedure, using only the MMX registers. This avoids the need to switch
between integer MMX procedures and x87 floating-point procedures—a switch that may involve
time-consuming state saves and restores—while at the same time leaving the YMM/XMM register
resources free for other applications.

The 3DNow! instructions allow applications such as 3D graphics to accelerate front-end geometry,
clipping, and lighting calculations. Picture and pixel data are typically integer data types, although
both integer and floating-point instructions are often required to operate completely on the data. For
example, software can change the viewing perspective of a 3D scene through transformation matrices
by using floating-point instructions in the same procedure that contains integer operations on other
aspects of the graphics data.

3DNow! programs typically perform better than x87 floating-point code, because the MMX register
file is flat rather than stack-oriented and because 3DNow! instructions can operate on twice as many
operands as x87 floating-point instructions. This ability to operate in parallel on twice as many
floating-point values in the same register space often makes it possible to remove local temporary
variables in 3DNow! code that would otherwise be needed in x87 floating-point code.

63 31 032

FP single FP single
63 31 032

FP single FP single

63 31 032

FP single FP single

63 0 63 0

op op

[AMD Public Use]

246 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

5.4 Registers
5.4.1 MMX™ Registers

Eight 64-bit MMX registers, mmx0–mmx7, support the 64-bit media instructions. Figure 5-7 shows
these registers. They can hold operands for both vector and scalar operations on integer (MMX) and
floating-point (3DNow!) data types.

Figure 5-7. 64-Bit Media Registers

The MMX registers are mapped onto the low 64 bits of the 80-bit x87 floating-point physical data
registers, FPR0–FPR7, described in Section 6.2. “Registers” on page 286. However, the x87 stack
register structure, ST(0)–ST(7), is not used by MMX instructions. The x87 tag bits, top-of-stack
pointer (TOP), and high bits of the 80-bit FPR registers are changed when 64-bit media instructions
are executed. For details about the x87-related actions performed by hardware during execution of 64-
bit media instructions, see “Actions Taken on Executing 64-Bit Media Instructions” on page 278.

5.4.2 Other Registers

Some 64-bit media instructions that perform data transfer, data conversion or data reordering
operations (“Data Transfer” on page 256, “Data Conversion” on page 257, and “Data Conversion” on
page 271) can access operands in the general-purpose registers (GPRs) or XMM registers. When
addressing GPRs or YMM/XMM registers in 64-bit mode, the REX instruction prefix can be used to
access the extended GPRs or YMM/XMM registers, as described in “REX Prefixes” on page 79. For a
description of the GPR registers, see “Registers” on page 23. For a description of the YMM/XMM
registers, see Section 4.2.1. “SSE Registers” on page 113.

MMXTM Registers
63 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

[AMD Public Use]

64-Bit Media Programming 247

24592—Rev. 3.23—October 2020 AMD64 Technology

5.5 Operands
Operands for a 64-bit media instruction are either referenced by the instruction's opcode or included as
an immediate value in the instruction encoding. Depending on the instruction, referenced operands can
be located in registers or memory. The data types of these operands include vector and scalar integer,
and vector floating-point.

5.5.1 Data Types

Figure 5-8 on page 248 shows the register images of the 64-bit media data types. These data types can
be interpreted by instruction syntax and/or the software context as one of the following types of
values:

• Vector (packed) single-precision (32-bit) floating-point numbers.
• Vector (packed) signed (two's-complement) integers.
• Vector (packed) unsigned integers.
• Scalar signed (two's-complement) integers.
• Scalar unsigned integers.

Hardware does not check or enforce the data types for instructions. Software is responsible for
ensuring that each operand for an instruction is of the correct data type. Software can interpret the data
types in ways other than those shown in Figure 5-8 on page 248—such as bit fields or fractional
numbers—but the 64-bit media instructions do not directly support such interpretations and software
must handle them entirely on its own.

[AMD Public Use]

248 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 5-8. 64-Bit Media Data Types

ss ss

ssss

ss

ssssssss

ssss

ss

ssssssss

715233139475563 0

bytebytebytebytebytebytebytebyte

31 2263 54 0

Vector (Packed) Single-Precision Floating-Point

Vector (Packed) Unsigned Integers

715233139475563 0

doubleworddoubleword

wordwordwordword

doubleworddoubleword

wordwordwordword

bytebytebytebytebytebytebytebyte

Vector (Packed) Signed Integers

significandexpsignificandexp

63

31

15

7 0

s

s

s

s

Unsigned Integers

Signed Integers

quadword

doubleword

word

byte

63

31

15

7

0

quadword

doubleword

word

byte

[AMD Public Use]

64-Bit Media Programming 249

24592—Rev. 3.23—October 2020 AMD64 Technology

5.5.2 Operand Sizes and Overrides

Operand sizes for 64-bit media instructions are determined by instruction opcodes. Some of these
opcodes include an operand-size override prefix, but this prefix acts in a special way to modify the
opcode and is considered an integral part of the opcode. The general use of the 66h operand-size
override prefix described in “Instruction Prefixes” on page 76 does not apply to 64-bit media
instructions.

For details on the use of operand-size override prefixes in 64-bit media instructions, see the opcodes in
“64-Bit Media Instruction Reference” in Volume 5.

5.5.3 Operand Addressing

Depending on the 64-bit media instruction, referenced operands may be in registers or memory.

5.5.3.1 Register Operands

Most 64-bit media instructions can access source and destination operands located in MMX registers.
A few of these instructions access the XMM or GPR registers. When addressing GPR or XMM
registers in 64-bit mode, the REX instruction prefix can be used to access the extended GPR or XMM
registers, as described in “Instruction Prefixes” on page 275.

The 64-bit media instructions do not access the rFLAGS register, and none of the bits in that register
are affected by execution of the 64-bit media instructions.

5.5.3.2 Memory Operands

Most 64-bit media instructions can read memory for source operands, and a few of the instructions can
write results to memory. “Memory Addressing” on page 14, describes the general methods and
conditions for addressing memory operands.

5.5.3.3 Immediate Operands

Immediate operands are used in certain data-conversion and vector-shift instructions. Such
instructions take 8-bit immediates, which provide control for the operation.

5.5.3.4 I/O Ports

I/O ports in the I/O address space cannot be directly addressed by 64-bit media instructions, and
although memory-mapped I/O ports can be addressed by such instructions, doing so may produce
unpredictable results, depending on the hardware implementation of the architecture. See the data
sheet or software-optimization documentation for particular hardware implementations.

5.5.4 Data Alignment

Those 64-bit media instructions that access a 128-bit operand in memory incur a general-protection
exception (#GP) if the operand is not aligned to a 16-byte boundary. These instructions include:

• CVTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers.

[AMD Public Use]

250 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• CVTTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers,
Truncated.

• FXRSTOR—Restore XMM, MMX, and x87 State.
• FXSAVE—Save XMM, MMX, and x87 State.

For other 64-bit media instructions, the architecture does not impose data-alignment requirements for
accessing 64-bit media data in memory. Specifically, operands in physical memory do not need to be
stored at addresses that are even multiples of the operand size in bytes. However, the consequence of
storing operands at unaligned locations is that accesses to those operands may require more processor
and bus cycles than for aligned accesses. See “Data Alignment” on page 43 for details.

5.5.5 Integer Data Types

Most of the MMX instructions support operations on the integer data types shown in Figure 5-8 on
page 248. These instructions are summarized in “Instruction Summary—Integer Instructions” on
page 253. The characteristics of these data types are described below.

5.5.5.1 Sign

Many of the 64-bit media instructions have variants for operating on signed or unsigned integers. For
signed integers, the sign bit is the most-significant bit—bit 7 for a byte, bit 15 for a word, bit 31 for a
doubleword, or bit 63 for a quadword. Arithmetic instructions that are not specifically named as
unsigned perform signed two’s-complement arithmetic.

5.5.5.2 Maximum and Minimum Representable Values

Table 5-1 shows the range of representable values for the integer data types.

5.5.5.3 Saturation

Saturating (also called limiting or clamping) instructions limit the value of a result to the maximum or
minimum value representable by the destination data type. Saturating versions of integer vector-
arithmetic instructions operate on byte-sized and word-sized elements. These instructions—for
example, PADDSx, PADDUSx, PSUBSx, and PSUBUSx—saturate signed or unsigned data
independently for each element in a vector when the element reaches its maximum or minimum
representable value. Saturation avoids overflow or underflow errors.

Table 5-1. Range of Values in 64-Bit Media Integer Data Types
Data-Type Interpretation Byte Word Doubleword Quadword

Unsigned
integers

Base-2 (exact) 0 to +28–1 0 to +216–1 0 to +232–1 0 to +264–1
Base-10 (approx.) 0 to 255 0 to 65,535 0 to 4.29 * 109 0 to 1.84 * 1019

Signed integers1
Base-2 (exact) –27 to +(27–1) –215 to

+(215–1) –231 to +(231–1) –263 to +(263–1)

Base-10 (approx.) –128 to +127 –32,768 to
+32,767

–2.14 * 109 to
+2.14 * 109

–9.22 * 1018
to +9.22 * 1018

[AMD Public Use]

64-Bit Media Programming 251

24592—Rev. 3.23—October 2020 AMD64 Technology

The examples in Table 5-2 on page 251 illustrate saturating and non-saturating results with word
operands. Saturation for other data-type sizes follows similar rules. Once saturated, the saturated value
is treated like any other value of its type. For example, if 0001h is subtracted from the saturated value,
7FFFh, the result is 7FFEh.

Arithmetic instructions not specifically designated as saturating perform non-saturating, two’s-
complement arithmetic.

5.5.5.4 Rounding

There is a rounding version of the integer vector-multiply instruction, PMULHRW, that multiplies
pairs of signed-integer word elements and then adds 8000h to the lower word of the doubleword result,
thus rounding the high-order word which is returned as the result.

5.5.5.5 Other Fixed-Point Operands

The architecture provides specific support only for integer fixed-point operands—those in which an
implied binary point is located to the right of bit 0. Nevertheless, software may use fixed-point
operands in which the implied binary point is located in any position. In such cases, software is
responsible for managing the interpretation of such implied binary points, as well as any redundant
sign bits that may occur during multiplication.

5.5.6 Floating-Point Data Types

All 64-bit media 3DNow! instructions, except PFRCP and PFRSQRT, take 64-bit vector operands.
They operate in parallel on two single-precision (32-bit) floating-point values contained in those
vectors.

Figure 5-9 shows the format of the vector operands. The characteristics of the single-precision
floating-point data types are described below. The 64-bit floating-point media instructions are
summarized in “Instruction Summary—Floating-Point Instructions” on page 270.

Table 5-2. Saturation Examples

Operation
Non-Saturated

Infinitely Precise
Result

Saturated
Signed Result

Saturated
Unsigned Result

7000h + 2000h 9000h 7FFFh 9000h
7000h + 7000h E000h 7FFFh E000h
F000h + F000h 1E000h E000h FFFFh
9000h + 9000h 12000h 8000h FFFFh
7FFFh + 0100h 80FFh 7FFFh 80FFh
7FFFh + FF00h 17EFFh 7EFFh FFFFh

[AMD Public Use]

252 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 5-9. 64-Bit Floating-Point (3DNow!™) Vector Operand

5.5.6.1 Single-Precision Format

The single-precision floating-point format supported by 64-bit media instructions is the same format
as the normalized IEEE 754 single-precision format. This format includes a sign bit, an 8-bit biased
exponent, and a 23-bit significand with one hidden integer bit for a total of 24 bits in the significand.
The hidden integer bit is assumed to have a value of 1, and the significand field is also the fraction. The
bias of the exponent is 127. However, the 3DNow! format does not support other aspects of the IEEE
754 standard, such as multiple rounding modes, representation of numbers other than normalized
numbers, and floating-point exceptions.

5.5.6.2 Range of Representable Values and Saturation

Table 5-3 shows the range of representable values for 64-bit media floating-point data. Table 5-4
shows the exponent ranges. The largest representable positive normal number has an exponent of FEh
and a significand of 7FFFFFh, with a numerical value of 2127 * (2 – 2–23). The smallest representable
negative normal number has an exponent of 01h and a significand of 000000h, with a numerical value
of 2–126.

Table 5-3. Range of Values in 64-Bit Media Floating-Point Data Types
Data-Type Interpretation Doubleword Quadword

 Floating-point
Base-2 (exact) 2–126 to 2127 * (2 – 2–23) Two single-precision floating-

point doublewordsBase-10 (approx.) 1.17 * 10–38 to +3.40 * 1038

Table 5-4. 64-Bit Floating-Point Exponent Ranges
Biased Exponent Description

FFh Unsupported1

00h Zero
Note:

1. Unsupported numbers can be used as source operands but produce undefined
results.

63 62 03231 3055 54 23 22

Biased
ExponentS Significand

(also Fraction)

S = Sign Bit

Biased
ExponentS

S = Sign Bit

Significand
(also Fraction)

[AMD Public Use]

64-Bit Media Programming 253

24592—Rev. 3.23—October 2020 AMD64 Technology

Results that, after rounding, overflow above the maximum-representable positive or negative number
are saturated (limited or clamped) at the maximum positive or negative number. Results that
underflow below the minimum-representable positive or negative number are treated as zero.

5.5.6.3 Floating-Point Rounding

In contrast to the IEEE standard, which requires four rounding modes, the 64-bit media floating-point
instructions support only one rounding mode, depending on the instruction. All such instructions use
round-to-nearest, except certain floating-point-to-integer conversion instructions (“Data Conversion”
on page 271) which use round-to-zero.

5.5.6.4 No Support for Infinities, NaNs, and Denormals

64-bit media floating-point instructions support only normalized numbers. They do not support
infinity, NaN, and denormalized number representations. Operations on such numbers produce
undefined results, and no exceptions are generated. If all source operands are normalized numbers,
these instructions never produce infinities, NaNs, or denormalized numbers as results.

This aspect of 64-bit media floating-point operations does not comply with the IEEE 754 standard.
Software must use only normalized operands and ensure that computations remain within valid
normalized-number ranges.

5.5.6.5 No Support for Floating-Point Exceptions

The 64-bit media floating-point instructions do not generate floating-point exceptions. Software must
ensure that in-range operands are provided to these instructions.

5.6 Instruction Summary—Integer Instructions
This section summarizes the functions of the integer (MMX and a few SSE and SSE2) instructions in
the 64-bit media instruction subset. These include integer instructions that use an MMX register for
source or destination and data-conversion instructions that convert from integers to floating-point
formats. For a summary of the floating-point instructions in the 64-bit media instruction subset,
including data-conversion instructions that convert from floating-point to integer formats, see
“Instruction Summary—Floating-Point Instructions” on page 270.

00h<x<FFh Normal
01h 2 (1–127) lowest possible exponent
FEh 2 (254–127) largest possible exponent

Table 5-4. 64-Bit Floating-Point Exponent Ranges (continued)
Biased Exponent Description

Note:
1. Unsupported numbers can be used as source operands but produce undefined

results.

[AMD Public Use]

254 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The instructions are organized here by functional group—such as data-transfer, vector arithmetic, and
so on. Software running at any privilege level can use any of these instructions, if the CPUID
instruction reports support for the instructions (see “Feature Detection” on page 276). More detail on
individual instructions is given in the alphabetically organized “64-Bit Media Instruction Reference”
in Volume 5.

5.6.1 Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data. The majority of 64-bit media integer instructions
have the following syntax:

MNEMONIC mmx1, mmx2/mem64

Figure 5-10 on page 254 shows an example of the mnemonic syntax for a packed add bytes (PADDB)
instruction.

Figure 5-10. Mnemonic Syntax for Typical Instruction

This example shows the PADDB mnemonic followed by two operands, a 64-bit MMX register
operand and another 64-bit MMX register or 64-bit memory operand. In most instructions that take
two operands, the first (left-most) operand is both a source operand and the destination operand. The
second (right-most) operand serves only as a source. Some instructions can have one or more prefixes
that modify default properties, as described in “Instruction Prefixes” on page 275.

5.6.1.1 Mnemonics

The following characters are used as prefixes in the mnemonics of integer instructions:

• CVT—Convert
• CVTT—Convert with truncation
• P—Packed (vector)
• PACK—Pack elements of 2x data size to 1x data size
• PUNPCK—Unpack and interleave elements

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

PADDB mmx1, mmx2/mem64

[AMD Public Use]

64-Bit Media Programming 255

24592—Rev. 3.23—October 2020 AMD64 Technology

In addition to the above prefix characters, the following characters are used elsewhere in the
mnemonics of integer instructions:

• B—Byte
• D—Doubleword
• DQ—Double quadword
• ID—Integer doubleword
• IW—Integer word
• PD—Packed double-precision floating-point
• PI—Packed integer
• PS—Packed single-precision floating-point
• Q—Quadword
• S—Signed
• SS—Signed saturation
• U—Unsigned
• US—Unsigned saturation
• W—Word
• x—One or more variable characters in the mnemonic

For example, the mnemonic for the instruction that packs four words into eight unsigned bytes is
PACKUSWB. In this mnemonic, the PACK designates 2x-to-1x conversion of vector elements, the US
designates unsigned results with saturation, and the WB designates vector elements of the source as
words and those of the result as bytes.

5.6.2 Exit Media State

The exit media state instructions are used to isolate the use of processor resources between 64-bit
media instructions and x87 floating-point instructions.

• EMMS—Exit Media State
• FEMMS—Fast Exit Media State

These instructions initialize the contents of the x87 floating-point stack registers—called clearing the
MMX state. Software should execute one of these instructions before leaving a 64-bit media
procedure.

The EMMS and FEMMS instructions both clear the MMX state, as described in “Mixing Media Code
with x87 Code” on page 280. The instructions differ in one respect: FEMMS leaves the data in the x87
stack registers undefined. By contrast, EMMS leaves the data in each such register as it was defined by
the last x87 or 64-bit media instruction that wrote to the register. The FEMMS instruction is supported
for backward-compatibility. Software that must be compatible with both AMD and non-AMD
processors should use the EMMS instruction.

[AMD Public Use]

256 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

5.6.3 Data Transfer

The data-transfer instructions copy operands between a 32-bit or 64-bit memory location, an MMX
register, an XMM register, or a GPR. The MOV mnemonic, which stands for move, is a misnomer. A
copy function is actually performed instead of a move.

Move
• MOVD—Move Doubleword
• MOVQ—Move Quadword
• MOVDQ2Q—Move Double Quadword to Quadword
• MOVQ2DQ—Move Quadword to Double Quadword

The MOVD instruction copies a 32-bit or 64-bit value from a general-purpose register (GPR) or
memory location to an MMX register, or from an MMX register to a GPR or memory location. If the
source operand is 32 bits and the destination operand is 64 bits, the source is zero-extended to 64 bits
in the destination. If the source is 64 bits and the destination is 32 bits, only the low-order 32 bits of the
source are copied to the destination.

The MOVQ instruction copies a 64-bit value from an MMX register or 64-bit memory location to
another MMX register, or from an MMX register to another MMX register or 64-bit memory location.

The MOVDQ2Q instruction copies the low-order 64-bit value in an XMM register to an MMX
register.

The MOVQ2DQ instruction copies a 64-bit value from an MMX register to the low-order 64 bits of an
XMM register, with zero-extension to 128 bits.

The MOVD and MOVQ instructions—along with the PUNPCKx instructions—are often among the
most frequently used instructions in 64-bit media procedures (both integer and floating-point). The
move instructions are similar to the assignment operator in high-level languages.

5.6.3.1 Move Non-Temporal

The move non-temporal instructions are called streaming-store instructions. They minimize pollution
of the cache. The assumption is that the data they reference will be used only once, and is therefore not
subject to cache-related overhead such as write-allocation. For further information, see “Memory
Optimization” on page 98.

• MOVNTQ—Move Non-temporal Quadword
• MASKMOVQ—Mask Move Quadword

The MOVNTQ instruction stores a 64-bit MMX register value into a 64-bit memory location. The
MASKMOVQ instruction stores bytes from the first operand, as selected by the mask value (most-
significant bit of each byte) in the second operand, to a memory location specified in the rDI and DS
registers. The first operand is an MMX register, and the second operand is another MMX register. The

[AMD Public Use]

64-Bit Media Programming 257

24592—Rev. 3.23—October 2020 AMD64 Technology

size of the store is determined by the effective address size. Figure 5-11 on page 257 shows the
MASKMOVQ operation.

Figure 5-11. MASKMOVQ Move Mask Operation

The MOVNTQ and MASKMOVQ instructions use weakly-ordered, write-combining buffering of
write data and they minimize cache pollution. The exact method by which cache pollution is
minimized depends on the hardware implementation of the instruction. For further information, see
“Memory Optimization” on page 98.

A typical case benefitting from streaming stores occurs when data written by the processor is never
read by the processor, such as data written to a graphics frame buffer. MASKMOVQ is useful for the
handling of end cases in block copies and block fills based on streaming stores.

Move Mask
• PMOVMSKB—Packed Move Mask Byte

The PMOVMSKB instruction moves the most-significant bit of each byte in an MMX register to the
low-order byte of a 32-bit or 64-bit general-purpose register, with zero-extension. It is useful for
extracting bits from a mask, or extracting zero-point values from quantized data such as signal
samples, resulting in a byte that can be used for data-dependent branching.

5.6.4 Data Conversion

The integer data-conversion instructions convert operands from integer formats to floating-point
formats. They take 64-bit integer source operands. For data-conversion instructions that take 32-bit
and 64-bit floating-point source operands, see “Data Conversion” on page 271. For data-conversion

operand 1

.

.

63 0
operand 2

63 0

select

select

store address
memory

rDI

[AMD Public Use]

258 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

instructions that take 128-bit source operands, see “Data Conversion” on page 155 and “Data
Conversion” on page 190.

5.6.4.1 Convert Integer to Floating-Point

These instructions convert integer data types into floating-point data types.

• CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point
• CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point
• PI2FW—Packed Integer To Floating-Point Word Conversion
• PI2FD—Packed Integer to Floating-Point Doubleword Conversion

The CVTPI2Px instructions convert two 32-bit signed integer values in the second operand (an MMX
register or 64-bit memory location) to two single-precision (CVTPI2PS) or double-precision
(CVTPI2PD) floating-point values. The instructions then write the converted values into the low-order
64 bits of an XMM register (CVTPI2PS) or the full 128 bits of an XMM register (CVTPI2PD). The
CVTPI2PS instruction does not modify the high-order 64 bits of the XMM register.

The PI2Fx instructions are 3DNow! instructions. They convert two 16-bit (PI2FW) or 32-bit (PI2FD)
signed integer values in the second operand to two single-precision floating-point values. The
instructions then write the converted values into the destination. If a PI2FD conversion produces an
inexact value, the value is truncated (rounded toward zero).

5.6.5 Data Reordering

The integer data-reordering instructions pack, unpack, interleave, extract, insert, shuffle, and swap the
elements of vector operands.

5.6.5.1 Pack with Saturation

These instructions pack 2x-sized data types into 1x-sized data types, thus halving the precision of each
element in a vector operand.

• PACKSSDW—Pack with Saturation Signed Doubleword to Word
• PACKSSWB—Pack with Saturation Signed Word to Byte
• PACKUSWB—Pack with Saturation Signed Word to Unsigned Byte

The PACKSSDW instruction converts each 32-bit signed integer in its two source operands (an MMX
register or 64-bit memory location and another MMX register) into a 16-bit signed integer and packs
the converted values into the destination MMX register. The PACKSSWB instruction does the
analogous operation between word elements in the source vectors and byte elements in the destination
vector. The PACKUSWB instruction does the same as PACKSSWB except that it converts word
integers into unsigned (rather than signed) bytes.

Figure 5-12 on page 259 shows an example of a PACKSSDW instruction. The operation merges
vector elements of 2x size (doubleword-size) into vector elements of 1x size (word-size), thus
reducing the precision of the vector-element data types. Any results that would otherwise overflow or

[AMD Public Use]

64-Bit Media Programming 259

24592—Rev. 3.23—October 2020 AMD64 Technology

underflow are saturated (clamped) at the maximum or minimum representable value, respectively, as
described in “Saturation” on page 250.

Figure 5-12. PACKSSDW Pack Operation

Conversion from higher-to-lower precision may be needed, for example, after an arithmetic operation
which requires the higher-precision format to prevent possible overflow, but which requires the lower-
precision format for a subsequent operation.

5.6.5.2 Unpack and Interleave

These instructions interleave vector elements from the high or low half of two source operands. They
can be used to double the precision of operands.

• PUNPCKHBW—Unpack and Interleave High Bytes
• PUNPCKHWD—Unpack and Interleave High Words
• PUNPCKHDQ—Unpack and Interleave High Doublewords
• PUNPCKLBW—Unpack and Interleave Low Bytes
• PUNPCKLWD—Unpack and Interleave Low Words
• PUNPCKLDQ—Unpack and Interleave Low Doublewords

The PUNPCKHBW instruction unpacks the four high-order bytes from its two source operands and
interleaves them into the bytes in the destination operand. The bytes in the low-order half of the source
operand are ignored. The PUNPCKHWD and PUNPCKHDQ instructions perform analogous
operations for words and doublewords in the source operands, packing them into interleaved words
and interleaved doublewords in the destination operand.

The PUNPCKLBW, PUNPCKLWD, and PUNPCKLDQ instructions are analogous to their high-
element counterparts except that they take elements from the low doubleword of each source vector

operand 1

result

63 0

63 0

operand 2
63 0

[AMD Public Use]

260 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

and ignore elements in the high doubleword. If the source operand for PUNPCKLx instructions is in
memory, only the low 32 bits of the operand are loaded.

Figure 5-13 on page 260 shows an example of the PUNPCKLWD instruction. The elements are taken
from the low half of the source operands. In this register image, elements from operand2 are placed to
the left of elements from operand1.

Figure 5-13. PUNPCKLWD Unpack and Interleave Operation

If one of the two source operands is a vector consisting of all zero-valued elements, the unpack
instructions perform the function of expanding vector elements of 1x size into vector elements of 2x
size (for example, word-size to doubleword-size). If both source operands are of identical value, the
unpack instructions can perform the function of duplicating adjacent elements in a vector.

The PUNPCKx instructions—along with MOVD and MOVQ—are among the most frequently used
instructions in 64-bit media procedures (both integer and floating-point).

5.6.5.3 Extract and Insert

These instructions copy a word element from a vector, in a manner specified by an immediate operand.

• PEXTRW—Packed Extract Word
• PINSRW—Packed Insert Word

The PEXTRW instruction extracts a 16-bit value from an MMX register, as selected by the immediate-
byte operand, and writes it to the low-order word of a 32-bit or 64-bit general-purpose register, with
zero-extension to 32 or 64 bits. PEXTRW is useful for loading computed values, such as table-lookup
indices, into general-purpose registers where the values can be used for addressing tables in memory.

The PINSRW instruction inserts a 16-bit value from a the low-order word of a 32-bit or 64-bit general
purpose register or a 16-bit memory location into an MMX register. The location in the destination

operand 1

result

63 0

63 0

operand 2
63 0

[AMD Public Use]

64-Bit Media Programming 261

24592—Rev. 3.23—October 2020 AMD64 Technology

register is selected by the immediate-byte operand. The other words in the destination register operand
are not modified.

5.6.5.4 Shuffle and Swap

These instructions reorder the elements of a vector.

• PSHUFW—Packed Shuffle Words
• PSWAPD—Packed Swap Doubleword

The PSHUFW instruction moves any one of the four words in its second operand (an MMX register or
64-bit memory location) to specified word locations in its first operand (another MMX register). The
ordering of the shuffle can occur in any of 256 possible ways, as specified by the immediate-byte
operand. Figure 5-14 shows one of the 256 possible shuffle operations. PSHUFW is useful, for
example, in color imaging when computing alpha saturation of RGB values. In this case, PSHUFW
can replicate an alpha value in a register so that parallel comparisons with three RGB values can be
performed.

Figure 5-14. PSHUFW Shuffle Operation

The PSWAPD instruction swaps (reverses) the order of two 32-bit values in the second operand and
writes each swapped value in the corresponding doubleword of the destination. Figure 5-15 shows a
swap operation. PSWAPD is useful, for example, in complex-number multiplication in which the
elements of one source operand must be swapped (see “Accumulation” on page 272 for details).
PSWAPD supports independent source and result operands so that it can also perform a load function.

operand 2operand 1

result

63 0

63 0

63 0

[AMD Public Use]

262 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 5-15. PSWAPD Swap Operation

5.6.6 Arithmetic

The integer vector-arithmetic instructions perform an arithmetic operation on the elements of two
source vectors. Arithmetic instructions that are not specifically named as unsigned perform signed
two’s-complement arithmetic.

Addition
• PADDB—Packed Add Bytes
• PADDW—Packed Add Words
• PADDD—Packed Add Doublewords
• PADDQ—Packed Add Quadwords
• PADDSB—Packed Add with Saturation Bytes
• PADDSW—Packed Add with Saturation Words
• PADDUSB—Packed Add Unsigned with Saturation Bytes
• PADDUSW—Packed Add Unsigned with Saturation Words

The PADDB, PADDW, PADDD, and PADDQ instructions add each 8-bit (PADDB), 16-bit
(PADDW), 32-bit (PADDD), or 64-bit (PADDQ) integer element in the second operand to the
corresponding, same-sized integer element in the first operand. The instructions then write the integer
result of each addition to the corresponding, same-sized element of the destination. These instructions
operate on both signed and unsigned integers. However, if the result overflows, only the low-order
byte, word, doubleword, or quadword of each result is written to the destination. The PADDD
instruction can be used together with PMADDWD (page 264) to implement dot products.

The PADDSB and PADDSW instructions perform additions analogous to the PADDB and PADDW
instructions, except with saturation. For each result in the destination, if the result is larger than the

operand 1

result

63 0
operand 2

63 0

63 0

[AMD Public Use]

64-Bit Media Programming 263

24592—Rev. 3.23—October 2020 AMD64 Technology

largest, or smaller than the smallest, representable 8-bit (PADDSB) or 16-bit (PADDSW) signed
integer, the result is saturated to the largest or smallest representable value, respectively.

The PADDUSB and PADDUSW instructions perform saturating additions analogous to the PADDSB
and PADDSW instructions, except on unsigned integer elements.

Subtraction
• PSUBB—Packed Subtract Bytes
• PSUBW—Packed Subtract Words
• PSUBD—Packed Subtract Doublewords
• PSUBQ—Packed Subtract Quadword
• PSUBSB—Packed Subtract with Saturation Bytes
• PSUBSW—Packed Subtract with Saturation Words
• PSUBUSB—Packed Subtract Unsigned and Saturate Bytes
• PSUBUSW—Packed Subtract Unsigned and Saturate Words

The subtraction instructions perform operations analogous to the addition instructions.

The PSUBB, PSUBW, PSUBD, and PSUBQ instructions subtract each 8-bit (PSUBB), 16-bit
(PSUBW), 32-bit (PSUBD), or 64-bit (PSUBQ) integer element in the second operand from the
corresponding, same-sized integer element in the first operand. The instructions then write the integer
result of each subtraction to the corresponding, same-sized element of the destination. These
instructions operate on both signed and unsigned integers. However, if the result underflows, only the
low-order byte, word, doubleword, or quadword of each result is written to the destination.

The PSUBSB and PSUBSW instructions perform subtractions analogous to the PSUBB and PSUBW
instructions, except with saturation. For each result in the destination, if the result is larger than the
largest, or smaller than the smallest, representable 8-bit (PSUBSB) or 16-bit (PSUBSW) signed
integer, the result is saturated to the largest or smallest representable value, respectively.

The PSUBUSB and PSUBUSW instructions perform saturating subtractions analogous to the
PSUBSB and PSUBSW instructions, except on unsigned integer elements.

Multiplication
• PMULHW—Packed Multiply High Signed Word
• PMULLW—Packed Multiply Low Signed Word
• PMULHRW—Packed Multiply High Rounded Word
• PMULHUW—Packed Multiply High Unsigned Word
• PMULUDQ—Packed Multiply Unsigned Doubleword and Store Quadword

The PMULHW instruction multiplies each 16-bit signed integer value in first operand by the
corresponding 16-bit integer in the second operand, producing a 32-bit intermediate result. The
instruction then writes the high-order 16 bits of the 32-bit intermediate result of each multiplication to

[AMD Public Use]

264 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

the corresponding word of the destination. The PMULLW instruction performs the same
multiplication as PMULHW but writes the low-order 16 bits of the 32-bit intermediate result to the
corresponding word of the destination.

The PMULHRW instruction performs the same multiplication as PMULHW but with rounding. After
the multiplication, PMULHRW adds 8000h to the lower word of the doubleword result, thus rounding
the high-order word which is returned as the result.

The PMULHUW instruction performs the same multiplication as PMULHW but on unsigned
operands. The instruction is useful in 3D rasterization, which operates on unsigned pixel values.

The PMULUDQ instruction, unlike the other PMULx instructions, preserves the full precision of the
result. It multiplies 32-bit unsigned integer values in the first and second operands and writes the full
64-bit result to the destination.

See “Shift” on page 266 for shift instructions that can be used to perform multiplication and division
by powers of 2.

Multiply-Add
• PMADDWD—Packed Multiply Words and Add Doublewords

The PMADDWD instruction multiplies each 16-bit signed value in the first operand by the
corresponding 16-bit signed value in the second operand. The instruction then adds the adjacent 32-bit
intermediate results of each multiplication, and writes the 32-bit result of each addition into the
corresponding doubleword of the destination. PMADDWD thus performs two signed (16 16 32)
(16 16 32) multiply-adds in parallel. Figure 5-16 shows the PMADDWD operation.

The only case in which overflow can occur is when all four of the 16-bit source operands used to
produce a 32-bit multiply-add result have the value 8000h. In this case, the result returned is
8000_0000h, because the maximum negative 16-bit value of 8000h multiplied by itself equals
4000_0000h, and 4000_0000h added to 4000_0000h equals 8000_0000h. The result of multiplying
two negative numbers should be a positive number, but 8000_0000h is the maximum possible 32-bit
negative number rather than a positive number.

[AMD Public Use]

64-Bit Media Programming 265

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 5-16. PMADDWD Multiply-Add Operation

PMADDWD can be used with one source operand (for example, a coefficient) taken from memory
and the other source operand (for example, the data to be multiplied by that coefficient) taken from an
MMX register. The instruction can also be used together with the PADDD instruction (page 262) to
compute dot products, such as those required for finite impulse response (FIR) filters, one of the
commonly used DSP algorithms. Scaling can be done, before or after the multiply, using a vector-shift
instruction (page 266).

For floating-point multiplication operations, see the PFMUL instruction on page 272. For floating-
point accumulation operations, see the PFACC, PFNACC, and PFPNACC instructions on page 272.

Average
• PAVGB—Packed Average Unsigned Bytes
• PAVGW—Packed Average Unsigned Words
• PAVGUSB—Packed Average Unsigned Packed Bytes

The PAVGx instructions compute the rounded average of each unsigned 8-bit (PAVGB) or 16-bit
(PAVGW) integer value in the first operand and the corresponding, same-sized unsigned integer in the
second operand. The instructions then write each average in the corresponding, same-sized element of
the destination. The rounded average is computed by adding each pair of operands, adding 1 to the
temporary sum, and then right-shifting the temporary sum by one bit.

operand 1

result

63 0

63 0

operand 2
63 0

127 0

*

+ +

[AMD Public Use]

266 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The PAVGB instruction is useful for MPEG decoding, in which motion compensation performs many
byte-averaging operations between and within macroblocks. In addition to speeding up these
operations, PAVGB can free up registers and make it possible to unroll the averaging loops.

The PAVGUSB instruction (a 3DNow! instruction) performs a function identical to the PAVGB
instruction, described on page 265, although the two instructions have different opcodes.

Sum of Absolute Differences
• PSADBW—Packed Sum of Absolute Differences of Bytes into a Word

The PSADBW instruction computes the absolute values of the differences of corresponding 8-bit
signed integer values in the first and second operands. The instruction then sums the differences and
writes an unsigned 16-bit integer result in the low-order word of the destination. The remaining bytes
in the destination are cleared to all 0s.

Sums of absolute differences are used to compute the L1 norm in motion-estimation algorithms for
video compression.

5.6.7 Shift

The vector-shift instructions are useful for scaling vector elements to higher or lower precision,
packing and unpacking vector elements, and multiplying and dividing vector elements by powers of 2.

Left Logical Shift
• PSLLW—Packed Shift Left Logical Words
• PSLLD—Packed Shift Left Logical Doublewords
• PSLLQ—Packed Shift Left Logical Quadwords

The PSLLx instructions left-shift each of the 16-bit (PSLLW), 32-bit (PSLLD), or 64-bit (PSLLQ)
values in the first operand by the number of bits specified in the second operand. The instructions then
write each shifted value into the corresponding, same-sized element of the destination. The first and
second operands are either an MMX register and another MMX register or 64-bit memory location, or
an MMX register and an immediate-byte value. The low-order bits that are emptied by the shift
operation are cleared to 0.

In integer arithmetic, left logical shifts effectively multiply unsigned operands by positive powers of 2.

Right Logical Shift
• PSRLW—Packed Shift Right Logical Words
• PSRLD—Packed Shift Right Logical Doublewords
• PSRLQ—Packed Shift Right Logical Quadwords

The PSRLx instructions right-shift each of the 16-bit (PSRLW), 32-bit (PSRLD), or 64-bit (PSRLQ)
values in the first operand by the number of bits specified in the second operand. The instructions then
write each shifted value into the corresponding, same-sized element of the destination. The first and

[AMD Public Use]

64-Bit Media Programming 267

24592—Rev. 3.23—October 2020 AMD64 Technology

second operands are either an MMX register and another MMX register or 64-bit memory location, or
an MMX register and an immediate-byte value. The high-order bits that are emptied by the shift
operation are cleared to 0. In integer arithmetic, right logical shifts effectively divide unsigned
operands or positive signed operands by positive powers of 2.

PSRLQ can be used to move the high 32 bits of an MMX register to the low 32 bits of the register.

Right Arithmetic Shift
• PSRAW—Packed Shift Right Arithmetic Words
• PSRAD—Packed Shift Right Arithmetic Doublewords

The PSRAx instructions right-shifts each of the 16-bit (PSRAW) or 32-bit (PSRAD) values in the first
operand by the number of bits specified in the second operand. The instructions then write each shifted
value into the corresponding, same-sized element of the destination. The high-order bits that are
emptied by the shift operation are filled with the sign bit of the initial value.

In integer arithmetic, right arithmetic shifts effectively divide signed operands by positive powers of 2.

5.6.8 Compare

The integer vector-compare instructions compare two operands, and they either write a mask or they
write the maximum or minimum value.

Compare and Write Mask
• PCMPEQB—Packed Compare Equal Bytes
• PCMPEQW—Packed Compare Equal Words
• PCMPEQD—Packed Compare Equal Doublewords
• PCMPGTB—Packed Compare Greater Than Signed Bytes
• PCMPGTW—Packed Compare Greater Than Signed Words
• PCMPGTD—Packed Compare Greater Than Signed Doublewords

The PCMPEQx and PCMPGTx instructions compare corresponding bytes, words, or doubleword in
the first and second operands. The instructions then write a mask of all 1s or 0s for each compare into
the corresponding, same-sized element of the destination.

For the PCMPEQx instructions, if the compared values are equal, the result mask is all 1s. If the values
are not equal, the result mask is all 0s. For the PCMPGTx instructions, if the signed value in the first
operand is greater than the signed value in the second operand, the result mask is all 1s. If the value in
the first operand is less than or equal to the value in the second operand, the result mask is all 0s.
PCMPEQx can be used to set the bits in an MMX register to all 1s by specifying the same register for
both operands.

By specifying the same register for both operands, PCMPEQx can be used to set the bits in an MMX
register to all 1s.

[AMD Public Use]

268 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 5-5 on page 244 shows an example of a non-branching sequence that implements a two-way
multiplexer—one that is equivalent to the following sequence of ternary operators in C or C++:
r0 = a0 > b0 ? a0 : b0
r1 = a1 > b1 ? a1 : b1
r2 = a2 > b2 ? a2 : b2
r3 = a3 > b3 ? a3 : b3

Assuming mmx0 contains a, and mmx1 contains b, the above C sequence can be implemented with the
following assembler sequence:
MOVQ mmx3, mmx0
PCMPGTW mmx3, mmx2 ; a > b ? 0xffff : 0
PAND mmx0, mmx3 ; a > b ? a: 0
PANDN mmx3, mmx1 ; a > b > 0 : b
POR mmx0, mmx3 ; r = a > b ? a: b

In the above sequence, PCMPGTW, PAND, PANDN, and POR operate, in parallel, on all four
elements of the vectors.

Compare and Write Minimum or Maximum
• PMAXUB—Packed Maximum Unsigned Bytes
• PMINUB—Packed Minimum Unsigned Bytes
• PMAXSW—Packed Maximum Signed Words
• PMINSW—Packed Minimum Signed Words

The PMAXUB and PMINUB instructions compare each of the 8-bit unsigned integer values in the
first operand with the corresponding 8-bit unsigned integer values in the second operand. The
instructions then write the maximum (PMAXUB) or minimum (PMINUB) of the two values for each
comparison into the corresponding byte of the destination.

The PMAXSW and PMINSW instructions perform operations analogous to the PMAXUB and
PMINUB instructions, except on 16-bit signed integer values.

5.6.9 Logical

The vector-logic instructions perform Boolean logic operations, including AND, OR, and exclusive
OR.

And
• PAND—Packed Logical Bitwise AND
• PANDN—Packed Logical Bitwise AND NOT

The PAND instruction performs a bitwise logical AND of the values in the first and second operands
and writes the result to the destination.

[AMD Public Use]

64-Bit Media Programming 269

24592—Rev. 3.23—October 2020 AMD64 Technology

The PANDN instruction inverts the first operand (creating a one’s complement of the operand), ANDs
it with the second operand, and writes the result to the destination, and writes the result to the
destination. Table 5-5 shows an example.

PAND can be used with the value 7FFFFFFF7FFFFFFFh to compute the absolute value of the
elements of a 64-bit media floating-point vector operand. This method is equivalent to the x87 FABS
(floating-point absolute value) instruction.

Or
• POR—Packed Logical Bitwise OR

The POR instruction performs a bitwise logical OR of the values in the first and second operands and
writes the result to the destination.

Exclusive Or
• PXOR—Packed Logical Bitwise Exclusive OR

The PXOR instruction performs a bitwise logical exclusive OR of the values in the first and second
operands and writes the result to the destination. PXOR can be used to clear all bits in an MMX
register by specifying the same register for both operands. PXOR can also used with the value
8000000080000000h to change the sign bits of the elements of a 64-bit media floating-point vector
operand. This method is equivalent to the x87 floating-point change sign (FCHS) instruction.

5.6.10 Save and Restore State

These instructions save and restore the processor state for 64-bit media instructions.

Save and Restore 64-Bit Media and x87 State
• FSAVE—Save x87 and MMX State
• FNSAVE—Save No-Wait x87 and MMX State
• FRSTOR—Restore x87 and MMX State

These instructions save and restore the entire processor state for x87 floating-point instructions and
64-bit media instructions. The instructions save and restore either 94 or 108 bytes of data, depending
on the effective operand size.

Table 5-5. Example PANDN Bit Values

Operand1 Bit Operand1 Bit
(Inverted) Operand2 Bit PANDN

Result Bit
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0

[AMD Public Use]

270 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Assemblers issue FSAVE as an FWAIT instruction followed by an FNSAVE instruction. Thus, FSAVE
(but not FNSAVE) reports pending unmasked x87 floating-point exceptions before saving the state.
After saving the state, the processor initializes the x87 state by performing the equivalent of an FINIT
instruction.

Save and Restore 128-Bit, 64-Bit, and x87 State
• FXSAVE—Save XMM, MMX, and x87 State
• FXRSTOR—Restore XMM, MMX, and x87 State

The FXSAVE and FXRSTOR instructions save and restore the entire 512-byte processor state for 128-
bit media instructions, 64-bit media instructions, and x87 floating-point instructions. The architecture
supports two memory formats for FXSAVE and FXRSTOR, a 512-byte 32-bit legacy format and a
512-byte 64-bit format. Selection of the 32-bit or 64-bit format is determined by the effective operand
size for the FXSAVE and FXRSTOR instructions. For details on the FXSAVE and FXRSTOR
Instructions, see the “64-bit Media Instruction Reference” in Volume 5.

FXSAVE and FXRSTOR execute faster than FSAVE/FNSAVE and FRSTOR. However, unlike
FSAVE and FNSAVE, FXSAVE does not initialize the x87 state, and like FNSAVE it does not report
pending unmasked x87 floating-point exceptions. For details, see “Saving and Restoring State” on
page 280.

5.7 Instruction Summary—Floating-Point Instructions
This section summarizes the functions of the floating-point (3DNow! and a few SSE and SSE2)
instructions in the 64-bit media instruction subset. These include floating-point instructions that use an
MMX register for source or destination and data-conversion instructions that convert from floating-
point to integers formats. For a summary of the integer instructions in the 64-bit media instruction
subset, including data-conversion instructions that convert from integer to floating-point formats, see
“Instruction Summary—Integer Instructions” on page 253.

For a summary of the 128-bit media floating-point instructions, see “Instruction Summary—Floating-
Point Instructions” on page 184. For a summary of the x87 floating-point instructions, see Section 6.4.
“Instruction Summary” on page 310.

The instructions are organized here by functional group—such as data-transfer, vector arithmetic, and
so on. Software running at any privilege level can use any of these instructions, if the CPUID
instruction reports support for the instructions (see “Feature Detection” on page 276). More detail on
individual instructions is given in the alphabetically organized “64-Bit Media Instruction Reference”
in Volume 5.

5.7.1 Syntax

The 64-bit media floating-point instructions have the same syntax rules as those for the 64-bit media
integer instructions, described in “Syntax” on page 254, except that the mnemonics of most floating-
point instructions begin with the following prefix:

[AMD Public Use]

64-Bit Media Programming 271

24592—Rev. 3.23—October 2020 AMD64 Technology

• PF—Packed floating-point

5.7.2 Data Conversion

These data-conversion instructions convert operands from floating-point to integer formats. The
instructions take 32-bit or 64-bit floating-point source operands. For data-conversion instructions that
take 64-bit integer source operands, see “Data Conversion” on page 257. For data-conversion
instructions that take 128-bit source operands, see “Data Conversion” on page 155 and “Data
Conversion” on page 190.

Convert Floating-Point to Integer
• CVTPS2PI—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers
• CVTTPS2PI—Convert Packed Single-Precision Floating-Point to Packed Doubleword Integers,

Truncated
• CVTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers
• CVTTPD2PI—Convert Packed Double-Precision Floating-Point to Packed Doubleword Integers,

Truncated
• PF2IW—Packed Floating-Point to Integer Word Conversion
• PF2ID—Packed Floating-Point to Integer Doubleword Conversion

The CVTPS2PI and CVTTPS2PI instructions convert two single-precision (32-bit) floating-point
values in the second operand (the low-order 64 bits of an XMM register or a 64-bit memory location)
to two 32-bit signed integers, and write the converted values into the first operand (an MMX register).
For the CVTPS2PI instruction, if the conversion result is an inexact value, the value is rounded as
specified in the rounding control (RC) field of the MXCSR register (“MXCSR Register” on page 115),
but for the CVTTPS2PI instruction such a result is truncated (rounded toward zero).

The CVTPD2PI and CVTTPD2PI instructions perform conversions analogous to CVTPS2PI and
CVTTPS2PI but for two double-precision (64-bit) floating-point values.

The 3DNow! PF2IW instruction converts two single-precision floating-point values in the second
operand (an MMX register or a 64-bit memory location) to two 16-bit signed integer values, sign-
extended to 32-bits, and writes the converted values into the first operand (an MMX register). The
3DNow! PF2ID instruction converts two single-precision floating-point values in the second operand
to two 32-bit signed integer values, and writes the converted values into the first operand. If the result
of either conversion is an inexact value, the value is truncated (rounded toward zero).

As described in “Floating-Point Data Types” on page 251, PF2IW and PF2ID do not fully comply with
the IEEE-754 standard. Conversion of some source operands of the C type float (IEEE-754 single-
precision)—specifically NaNs, infinities, and denormals—are not supported. Attempts to convert such
source operands produce undefined results, and no exceptions are generated.

[AMD Public Use]

272 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

5.7.3 Arithmetic

The floating-point vector-arithmetic instructions perform an arithmetic operation on two floating-
point operands. For a description of 3DNow! instruction saturation on overflow and underflow
conditions, see “Floating-Point Data Types” on page 251.

Addition
• PFADD—Packed Floating-Point Add

The PFADD instruction adds each single-precision floating-point value in the first operand (an MMX
register) to the corresponding single-precision floating-point value in the second operand (an MMX
register or 64-bit memory location). The instruction then writes the result of each addition into the
corresponding doubleword of the destination.

Subtraction
• PFSUB—Packed Floating-Point Subtract
• PFSUBR—Packed Floating-Point Subtract Reverse

The PFSUB instruction subtracts each single-precision floating-point value in the second operand
from the corresponding single-precision floating-point value in the first operand. The instruction then
writes the result of each subtraction into the corresponding quadword of the destination.

The PFSUBR instruction performs a subtraction that is the reverse of the PFSUB instruction. It
subtracts each value in the first operand from the corresponding value in the second operand. The
provision of both the PFSUB and PFSUBR instructions allows software to choose which source
operand to overwrite during a subtraction.

Multiplication
• PFMUL—Packed Floating-Point Multiply

The PFMUL instruction multiplies each of the two single-precision floating-point values in the first
operand by the corresponding single-precision floating-point value in the second operand and writes
the result of each multiplication into the corresponding doubleword of the destination.

Division

For a description of floating-point division techniques, see “Reciprocal Estimation” on page 273.
Division is equivalent to multiplication of the dividend by the reciprocal of the divisor.

Accumulation
• PFACC—Packed Floating-Point Accumulate
• PFNACC—Packed Floating-Point Negative Accumulate
• PFPNACC—Packed Floating-Point Positive-Negative Accumulate

The PFACC instruction adds the two single-precision floating-point values in the first operand and
writes the result into the low-order word of the destination, and it adds the two single-precision values

[AMD Public Use]

64-Bit Media Programming 273

24592—Rev. 3.23—October 2020 AMD64 Technology

in the second operand and writes the result into the high-order word of the destination. Figure 5-17
illustrates the operation.

Figure 5-17. PFACC Accumulate Operation

The PFNACC instruction subtracts the first operand’s high-order single-precision floating-point value
from its low-order single-precision floating-point value and writes the result into the low-order
doubleword of the destination, and it subtracts the second operand’s high-order single-precision
floating-point value from its low-order single-precision floating-point value and writes the result into
the high-order doubleword of the destination.

The PFPNACC instruction subtracts the first operand’s high-order single-precision floating-point
value from its low-order single-precision floating-point value and writes the result into the low-order
doubleword of the destination, and it adds the two single-precision values in the second operand and
writes the result into the high-order doubleword of the destination.

PFPNACC is useful in complex-number multiplication, in which mixed positive-negative
accumulation must be performed. Assuming that complex numbers are represented as two-element
vectors (one element is the real part, the other element is the imaginary part), there is a need to swap
the elements of one source operand to perform the multiplication, and there is a need for mixed
positive-negative accumulation to complete the parallel computation of real and imaginary results.
The PSWAPD instruction can swap elements of one source operand and the PFPNACC instruction can
perform the mixed positive-negative accumulation to complete the computation.

Reciprocal Estimation
• PFRCP—Packed Floating-Point Reciprocal Approximation
• PFRCPIT1—Packed Floating-Point Reciprocal, Iteration 1
• PFRCPIT2—Packed Floating-Point Reciprocal or Reciprocal Square Root, Iteration 2

operand 1

result63 0

operand 2
63 063 0

+ +

[AMD Public Use]

274 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The PFRCP instruction computes the approximate reciprocal of the single-precision floating-point
value in the low-order 32 bits of the second operand and writes the result into both doublewords of the
first operand.

The PFRCPIT1 instruction performs the first intermediate step in the Newton-Raphson iteration to
refine the reciprocal approximation produced by the PFRCP instruction. The first operand contains the
input to a previous PFRCP instruction, and the second operand contains the result of the same PFRCP
instruction.

The PFRCPIT2 instruction performs the second and final step in the Newton-Raphson iteration to
refine the reciprocal approximation produced by the PFRCP instruction or the reciprocal square-root
approximation produced by the PFSQRT instructions. The first operand contains the result of a
previous PFRCPIT1 or PFRSQIT1 instruction, and the second operand contains the result of a PFRCP
or PFRSQRT instruction.

The PFRCP instruction can be used together with the PFRCPIT1 and PFRCPIT2 instructions to
increase the accuracy of a single-precision significand.

Reciprocal Square Root
• PFRSQRT—Packed Floating-Point Reciprocal Square Root Approximation
• PFRSQIT1—Packed Floating-Point Reciprocal Square Root, Iteration 1

The PFRSQRT instruction computes the approximate reciprocal square root of the single-precision
floating-point value in the low-order 32 bits of the second operand and writes the result into each
doubleword of the first operand. The second operand is a single-precision floating-point value with a
24-bit significand. The result written to the first operand is accurate to 15 bits. Negative operands are
treated as positive operands for purposes of reciprocal square-root computation, with the sign of the
result the same as the sign of the source operand.

The PFRSQIT1 instruction performs the first step in the Newton-Raphson iteration to refine the
reciprocal square-root approximation produced by the PFSQRT instruction. The first operand contains
the input to a previous PFRSQRT instruction, and the second operand contains the square of the result
of the same PFRSQRT instruction.

The PFRSQRT instruction can be used together with the PFRSQIT1 instruction and the PFRCPIT2
instruction (described in “Reciprocal Estimation” on page 273) to increase the accuracy of a single-
precision significand.

5.7.4 Compare

The floating-point vector-compare instructions compare two operands, and they either write a mask or
they write the maximum or minimum value.

Compare and Write Mask
• PFCMPEQ—Packed Floating-Point Compare Equal
• PFCMPGT—Packed Floating-Point Compare Greater Than

[AMD Public Use]

64-Bit Media Programming 275

24592—Rev. 3.23—October 2020 AMD64 Technology

• PFCMPGE—Packed Floating-Point Compare Greater or Equal

The PFCMPx instructions compare each of the two single-precision floating-point values in the first
operand with the corresponding single-precision floating-point value in the second operand. The
instructions then write the result of each comparison into the corresponding doubleword of the
destination. If the comparison test (equal, greater than, greater or equal) is true, the result is a mask of
all 1s. If the comparison test is false, the result is a mask of all 0s.

Compare and Write Minimum or Maximum
• PFMAX—Packed Floating-Point Maximum
• PFMIN—Packed Floating-Point Minimum

The PFMAX and PFMIN instructions compare each of the two single-precision floating-point values
in the first operand with the corresponding single-precision floating-point value in the second operand.
The instructions then write the maximum (PFMAX) or minimum (PFMIN) of the two values for each
comparison into the corresponding doubleword of the destination.

The PFMIN and PFMAX instructions are useful for clamping, such as color clamping in 3D geometry
and rasterization. They can also be used to avoid branching.

5.8 Instruction Effects on Flags
The 64-bit media instructions do not read or write any flags in the rFLAGS register, nor do they write
any exception-status flags in the x87 status-word register, nor is their execution dependent on any
mask bits in the x87 control-word register. The only x87 state affected by the 64-bit media instructions
is described in “Actions Taken on Executing 64-Bit Media Instructions” on page 278.

5.9 Instruction Prefixes
Instruction prefixes, in general, are described in “Instruction Prefixes” on page 76. The following
restrictions apply to the use of instruction prefixes with 64-bit media instructions.

5.9.1 Supported Prefixes

The following prefixes can be used with 64-bit media instructions:

• Address-Size Override—The 67h prefix affects only operands in memory. The prefix is ignored by
all other 64-bit media instructions.

• Operand-Size Override—The 66h prefix is used to form the opcodes of certain 64-bit media
instructions. The prefix is ignored by all other 64-bit media instructions.

• Segment Overrides—The 2Eh (CS), 36h (SS), 3Eh (DS), 26h (ES), 64h (FS), and 65h (GS)
prefixes affect only operands in memory. In 64-bit mode, the contents of the CS, DS, ES, SS
segment registers are ignored.

[AMD Public Use]

276 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• REP—The F2 and F3h prefixes do not function as repeat prefixes for 64-bit media instructions.
Instead, they are used to form the opcodes of certain 64-bit media instructions. The prefixes are
ignored by all other 64-bit media instructions.

• REX—The REX prefixes affect operands that reference a GPR or XMM register when running in
64-bit mode. It allows access to the full 64-bit width of any of the 16 extended GPRs and to any of
the 16 extended XMM registers. The REX prefix also affects the FXSAVE and FXRSTOR
instructions, in which it selects between two types of 512-byte memory-image format, as described
in “Media and x87 Processor State” in Volume 2. The prefix is ignored by all other 64-bit media
instructions.

5.9.2 Special-Use and Reserved Prefixes

The following prefixes are used as opcode bytes in some 64-bit media instructions and are reserved in
all other 64-bit media instructions:

• Operand-Size Override—The 66h prefix.
• REP—The F2 and F3h prefixes.

5.9.3 Prefixes That Cause Exceptions

The following prefixes cause an exception:

• LOCK—The F0h prefix causes an invalid-opcode exception when used with 64-bit media
instructions.

5.10 Feature Detection
Before executing 64-bit media instructions, software should determine whether the processor supports
the technology by executing the CPUID instruction. “Feature Detection” on page 79 describes how
software uses the CPUID instruction to detect feature support. For full support of the 64-bit media
instructions documented here, the following features require detection:

• MMX instructions, indicated by bit 23 of CPUID function 1 and function 8000_0001h.
• 3DNow! instructions, indicated by bit 31 of CPUID function 8000_0001h.
• MMX extensions, indicated by bit 22 of CPUID function 8000_0001h.
• 3DNow! extensions, indicated by bit 30 of CPUID function 8000_0001h.
• SSE instructions, indicated by bit 25 of CPUID function 8000_0001h.
• SSE2 instruction extensions, indicated by bit 26 of CPUID function 8000_0001h.
• SSE3 instruction extensions, indicated by bit 0 of CPUID function 0000_0001h.
• SSE4A instruction extensions, indicated by bit 6 of CPUID function 8000_0001h.

Software may also wish to check for the following support, because the FXSAVE and FXRSTOR
instructions execute faster than FSAVE and FRSTOR:

• FXSAVE and FXRSTOR, indicated by bit 24 of CPUID function 1 and function 8000_0001h.

[AMD Public Use]

64-Bit Media Programming 277

24592—Rev. 3.23—October 2020 AMD64 Technology

Software that runs in long mode should also check for the following support:

• Long Mode, indicated by bit 29 of CPUID function 8000_0001h.

See “CPUID” in Volume 3 for details on the CPUID instruction and Appendix D of that volume for
information on detemining support for specific instruction subsets.

If the FXSAVE and FXRSTOR instructions are to be used, the operating system must support these
instructions by having set CR4.OSFXSR = 1. If the MMX floating-point-to-integer data-conversion
instructions (CVTPS2PI, CVTTPS2PI, CVTPD2PI, or CVTTPD2PI) are used, the operating system
must support the FXSAVE and FXRSTOR instructions and SIMD floating-point exceptions (by
having set CR4.OSXMMEXCPT = 1). For details, see “System-Control Registers” in Volume 2.

5.11 Exceptions
64-bit media instructions can generate two types of exceptions:

• General-Purpose Exceptions, described below in “General-Purpose Exceptions”
• x87 Floating-Point Exceptions (#MF), described in “x87 Floating-Point Exceptions (#MF)” on

page 278

All exceptions that occur while executing 64-bit media instructions can be handled by legacy
exception handlers used for general-purpose instructions and x87 floating-point instructions.

5.11.1 General-Purpose Exceptions

The sections below list exceptions generated and not generated by general-purpose instructions. For a
summary of the general-purpose exception mechanism, see “Interrupts and Exceptions” on page 91.
For details about each exception and its potential causes, see “Exceptions and Interrupts” in Volume 2.

5.11.1.1 Exceptions Generated

The 64-bit media instructions can generate the following general-purpose exceptions:

• #DB—Debug Exception (Vector 1)
• #UD—Invalid-Opcode Exception (Vector 6)
• #DF—Double-Fault Exception (Vector 8)
• #SS—Stack Exception (Vector 12)
• #GP—General-Protection Exception (Vector 13)
• #PF—Page-Fault Exception (Vector 14)
• #MF—x87 Floating-Point Exception-Pending (Vector 16)
• #AC—Alignment-Check Exception (Vector 17)
• #MC—Machine-Check Exception (Vector 18)
• #XF—SIMD Floating-Point Exception (Vector 19)—Only by the CVTPS2PI, CVTTPS2PI,

CVTPD2PI, and CVTTPD2PI instructions.

[AMD Public Use]

278 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

An invalid-opcode exception (#UD) can occur if a required CPUID feature flag is not set (see “Feature
Detection” on page 276), or if an attempt is made to execute a 64-bit media instruction and the
operating system has set the floating-point software-emulation (EM) bit in control register 0 to 1
(CR0.EM = 1).

For details on the system control-register bits, see “System-Control Registers” in Volume 2. For
details on the machine-check mechanism, see “Machine Check Mechanism” in Volume 2.

For details on #MF exceptions, see “x87 Floating-Point Exceptions (#MF)” on page 278.

5.11.1.2 Exceptions Not Generated

The 64-bit media instructions do not generate the following general-purpose exceptions:

• #DE—Divide-By-Zero-Error Exception (Vector 0)
• Non-Maskable-Interrupt Exception (Vector 2)
• #BP—Breakpoint Exception (Vector 3)
• #OF—Overflow Exception (Vector 4)
• #BR—Bound-Range Exception (Vector 5)
• #NM—Device-Not-Available Exception (Vector 7)
• Coprocessor-Segment-Overrun Exception (Vector 9)
• #TS—Invalid-TSS Exception (Vector 10)
• #NP—Segment-Not-Present Exception (Vector 11)

For details on all general-purpose exceptions, see “Exceptions and Interrupts” in Volume 2.

5.11.2 x87 Floating-Point Exceptions (#MF)

The 64-bit media instructions do not generate x87 floating-point (#MF) exceptions as a consequence
of their own computations. However, an #MF exception can occur during the execution of a 64-bit
media instruction, due to a prior x87 floating-point instruction. Specifically, if an unmasked x87
floating-point exception is pending at the instruction boundary of the next 64-bit media instruction, the
processor asserts the FERR# output signal. For details about the x87 floating-point exceptions and the
FERR# output signal, see Section 6.8.2. “x87 Floating-Point Exception Causes” on page 329.

5.12 Actions Taken on Executing 64-Bit Media Instructions
The MMX registers are mapped onto the low 64 bits of the 80-bit x87 floating-point physical registers,
FPR0–FPR7, described in Section 6.2. “Registers” on page 286. The MMX instructions do not use the
x87 stack-addressing mechanism. However, 64-bit media instructions write certain values in the x87
top-of-stack pointer, tag bits, and high bits of the FPR0–FPR7 data registers.

Specifically, the processor performs the following x87-related actions atomically with the execution of
64-bit media instructions:

[AMD Public Use]

64-Bit Media Programming 279

24592—Rev. 3.23—October 2020 AMD64 Technology

• Top-Of-Stack Pointer (TOP)—The processor clears the x87 top-of-stack pointer (bits 13–11 in the
x87 status word register) to all 0s during the execution of every 64-bit media instruction, causing it
to point to the mmx0 register.

• Tag Bits—During the execution of every 64-bit media instruction, except the EMMS and FEMMS
instructions, the processor changes the tag state for all eight MMX registers to full, as described
below. In the case of EMMS and FEMMS, the processor changes the tag state for all eight MMX
registers to empty, thus initializing the stack for an x87 floating-point procedure.

• Bits 79:64—During the execution of every 64-bit media instruction that writes a result to an MMX
register, the processor writes the result data to a 64-bit MMX register (the low 64 bits of the
associated 80-bit x87 floating-point physical register) and sets the exponent and sign bits (the high
16 bits of the associated 80-bit x87 floating-point physical register) to all 1s. In the x87
environment, the effect of setting the high 16 bits to all 1s indicates that the contents of the low 64
bits are not finite numbers. Such a designation prevents an x87 floating-point instruction from
interpreting the data as a finite x87 floating-point number.

The rest of the x87 floating-point processor state—the entire x87 control-word register, the remaining
fields of the status-word register, and the error pointers (instruction pointer, data pointer, and last
opcode register)—is not affected by the execution of 64-bit media instructions.

The 2-bit tag fields defined by the x87 architecture for each x87 data register, and stored in the x87 tag-
word register (also called the floating-point tag word, or FTW), characterize the contents of the MMX
registers. The tag bits are visible to software only after an FSAVE or FNSAVE (but not FXSAVE)
instruction, as described in “Media and x87 Processor State” in Volume 2. Internally, however, the
processor maintains only a one-bit representation of each 2-bit tag field. This single bit indicates
whether the associated register is empty or full. Table 5-6 on page 279 shows the mapping between the
1-bit internal tag—which is referred to in this chapter by its empty or full state—and the 2-bit
architectural tag.

When the processor executes an FSAVE or FNSAVE (but not FXSAVE) instruction, it changes the
internal 1-bit tag state to its 2-bit architectural tag by reading the data in all 80 bits of the physical data

Table 5-6. Mapping Between Internal and Software-Visible Tag Bits
Architectural State

Internal State1
State Binary Value

Valid 00

Full (0)
Zero 01
Special
(NaN, infinity, denormal)2

10

Empty 11 Empty (1)
Note:

1. For a more detailed description of this mapping, see “Deriving FSAVE Tag Field
from FXSAVE Tag Field” in Volume 2.

2. The 64-bit media floating point (3DNow!™) instructions do not support NaNs, infin-
ities, and denormals.

[AMD Public Use]

280 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

registers and using the mapping in Table 5-6. For example, if the value in the high 16 bits of the 80-bit
physical register indicate a NaN, the two tag bits for that register are changed to a binary value of 10
before the x87 status word is written to memory.

The tag bits have no effect on the execution of 64-bit media instructions or their interpretation of the
contents of the MMX registers. However, the converse is not true: execution of 64-bit media
instructions that write to an MMX register alter the tag bits and thus may affect execution of
subsequent x87 floating-point instructions.

For a more detailed description of the mapping shown in Table 5-6, see “Deriving FSAVE Tag Field
from FXSAVE Tag Field” in Volume 2 and its accompanying text.

5.13 Mixing Media Code with x87 Code
5.13.1 Mixing Code

Software may freely mix 64-bit media instructions (integer or floating-point) with 128-bit media
instructions (integer or floating-point) and general-purpose instructions in a single procedure.
However, before transitioning from a 64-bit media procedure—or a 128-bit media procedure that
accesses an MMX™ register—to an x87 procedure, or to software that may eventually branch to an
x87 procedure, software should clear the MMX state, as described immediately below.

5.13.2 Clearing MMX™ State

Software should separate 64-bit media procedures, 128-bit media procedures, or dynamic link libraries
(DLLs) that access MMX registers from x87 floating-point procedures or DLLs by clearing the MMX
state with the EMMS or FEMMS instruction before leaving a 64-bit media procedure, as described in
“Exit Media State” on page 255.

The 64-bit media instructions and x87 floating-point instructions interpret the contents of their aliased
MMX and x87 registers differently. Because of this, software should not exchange register data
between 64-bit media and x87 floating-point procedures, or use conditional branches at the end of
loops that might jump to code of the other type. Software must not rely on the contents of the aliased
MMX and x87 registers across such code-type transitions. If a transition to an x87 procedure occurs
from a 64-bit media procedure that does not clear the MMX state, the x87 stack may overflow.

5.14 State-Saving
5.14.1 Saving and Restoring State

In general, system software should save and restore MMX™ and x87 state between task switches or
other interventions in the execution of 64-bit media procedures. Virtually all modern operating
systems running on x86 processors implement preemptive multitasking that handle saving and
restoring of state across task switches, independent of hardware task-switch support.

[AMD Public Use]

64-Bit Media Programming 281

24592—Rev. 3.23—October 2020 AMD64 Technology

No changes are needed to the x87 register-saving performed by 32-bit operating systems, exception
handlers, or device drivers. The same support provided in a 32-bit operating system’s device-not-
available (#NM) exception handler by any of the x87-register save/restore instructions described
below also supports saving and restoring the MMX registers.

However, application procedures are also free to save and restore MMX and x87 state at any time they
deem useful.

5.14.2 State-Saving Instructions

Software running at any privilege level may save and restore 64-bit media and x87 state by executing
the FSAVE, FNSAVE, or FXSAVE instruction. Alternatively, software may use move instructions for
saving only the contents of the MMX registers, rather than the complete 64-bit media and x87 state.
For example, when saving MMX register values, use eight MOVQ instructions.

5.14.2.1 FSAVE/FNSAVE and FRSTOR Instructions

The FSAVE, FNSAVE, and FRSTOR instructions are described in “Save and Restore 64-Bit Media
and x87 State” on page 269. After saving state with FSAVE or FNSAVE, the tag bits for all MMX and
x87 registers are changed to empty and thus available for a new procedure. Thus, FSAVE and
FNSAVE also perform the state-clearing function of EMMS or FEMMS.

5.14.2.2 FXSAVE and FXRSTOR Instructions

The FSAVE, FNSAVE, and FRSTOR instructions are described in “Save and Restore 128-Bit, 64-Bit,
and x87 State” on page 270. The FXSAVE and FXRSTOR instructions execute faster than
FSAVE/FNSAVE and FRSTOR because they do not save and restore the x87 error pointers (described
in Section 6.2.5. “Pointers and Opcode State” on page 295) except in the relatively rare cases in which
the exception-summary (ES) bit in the x87 status word (register image for FXSAVE, memory image
for FXRSTOR) is set to 1, indicating that an unmasked x87 exception has occurred.

Unlike FSAVE and FNSAVE, however, FXSAVE does not alter the tag bits (thus, it does not perform
the state-clearing function of EMMS or FEMMS). The state of the saved MMX and x87 registers is
retained, thus indicating that the registers may still be valid (or whatever other value the tag bits
indicated prior to the save). To invalidate the contents of the MMX and x87 registers after FXSAVE,
software must explicitly execute an FINIT instruction. Also, FXSAVE (like FNSAVE) and FXRSTOR
do not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction can be used
for this purpose.

For details about the FXSAVE and FXRSTOR memory formats, see “Media and x87 Processor State”
in Volume 2.

[AMD Public Use]

282 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

5.15 Performance Considerations
In addition to typical code optimization techniques, such as those affecting loops and the inlining of
function calls, the following considerations may help improve the performance of application
programs written with 64-bit media instructions.

These are implementation-independent performance considerations. Other considerations depend on
the hardware implementation. For information about such implementation-dependent considerations
and for more information about application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware implementations.

5.15.1 Use Small Operand Sizes

The performance advantages available with 64-bit media operations is to some extent a function of the
data sizes operated upon. The smaller the data size, the more data elements that can be packed into
single 64-bit vectors. The parallelism of computation increases as the number of elements per vector
increases.

5.15.2 Reorganize Data for Parallel Operations

Much of the performance benefit from the 64-bit media instructions comes from the parallelism
inherent in vector operations. It can be advantageous to reorganize data before performing arithmetic
operations so that its layout after reorganization maximizes the parallelism of the arithmetic
operations.

The speed of memory access is particularly important for certain types of computation, such as
graphics rendering, that depend on the regularity and locality of data-memory accesses. For example,
in matrix operations, performance is high when operating on the rows of the matrix, because row bytes
are contiguous in memory, but lower when operating on the columns of the matrix, because column
bytes are not contiguous in memory and accessing them can result in cache misses. To improve
performance for operations on such columns, the matrix should first be transposed. Such
transpositions can, for example, be done using a sequence of unpacking or shuffle instructions.

5.15.3 Remove Branches

Branch can be replaced with 64-bit media instructions that simulate predicated execution or
conditional moves, as described in “Branch Removal” on page 244. Where possible, break long
dependency chains into several shorter dependency chains which can be executed in parallel. This is
especially important for floating-point instructions because of their longer latencies.

5.15.4 Align Data

Data alignment is particularly important for performance when data written by one instruction is read
by a subsequent instruction soon after the write, or when accessing streaming (non-temporal) data—
data that will not be reused and therefore should not be cached. These cases may occur frequently in
64-bit media procedures.

[AMD Public Use]

64-Bit Media Programming 283

24592—Rev. 3.23—October 2020 AMD64 Technology

Accesses to data stored at unaligned locations may benefit from on-the-fly software alignment or from
repetition of data at different alignment boundaries, as required by different loops that process the data.

5.15.5 Organize Data for Cacheability

Pack small data structures into cache-line-size blocks. Organize frequently accessed constants and
coefficients into cache-line-size blocks and prefetch them. Procedures that access data arranged in
memory-bus-sized blocks, or memory-burst-sized blocks, can make optimum use of the available
memory bandwidth.

For data that will be used only once in a procedure, consider using non-cacheable memory. Accesses to
such memory are not burdened by the overhead of cache protocols.

5.15.6 Prefetch Data

Media applications typically operate on large data sets. Because of this, they make intensive use of the
memory bus. Memory latency can be substantially reduced—especially for data that will be used only
once—by prefetching such data into various levels of the cache hierarchy. Software can use the
PREFETCHx instructions very effectively in such cases, as described in “Cache and Memory
Management” on page 71.

Some of the best places to use prefetch instructions are inside loops that process large amounts of data.
If the loop goes through less than one cache line of data per iteration, partially unroll the loop to obtain
multiple iterations of the loop within a cache line. Try to use virtually all of the prefetched data. This
usually requires unit-stride memory accesses—those in which all accesses are to contiguous memory
locations.

5.15.7 Retain Intermediate Results in MMX™ Registers

Keep intermediate results in the MMX registers as much as possible, especially if the intermediate
results are used shortly after they have been produced. Avoid spilling intermediate results to memory
and reusing them shortly thereafter.

[AMD Public Use]

284 64-Bit Media Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

[AMD Public Use]

x87 Floating-Point Programming 285

24592—Rev. 3.23—October 2020 AMD64 Technology

6 x87 Floating-Point Programming

This chapter describes the x87 floating-point programming model. This model supports all aspects of
the legacy x87 floating-point model and complies with the IEEE 754 and 854 standards for binary
floating-point arithmetic. In hardware implementations of the AMD64 architecture, support for
specific features of the x87 programming model are indicated by the CPUID feature bits, as described
in “Feature Detection” on page 327.

6.1 Overview
Floating-point software is typically written to manipulate numbers that are very large or very small,
that require a high degree of precision, or that result from complex mathematical operations, such as
transcendentals. Applications that take advantage of floating-point operations include geometric
calculations for graphics acceleration, scientific, statistical, and engineering applications, and process
control.

6.1.1 Capabilities

The advantages of using x87 floating-point instructions include:

• Representation of all numbers in common IEEE-754/854 formats, ensuring replicability of results
across all platforms that conform to IEEE-754/854 standards.

• Availability of separate floating-point registers. Depending on the hardware implementation of the
architecture, this may allow execution of x87 floating-point instructions in parallel with execution
of general-purpose and 128-bit media instructions.

• Availability of instructions that compute absolute value, change-of-sign, round-to-integer, partial
remainder, and square root.

• Availability of instructions that compute transcendental values, including 2x-1, cosine, partial arc
tangent, partial tangent, sine, sine with cosine, y*log2x, and y*log2(x+1). The cosine, partial arc
tangent, sine, and sine with cosine instructions use angular values expressed in radians for
operands and results.

• Availability of instructions that load common constants, such as log2e, log210, log102, loge2, Pi, 1,
and 0.

x87 instructions operate on data in three floating-point formats—32-bit single-precision, 64-bit
double-precision, and 80-bit double-extended-precision (sometimes called extended precision)—as
well as integer, and 80-bit packed-BCD formats.

x87 instructions carry out all computations using the 80-bit double-extended-precision format. When
an x87 instruction reads a number from memory in 80-bit double-extended-precision format, the
number can be used directly in computations, without conversion. When an x87 instruction reads a
number in a format other than double-extended-precision format, the processor first converts the

[AMD Public Use]

286 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

number into double-extended-precision format. The processor can convert numbers back to specific
formats, or leave them in double-extended-precision format when writing them to memory.

Most x87 operations for addition, subtraction, multiplication, and division specify two source
operands, the first of which is replaced by the result. Instructions for subtraction and division have
reverse forms which swap the ordering of operands.

6.1.2 Origins

In 1979, AMD introduced the first floating-point coprocessor for microprocessors—the AM9511
arithmetic circuit. This coprocessor performed 32-bit floating-point operations under microprocessor
control. In 1980, AMD introduced the AM9512, which performed 64-bit floating-point operations.
These coprocessors were second-sourced as the 8231 and 8232 coprocessors. Before then,
programmers working with general-purpose microprocessors had to use much slower, vendor-
supplied software libraries for their floating-point needs.

In 1985, the Institute of Electrical and Electronics Engineers published the IEEE Standard for Binary
Floating-Point Arithmetic, also referred to as the ANSI/IEEE Std 754-1985 standard, or IEEE 754.
This standard defines the data types, operations, and exception-handling methods that are the basis for
the x87 floating-point technology implemented in the legacy x86 architecture. In 1987, the IEEE
published a more general radix-independent version of that standard, called the ANSI/IEEE Std 854-
1987 standard, or IEEE 854 for short. The AMD64 architecture complies with both the IEEE 754 and
IEEE 854 standards.

6.1.3 Compatibility

x87 floating-point instructions can be executed in any of the architecture’s operating modes. Existing
x87 binary programs run in legacy and compatibility modes without modification. The support
provided by the AMD64 architecture for such binaries is identical to that provided by legacy x86
architectures.

To run in 64-bit mode, x87 floating-point programs must be recompiled. The recompilation has no side
effects on such programs, other than to make available the extended general-purpose registers and 64-
bit virtual address space.

6.2 Registers
Operands for the x87 instructions are located in x87 registers or memory. Figure 6-1 on page 287
shows an overview of the x87 registers.

[AMD Public Use]

x87 Floating-Point Programming 287

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 6-1. x87 Registers

These registers include eight 80-bit data registers, three 16-bit registers that hold the x87 control word,
status word, and tag word, two 64-bit registers that hold instruction and data pointers, and an 11-bit
register that holds a permutation of an x87 opcode.

6.2.1 x87 Data Registers

Figure 6-2 on page 288 shows the eight 80-bit data registers in more detail. Typically, x87 instructions
reference these registers as a stack. x87 instructions store operands only in these 80-bit registers or in
memory. They do not (with two exceptions) access the GPR registers, and they do not access the
YMM/XMM registers.

x87 Data Registers
79 0

FPR0

FPR1

FPR2

FPR3

FPR4

FPR5

FPR6

FPR7

015

Tag Word

Status Word

Control Word

63

010

Instruction Pointer (rIP)

Data Pointer (rDP)

Opcode

[AMD Public Use]

288 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 6-2. x87 Physical and Stack Registers

6.2.1.1 Stack Organization

The bank of eight physical data registers, FPR0–FPR7, are organized internally as a stack,
ST(0)–ST(7). The stack functions like a circular modulo-8 buffer. The stack top can be set by software
to start at any register position in the bank. Many instructions access the top of stack as well as
individual registers relative to the top of stack.

6.2.1.2 Stack Pointer

Bits 13:11 of the x87 status word (“x87 Status Word Register (FSW)” on page 289) are the top-of-
stack pointer (TOP). The TOP specifies the mapping of the stack registers onto the physical registers.
The TOP contains the physical-register index of the location of the top of stack, ST(0). Instructions
that load operands from memory into an x87 register first decrement the stack pointer and then copy
the operand (often with conversion to the double-extended-precision format) from memory into the
decremented top-of-stack register. Instructions that store operands from an x87 register to memory
copy the operand (often with conversion from the double-extended-precision format) in the top-of-
stack register to memory and then increment the stack pointer.

Figure 6-2 shows the mapping between stack registers and physical registers when the TOP has the
value 2. Modulo-8 wraparound addressing is used. Pushing a new element onto this stack—for
example with the FLDZ (floating-point load +0.0) instruction—decrements the TOP to 1, so that
ST(0) refers to FPR1, and the new top-of-stack is loaded with +0.0.

The architecture provides alternative versions of many instructions that either modify or do not modify
the TOP as a side effect. For example, FADDP (floating-point add and pop) behaves exactly like
FADD (floating-point add), except that it pops the stack after completion. Programs that use the x87
registers as a flat register file rather than as a stack would use non-popping versions of instructions to

79 0

13 11

fpr0

TOP

x87
Status
Word fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

ST(6)

ST(7)

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

[AMD Public Use]

x87 Floating-Point Programming 289

24592—Rev. 3.23—October 2020 AMD64 Technology

ensure that the TOP remains unchanged. However, loads (pushes) without corresponding pops can
cause the stack to overflow, which occurs when a value is pushed or loaded into an x87 register that is
not empty (as indicated by the register’s tag bits). To prevent overflow, the FXCH (floating-point
exchange) instruction can be used to access stack registers, giving the appearance of a flat register file,
but all x87 programs must be aware of the register file’s stack organization.

The FINCSTP and FDECSTP instructions can be used to increment and decrement, respectively, the
TOP, modulo-8, allowing the stack top to wrap around to the bottom of the eight-register file when
incremented beyond the top of the file, or to wrap around to the top of the register file when
decremented beyond the bottom of the file. Neither the x87 tag word nor the contents of the floating-
point stack itself is updated when these instructions are used.

6.2.2 x87 Status Word Register (FSW)

The 16-bit x87 status word register contains information about the state of the floating-point unit,
including the top-of-stack pointer (TOP), four condition-code bits, exception-summary flag, stack-
fault flag, and six x87 floating-point exception flags. Figure 6-3 on page 290 shows the format of this
register. All bits can be read and written, however values written to the B and ES bits (bits 15 and 7)
are ignored.

The FRSTOR and FXRSTOR instructions load the status word from memory. The FSTSW, FNSTSW,
FSAVE, FNSAVE, FXSAVE, FSTENV, and FNSTENV instructions store the status word to memory.
The FCLEX and FNCLEX instructions clear the exception flags. The FINIT and FNINIT instructions
clear all bits in the status-word.

[AMD Public Use]

290 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Figure 6-3. x87 Status Word Register (FSW)

The bits in the x87 status word are defined immediately below, starting with bit 0. The six exception
flags (IE, DE, ZE, OE, UE, PE) plus the stack fault (SF) flag are sticky bits. Once set by the processor,
such a bit remains set until software clears it. For details about the causes of x87 exceptions indicated
by bits 6:0, see “x87 Floating-Point Exception Causes” on page 329. For details about the masking of
x87 exceptions, see “x87 Floating-Point Exception Masking” on page 333.

6.2.2.1 Invalid-Operation Exception (IE)

Bit 0. The processor sets this bit to 1 when an invalid-operation exception occurs. These exceptions are
caused by many types of errors, such as an invalid operand or by stack faults. When a stack fault
causes an IE exception, the stack fault (SF) exception bit is also set.

6.2.2.2 Denormalized-Operand Exception (DE)

Bit 1. The processor sets this bit to 1 when one of the source operands of an instruction is in
denormalized form. (See “Denormalized (Tiny) Numbers” on page 303.)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B C
3 TOP C

2
C
1

C
0

E
S

S
F

P
E

U
E

O
E

Z
E

D
E

I
E

Bits Mnemonic Description
15 B x87 Floating-Point Unit Busy
14 C3 Condition Code

13:11 TOP Top of Stack Pointer
000 = FPR0
111 = FPR7

10 C2 Condition Code
9 C1 Condition Code
8 C0 Condition Code
7 ES Exception Status
6 SF Stack Fault

Exception Flags
5 PE Precision Exception
4 UE Underflow Exception
3 OE Overflow Exception
2 ZE Zero-Divide Exception
1 DE Denormalized-Operand

Exception
0 IE Invalid-Operation Exception

[AMD Public Use]

x87 Floating-Point Programming 291

24592—Rev. 3.23—October 2020 AMD64 Technology

6.2.2.3 Zero-Divide Exception (ZE)

Bit 2. The processor sets this bit to 1 when a non-zero number is divided by zero.

6.2.2.4 Overflow Exception (OE)

Bit 3. The processor sets this bit to 1 when the absolute value of a rounded result is larger than the
largest representable normalized floating-point number for the destination format. (See “Normalized
Numbers” on page 303.)

6.2.2.5 Underflow Exception (UE)

Bit 4. The processor sets this bit to 1 when the absolute value of a rounded non-zero result is too small
to be represented as a normalized floating-point number for the destination format. (See “Normalized
Numbers” on page 303.)

The underflow exception has an unusual behavior. When masked by the UM bit (bit 4 of the x87
control word), the processor only reports a UE exception if the UE occurs together with a precision
exception (PE).

6.2.2.6 Precision Exception (PE)

Bit 5. The processor sets this bit to 1 when a floating-point result, after rounding, differs from the
infinitely precise result and thus cannot be represented exactly in the specified destination format. The
PE exception is also called the inexact-result exception.

6.2.2.7 Stack Fault (SF)

Bit 6. The processor sets this bit to 1 when a stack overflow (due to a push or load into a non-empty
stack register) or stack underflow (due to referencing an empty stack register) occurs in the x87 stack-
register file. When either of these conditions occur, the processor also sets the invalid-operation
exception (IE) flag, and the processor distinguishes overflow from underflow by writing the condition-
code 1 (C1) bit (C1 = 1 for overflow, C1 = 0 for underflow). Unlike the flags for the other x87
exceptions, the SF flag does not have a corresponding mask bit in the x87 control word.

If, subsequent to the instruction that caused the SF bit to be set, a second invalid-operation exception
(IE) occurs due to an invalid operand in an arithmetic instruction (i.e., not a stack fault), and if
software has not cleared the SF bit between the two instructions, the SF bit will remain set.

6.2.2.8 Exception Status (ES)

Bit 7. The processor calculates the value of this bit at each instruction boundary and sets the bit to 1
when one or more unmasked floating-point exceptions occur. If the ES bit has already been set by the
action of some prior instruction, the processor invokes the #MF exception handler when the next non-
control x87 or 64-bit media instruction is executed. (See “Control” on page 323 for a definition of
control instructions).

[AMD Public Use]

292 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The ES bit can be written, but the written value is ignored. Like the SF bit, the ES bit does not have a
corresponding mask bit in the x87 control word.

6.2.2.9 Top-of-Stack Pointer (TOP)

Bits 13:11. The TOP contains the physical register index of the location of the top of stack, ST(0). It
thus specifies the mapping of the x87 stack registers, ST(0)–ST(7), onto the x87 physical registers,
FPR0–FPR7. The processor changes the TOP during any instructions that pushes or pops the stack.
For details on how the stack works, see “Stack Organization” on page 288.

6.2.2.10 Condition Codes (C3–C0)

Bits 14 and 10:8. The processor sets these bits according to the result of arithmetic, compare, and other
instructions. In certain cases, other status-word flags can be used together with the condition codes to
determine the result of an operation, including stack overflow, stack underflow, sign, least-significant
quotient bits, last-rounding direction, and out-of-range operand. For details on how each instruction
sets the condition codes, see “x87 Floating-Point Instruction Reference” in Volume 5.

6.2.2.11 x87 Floating-Point Unit Busy (B)

Bit 15. The processor sets the value of this bit equal to the calculated value of the ES bit, bit 7. This bit
can be written, but the written value is ignored. The bit is included only for backward-compatibility
with the 8087 coprocessor, in which it indicates that the coprocessor is busy.

For further details about the x87 floating-point exceptions, see “x87 Floating-Point Exception Causes”
on page 329.

6.2.3 x87 Control Word Register (FCW)

The 16-bit x87 control word register allows software to manage certain x87 processing options,
including rounding, precision, and masking of the six x87 floating-point exceptions (any of which is
reported as an #MF exception). Figure 6-4 shows the format of the control word. All bits, except
reserved bits, can be read and written.

The FLDCW, FRSTOR, and FXRSTOR instructions load the control word from memory. The
FSTCW, FNSTCW, FSAVE, FNSAVE, and FXSAVE instructions store the control word to memory.
The FINIT and FNINIT instructions initialize the control word with the value 037Fh, which specifies
round-to-nearest, all exceptions masked, and double-extended precision (64-bit).

[AMD Public Use]

x87 Floating-Point Programming 293

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 6-4. x87 Control Word Register (FCW)

Starting from bit 0, the bits are:

6.2.3.1 Exception Masks (PM, UM, OM, ZM, DM, IM)

Bits 5:0. Software can set these bits to mask, or clear these bits to unmask, the corresponding six types
of x87 floating-point exceptions (PE, UE, OE, ZE, DE, IE), which are reported in the x87 status word
as described in “x87 Status Word Register (FSW)” on page 289. A bit masks its exception type when
set to 1, and unmasks it when cleared to 0.

Masking a type of exception causes the processor to handle all subsequent instances of the exception
type in a default way. Unmasking the exception type causes the processor to branch to the #MF
exception service routine when an exception occurs. For details about the processor’s responses to
masked and unmasked exceptions, see “x87 Floating-Point Exception Causes” on page 329.

6.2.3.2 Precision Control (PC)

Bits 9:8. Software can set this field to specify the precision of x87 floating-point calculations, as
shown in Table 6-1. Details on each precision are given in “Data Types” on page 299. The default
precision is double-extended-precision. Precision control affects only the F(I)ADDx, F(I)SUBx,
F(I)MULx, F(I)DIVx, and FSQRT instructions. For further details on precision, see “Precision” on
page 309.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Y R
C

P
C Res P

M
U
M

O
M

Z
M

D
M

I
M

Bits Mnemonic Description
12 Y Infinity Bit (80287 compatibility)

11:10 RC Rounding Control
9:8 PC Precision Control

#MF Exception Masks
5 PM Precision Exception Mask
4 UM Underflow Exception Mask
3 OM Overflow Exception Mask
2 ZM Zero-Divide Exception Mask
1 DM Denormalized-Operand Exception Mask
0 IM Invalid-Operation Exception Mask

[AMD Public Use]

294 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

6.2.3.3 Rounding Control (RC)

Bits 11:10. Software can set this field to specify how the results of x87 instructions are to be rounded.
Table 6-2 lists the four rounding modes, which are defined by the IEEE 754 standard.

Round-to-nearest is the default rounding mode. It provides a statistically unbiased estimate of the true
result, and is suitable for most applications. Rounding modes apply to all arithmetic operations except
comparison and remainder. They have no effect on operations that produce not-a-number (NaN)
results. For further details on rounding, see “Rounding” on page 309.

6.2.3.4 Infinity Bit (Y)

Bit 12. This bit is obsolete. It can be read and written, but the value has no meaning. On pre-386
processor implementations, the bit specified the affine (Y = 1) or projective (Y = 0) infinity. The
AMD64 architecture uses only the affine infinity, which specifies distinct positive and negative
infinity values.

6.2.4 x87 Tag Word Register (FTW)

The x87 tag word register contains a 2-bit tag field for each x87 physical data register. These tag fields
characterize the register’s data. Figure 6-5 shows the format of the tag word.

Table 6-1. Precision Control (PC) Summary
PC Value
(binary) Data Type

00 Single precision
01 reserved
10 Double precision
11 Double-extended precision (default)

Table 6-2. Types of Rounding
RC Value Mode Type of Rounding

00
(default)

Round to nearest
The rounded result is the representable value closest to
the infinitely precise result. If equally close, the even
value (with least-significant bit 0) is taken.

01 Round down The rounded result is closest to, but no greater than, the
infinitely precise result.

10 Round up The rounded result is closest to, but no less than, the
infinitely precise result.

11 Round toward
zero

The rounded result is closest to, but no greater in
absolute value than, the infinitely precise result.

[AMD Public Use]

x87 Floating-Point Programming 295

24592—Rev. 3.23—October 2020 AMD64 Technology

Figure 6-5. x87 Tag Word Register (FTW)

In the memory image saved by the instructions described in “x87 Environment” on page 297, each x87
physical data register has two tag bits which are encoded according to the Tag Values shown in
Figure 6-5. Internally, the hardware may maintain only a single bit that indicates whether the
associated register is empty or full. The mapping between such a 1-bit internal tag and the 2-bit
software-visible architectural representation saved in memory is shown in Table 6-3 on page 295. In
such a mapping, whenever software saves the tag word, the processor expands the internal 1-bit tag
state to the 2-bit architectural representation by examining the contents of the x87 registers, as
described in “SSE, MMX, and x87 Programming” in Volume 2.

The FINIT and FNINIT instructions write the tag word so that it specifies all floating-point registers as
empty. Execution of 64-bit media instructions that write to an MMX™ register alter the tag bits by
setting all the registers to full, and thus they may affect execution of subsequent x87 floating-point
instructions. For details, see “Mixing Media Code with x87 Code” on page 280.

6.2.5 Pointers and Opcode State

The x87 instruction pointer, instruction opcode, and data pointer are part of the x87 environment (non-
data processor state) that is loaded and stored by the instructions described in “x87 Environment” on
page 297. Figure 6-6 illustrates the pointer and opcode state. Execution of all x87 instructions—except
control instructions (see “Control” on page 323)—causes the processor to store this state in hardware.

Table 6-3. Mapping Between Internal and Software-Visible Tag Bits
Architectural State (Software-Visible)

Hardware State
State Bit Value

Valid 00

FullZero 01
Special
(NaN, infinity, denormal, or unsupported) 10

Empty 11 Empty

9 8 7 6 5 4 3 2 1 0101112131415

TAG
(FPR6)

TAG
(FPR7)

TAG
(FPR4)

TAG
(FPR5)

TAG
(FPR2)

TAG
(FPR3)

TAG
(FPR0)

TAG
(FPR1)

Tag Values
00 = Valid
01 = Zero
10 = Special
11 = Empty

[AMD Public Use]

296 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

For convenience, the pointer and opcode state is illustrated here as registers. However, the manner of
storing this state in hardware depends on the hardware implementation. The AMD64 architecture
specifies only the software-visible state that is saved in memory. (See “Media and x87 Processor
State” in Volume 2 for details of the memory images.)

Figure 6-6. x87 Pointers and Opcode State

6.2.5.1 Last x87 Instruction Pointer

The contents of the 64-bit last-instruction pointer depends on the operating mode, as follows:

• 64-Bit Mode—The pointer contains the 64-bit RIP offset of the last non-control x87 instruction
executed (see “Control” on page 323 for a definition of control instructions). The 16-bit code-
segment (CS) selector is not saved. (It is the operating system’s responsibility to ensure that the 64-
bit state-restoration is executed in the same code segment as the preceding 64-bit state-store.)

• Legacy Protected Mode and Compatibility Mode—The pointer contains the 16-bit code-segment
(CS) selector and the 16-bit or 32-bit eIP of the last non-control x87 instruction executed.

• Legacy Real Mode and Virtual-8086 Mode—The pointer contains the 20-bit or 32-bit linear
address (CS base + eIP) of the last non-control x87 instruction executed.

The FINIT and FNINIT instructions clear all bits in this pointer.

6.2.5.2 Last x87 Opcode

The 11-bit instruction opcode holds a permutation of the two-byte instruction opcode from the last
non-control x87 floating-point instruction executed by the processor. The opcode field is formed as
follows:

• Opcode Field[10:8] = First x87-opcode byte[2:0].
• Opcode Field[7:0] = Second x87-opcode byte[7:0].

For example, the x87 opcode D9 F8 (floating-point partial remainder) is stored as 001_1111_1000b.
The low-order three bits of the first opcode byte, D9 (1101_1001b), are stored in bits 10:8. The second
opcode byte, F8 (1111_1000b), is stored in bits 7:0. The high-order five bits of the first opcode byte
(1101_1b) are not needed because they are identical for all x87 instructions.

63

010

Instruction Pointer (rIP)

Data Pointer

Opcode

[AMD Public Use]

x87 Floating-Point Programming 297

24592—Rev. 3.23—October 2020 AMD64 Technology

6.2.5.3 Last x87 Data Pointer

The operating mode determines the value of the 64-bit data pointer, as follows:

• 64-Bit Mode—The pointer contains the 64-bit offset of the last memory operand accessed by the
last non-control x87 instruction executed.

• Legacy Protected Mode and Compatibility Mode—The pointer contains the 16-bit data-segment
selector and the 16-bit or 32-bit offset of the last memory operand accessed by an executed non-
control x87 instruction.

• Legacy Real Mode and Virtual-8086 Mode—The pointer contains the 20-bit or 32-bit linear
address (segment base + offset) of the last memory operand accessed by an executed non-control
x87 instruction.

The FINIT and FNINIT instructions clear all bits in this pointer.

6.2.6 x87 Environment

The x87 environment—or non-data processor state—includes the following processor state:

• x87 control word register (FCW)
• x87 status word register (FSW)
• x87 tag word (FTW)
• last x87 instruction pointer
• last x87 data pointer
• last x87 opcode

Table 6-4 lists the x87 instructions can access this x87 processor state.

Table 6-4. Instructions that Access the x87 Environment
Instruction Description State Accessed
FINIT Floating-Point Initialize Entire Environment
FNINIT Floating-Point No-Wait Initialize Entire Environment
FNSAVE Floating-Point No-Wait Save State Entire Environment
FRSTOR Floating-Point Restore State Entire Environment
FSAVE Floating-Point Save State Entire Environment
FLDCW Floating-Point Load x87 Control Word x87 Control Word

FNSTCW Floating-Point No-Wait Store Control
Word x87 Control Word

FSTCW Floating-Point Store Control Word x87 Control Word

FNSTSW Floating-Point No-Wait Store Status
Word x87 Status Word

FSTSW Floating-Point Store Status Word x87 Status Word

[AMD Public Use]

298 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

For details on how the x87 environment is stored in memory, see “Media and x87 Processor State” in
Volume 2.

6.2.7 Floating-Point Emulation (CR0.EM)

The operating system can set the floating-point software-emulation (EM) bit in control register 0
(CR0) to 1 to allow software emulation of x87 instructions. If the operating system has set
CR0.EM = 1, the processor does not execute x87 instructions. Instead, a device-not-available
exception (#NM) occurs whenever an attempt is made to execute such an instruction, except that
setting CR0.EM to 1 does not cause an #NM exception when the WAIT or FWAIT instruction is
executed. For details, see “System-Control Registers” in Volume 2.

6.3 Operands
6.3.1 Operand Addressing

Operands for x87 instructions are referenced by the opcodes. Operands can be located either in x87
registers or memory. Immediate operands are not used in x87 floating-point instructions, and I/O ports
cannot be directly addressed by x87 floating-point instructions.

6.3.1.1 Memory Operands

Most x87 floating-point instructions can take source operands from memory, and a few of the
instructions can write results to memory. The following sections describe the methods and conditions
for addressing memory operands:

• “Memory Addressing” on page 14 describes the general methods and conditions for addressing
memory operands.

• “Instruction Prefixes” on page 326 describes the use of address-size instruction overrides by 64-bit
media instructions.

FLDENV Floating-Point Load x87 Environment
Environment, Not
Including x87 Data
Registers

FNSTENV Floating-Point No-Wait Store
Environment

Environment, Not
Including x87 Data
Registers

FSTENV Floating-Point Store Environment
Environment, Not
Including x87 Data
Registers

Table 6-4. Instructions that Access the x87 Environment (continued)
Instruction Description State Accessed

[AMD Public Use]

x87 Floating-Point Programming 299

24592—Rev. 3.23—October 2020 AMD64 Technology

6.3.1.2 Register Operands

Most x87 floating-point instructions can read source operands from and write results to x87 registers.
Most instructions access the ST(0)–ST(7) register stack. For a few instructions, the register types also
include the x87 control word register, the x87 status word register, and (for FSTSW and FNSTSW) the
AX general-purpose register.

6.3.2 Data Types

Figure 6-7 shows register images of the x87 data types. These include three scalar floating-point
formats (80-bit double-extended-precision, 64-bit double-precision, and 32-bit single-precision), three
scalar signed-integer formats (quadword, doubleword, and word), and an 80-bit packed binary-coded
decimal (BCD) format. Although Figure 6-7 shows register images of the data types, the three signed-
integer data types can exist only in memory. All data types are converted into an 80-bit format when
they are loaded into an x87 register.

Figure 6-7. x87 Data Types

s

63

31

31

22

15 0

0

0

Quadword

Doubleword

Words

s

s

Signed Integer

Binary-Coded Decimal (BCD)

Floating-Point

8 bytes

4 bytes

63

63

51

Double Precision

Single Precisions

s

2 bytes

79

79

079 71

Double-Extended
Precision

Packed Decimal

s i

significand

exp significand

exp significand

exp

s

[AMD Public Use]

300 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

6.3.2.1 Floating-Point Data Types

The floating-point data types, shown in Figure 6-8 on page 300, include 32-bit single precision, 64-bit
double precision, and 80-bit double-extended precision. The default precision is double-extended
precision, and all operands loaded into registers are converted into double-extended precision format.

All three floating-point formats are compatible with the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754 and 854).

Figure 6-8. x87 Floating-Point Data Types

All of the floating-point data types consist of a sign (0 = positive, 1 = negative), a biased exponent
(base-2), and a significand, which represents the integer and fractional parts of the number. The integer
bit (also called the J bit) is either implied (called a hidden integer bit) or explicit, depending on the data
type. The value of an implied integer bit can be inferred from number encodings, as described in
“Number Encodings” on page 305. The bias of the exponent is a constant which makes the exponent
always positive and allows reciprocation, without overflow, of the smallest normalized number
representable by that data type.

Specifically, the data types are formatted as follows:

063Double Precision

31 0Single Precision

079

22

S Biased
Exponent

78

23

S
Biased

Exponent

6364

5152

Biased
ExponentS

Fraction

30

62

Double-Extended Precision

S = Sign Bit

S = Sign Bit

S = Sign Bit

I

62

I = Integer Bit

Significand
(also Fraction)

Significand

Significand
(also Fraction)

[AMD Public Use]

x87 Floating-Point Programming 301

24592—Rev. 3.23—October 2020 AMD64 Technology

• Single-Precision Format—This format includes a 1-bit sign, an 8-bit biased exponent whose value
is 127, and a 23-bit significand. The integer bit is implied, making a total of 24 bits in the
significand.

• Double-Precision Format—This format includes a 1-bit sign, an 11-bit biased exponent whose
value is 1023, and a 52-bit significand. The integer bit is implied, making a total of 53 bits in the
significand.

• Double-Extended-Precision Format—This format includes a 1-bit sign, a 15-bit biased exponent
whose value is 16,383, and a 64-bit significand, which includes one explicit integer bit.

Table 6-5 shows the range of finite values representable by the three x87 floating-point data types.

For example, in the single-precision format, the largest normal number representable has an exponent
of FEh and a significand of 7FFFFFh, with a numerical value of 2127 * (2 – 2–23). Results that
overflow above the maximum representable value return either the maximum representable
normalized number (see “Normalized Numbers” on page 303) or infinity, with the sign of the true
result, depending on the rounding mode specified in the rounding control (RC) field of the x87 control
word. Results that underflow below the minimum representable value return either the minimum
representable normalized number or a denormalized number (see “Denormalized (Tiny) Numbers” on
page 303), with the sign of the true result, or a result determined by the x87 exception handler,
depending on the rounding mode, precision mode, and underflow-exception mask (UM) in the x87
control word (see “Unmasked Responses” on page 337).

6.3.2.2 Integer Data Type

The integer data types, shown in Figure 6-7 on page 299, include two’s-complement 16-bit word, 32-
bit doubleword, and 64-bit quadword. These data types are used in x87 instructions that convert signed
integer operands into floating-point values. The integers can be loaded from memory into x87 registers
and stored from x87 registers into memory. The data types cannot be moved between x87 registers and
other registers.

For details on the format and number-representation of the integer data types, see “Fundamental Data
Types” on page 36.

Table 6-5. Range of Finite Floating-Point Values

Data Type Range of Finite Values1
Precision

Base 2 Base 10

Single Precision 2–126 to 2127 * (2 – 2–23) 1.17 * 10–38 to +3.40 * 1038 24 bits

Double Precision 2–1022 to 21023 * (2 – 2–52) 2.23 * 10–308 to +1.79 * 10308 53 bits

Double-Extended
Precision 2–16382 to 216383 * (2 – 2–63) 3.37 * 10–4932 to +1.18 * 104932 64 bits

Note:
1. See “Number Representation” on page 302.

[AMD Public Use]

302 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

6.3.2.3 Packed-Decimal Data Type

The 80-bit packed-decimal data type, shown in Figure 6-9 on page 302, represents an 18-digit decimal
integer using the binary-coded decimal (BCD) format. Each of the 18 digits is a 4-bit representation of
an integer. The 18 digits use a total of 72 bits. The next-higher seven bits in the 80-bit format are
reserved (ignored on loads, zeros on stores). The high bit (bit 79) is a sign bit.

Figure 6-9. x87 Packed Decimal Data Type

Two x87 instructions operate on the packed-decimal data type. The FBLD (floating-point load binary-
coded decimal) and FBSTP (floating-point store binary-coded decimal integer and pop) instructions
push and pop, respectively, a packed-decimal memory operand between the floating-point stack and
memory. FBLD converts the value being pushed to a double-extended-precision floating-point value.
FBSTP rounds the value being popped to an integer.

For details on the format and use of 4-bit BCD integers, see “Binary-Coded-Decimal (BCD) Digits”
on page 40.

6.3.3 Number Representation

Of the following types of floating-point values, six are supported by the architecture and three are not
supported:

• Supported Values
- Normal
- Denormal (Tiny)
- Pseudo-Denormal
- Zero
- Infinity
- Not a Number (NaN)

• Unsupported Values
- Unnormal
- Pseudo-Infinity
- Pseudo-NaN

079

Precision — 18 Digits, 72 Bits Used, 4-Bits/Digit

71

S
Ignore
or Zero

Description Bits
Ignored on Load, Zeros on Store 78:72
Sign Bit 79

78 72

[AMD Public Use]

x87 Floating-Point Programming 303

24592—Rev. 3.23—October 2020 AMD64 Technology

The supported values can be used as operands in x87 floating-point instructions. The unsupported
values cause an invalid-operation exception (IE) when used as operands.

In common engineering and scientific usage, floating-point numbers—also called real numbers—are
represented in base (radix) 10. A non-zero number consists of a sign, a normalized significand, and a
signed exponent, as in:

+2.71828 e0

Both large and small numbers are representable in this notation, subject to the limits of data-type
precision. For example, a million in base-10 notation appears as +1.00000 e6 and -0.0000383 is
represented as -3.83000 e-5. A non-zero number can always be written in normalized form—that is,
with a leading non-zero digit immediately before the decimal point. Thus, a normalized significand in
base-10 notation is a number in the range [1,10). The signed exponent specifies the number of
positions that the decimal point is shifted.

Unlike the common engineering and scientific usage described above, x87 floating-point numbers are
represented in base (radix) 2. Like its base-10 counterpart, a normalized base-2 significand is written
with its leading non-zero digit immediately to the left of the radix point. In base-2 arithmetic, a non-
zero digit is always a one, so the range of a binary significand is [1,2):

+1.fraction exponent

The leading non-zero digit is called the integer bit, and in the x87 double-extended-precision floating-
point format this integer bit is explicit, as shown in Figure 6-8. In the x87 single-precision and the
double-precision floating-point formats, the integer bit is simply omitted (and called the hidden
integer bit), because its implied value is always 1 in a normalized significand (0 in a denormalized
significand), and the omission allows an extra bit of precision.

The following sections describe the supported number representations.

6.3.3.1 Normalized Numbers

Normalized floating-point numbers are the most frequent operands for x87 instructions. These are
finite, non-zero, positive or negative numbers in which the integer bit is 1, the biased exponent is non-
zero and non-maximum, and the fraction is any representable value. Thus, the significand is within the
range of [1, 2). Whenever possible, the processor represents a floating-point result as a normalized
number.

6.3.3.2 Denormalized (Tiny) Numbers

Denormalized numbers (also called tiny numbers) are smaller than the smallest representable
normalized numbers. They arise through an underflow condition, when the exponent of a result lies
below the representable minimum exponent. These are finite, non-zero, positive or negative numbers
in which the integer bit is 0, the biased exponent is 0, and the fraction is non-zero.

The processor generates a denormalized-operand exception (DE) when an instruction uses a
denormalized source operand. The processor may generate an underflow exception (UE) when an
instruction produces a rounded, non-zero result that is too small to be represented as a normalized

[AMD Public Use]

304 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

floating-point number in the destination format, and thus is represented as a denormalized number. If a
result, after rounding, is too small to be represented as the minimum denormalized number, it is
represented as zero. (See “Exceptions” on page 327 for specific details.)

Denormalization may correct the exponent by placing leading zeros in the significand. This may cause
a loss of precision, because the number of significant bits in the fraction is reduced by the leading
zeros. In the single-precision floating-point format, for example, normalized numbers have biased
exponents ranging from 1 to 254 (the unbiased exponent range is from –126 to +127). A true result
with an exponent of, say, –130, undergoes denormalization by right-shifting the significand by the
difference between the normalized exponent and the minimum exponent, as shown in Table 6-6.

6.3.3.3 Pseudo-Denormalized Numbers

Pseudo-denormalized numbers are positive or negative numbers in which the integer bit is 1, the
biased exponent is 0, and the fraction is any value. The processor accepts pseudo-denormal source
operands but it does not produce pseudo-denormal results. When a pseudo-denormal number is used
as a source operand, the processor treats the arithmetic value of its biased exponent as 1 rather than 0,
and the processor generates a denormalized-operand exception (DE).

6.3.3.4 Zero

The floating-point zero is a finite, positive or negative number in which the integer bit is 0, the biased
exponent is 0, and the fraction is 0. The sign of a zero result depends on the operation being performed
and the selected rounding mode. It may indicate the direction from which an underflow occurred, or it
may reflect the result of a division by + or –.

6.3.3.5 Infinity

Infinity is a positive or negative number, + and –, in which the integer bit is 1, the biased exponent
is maximum, and the fraction is 0. The infinities are the maximum numbers that can be represented in
floating-point format. Negative infinity is less than any finite number and positive infinity is greater
than any finite number (i.e., the affine sense).

An infinite result is produced when a non-zero, non-infinite number is divided by 0 or multiplied by
infinity, or when infinity is added to infinity or to 0. Arithmetic on infinities is exact. For example,
adding any floating-point number to + gives a result of +. Arithmetic comparisons work correctly
on infinities. Exceptions occur only when the use of an infinity as a source operand constitutes an
invalid operation.

Table 6-6. Example of Denormalization
Significand (base 2) Exponent Result Type
1.0011010000000000 –130 True result
0.0001001101000000 –126 Denormalized result

[AMD Public Use]

x87 Floating-Point Programming 305

24592—Rev. 3.23—October 2020 AMD64 Technology

6.3.3.6 Not a Number (NaN)

NaNs are non-numbers, lying outside the range of representable floating-point values. The integer bit
is 1, the biased exponent is maximum, and the fraction is non-zero. NaNs are of two types:

• Signaling NaN (SNaN)
• Quiet NaN (QNaN)

A QNaN is a NaN with the most-significant fraction bit set to 1, and an SNaN is a NaN with the most-
significant fraction bit cleared to 0. When the processor encounters an SNaN as a source operand for
an instruction, an invalid-operation exception (IE) occurs and a QNaN is produced as the result, if the
exception is masked. In general, when the processor encounters a QNaN as a source operand for an
instruction—in an instruction other than FxCOMx, FISTx, or FSTx—the processor does not generate
an exception but generates a QNaN as the result.

The processor never generates an SNaN as a result of a floating-point operation. When an invalid-
operation exception (IE) occurs due to an SNaN operand, the invalid-operation exception mask (IM)
bit determines the processor’s response, as described in “x87 Floating-Point Exception Masking” on
page 333.

When a floating-point operation or exception produces a QNaN result, its value is derived from the
source operands according to the rules shown in Table 6-7.

6.3.4 Number Encodings

6.3.4.1 Supported Encodings

Table 6-8 on page 307 shows the floating-point encodings of supported numbers and non-numbers.
The number categories are ordered from large to small. In this affine ordering, positive infinity is
larger than any positive normalized number, which in turn is larger than any positive denormalized
number, which is larger than positive zero, and so forth. Thus, the ordinary rules of comparison apply
between categories as well as within categories, so that comparison of any two numbers is well-
defined.

The actual exponent field length is 8, 11, or 15 bits, and the fraction field length is 23, 52, or 63 bits,
depending on operand precision.

[AMD Public Use]

306 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The single-precision and double-precision formats do not include the integer bit in the significand (the
value of the integer bit can be inferred from number encodings). The double-extended-precision
format explicitly includes the integer in bit 63 and places the most-significant fraction bit in bit 62.
Exponents of all three types are encoded in biased format, with respective biasing constants of 127,
1023, and 16,383.

Table 6-7. NaN Results from NaN Source Operands
Source Operand
(in either order)1 NaN Result2

QNaN Any non-NaN floating-point value
(or single-operand instruction) Value of QNaN

SNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of SNaN,
converted to a QNaN3

QNaN QNaN
Value of QNaN with
the larger significand4

QNaN SNaN Value of QNaN
SNaN QNaN Value of QNaN

SNaN SNaN
Value of SNaN with
the larger significand4

Note:
1. This table does not include NaN source operands used in FxCOMx, FISTx, or FSTx

instructions.
2. A NaN result is produced when the floating-point invalid-operation exception is

masked.
3. The conversion is done by changing the most-significant fraction bit to 1.
4. If the significands of the source operands are equal but their signs are different, the

NaN result is undefined.

[AMD Public Use]

x87 Floating-Point Programming 307

24592—Rev. 3.23—October 2020 AMD64 Technology

Table 6-8. Supported Floating-Point Encodings

Classification Sign
 Biased

Exponent1 Significand2

Positive
Non-Numbers

SNaN 0 111 ... 111
1.011 ... 111
to
1.000 ... 001

QNaN 0 111 ... 111
1.111 ... 111
to
1.100 ... 000

Positive
Floating-Point
Numbers

Positive Infinity (+) 0 111 ... 111 1.000 ... 000

Positive Normal 0
111 ... 110
to
000 ... 001

1.111 ... 111
to
1.000 ... 000

Positive Pseudo-
Denormal3

0 000 ... 000
1.111 ... 111
to
1.000 ... 001

Positive Denormal 0 000 ... 000
0.111 ... 111
to
0.000 ... 001

Positive Zero 0 000 ... 000 0.000 ... 000

Negative
Floating-Point
Numbers

Negative Zero 1 000 ... 000 0.000 ... 000

Negative Denormal 1 000 ... 000
0.000 ... 001
to
0.111 ... 111

Negative Pseudo-
Denormal3

1 000 ... 000
1.000 ... 001
to
1.111 ... 111

Negative Normal 1
000 ... 001
to
111 ... 110

1.000 ... 000
to
1.111 ... 111

Negative Infinity (-) 1 111 ... 111 1.000 ... 000

Negative
Non-Numbers

SNaN 1 111 ... 111
1.000 ... 001
to
1.011 ... 111

QNaN4 1 111 ... 111
1.100 ... 000
to
1.111 ... 111

Note:
1. The actual exponent field length is 8, 11, or 15 bits, depending on operand preci-

sion.
2. The “1.” and “0.” prefixes represent the implicit or explicit integer bit. The actual

fraction field length is 23, 52, or 63 bits, depending on operand precision.
3. Pseudo-denormals can only occur in double-extended-precision format, because

they require an explicit integer bit.
4. The floating-point indefinite value is a QNaN with a negative sign and a significand

whose value is 1.100 ... 000.

[AMD Public Use]

308 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

6.3.4.2 Unsupported Encodings

Table 6-9 on page 308 shows the encodings of unsupported values. These values can exist only in the
double-extended-precision format, because they require an explicit integer bit. The processor does not
generate them as results, and they cause an invalid-operation exception (IE) when used as source
operands.

6.3.4.3 Indefinite Values

Floating-point, integer, and packed-decimal data types each have a unique encoding that represents an
indefinite value. The processor returns an indefinite value when a masked invalid-operation exception
(IE) occurs. The indefinite values for various data types are provided in Table 4-7 on page 129.

For example, if a floating-point arithmetic operation is attempted using a source operand which is in an
unsupported format, and IE exceptions are masked, the floating-point indefinite value is returned as
the result. Or, if an integer store instruction overflows its destination data type, and IE exceptions are
masked, the integer indefinite value is returned as the result.

Table 6-10 shows the encodings of the indefinite values for each data type. For floating-point
numbers, the indefinite value is a special form of QNaN. For integers, the indefinite value is the largest
representable negative two’s-complement number, 80...00h. (This value is interpreted as the largest
representable negative number, except when a masked IE exception occurs, in which case it is
interpreted as an indefinite value.) For packed-decimal numbers, the indefinite value has no other
meaning than indefinite.

Table 6-9. Unsupported Floating-Point Encodings

Classification Sign
 Biased

Exponent1 Significand2

Positive Pseudo-NaN 0 111 ... 111
0.111 ... 111

to
0.000 ... 001

Positive Pseudo-Infinity 0 111 ... 111 0.000 ... 000

Positive Unnormal 0
111 ... 110

to
000 ... 001

0.111 ... 111
to

0.000 ... 000

Negative Unnormal 1
000 ... 001

to
111 ... 110

0.000 ... 000
to

0.111 ... 111

Negative Pseudo-Infinity 1 111 ... 111 0.000 ... 000

Negative Pseudo-NaN 1 111 ... 111
0.000 ... 001

to
0.111 ... 111

Note:
1. The actual exponent field length is 15 bits.
2. The “0.” prefix represent the explicit integer bit. The actual fraction field length is 63

bits.

[AMD Public Use]

x87 Floating-Point Programming 309

24592—Rev. 3.23—October 2020 AMD64 Technology

6.3.5 Precision

The Precision control (PC) field comprises bits [9:8] of the x87 control word (“x87 Control Word
Register (FCW)” on page 292). This field specifies the precision of floating-point calculations for the
FADDx, FSUBx, FMULx, FDIVx, and FSQRT instructions, as shown in Table 6-11.

The default precision is double-extended-precision. Selecting double-precision or single-precision
reduces the size of the significand to 53 bits or 24 bits, but keeps the exponent in double extended
range. The reduced precision is provided to support the IEEE 754 standard. When using reduced
precision, rounding clears the unused bits on the right of the significand to 0s.

6.3.6 Rounding

The rounding control (RC) field comprises bits [11:10] of the x87 control word (“x87 Control Word
Register (FCW)” on page 292). This field specifies how the results of x87 floating-point computations
are rounded. Rounding modes apply to most arithmetic operations but not to comparison or remainder.
They have no effect on operations that produce NaN results.

The IEEE 754 standard defines the four rounding modes as shown in Table 6-12.

Table 6-10. Indefinite-Value Encodings
Data Type Indefinite Encoding

Single-Precision Floating-Point FFC0_0000h
Double-Precision Floating-Point FFF8_0000_0000_0000h
Extended-Precision Floating-Point FFFF_C000_0000_0000_0000h
16-Bit Integer 8000h
32-Bit Integer 8000_0000h
64-Bit Integer 8000_0000_0000_0000h
80-Bit BCD FFFF_C000_0000_0000_0000h

Table 6-11. Precision Control Field (PC) Values and Bit Precision
PC Field Data Type Precision (bits)

00 Single precision 241

01 reserved
10 Double precision 531

11 Double-extended precision 64
Note:

1. The single-precision and double-precision bit counts include the implied integer bit.

[AMD Public Use]

310 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Round to nearest is the default (reset) rounding mode. It provides a statistically unbiased estimate of
the true result, and is suitable for most applications. The other rounding modes are directed roundings:
round up (toward +, round down (toward –), and round toward zero. Round up and round down
are used in interval arithmetic, in which upper and lower bounds bracket the true result of a
computation. Round toward zero takes the smaller in magnitude, that is, always truncates.

The processor produces a floating-point result defined by the IEEE standard to be infinitely precise.
This result may not be representable exactly in the destination format, because only a subset of the
continuum of real numbers finds exact representation in any particular floating-point format.
Rounding modifies such a result to conform to the destination format, thereby making the result
inexact and also generating a precision exception (PE), as described in “x87 Floating-Point Exception
Causes” on page 329.

Suppose, for example, the following 24-bit result is to be represented in single-precision format, where
“E2 1010” represents the biased exponent:

1.0011 0101 0000 0001 0010 0111 E2 1010

This result has no exact representation, because the least-significant 1 does not fit into the single-
precision format, which allows for only 23 bits of fraction. The rounding control field determines the
direction of rounding. Rounding introduces an error in a result that is less than one unit in the last place
(ulp), that is, the least-significant bit position of the floating-point representation.

6.4 Instruction Summary
This section summarizes the functions of the x87 floating-point instructions. The instructions are
organized here by functional group—such as data-transfer, arithmetic, and so on. More detail on
individual instructions is given in the alphabetically organized “x87 Floating-Point Instruction
Reference” in Volume 5.

Software running at any privilege level can use any of these instructions, if the CPUID instruction
reports support for the instructions (see “Feature Detection” on page 327). Most x87 instructions take

Table 6-12. Types of Rounding
RC Value Mode Type of Rounding

00
(default) Round to nearest

The rounded result is the representable value
closest to the infinitely precise result. If equally
close, the even value (with least-significant bit 0)
is taken.

01 Round down The rounded result is closest to, but no greater
than, the infinitely precise result.

10 Round up The rounded result is closest to, but no less than,
the infinitely precise result.

11 Round toward
zero

The rounded result is closest to, but no greater in
absolute value than, the infinitely precise result.

[AMD Public Use]

x87 Floating-Point Programming 311

24592—Rev. 3.23—October 2020 AMD64 Technology

floating-point data types for both their source and destination operands, although some x87 data-
conversion instructions take integer formats for their source or destination operands.

6.4.1 Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data. Many of x87 instructions have the following syntax:

MNEMONIC st(j), st(i)

Figure 6-10 on page 311 shows an example of the mnemonic syntax for a floating-point add (FADD)
instruction.

Figure 6-10. Mnemonic Syntax for Typical Instruction

This example shows the FADD mnemonic followed by two operands, both of which are 80-bit stack-
register operands. Most instructions take source operands from an x87 stack register and/or memory
and write their results to a stack register or memory. Only two of the instructions (FSTSW and
FNSTSW) can access a general-purpose registers (GPR), and none access the 128-bit media (XMM)
registers. Although the MMX registers map to the x87 registers, the contents of the MMX registers
cannot be accessed meaningfully using x87 instructions.

Instructions can have one or more prefixes that modify default operand properties. These prefixes are
summarized in “Instruction Prefixes” on page 76.

6.4.1.1 Mnemonics

The following characters are used as prefixes in the mnemonics of integer instructions:

• F—x87 Floating-point

In addition to the above prefix characters, the following characters are used elsewhere in the
mnemonics of x87 instructions:

• B—Below, or BCD
• BE—Below or Equal

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

FADD st(0), st(i)

[AMD Public Use]

312 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• CMOV—Conditional Move
• c—Variable condition
• E—Equal
• I—Integer
• LD—Load
• N—No Wait
• NB—Not Below
• NBE—Not Below or Equal
• NE—Not Equal
• NU—Not Unordered
• P—Pop
• PP—Pop Twice
• R—Reverse
• ST—Store
• U—Unordered
• x—One or more variable characters in the mnemonic

For example, the mnemonic for the store instruction that stores the top-of-stack and pops the stack is
FSTP. In this mnemonic, the F means a floating-point instruction, the ST means a store, and the P
means pop the stack.

6.4.2 Data Transfer and Conversion

The data transfer and conversion instructions copy data—in some cases with data conversion—
between x87 stack registers and memory or between stack positions.

Load or Store Floating-Point
• FLD—Floating-Point Load
• FST—Floating-Point Store Stack Top
• FSTP—Floating-Point Store Stack Top and Pop

The FLD instruction pushes the source operand onto the top-of-stack, ST(0). The source operand may
be a single-precision, double-precision, or double-extended-precision floating-point value in memory
or the contents of a specified stack position, ST(i).

The FST instruction copies the value at the top-of-stack, ST(0), to a specified stack position, ST(i), or
to a 32-bit or 64-bit memory location. If the destination is a memory location, the value copied is
converted to the precision allowed by the destination and rounded, as specified by the rounding control
(RC) field of the x87 control word. If the top-of-stack value is a NaN or an infinity, FST truncates the
stack-top exponent and significand to fit the destination size. (For details, see “FST FSTP” in AMD64

[AMD Public Use]

x87 Floating-Point Programming 313

24592—Rev. 3.23—October 2020 AMD64 Technology

Architecture Programmer’s Manual Volume 5: 64-bit Media and x87 Floating-Point Instructions,
order# 26569.

The FSTP instruction is similar to FST, except that FSTP can also store to an 80-bit memory location
and it pops the stack after the store. FSTP can be used to clean up the x87 stack at the end of an x87
procedure by removing one register of preloaded data from the stack.

Convert and Load or Store Integer
• FILD—Floating-Point Load Integer
• FIST—Floating-Point Integer Store
• FISTP—Floating-Point Integer Store and Pop
• FISTTP—Floating-Point Integer Truncate and Store

The FILD instruction converts the 16-bit, 32-bit, or 64-bit source signed integer in memory into a
double-extended-precision floating-point value and pushes the result onto the top-of-stack, ST(0).

The FIST instruction converts and rounds the source value in the top-of-stack, ST(0), to a signed
integer and copies it to the specified 16-bit or 32-bit memory location. The type of rounding is
determined by the rounding control (RC) field of the x87 control word.

The FISTP instruction is similar to FIST, except that FISTP can also store the result to a 64-bit
memory location and it pops ST(0) after the store.

The FISTTP instruction converts a floating-point value in ST(0) to an integer by truncating the
fractional part of the number and storing the integer result to the memory address specified by the
destination operand. FISTTP then pops the floating point register stack. The FISTTP instruction
ignores the rounding mode specified by the x87 control word.

Convert and Load or Store BCD
• FBLD—Floating-Point Load Binary-Coded Decimal
• FBSTP—Floating-Point Store Binary-Coded Decimal Integer and Pop

The FBLD and FBSTP instructions, respectively, push and pop an 80-bit packed BCD memory value
on and off the top-of-stack, ST(0). FBLD first converts the value being pushed to a double-extended-
precision floating-point value. FBSTP rounds the value being popped to an integer, using the rounding
mode specified by the RC field, and converts the value to an 80-bit packed BCD value. Thus, no
FRNDIT (round-to-integer) instruction is needed prior to FBSTP.

Conditional Move
• FCMOVB—Floating-Point Conditional Move If Below
• FCMOVBE—Floating-Point Conditional Move If Below or Equal
• FCMOVE—Floating-Point Conditional Move If Equal
• FCMOVNB—Floating-Point Conditional Move If Not Below
• FCMOVNBE—Floating-Point Conditional Move If Not Below or Equal

[AMD Public Use]

314 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• FCMOVNE—Floating-Point Conditional Move If Not Equal
• FCMOVNU—Floating-Point Conditional Move If Not Unordered
• FCMOVU—Floating-Point Conditional Move If Unordered

The FCMOVcc instructions copy the contents of a specified stack position, ST(i), to the top-of-stack,
ST(0), if the specified rFLAGS condition is met. Table 6-13 on page 314 specifies the flag
combinations for each conditional move.

Exchange
• FXCH—Floating-Point Exchange

The FXCH instruction exchanges the contents of a specified stack position, ST(i), with the top-of-
stack, ST(0). The top-of-stack pointer is left unchanged. In the form of the instruction that specifies no
operand, the contents of ST(1) and ST(0) are exchanged.

Extract
• FXTRACT—Floating-Point Extract Exponent and Significand

The FXTRACT instruction copies the unbiased exponent of the original value in the top-of-stack,
ST(0), and writes it as a floating-point value to ST(1), then copies the significand and sign of the
original value in the top-of-stack and writes it as a floating-point value with an exponent of zero to the
top-of-stack, ST(0).

6.4.3 Load Constants

Load 0, 1, or Pi
• FLDZ—Floating-Point Load +0.0
• FLD1—Floating-Point Load +1.0
• FLDPI—Floating-Point Load Pi

Table 6-13. rFLAGS Conditions for FCMOVcc
Condition Mnemonic rFLAGS Register State

Below B Carry flag is set (CF = 1)

Below or Equal BE Either carry flag or zero flag is set
(CF = 1 or ZF = 1)

Equal E Zero flag is set (ZF = 1)
Not Below NB Carry flag is not set (CF = 0)

Not Below or Equal NBE Neither carry flag nor zero flag is set
(CF = 0, ZF = 0)

Not Equal NE Zero flag is not set (ZF = 0)
Not Unordered NU Parity flag is not set (PF = 0)

Unordered U Parity flag is set (PF = 1)

[AMD Public Use]

x87 Floating-Point Programming 315

24592—Rev. 3.23—October 2020 AMD64 Technology

The FLDZ, FLD1, and FLDPI instructions, respectively, push the floating-point constant value, +0.0,
+1.0, and Pi (3.141592653...), onto the top-of-stack, ST(0).

Load Logarithm
• FLDL2E—Floating-Point Load Log2 e
• FLDL2T—Floating-Point Load Log2 10
• FLDLG2—Floating-Point Load Log10 2
• FLDLN2—Floating-Point Load Ln 2

The FLDL2E, FLDL2T, FLDLG2, and FLDLN2 instructions, respectively, push the floating-point
constant value, log2e, log210, log102, and loge2, onto the top-of-stack, ST(0).

6.4.4 Arithmetic

The arithmetic instructions support addition, subtraction, multiplication, division, change-sign, round,
round to integer, partial remainder, and square root. In most arithmetic operations, one of the source
operands is the top-of-stack, ST(0). The other source operand can be another stack entry, ST(i), or a
floating-point or integer operand in memory.

The non-commutative operations of subtraction and division have two forms, the direct FSUB and
FDIV, and the reverse FSUBR and FDIVR. FSUB, for example, subtracts the right operand from the
left operand, and writes the result to the left operand. FSUBR subtracts the left operand from the right
operand, and writes the result to the left operand. The FADD and FMUL operations have no reverse
counterparts.

Addition
• FADD—Floating-Point Add
• FADDP—Floating-Point Add and Pop
• FIADD—Floating-Point Add Integer to Stack Top

The FADD instruction syntax has forms that include one or two explicit source operands. In the one-
operand form, the instruction reads a 32-bit or 64-bit floating-point value from memory, converts it to
the double-extended-precision format, adds it to ST(0), and writes the result to ST(0). In the two-
operand form, the instruction adds both source operands from stack registers and writes the result to
the first operand.

The FADDP instruction syntax has forms that include zero or two explicit source operands. In the
zero-operand form, the instruction adds ST(0) to ST(1), writes the result to ST(1), and pops the stack.
In the two-operand form, the instruction adds both source operands from stack registers, writes the
result to the first operand, and pops the stack.

The FIADD instruction reads a 16-bit or 32-bit integer value from memory, converts it to the double-
extended-precision format, adds it to ST(0), and writes the result to ST(0).

Subtraction

[AMD Public Use]

316 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• FSUB—Floating-Point Subtract
• FSUBP—Floating-Point Subtract and Pop
• FISUB—Floating-Point Integer Subtract
• FSUBR—Floating-Point Subtract Reverse
• FSUBRP—Floating-Point Subtract Reverse and Pop
• FISUBR—Floating-Point Integer Subtract Reverse

The FSUB instruction syntax has forms that include one or two explicit source operands. In the one-
operand form, the instruction reads a 32-bit or 64-bit floating-point value from memory, converts it to
the double-extended-precision format, subtracts it from ST(0), and writes the result to ST(0). In the
two-operand form, both source operands are located in stack registers. The instruction subtracts the
second operand from the first operand and writes the result to the first operand.

The FSUBP instruction syntax has forms that include zero or two explicit source operands. In the zero-
operand form, the instruction subtracts ST(0) from ST(1), writes the result to ST(1), and pops the
stack. In the two-operand form, both source operands are located in stack registers. The instruction
subtracts the second operand from the first operand, writes the result to the first operand, and pops the
stack.

The FISUB instruction reads a 16-bit or 32-bit integer value from memory, converts it to the double-
extended-precision format, subtracts it from ST(0), and writes the result to ST(0).

The FSUBR and FSUBRP instructions perform the same operations as FSUB and FSUBP,
respectively, except that the source operands are reversed. Instead of subtracting the second operand
from the first operand, FSUBR and FSUBRP subtract the first operand from the second operand.

Multiplication
• FMUL—Floating-Point Multiply
• FMULP—Floating-Point Multiply and Pop
• FIMUL—Floating-Point Integer Multiply

The FMUL instruction has three forms. One form of the instruction multiplies two double-extended
precision floating-point values located in ST(0) and another floating-point stack register and leaves the
product in ST(0). The second form multiplies two double-extended precision floating-point values
located in ST(0) and another floating-point stack destination register and leaves the product in the
destination register. The third form converts a floating-point value in a specified memory location to
double-extended-precision format, multiplies the result by the value in ST(0) and writes the product to
ST(0).

The FMULP instruction syntax is similar to the form of FMUL described in the previous paragraph.
This instruction pops the floating-point register stack after performing the multiplication operation.
This instruction cannot take a memory operand.

[AMD Public Use]

x87 Floating-Point Programming 317

24592—Rev. 3.23—October 2020 AMD64 Technology

The FIMUL instruction reads a 16-bit or 32-bit integer value from memory, converts it to the double-
extended-precision format, multiplies ST(0) by the memory operand, and writes the result to ST(0).

Division
• FDIV—Floating-Point Divide
• FDIVP—Floating-Point Divide and Pop
• FIDIV—Floating-Point Integer Divide
• FDIVR—Floating-Point Divide Reverse
• FDIVRP—Floating-Point Divide Reverse and Pop
• FIDIVR—Floating-Point Integer Divide Reverse

The FDIV instruction syntax has forms that include one or two source explicit operands that may be
single-precision or double-precision floating-point values or 16-bit or 32-bit integer values. In the one-
operand form, the instruction reads a value from memory, divides ST(0) by the memory operand, and
writes the result to ST(0). In the two-operand form, both source operands are located in stack registers.
The instruction divides the first operand by the second operand and writes the result to the first
operand.

The FDIVP instruction syntax has forms that include zero or two explicit source operands. In the zero-
operand form, the instruction divides ST(1) by ST(0), writes the result to ST(1), and pops the stack. In
the two-operand form, both source operands are located in stack registers. The instruction divides the
first operand by the second operand, writes the result to the first operand, and pops the stack.

The FIDIV instruction reads a 16-bit or 32-bit integer value from memory, converts it to the double-
extended-precision format, divides ST(0) by the memory operand, and writes the result to ST(0).

The FDIVR and FDIVRP instructions perform the same operations as FDIV and FDIVP, respectively,
except that the source operands are reversed. Instead of dividing the first operand by the second
operand, FDIVR and FDIVRP divide the second operand by the first operand.

Change Sign
• FABS—Floating-Point Absolute Value
• FCHS—Floating-Point Change Sign

The FABS instruction changes the top-of-stack value, ST(0), to its absolute value by clearing its sign
bit to 0. The top-of-stack value is always positive following execution of the FABS instruction. The
FCHS instruction complements the sign bit of ST(0). For example, if ST(0) was +0.0 before the
execution of FCHS, it is changed to -0.0.

Round
• FRNDINT—Floating-Point Round to Integer

[AMD Public Use]

318 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The FRNDINT instruction rounds the top-of-stack value, ST(0), to an integer value, although the
value remains in double-extended-precision floating-point format. Rounding takes place according to
the setting of the rounding control (RC) field in the x87 control word.

Partial Remainder
• FPREM—Floating-Point Partial Remainder
• FPREM1—Floating-Point Partial Remainder

The FPREM instruction returns the remainder obtained by dividing ST(0) by ST(1) and stores it in
ST(0). If the exponent difference between ST(0) and ST(1) is less than 64, all integer bits of the
quotient are calculated, guaranteeing that the remainder returned is less in magnitude than the divisor
in ST(1). If the exponent difference is equal to or greater than 64, only a subset of the integer quotient
bits, numbering between 32 and 63, are calculated and a partial remainder is returned. FPREM can be
repeated on a partial remainder until reduction is complete. It can be used to bring the operands of
transcendental functions into their proper range. FPREM is supported for software written for early
x87 coprocessors. Unlike the FPREM1 instruction, FPREM does not calculate the partial remainder as
specified in IEEE Standard 754.

The FPREM1 instruction works like FPREM, except that the FPREM1 quotient is rounded using
round-to-nearest mode, whereas FPREM truncates the quotient.

Square Root
• FSQRT—Floating-Point Square Root

The FSQRT instruction replaces the contents of the top-of-stack, ST(0), with its square root.

6.4.5 Transcendental Functions

The transcendental instructions compute trigonometric functions, inverse trigonometric functions,
logarithmic functions, and exponential functions.

Trigonometric Functions
• FSIN—Floating-Point Sine
• FCOS—Floating-Point Cosine
• FSINCOS—Floating-Point Sine and Cosine
• FPTAN—Floating-Point Partial Tangent
• FPATAN—Floating-Point Partial Arctangent

The FSIN instruction replaces the contents of ST(0) (in radians) with its sine.

The FCOS instruction replaces the contents of ST(0) (in radians) with its cosine.

The FSINCOS instruction computes both the sine and cosine of the contents of ST(0) (in radians) and
writes the sine to ST(0) and pushes the cosine onto the stack. Frequently, a piece of code that needs to
compute the sine of an argument also needs to compute the cosine of that same argument. In such

[AMD Public Use]

x87 Floating-Point Programming 319

24592—Rev. 3.23—October 2020 AMD64 Technology

cases, use the FSINCOS instruction to compute both functions concurrently, which is faster than using
separate FSIN and FCOS instructions.

The FPTAN instruction replaces the contents of the ST(0) (in radians), with its tangent, in radians, and
pushes the value 1.0 onto the stack.

The FPATAN instruction computes = arctan (Y/X), in which X is located in ST(0) and Y in ST(1).
The result, , is written over Y in ST(1), and the stack is popped.

FSIN, FCOS, FSINCOS, and FPTAN are architecturally restricted in their argument range. Only
arguments with a magnitude of less than 263 can be evaluated. If the argument is out of range, the C2
condition-code bit in the x87 status word is set to 1, and the argument is returned as the result. If
software detects an out-of-range argument, the FPREM or FPREM1 instruction can be used to reduce
the magnitude of the argument before using the FSIN, FCOS, FSINCOS, or FPTAN instruction again.

Logarithmic Functions
• F2XM1—Floating-Point Compute 2x–1
• FSCALE—Floating-Point Scale
• FYL2X—Floating-Point y * log2x
• FYL2XP1—Floating-Point y * log2(x +1)

The F2XM1 instruction computes Y = 2X – 1. X is located in ST(0) and must fall between –1 and +1.
Y replaces X in ST(0). If ST(0) is out of range, the instruction returns an undefined result but no x87
status-word exception bits are affected.

The FSCALE instruction replaces ST(0) with ST(0) times 2n, where n is the value in ST(1) truncated
to an integer. This provides a fast method of multiplying by integral powers of 2.

The FYL2X instruction computes Z = Y * log2 X. X is located in ST(0) and Y is located in ST(1). X
must be greater than 0. The result, Z, replaces Y in ST(1), which becomes the new top-of-stack
because X is popped off the stack.

The FYL2XP1 instruction computes Z = Y * log2(X + 1). X located in ST(0) and must be in the range
0 < |X| < (1 – 2½ / 2). Y is taken from ST(1). The result, Z, replaces Y in ST(1), which becomes the new
top-of-stack because X is popped off the stack.

6.4.5.1 Accuracy of Transcendental Results

x87 computations are carried out in double-extended-precision format, so that the transcendental
functions provide results accurate to within one unit in the last place (ulp) for each of the floating-
point data types.

6.4.5.2 Argument Reduction Using Pi

The FPREM and FPREM1 instructions can be used to reduce an argument of a trigonometric function
by a multiple of Pi. The following example shows a reduction by 2:

[AMD Public Use]

320 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

sin(n*2x) = sin(x) for all integral n

In this example, the range is 0 x < 2in the case of FPREM or - x in the case of FPREM1.
Negative arguments are reduced by repeatedly subtracting –2. See “Partial Remainder” on page 318
for details of the instructions.

6.4.6 Compare and Test

The compare-and-test instructions set and clear flags in the rFLAGS register to indicate the
relationship between two operands (less, equal, greater, or unordered).

Floating-Point Ordered Compare
• FCOM—Floating-Point Compare
• FCOMP—Floating-Point Compare and Pop
• FCOMPP—Floating-Point Compare and Pop Twice
• FCOMI—Floating-Point Compare and Set Flags
• FCOMIP—Floating-Point Compare and Set Flags and Pop

The FCOM instruction syntax has forms that include zero or one explicit source operands. In the zero-
operand form, the instruction compares ST(1) with ST(0) and writes the x87 status-word condition
codes accordingly. In the one-operand form, the instruction reads a 32-bit or 64-bit value from
memory, compares it with ST(0), and writes the x87 condition codes accordingly.

The FCOMP instruction performs the same operation as FCOM but also pops ST(0) after writing the
condition codes.

The FCOMPP instruction performs the same operation as FCOM but also pops both ST(0) and ST(1).
FCOMPP can be used to initialize the x87 stack at the end of an x87 procedure by removing two
registers of preloaded data from the stack.

The FCOMI instruction compares the contents of ST(0) with the contents of another stack register and
writes the ZF, PF, and CF flags in the rFLAGS register as shown in Table 6-14. If no source is
specified, ST(0) is compared to ST(1). If ST(0) or the source operand is a NaN or in an unsupported
format, the flags are set to indicate an unordered condition.

The FCOMIP instruction performs the same comparison as FCOMI but also pops ST(0) after writing
the rFLAGS bits.

Table 6-14. rFLAGS Values for FCOMI Instruction
Flag ST(0) > ST(i) ST(0) < ST(i) ST(0) = ST(i) Unordered
ZF 0 0 1 1
PF 0 0 0 1
CF 0 1 0 1

[AMD Public Use]

x87 Floating-Point Programming 321

24592—Rev. 3.23—October 2020 AMD64 Technology

For comparison-based branches, the combination of FCOMI and FCMOVcc is faster than the classical
method of using FxSTSW AX to copy condition codes through the AX register to the rFLAGS
register, where they can provide branch direction for conditional operations.

The FCOMx instructions perform ordered compares, as opposed to the FUCOMx instructions. See the
description of ordered vs. unordered compares immediately below.

Floating-Point Unordered Compare
• FUCOM—Floating-Point Unordered Compare
• FUCOMP—Floating-Point Unordered Compare and Pop
• FUCOMPP—Floating-Point Unordered Compare and Pop Twice
• FUCOMI—Floating-Point Unordered Compare and Set Flags
• FUCOMIP—Floating-Point Unordered Compare and Set Flags and Pop

The FUCOMx instructions perform the same operations as the FCOMx instructions, except that the
FUCOMx instructions generate an invalid-operation exception (IE) only if any operand is an
unsupported data type or a signaling NaN (SNaN), whereas the ordered-compare FCOMx instructions
generate an invalid-operation exception if any operand is an unsupported data type or any type of NaN.
For a description of NaNs, see “Number Representation” on page 302.

Integer Compare
• FICOM—Floating-Point Integer Compare
• FICOMP—Floating-Point Integer Compare and Pop

The FICOM instruction reads a 16-bit or 32-bit integer value from memory, compares it with ST(0),
and writes the condition codes in the same way as the FCOM instruction.

The FICOMP instruction performs the same operations as FICOM but also pops ST(0).

Test
• FTST—Floating-Point Test with Zero

The FTST instruction compares ST(0) with zero and writes the condition codes in the same way as the
FCOM instruction.

Classify
• FXAM—Floating-Point Examine

The FXAM instruction determines the type of value in ST(0) and sets the condition codes accordingly,
as shown in Table 6-15.

[AMD Public Use]

322 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

6.4.7 Stack Management

The stack management instructions move the x87 top-of-stack pointer (TOP) and clear the contents of
stack registers.

Stack Control
• FDECSTP—Floating-Point Decrement Stack-Top Pointer
• FINCSTP—Floating-Point Increment Stack-Top Pointer

The FINCSTP and FDECSTP instructions increment and decrement, respectively, the TOP, modulo-8.
Neither the x87 tag word nor the contents of the floating-point stack itself is updated.

Clear State
• FFREE—Free Floating-Point Register

The FFREE instruction frees a specified stack register by setting the x87 tag-word bits for the register
to all 1s, indicating empty. Neither the stack-register contents nor the stack pointer is modified by this
instruction.

6.4.8 No Operation

This instruction uses processor cycles but generates no result.

Table 6-15. Condition-Code Settings for FXAM

C3 C2 C0 C11 Meaning
0 0 0 0 +unsupported
0 0 0 1 -unsupported
0 0 1 0 +NAN
0 0 1 1 -NAN
0 1 0 0 +normal
0 1 0 1 -normal
0 1 1 0 +infinity
0 1 1 1 -infinity
1 0 0 0 +0
1 0 0 1 -0
1 0 1 0 +empty
1 0 1 1 -empty
1 1 0 0 +denormal
1 1 0 1 -denormal

Note:
1. C1 is the sign of ST(0).

[AMD Public Use]

x87 Floating-Point Programming 323

24592—Rev. 3.23—October 2020 AMD64 Technology

• FNOP—Floating-Point No Operation

The FNOP instruction has no operands and writes no result. Its purpose is simply to delay execution of
a sequence of instructions.

6.4.9 Control

The control instructions are used to initialize, save, and restore x87 processor state and to manage x87
exceptions.

Initialize
• FINIT—Floating-Point Initialize
• FNINIT—Floating-Point No-Wait Initialize

The FINIT and FNINIT instructions set all bits in the x87 control-word, status-word, and tag word
registers to their default values. Assemblers issue FINIT as an FWAIT instruction followed by an
FNINIT instruction. Thus, FINIT (but not FNINIT) reports pending unmasked x87 floating-point
exceptions before performing the initialization.

Both FINIT and FNINIT write the control word with its initialization value, 037Fh, which specifies
round-to-nearest, all exceptions masked, and double-extended-precision. The tag word indicates that
the floating-point registers are empty. The status word and the four condition-code bits are cleared to 0.
The x87 pointers and opcode state (“Pointers and Opcode State” on page 295) are all cleared to 0.

The FINIT instruction should be used when pending x87 floating-point exceptions are being reported
(unmasked). The no-wait instruction, FNINIT, should be used when pending x87 floating-point
exceptions are not being reported (masked).

Wait for Exceptions
• FWAIT or WAIT—Wait for Unmasked x87 Floating-Point Exceptions

The FWAIT and WAIT instructions are synonyms. The instruction forces the processor to test for and
handle any pending, unmasked x87 floating-point exceptions.

Clear Exceptions
• FCLEX—Floating-Point Clear Flags
• FNCLEX—Floating-Point No-Wait Clear Flags

These instructions clear the status-word exception flags, stack-fault flag, and busy flag. They leave the
four condition-code bits undefined.

Assemblers issue FCLEX as an FWAIT instruction followed by an FNCLEX instruction. Thus,
FCLEX (but not FNCLEX) reports pending unmasked x87 floating-point exceptions before clearing
the exception flags.

[AMD Public Use]

324 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The FCLEX instruction should be used when pending x87 floating-point exceptions are being reported
(unmasked). The no-wait instruction, FNCLEX, should be used when pending x87 floating-point
exceptions are not being reported (masked).

Save and Restore x87 Control Word
• FLDCW—Floating-Point Load x87 Control Word
• FSTCW—Floating-Point Store Control Word
• FNSTCW—Floating-Point No-Wait Store Control Word

These instructions load or store the x87 control-word register as a 2-byte value from or to a memory
location.

The FLDCW instruction loads a control word. If the loaded control word unmasks any pending x87
floating-point exceptions, these exceptions are reported when the next non-control x87 or 64-bit media
instruction is executed.

Assemblers issue FSTCW as an FWAIT instruction followed by an FNSTCW instruction. Thus,
FSTCW (but not FNSTCW) reports pending unmasked x87 floating-point exceptions before storing
the control word.

The FSTCW instruction should be used when pending x87 floating-point exceptions are being
reported (unmasked). The no-wait instruction, FNSTCW, should be used when pending x87 floating-
point exceptions are not being reported (masked).

Save x87 Status Word
• FSTSW—Floating-Point Store Status Word
• FNSTSW—Floating-Point No-Wait Store Status Word

These instructions store the x87 status word either at a specified 2-byte memory location or in the AX
register. The second form, FxSTSW AX, is used in older code to copy condition codes through the AX
register to the rFLAGS register, where they can be used for conditional branching using general-
purpose instructions. However, the combination of FCOMI and FCMOVcc provides a faster method
of conditional branching.

Assemblers issue FSTSW as an FWAIT instruction followed by an FNSTSW instruction. Thus,
FSTSW (but not FNSTSW) reports pending unmasked x87 floating-point exceptions before storing
the status word.

The FSTSW instruction should be used when pending x87 floating-point exceptions are being
reported (unmasked). The no-wait instruction, FNSTSW, should be used when pending x87 floating-
point exceptions are not being reported (masked).

Save and Restore x87 Environment
• FLDENV—Floating-Point Load x87 Environment
• FNSTENV—Floating-Point No-Wait Store Environment

[AMD Public Use]

x87 Floating-Point Programming 325

24592—Rev. 3.23—October 2020 AMD64 Technology

• FSTENV—Floating-Point Store Environment

These instructions load or store the entire x87 environment (non-data processor state) as a 14-byte or
28-byte block, depending on effective operand size, from or to memory.

When executing FLDENV, any exception flags are set in the new status word, and these exceptions are
unmasked in the control word, a floating-point exception occurs when the next non-control x87 or 64-
bit media instruction is executed.

Assemblers issue FSTENV as an FWAIT instruction followed by an FNSTENV instruction. Thus,
FSTENV (but not FNSTENV) reports pending unmasked x87 floating-point exceptions before storing
the status word.

The x87 environment includes the x87 control word register, x87 status word register, x87 tag word,
last x87 instruction pointer, last x87 data pointer, and last x87 opcode. See “Media and x87 Processor
State” in Volume 2 for details on how the x87 environment is stored in memory.

Save and Restore x87 and 64-Bit Media State
• FSAVE—Save x87 and MMX State.
• FNSAVE—Save No-Wait x87 and MMX State.
• FRSTOR—Restore x87 and MMX State.

These instructions save and restore the entire processor state for x87 floating-point instructions and
64-bit media instructions. The instructions save and restore either 94 or 108 bytes of data, depending
on the effective operand size.

Assemblers issue FSAVE as an FWAIT instruction followed by an FNSAVE instruction. Thus, FSAVE
(but not FNSAVE) reports pending unmasked x87 floating-point exceptions before saving the state.

After saving the state, the processor initializes the x87 state by performing the equivalent of an FINIT
instruction. For details, see “State-Saving” on page 339.

Save and Restore x87, 128-Bit, and 64-Bit State
• FXSAVE—Save XMM, MMX, and x87 State.
• FXRSTOR—Restore XMM, MMX, and x87 State.

The FXSAVE and FXRSTOR instructions save and restore the entire 512-byte processor state for 128-
bit media instructions, 64-bit media instructions, and x87 floating-point instructions. The architecture
supports two memory formats for FXSAVE and FXRSTOR, a 512-byte 32-bit legacy format and a
512-byte 64-bit format. Selection of the 32-bit or 64-bit format is determined by the effective operand
size for the FXSAVE and FXRSTOR instructions. For details, see “Media and x87 Processor State” in
Volume 2.

FXSAVE and FXRSTOR execute faster than FSAVE/FNSAVE and FRSTOR. However, unlike
FSAVE and FNSAVE, FXSAVE does not initialize the x87 state, and like FNSAVE it does not report
pending unmasked x87 floating-point exceptions. For details, see “State-Saving” on page 339.

[AMD Public Use]

326 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

6.5 Instruction Effects on rFLAGS
The rFLAGS register is described in “Flags Register” on page 34. Table 6-16 on page 326 summarizes
the effect that x87 floating-point instructions have on individual flags within the rFLAGS register.
Only instructions that access the rFLAGS register are shown—all other x87 instructions have no effect
on rFLAGS.

The following codes are used within the table:

• Mod—The flag is modified.
• Tst—The flag is tested.
• Gray shaded cells indicate the flag is not affected by the instruction.

6.6 Instruction Prefixes
Instruction prefixes, in general, are described in “Instruction Prefixes” on page 76. The following
restrictions apply to the use of instruction prefixes with x87 instructions.

6.6.0.1 Supported Prefixes

The following prefixes can be used with x87 instructions:

• Operand-Size Override—The 66h prefix affects only the FLDENV, FSTENV, FNSTENV,
FSAVE, FNSAVE, and FRSTOR instructions, in which it selects between a 16-bit and 32-bit
memory-image format. The prefix is ignored by all other x87 instructions.

• Address-Size Override—The 67h prefix affects only operands in memory, in which it selects
between a 16-bit and 32-bit addresses. The prefix is ignored by all other x87 instructions.

• Segment Overrides—The 2Eh (CS), 36h (SS), 3Eh (DS), 26h (ES), 64h (FS), and 65h (GS)
prefixes specify a segment. They affect only operands in memory. In 64-bit mode, the CS, DS, ES,
SS segment overrides are ignored.

• REX—The REX.W bit affects the FXSAVE and FXRSTOR instructions, in which it selects
between two types of 512-byte memory-image formats, as described in "Saving Media and x87
Processor State" in Volume 2. The REX.W bit also affects the FLDENV, FSTENV, FSAVE, and

Table 6-16. Instruction Effects on rFLAGS

Instruction
Mnemonic

rFLAGS Mnemonic and Bit Number
OF
11

SF
7

ZF
6

AF
4

PF
2

CF
0

FCMOVcc Tst Tst Tst
FCOMI

FCOMIP
FUCOMI

FUCOMIP

Mod Mod Mod

[AMD Public Use]

x87 Floating-Point Programming 327

24592—Rev. 3.23—October 2020 AMD64 Technology

FRSTOR instructions, in which it selects the 32-bit memory-image format. The REX.R, REX.X,
and REX.B bits only affect operands in memory, in which they are used to find the memory
operand.

6.6.0.2 Ignored Prefixes

The following prefixes are ignored by x87 instructions:

• REP—The F3h and F2h prefixes.

6.6.0.3 Prefixes That Cause Exceptions

The following prefixes cause an exception:

• LOCK—The F0h prefix causes an invalid-opcode exception when used with x87 instructions.

6.7 Feature Detection
Before executing x87 floating-point instructions, software should determine if the processor supports
the technology by executing the CPUID instruction. “Feature Detection” on page 79 describes how
software uses the CPUID instruction to detect feature support. For full support of the x87 floating-
point features, the following feature must be present:

• On-Chip Floating-Point Unit, indicated by bit 0 of CPUID function 1 and CPUID function
8000_0001h.

• CMOVcc (conditional moves), indicated by bit 15 of CPUID function 1 and CPUID function
8000_0001h. This bit indicates support for x87 floating-point conditional moves (FCMOVcc)
whenever the On-Chip Floating-Point Unit bit (bit 0) is also set.

Software may also wish to check for the following support, because the FXSAVE and FXRSTOR
instructions execute faster than FSAVE and FRSTOR:

• FXSAVE and FXRSTOR, indicated by bit 24 of CPUID function 1 and function 8000_0001h.

Software that runs in long mode should also check for the following support:

• Long Mode, indicated by bit 29 of CPUID function 8000_0001h.

See “CPUID” in Volume 3 for details on the CPUID instruction and Appendix D of that volume for
information on detemining support for specific instruction subsets.

6.8 Exceptions
6.8.0.1 Types of Exceptions

x87 instructions can generate two types of exceptions:

• General-Purpose Exceptions, described below in “General-Purpose Exceptions”

[AMD Public Use]

328 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

• x87 Floating-Point Exceptions (#MF), described in “x87 Floating-Point Exception Causes” on
page 329

6.8.0.2 Relation to 128-Bit Media Exceptions

Although the x87 floating-point instructions and the 128-bit media instructions each have certain
exceptions with the same names, the exception-reporting and exception-handling methods used by the
two instruction subsets are distinct and independent of each other. If procedures using both types of
instructions are run in the same operating environment, separate service routines should be provided
for the exceptions of each type of instruction subset.

6.8.1 General-Purpose Exceptions

The sections below list general-purpose exceptions generated and not generated by x87 floating-point
instructions. For a summary of the general-purpose exception mechanism, see “Interrupts and
Exceptions” on page 91. For details about each exception and its potential causes, see “Exceptions and
Interrupts” in Volume 2.

6.8.1.1 Exceptions Generated

x87 instructions can generate the following general-purpose exceptions:

• #DB—Debug Exception (Vector 1)
• #BP—Breakpoint Exception (Vector 3)
• #UD—Invalid-Opcode Exception (Vector 6)
• #NM—Device-Not-Available Exception (Vector 7)
• #DF—Double-Fault Exception (Vector 8)
• #SS—Stack Exception (Vector 12)
• #GP—General-Protection Exception (Vector 13)
• #PF—Page-Fault Exception (Vector 14)
• #MF—x87 Floating-Point Exception-Pending (Vector 16)
• #AC—Alignment-Check Exception (Vector 17)
• #MC—Machine-Check Exception (Vector 18)

For details on #MF exceptions, see “x87 Floating-Point Exception Causes” below.

6.8.1.2 Exceptions Not Generated

x87 instructions do not generate the following general-purpose exceptions:

• #DE—Divide-by-zero-error exception (Vector 0)
• Non-Maskable-Interrupt Exception (Vector 2)
• #OF—Overflow exception (Vector 4)
• #BR—Bound-range exception (Vector 5)

[AMD Public Use]

x87 Floating-Point Programming 329

24592—Rev. 3.23—October 2020 AMD64 Technology

• Coprocessor-segment-overrun exception (Vector 9)
• #TS—Invalid-TSS exception (Vector 10)
• #NP—Segment-not-present exception (Vector 11)
• #MC—Machine-check exception (Vector 18)
• #XF—SIMD floating-point exception (Vector 19)

For details on all general-purpose exceptions, see “Exceptions and Interrupts” in Volume 2.

6.8.2 x87 Floating-Point Exception Causes

The x87 floating-point exception-pending (#MF) exception listed above in “General-Purpose
Exceptions” is actually the logical OR of six exceptions that can be caused by x87 floating-point
instructions. Each of the six exceptions has a status flag in the x87 status word and a mask bit in the
x87 control word. A seventh exception, stack fault (SF), is reported together with one of the six
maskable exceptions and does not have a mask bit.

If a #MF exception occurs when its mask bit is set to 1 (masked), the processor responds in a default
way that does not invoke the #MF exception service routine. If an exception occurs when its mask bit
is cleared to 0 (unmasked), the processor suspends processing of the faulting instruction (if possible)
and, at the boundary of the next non-control x87 or 64-bit media instruction (see “Control” on
page 323), determines that an unmasked exception is pending—by checking the exception status (ES)
flag in the x87 status word—and invokes the #MF exception service routine.

6.8.2.1 #MF Exception Types and Flags

The #MF exceptions are of six types, five of which are mandated by the IEEE 754 standard. These six
types and their bit-flags in the x87 status word are shown in Table 6-17. A stack fault (SF) exception is
always accompanied by an invalid-operation exception (IE). A summary of each exception type is
given in “x87 Status Word Register (FSW)” on page 289.

Table 6-17. x87 Floating-Point (#MF) Exception Flags

Exception and Mnemonic
x87 Status-
Word Bit1

Comparable IEEE 754
Exception

Invalid-operation exception (IE) 0 Invalid Operation
Invalid-operation exception (IE)
with stack fault (SF) exception 0 and 6 none

Denormalized-operand exception (DE) 1 none
Zero-divide exception (ZE) 2 Division by Zero
Overflow exception (OE) 3 Overflow
Underflow exception (UE) 4 Underflow
Precision exception (PE) 5 Inexact
Note:

1. See “x87 Status Word Register (FSW)” on page 289 for a summary of each exception.

[AMD Public Use]

330 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

The sections below describe the causes for the #MF exceptions. Masked and unmasked responses to
the exceptions are described in “x87 Floating-Point Exception Masking” on page 333. The priority of
#MF exceptions are described in “x87 Floating-Point Exception Priority” on page 332.

6.8.2.2 Invalid-Operation Exception (IE)

The IE exception occurs due to one of the attempted operations shown in Table 6-18 on page 330. An
IE exception may also be accompanied by a stack fault (SF) exception. See “Stack Fault (SF)” on
page 331.

6.8.2.3 Denormalized-Operand Exception (DE)

The DE exception occurs in any of the following cases:

Table 6-18. Invalid-Operation Exception (IE) Causes
Operation Condition

Arithmetic
(IE exception)

Any Arithmetic Operation
• A source operand is an SNaN, or
• A source operand is an unsupported data type (pseudo-

NaN, pseudo-infinity, or unnormal).
FADD, FADDP Source operands are infinities with opposite signs.
FSUB, FSUBP, FSUBR,
FSUBRP Source operands are infinities with same sign.

FMUL, FMULP Source operands are zero and infinity.
FDIV, FDIVP, FDIVR,
FDIVRP Source operands are both infinities or both zeros.

FSQRT Source operand is less than zero (except ±0 which returns
±0).

FYL2X
Source operand is less than zero (except ±0 which returns
±).

FYL2XP1 Source operand is less than minus one.
FCOS, FPTAN, FSIN,
FSINCOS Source operand is infinity.

FCOM, FCOMP,
FCOMPP, FCOMI,
FCOMIP

A source operand is a QNaN.

FPREM, FPREM1 Dividend is infinity or divisor is zero.
FIST, FISTP, FISTTP Source operand overflows the destination size.
FBSTP Source operand overflows packed BCD data size.

Stack
(IE and SF exceptions) Stack overflow or underflow.1

Note:
1. The processor sets condition code C1 = 1 for overflow, C1 = 0 for underflow.

[AMD Public Use]

x87 Floating-Point Programming 331

24592—Rev. 3.23—October 2020 AMD64 Technology

• Denormalized Operand (any precision)—An arithmetic instruction uses an operand of any
precision that is in denormalized form, as described in “Denormalized (Tiny) Numbers” on
page 303.

• Denormalized Single-Precision or Double-Precision Load—An instruction loads a single-
precision or double-precision (but not double-extended-precision) operand, which is in
denormalized form, into an x87 register.

6.8.2.4 Zero-Divide Exception (ZE)

The ZE exception occurs when:

• Divisor is Zero—An FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, or FIDIVR instruction attempts to
divide zero into a non-zero finite dividend.

• Source Operand is Zero—An FYL2X or FXTRACT instruction uses a source operand that is zero.

6.8.2.5 Overflow Exception (OE)

The OE exception occurs when the value of a rounded floating-point result is larger than the largest
representable normalized positive or negative floating-point number in the destination format, as
shown in Table 6-5 on page 301. An overflow can occur through computation or through conversion
of higher-precision numbers to lower-precision numbers. See “Precision” on page 309. Integer and
BCD overflow is reported via the invalid-operation exception.

6.8.2.6 Underflow Exception (UE)

The UE exception occurs when the value of a rounded, non-zero floating-point result is too small to be
represented as a normalized positive or negative floating-point number in the destination format, as
shown in Table 6-5 on page 301. Integer and BCD underflow is reported via the invalid-operation
exception.

6.8.2.7 Precision Exception (PE)

The PE exception, also called the inexact-result exception, occurs when a floating-point result, after
rounding, differs from the infinitely precise result and thus cannot be represented exactly in the
specified destination format. Software that does not require exact results normally masks this
exception. See “Precision” on page 309 and “Rounding” on page 309.

6.8.2.8 Stack Fault (SF)

The SF exception occurs when a stack overflow (due to a push or load into a non-empty stack register)
or stack underflow (due to referencing an empty stack register) occurs in the x87 stack-register file.
The empty and non-empty conditions are shown in Table 6-3 on page 295. When either of these
conditions occur, the processor also sets the invalid-operation exception (IE) flag, and it sets or clears
the condition-code 1 (C1) bit to indicate the direction of the stack fault (C1 = 1 for overflow, C1 = 0
for underflow). Unlike the flags for the other x87 exceptions, the SF flag does not have a
corresponding mask bit in the x87 control word.

[AMD Public Use]

332 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

6.8.3 x87 Floating-Point Exception Priority

Table 6-19 shows the priority with which the processor recognizes multiple, simultaneous SIMD
floating-point exceptions and operations involving QNaN operands. Each exception type is
characterized by its timing, as follows:

• Pre-Computation—an exception that is recognized before an instruction begins its operation.
• Post-Computation—an exception that is recognized after an instruction completes its operation.

For post-computation exceptions, a result may be written to the destination, depending on the type of
exception and whether the destination is a register or memory location. Operations involving QNaNs
do not necessarily cause exceptions, but the processor handles them with the priority shown in
Table 6-19 on page 332 relative to the handling of exceptions.

For exceptions that occur before the associated operation (pre-operation, as shown in Table 6-19), if an
unmasked exception occurs, the processor suspends processing of the faulting instruction but it waits
until the boundary of the next non-control x87 or 64-bit media instruction to be executed before
invoking the associated exception service routine. During this delay, non-x87 instructions may
overwrite the faulting x87 instruction’s source or destination operands in memory. If that occurs, the
x87 service routine may be unable to perform its job.

Table 6-19. Priority of x87 Floating-Point Exceptions
Priority Exception or Operation Timing

1 Invalid-operation exception (IE) with stack fault
(SF) due to underflow Pre-Computation

2 Invalid-operation exception (IE) with stack fault
(SF) due to overflow Pre-Computation

3 Invalid-operation exception (IE) when accessing
unsupported data type Pre-Computation

4 Invalid-operation exception (IE) when accessing
SNaN operand Pre-Computation

5 Operation involving a QNaN operand1 —

6
Any other type of invalid-operation exception (IE) Pre-Computation

Zero-divide exception (ZE) Pre-Computation
7 Denormalized operation exception (DE) Pre-Computation

8
Overflow exception (OE) Post-Computation

Underflow exception (UE) Post-Computation
9 Precision (inexact) exception (PE) Post-Computation

Note:
1. Operations involving QNaN operands do not, in themselves, cause exceptions but they are

handled with this priority relative to the handling of exceptions.

[AMD Public Use]

x87 Floating-Point Programming 333

24592—Rev. 3.23—October 2020 AMD64 Technology

To prevent such problems, analyze x87 procedures for potential exception-causing situations and
insert a WAIT or other safe x87 instruction immediately after any x87 instruction that may cause a
problem.

6.8.4 x87 Floating-Point Exception Masking

The six floating-point exception flags in the x87 status word have corresponding exception-flag masks
in the x87 control word, as shown in Table 6-20 on page 333.

Each mask bit, when set to 1, inhibits invocation of the #MF exception handler and instead continues
normal execution using the default response for the exception type. During initialization with FINIT or
FNINIT, all exception-mask bits in the x87 control word are set to 1 (masked). At processor reset, all
exception-mask bits are cleared to 0 (unmasked).

6.8.4.1 Masked Responses

The occurrence of a masked exception does not invoke its exception handler when the exception
condition occurs. Instead, the processor handles masked exceptions in a default way, as shown in
Table 6-21 on page 334.

Table 6-20. x87 Floating-Point (#MF) Exception Masks
Exception Mask
and Mnemonic

x87 Control-Word
Bit1

Invalid-operation exception mask (IM) 0
Denormalized-operand exception mask (DM) 1
Zero-divide exception mask (ZM) 2
Overflow exception mask (OM) 3
Underflow exception mask (UM) 4
Precision exception mask (PM) 5
Note:

1. See “x87 Status Word Register (FSW)” on page 289 for a summary of each exception.

[AMD Public Use]

334 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Table 6-21. Masked Responses to x87 Floating-Point Exceptions
Exception and

Mnemonic
Type of

Operation1 Processor Response

Invalid-operation
exception (IE)2

Any Arithmetic Operation:
Source operand is an SNaN. Set IE flag, and return a QNaN value.

Any Arithmetic Operation:
Source operand is an
unsupported data type
or
FADD, FADDP: Source
operands are infinities with
opposite signs
or
FSUB, FSUBP, FSUBR,
FSUBRP: Source operands are
infinities with same sign
or
FMUL, FMULP: Source
operands are zero and infinity
or
FDIV, FDIVP, FDIVR, FDIVRP:
Source operands are both
infinities or both are zeros
or
FSQRT: Source operand is less
than zero (except ±0 which
returns ±0)
or
FYL2X: Source operand is less
than zero (except ±0 which
returns ±)
or
FYL2XP1: Source operand is
less than minus one.

Set IE flag, and return the floating-point indefinite
value3.

Note:
1. See “Instruction Summary” on page 310 for the types of instructions.
2. Includes invalid-operation exception (IE) together with stack fault (SF).
3. See “Indefinite Values” on page 308.

[AMD Public Use]

x87 Floating-Point Programming 335

24592—Rev. 3.23—October 2020 AMD64 Technology

Invalid-operation
exception (IE)2

FCOS, FPTAN, FSIN,
FSINCOS: Source operand is

or
FPREM, FPREM1: Dividend is
infinity or divisor is 0.

Set IE flag, return the floating-point indefinite value3,
and clear condition code C2 to 0.

FCOM, FCOMP, or FCOMPP:
One or both operands is a NaN
or
FUCOM, FUCOMP, or
FUCOMPP: One or both
operands is an SNaN.

Set IE flag, and set C3–C0 condition codes to reflect
the result.

FCOMI or FCOMIP: One or
both operands is a NaN
or
FUCOMI or FUCOMIP: One or
both operands is an SNaN.

Sets IE flag, and sets the result in eflags to
"unordered."

FIST, FISTP, FISTTP: Source
operand overflows the
destination size.

Set IE flag, and return the integer indefinite value3.

FXCH: A source register is
specified empty by its tag bits.

Set IE flag, and perform exchange using floating-
point indefinite value3 as content for empty
register(s).

FBSTP: Source operand
overflows packed BCD data
size.

Set IE flag, and return the packed-decimal indefinite
value3.

Denormalized-operand exception (DE) Set DE flag, and return the result using the denormal
operand(s).

Zero-divide
exception (ZE)

FDIV, FDIVP, FDIVR, FDIVRP,
FIDIV, or FIDIVR: Divisor is 0.

Set ZE flag, and return signed with sign bit = XOR
of the operand sign bits.

FYL2X: ST(0) is 0 and ST(1) is
a non-zero floating-point value.

Set ZE flag, and return signed with sign bit =
complement of sign bit for ST(1) operand.

FXTRACT: Source operand is
0.

Set ZE flag, write ST(0) = 0 with sign of operand, and
write ST(1) = –.

Table 6-21. Masked Responses to x87 Floating-Point Exceptions (continued)
Exception and

Mnemonic
Type of

Operation1 Processor Response

Note:
1. See “Instruction Summary” on page 310 for the types of instructions.
2. Includes invalid-operation exception (IE) together with stack fault (SF).
3. See “Indefinite Values” on page 308.

[AMD Public Use]

336 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

Overflow exception
(OE)

Round to nearest.

• If sign of result is positive, set OE flag, and return
+.

• If sign of result is negative, set OE flag, and return
-.

Round toward +

• If sign of result is positive, set OE flag, and return
+.

• If sign of result is negative, set OE flag, and return
finite negative number with largest magnitude.

Round toward -

• If sign of result is positive, set OE flag, and return
finite positive number with largest magnitude.

• If sign of result is negative, set OE flag, and return
-.

Round toward 0.

• If sign of result is positive, set OE flag and return
finite positive number with largest magnitude.

• If sign of result is negative, set OE flag and return
finite negative number with largest magnitude.

Underflow exception (UE)

• If result is both denormal (tiny) and inexact, set UE
flag and return denormalized result.

• If result is denormal (tiny) but not inexact, return
denormalized result but do not set UE flag.

Precision exception
(PE)

Without overflow or underflow
Set PE flag, return rounded result, write C1 condition
code to specify round-up (C1 = 1) or not round-up
(C1 = 0).

With masked overflow or
underflow

Set PE flag and respond as for the OE or UE
exceptions.

With unmasked overflow or
underflow for register
destination

Set PE flag, respond to the OE or UE exception by
calling the #MF service routine.

With unmasked overflow or
underflow for memory
destination

Do not set PE flag, respond to the OE or UE
exception by calling the #MF service routine. The
destination and the TOP are not changed.

Table 6-21. Masked Responses to x87 Floating-Point Exceptions (continued)
Exception and

Mnemonic
Type of

Operation1 Processor Response

Note:
1. See “Instruction Summary” on page 310 for the types of instructions.
2. Includes invalid-operation exception (IE) together with stack fault (SF).
3. See “Indefinite Values” on page 308.

[AMD Public Use]

x87 Floating-Point Programming 337

24592—Rev. 3.23—October 2020 AMD64 Technology

6.8.4.2 Unmasked Responses

The processor handles unmasked exceptions as shown in Table 6-22 on page 337.

Table 6-22. Unmasked Responses to x87 Floating-Point Exceptions
Exception and

Mnemonic
Type of

Operation Processor Response1

Invalid-operation exception (IE)
Set IE and ES flags, and call the #MF service routine2. The
destination and the TOP are not changed. Invalid-operation exception (IE)

with stack fault (SF)

Denormalized-operand exception (DE) Set DE and ES flags, and call the #MF service routine2. The
destination and the TOP are not changed.

Zero-divide exception (ZE) Set ZE and ES flags, and call the #MF service routine2. The
destination and the TOP are not changed.

Overflow exception (OE)

• If the destination is memory, set OE and ES flags, and
call the #MF service routine2. The destination and the
TOP are not changed.

• If the destination is an x87 register:
- divide true result by 224576,
- round significand according to PC precision control

and RC rounding control (or round to double-extended
precision for instructions not observing PC precision
control),

- write C1 condition code according to rounding (C1 = 1
for round up, C1 = 0 for round toward zero),

- write result to destination,
- pop or push stack if specified by the instruction,
- set OE and ES flags, and call the #MF service routine2.

Note:
1. For all unmasked exceptions, the processor’s response also includes assertion of the FERR# output signal at the

completion of the instruction that caused the exception.
2. When CR0.NE is set to 1, the #MF service routine is taken at the next non-control x87 instruction. If CR0.NE is

cleared to zero, x87 floating-point instructions are handled by setting the FERR# input signal to 1, which external
logic can use to handle the interrupt.

[AMD Public Use]

338 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

6.8.4.3 FERR# and IGNNE# Signals

In all unmasked-exception responses, the processor also asserts the FERR# output signal at the
completion of the instruction that caused the exception. The exception is serviced at the boundary of
the next non-waiting x87 or 64-bit media instruction following the instruction that caused the
exception. (See “Control” on page 323 for a definition of control instructions.)

System software controls x87 floating-point exception reporting using the numeric error (NE) bit in
control register 0 (CR0), as follows:

• If CR0.NE = 1, internal processor control over x87 floating-point exception reporting is enabled.
In this case, an #MF exception occurs immediately. The FERR# output signal is asserted, but is not

Underflow exception (UE)

• If the destination is memory, set UE and ES flags, and call
the #MF service routine2. The destination and the TOP
are not changed.

• If the destination is an x87 register:
- multiply true result by 224576,
- round significand according to PC precision control

and RC rounding control (or round to double-extended
precision for instructions not observing PC precision
control),

- write C1 condition code according to rounding (C1 = 1
for round up, C1 = 0 for round toward zero),

- write result to destination,
- pop or push stack if specified by the instruction,
- set UE and ES flags, and call the #MF service routine2.

Precision exception
(PE)

Without overflow or
underflow

Set PE and ES flags, return rounded result, write C1
condition code to specify round-up (C1 = 1) or not round-up
(C1 = 0), and call the #MF service routine2.

With masked overflow
or underflow Set PE and ES flags, respond as for the OE or UE

exception, and call the #MF service routine2. With unmasked
overflow or underflow
for register destination
With unmasked
overflow or underflow
for memory destination

Do not set PE flag, respond to the OE or UE exception by
calling the #MF service routine. The destination and the
TOP are not changed.

Table 6-22. Unmasked Responses to x87 Floating-Point Exceptions (continued)
Exception and

Mnemonic
Type of

Operation Processor Response1

Note:
1. For all unmasked exceptions, the processor’s response also includes assertion of the FERR# output signal at the

completion of the instruction that caused the exception.
2. When CR0.NE is set to 1, the #MF service routine is taken at the next non-control x87 instruction. If CR0.NE is

cleared to zero, x87 floating-point instructions are handled by setting the FERR# input signal to 1, which external
logic can use to handle the interrupt.

[AMD Public Use]

x87 Floating-Point Programming 339

24592—Rev. 3.23—October 2020 AMD64 Technology

used externally. It is recommended that system software set NE to 1. This enables optimal
performance in handling x87 floating-point exceptions.

• If CR0.NE = 0, internal processor control of x87 floating-point exceptions is disabled and the
external IGNNE# input signal controls whether x87 floating-point exceptions are ignored, as
follows:
- When IGNNE# is 0, x87 floating-point exceptions are reported by asserting the FERR# output

signal, then stopping program execution until an external interrupt is detected. External logic
use the FERR# signal to generate the external interrupt.

- When IGNNE# is 1, x87 floating-point exceptions do not stop program execution. After
FERR# is asserted, instructions continue to execute.

6.8.4.4 Using NaNs in IE Diagnostic Exceptions

Both SNaNs and QNaNs can be encoded with many different values to carry diagnostic information.
By means of appropriate masking and unmasking of the invalid-operation exception (IE), software can
use signaling NaNs to invoke an exception handler. Within the constraints imposed by the encoding of
SNaNs and QNaNs, software may freely assign the bits in the significand of a NaN. See the section
“Not a Number (NaN)” on page 305 for format details.

For example, software can pre-load each element of an array with a signaling NaN that encodes the
array index. When an application accesses an uninitialized array element, the invalid-operation
exception is invoked and the service routine can identify that element. A service routine can store
debug information in memory as the exceptions occur. The routine can create a QNaN that references
its associated debug area in memory. As the program runs, the service routine can create a different
QNaN for each error condition, so that a single test-run can identify a collection of errors.

6.9 State-Saving
In general, system software should save and restore x87 state between task switches or other
interventions in the execution of x87 floating-point procedures. Virtually all modern operating
systems running on x86 processors implement preemptive multitasking that handle saving and
restoring of state across task switches, independent of hardware task-switch support. However,
application procedures are also free to save and restore x87 state at any time they deem useful.

6.9.1 State-Saving Instructions

6.9.1.1 FSAVE/FNSAVE and FRSTOR Instructions

Application software can save and restore the x87 state by executing the FSAVE (or FNSAVE) and
FRSTOR instructions. Alternatively, software may use multiple FxSTx (floating-point store stack top)
instructions for saving only the contents of the x87 data registers, rather than the complete x87 state.

The FSAVE instruction stores the state, but only after handling any pending unmasked x87 floating-
point exceptions, whereas the FNSAVE instruction skips the handling of these exceptions. The state of
all x87 data registers is saved, as well as all x87 environment state (the x87 control word register,

[AMD Public Use]

340 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

status word register, tag word, instruction pointer, data pointer, and last opcode register). After saving
this state, the tag bits for all x87 registers are changed to empty and thus available for a new procedure.

6.9.1.2 FXSAVE and FXRSTOR Instructions

Application software can save and restore the 128-bit media state, 64-bit media state, and x87 floating-
point state by executing the FXSAVE and FXRSTOR instructions. The FXSAVE and FXRSTOR
instructions execute faster than FSAVE/FNSAVE and FRSTOR because they do not save and restore
the x87 pointers (last instruction pointer, last data pointer, and last opcode, described in “Pointers and
Opcode State” on page 295) except in the relatively rare cases in which the exception-summary (ES)
bit in the x87 status word (the ES register image for FXSAVE, or the ES memory image for
FXRSTOR) is set to 1, indicating that an unmasked x87 exception has occurred.

Unlike FSAVE and FNSAVE, however, FXSAVE does not alter the tag bits. The state of the saved x87
data registers is retained, thus indicating that the registers may still be valid (or whatever other value
the tag bits indicated prior to the save). To invalidate the contents of the x87 data registers after
FXSAVE, software must explicitly execute an FINIT instruction. Also, FXSAVE (like FNSAVE) and
FXRSTOR do not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction
can be used for this purpose.

The architecture supports two memory formats for FXSAVE and FXRSTOR, a 512-byte 32-bit legacy
format and a 512-byte 64-bit format, used in 64-bit mode. Selection of the 32-bit or 64-bit format is
determined by the effective operand size for the FXSAVE and FXRSTOR instructions. For details, see
“Media and x87 Processor State” in Volume 2.

6.10 Performance Considerations
In addition to typical code optimization techniques, such as those affecting loops and the inlining of
function calls, the following considerations may help improve the performance of application
programs written with x87 floating-point instructions.

These are implementation-independent performance considerations. Other considerations depend on
the hardware implementation. For information about such implementation-dependent considerations
and for more information about application performance in general, see the data sheets and the
software-optimization guides relating to particular hardware implementations.

6.10.1 Replace x87 Code with 128-Bit Media Code

Code written with 128-bit media floating-point instructions can operate in parallel on four times as
many single-precision floating-point operands as can x87 floating-point code. This achieves
potentially four times the computational work of x87 instructions that use single-precision operands.
Also, the higher density of 128-bit media floating-point operands may make it possible to remove
local temporary variables that would otherwise be needed in x87 floating-point code. 128-bit media
code is easier to write than x87 floating-point code, because the XMM register file is flat rather than
stack-oriented, and, in 64-bit mode there are twice the number of XMM registers as x87 registers.

[AMD Public Use]

x87 Floating-Point Programming 341

24592—Rev. 3.23—October 2020 AMD64 Technology

6.10.2 Use FCOMI-FCMOVx Branching

Depending on the hardware implementation of the architecture, the combination of FCOMI and
FCMOVcc is often faster than the classical approach using FxSTSW AX instructions for comparison-
based branches that depend on the condition codes for branch direction, because FNSTSW AX is often
a serializing instruction.

6.10.3 Use FSINCOS Instead of FSIN and FCOS

Frequently, a piece of code that needs to compute the sine of an argument also needs to compute the
cosine of that same argument. In such cases, use the FSINCOS instruction to compute both
trigonometric functions concurrently, which is faster than using separate FSIN and FCOS instructions
to accomplish the same task.

6.10.4 Break Up Dependency Chains

Parallelism can be increased by breaking up dependency chains or by evaluating multiple dependency
chains simultaneously (explicitly switching execution between them). Depending on the hardware
implementation of the architecture, the FXCH instruction may prove faster than FST/FLD pairs for
switching execution between dependency chains.

[AMD Public Use]

342 x87 Floating-Point Programming

AMD64 Technology 24592—Rev. 3.23—October 2020

[AMD Public Use]

Index 343

24592—Rev. 3.23—October 2020 AMD64 Technology

Symbols
#AC exception... 94
#BP exception ... 93
#BR exception... 93
#DB exception... 93
#DE exception... 93
#DF exception ... 93
#GP exception ... 94
#MC exception .. 94
#MF exception ... 94, 278, 291
#NM exception.. 93
#NP exception ... 94
#OF exception ... 93
#PF exception.. 94
#SS exception.. 94
#SX Exception .. 94
#TS exception ... 94
#UD exception ... 93, 220
#XF exception .. 94, 220

Numerics
16-bit mode.. xix
32-bit mode.. xix
3DNow!™ instructions .. 239
3DNow!™ technology ... 4
64-bit media programming 239
64-bit mode.. xix, 6
A
AAA instruction .. 50, 74
AAD instruction .. 50, 74
AAM instruction.. 50, 74
AAS instruction... 50, 74
aborts.. 93
absolute address... 15
ADC instruction .. 53
ADD instruction .. 53
addition... 53
ADDPD instruction.. 198
ADDPS instruction .. 198
addressing

absolute address ... 15
address size... 17, 73, 78
branch address.. 73
canonical form ... 15
complex address ... 16
effective address... 15
I/O ports ... 120, 249

IP-relative .. 15, 18
linear ... 11, 12
memory ... 14
operands ... 43, 118, 249
PC-relative ... 15, 18
RIP-relative.. xxv, 18
stack address .. 16
string address ... 16
virtual .. 11, 12
x87 stack.. 288

ADDSD instruction.. 198
ADDSS instruction .. 198
ADDSUBPD instruction... 201
ADDSUBPS instruction ... 201
AES.. xx
affine ordering ... 127, 305
AH register.. 25, 26
AL register .. 25, 26
alignment

64-bit media ... 250
general-purpose .. 43, 108
SSE vector operands ... 120

AND instruction .. 61
ANDNPD instruction ... 216
ANDNPS instruction.. 216
ANDPD instruction.. 216
ANDPS instruction .. 216
applications

media... 111
arithmetic instructions 53, 262, 272, 315
ARPL instruction ... 75
array bounds .. 61
ASCII adjust instructions.. 50
ASID .. xx
AX register.. 25, 26

B
B bit.. 292
BCD data type ... 302
BCD digits .. 40
BH register .. 25, 26
biased exponent xx, 123, 128, 300, 307
binary-coded-decimal (BCD) digits 40
bit scan instructions.. 58
bit strings .. 41
bit test instructions ... 59
BL register .. 25, 26
BLENDPD instruction.. 194
BLENDPS instruction .. 194

Index

[AMD Public Use]

344 Index

AMD64 Technology 24592—Rev. 3.23—October 2020

BLENDVPD instruction... 194
BLENDVPS instruction ... 194
BOUND instruction ... 61, 74
BP register .. 25, 26
BPL register .. 26
branch removal................................ 147, 178, 244, 268
branch-address displacements 73
branches... 81, 90, 108, 232
BSF instruction.. 58
BSR instruction ... 58
BSWAP instruction .. 51
BT instruction.. 59
BTC instruction ... 59
BTR instruction ... 59
BTS instruction ... 59
busy (B) bit ... 292
BX register.. 25, 26
byte ordering ... 14, 51
byte registers ... 29

C
C3–C0 bits .. 292
cache .. 102

cachability ... 236
coherency .. 104
line.. 104
management.. 71, 105
pollution .. 105
prefetching... 106
stale lines... 107

cache management instructions................................. 71
CALL instruction.. 66, 74, 83
caller-save parameter passing.................................. 231
canonical address form... 15
carry flag... 35
CBW instruction.. 49
CDQ instruction .. 49
CDQE instruction .. 49
CH register.. 25, 26
CL register .. 25, 26
clamping ... 122
CLC instruction ... 68
CLD instruction... 68
clearing the MMX state 232, 255, 280
CLFLUSH instruction .. 71
CLI instruction .. 68
CMC instruction .. 68
CMOVcc instructions... 45
CMP instruction... 59
CMPPD instruction.. 213
CMPPS instruction .. 213
CMPS instruction .. 62

CMPSB instruction .. 62
CMPSD instruction .. 62, 213
CMPSQ instruction .. 62
CMPSS instruction... 213
CMPSW instruction ... 62
CMPXCHG instruction .. 70
CMPXCHG16B instruction 70
CMPXCHG8B instruction .. 70
COMISD instruction .. 215
COMISS instruction... 215
commit.. xx, 99
compare instructions 59, 267, 274, 320
compatibility mode .. xx, 7
complex address .. 16
condition codes (C3–C0) .. 292
conditional moves .. 45, 313
constants ... 314
control instructions (x87).. 323
control transfers ... 15, 63, 81
control word .. 292
CPUID instruction 70, 80, 276, 327
CQO instruction... 49
CR0.EM bit ... 298
CRC32 instruction ... 72
CVTDQ2PD instruction ... 155
CVTDQ2PS instruction.. 155
CVTPD2DQ instruction ... 191
CVTPD2PI instruction 192, 271
CVTPD2PS instruction... 190
CVTPI2PD instruction 156, 258
CVTPI2PS instruction 156, 258
CVTPS2DQ instruction.. 191
CVTPS2PD instruction... 190
CVTPS2PI instruction 192, 271
CVTSD2SI instruction ... 193
CVTSD2SS instruction... 190
CVTSI2SD instruction ... 156
CVTSI2SS instruction .. 156
CVTSS2SD instruction... 190
CVTSS2SI instruction .. 193
CVTTPD2DQ instruction 191
CVTTPD2PI instruction 192, 271
CVTTPS2DQ instruction.. 191
CVTTPS2PI instruction.................................. 192, 271
CVTTSD2SI instruction ... 193
CVTTSS2SI instruction.. 193
CWD instruction.. 49
CWDE instruction.. 49
CX register .. 25, 26

[AMD Public Use]

Index 345

24592—Rev. 3.23—October 2020 AMD64 Technology

D
DAA instruction .. 51, 74
DAS instruction... 51, 74
data alignment ... 236
data conversion instructions................ 49, 257, 271, 312
data reordering instructions..................................... 258
data transfer instructions............................ 45, 256, 312
data types

128-bit media ... 132
256-bit media ... 134
64-bit media... 247
floating-point ... 127
general-purpose.. 38
mismatched.. 231
vector .. 111
x87... 299, 305

DE bit .. 290, 330
DEC instruction... 54, 75
decimal adjust instructions.. 51
decrement ... 54
default address size .. 17
default operand size ... 29
denormalized numbers 125, 303
denormalized-operand exception (DE).............. 222, 330
dependencies ... 108
DH register ... 25, 26
DI register... 25, 26
digital signal processing ... 111
DIL register... 26
direct far jump... 64, 66
direct referencing... xx
direction flag ... 36
displacements .. xxi, 17, 73
DIV instruction.. 53
division... 53
DIVPD instruction ... 202
DIVPS instruction.. 202
DIVSD instruction ... 202
DIVSS instruction.. 202
DL register .. 25, 26
DM bit .. 293
dot product... 145, 243
double quadword .. xxi
double-extended-precision format 301
double-precision format 124, 301
doubleword .. xxi
DPPD instruction... 205
DPPS instruction ... 205
DX register ... 25, 26

E
EAX register.. 25, 26
eAX–eSP register... xxvii
EBP register .. 25, 26
EBX register.. 25, 26
ECX register.. 25, 26
EDI register ... 25, 26
EDX register.. 25, 26
effective address .. 15, 52
effective address size... xxi
effective operand size .. xxi, 42
EFLAGS register ... 25, 34
eFLAGS register.. xxvii
EIP register.. 21
eIP register ... xxviii
element .. xxi
EM bit... 298
EMMS instruction.. 255, 280
empty.. 279, 295
emulation (EM) bit... 298
endian byte-ordering xxx, 14, 51
ENTER instruction... 47
environment

x87 .. 297, 325
ES bit.. 291
ESI register.. 25, 26
ESP register... 25, 26
exception status (ES) bit ... 291
exceptions .. xxi, 92

#MF causes .. 278, 329
#XF causes... 220
64-bit media ... 277
denormalized-operand (DE)......................... 222, 330
general-purpose .. 92
inexact-result.. 223, 331
invalid-operation (IE).................................. 222, 330
masked responses ... 333
masking ... 333
overflow (OE) .. 223, 331
post-computation .. 332
precision (PE)... 223, 331
pre-computation ... 332
priority... 332
SIMD floating-point causes 220
SSE ... 218
stack fault (SF) ... 331
underflow (UE) .. 223, 331
unmasked responses.. 337
x87 .. 327
zero-divide (ZE) ... 222, 331

exit media state .. 255
explicit integer bit .. 300
exponent xx, 123, 128, 300, 307

[AMD Public Use]

346 Index

AMD64 Technology 24592—Rev. 3.23—October 2020

extended SSE .. xxi, 112
AES .. xx
AVX.. xx
FMA .. xxi
FMA4... xxi
XOP .. xxvii

external interrupts .. 92
extract instructions.. 260, 314
EXTRACTPS instruction 194
EXTRQ instruction .. 161

F
F2XM1 instruction... 319
FABS instruction ... 317
FADD instruction .. 315
FADDP instruction... 315
far calls ... 84
far jumps... 82
far returns.. 88
fault .. 93
FBLD instruction... 313
FBSTP instruction ... 313
FCMOVcc instructions .. 314
FCOM instruction.. 320
FCOMI instruction... 320
FCOMIP instruction... 320
FCOMP instruction.. 320
FCOMPP instruction.. 320
FCOS instruction ... 318
FCW register ... 292
FDECSTP instruction... 322
FDIV instruction.. 317
FDIVP instruction.. 317
FDIVR instruction ... 317
FDIVRP instruction ... 317
feature detection .. 80
FEMMS instruction .. 255, 280
FERR ... 338
FFREE instruction ... 322
FICOM instruction... 321
FICOMP instruction... 321
FIDIV instruction .. 317
FIMUL instruction... 317
FINCSTP instruction.. 322
FINIT instruction... 323
FIST instruction... 313
FISTP instruction... 313
FISTTP instruction .. 313
FISUB instruction.. 316
flags instructions.. 67
FLAGS register ... 25, 34
FLD instruction ... 312

FLD1 instruction.. 315
FLDL2E instruction ... 315
FLDL2T instruction ... 315
FLDLG2 instruction... 315
FLDLN2 instruction... 315
FLDPI instruction .. 315
FLDZ instruction ... 315
floating-point data types ... 123

128-bit media ... 132
256-bit media ... 134
64-bit media ... 251
x87 .. 300

floating-point encoding
unit in the last place (ulp) 130

floating-point instructions... 5
flush... xxi
FMUL instruction .. 316
FMULP instruction .. 316
FNINIT instruction .. 323
FNOP instruction ... 323
FNSAVE instruction......................... 269, 270, 281, 325
FPATAN instruction ... 319
FPR0–FPR7 registers ... 288
FPREM instruction .. 318
FPREM1 instruction... 318
FPTAN instruction ... 319
FPU control word... 292
FPU status word... 289
FRNDINT instruction... 318
FRSTOR instruction................................ 269, 281, 325
FS register ... 17
FSAVE instruction 269, 270, 281, 325
FSCALE instruction... 319
FSIN instruction .. 318
FSINCOS instruction ... 318
FST instruction .. 312
FSTP instruction .. 313
FSUB instruction ... 316
FSUBP instruction ... 316
FSUBR instruction... 316
FSUBRP instruction... 316
FSW register.. 289
FTST instruction.. 321
FTW register ... 294
FUCOMx instructions .. 321
full.. 279, 295
FXAM instruction.. 321
FXCH instruction... 314
FXRSTOR instruction 183, 270, 281, 325
FXSAVE instruction......................... 183, 270, 281, 325
FXTRACT instruction.. 314
FYL2X instruction ... 319

[AMD Public Use]

Index 347

24592—Rev. 3.23—October 2020 AMD64 Technology

FYL2XP1 instruction... 319

G
general-purpose instructions 4
general-purpose registers (GPRs) 23
GPR ... 3
GPR registers .. 23
GS register .. 17

H
HADDPD instruction... 199
HADDPS instruction.. 199
hidden integer bit 123, 125, 300, 303
HSUBPD instruction.. 200
HSUBPS instruction .. 200

I
I/O.. 96

address space ... 97
addresses ... 69, 96
instructions .. 69
memory-mapped .. 97
ports ... 69, 96, 120, 249
privilege level .. 98

IDIV instruction .. 53
IE bit ... 290, 330
IEEE 754 Standard 116, 124, 286, 300
IEEE-754 standard... 5
IGN .. xxii
IGNNE# input signal ... 339
IM bit ... 293
immediate operands 17, 42, 74
implied integer bit... 123, 300
IMUL instruction... 53
IN instruction .. 69
INC instruction.. 54, 75
increment .. 54
indefinite value

floating-point .. 128, 308
integer .. 128, 308
packed-decimal .. 308

indirect ... xxii
inexact-result exception........................... 223, 291, 331
inexact-result exception (MXCSR PE bit)................ 116
infinity... 126, 304
infinity bit (Y) ... 294
initialization

MSCSR register ... 115
x87 control word .. 292
XMM registers ... 114

inner product .. 145, 243
input/output (I/O)... 96

INS instruction .. 69
INSB instruction .. 69
INSD instruction.. 69
insert instructions... 260
INSERTPS instruction.. 194
INSERTQ instruction ... 161
instruction pointer .. 20
instruction prefixes

64-bit media ... 275
general-purpose .. 76
legacy SSE... 217
x87 .. 326

instruction set .. 4
instruction-relative address 15
instructions

64-bit media ... 253, 270
arithmetic... 197
data conversion... 155, 190
data reordering ... 157, 194
data transfer ... 150, 185
extract and insert .. 161
floating-point................................ 184, 245, 270, 286
floating-point arithmetic...................................... 197
floating-point dot product 205
floating-point rounding 205
fused multiply-add .. 206
general-purpose .. 44
I/O... 101
interleave ... 195
invalid in 64-bit mode ... 74
locked.. 102
memory ordering .. 101
non-temporal moves.................................... 153, 189
pack... 158
packed average ... 173
packed blending.. 194
prefixes... 76, 275, 326
reciprocal estimation ... 204
reciprocal square root .. 204
serializing .. 101
shuffle ... 162, 195
square root ... 203
SSE floating-point .. 184
streaming store ... 153, 189
targeted application acceleration 72
unpack and interleave.. 159
vector bit-wise.. 216
vector compare ... 177, 213
vector logical.. 182
vector shift ... 175
x87 .. 310

INSW instruction ... 69
INT instruction .. 67
integer bit .. 123, 125, 300, 303
integer data types

[AMD Public Use]

348 Index

AMD64 Technology 24592—Rev. 3.23—October 2020

128-bit media ... 132
256-bit media ... 134
64-bit media... 250
general-purpose.. 38
x87.. 301

interleave instructions .. 259
interrupt vector .. 92
interrupts and exceptions 67, 92
INTO instruction ... 67, 74
invalid-operation exception (IE)....................... 222, 330
IOPL .. 98
IP register.. 21
IP-relative addressing...................................... 6, 15, 18
IRET instruction .. 67
IRETD instruction ... 67
IRETQ instruction ... 67

J
J bit ... 123, 300
Jcc instructions .. 64, 82
JMP instruction.. 63, 74

L
LAHF instruction... 68
last data pointer ... 297
last instruction pointer.. 296
last opcode .. 296
LDDQU instruction ... 150
LDMXCSR instruction .. 184
LDS instruction ... 52, 74
LEA instruction ... 52
LEAVE instruction... 47
legacy mode .. xxii, 7
legacy SSE... xxii, 112
legacy x86... xxii
LES instruction.. 52, 75
LFENCE instruction .. 71
LFS instruction.. 52
LGS instruction ... 52
limiting ... 122
linear address .. 11, 12
LOCK prefix ... 78
LODS instruction... 63
LODSB instruction .. 63
LODSD instruction .. 63
LODSQ instruction .. 63
LODSW instruction ... 63
logarithmic functions ... 319
logarithms ... 315
logical instructions.. 61, 268
logical shift ... 56
long mode .. xxiii, 6

LOOPcc instructions .. 65
LSB ... xxiii
lsb.. xxii, xxiii
LSS instruction .. 52

M
mask ... xxiii, 116, 293
masked responses... 333
MASKMOVDQU instruction 153, 257
matrix operations ... 145, 242
MAXPD instruction ... 214
MAXPS instruction.. 214
MAXSD instruction ... 214
MAXSS instruction.. 214
MBZ.. xxiii
media applications ... 4, 111
media context

saving and restoring state 183
media instructions

128-bit .. xix
256-bit .. xix
64-bit .. xix

memory
addressing .. 14
hierarchy.. 102
management ... 11, 71
model .. 9
optimization ... 99
ordering ... 99
physical .. xxiv, 11
segmented .. 10
virtual .. 9
weakly ordered ... 98

memory management instructions 71
memory-mapped I/O .. 69, 97
MFENCE instruction.. 71
MINPD instruction... 214
MINPS instruction ... 214
MINSD instruction... 214
MINSS instruction ... 214
MMX registers .. 246
MMX™ instructions .. 239
MMX™ technology ... 4
mnemonic syntax ... 138
modes

64-bit ... 6
compatibility .. xx, 7
legacy .. xxii, 7
long .. xxiii, 6
mode switches .. 30
operating.. 2, 6
protected .. xxiv, 7, 13, 81
real ... xxiv

[AMD Public Use]

Index 349

24592—Rev. 3.23—October 2020 AMD64 Technology

real mode... 7, 13
virtual-8086 ... xxvi, 7, 13

MOV instruction.. 45
MOV segReg instruction .. 52
MOVAPD instruction... 185
MOVAPS instruction ... 185
MOVD instruction 45, 150, 256
MOVDDUP instruction................................... 185, 189
MOVDQ2Q instruction................................... 150, 256
MOVDQA instruction .. 150
MOVDQU instruction.. 150
MOVHLPS instruction... 185
MOVHPD instruction .. 185
MOVHPS instruction... 185
MOVLHPS instruction... 185
MOVLPD instruction... 185
MOVLPS instruction ... 185
MOVMSKPD instruction 50, 190
MOVMSKPS instruction................................... 50, 189
MOVNTDQ instruction 153, 257
MOVNTDQA instruction 153
MOVNTI instruction.. 45
MOVNTPD instruction .. 189
MOVNTPS instruction... 189
MOVNTQ instruction .. 256
MOVNTSD instruction .. 189
MOVNTSS instruction... 189
MOVQ instruction .. 150, 256
MOVQ2DQ instruction................................... 150, 256
MOVS instruction.. 62
MOVSB instruction ... 62
MOVSD instruction .. 62, 185
MOVSHDUP instruction................................. 185, 189
MOVSLDUP instruction 185, 189
MOVSQ instruction ... 62
MOVSS instruction.. 185
MOVSW instruction .. 62
MOVSX instruction ... 45
MOVUPD instruction .. 185
MOVUPS instruction... 185
MOVZX instruction... 45
MSB.. xxiii
msb ... xxiii
MSR.. xxviii
MUL instruction .. 53
MULPD instruction ... 202
MULPS instruction .. 202
MULSD instruction ... 202
MULSS instruction .. 202
multiplication .. 53
multiply-add.. 243
MXCSR

DAZ bit ... 116
DE bit ... 116, 222
DM bit ... 116
exception masks ... 116
FZ bit... 117
IE bit .. 116, 222
IM bit .. 116
MM bit .. 117
OE bit ... 116, 223
OM bit ... 116
PE bit.. 116, 223
PM bit.. 116
RC field ... 117
rounding control (RC) field 117
UE bit ... 116, 223
UM bit ... 116
ZE bit ... 116, 222
ZM bit ... 116

MXCSR register .. 115

N
NaN.. 126, 305
near branches... 91
near calls ... 84
near jumps... 82
near returns.. 87
NEG instruction... 53
NMI interrupt .. 93
non-temporal data .. 105
non-temporal moves....................................... 143, 256
non-temporal stores.. 107, 233
NOP instruction ... 72
normalized numbers 125, 303
not a number (NaN) 126, 305
NOT instruction... 61
number encodings

floating-point.. 127
x87 .. 305

number representation
64-bit media floating-point 251
floating-point.. 125
x87 floating-point ... 302

O
octword.. xxiii
OE bit ... 291, 331
offset.. xxiii
OM bit .. 293
opcode .. 7, 296
operand size................ 29, 41, 73, 75, 78, 107, 232, 282
operands

64-bit media ... 247
addressing .. 43

[AMD Public Use]

350 Index

AMD64 Technology 24592—Rev. 3.23—October 2020

general-purpose.. 36
SSE ... 118
x87.. 298

operating modes .. 2, 6
operations

vector ... 111, 131
OR instruction ... 61
ordered compare ... 216, 321
ORPD instruction .. 217
ORPS instruction ... 217
OSXMMEXCPT bit... 220
OUT instruction... 69
OUTS instruction... 69
OUTSB instruction .. 69
OUTSD instruction .. 69
OUTSW instruction ... 69
overflow .. xxiii
overflow exception (OE) 223, 331
overflow flag... 36

P
PABSB instruction... 165
PABSD instruction... 165
PABSW instruction .. 165
pack instructions.. 258
packed ... xxiv, 111, 240
packed BCD digits ... 40
packed-decimal data type 302
PACKSSDW instruction.................................. 158, 258
PACKSSWB instruction.................................. 158, 258
PACKUSDW instruction .. 158
PACKUSWB instruction 158, 258
PADDB instruction ... 165, 262
PADDD instruction... 165, 262
PADDQ instruction... 165, 262
PADDSB instruction 165, 262
PADDSW instruction 165, 262
PADDUSB instruction ... 165
PADDUSW instruction .. 165
PADDW instruction .. 165, 262
PAE... xxiv
PAND instruction.. 182, 268
PANDN instruction... 182, 269
parallel operations... 111, 240
parameter passing .. 231
parity flag.. 35
partial remainder.. 318
PAVGB instruction.. 173, 265
PAVGUSB instruction .. 266
PAVGW instruction... 173, 265
PBLENDVB instruction.................................. 159, 194
PBLENDW instruction... 159

PC field... 293, 309
PCMPEQB instruction 177, 267
PCMPEQD instruction 177, 267
PCMPEQQ instruction ... 177
PCMPEQW instruction 177, 267
PCMPESTRI instruction... 180
PCMPESTRM instruction 181
PCMPGTB instruction 177, 267
PCMPGTD instruction 177, 267
PCMPGTQ instruction ... 178
PCMPGTW instruction 177, 267
PCMPISTRI instruction.. 181
PCMPISTRM instruction.. 181
PC-relative addressing.. 15, 18
PE bit.. 291, 331
performance considerations

64-bit media ... 282
general-purpose .. 107
SSE media ... 232
x87 .. 340

PEXTRB instruction .. 161
PEXTRD instruction .. 161
PEXTRQ instruction .. 161
PEXTRW instruction...................................... 161, 260
PF2ID instruction... 271
PF2IW instruction.. 271
PFACC instruction ... 272
PFADD instruction... 272
PFCMPEQ instruction.. 274
PFCMPGE instruction.. 275
PFCMPGT instruction.. 274
PFMAX instruction.. 275
PFMIN instruction ... 275
PFMUL instruction .. 272
PFNACC instruction .. 273
PFPNACC instruction .. 273
PFRCP instruction.. 274
PFRCPIT1 instruction .. 274
PFRCPIT2 instruction .. 274
PFRSQIT1 instruction .. 274
PFRSQRT instruction... 274
PFSUB instruction ... 272
PFSUBR instruction... 272
PHMINPOSUW instruction 201
physical memory... xxiv, 11
Pi.. 314, 319
PI2FD instruction... 258
PI2FW instruction.. 258
PINSRB instruction.. 161
PINSRD instruction ... 161
PINSRQ instruction ... 161
PINSRW instruction....................................... 161, 260

[AMD Public Use]

Index 351

24592—Rev. 3.23—October 2020 AMD64 Technology

PM bit... 293
PMADDWD instruction.................................. 169, 264
PMAXSB instruction ... 179
PMAXSD instruction... 179
PMAXSW instruction 179, 268
PMAXUB instruction...................................... 179, 268
PMAXUD instruction .. 179
PMAXUW instruction.. 179
PMINSB instruction... 179
PMINSD instruction .. 179
PMINSW instruction....................................... 179, 268
PMINUB instruction 179, 268
PMINUD instruction.. 179
PMINUW instruction ... 179
PMOVMSKB instruction 154, 257
PMOVSXBD instruction.. 157
PMOVSXBQ instruction.. 157
PMOVSXBW instruction 157
PMOVSXDQ instruction.. 157
PMOVSXWD instruction....................................... 157
PMOVSXWQ instruction....................................... 157
PMOVZXBD instruction.. 157
PMOVZXBQ instruction.. 157
PMOVZXBW instruction 157
PMOVZXDQ instruction 157
PMOVZXWD instruction....................................... 157
PMOVZXWQ instruction....................................... 157
PMULDQ instruction... 167
PMULHRSW instruction.. 167
PMULHRW instruction.. 264
PMULHUW instruction 167, 264
PMULHW instruction 167, 263
PMULLD instruction ... 167
PMULLW instruction...................................... 167, 264
PMULUDQ instruction 167, 264
pointers... 19
POP instruction.. 47, 74
POP segReg instruction.. 52
POPA instruction ... 47, 75
POPAD instruction .. 47, 75
POPCNT... 58
POPCNT instruction .. 73
POPF instruction ... 67
POPFD instruction... 67
POPFQ instruction... 67
POR instruction .. 183, 269
post-computation exceptions................................... 332
precision control (PC) field.............................. 293, 309
precision exception (PE).................................. 223, 331
pre-computation exceptions 332
PREFETCH instruction..................................... 71, 106

prefetching ... 106, 108, 236
PREFETCHlevel instruction 71, 106
PREFETCHNTA instruction 106
PREFETCHT0 instruction 106
PREFETCHT1 instruction 106
PREFETCHT2 instruction 106
PREFETCHW instruction................................. 71, 106
prefixes

64-bit media ... 275
general-purpose .. 76
media... 217
REX .. 26
x87 .. 326

priority of exceptions ... 332
privilege level .. 81, 94
probe.. xxiv
procedure calls... 83
procedure stack.. 82
processor features .. 80
processor identification... 70
processor modes

16-bit .. xix
32-bit .. xix
64-bit .. xix

program order.. 99
programming model

64-bit media ... 239
x87 .. 285

protected mode ... xxiv, 7, 13
PSADBW instruction 173, 266
pseudo-denormalized numbers 304
pseudo-infinity... 302
pseudo-NaN .. 302
PSHUFB instruction... 162
PSHUFD instruction .. 162
PSHUFHW instruction ... 162
PSHUFLW instruction.. 162
PSHUFW instruction.. 261
PSLLD instruction ... 175, 266
PSLLDQ instruction... 175
PSLLQ instruction ... 175, 266
PSLLW instruction... 175, 266
PSRAD instruction... 176, 267
PSRAW instruction .. 176, 267
PSRLD instruction ... 175, 266
PSRLDQ instruction .. 175
PSRLQ instruction ... 175, 266
PSRLW instruction... 175, 266
PSUBB instruction... 166, 263
PSUBD instruction... 166, 263
PSUBQ instruction... 166, 263
PSUBSB instruction....................................... 166, 263

[AMD Public Use]

352 Index

AMD64 Technology 24592—Rev. 3.23—October 2020

PSUBSW instruction....................................... 166, 263
PSUBUSB instruction .. 166
PSUBUSW instruction ... 166
PSUBW instruction... 166, 263
PSWAPD instruction.. 261
PTEST instruction ... 182
PUNPCKHBW instruction 159, 259
PUNPCKHDQ instruction...................................... 159
PUNPCKHQDQ instruction 159
PUNPCKHWD instruction 159
PUNPCKLBW instruction............................... 159, 259
PUNPCKLDQ instruction 159, 259
PUNPCKLQDQ instruction.................................... 159
PUNPCKLWD instruction............................... 159, 259
PUSH instruction... 47, 75
PUSHA instruction .. 47, 75
PUSHAD instruction.. 47, 75
PUSHF instruction... 67
PUSHFD instruction .. 67
PUSHFQ instruction .. 67
PXOR instruction ... 183, 269

Q
QNaN .. 126, 305
quadword ... xxiv
quiet NaN (QNaN).. 126, 305

R
R8B–R15B registers .. 26
R8D–R15D registers .. 26
r8–r15.. xxviii
R8–R15 registers ... 26
R8W–R15W registers .. 26
range of values

64-bit media.. 250, 252
floating-point data types...................................... 124
x87.. 301

RAX register ... 26
rAX–rSP .. xxviii
RAZ .. xxiv
RBP register .. 26
rBP register ... 19
RBX register ... 26
RC field ... 294, 309
RCL instruction ... 55
RCPPS instruction ... 204
RCPSS instruction ... 204
RCR instruction... 55
RCX register ... 26
RDI register .. 26
RDX register ... 26
read order.. 99

real address mode. See real mode
real mode ... xxiv, 7, 13
real numbers .. 125, 303
reciprocal estimation .. 273
reciprocal square root ... 274
register extensions.. 1, 3, 6
registers .. 3

128-bit media ... 113
256-bit media ... 113
64-bit media ... 246
eAX–eSP ... xxvii
eFLAGS .. xxvii
EIP .. 21
eIP.. xxviii
extensions .. 1, 3
IP .. 21
MMX .. 246
r8–r15... xxviii
rAX–rSP ... xxviii
rFLAGS.. xxix
RIP .. 21
rIP .. xxix, 21
segment ... 17
x87 control word .. 292
x87 last data pointer .. 297
x87 last opcode... 296
x87 last-instruction pointer 296
x87 physical ... 288
x87 stack.. 287
x87 status word .. 289
x87 tag word .. 294
XMM .. 113
YMM .. 113

relative... xxiv
remainder .. 318
REP prefix... 79
REPE prefix .. 79
repeat prefixes ... 79, 109
REPNE prefix.. 79
REPNZ prefix.. 79
REPZ prefix .. 79
reserved ... xxiv
reset

power-on.. 115
restoring state .. 339
RET instruction.. 66, 87
revision history .. xv
REX.. xxv
REX prefixes... 6, 26, 79
RFLAGS register ... 26, 34
rFLAGS Register

AF bit .. 35
carry flag ... 35
CF bit .. 35

[AMD Public Use]

Index 353

24592—Rev. 3.23—October 2020 AMD64 Technology

DF bit .. 36
direction flag.. 36
OF bit .. 36
overflow flag.. 36
parity flag .. 35
PF bit .. 35
SF bit .. 36
sign flag... 36
zero flag .. 35
ZF bit .. 35

rFLAGS register ... xxix
RIP register ... 21, 26
rIP register .. xxix, 21
RIP-relative addressing xxv, 18
RIP-relative data addressing 6
ROL instruction... 55
ROR instruction... 55
rotate instructions .. 55
rounding

64-bit media.. 251, 253
floating-point ... 129
x87... 294, 309, 317

rounding control (RC) field 294, 309
ROUNDPD instruction .. 205
ROUNDPS instruction ... 205
ROUNDSD instruction .. 205
ROUNDSS instruction ... 205
RSI register ... 26
RSP register .. 26, 83
rSP register.. 19
RSQRTPS instruction... 204
RSQRTSS instruction... 204

S
SAHF instruction... 68
SAL instruction ... 55
SAR instruction ... 55
saturation

64-bit media... 250
media instruction .. 122

saving state 231, 269, 280, 339
SBB instruction ... 53
SBZ.. xxv
scalar .. xxv
scalar product ... 145, 243
SCAS instruction ... 62
SCASB instruction... 62
SCASD instruction .. 62
SCASQ instruction .. 62
SCASW instruction.. 62
scientific programming... 112
segment override ... 78
segment registers ... 17

segmented memory .. 10
semaphore instructions ... 70
set... xxv
SETcc instructions ... 60
SF bit .. 291, 331
SFENCE instruction... 71
shift instructions .. 55, 266
SHL instruction.. 55
SHLD instruction... 55
SHR instruction ... 55
SHRD instruction... 55
shuffle instructions... 261
SHUFPD instruction .. 195
SHUFPS instruction ... 195
SI register.. 25, 26
SIB ... xxv
sign... 121, 128, 250, 307, 317
sign extension.. 49
sign flag .. 36
sign masks... 50
signaling NaN (SNaN) 126, 305
significand....................................... 123, 128, 300, 307
SIL register.. 26
SIMD.. xxv
SIMD exceptions

masked responses ... 226
masking ... 226
post-computation .. 224
pre-computation ... 224
priority of... 224
unmasked responses.. 229

SIMD floating-point exceptions 220
SIMD operations... 111, 240
single-instruction, multiple-data (SIMD)...................... 4
single-precision format 124, 252, 301
SNaN.. 126, 305
software interrupts ... 67, 92
SP register ... 25, 26
spatial locality ... 105
speculative execution ... 99
SPL register... 26
SQRTPD instruction... 203
SQRTPS instruction ... 203
SQRTSD instruction... 203
SQRTSS instruction ... 203
square root... 274, 318
SSE floating-point instructions................................ 184
SSE Instructions ... xxv, 112

extended ... xxi, 112
legacy .. xxii, 112

SSE instructions
AES... xx, 112

[AMD Public Use]

354 Index

AMD64 Technology 24592—Rev. 3.23—October 2020

AVX... xx, 112
AVX2 .. 112
CLMUL... 112
FMA ... xxi, 112
FMA4.. xxi, 112
overview.. 111
SSE1 .. xxv, 112
SSE2 .. xxv, 112
SSE3 .. xxv, 112
SSE4.1 .. xxvi, 112
SSE4.2 .. xxvi, 112
SSE4A... xxvi, 112
SSSE3 ... xxvi, 112
XOP ... xxvii, 112

ST(0)–ST(7) registers... 288
stack .. 82, 231

address .. 16
allocation ... 109
frame... 19, 47
operand size ... 82
operations .. 47
pointer ... 19, 82
x87 stack fault .. 331
x87 stack management .. 322
x87 stack overflow ... 331
x87 stack underflow.. 331

stack fault (SF) exceptions...................................... 331
state saving 231, 269, 280, 339
status word.. 289
STC instruction ... 68
STD instruction ... 68
STI instruction... 68
sticky bits.. xxvi, 115, 290
STMXCSR instruction ... 184
STOS instruction ... 63
STOSB instruction... 63
STOSD instruction... 63
STOSQ instruction... 63
STOSW instruction.. 63
Streaming SIMD Extensions (SSE) xxv
streaming store 143, 233, 256
string address .. 16
string instructions .. 62, 69
strings... 40
SUB instruction ... 53
SUBPD instruction .. 199
SUBPS instruction ... 199
SUBSD instruction .. 200
SUBSS instruction ... 199
subtraction .. 53
sum of absolute differences..................................... 266
swap instructions ... 261
SYSCALL instruction .. 72, 90

SYSENTER instruction................................ 72, 75, 90
SYSEXIT instruction 72, 75, 90
SYSRET instruction... 72, 90
system call and return instructions....................... 72, 89

T
tag bits .. 279, 294
tag word .. 294
task switch... 86
task-state segment (TSS) .. 86
temporal locality .. 105
TEST instruction.. 59
test instructions.. 59, 320
tiny numbers............................ 125, 222, 223, 303, 330
TOP field... 288, 292
top-of-stack pointer (TOP)....................... 279, 288, 292
transcendental instructions 318
trap ... 93
trigonometric functions... 318
TSS.. xxvi

U
UCOMISD instruction.. 215
UCOMISS instruction .. 215
UE bit ... 291, 331
ulp .. 130, 310
UM bit .. 293
underflow... xxvi, 331
underflow exception (UE)............................... 223, 331
unit in the last place (ulp).. 310
unmask .. 116, 293
unmasked responses ... 337
unnormal numbers ... 302
unordered compare... 216, 321
unpack instructions .. 194, 259
UNPCKHPD instruction... 195
UNPCKHPS instruction ... 195
UNPCKLPD instruction ... 195
UNPCKLPS instruction.. 195
unsupported number types 302

V
VADDPD instruction.. 198
VADDPS instruction .. 198
VADDSD instruction.. 198
VADDSS instruction .. 198
VADDSUBPD instruction....................................... 201
VADDSUBPS instruction 201
VANDNPD instruction ... 216
VANDNPS instruction.. 216
VANDPD instruction.. 216

[AMD Public Use]

Index 355

24592—Rev. 3.23—October 2020 AMD64 Technology

VANDPS instruction .. 216
VBLENDPD instruction... 194
VBLENDPS instruction ... 194
VBLENDVPD instruction 194
VBLENDVPS instruction....................................... 194
VCMPPD instruction ... 213
VCMPPS instruction.. 213
VCMPSD instruction ... 213
VCMPSS instruction.. 213
VCOMISD instruction ... 215
VCOMISS instruction .. 215
VCVTDQ2PD instruction 155
VCVTDQ2PS instruction 155
VCVTPD2DQ instruction 191
VCVTPD2PS instruction.. 190
VCVTPS2DQ instruction 191
VCVTPS2PD instruction.. 190
VCVTSD2SI instruction .. 193
VCVTSD2SS instruction.. 190
VCVTSI2SD instruction .. 156
VCVTSI2SS instruction ... 156
VCVTSS2SD instruction.. 190
VCVTSS2SI instruction ... 193
VCVTTPD2DQ instruction 191
VCVTTPS2DQ instruction..................................... 191
VCVTTSD2SI instruction 193
VCVTTSS2SI instruction....................................... 193
VDIVPD instruction .. 202
VDIVPS instruction ... 202
VDIVSD instruction .. 202
VDIVSS instruction ... 202
VDPPD instruction .. 205
VDPPS instruction... 205
vector ... xxvi, 111
vector operations 111, 131, 240
VEXTRACTPS instruction..................................... 194
VFMADD132PD instruction 210
VFMADD132PS instruction................................... 210
VFMADD132SD instruction 210
VFMADD132SS instruction................................... 210
VFMADD213PD instruction 210
VFMADD213PS instruction................................... 210
VFMADD213SD instruction 210
VFMADD213SS instruction................................... 210
VFMADD231PD instruction 210
VFMADD231PS instruction................................... 210
VFMADD231SD instruction 210
VFMADD231SS instruction................................... 210
VFMADDPD instruction.. 210
VFMADDPS instruction .. 210
VFMADDSD instruction.. 210

VFMADDSS instruction... 210
VFMADDSUB132PD instruction 210
VFMADDSUB132PS instruction 211
VFMADDSUB213PD instruction 210
VFMADDSUB213PS instruction 211
VFMADDSUB231PD instruction 210
VFMADDSUB231PS instruction 211
VFMADDSUBPD instruction................................. 210
VFMADDSUBPS instruction 211
VFMSUB132PD instruction 211
VFMSUB132PS instruction.................................... 211
VFMSUB132SD instruction 211
VFMSUB132SS instruction.................................... 212
VFMSUB213PD instruction 211
VFMSUB213PS instruction.................................... 211
VFMSUB213SD instruction 211
VFMSUB213SS instruction.................................... 212
VFMSUB231PD instruction 211
VFMSUB231PS instruction.................................... 211
VFMSUB231SD instruction 211
VFMSUB231SS instruction.................................... 212
VFMSUBADD132PD instruction 211
VFMSUBADD132PS instruction 211
VFMSUBADD213PD instruction 211
VFMSUBADD213PS instruction 211
VFMSUBADD231PD instruction 211
VFMSUBADD231PS instruction 211
VFMSUBADDPD instruction................................. 211
VFMSUBADDPS instruction 211
VFMSUBPD instruction... 211
VFMSUBPS instruction ... 211
VFMSUBSD instruction... 211
VFMSUBSS instruction ... 212
VFNMADD132PD instruction................................ 212
VFNMADD132PS instruction 212
VFNMADD132SD instruction................................ 212
VFNMADD132SS instruction 212
VFNMADD213PD instruction................................ 212
VFNMADD213PS instruction 212
VFNMADD213SD instruction................................ 212
VFNMADD213SS instruction 212
VFNMADD231PD instruction................................ 212
VFNMADD231PS instruction 212
VFNMADD231SD instruction................................ 212
VFNMADD231SS instruction 212
VFNMADDPD instruction 212
VFNMADDPS instruction...................................... 212
VFNMADDSD instruction 212
VFNMADDSS instruction...................................... 212
VFNMSUB132PD instruction................................. 212
VFNMSUB132PS instruction 212

[AMD Public Use]

356 Index

AMD64 Technology 24592—Rev. 3.23—October 2020

VFNMSUB132SD instruction 213
VFNMSUB132SS instruction 213
VFNMSUB213PD instruction 212
VFNMSUB213PS instruction 212
VFNMSUB213SD instruction 213
VFNMSUB213SS instruction 213
VFNMSUB231PD instruction 212
VFNMSUB231PS instruction 212
VFNMSUB231SD instruction 213
VFNMSUB231SS instruction 213
VFNMSUBPD instruction...................................... 212
VFNMSUBPS instruction 212
VFNMSUBSD instruction...................................... 213
VFNMSUBSS instruction 213
VHADDPD instruction .. 199
VHADDPS instruction... 199
VHSUBPD instruction ... 200
VHSUBPS instruction.. 200
VINSERTPS instruction... 194
virtual address ... 11, 12
virtual memory .. 9
virtual-8086 mode.. xxvi, 7, 13
VLDDQU instruction... 150
VLDMXCSR instruction.. 184
VMASKMOVDQU instruction............................... 153
VMAXPD instruction .. 214
VMAXPS instruction... 214
VMAXSD instruction .. 214
VMAXSS instruction... 214
VMINPD instruction.. 214
VMINPS instruction .. 214
VMINSD instruction.. 214
VMINSS instruction .. 214
VMOVAPD instruction .. 185
VMOVAPS instruction... 185
VMOVD instruction .. 150
VMOVDDUP instruction 185, 189
VMOVDQA instruction ... 150
VMOVDQU instruction ... 150
VMOVHLPS instruction .. 185
VMOVHPD instruction.. 185
VMOVHPS instruction .. 185
VMOVLHPS instruction .. 185
VMOVLPD instruction .. 185
VMOVLPS instruction... 185
VMOVMSKPD instruction 190
VMOVMSKPS instruction 189
VMOVNTDQ instruction....................................... 153
VMOVNTDQA instruction 153
VMOVNTPD instruction 189
VMOVNTPS instruction .. 189

VMOVQ instruction... 150
VMOVSD instruction... 185
VMOVSHDUP instruction 185, 189
VMOVSLDUP instruction.............................. 185, 189
VMOVSS instruction ... 185
VMOVUPD instruction.. 185
VMOVUPS instruction... 185
VMULPD instruction ... 202
VMULPS instruction.. 202
VMULSD instruction ... 202
VMULSS instruction.. 202
VORPD instruction .. 217
VORPS instruction... 217
VPABSB instruction... 165
VPABSD instruction .. 165
VPABSW instruction.. 165
VPACKSSDW instruction 158
VPACKSSWB instruction 158
VPACKUSDW instruction...................................... 158
VPACKUSWB instruction...................................... 158
VPADDB instruction.. 165
VPADDD instruction.. 165
VPADDQ instruction.. 165
VPADDSB instruction.. 165
VPADDSW instruction... 165
VPADDUSB instruction ... 165
VPADDUSW instruction .. 165
VPADDW instruction... 165
VPAND instruction .. 182
VPANDN instruction.. 182
VPAVGB instruction .. 173
VPAVGW instruction ... 173
VPBLENDVB instruction............................... 159, 194
VPBLENDW instruction .. 159
VPCMPEQB instruction... 177
VPCMPEQD instruction... 177
VPCMPEQQ instruction... 177
VPCMPEQW instruction.. 177
VPCMPESTRI instruction...................................... 180
VPCMPESTRM instruction.................................... 181
VPCMPGTB instruction... 177
VPCMPGTD instruction... 177
VPCMPGTQ instruction... 178
VPCMPGTW instruction.. 177
VPCMPISTRI instruction 181
VPCMPISTRM instruction..................................... 181
VPCOMB instruction ... 180
VPCOMD instruction... 180
VPCOMQ instruction... 180
VPCOMUB instruction .. 180
VPCOMUD instruction .. 180

[AMD Public Use]

Index 357

24592—Rev. 3.23—October 2020 AMD64 Technology

VPCOMUQ instruction.. 180
VPCOMUW instruction ... 180
VPCOMW instruction.. 180
VPEXTRB instruction.. 161
VPEXTRD instruction ... 161
VPEXTRQ instruction ... 161
VPEXTRW instruction... 161
VPHADDBD instruction.. 172
VPHADDBQ instruction.. 172
VPHADDBW instruction 172
VPHADDDQ instruction.. 172
VPHADDUBD instruction 173
VPHADDUBQ instruction 173
VPHADDUBW instruction..................................... 173
VPHADDUDQ instruction 173
VPHADDUWD instruction 173
VPHADDUWQ instruction 173
VPHADDWD instruction....................................... 173
VPHADDWQ instruction....................................... 173
VPHMINPOSUW instruction 201
VPHSUBBW instruction.. 173
VPHSUBDQ instruction .. 173
VPHSUBWD instruction.. 173
VPINSRB instruction... 161
VPINSRD instruction... 161
VPINSRQ instruction... 161
VPINSRW instruction .. 161
VPMACSDD instruction.. 171
VPMACSDQH instruction 171
VPMACSDQL instruction...................................... 171
VPMACSSDD instruction...................................... 171
VPMACSSDQH instruction 171
VPMACSSDQL instruction.................................... 171
VPMACSSWD instruction 171
VPMACSSWW instruction 171
VPMACSWD instruction 171
VPMACSWW instruction 171
VPMADCSSWD instruction 172
VPMADCSWD instruction 172
VPMADDWD instruction 169
VPMAXSB instruction .. 179
VPMAXSD instruction .. 179
VPMAXSW instruction.. 179
VPMAXUB instruction.. 179
VPMAXUD instruction.. 179
VPMAXUW instruction ... 179
VPMINSB instruction .. 179
VPMINSD instruction.. 179
VPMINSW instruction ... 179
VPMINUB instruction ... 179
VPMINUD instruction ... 179

VPMINUW instruction... 179
VPMOVMSKB instruction..................................... 154
VPMOVSXBD instruction 157
VPMOVSXBQ instruction 157
VPMOVSXBW instruction..................................... 157
VPMOVSXDQ instruction 157
VPMOVSXWD instruction 157
VPMOVSXWQ instruction 157
VPMOVZXBD instruction 157
VPMOVZXBQ instruction 157
VPMOVZXBW instruction..................................... 157
VPMOVZXDQ instruction 157
VPMOVZXWD instruction 157
VPMOVZXWQ instruction 157
VPMULDQ instruction .. 167
VPMULHRSW instruction 167
VPMULHUW instruction 167
VPMULHW instruction.. 167
VPMULLD instruction... 167
VPMULLW instruction .. 167
VPMULUDQ instruction.. 167
VPOR instruction... 183
VPROTB instruction .. 177
VPROTD instruction.. 177
VPROTQ instruction.. 177
VPROTW instruction ... 177
VPSADBW instruction... 173
VPSHAB instruction .. 177
VPSHAD instruction.. 177
VPSHAQ instruction.. 177
VPSHAW instruction ... 177
VPSHLB instruction .. 177
VPSHLD instruction .. 177
VPSHLQ instruction .. 177
VPSHLW instruction.. 177
VPSHUFB instruction .. 162
VPSHUFD instruction.. 162
VPSHUFHW instruction .. 162
VPSHUFLW instruction ... 162
VPSLLD instruction... 175
VPSLLDQ instruction .. 175
VPSLLQ instruction... 175
VPSLLW instruction .. 175
VPSRAD instruction .. 176
VPSRAW instruction.. 176
VPSRLD instruction .. 175
VPSRLDQ instruction.. 175
VPSRLQ instruction .. 175
VPSRLW instruction.. 175
VPSUBB instruction .. 166
VPSUBD instruction .. 166

[AMD Public Use]

358 Index

AMD64 Technology 24592—Rev. 3.23—October 2020

VPSUBQ instruction.. 166
VPSUBSB instruction .. 166
VPSUBSW instruction ... 166
VPSUBUSB instruction ... 166
VPSUBUSW instruction .. 166
VPSUBW instruction ... 166
VPTEST instruction... 182
VPUNPCKHBW instruction................................... 159
VPUNPCKHDQ instruction 159
VPUNPCKHQDQ instruction................................. 159
VPUNPCKHWD instruction 159
VPUNPCKLBW instruction 159
VPUNPCKLDQ instruction.................................... 159
VPUNPCKLQDQ instruction 159
VPUNPCKLWD instruction 159
VPXOR instruction.. 183
VRCPPS instruction... 204
VRCPSS instruction... 204
VROUNDPD instruction.. 205
VROUNDPS instruction .. 205
VROUNDSD instruction.. 205
VROUNDSS instruction .. 205
VRSQRTPS instruction.. 204
VRSQRTSS instruction.. 204
VSHUFPD instruction.. 195
VSHUFPS instruction .. 195
VSQRTPD instruction.. 203
VSQRTPS instruction .. 203
VSQRTSD instruction.. 203
VSQRTSS instruction .. 203
VSTMXCSR instruction .. 184
VSUBPD instruction.. 199
VSUBPS instruction .. 199
VSUBSD instruction.. 200
VSUBSS instruction .. 199
VUCOMISD instruction... 215
VUCOMISS instruction ... 215
VUNPCKHPD instruction...................................... 195
VUNPCKHPS instruction 195
VUNPCKLPD instruction 195
VUNPCKLPS instruction....................................... 195
VXORPD instruction ... 217
VXORPS instruction.. 217

W
weakly ordered memory ... 98
write buffers .. 103
write combining... 100
write order .. 100

X
x87 Control Word Register

ZM bit ... 293
x87 control word register .. 292
x87 environment .. 297, 325
x87 floating-point programming.............................. 285
x87 instructions ... 4
x87 Status Word Register

ZE bit .. 291, 331
x87 status word register .. 289
x87 tag word register.. 294
XADD instruction.. 70
XCHG instruction .. 70
XLAT instruction ... 50
XMM registers .. 113
XOP

Instructions .. xxvii
Prefix... xxvii

XOR instruction... 61
XORPD instruction .. 217
XORPS instruction... 217
XRSTOR instruction .. 183
XSAVE instruction... 183

Y
Y bit.. 294
YMM registers .. 113

Z
zero... 126, 304
zero flag .. 35
zero-divide exception (ZE) 222, 331
zero-extension ... 16, 29, 74

[AMD Public Use]

Advanced Micro Devices

Publication No. Revision Date
24593 3.37 March 2021

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 2:
System Programming

Publication No. Revision Date
24593 3.37 March 2021

[AMD Public Use]

© 2013 – 2021 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD products are as set forth in a signed agreement between the parties or
in AMD Standard Terms and Conditions of Sale. Any unauthorized copying, alteration, distribution,
transmission, performance, display or other use of this material is prohibited.

Trademarks

AMD, the AMD arrow logo, and combinations thereof, AMD Virtualization and 3DNow! are
trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

[AMD Public Use]

Contents iii

24593—Rev. 3.37—March 2021 AMD64 Technology

Contents

Contents . iii
Figures. xix
Tables . xxix
Revision History . xxxiii
Preface. xliii

About This Book. .xliii
Audience .xliii
Organization .xliii
Conventions and Definitions . xliv

Notational Conventions . xlv
Definitions . xlvi
Registers . lii
Endian Order . lv

Related Documents . lv

1 System-Programming Overview .1
1.1 Memory Model . 1

Memory Addressing. 2
Memory Organization . 3
Canonical Address Form . 4

1.2 Memory Management . 5
Segmentation . 5
Paging . 7
Mixing Segmentation and Paging . 8
Real Addressing . 10

1.3 Operating Modes . 11
Long Mode. 12
64-Bit Mode. 13
Compatibility Mode. 13
Legacy Modes . 14
System Management Mode (SMM) . 15

1.4 System Registers . 15
1.5 System-Data Structures . 17
1.6 Interrupts . 19
1.7 Additional System-Programming Facilities . 20

Hardware Multitasking . 20
Machine Check . 21
Software Debugging . 21
Performance Monitoring . 22

2 x86 and AMD64 Architecture Differences .23
2.1 Operating Modes . 23

Long Mode. 23

[AMD Public Use]

iv Contents

AMD64 Technology 24593—Rev. 3.37—March 2021

Legacy Mode . 23
System-Management Mode . 24

2.2 Memory Model . 24
Memory Addressing. 24
Page Translation. 25
Segmentation . 26

2.3 Protection Checks . 27
2.4 Registers . 28

General-Purpose Registers. 28
YMM/XMM Registers . 28
Flags Register . 28
Instruction Pointer . 28
Stack Pointer . 28
Control Registers . 29
Debug Registers. 29
Extended Feature Register (EFER) . 29
Memory Type Range Registers (MTRRs) . 29
Other Model-Specific Registers (MSRs). 29

2.5 Instruction Set . 29
REX Prefixes . 29
Segment-Override Prefixes in 64-Bit Mode . 30
Operands and Results . 30
Address Calculations . 30
Instructions that Reference RSP . 31
Branches . 32
NOP Instruction . 34
Single-Byte INC and DEC Instructions. 34
MOVSXD Instruction . 34
Invalid Instructions . 34
Reassigned Opcodes . 36
FXSAVE and FXRSTOR Instructions. 36

2.6 Interrupts and Exceptions . 36
Interrupt Descriptor Table . 37
Stack Frame Pushes . 37
Stack Switching . 37
IRET Instruction . 37
Task-Priority Register (CR8) . 38
New Exception Conditions . 38

2.7 Hardware Task Switching . 38
2.8 Long-Mode vs. Legacy-Mode Differences . 39

3 System Resources .41
3.1 System-Control Registers . 41

CR0 Register . 42
CR2 and CR3 Registers . 46
CR4 Register . 47
Additional Control Registers in 64-Bit-Mode . 52
CR8 (Task Priority Register, TPR) . 52

[AMD Public Use]

Contents v

24593—Rev. 3.37—March 2021 AMD64 Technology

RFLAGS Register . 52
Extended Feature Enable Register (EFER) . 56
Extended Control Registers (XCRn) . 59

3.2 Model-Specific Registers (MSRs) . 59
System Configuration Register (SYSCFG) . 61
System-Linkage Registers . 62
Memory-Typing Registers . 63
Debug-Extension Registers . 63
Performance-Monitoring Registers . 64
Machine-Check Registers . 64
Shadow Stack Registers. 65
Extended State Save MSRs . 65
Speculation Control MSRs . 66
Hardware Configuration Register (HWCR) . 70

3.3 Processor Feature Identification . 70

4 Segmented Virtual Memory .73
4.1 Real Mode Segmentation. 73
4.2 Virtual-8086 Mode Segmentation . 74
4.3 Protected Mode Segmented-Memory Models . 74

Multi-Segmented Model . 74
Flat-Memory Model. 75
Segmentation in 64-Bit Mode . 75

4.4 Segmentation Data Structures and Registers . 75
4.5 Segment Selectors and Registers . 77

Segment Selectors . 77
Segment Registers . 79
Segment Registers in 64-Bit Mode . 80

4.6 Descriptor Tables. 82
Global Descriptor Table. 82
Global Descriptor-Table Register . 83
Local Descriptor Table. 84
Local Descriptor-Table Register . 85
Interrupt Descriptor Table . 87
Interrupt Descriptor-Table Register . 88

4.7 Legacy Segment Descriptors . 88
Descriptor Format . 88
Code-Segment Descriptors . 91
Data-Segment Descriptors . 92
System Descriptors . 94
Gate Descriptors . 95

4.8 Long-Mode Segment Descriptors . 97
Code-Segment Descriptors . 97
Data-Segment Descriptors . 98
System Descriptors . 99
Gate Descriptors . 101
Long Mode Descriptor Summary . 103

4.9 Segment-Protection Overview. 104

[AMD Public Use]

vi Contents

AMD64 Technology 24593—Rev. 3.37—March 2021

Privilege-Level Concept . 105
Privilege-Level Types . 105

4.10 Data-Access Privilege Checks. 106
Accessing Data Segments . 106
Accessing Stack Segments . 107

4.11 Control-Transfer Privilege Checks . 109
Direct Control Transfers . 109
Control Transfers Through Call Gates. 113
Return Control Transfers . 120

4.12 Limit Checks . 121
Determining Limit Violations . 121
Data Limit Checks in 64-bit Mode . 123

4.13 Type Checks . 123
Type Checks in Legacy and Compatibility Modes . 123
Long Mode Type Check Differences . 124

5 Page Translation and Protection .127
5.1 Page Translation Overview . 129

Page-Translation Options . 131
Page-Translation Enable (PG) Bit . 131
Physical-Address Extensions (PAE) Bit . 132
Page-Size Extensions (PSE) Bit . 132
Page-Directory Page Size (PS) Bit . 133

5.2 Legacy-Mode Page Translation . 133
CR3 Register . 134
Normal (Non-PAE) Paging . 135
PAE Paging . 137

5.3 Long-Mode Page Translation . 141
Canonical Address Form . 141
CR3 . 141
4-Kbyte Page Translation . 142
2-Mbyte Page Translation . 145
1-Gbyte Page Translation . 147

5.4 Page-Translation-Table Entry Fields . 150
Field Definitions . 150
Notes on Accessed and Dirty Bits . 153

5.5 Translation-Lookaside Buffer (TLB) . 154
Process Context Identifier . 154
Global Pages . 155
TLB Management . 155

5.6 Page-Protection Checks . 158
User/Supervisor (U/S) Bit . 159
Read/Write (R/W) Bit . 159
No Execute (NX) Bit . 159
Write Protect (CR0.WP) Bit . 160
Supervisor-Mode Execution Prevention (CR4.SMEP) Bit . 160
Supervisor-Mode Access Prevention(CR4.SMAP) Bit . 160
Memory Protection Keys (MPK) Bit. 160

[AMD Public Use]

Contents vii

24593—Rev. 3.37—March 2021 AMD64 Technology

5.7 Shadow Stack Protection . 161
Shadow Stack Accesses . 162
Shadow Stack Pages . 162
Shadow Stack Protection Checks . 162

5.8 Protection Across Paging Hierarchy . 163
Access to User Pages when CR0.WP=1 . 164

5.9 Effects of Segment Protection . 164

6 System Instructions .165
6.1 Fast System Call and Return . 168

SYSCALL and SYSRET . 169
SYSENTER and SYSEXIT (Legacy Mode Only) . 171
SWAPGS Instruction . 171

6.2 System Status and Control. 172
Processor Feature Identification (CPUID). 172
Accessing Control Registers . 172
Accessing the RFLAGS Register . 173
Accessing Debug Registers . 173
Accessing Model-Specific Registers . 173

6.3 Segment Register and Descriptor Register Access . 174
Accessing Segment Registers . 174
Accessing Segment Register Hidden State . 174
Accessing Descriptor-Table Registers . 174

6.4 Protection Checking. 175
Checking Access Rights . 175
Checking Segment Limits . 175
Checking Read/Write Rights . 175
Adjusting Access Rights . 176

6.5 Processor Halt . 176
6.6 Cache and TLB Management . 176

Cache Management . 176
TLB Invalidation . 177

6.7 Shadow Stack Management. 177

7 Memory System .179
7.1 Single-Processor Memory Access Ordering . 182

Read Ordering . 182
Write Ordering . 183
Read/Write Barriers . 184

7.2 Multiprocessor Memory Access Ordering. 184
7.3 Memory Coherency and Protocol . 187

Special Coherency Considerations . 189
Access Atomicity . 190

7.4 .Memory Types190
Instruction Fetching from Uncacheable Memory . 192
Memory Barrier Interaction with Memory Types . 193

7.5 Buffering and Combining Memory Writes . 195
Write Buffering . 195

[AMD Public Use]

viii Contents

AMD64 Technology 24593—Rev. 3.37—March 2021

Write Combining . 196
7.6 Memory Caches . 197

Cache Organization and Operation . 197
Cache Control Mechanisms. 200
Cache and Memory Management Instructions . 203
Serializing Instructions . 204
Cache and Processor Topology . 205

7.7 Memory-Type Range Registers . 206
MTRR Type Fields . 206
MTRRs . 207
Using MTRRs . 213
MTRRs and Page Cache Controls . 214
MTRRs in Multi-Processing Environments . 216

7.8 Page-Attribute Table Mechanism . 216
PAT Register . 216
PAT Indexing . 217
Identifying PAT Support . 218
PAT Accesses . 218
Combined Effect of MTRRs and PAT . 219
PATs in Multi-Processing Environments . 220
Changing Memory Type . 220

7.9 Memory-Mapped I/O. 220
Extended Fixed-Range MTRR Type-Field Encodings . 221
IORRs . 222
IORR Overlapping. 224
Top of Memory . 224

7.10 Secure Memory Encryption . 226
Determining Support for Secure Memory Encryption . 226
Enabling Memory Encryption Extensions. 227
Supported Operating Modes . 227
Page Table Support . 227
I/O Accesses. 228
Restrictions . 228
SMM Interaction . 229
Encrypt-in-Place . 229

8 Exceptions and Interrupts. .231
8.1 General Characteristics . 231

Precision . 231
Instruction Restart . 232
Types of Exceptions. 232
Masking External Interrupts . 233
Masking Floating-Point and Media Instructions . 233
Disabling Exceptions . 234

8.2 Vectors . 234
#DE—Divide-by-Zero-Error Exception (Vector 0). 237
#DB—Debug Exception (Vector 1). 237
NMI—Non-Maskable-Interrupt Exception (Vector 2) . 238

[AMD Public Use]

Contents ix

24593—Rev. 3.37—March 2021 AMD64 Technology

#BP—Breakpoint Exception (Vector 3) . 238
#OF—Overflow Exception (Vector 4). 239
#BR—Bound-Range Exception (Vector 5) . 239
#UD—Invalid-Opcode Exception (Vector 6) . 239
#NM—Device-Not-Available Exception (Vector 7) . 240
#DF—Double-Fault Exception (Vector 8). 240
Coprocessor-Segment-Overrun Exception (Vector 9) . 241
#TS—Invalid-TSS Exception (Vector 10). 242
#NP—Segment-Not-Present Exception (Vector 11) . 243
#SS—Stack Exception (Vector 12) . 243
#GP—General-Protection Exception (Vector 13) . 244
#PF—Page-Fault Exception (Vector 14) . 245
#MF—x87 Floating-Point Exception-Pending (Vector 16). 246
#AC—Alignment-Check Exception (Vector 17). 247
#MC—Machine-Check Exception (Vector 18) . 248
#XF—SIMD Floating-Point Exception (Vector 19) . 248
#CP—Control-Protection Exception (Vector 21) . 249
#HV—Hypervisor Injection Exception (Vector 28) . 250
#VC—VMM Communication Exception (Vector 29). 250
#SX—Security Exception (Vector 30). 250
User-Defined Interrupts (Vectors 32–255) . 250

8.3 Exceptions During a Task Switch . 251
8.4 Error Codes . 251

Selector-Error Code . 251
Page-Fault Error Code . 252
Control-Protection Error Code . 252

8.5 Priorities. 253
Floating-Point Exception Priorities . 254
External Interrupt Priorities . 256

8.6 Real-Mode Interrupt Control Transfers . 257
8.7 Legacy Protected-Mode Interrupt Control Transfers . 259

Locating the Interrupt Handler . 260
Interrupt To Same Privilege . 261
Interrupt To Higher Privilege. 262
Privilege Checks . 263
Returning From Interrupt Procedures . 266
Shadow Stack Support for Interrupts and Exceptions . 266

8.8 Virtual-8086 Mode Interrupt Control Transfers . 267
Protected-Mode Handler Control Transfer . 268
Virtual-8086 Handler Control Transfer . 269

8.9 Long-Mode Interrupt Control Transfers . 270
Interrupt Gates and Trap Gates . 270
Locating the Interrupt Handler . 270
Interrupt Stack Frame . 271
Interrupt-Stack Table . 274
Returning From Interrupt Procedures . 276

8.10 Virtual Interrupts . 277

[AMD Public Use]

x Contents

AMD64 Technology 24593—Rev. 3.37—March 2021

Virtual-8086 Mode Extensions . 277
Protected Mode Virtual Interrupts . 280
Effect of Instructions that Modify EFLAGS.IF. 280

9 Machine Check Architecture .285
9.1 Introduction . 285

Reliability, Availability, and Serviceability . 285
Error Detection, Logging, and Reporting . 286
Error Recovery. 288

9.2 Determining Machine-Check Architecture Support . 289
9.3 Machine Check Architecture MSRs . 289

Global Status and Control Registers . 290
Error-Reporting Register Banks . 293

9.4 Initializing the Machine-Check Mechanism . 301
9.5 Using MCA Features . 302

Determining the Scope of Detected Errors . 303
Handling Machine Check Exceptions . 303
Reporting Corrected Errors . 305

10 System-Management Mode. .307
10.1 SMM Differences . 307
10.2 SMM Resources. 308

SMRAM . 308
SMBASE Register . 309
SMRAM State-Save Area . 310
SMM-Revision Identifier. 314
SMRAM Protected Areas . 315

10.3 Using SMM . 317
System-Management Interrupt (SMI) . 317
SMM Operating-Environment. 317
Exceptions and Interrupts . 318
Invalidating the Caches . 319
Saving Additional Processor State. 319
Operating in Protected Mode and Long Mode . 320
Auto-Halt Restart. 320
I/O Instruction Restart . 321
SMM Page Configuration Lock. 322

10.4 Leaving SMM . 323
10.5 Multiprocessor Considerations . 324

11 SSE, MMX, and x87 Programming .325
11.1 Overview of System-Software Considerations . 325
11.2 Determining Media and x87 Feature Support . 325
11.3 Enabling SSE Instructions . 327

Enabling Legacy SSE Instruction Execution. 327
Enabling Extended SSE Instruction Execution . 327
SIMD Floating-Point Exception Handling . 328

11.4 Media and x87 Processor State . 328

[AMD Public Use]

Contents xi

24593—Rev. 3.37—March 2021 AMD64 Technology

SSE Execution Unit State . 328
MMX Execution Unit State . 329
x87 Execution Unit State . 330
Saving Media and x87 Execution Unit State . 332

11.5 XSAVE/XRSTOR Instructions . 339
CPUID Enhancements . 339
XFEATURE_ENABLED_MASK. 339
Extended Save Area . 340
Instruction Functions . 341
YMM States and Supported Operating Modes . 341
Extended SSE Execution State Management . 341
Saving Processor State. 343
Restoring Processor State . 343
MXCSR State Management . 343
 Mode-Specific XSAVE/XRSTOR State Management . 344

12 Task Management .351
12.1 Hardware Multitasking Overview . 351
12.2 Task-Management Resources . 352

TSS Selector . 354
TSS Descriptor. 354
Task Register . 355
Legacy Task-State Segment. 357
64-Bit Task State Segment. 361
Task Gate Descriptor (Legacy Mode Only). 364

12.3 Hardware Task-Management in Legacy Mode . 364
Task Memory-Mapping . 364
Switching Tasks . 365
Task Switches Using Task Gates . 370
Nesting Tasks . 372

13 Software Debug and Performance Resources .375
13.1 Software-Debug Resources . 376

Debug Registers. 376
Setting Breakpoints . 383
Using Breakpoints . 385
Single Stepping . 388
Breakpoint Instruction (INT3) . 388
Control-Transfer Breakpoint Features . 388
Debug Breakpoint Address Masking . 390

13.2 Performance Monitoring Counters . 390
Performance Counter MSRs . 391
Detecting Hardware Support for Performance Counters. 397
Using Performance Counters . 397
Time-Stamp Counter . 397

13.3 Instruction-Based Sampling. 399
IBS Fetch Sampling. 399
IBS Fetch Sampling Registers . 400

[AMD Public Use]

xii Contents

AMD64 Technology 24593—Rev. 3.37—March 2021

IBS Execution Sampling . 403
IBS Execution Sampling Registers . 404

13.4 Lightweight Profiling. 412
Overview . 412
Events and Event Records . 416
Detecting LWP. 425
LWP Registers . 429
LWP Instructions . 431
LWP Control Block . 435
XSAVE/XRSTOR . 445
Implementation Notes . 449

14 Processor Initialization and Long Mode Activation. .455
14.1 Processor Initialization . 455

Built-In Self Test (BIST) . 455
Clock Multiplier Selection. 456
Processor Initialization State . 456
Multiple Processor Initialization . 458
Fetching the First Instruction. 458

14.2 Hardware Configuration . 459
Processor Implementation Information . 459
Enabling Internal Caches . 459
Initializing Media and x87 Processor State . 459
Model-Specific Initialization . 461

14.3 Initializing Real Mode . 462
14.4 Initializing Protected Mode . 462
14.5 Initializing Long Mode . 463
14.6 Enabling and Activating Long Mode . 464

Activating Long Mode. 465
Consistency Checks . 466
Updating System Descriptor Table References . 466
Relocating Page-Translation Tables. 467

14.7 Leaving Long Mode . 467
14.8 Long-Mode Initialization Example . 467

15 Secure Virtual Machine. .473
15.1 The Virtual Machine Monitor . 473
15.2 SVM Hardware Overview . 473

Virtualization Support . 473
Guest Mode . 474
External Access Protection . 474
Interrupt Support . 474
Restartable Instructions . 474
Security Support . 475

15.3 SVM Processor and Platform Extensions . 475
15.4 Enabling SVM . 475
15.5 VMRUN Instruction . 476

Basic Operation . 476

[AMD Public Use]

Contents xiii

24593—Rev. 3.37—March 2021 AMD64 Technology

VMSAVE and VMLOAD Instructions . 481
15.6 #VMEXIT . 482
15.7 Intercept Operation . 483

State Saved on Exit . 483
Intercepts During IDT Interrupt Delivery . 484
EXITINTINFO Pseudo-Code . 485

15.8 Decode Assists. 486
MOV CRx/DRx Intercepts . 486
INTn Intercepts . 487
INVLPG and INVLPGA Intercepts. 487
Nested and intercepted #PF . 487

15.9 Instruction Intercepts . 488
15.10 IOIO Intercepts . 491

I/O Permissions Map . 491
IN and OUT Behavior . 492
(REP) OUTS and INS . 492

15.11 MSR Intercepts . 493
15.12 Exception Intercepts . 494

#DE (Divide By Zero) . 494
#DB (Debug) . 494
Vector 2 (Reserved) . 495
#BP (Breakpoint) . 495
#OF (Overflow) . 495
#BR (Bound-Range) . 495
#UD (Invalid Opcode) . 495
#NM (Device-Not-Available) . 495
#DF (Double Fault) . 495
Vector 9 (Reserved) . 495
#TS (Invalid TSS) . 496
#NP (Segment Not Present) . 496
#SS (Stack Fault) . 496
#GP (General Protection). 496
#PF (Page Fault) . 496
#MF (X87 Floating Point) . 496
#AC (Alignment Check) . 496
#MC (Machine Check) . 496
#XF (SIMD Floating Point). 497
#SX (Security Exception) . 497
#CP (Control Protection) . 497

15.13 Interrupt Intercepts. 497
INTR Intercept. 497
NMI Intercept . 497
SMI Intercept . 497
INIT Intercept . 499
Virtual Interrupt Intercept . 499

15.14 Miscellaneous Intercepts . 499
Task Switch Intercept. 499

[AMD Public Use]

xiv Contents

AMD64 Technology 24593—Rev. 3.37—March 2021

Ferr_Freeze Intercept. 500
Shutdown Intercept . 500
Pause Intercept Filtering . 500

15.15 VMCB State Caching . 500
VMCB Clean Bits . 501
Guidelines for Clearing VMCB Clean Bits . 501
VMCB Clean Field . 502

15.16 TLB Control. 503
TLB Flush . 503
Invalidate Page, Alternate ASID . 504

15.17 Global Interrupt Flag, STGI and CLGI Instructions . 504
15.18 VMMCALL Instruction. 505
15.19 Paged Real Mode. 505
15.20 Event Injection. 506
15.21 Interrupt and Local APIC Support. 507

Physical (INTR) Interrupt Masking in EFLAGS. 507
Virtualizing APIC.TPR . 508
TPR Access in 32-Bit Mode . 508
Injecting Virtual (INTR) Interrupts . 508
Interrupt Shadows . 509
Virtual Interrupt Intercept . 509
Interrupt Masking in Local APIC . 510
INIT Support . 510
NMI Support . 511

15.22 SMM Support . 511
Sources of SMI . 511
Response to SMI . 511
Containerizing Platform SMM . 512

15.23 Last Branch Record Virtualization . 513
Hardware Acceleration for LBR Virtualization . 514
LBR Virtualization CPUID Feature Detection . 514

15.24 External Access Protection . 514
Device IDs and Protection Domains . 514
Device Exclusion Vector (DEV) . 514
Access Checking . 515
DEV Capability Block . 516
DEV Register Access Mechanism . 517
DEV Control and Status Registers. 518
Unauthorized Access Logging. 520
Secure Initialization Support . 520

15.25 Nested Paging . 521
Traditional Paging versus Nested Paging . 521
Replicated State . 522
Enabling Nested Paging. 523
Nested Paging and VMRUN/#VMEXIT. 523
Nested Table Walk . 524
Nested versus Guest Page Faults, Fault Ordering . 524

[AMD Public Use]

Contents xv

24593—Rev. 3.37—March 2021 AMD64 Technology

Combining Nested and Guest Attributes . 525
Combining Memory Types, MTRRs . 526
Page Splintering. 528
Legacy PAE Mode . 528
A20 Masking . 528
Detecting Nested Paging Support . 528
Guest Mode Execute Trap Extension . 528
Supervisor Shadow Stacks. 529

15.26 Security . 530
15.27 Secure Startup with SKINIT . 530

Secure Loader . 530
Secure Loader Image . 531
Secure Loader Block . 531
Trusted Platform Module. 532
System Interface, Memory Controller and I/O Hub Logic . 533
SKINIT Operation . 533
SL Abort. 534
Secure Multiprocessor Initialization . 534

15.28 Security Exception (#SX) . 535
15.29 Advanced Virtual Interrupt Controller . 536

Introduction . 536
Local APIC Register Virtualization . 537
AVIC Backing Page . 537
VMCB Changes in Support of AVIC. 542
AVIC Memory Data Structures . 544
Interrupt Delivery . 550
CPUID Feature Bits for AVIC . 552
New Processor Mechanisms . 552
New Exit Codes for AVIC . 553

15.30 SVM Related MSRs . 556
VM_CR MSR (C001_0114h) . 556
IGNNE MSR (C001_0115h) . 557
SMM_CTL MSR (C001_0116h) . 557
VM_HSAVE_PA MSR (C001_0117h) . 558
TSC Ratio MSR (C000_0104h). 558

15.31 SVM-Lock . 559
SVM_KEY MSR (C001_0118h) . 559

15.32 SMM-Lock . 560
SmmLock Bit — HWCR[0] . 560
SMM_KEY MSR (C001_0119h) . 560

15.33 Nested Virtualization . 560
VMSAVE and VMLOAD Virtualization. 561
Virtual GIF (VGIF) . 561

15.34 Secure Encrypted Virtualization . 561
Determining Support for SEV . 562
Key Management. 562
Enabling SEV . 563

[AMD Public Use]

xvi Contents

AMD64 Technology 24593—Rev. 3.37—March 2021

Supported Operating Modes . 563
SEV Encryption Behavior . 563
Page Table Support . 564
Restrictions . 565
SEV Interaction with SME . 565
Page Flush MSR . 567
SEV_STATUS MSR . 567
Virtual Transparent Encryption (VTE) . 568

15.35 Encrypted State (SEV-ES). 568
Determining Support for SEV-ES . 569
Enabling SEV-ES. 569
SEV-ES Overview . 569
Types of Exits . 570
#VC Exception. 571
VMGExit . 573
GHCB . 573
VMRUN . 573
Automatic Exits . 574
Control Register Write Traps . 574
Interaction with SMI and #MC . 575

15.36 Secure Nested Paging (SEV-SNP) . 575
Determining Support for SEV-SNP. 575
Enabling SEV-SNP . 576
Reverse Map Table . 576
Initializing the RMP. 578
Hypervisor RMP Management . 578
Page Validation . 579
Virtual Machine Privilege Levels . 580
Virtual Top-of-Memory . 581
Reflect #VC . 581
RMP and VMPL Access Checks . 582
Large Page Management . 584
Running SNP-Active Virtual Machines. 585
Debug Registers. 586
Memory Types . 586
TLB management . 587
Interrupt Injection Restrictions . 587
Side-Channel Protection . 589

15.37 SPEC_CTRL Hypervisor Model . 589

16 Advanced Programmable Interrupt Controller (APIC) .591
16.1 Sources of Interrupts to the Local APIC . 592
16.2 Interrupt Control . 593
16.3 Local APIC . 593

Local APIC Enable . 593
APIC Registers . 594
Local APIC ID . 595
APIC Version Register. 596

[AMD Public Use]

Contents xvii

24593—Rev. 3.37—March 2021 AMD64 Technology

Extended APIC Feature Register . 597
Extended APIC Control Register. 597

16.4 Local Interrupts . 598
APIC Timer Interrupt. 600
Local Interrupts LINT0 and LINT1. 602
Performance Monitor Counter Interrupts . 602
Thermal Sensor Interrupts . 603
Extended Interrupts . 603
APIC Error Interrupts . 603
Spurious Interrupts. 605

16.5 Interprocessor Interrupts (IPI) . 605
16.6 Local APIC Handling of Interrupts . 609

Receiving System and IPI Interrupts . 609
Lowest Priority Messages and Arbitration . 610
Accepting System and IPI Interrupts . 611
Selecting and Handling Interrupts . 614

16.7 SVM Support for Interrupts and the Local APIC . 616
Specific End of Interrupt Register . 617
Interrupt Enable Register . 617

16.8 x2APIC Mode . 618
x2APIC Terminology. 618

16.9 Detecting and Enabling x2APIC Mode . 618
Enabling x2APIC Mode . 620

16.10 x2APIC Initialization. 621
16.11 Accessing x2APIC Register . 621

x2APIC Register Address Space . 621
WRMSR / RDMSR serialization for x2APIC Register. 623
Reserved Bit Checking in x2APIC Mode . 623

16.12 x2APIC_ID . 623
16.13 x2APIC Interrupt Command Register (ICR) Operations . 624
16.14 Logical Destination Register . 625
16.15 Self_IPI Register . 627

17 Hardware Performance Monitoring and Control .629
17.1 P-State Control. 629
17.2 Core Performance Boost . 631
17.3 Determining Processor Effective Frequency . 632

Actual Performance Frequency Clock Count (APERF) . 633
Maximum Performance Frequency Clock Count (MPERF) . 633
APERF Read-only (AperfReadOnly) . 634
MPERF Read-only (MperfReadOnly). 635

17.4 Processor Feedback Interface . 635
17.5 Processor Core Power Reporting. 635

Processor Facilities . 635
Software Algorithm . 636

18 Shadow Stacks .637
18.1 Shadow Stack Overview . 637

[AMD Public Use]

xviii Contents

AMD64 Technology 24593—Rev. 3.37—March 2021

Detecting and Enabling Shadow Stack Support . 637
18.2 The Shadow Stack Pointer. 638
18.3 Shadow Stack Operation for CALL (near) and RET (near) . 638
18.4 Shadow Stack Operation for Far Transfers . 638
18.5 Far Transfer to the Same Privilege Level . 639
18.6 Far Transfer to Different Privilege Level . 639

Shadow Stack Switching . 639
Handling CS, LIP and SSP on Privilege Transistions . 641
Supervisor Shadow Stack Token . 641
Shadow Stack Token Validation for Inter-privilege CALL (far) and Interrupts/Exceptions . 642
Shadow Stack Token Validation for Inter-privilege RET and IRET 643

18.7 Shadow Stack Operation for SYSCALL and SYSRET . 643
18.8 Shadow Stack Operation for Task Switches . 644
18.9 Restricting Speculative Execution of RET targets . 645
18.10 Shadow Stack Switching Using RSTORSSP . 645
18.11 Shadow Stack Management Instructions. 648
18.12 Shadow Stack MSRs . 649
18.13 XSAVE/XRSTOR . 650

Appendix A MSR Cross-Reference .651
A.1 MSR Cross-Reference by MSR Address. 651
A.2 System-Software MSRs. 658
A.3 Memory-Typing MSRs . 659
A.4 Machine-Check MSRs. 661
A.5 Software-Debug MSRs . 662
A.6 Performance-Monitoring MSRs . 663
A.7 Secure Virtual Machine MSRs . 664
A.8 System Management Mode MSRs . 666
A.9 CPUID Name MSR Cross-Reference . 666
A.10 Shadow Stack MSRs . 667
A.11 Speculation Control MSRs . 667

Appendix B Layout of VMCB .669
Appendix C SVM Intercept Exit Codes .683
Appendix D SMM Containerization .687

D.1 SMM Containerization Pseudocode . 687

Appendix E OS-Visible Workarounds .693
E.1 Erratum Process Overview . 695

Index . 697

[AMD Public Use]

Figures xix

24593—Rev. 3.37—March 2021 AMD64 Technology

Figures
Figure 1-1. Segmented-Memory Model . 6

Figure 1-2. Flat Memory Model . 7

Figure 1-3. Paged Memory Model. 8

Figure 1-4. 64-Bit Flat, Paged-Memory Model. 9

Figure 1-5. Real-Address Memory Model. 10

Figure 1-6. Operating Modes of the AMD64 Architecture . 12

Figure 1-7. System Registers . 16

Figure 1-8. System-Data Structures. 18

Figure 3-1. Control Register 0 (CR0) . 43

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode . 46

Figure 3-3. Control Register 2 (CR2)—Long Mode . 46

Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging. 46

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging . 46

Figure 3-6. Control Register 3 (CR3)—Long Mode . 47

Figure 3-7. RFLAGS Register . 53

Figure 3-8. Extended Feature Enable Register (EFER). 57

Figure 3-9. AMD64 Architecture Model-Specific Registers. 60

Figure 3-10. System-Configuration Register (SYSCFG) . 61

Figure 3-11. XSS Register . 66

Figure 3-12. SPEC_CTRL Register (MSR 048h) . 67

Figure 3-13. PRED_CMD Register (MSR 049h) . 69

Figure 4-1. Segmentation Data Structures. 76

Figure 4-2. Segment and Descriptor-Table Registers . 77

Figure 4-3. Segment Selector. 77

Figure 4-4. Segment-Register Format . 79

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode. 81

Figure 4-6. Global and Local Descriptor-Table Access . 83

Figure 4-7. GDTR and IDTR Format—Legacy Modes . 83

Figure 4-8. GDTR and IDTR Format—Long Mode . 84

Figure 4-9. Relationship between the LDT and GDT . 85

Figure 4-10. LDTR Format—Legacy Mode . 86

[AMD Public Use]

xx Figures

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 4-11. LDTR Format—Long Mode. 86

Figure 4-12. Indexing an IDT . 88

Figure 4-13. Generic Segment Descriptor—Legacy Mode . 89

Figure 4-14. Code-Segment Descriptor—Legacy Mode. 91

Figure 4-15. Data-Segment Descriptor—Legacy Mode . 92

Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes . 95

Figure 4-17. Call-Gate Descriptor—Legacy Mode . 96

Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode . 96

Figure 4-19. Task-Gate Descriptor—Legacy Mode . 96

Figure 4-20. Code-Segment Descriptor—Long Mode . 97

Figure 4-21. Data-Segment Descriptor—Long Mode . 98

Figure 4-22. System-Segment Descriptor—64-Bit Mode . 100

Figure 4-23. Call-Gate Descriptor—Long Mode . 101

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode . 102

Figure 4-25. Privilege-Level Relationships . 105

Figure 4-26. Data-Access Privilege-Check Examples. 107

Figure 4-27. Stack-Access Privilege-Check Examples . 108

Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples. 111

Figure 4-29. Conforming Code-Segment Privilege-Check Examples. 112

Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism . 113

Figure 4-31. Long-Mode Call-Gate Access Mechanism. 114

Figure 4-32. Privilege-Check Examples for Call Gates . 116

Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters . 118

Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode. 118

Figure 4-35. Stack Switch—Long Mode. 119

Figure 5-1. Virtual to Physical Address Translation—Long Mode. 130

Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode. 134

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode . 134

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode. 135

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode . 136

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode . 136

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode . 137

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode . 137

[AMD Public Use]

Figures xxi

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode. 138

Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode . 139

Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode . 139

Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode . 139

Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode . 140

Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode . 140

Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode . 141

Figure 5-16. Control Register 3 (CR3)—Long Mode . 142

Figure 5-17. 4-Kbyte Page Translation—Long Mode. 143

Figure 5-18. 4-Kbyte PML4E—Long Mode . 144

Figure 5-19. 4-Kbyte PDPE—Long Mode . 144

Figure 5-20. 4-Kbyte PDE—Long Mode . 144

Figure 5-21. 4-Kbyte PTE—Long Mode. 145

Figure 5-22. 2-Mbyte Page Translation—Long Mode . 146

Figure 5-23. 2-Mbyte PML4E—Long Mode . 147

Figure 5-24. 2-Mbyte PDPE—Long Mode . 147

Figure 5-25. 2-Mbyte PDE—Long Mode . 147

Figure 5-26. 1-Gbyte Page Translation—Long Mode. 148

Figure 5-27. 1-Gbyte PML4E—Long Mode . 149

Figure 5-28. 1-Gbyte PDPE—Long Mode . 149

Figure 5-29. PKRU Register . 161

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs . 170

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs . 171

Figure 7-1. Processor and Memory System. 180

Figure 7-2. MOESI State Transitions . 188

Figure 7-3. Cache Organization Example . 198

Figure 7-4. MTRR Mapping of Physical Memory . 208

Figure 7-5. Fixed-Range MTRR . 209

Figure 7-6. MTRRphysBasen Register . 211

Figure 7-7. MTRRphysMaskn Register. 211

Figure 7-8. MTRRdefType Register Format . 213

Figure 7-9. MTRR Capability Register Format. 214

Figure 7-10. PAT Register. 216

[AMD Public Use]

xxii Figures

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRs) . 221

Figure 7-12. IORRBasen Register . 223

Figure 7-13. IORRMaskn Register . 224

Figure 7-14. Memory Organization Using Top-of-Memory Registers . 225

Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM2). 226

Figure 7-16. Encrypted Memory Accesses . 228

Figure 8-1. Control Register 2 (CR2) . 246

Figure 8-2. Selector Error Code. 251

Figure 8-3. Page-Fault Error Code . 252

Figure 8-4. Control-Protection Error Code . 253

Figure 8-5. Task Priority Register (CR8) . 256

Figure 8-6. Real-Mode Interrupt Control Transfer . 258

Figure 8-7. Stack After Interrupt in Real Mode. 259

Figure 8-8. Protected-Mode Interrupt Control Transfer . 261

Figure 8-9. Stack After Interrupt to Same Privilege Level . 262

Figure 8-10. Stack After Interrupt to Higher Privilege . 263

Figure 8-11. Privilege-Check Examples for Interrupts . 265

Figure 8-12. Stack After Virtual-8086 Mode Interrupt to Protected Mode. 269

Figure 8-13. Long-Mode Interrupt Control Transfer. 271

Figure 8-14. Long-Mode Stack After Interrupt—Same Privilege. 273

Figure 8-15. Long-Mode Stack After Interrupt—Higher Privilege. 274

Figure 8-16. Long-Mode IST Mechanism. 275

Figure 9-1. MCG_CAP Register . 290

Figure 9-2. MCG_STATUS Register . 291

Figure 9-3. MCG_CTL Register . 292

Figure 9-4. CPU Watchdog Timer Register Format . 292

Figure 9-5. MCi_CTL Register . 295

Figure 9-6. MCi_STATUS Register . 296

Figure 9-7. MCi_MISC1 Addressing . 299

Figure 9-8. Miscellaneous Information Register (Thresholding Register Format) 300

Figure 10-1. Default SMRAM Memory Map . 309

Figure 10-2. SMBASE Register . 309

Figure 10-3. SMM-Revision Identifier . 315

[AMD Public Use]

Figures xxiii

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 10-4. SMM_ADDR Register Format . 316

Figure 10-5. SMM_MASK Register Format. 316

Figure 10-6. I/O Instruction Restart Dword. 322

Figure 11-1. SSE Execution Unit State . 329

Figure 11-2. MMX Execution Unit State . 330

Figure 11-3. x87 Execution Unit State . 332

Figure 11-4. FSAVE/FNSAVE Image (32-Bit, Protected Mode) . 334

Figure 11-5. FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes) . 335

Figure 11-6. FSAVE/FNSAVE Image (16-Bit, Protected Mode) . 336

Figure 11-7. FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes) . 337

Figure 11-8. FXSAVE and FXRSTOR Image (64-bit Mode). 346

Figure 11-9. FXSAVE and FXRSTOR Image (Non-64-bit Mode). 346

Figure 12-1. Task-Management Resources . 353

Figure 12-2. Task-Segment Selector . 354

Figure 12-3. TR Format, Legacy Mode. 355

Figure 12-4. TR Format, Long Mode . 356

Figure 12-5. Relationship between the TSS and GDT . 356

Figure 12-6. Legacy 32-bit TSS . 358

Figure 12-7. I/O-Permission Bitmap Example . 361

Figure 12-8. Long Mode TSS Format . 363

Figure 12-9. Task-Gate Descriptor, Legacy Mode Only . 364

Figure 12-10. Privilege-Check Examples for Task Gates . 372

Figure 13-1. Address-Breakpoint Registers (DR0–DR3) . 377

Figure 13-2. Debug-Status Register (DR6) . 378

Figure 13-3. Debug-Control Register (DR7). 379

Figure 13-4. Debug-Control MSR (DebugCtl) . 382

Figure 13-5. Control-Transfer Recording MSRs. 383

Figure 13-6. Performance Counter Format . 392

Figure 13-7. Core Performance Event-Select Register (PerfEvtSeln). 393

Figure 13-8. Northbridge Performance Event-Select Register (NB_PerfEvtSeln) . 395

Figure 13-9. L2 Cache Performance Event-Select Register (L2I_PerfEvtSeln) . 396

Figure 13-10. Time-Stamp Counter (TSC) . 398

Figure 13-11. IBS Fetch Control Register(IbsFetchCtl) . 401

[AMD Public Use]

xxiv Figures

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 13-12. IBS Fetch Linear Address Register (IbsFetchLinAd). 402

Figure 13-13. IBS Fetch Physical Address Register (IbsFetchPhysAd) . 403

Figure 13-14. IBS Execution Control Register (IbsOpCtl) . 405

Figure 13-15. IBS Op Linear Address Register (IbsOpRip) . 406

Figure 13-16. IBS Op Data 1 Register (IbsOpData1) . 407

Figure 13-17. IBS Op Data 3 Register (IbsOpData3) . 409

Figure 13-18. IBS Data Cache Linear Address Register (IbsDcLinAd) . 411

Figure 13-19. IBS Data Cache Physical Address Register (IbsDcPhysAd) . 411

Figure 13-20. IBS Branch Target Address Register (IbsBrTarget) . 412

Figure 13-21. Generic Event Record . 417

Figure 13-22. Programmed Value Sample Event Record . 418

Figure 13-23. Instructions Retired Event Record . 419

Figure 13-24. Branch Retired Event Record . 420

Figure 13-25. DCache Miss Event Record . 422

Figure 13-26. CPU Clocks not Halted Event Record . 423

Figure 13-27. CPU Reference Clocks not Halted Event Record. 424

Figure 13-28. Programmed Event Record . 425

Figure 13-29. LWP_CFG — Lightweight Profiling Features MSR. 430

Figure 13-30. LWPCB — Lightweight Profiling Control Block . 437

Figure 13-31. LWPCB Flags . 441

Figure 13-32. LWPCB Filters . 442

Figure 13-33. XSAVE Area for LWP . 446

Figure 15-1. EXITINTINFO for All Intercepts . 484

Figure 15-2. EXITINFO1 for IOIO Intercept . 492

Figure 15-3. EXITINFO1 for SMI Intercept . 498

Figure 15-4. Layout of VMCB Clean Field. 502

Figure 15-5. EVENTINJ Field in the VMCB . 506

Figure 15-6. 510

Figure 15-7. Host Bridge DMA Checking. 516

Figure 15-8. Format of DEV_OP Register (in PCI Config Space) . 517

Figure 15-9. Format of DEV_CAP Register (in PCI Config Space). 518

Figure 15-10. Format of DEV_BASE_HI[n] Registers. 519

Figure 15-11. Format of DEV_BASE_LO[n] Registers . 519

[AMD Public Use]

Figures xxv

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 15-12. Format of DEV_MAP[n] Registers . 520

Figure 15-13. Address Translation with Traditional Paging . 521

Figure 15-14. Address Translation with Nested Paging . 522

Figure 15-15. SLB Example Layout . 532

Figure 15-16. vAPIC Backing Page Access . 538

Figure 15-17. Virtual APIC Task Priority Register Synchronization . 541

Figure 15-18. Physical APIC ID Table Entry . 546

Figure 15-19. Physical APIC Table in Memory. 547

Figure 15-20. Logical APIC ID Table Entry . 548

Figure 15-21. Logical APIC ID Table Format, Flat Mode.. 549

Figure 15-22. Logical APIC ID Table Format, Cluster Mode. 550

Figure 15-23. Doorbell Register, MSR C001_011Bh . 553

Figure 15-24. EXITINFO1 . 554

Figure 15-25. EXITINFO2 . 554

Figure 15-26. Layout of VM_CR MSR (C001_0114h) . 556

Figure 15-27. Layout of SMM_CTL MSR (C001_0116h) . 557

Figure 15-28. TSC Ratio MSR (C000_0104h) . 559

Figure 15-29. Guest Data Request. 565

Figure 15-30. EXAMPLE #VC FLOW. 572

Figure 16-1. Block Diagram of a Typical APIC Implementation . 591

Figure 16-2. APIC Base Address Register (MSR 0000_001Bh). 594

Figure 16-3. APIC ID Register (APIC Offset 20h) . 596

Figure 16-4. APIC Version Register (APIC Offset 30h). 596

Figure 16-5. Extended APIC Feature Register (APIC Offset 400h) . 597

Figure 16-6. Extended APIC Control Register (APIC Offset 410h) . 598

Figure 16-7. General Local Vector Table Register Format . 599

Figure 16-8. APIC Timer Local Vector Table Register (APIC Offset 320h) . 600

Figure 16-9. Timer Current Count Register (APIC Offset 390h) . 601

Figure 16-10. Timer Initial Count Register (APIC Offset 380h) . 601

Figure 16-11. Divide Configuration Register (APIC Offset 3E0h). 601

Figure 16-12. Local Interrupt 0/1 (LINT0/1) Local Vector Table Register
(APIC Offset 350h/360h)602

Figure 16-13. Performance Monitor Counter Local Vector Table Register

[AMD Public Use]

xxvi Figures

AMD64 Technology 24593—Rev. 3.37—March 2021

(APIC Offset 340h)603

Figure 16-14. Thermal Sensor Local Vector Table Register (APIC Offset 330h) . 603

Figure 16-15. APIC Error Local Vector Table Register (APIC Offset 370h). 604

Figure 16-16. APIC Error Status Register (APIC Offset 280h) . 604

Figure 16-17. Spurious Interrupt Register (APIC Offset F0h) . 605

Figure 16-18. Interrupt Command Register (APIC Offset 300h–3010h) . 606

Figure 16-19. Remote Read Register (APIC Offset C0h) . 608

Figure 16-20. Logical Destination Register (APIC Offset D0h) . 609

Figure 16-21. Destination Format Register (APIC Offset E0h) . 610

Figure 16-22. Arbitration Priority Register (APIC Offset 90h). 611

Figure 16-23. Interrupt Request Register (APIC Offset 200h–270h) . 612

Figure 16-24. In Service Register (APIC Offset 100h–170h) . 613

Figure 16-25. Trigger Mode Register (APIC Offset 180h–1F0h) . 614

Figure 16-26. Task Priority Register (APIC Offset 80h). 615

Figure 16-27. Processor Priority Register (APIC Offset A0h) . 615

Figure 16-28. End of Interrupt (APIC Offset B0h) . 616

Figure 16-29. Specific End of Interrupt (APIC Offset 420h) . 617

Figure 16-30. Interrupt Enable Register (APIC Offset 480h–4F0h) . 617

Figure 16-31. APIC Base Address Register (MSR 01Bh) support for x2APIC . 619

Figure 16-32. Valid APIC State Transitions . 620

Figure 16-33. x2APIC_ID Register (MSR 802h) . 624

Figure 16-34. Interrupt Command Register (MSR 830h) . 625

Figure 16-35. Logical Destination (MSR 80Dh) . 626

Figure 16-36. Self_IPI Register (MSR 83Fh) . 627

Figure 17-1. P-State Current Limit Register (MSR C001_0061h) . 630

Figure 17-2. P-State Control Register (MSR C001_0062h) . 630

Figure 17-3. P-State Status Register (MSR C001_0063h) . 631

Figure 17-4. Core Performance Boost (MSRC001_0015h) . 632

Figure 17-5. Actual Performance Frequency Count (MSR0000_00E8h) . 633

Figure 17-6. Max Performance Frequency Count (MSR0000_00E7h). 633

Figure 17-7. MPERF Read Only (MSR C000_00E7h) . 634

Figure 18-1. Interrupt Shadow Stack Table (ISST). 640

Figure 18-2. Shadow Stacks and Supervisor Shadow Stack Tokens. 642

[AMD Public Use]

Figures xxvii

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 18-3. Supervisor Shadow Stack Token . 642

Figure 18-4. Shadow Stack Restore Token . 645

Figure 18-5. Previous SSP Token . 646

Figure 18-6. RSTORSSP and SAVEPREVSSP Operation . 647

[AMD Public Use]

xxviii Figures

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Tables xxix

24593—Rev. 3.37—March 2021 AMD64 Technology

Tables
Table 1-1. Operating Modes. 11
Table 1-2. Interrupts and Exceptions . 20
Table 2-1. Instructions That Reference RSP . 31
Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size . 32
Table 2-3. Invalid Instructions in 64-Bit Mode . 34
Table 2-4. Invalid Instructions in Long Mode . 35
Table 2-5. Opcodes Reassigned in 64-Bit Mode . 36
Table 2-6. Differences Between Long Mode and Legacy Mode . 39
Table 3-1. Speculation Control MSRs . 66
Table 4-1. Segment Registers. 79
Table 4-2. Descriptor Types . 90
Table 4-3. Code-Segment Descriptor Types . 92
Table 4-4. Data-Segment Descriptor Types . 93
Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode. 94
Table 4-6. System-Segment Descriptor Types—Long Mode . 99
Table 4-7. Descriptor-Entry Field Changes in Long Mode . 103
Table 4-8. Segment Limit Checks in 64-Bit Mode . 123
Table 5-1. Supported Paging Alternatives (CR0.PG=1) . 131
Table 5-2. Physical-Page Protection, CR0.WP=0 . 163
Table 5-3. Effect of CR0.WP=1 on Supervisor Page Access . 164
Table 6-1. System Management Instructions . 165
Table 7-1. Memory Access by Memory Type . 192
Table 7-2. Caching Policy by Memory Type . 192
Table 7-3. Memory Access Ordering Rules . 194
Table 7-4. AMD64 Architecture Cache-Operating Modes . 201
Table 7-5. MTRR Type Field Encodings . 207
Table 7-6. Fixed-Range MTRR Address Ranges. 209
Table 7-7. Combined MTRR and Page-Level Memory Type with Unmodified PAT MSR 215
Table 7-8. PAT Type Encodings . 217
Table 7-9. PAT-Register PA-Field Indexing . 218
Table 7-10. Combined Effect of MTRR and PAT Memory Types . 219
Table 7-11. Serialization Requirements for Changing Memory Types . 220
Table 7-12. Extended Fixed-Range MTRR Type Encodings . 222
Table 8-1. Interrupt Vector Source and Cause . 235

[AMD Public Use]

xxx Tables

AMD64 Technology 24593—Rev. 3.37—March 2021

Table 8-2. Interrupt Vector Classification . 236
Table 8-3. Double-Fault Exception Conditions . 241
Table 8-4. Invalid-TSS Exception Conditions . 242
Table 8-5. Stack Exception Error Codes . 244
Table 8-6. General-Protection Exception Conditions . 244
Table 8-7. Data-Type Alignment . 247
Table 8-8. Control-Protection Error Codes . 253
Table 8-9. Simultaneous Interrupt Priorities . 253
Table 8-10. Simultaneous Floating-Point Exception Priorities . 255
Table 8-11. Virtual-8086 Mode Interrupt Mechanisms . 268
Table 8-12. Effect of Instructions that Modify the IF Bit . 281
Table 9-1. CPU Watchdog Timer Time Base . 293
Table 9-2. CPU Watchdog Timer Count Select . 293
Table 9-3. Error Logging Priorities . 294
Table 9-4. Error Scope . 303
Table 10-1. AMD64 Architecture SMM State-Save Area . 310
Table 10-2. Legacy SMM State-Save Area (Not used by AMD64 Architecture) . 313
Table 10-3. SMM Register Initialization . 317
Table 11-1. SSE Subsets – CPUID Feature Identifiers . 326
Table 11-2. Extended Save Area Format . 340
Table 11-3. XRSTOR Hardware-Specified Initial Values . 343
Table 11-4. Deriving FSAVE Tag Field from FXSAVE Tag Field. 349
Table 12-1. Effects of Task Nesting. 373
Table 13-1. Breakpoint-Setting Examples . 384
Table 13-2. Breakpoint Location by Condition . 385
Table 13-3. Host/Guest Only Bits . 393
Table 13-4. Count Control Using CNT_MASK and INV . 394
Table 13-5. Operating-System Mode and User Mode Bits . 394
Table 13-6. EventId Values . 417
Table 13-7. Lightweight Profiling CPUID Values. 427
Table 13-8. LWPCB — Lightweight Profiling Control Block Fields. 438
Table 13-9. LWPCB Filters Fields. 443
Table 13-10. XSAVE Area for LWP Fields. 447
Table 14-1. Initial Processor State . 456
Table 14-2. Initial State of Segment-Register Attributes . 458
Table 14-3. x87 Floating-Point State Initialization . 460

[AMD Public Use]

Tables xxxi

24593—Rev. 3.37—March 2021 AMD64 Technology

Table 14-4. Processor Operating Modes . 465
Table 14-5. Long-Mode Consistency Checks . 466
Table 15-1. Guest Exception or Interrupt Types . 485
Table 15-2. EXITINFO1 for MOV CRx . 486
Table 15-3. EXITINFO1 for MOV DRx . 486
Table 15-4. EXITINFO1 for INTn. 487
Table 15-5. EXITINFO1 for INVLPG. 487
Table 15-6. Guest Instruction Bytes. 488
Table 15-7. Instruction Intercepts. 488
Table 15-8. MSR Ranges Covered by MSRPM. 493
Table 15-9. TLB Control Byte Encodings . 504
Table 15-10. Effect of the GIF on Interrupt Handling . 505
Table 15-11. Guest Exception or Interrupt Types . 507
Table 15-12. INIT Handling in Different Operating Modes . 510
Table 15-13. NMI Handling in Different Operating Modes . 511
Table 15-14. SMI Handling in Different Operating Modes . 512
Table 15-15. DEV Capability Block, Overall Layout . 517
Table 15-16. DEV Capability Header (DEV_HDR) (in PCI Config Space) . 517
Table 15-17. Encoding of Function Field in DEV_OP Register . 518
Table 15-18. DEV_CR Control Register . 519
Table 15-19. Combining Guest and Host PAT Types . 527
Table 15-20. Combining PAT and MTRR Types . 527
Table 15-21. GMET Page Configuration . 529
Table 15-22. Guest vAPIC Register Access Behavior. 539
Table 15-23. Virtual Interrupt Control (VMCB offset 60h). 542
Table 15-24. New VMCB Fields Defined by AVIC . 543
Table 15-25. Physical APIC ID Table Entry Fields . 546
Table 15-26. Logical APIC ID Table Entry Fields . 548
Table 15-27. EXTINFO1 Fields. 554
Table 15-28. EXTINFO2 Fields. 554
Table 15-29. ID Field—IPI Delivery Failure Cause . 555
Table 15-30. EXTINFO1 Fields. 555
Table 15-31. EXTINFO2 Fields. 556
Table 15-32. Encryption Control . 566
Table 15-33. SEV/SME Interaction . 567
Table 15-34. SEV_STATUS MSR Fields . 568

[AMD Public Use]

xxxii Tables

AMD64 Technology 24593—Rev. 3.37—March 2021

Table 15-35. AE Exitcodes. 570
Table 15-36. Fields of an RMP Entry . 577
Table 15-37. RMP Page Assignment Settings . 579
Table 15-38. VMPL Permission Mask Definition . 580
Table 15-39. RMP Memory Access Checks . 583
Table 15-40. PVALIDATE/RMPADJUST Page Size Mismatch Combinations. 585
Table 15-41. VMRUN Page Checks . 585
Table 15-42. Non-Coherent Memory Type Conversion . 587
Table 16-1. Interrupt Sources for Local APIC . 592
Table 16-2. APIC Registers . 595
Table 16-3. Divide Values . 602
Table 16-4. Valid ICR Field Combinations . 608
Table 16-5. Local APIC Operating Modes. 619
Table 16-6. x2APIC Register . 622
Table 18-1. Shadow Stack Operations for Far Transfers . 639
Table 18-2. Shadow Stack Management Instructions . 648
Table A-1. MSRs of the AMD64 Architecture . 651
Table A-2. System-Software MSR Cross-Reference . 657
Table A-3. Memory-Typing MSR Cross-Reference. 658
Table A-4. Machine-Check MSR Cross-Reference . 660
Table A-5. Software-Debug MSR Cross-Reference . 661
Table A-6. Performance-Monitoring MSR Cross-Reference . 662
Table A-7. Secure Virtual Machine MSR Cross-Reference . 663
Table A-8. System Management Mode MSR Cross-Reference . 665
Table A-9. CPUID Namestring MSR Cross Reference . 665
Table A-10. Shadow Stack MSR Cross Reference . 666
Table A-11. Speculation Control MSRs . 666
Table B-1. VMCB Layout, Control Area . 667
Table B-2. VMCB Layout, State Save Area . 672
Table B-3. Swap Types . 675
Table B-4. VMSA Layout, State Save Area for SEV-ES . 675
Table C-1. SVM Intercept Codes . 681

[AMD Public Use]

xxxiii

24593—Rev. 3.37—March 2021 AMD64 Technology

Revision History

Date Revision Description

March 2021 3.37

Added SPEC_CTRL and PRED_CMD support.
Added x2APIC support.
Added SMM Page Configuration Lock.
Corrected the AMD64 Architecture SMM State-Save Area table.
Add new section: APERF Read-only (AperfReadOnly).
Updated the MSRs of the AMD64 Architecture table.
Updated the Machine-Check MSR Cross-Reference table.
Updated the Performance-Monitoring MSR Cross-Reference table.
Updated the Secure Virtual Machine MSR Cross-Reference table.
Added new section: Speculation Control MSRs.

August 2020 3.36

Added Shadow Stack support.
Chapter 3: Section 3.1: Added content. Section 3.1.3: Added bit 23 and
new content. Section 3.2.7: Added Shadow Stack Registers as new
section 3.2.7.
Chapter 5: Section 5.6: Updated content.
Chapter 6: Added content to Table 6-1. Added section 6.7.
Chapter 7: Table 7-3. Updated.
Chapter 8: Table 8-1 and Table 8-2: Added content. Section 8.4: Updated
content. Section 8.4.2: Added content. Added #CP as new section
8.2.20. Table 8-8: Added content. Added new Shadow Stack section
8.7.6. Section 8.9: Added bullet. Added new 8.9.4.1 section.
Chapter 10: Updated Table 10-1. Section 10.4: Added bullet.
Chapter 11: Section 11.5.2 and Figure 11-8: Updated table and figure.
Section 11.5.8: Updated Table 11-3.
Chapter 12: Section 12.2.2: Updated. Section 12.2.4: Updated Figure 12-
6. Section 12.3.2: Updated content and added bullets.
Chapter 15: Section 15.5.1: Updates. Section 15.15.3: Updated Figure
15-4. Section 15.25.6: Added bullet. Section 15.29.1. Updates. Section
15.29.4.1: Added content. Section 15.29.8.2: Added content.
Added Chapter 18.
Appendix A: Table A-1: Added content. Added new section A.10.
Appendix B: Table B-1, Table B-2, and Table 4: Added content.

May 2020 3.35 Sections 5.6.1 and 5.6.6: Minor updates.
Figure 5-16: Updated figure.

[AMD Public Use]

xxxiv

AMD64 Technology 24593—Rev. 3.37—March 2021

April 2020 3.34

Section 3.1.3: Updated register information. Added PCIDE and PKE
registers. Updated (TCE) content.
Section 5.3.2: Added Process Context Identifier register information and
register figure.
Section 5.3.3: Updated figure.
Section 5.3.4: Updated figure.
Section 5.3.5: Updated figure.
Section 5.4.1: Added (MPK) register information.
Section 5.5.1: Inserted Process Context Identifiers as Section 5.5.1.
Section 5.5.3: Added bullets to Implicit Invalidations list.
Section 5.6: Updated content.
Section 8.2.15: Added bullet.
Section 8.4.2: Updated register figure and added PK register information.
Section 11.5.2: Updated register figure and table.
Section 14.1.3: Updated table.
Section 15.9: Updated table.
Appendix B: Updated table.
Appendix C: Updated table.

Date Revision Description

[AMD Public Use]

xxxv

24593—Rev. 3.37—March 2021 AMD64 Technology

April 2020 3.33

Section 1.1.2: Clarification on address size support.
Section 3.2.1: New feature enable bits in SYSCFG MSR.
Section 7.6.5: Updated terminology.
Section 7.10.6: Clarification to encrypted memory operation.
Section 8.1.4: Clarification to IRET and NMI behavior.
Tables 8-1 and 8-2: Added #HV exception.
Inserted new 8.2.20 section for #HV exception.
Section 8.4.2: Changes for SEV-SNP extension.
Table 8-8: Added SEV-related exceptions.
Figure 10-6: Updated I/O Restart DWORD.
Section 15 and 15.1: General updates.
Section 15.5.2: Relocated VMLOAD/VMSAVE documentation.
Section 15.2.4 and 15.2.6: Updated content.
Section 15.6: Added content.
Table 15-7: Added content.
Section 15.25.6: Clarification.
Section 15.25.13: General clarifications.
Section 15.33.1 and 15.33.2: General clarifications.
Section 15.34.3, 15.34.7, and 15.34.10: Clarifications, and additions for
SEV-SNP.
Table 15-35: Added content.
Section 15.35.8: Corrected terminology.
Section 15.36: Added SEV-SNP extension documentation.
Table A-1 and Table A-7: Added SEV-SNP related MSRs.
Appendix B: Updates for SEV-SNP extension.
Table C-1: Added exit code for SEV-SNP extension.

October 2019 3.32 Added UMIP, XSS, GMET, VTE, MCOMMIT, and RDPRU.

July 2019 3.31

Added CLWB and WBNOINVD details.
Clarified FP error pointer save/restore behavior.
Corrected description of APIC Software Enable functionality.
Clarified canonical address checking behavior.
Clarified fault generation. March 2021n for instructions that cross page
or segment boundaries.

Date Revision Description

[AMD Public Use]

xxxvi

AMD64 Technology 24593—Rev. 3.37—March 2021

September 2018 3.30

Modified Section 7.4
Modified Section 7.6.4
Modified Section 8.5.2
Modified Section 9.2
Corrected Figure 9-4
Corrected Table 9-1
Modified Section 9.3.2
Corrected Figure 9-6
Corrected Table 9-4
Modified Section 14.2.3
Modified Section 14.4
Modified Section 15.6
Modified Section 15.7
Modified Section 15.34.9
Modified Section 15.34.10
Modified Section 15.35.2
Corrected Table B-4 in Appendix B

December 2017 3.29

Modified Sections 7.10.1 and 7.10.4.
Modified Sections 15.34.1, 15.34.7.
Added new Section 15.34.10.
Modified Section 15.35.10.
Modified Appendix A, Table A-7.

March 2017 3.28

Modified CR4 Register, Section 3.1.3.
Removed UD2 in Table 6-1.
Added new bullet in Section 7.1.1.
Modified Note in Table 7-1.
Added new Section 7.4.1.
Clarified Self Modifying Code in Section 7.6.1.
Added UD0 and UD1 instructions in Section 8.2.7.
Added Instructions Retired Performance counter in Section 13.1.1.
Modified Table in Section 15.34.9.

Date Revision Description

[AMD Public Use]

xxxvii

24593—Rev. 3.37—March 2021 AMD64 Technology

December 2016 3.27

Added Resume Flag (RF) Bit in Section 3.1.6, ”RFLAGS Register,” on page
52.
Added Tom2ForceMemTypeWB in Section 3.2.1, ”System Configuration
Register (SYSCFG),” on page 61.
Clarified SYSCALL and SYSRET in Section 6.1.1, ”SYSCALL and
SYSRET,” on page 169.
Added Section 7.3.2, ”Access Atomicity,” on page 190.
Updated Note b in Table 7-11 on page 220.
Modified Table 8-1, “Interrupt Vector Source and Cause”‚ on page 235.
Modified Table 8-2, “Interrupt Vector Classification”‚ on page 236.
Added Section 8.2.22, ”#VC—VMM Communication Exception (Vector
29),” on page 250.
Added a Note in Chapter 10, "System-Management Mode," on page 307.
Added Section 10.5, ”Multiprocessor Considerations,” on page 324.
Updated CPUID 8000_001F[EAX] and added CPUID
8000_001F[EDX] in Section 15.34.1, ”Determining Support for
SEV,” on page 562.
Added new Section 15.35, ”Encrypted State (SEV-ES),” on page 568.
Clarified TSC Ratio MSR in Section 15.30.5 ”TSC Ratio MSR
(C000_0104h)” on page 558.
Modified Appendix B, ”Layout of VMCB” on page 669.
Added Table B-3, “Swap Types”‚ on page 677.
Added Codes 8Fh, 90h-9Fh, and 403h in Table C-1, “SVM Intercept
Codes”‚ on page 683.

April 2016 3.26

Clarification on loading a null selector into FS or GS added in Section
4.5.3, ”Segment Registers in 64-Bit Mode,” on page 80
Translation table diagrams corrected for definition of bit 8 in Section 5.5,
”Translation-Lookaside Buffer (TLB),” on page 154
CR0.CD implementation-dependent behavior noted in Section 7.6.2,
”Cache Control Mechanisms,” on page 200
Added clarification on IST usage in Section 8.9.4, ”Interrupt-Stack Table,”
on page 274.
Added new Section 7.10, ”Secure Memory Encryption,” on page 226.
Added guideline for secure AP startup in Section 15.27.8, ”Secure
Multiprocessor Initialization,” on page 534
Added TLB maintenance requirement for multiprocessor VM's in Section
15.29.4, ”VMCB Changes in Support of AVIC,” on page 542.
Added new Section 15.34, ”Secure Encrypted Virtualization,” on page
561

Date Revision Description

[AMD Public Use]

xxxviii

AMD64 Technology 24593—Rev. 3.37—March 2021

June 2015 3.25
Added new section 15.33 Nested Virtualization for coverage of VMSAVE
and VMLOAD Virtualization and Virtual GIF.
Various minor edits.

October 2013 3.24

Added description of Supervisor-Mode Execution Prevention. See Section
5.6.5 ”Supervisor-Mode Execution Prevention (CR4.SMEP) Bit” on page
160.
Indicated the deprecation of the Processor Feedback Interface. See
Section 17.4, ”Processor Feedback Interface,” on page 634.
Added Section 17.5, ”Processor Core Power Reporting,” on page 634.

May 2013 3.23

Clarified guidelines for implementing cross-modifying code in the sub-
section ”Cross-Modifying Code” on page 199.
Added AVIC description. See Section 15.29, ”Advanced Virtual Interrupt
Controller,” on page 536.
Added L2I PMC architecture definition. See Section 13.2, ”Performance
Monitoring Counters,” on page 390.

September 2012 3.22

Clarified processor behavior on write of EFER[LMA] bit in Section 3.1.7
”Extended Feature Enable Register (EFER)” on page 56.
Clarified difference between cold reset and warm reset in Section 9.3,
”Machine Check Architecture MSRs,” on page 289.
Added information on FFXSR feature bit to Table 11-1 on page 326.
Clarified SMM code responsibility to manage VMCB clean bits. See
Section 15.15.2, ”Guidelines for Clearing VMCB Clean Bits,” on page 501.
Added a note to Table 15-9 on page 504 to indicate that all encodings of
TLB_CONTROL not defined are reserved.
Corrected information concerning the assignment of logical APIC IDs in
Section 16.6.1, ”Receiving System and IPI Interrupts,” on page 609.

March 2012 3.21

Added definition of processor feedback interface—frequency sensitivity
monitor (See Section 17.4, ”Processor Feedback Interface,” on page 634)
Added Instruction-Based Sampling in a new section of Chapter 13 (See
Section 13.3, ”Instruction-Based Sampling,” on page 399.)
Reworked Introduction and first section of Chapter 9, "Machine Check
Architecture," on page 285 and added deferred error handling.
Added description of CR4[FSGSBASE] bit. (See Section 3.1.3, ”CR4
Register,” on page 47.)
Added references to the RDFSBASE, RDGSBASE, WRFSBASE, and
WRGSBASE instructions in discussion of FS and GS segment descriptors.
(See ”FS and GS Registers in 64-Bit Mode” on page 80)
Added Section 6.3.2, ”Accessing Segment Register Hidden State,” on
page 174.

Date Revision Description

[AMD Public Use]

xxxix

24593—Rev. 3.37—March 2021 AMD64 Technology

December 2011 3.20

Clarified description of the Cache Disable (CD) memory type in Section
7.4 ”Memory Types” on page 190.
Added caveat: an overflow of either APERF or MPERF can invalidate the
effective frequency calculation. See Section 17.3, ”Determining Processor
Effective Frequency,” on page 632.
Other minor editorial changes.

September 2011 3.19

Added XSAVEOPT to discussions on XSAVE.
Corrections to discussion on multiprocessor memory access ordering in
Chapter 7.
Added discussion of extended core and northbridge performance
counters and feature indicators to Chapter 13.
Added Lightweight Profiling (LWP) to Chapter 13.
Added Global Timestamp Counter, Continuous Mode to LWP description
Clarification: Function of pin A20M# is only defined in real mode.
Statement added to Section 1.2.4, ”Real Addressing,” on page 10.
Eliminated hardware P-state references

May 2011 3.18

Added information for OSXSAVE and XSAVE features.
Added Cache Topology, Pause Filter Threshold, and XSETBV information.
Updated TSC ratio information.
Corrected description of FXSAVE/FXRSTOR exception behavior when
CR0.EM=1

June 2010 3.17 Replaced missing figures in Chapter 8, "Exceptions and Interrupts," on
page 231.

June 2010 3.16

Updated information on performance monitoring counters in
”Performance-Monitoring Counter Enable (PCE)” on page 50 and 6.2.5,
”Accessing Model-Specific Registers” on page 173.
Revised Table 4-1, ”Segment Registers” on page 79.
Add flush by ASID information to section 15.16, ”TLB Control” on page
503.
Added information on VMCB clean field to Chapter15, ”Secure Virtual
Machine” on page 473 and Appendix B, ”Layout of VMCB” on page 669.
Added section 15.10, ”IOIO Intercepts” on page 491.
Added section 15.30.5, ”TSC Ratio MSR (C000_0104h)” on page 558.
Added section 17.2, ”Core Performance Boost” on page 631.

Date Revision Description

[AMD Public Use]

xl

AMD64 Technology 24593—Rev. 3.37—March 2021

November 2009 3.15

Added section 7.5, ”Buffering and Combining Memory Writes” on page
195
Added MFENCE to list of ”Serializing Instructions” on page 204.
Updated section 7.6.1, ”Cache Organization and Operation” on page 197.
Updated Table 7-3, “Memory Access Ordering Rules”‚ on page 194 and
notes.
Updated 7.4, ”Memory Types” on page 190.
Clarified 5.5.3, ”TLB Management” on page 155.
Added ”Invalidation of Table Entry Upgrades.” on page 156.
Updated ”Speculative Caching of Address Translations” on page 156.
Update ”Handling of D-Bit Updates” on page 157.
Revised and updated section 7.2, ”Multiprocessor Memory Access
Ordering” on page 184 ff.
Added information on long mode segment-limit checks in ”Extended
Feature Enable Register (EFER)” on page 57table on page 57 and ”Long
Mode Segment Limit Enable (LMSLE) bit” on page 58 on page 58.
Added discussion of ”Data Limit Checks in 64-bit Mode” on page 123on
page 123.
Updated Table 6-1, “System Management Instructions”‚ on page 165.
Updated ”Canonicalization and Consistency Checks” on page 479on page
479.
Added information about the next sequential instruction pointer (nRIP) in
15.7.1, ”State Saved on Exit” on page 483.
Updated priority definition of PAUSE instruction intercept in Table 15-7,
“Instruction Intercepts”‚ on page 488.
Added nRIP field to Table B-1, “VMCB Layout, Control Area”‚ on
page 669.
Clarified information on ICEBP event injection, on page 506.
Deleted erroneous statement concerning the operation of the General
Local Vector Table register Mask bit in section 16.4.
Clarified the description of the Interrupt Command Register Delivery
Status bit in section ”Interprocessor Interrupts (IPI)” on page 605on
page 605.

Date Revision Description

[AMD Public Use]

xli

24593—Rev. 3.37—March 2021 AMD64 Technology

September
2007 3.14

Added information on ”Speculative Caching of Address Translations,”
”Caching of Upper Level Translation Table Entries,” ”Use of Cached
Entries When Reporting a Page Fault Exception,” ”Use of Cached Entries
When Reporting a Page Fault Exception,” ”Handling of D-Bit Updates,”
”Invalidation of Cached Upper-level Entries by INVLPG” on page 157 and
”Handling of PDPT Entries in PAE Mode” on page 157to section 5.5.3,
”TLB Management” on page 155.
Added 15.21.7, ”Interrupt Masking in Local APIC” on page 510.
Added 16.3.6, ”Extended APIC Control Register” on page 597; clarified
the use of the ICR DS bit in 16.5, ”Interprocessor Interrupts (IPI)” on
page 605.
Added minor clarifications and corrected typographical and formatting
errors.

July 2007 3.13

Added 5.3.5, ”1-Gbyte Page Translation” on page 147.
Added 7.2, ”Multiprocessor Memory Access Ordering” on page 184
Added divide-by-zero exception to Table 8-9, “Simultaneous Interrupt
Priorities”‚ on page 253.
Added information on ”CPU Watchdog Timer Register” on page 292and
”Machine-Check Miscellaneous-Error Information Register
0(MCi_MISC0)” on page 298to Chapter 9.
Added SSE4A support to Chapter 11, ”SSE, MMX, and x87 Programming”
on page 325.
Added Monitor and MWAIT intercept information to section 15.9,
”Instruction Intercepts” on page 488 and reorganized intercept
information; clarified 15.16.1, ”TLB Flush” on page 503.
Added Monitor and MWAIT intercepts to tables B-1, ”VMCB Layout,
Control Area” on page 669 and C-1, ”SVM Intercept Codes” on page 683.
Added Chapter 16, ”Advanced Programmable Interrupt Controller
(APIC)” on page 591, Chapter 17, ”OS-Visible Workaround Information”
on page 515, Chapter 17, ”Hardware Performance Monitoring and
Control” on page 629.
Added Table A-7, “Secure Virtual Machine MSR Cross-Reference”‚ on
page 664.
Added minor clarifications and corrected typographical and formatting
errors.

September
2006 3.12 Added numerous minor clarifications.

December 2005 3.11 Added Chapter 15, Secure Virtual Machine. Incorporated numerous
factual corrections and updates.

February 2005 3.10

Corrected Table 8-6, “General-Protection Exception Conditions”‚ on
page 244. Added SSE3 information. Clarified and corrected information
on the CPUID instruction and feature identification. Added information
on the RDTSCP instruction. Clarified information about MTRRs and PATs
in multiprocessing systems.

Date Revision Description

[AMD Public Use]

xlii

AMD64 Technology 24593—Rev. 3.37—March 2021

September
2003 3.09 Corrected numerous minor typographical errors.

April 2003 3.08

Clarified terms in section on FXSAVE/FXSTOR. Corrected several minor
errors of omission. Documentation of CR0.NW bit has been corrected.
Several register diagrams and figure labels have been corrected.
Description of shared cache lines has been clarified in 7.3, ”Memory
Coherency and Protocol” on page 187.

September
2002 3.07 Made numerous small grammatical changes and factual clarifications.

Added Revision History.

Date Revision Description

[AMD Public Use]

xliii

24593—Rev. 3.37—March 2021 AMD64 Technology

Preface

About This Book
This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience
This volume (Volume 2) is intended for programmers writing operating systems, loaders, linkers,
device drivers, or system utilities. It assumes an understanding of AMD64 architecture application-
level programming as described in Volume 1.

This volume describes the AMD64 architecture’s resources and functions that are managed by system
software, including operating-mode control, memory management, interrupts and exceptions, task and
state-change management, system-management mode (including power management), multi-
processor support, debugging, and processor initialization.

Application-programming topics are described in Volume 1. Details about each instruction are
described in Volumes 3, 4, and 5.

Organization
This volume begins with an overview of system programming and differences between the x86 and
AMD64 architectures. This is followed by chapters that describe the following details of system
programming:

• System Resources—The system registers and processor ID (CPUID) functions.
• Segmented Virtual Memory—The segmented-memory models supported by the architecture and

their associated data structures and protection checks.
• Page Translation and Protection—The page-translation functions supported by the architecture

and their associated data structures and protection checks.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

[AMD Public Use]

xliv

AMD64 Technology 24593—Rev. 3.37—March 2021

• System Instructions—The instructions used to manage system functions.
• Memory System—The memory-system hierarchy and its resources and protocols, including

memory-characterization, caching, and buffering functions.
• Exceptions and Interrupts—Details about the types and causes of exceptions and interrupts, and

the methods of transferring control during these events.
• Machine-Check Mechanism—The resources and functions that support detection and handling of

machine-check errors.
• System-Management Mode—The resources and functions that support system-management mode

(SMM), including power-management functions.
• SSE, MMX, and x87 Programming—The resources and functions that support use (by application

software) and state-saving (by the operation system) of the 256-bit media, 128-bit media, 64-bit
media, and x87 floating-point instructions.

• Multiple-Processor Management—The features of the instruction set and the system resources and
functions that support multiprocessing environments.

• Debug and Performance Resources—The system resources and functions that support software
debugging and performance monitoring.

• Legacy Task Management—Support for the legacy hardware multitasking functions, including
register resources and data structures.

• Processor Initialization and Long-Mode Activation—The methods by which system software
initializes and changes operating modes.

• Mixing Code Across Operating Modes—Things to remember when running programs in different
operating modes.

• Secure Virtual Machine—The system resources that support machine virtualization.
• Advanced Programmable Interrupt Controller (APIC) operation.

There are appendices describing details of model-specific registers (MSRs) and machine-check
implementations. Definitions assumed throughout this volume are listed below. The index at the end of
this volume cross-references topics within the volume. For other topics relating to the AMD64
architecture, see the tables of contents and indexes of the other volumes.

Conventions and Definitions
The section which follows, Notational Conventions, describes notational conventions used in this
volume. The next section, Definitions, lists a number of terms used in this volume along with their
technical definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See
“Related Documents” on page lv for further information about the legacy x86 architecture. Finally, the
Registers section lists the registers which are a part of the system programming model.

[AMD Public Use]

xlv

24593—Rev. 3.37—March 2021 AMD64 Technology

Notational Conventions

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value—in this example, a 4-bit value.

F0EA_0B02h
A hexadecimal value. Underscore characters may be inserted to improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]
Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “_RRR” notation is followed by
“_xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CR0–CR4
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0[PE], CR0.PE
Notation for referring to a field within a register—in this case, the PE field of the CR0 register.

CR0[PE] = 1, CR0.PE = 1
The PE field of the CR0 register is set (contains the value 1).

EFER[LME] = 0, EFER.LME = 0
The LME field of the EFER register is cleared (contains a value of 0).

DS:SI
A far pointer or logical address. The real address or segment descriptor specified by the segment
register (DS in this example) is combined with the offset contained in the second register (SI in this
example) to form a real or virtual address.

[AMD Public Use]

xlvi

AMD64 Technology 24593—Rev. 3.37—March 2021

RFLAGS[13:12]
A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute
Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

ASID
Address space identifier.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct
Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

[AMD Public Use]

xlvii

24593—Rev. 3.37—March 2021 AMD64 Technology

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement
A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size
The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

exception
An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

GIF
Global interrupt flag.

GPA
Guest physical address. In a virtualized environment, the page tables maintained by the guest
operating system provide the translation from the linear (virtual) address to the guest physical

[AMD Public Use]

xlviii

AMD64 Technology 24593—Rev. 3.37—March 2021

address. Nested page tables define the translation of the GPA to the host physical address (HPA).
See SPA and HPA.

HPA
Host physical address. The address space owned by the virtual machine monitor. In a virtualized
environment, nested page translation tables controlled by the VMM provide the translation from
the guest physical address to the host physical address. See GPA.

IDT
Interrupt descriptor table.

IGN
Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on page lv for descriptions of the legacy
x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

LIP
Linear Instruction Pointer. LIP = (CS.base + rIP).

[AMD Public Use]

xlix

24593—Rev. 3.37—March 2021 AMD64 Technology

long mode
An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1 in a system register, a general-protection
exception (#GP) occurs; if in a translation table entry, a reserved-bit page fault exception (#PF)
will occur if the hardware attempts to use the entry for address translation. See reserved.

memory
Unless otherwise specified, main memory.

ModRM
A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

octword
Same as double quadword.

offset
Same as displacement.

[AMD Public Use]

l

AMD64 Technology 24593—Rev. 3.37—March 2021

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

procedure stack
A portion of a stack segment in memory that is used to link procedures. Also known as a program
stack.

program stack
See procedure stack.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Value returned on a read is always zero (0) regardless of what was previously written. See
reserved.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

[AMD Public Use]

li

24593—Rev. 3.37—March 2021 AMD64 Technology

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.
If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.
Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX
An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

SBZ
Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

shadow stack
A shadow stack is a separate, protected stack that is conceptually parallel to the procedure stack

and used only by the shadow stack feature.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SPA
System physical address. The address directly used to address system memory. Under SVM, also
known as the host physical address. See HPA.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

SVM
Secure virtual machine. AMD’s virtualization architecture. SVM is defined in Chapter 15 on
page 473.

System software
Privileged software that owns and manages the hardware resources of a system after initialization
by system firmware and controls access to these resources. In a non-virtualized environment,

[AMD Public Use]

lii

AMD64 Technology 24593—Rev. 3.37—March 2021

system software is provided by the operating system. In a virtualized environment, system
software is largely equivalent to the virtual machine monitor (VMM), also commonly known as
the hypervisor.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single data
object. Most of the SSE and 64-bit media instructions use vectors as operands.
(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

[AMD Public Use]

liii

24593—Rev. 3.37—March 2021 AMD64 Technology

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

[AMD Public Use]

liv

AMD64 Technology 24593—Rev. 3.37—March 2021

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

[AMD Public Use]

lv

24593—Rev. 3.37—March 2021 AMD64 Technology

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

SSP
Shadow-stack pointer register.

TPR
Task priority register (CR8), a new register introduced in the AMD64 architecture to speed
interrupt management.

TR
Task register.

YMM/XMM
Set of sixteen (eight accessible in legacy and compatibility modes) 256-bit wide registers that hold
scala and vector operands used by the SSE instructions.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.
• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood

Cliffs, NJ, 1991.
• AMD, BIOS and Kernel Developer’s Guide (BKDG) for particular hardware implementations of

older families of the AMD64 architecture.

[AMD Public Use]

lvi

AMD64 Technology 24593—Rev. 3.37—March 2021

• AMD, Processor Programming Reference (PPR) for particular hardware implementations of
newer families of the AMD64 architecture.

• AMD, AMD I/O Virtualization Technology (IOMMU) Specification, Revision 2.2 or later; order
number 48882.

• AMD, Software Optimization Guide for AMD Family 15h Processors, order number 47414.
• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New

York, 1995.
• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,

1992.
• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,

Macmillan Publishing Co., New York, 1994.
• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,

Prentice-Hall, Englewood Cliffs, NJ, 1995.
• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.
• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest

McGraw-Hill, 1993.
• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.
• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and

Technologies, Inc., San Jose, 1992.
• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.
• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,

1995.
• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.
• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,

TX, 1996.
• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.
• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,

NY, 1991.
• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New

York, 1991.
• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.
• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,

San Mateo, CA, 1996.
• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.
• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo

Park, CA, 1997.
• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,

1993.

[AMD Public Use]

lvii

24593—Rev. 3.37—March 2021 AMD64 Technology

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.
• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel

Pentium, Oxford University Press, New York, 1999.
• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &

Sons, New York, 1987.
• NexGen Inc., Nx586TM Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
• NexGen Inc., Nx686TM Processor Data Book, NexGen Inc., Milpitas, CA, 1994.
• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium® III,

www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.
• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,

Redmond, WA, 1993.
• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.
• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,

New York, 1993.
• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite

class, 1992.
• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.
• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson

Corporation, 1995.
• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.

[AMD Public Use]

lviii

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

System-Programming Overview 1

24593—Rev. 3.37—March 2021 AMD64 Technology

1 System-Programming Overview

This entire volume is intended for system-software developers—programmers writing operating
systems, loaders, linkers, device drivers, or utilities that require access to system resources. These
system resources are generally available only to software running at the highest-privilege level
(CPL=0), also referred to as privileged software. Privilege levels and their interactions are fully
described in “Segment-Protection Overview” on page 104.

This chapter introduces the basic features and capabilities of the AMD64 architecture that are
available to system-software developers. The concepts include:

• The supported address forms and how memory is organized.
• How memory-management hardware makes use of the various address forms to access memory.
• The processor operating modes, and how the memory-management hardware supports each of

those modes.
• The system-control registers used to manage system resources.
• The interrupt and exception mechanism, and how it is used to interrupt program execution and to

report errors.
• Additional, miscellaneous features available to system software, including support for hardware

multitasking, reporting machine-check exceptions, debugging software problems, and optimizing
software performance.

Many of the legacy features and capabilities are enhanced by the AMD64 architecture to support 64-
bit operating systems and applications, while providing backward-compatibility with existing
software.

1.1 Memory Model
The AMD64 architecture memory model is designed to allow system software to manage application
software and associated data in a secure fashion. The memory model is backward-compatible with the
legacy memory model. Hardware-translation mechanisms are provided to map addresses between
virtual-memory space and physical-memory space. The translation mechanisms allow system
software to relocate applications and data transparently, either anywhere in physical-memory space, or
in areas on the system hard drive managed by the operating system.

In long mode, the AMD64 architecture implements a flat-memory model. In legacy mode, the
architecture implements all legacy memory models.

[AMD Public Use]

2 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

1.1.1 Memory Addressing

The AMD64 architecture supports address relocation. To do this, several types of addresses are needed
to completely describe memory organization. Specifically, four types of addresses are defined by the
AMD64 architecture:

• Logical addresses
• Effective addresses, or segment offsets, which are a portion of the logical address.
• Linear (virtual) addresses
• Physical addresses

Logical Addresses. A logical address is a reference into a segmented-address space. It is comprised
of the segment selector and the effective address. Notationally, a logical address is represented as
Logical Address = Segment Selector : Offset

The segment selector specifies an entry in either the global or local descriptor table. The specified
descriptor-table entry describes the segment location in virtual-address space, its size, and other
characteristics. The effective address is used as an offset into the segment specified by the selector.

Logical addresses are often referred to as far pointers. Far pointers are used in software addressing
when the segment reference must be explicit (i.e., a reference to a segment outside the current
segment).

Effective Addresses. The offset into a memory segment is referred to as an effective address (see
“Segmentation” on page 5 for a description of segmented memory). Effective addresses are formed by
adding together elements comprising a base value, a scaled-index value, and a displacement value.
The effective-address computation is represented by the equation
Effective Address = Base + (Scale x Index) + Displacement

The elements of an effective-address computation are defined as follows:

• Base—A value stored in any general-purpose register.
• Scale—A positive value of 1, 2, 4, or 8.
• Index—A two’s-complement value stored in any general-purpose register.
• Displacement—An 8-bit, 16-bit, or 32-bit two’s-complement value encoded as part of the

instruction.

Effective addresses are often referred to as near pointers. A near pointer is used when the segment
selector is known implicitly or when the flat-memory model is used.

Long mode defines a 64-bit effective-address length. If a processor implementation does not support
the full 64-bit virtual-address space, the effective address must be in canonical form (see “Canonical
Address Form” on page 4).

[AMD Public Use]

System-Programming Overview 3

24593—Rev. 3.37—March 2021 AMD64 Technology

Linear (Virtual) Addresses. The segment-selector portion of a logical address specifies a segment-
descriptor entry in either the global or local descriptor table. The specified segment-descriptor entry
contains the segment-base address, which is the starting location of the segment in linear-address
space. A linear address is formed by adding the segment-base address to the effective address
(segment offset), which creates a reference to any byte location within the supported linear-address
space. Linear addresses are often referred to as virtual addresses, and both terms are used
interchangeably throughout this document.
Linear Address = Segment Base Address + Effective Address

When the flat-memory model is used—as in 64-bit mode—a segment-base address is treated as 0. In
this case, the linear address is identical to the effective address. In long mode, linear addresses must be
in canonical address form, as described in “Canonical Address Form” on page 4.

Physical Addresses. A physical address is a reference into the physical-address space, typically
main memory. Physical addresses are translated from virtual addresses using page-translation
mechanisms. See “Paging” on page 7 for information on how the paging mechanism is used for
virtual-address to physical-address translation. When the paging mechanism is not enabled, the virtual
(linear) address is used as the physical address.

1.1.2 Memory Organization

The AMD64 architecture organizes memory into virtual memory and physical memory. Virtual-
memory and physical-memory spaces can be (and usually are) different in size. Generally, the virtual-
address space is much larger than physical-address memory. System software relocates applications
and data between physical memory and the system hard disk to make it appear that much more
memory is available than really exists. System software then uses the hardware memory-management
mechanisms to map the larger virtual-address space into the smaller physical-address space.

Virtual Memory. Software uses virtual addresses to access locations within the virtual-memory
space. System software is responsible for managing the relocation of applications and data in virtual-
memory space using segment-memory management. System software is also responsible for mapping
virtual memory to physical memory through the use of page translation. The AMD64 architecture
supports different virtual-memory sizes using the following address-translation modes:

• Protected Mode—This mode supports 4 gigabytes of virtual-address space using 32-bit virtual
addresses.

• Long Mode—This mode supports 16 exabytes of virtual-address space using 64-bit virtual
addresses. A given implementation may however support less than this, as reported by the CPUID
feature identification facility.

[AMD Public Use]

4 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

Physical Memory. Physical addresses are used to directly access main memory. For a particular
computer system, the size of the available physical-address space is equal to the amount of main
memory installed in the system. The maximum amount of physical memory accessible depends on the
processor implementation and on the address-translation mode. The AMD64 architecture supports
varying physical-memory sizes using the following address-translation modes:

• Real-Address Mode—This mode, also called real mode, supports 1 megabyte of physical-address
space using 20-bit physical addresses. This address-translation mode is described in “Real
Addressing” on page 10. Real mode is available only from legacy mode (see “Legacy Modes” on
page 14).

• Legacy Protected Mode—This mode supports several different address-space sizes, depending on
the translation mechanism used and whether extensions to those mechanisms are enabled.
Legacy protected mode supports 4 gigabytes of physical-address space using 32-bit physical
addresses. Both segment translation (see “Segmentation” on page 5) and page translation (see
“Paging” on page 7) can be used to access the physical address space, when the processor is
running in legacy protected mode.
When the physical-address size extensions are enabled (see “Physical-Address Extensions (PAE)
Bit” on page 132), the page-translation mechanism can be extended to support 52-bit physical
addresses. 52-bit physical addresses allow up to 4 petabytes of physical-address space to be
supported. (Currently, the AMD64 architecture supports 40-bit addresses in this mode, allowing
up to 1 terabyte of physical-address space to be supported.

• Long Mode—This mode is unique to the AMD64 architecture. This mode supports up to 4
petabytes of physical-address space using 52-bit physical addresses. Long mode requires the use of
page-translation and the physical-address size extensions (PAE).

1.1.3 Canonical Address Form

Long mode defines 64 bits of virtual-address space, but processor implementations can support less.
Although some processor implementations do not use all 64 bits of the virtual address, they all check
bits 63 through the most-significant implemented bit to see if those bits are all zeros or all ones. An
address that complies with this property is in canonical address form. In most cases, a virtual-memory
reference that is not in canonical form (in either the linear or effective form of the address) causes a
general-protection exception (#GP) to occur. However, implied stack references where the stack
address is not in canonical form causes a stack exception (#SS) to occur. Implied stack references
include all push and pop instructions, and any instruction using RSP or RBP as a base register.

By checking canonical-address form, the AMD64 architecture prevents software from exploiting
unused high bits of pointers for other purposes. Software complying with canonical-address form on a
specific processor implementation can run unchanged on long-mode implementations supporting
larger virtual-address spaces.

[AMD Public Use]

System-Programming Overview 5

24593—Rev. 3.37—March 2021 AMD64 Technology

1.2 Memory Management
Memory management consists of the methods by which addresses generated by software are translated
by segmentation and/or paging into addresses in physical memory. Memory management is not visible
to application software. It is handled by the system software and processor hardware.

1.2.1 Segmentation

Segmentation was originally created as a method by which system software could isolate software
processes (tasks), and the data used by those processes, from one another in an effort to increase the
reliability of systems running multiple processes simultaneously.

The AMD64 architecture is designed to support all forms of legacy segmentation. However, most
modern system software does not use the segmentation features available in the legacy x86
architecture. Instead, system software typically handles program and data isolation using page-level
protection. For this reason, the AMD64 architecture dispenses with multiple segments in 64-bit mode
and, instead, uses a flat-memory model. The elimination of segmentation allows new 64-bit system
software to be coded more simply, and it supports more efficient management of multi-processing than
is possible in the legacy x86 architecture.

Segmentation is, however, used in compatibility mode and legacy mode. Here, segmentation is a form
of base memory-addressing that allows software and data to be relocated in virtual-address space off
of an arbitrary base address. Software and data can be relocated in virtual-address space using one or
more variable-sized memory segments. The legacy x86 architecture provides several methods of
restricting access to segments from other segments so that software and data can be protected from
interfering with each other.

In compatibility and legacy modes, up to 16,383 unique segments can be defined. The base-address
value, segment size (called a limit), protection, and other attributes for each segment are contained in a
data structure called a segment descriptor. Collections of segment descriptors are held in descriptor
tables. Specific segment descriptors are referenced or selected from the descriptor table using a
segment selector register. Six segment-selector registers are available, providing access to as many as
six segments at a time.

Figure 1-1 on page 6 shows an example of segmented memory. Segmentation is described in
Chapter 4, “Segmented Virtual Memory.”

[AMD Public Use]

6 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 1-1. Segmented-Memory Model

Flat Segmentation. One special case of segmented memory is the flat-memory model. In the legacy
flat-memory model, all segment-base addresses have a value of 0, and the segment limits are fixed at
4 Gbytes. Segmentation cannot be disabled but use of the flat-memory model effectively disables
segment translation. The result is a virtual address that equals the effective address. Figure 1-2 on
page 7 shows an example of the flat-memory model.

Software running in 64-bit mode automatically uses the flat-memory model. In 64-bit mode, the
segment base is treated as if it were 0, and the segment limit is ignored. This allows an effective
addresses to access the full virtual-address space supported by the processor.

Effective Address

Selectors

Base

Limit

Base

Limit

Descriptor Table

Virtual Address
Space

Virtual Address

Segment

Segment

DS

ES

FS

GS

CS

SS

[AMD Public Use]

System-Programming Overview 7

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 1-2. Flat Memory Model

1.2.2 Paging

Paging allows software and data to be relocated in physical-address space using fixed-size blocks
called physical pages. The legacy x86 architecture supports three different physical-page sizes of
4 Kbytes, 2 Mbytes, and 4 Mbytes. As with segment translation, access to physical pages by lesser-
privileged software can be restricted.

Page translation uses a hierarchical data structure called a page-translation table to translate virtual
pages into physical-pages. The number of levels in the translation-table hierarchy can be as few as one
or as many as four, depending on the physical-page size and processor operating mode. Translation
tables are aligned on 4-Kbyte boundaries. Physical pages must be aligned on 4-Kbyte, 2-Mbyte, or 4-
Mbyte boundaries, depending on the physical-page size.

Each table in the translation hierarchy is indexed by a portion of the virtual-address bits. The entry
referenced by the table index contains a pointer to the base address of the next-lower-level table in the
translation hierarchy. In the case of the lowest-level table, its entry points to the physical-page base
address. The physical page is then indexed by the least-significant bits of the virtual address to yield
the physical address.

Figure 1-3 on page 8 shows an example of paged memory with three levels in the translation-table
hierarchy. Paging is described in Chapter 5, “Page Translation and Protection.”

513-202.eps

Effective Address

Virtual Address
Space

Virtual Address

Flat Segment

[AMD Public Use]

8 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 1-3. Paged Memory Model

Software running in long mode is required to have page translation enabled.

1.2.3 Mixing Segmentation and Paging

Memory-management software can combine the use of segmented memory and paged memory.
Because segmentation cannot be disabled, paged-memory management requires some minimum
initialization of the segmentation resources. Paging can be completely disabled, so segmented-
memory management does not require initialization of the paging resources.

Segments can range in size from a single byte to 4 Gbytes in length. It is therefore possible to map
multiple segments to a single physical page and to map multiple physical pages to a single segment.
Alignment between segment and physical-page boundaries is not required, but memory-management
software is simplified when segment and physical-page boundaries are aligned.

513-203.eps

Page Translation Tables

Physical Address
Space

Physical Address

Page Table Base Address

Virtual Address

Physical Page

Table 3Table 2Table 1

[AMD Public Use]

System-Programming Overview 9

24593—Rev. 3.37—March 2021 AMD64 Technology

The simplest, most efficient method of memory management is the flat-memory model. In the flat-
memory model, all segment base addresses have a value of 0 and the segment limits are fixed at 4
Gbytes. The segmentation mechanism is still used each time a memory reference is made, but because
virtual addresses are identical to effective addresses in this model, the segmentation mechanism is
effectively ignored. Translation of virtual (or effective) addresses to physical addresses takes place
using the paging mechanism only.

Because 64-bit mode disables segmentation, it uses a flat, paged-memory model for memory
management. The 4 Gbyte segment limit is ignored in 64-bit mode. Figure 1-4 shows an example of
this model.

Figure 1-4. 64-Bit Flat, Paged-Memory Model

513-204.eps

Physical Address
Space

Page Frame

Physical Address

Page Translation Tables

Page Table Base Address

Effective Address

Virtual Address
Space

Virtual Address

Flat Segment

[AMD Public Use]

10 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

1.2.4 Real Addressing

Real addressing is a legacy-mode form of address translation used in real mode. This simplified form
of address translation is backward compatible with 8086-processor effective-to-physical address
translation. In this mode, 16-bit effective addresses are mapped to 20-bit physical addresses, providing
a 1-Mbyte physical-address space.

Segment selectors are used in real-address translation, but not as an index into a descriptor table.
Instead, the 16-bit segment-selector value is shifted left by 4 bits to form a 20-bit segment-base
address. The 16-bit effective address is added to this 20-bit segment base address to yield a 20-bit
physical address. If the sum of the segment base and effective address carries over into bit 20, that bit
can be optionally truncated to mimic the 20-bit address wrapping of the 8086 processor by using the
A20M# input signal to mask the A20 address bit.

A20 address bit masking should only be used real mode (see next section for information on real
mode). Use in other modes may result in address translation errors.

Real-address translation supports a 1-Mbyte physical-address space using up to 64K segments aligned
on 16-byte boundaries. Each segment is exactly 64 Kbytes long. Figure 1-5 shows an example of real-
address translation.

Figure 1-5. Real-Address Memory Model

513-205.eps

Effective Address

Selectors

+

0000 Effective Address 0000Selector

Physical Address

019019

019

015

DS

ES

FS

GS

CS

SS

[AMD Public Use]

System-Programming Overview 11

24593—Rev. 3.37—March 2021 AMD64 Technology

1.3 Operating Modes
The legacy x86 architecture provides four operating modes or environments that support varying
forms of memory management, virtual-memory and physical-memory sizes, and protection:

• Real Mode.
• Protected Mode.
• Virtual-8086 Mode.
• System Management Mode.

The AMD64 architecture supports all these legacy modes, and it adds a new operating mode called
long mode. Table 1-1 shows the differences between long mode and legacy mode. Software can move
between all supported operating modes as shown in Figure 1-6 on page 12. Each operating mode is
described in the following sections.

Table 1-1. Operating Modes

Mode
System

Software
Required

Application
Recompile
Required

Defaults1

Register
Extensions2

Maximum
GPR

Width
(bits)

 Address
Size

(bits)

Operand
Size

(bits)

Long
Mode3

64-Bit
Mode New

64-bit OS

yes 64
32

yes 64

Compatibility
Mode

no
32

no 32
16 16

Legacy
Mode

Protected Mode
Legacy

32-bit OS
no

32 32

no

32
16 16

Virtual-8086
Mode 16 16 32

Real Mode
Legacy

16-bit OS
Note:

1. Defaults can be overridden in most modes using an instruction prefix or system control bit.
2. Register extensions include access to the upper eight general-purpose and YMM/XMM registers, uniform access to lower 8

bits of all GPRs, and access to the upper 32 bits of the GPRs.
3. Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode.

[AMD Public Use]

12 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 1-6. Operating Modes of the AMD64 Architecture

1.3.1 Long Mode

Long mode consists of two submodes: 64-bit mode and compatibility mode. 64-bit mode supports
several new features, including the ability to address 64-bit virtual-address space. Compatibility mode
provides binary compatibility with existing 16-bit and 32-bit applications when running on 64-bit
system software.

Throughout this document, references to long mode refer collectively to both 64-bit mode and
compatibility mode. If a function is specific to either 64-bit mode or compatibility mode, then those
specific names are used instead of the name long mode.

Before enabling and activating long mode, system software must first enable protected mode. The
process of enabling and activating long mode is described in Chapter 14, “Processor Initialization and

513-206.eps

System
Management

Mode

Real
Mode

Virtual
8086
Mode

Protected
Mode

Long Mode

64-bit
Mode

Compatibility
Mode

EFER.LME=1, CR4.PAE=1
then CR0.PG=1

CR0.PE=1

CR0.PG=0
then EFER.LME=0

CS.L=0

CS.L=1

CS.L=0

CR0.PE=0

EFLAGS.VM=1

EFLAGS.VM=0

RSMSMI#

RSM

SMI#

SMI#

SMI#

RSM

RSM

SMI#RSM

Reset

Reset
Reset

Reset

[AMD Public Use]

System-Programming Overview 13

24593—Rev. 3.37—March 2021 AMD64 Technology

Long Mode Activation.” Long mode features are described throughout this document, where
applicable.

1.3.2 64-Bit Mode

64-bit mode, a submode of long mode, provides support for 64-bit system software and applications by
adding the following features:

• 64-bit virtual addresses (processor implementations can have fewer).
• Access to General Purpose Register bits 63:32
• Access to additional registers through the REX, VEX, and XOP instruction prefixes:

- eight additional GPRs (R8–R15)
- eight additional Streaming SIMD Extension (SSE) registers (YMM/XMM8–15)

• 64-bit instruction pointer (RIP).
• New RIP-relative data-addressing mode.
• Flat-segment address space with single code, data, and stack space.

The mode is enabled by the system software on an individual code-segment basis. Although code
segments are used to enable and disable 64-bit mode, the legacy segmentation mechanism is largely
disabled. Page translation is required for memory management purposes. Because 64-bit mode
supports a 64-bit virtual-address space, it requires 64-bit system software and development tools.

In 64-bit mode, the default address size is 64 bits, and the default operand size is 32 bits. The defaults
can be overridden on an instruction-by-instruction basis using instruction prefixes. A new REX prefix
is introduced for specifying a 64-bit operand size and the new registers.

1.3.3 Compatibility Mode

Compatibility mode, a submode of long mode, allows system software to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applications to run,
without recompilation, under 64-bit system software in long mode, as shown in Table 1-1 on page 11.

In compatibility mode, applications can only access the first 4 Gbytes of virtual-address space.
Standard x86 instruction prefixes toggle between 16-bit and 32-bit address and operand sizes.

Compatibility mode, like 64-bit mode, is enabled by system software on an individual code-segment
basis. Unlike 64-bit mode, however, segmentation functions the same as in the legacy-x86
architecture, using 16-bit or 32-bit protected-mode semantics. From an application viewpoint,
compatibility mode looks like a legacy protected-mode environment. From a system-software
viewpoint, the long-mode mechanisms are used for address translation, interrupt and exception
handling, and system data-structures.

[AMD Public Use]

14 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

1.3.4 Legacy Modes

Legacy mode consists of three submodes: real mode, protected mode, and virtual-8086 mode.
Protected mode can be either paged or unpaged. Legacy mode preserves binary compatibility not only
with existing x86 16-bit and 32-bit applications but also with existing x86 16-bit and 32-bit system
software.

Real Mode. In this mode, also called real-address mode, the processor supports a physical-memory
space of 1 Mbyte and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes). Interrupt
handling and address generation are nearly identical to the 80286 processor's real mode. Paging is not
supported. All software runs at privilege level 0.

Real mode is entered after reset or processor power-up. The mode is not supported when the processor
is operating in long mode because long mode requires that paged protected mode be enabled.

Protected Mode. In this mode, the processor supports virtual-memory and physical-memory spaces
of 4 Gbytes and operand sizes of 16 or 32 bits. All segment translation, segment protection, and
hardware multitasking functions are available. System software can use segmentation to relocate
effective addresses in virtual-address space. If paging is not enabled, virtual addresses are equal to
physical addresses. Paging can be optionally enabled to allow translation of virtual addresses to
physical addresses and to use the page-based memory-protection mechanisms.

In protected mode, software runs at privilege levels 0, 1, 2, or 3. Typically, application software runs at
privilege level 3, the system software runs at privilege levels 0 and 1, and privilege level 2 is available
to system software for other uses. The 16-bit version of this mode was first introduced in the 80286
processor.

Virtual-8086 Mode. Virtual-8086 mode allows system software to run 16-bit real-mode software on a
virtualized-8086 processor. In this mode, software written for the 8086, 8088, 80186, or 80188
processor can run as a privilege-level-3 task under protected mode. The processor supports a virtual-
memory space of 1 Mbytes and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes),
and it uses real-mode address translation.

Virtual-8086 mode is enabled by setting the virtual-machine bit in the EFLAGS register
(EFLAGS.VM). EFLAGS.VM can only be set or cleared when the EFLAGS register is loaded from
the TSS as a result of a task switch, or by executing an IRET instruction from privileged software. The
POPF instruction cannot be used to set or clear the EFLAGS.VM bit.

Virtual-8086 mode is not supported when the processor is operating in long mode. When long mode is
enabled, any attempt to enable virtual-8086 mode is silently ignored.

[AMD Public Use]

System-Programming Overview 15

24593—Rev. 3.37—March 2021 AMD64 Technology

1.3.5 System Management Mode (SMM)

System management mode (SMM) is an operating mode designed for system-control activities that are
typically transparent to conventional system software. Power management is one popular use for
system management mode. SMM is primarily targeted for use by platform firmware and specialized
low-level device drivers. The code and data for SMM are stored in the SMM memory area, which is
isolated from main memory by the SMM output signal.

SMM is entered by way of a system management interrupt (SMI). Upon recognizing an SMI, the
processor enters SMM and switches to a separate address space where the SMM handler is located and
executes. In SMM, the processor supports real-mode addressing with 4 Gbyte segment limits and
default operand, address, and stack sizes of 16 bits (prefixes can be used to override these defaults).

1.4 System Registers
Figure 1-7 on page 16 shows the system registers defined for the AMD64 architecture. System
software uses these registers to, among other things, manage the processor operating environment,
define system resource characteristics, and to monitor software execution. With the exception of the
RFLAGS register, system registers can be read and written only from privileged software.

Except for the descriptor-table registers and task register, the AMD64 architecture defines all system
registers to be 64 bits wide. The descriptor table and task registers are defined by the AMD64
architecture to include 64-bit base-address fields, in addition to their other fields.

As shown in Figure 1-7 on page 16, the system registers include:

• Control Registers—These registers are used to control system operation and some system features.
See “System-Control Registers” on page 41 for details.

• System-Flags Register—The RFLAGS register contains system-status flags and masks. It is also
used to enable virtual-8086 mode and to control application access to I/O devices and interrupts.
See “RFLAGS Register” on page 52 for details.

• Descriptor-Table Registers—These registers contain the location and size of descriptor tables
stored in memory. Descriptor tables hold segmentation data structures used in protected mode. See
“Descriptor Tables” on page 82 for details.

• Task Register—The task register contains the location and size in memory of the task-state
segment. The hardware-multitasking mechanism uses the task-state segment to hold state
information for a given task. The TSS also holds other data, such as the inner-level stack pointers
used when changing to a higher privilege level. See “Task Register” on page 355 for details.

• Debug Registers—Debug registers are used to control the software-debug mechanism, and to
report information back to a debug utility or application. See “Debug Registers” on page 376 for
details.

[AMD Public Use]

16 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 1-7. System Registers

Also defined as system registers are a number of model-specific registers included in the AMD64
architectural definition, and shown in Figure 1-7:

• Extended-Feature-Enable Register—The EFER register is used to enable and report status on
special features not controlled by the CRn control registers. In particular, EFER is used to control
activation of long mode. See “Extended Feature Enable Register (EFER)” on page 56 for more
information.

Control Registers
CR0
CR2
CR3
CR4
CR8

System-Flags Register
RFLAGS

Debug Registers
DR0
DR1
DR2
DR3
DR6
DR7

System_Registers_Diag.eps

Memory-Typing Registers
MTRRcap

MTRRdefType
MTRRphysBasen
MTRRphysMaskn

MTRRfixn
PAT

TOP_MEM
TOP_MEM2

Machine-Check Registers
MCG_CAP
MCG_STAT
MCG_CTL
MCi_CTL

MCi_STATUS
MCi_ADDR
MCi_MISC

Model-Specific Registers

Descriptor-Table Registers
GDTR
IDTR
LDTR

Task Register
TR

Extended-Feature-Enable Register
EFER

Debug-Extension Registers
DebugCtl

LastBranchFromIP
LastBranchToIP
LastIntFromIP

LastIntToIP

System-Configuration Register
SYSCFG

System-Linkage Registers
STAR

LSTAR
CSTAR

FS.base
GS.base

KernelGSbase
SYSENTER_CS

SYSENTER_ESP
SYSENTER_EIP

SFMASK Performance-Monitoring Registers
TSC

PerfEvtSeln
PerfCtrn

[AMD Public Use]

System-Programming Overview 17

24593—Rev. 3.37—March 2021 AMD64 Technology

• System-Configuration Register—The SYSCFG register is used to enable and configure system-
bus features. See “System Configuration Register (SYSCFG)” on page 61 for more information.

• System-Linkage Registers—These registers are used by system-linkage instructions to specify
operating-system entry points, stack locations, and pointers into system-data structures. See “Fast
System Call and Return” on page 168 for details.

• Memory-Typing Registers—Memory-typing registers can be used to characterize (type) system
memory. Typing memory gives system software control over how instructions and data are cached,
and how memory reads and writes are ordered. See “MTRRs” on page 207 for details.

• Debug-Extension Registers—These registers control additional software-debug reporting features.
See “Debug Registers” on page 376 for details.

• Performance-Monitoring Registers—Performance-monitoring registers are used to count
processor and system events, or the duration of events. See “Performance Monitoring Counters”
on page 390 for more information.

• Machine-Check Registers—The machine-check registers control the response of the processor to
non-recoverable failures. They are also used to report information on such failures back to system
utilities designed to respond to such failures. See “Machine Check Architecture MSRs” on
page 289 for more information.

1.5 System-Data Structures
Figure 1-8 on page 18 shows the system-data structures defined for the AMD64 architecture. System-
data structures are created and maintained by system software for use by the processor when running
in protected mode. A processor running in protected mode uses these data structures to manage
memory and protection, and to store program-state information when an interrupt or task switch
occurs.

[AMD Public Use]

18 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 1-8. System-Data Structures

As shown in Figure 1-8, the system-data structures include:

• Descriptors—A descriptor provides information about a segment to the processor, such as its
location, size and privilege level. A special type of descriptor, called a gate, is used to provide a
code selector and entry point for a software routine. Any number of descriptors can be defined, but
system software must at a minimum create a descriptor for the currently executing code segment
and stack segment. See “Legacy Segment Descriptors” on page 88, and “Long-Mode Segment
Descriptors” on page 97 for complete information on descriptors.

• Descriptor Tables—As the name implies, descriptor tables hold descriptors. The global-descriptor
table holds descriptors available to all programs, while a local-descriptor table holds descriptors
used by a single program. The interrupt-descriptor table holds only gate descriptors used by

513-261.eps

Segment Descriptors (Contained in Descriptor Tables)

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Task-State Segment

Page-Translation Tables

Page-Map Level-4 Page TablePage DirectoryPage-Directory Pointer

Global-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Interrupt-Descriptor Table

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

Local-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Descriptor Tables

[AMD Public Use]

System-Programming Overview 19

24593—Rev. 3.37—March 2021 AMD64 Technology

interrupt handlers. System software must initialize the global-descriptor and interrupt-descriptor
tables, while use of the local-descriptor table is optional. See “Descriptor Tables” on page 82 for
more information.

• Task-State Segment—The task-state segment is a special segment for holding processor-state
information for a specific program, or task. It also contains the stack pointers used when switching
to more-privileged programs. The hardware multitasking mechanism uses the state information in
the segment when suspending and resuming a task. Calls and interrupts that switch stacks cause
the stack pointers to be read from the task-state segment. System software must create at least one
task-state segment, even if hardware multitasking is not used. See “Legacy Task-State Segment”
on page 357, and “64-Bit Task State Segment” on page 361 for details.

• Page-Translation Tables—Use of page translation is optional in protected mode, but it is required
in long mode. A four-level page-translation data structure is provided to allow long-mode
operating systems to translate a 64-bit virtual-address space into a 52-bit physical-address space.
Legacy protected mode can use two- or three-level page-translation data structures. See “Page
Translation Overview” on page 129 for more information on page translation.

1.6 Interrupts
The AMD64 architecture provides a mechanism for the processor to automatically suspend (interrupt)
software execution and transfer control to an interrupt handler when an interrupt or exception occurs.
An interrupt handler is privileged software designed to identify and respond to the cause of an
interrupt or exception, and return control back to the interrupted software. Interrupts can be caused
when system hardware signals an interrupt condition using one of the external-interrupt signals on the
processor. Interrupts can also be caused by software that executes an interrupt instruction. Exceptions
occur when the processor detects an abnormal condition as a result of executing an instruction. The
term “interrupts” as used throughout this volume includes both interrupts and exceptions when the
distinction is unnecessary.

System software not only sets up the interrupt handlers, but it must also create and initialize the data
structures the processor uses to execute an interrupt handler when an interrupt occurs. The data
structures include the code-segment descriptors for the interrupt-handler software and any data-
segment descriptors for data and stack accesses. Interrupt-gate descriptors must also be supplied.
Interrupt gates point to interrupt-handler code-segment descriptors, and the entry point in an interrupt
handler. Interrupt gates are stored in the interrupt-descriptor table. The code-segment and data-
segment descriptors are stored in the global-descriptor table and, optionally, the local-descriptor table.

When an interrupt occurs, the processor uses the interrupt vector to find the appropriate interrupt gate
in the interrupt-descriptor table. The gate points to the interrupt-handler code segment and entry point,
and the processor transfers control to that location. Before invoking the interrupt handler, the
processor saves information required to return to the interrupted program. For details on how the
processor transfers control to interrupt handlers, see “Legacy Protected-Mode Interrupt Control
Transfers” on page 259, and “Long-Mode Interrupt Control Transfers” on page 270.

[AMD Public Use]

20 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

Table 1-2 shows the supported interrupts and exceptions, ordered by their vector number. Refer to
“Vectors” on page 234 for a complete description of each interrupt, and a description of the interrupt
mechanism.

1.7 Additional System-Programming Facilities
1.7.1 Hardware Multitasking

A task is any program that the processor can execute, suspend, and later resume executing at the point
of suspension. During the time a task is suspended, other tasks are allowed to execute. Each task has its
own execution space, consisting of a code segment, data segments, and a stack segment for each
privilege level. Tasks can also have their own virtual-memory environment managed by the page-
translation mechanism. The state information defining this execution space is stored in the task-state
segment (TSS) maintained for each task.

Table 1-2. Interrupts and Exceptions
Vector Description

0 Integer Divide-by-Zero Exception
1 Debug Exception
2 Non-Maskable-Interrupt
3 Breakpoint Exception (INT 3)
4 Overflow Exception (INTO instruction)
5 Bound-Range Exception (BOUND instruction)
6 Invalid-Opcode Exception
7 Device-Not-Available Exception
8 Double-Fault Exception
9 Coprocessor-Segment-Overrun Exception (reserved in AMD64)
10 Invalid-TSS Exception
11 Segment-Not-Present Exception
12 Stack Exception
13 General-Protection Exception
14 Page-Fault Exception
15 (Reserved)
16 x87 Floating-Point Exception
17 Alignment-Check Exception
18 Machine-Check Exception
19 SIMD Floating-Point Exception
21 Control-Protection Exception

0–255 Interrupt Instructions
0–255 Hardware Maskable Interrupts

[AMD Public Use]

System-Programming Overview 21

24593—Rev. 3.37—March 2021 AMD64 Technology

Support for hardware multitasking is provided by implementations of the AMD64 architecture when
software is running in legacy mode. Hardware multitasking provides automated mechanisms for
switching tasks, saving the execution state of the suspended task, and restoring the execution state of
the resumed task. When hardware multitasking is used to switch tasks, the processor takes the
following actions:

• The processor automatically suspends execution of the task, allowing any executing instructions to
complete and save their results.

• The execution state of a task is saved in the task TSS.
• The execution state of a new task is loaded into the processor from its TSS.
• The processor begins executing the new task at the location specified in the new task TSS.

Use of hardware-multitasking features is optional in legacy mode. Generally, modern operating
systems do not use the hardware-multitasking features, and instead perform task management entirely
in software. Long mode does not support hardware multitasking at all.

Whether hardware multitasking is used or not, system software must create and initialize at least one
task-state segment data-structure. This requirement holds for both long-mode and legacy-mode
software. The single task-state segment holds critical pieces of the task execution environment and is
referenced during certain control transfers.

Detailed information on hardware multitasking is available in Chapter 12, “Task Management,” along
with a full description of the requirements that must be met in initializing a task-state segment when
hardware multitasking is not used.

1.7.2 Machine Check

Implementations of the AMD64 architecture support the machine-check exception. This exception is
useful in system applications with stringent requirements for reliability, availability, and serviceability.
The exception allows specialized system-software utilities to report hardware errors that are generally
severe and non-recoverable. Providing the capability to report such errors can allow complex system
problems to be pinpointed rapidly.

The machine-check exception is described in Chapter 9, “Machine Check Architecture.” Much of the
error-reporting capabilities is implementation dependent. For more information, developers of
machine-check error-reporting software should refer to the BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference Manual (PPR) or applicable to your product.

1.7.3 Software Debugging

A software-debugging mechanism is provided in hardware to help software developers quickly isolate
programming errors. This capability can be used to debug system software and application software
alike. Only privileged software can access the debugging facilities. Generally, software-debug support
is provided by a privileged application program rather than by the operating system itself.

The facilities supported by the AMD64 architecture allow debugging software to perform the
following:

[AMD Public Use]

22 System-Programming Overview

AMD64 Technology 24593—Rev. 3.37—March 2021

• Set breakpoints on specific instructions within a program.
• Set breakpoints on an instruction-address match.
• Set breakpoints on a data-address match.
• Set breakpoints on specific I/O-port addresses.
• Set breakpoints to occur on task switches when hardware multitasking is used.
• Single step an application instruction-by-instruction.
• Single step only branches and interrupts.
• Record a history of branches and interrupts taken by a program.

The debugging facilities are fully described in “Software-Debug Resources” on page 376. Some
processors provide additional, implementation-specific debug support. For more information, refer to
the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
(PPR) applicable to your product.

1.7.4 Performance Monitoring

For many software developers, the ability to identify and eliminate performance bottlenecks from a
program is nearly as important as quickly isolating programming errors. Implementations of the
AMD64 architecture provide hardware performance-monitoring resources that can be used by special
software applications to identify such bottlenecks. Non-privileged software can access the
performance monitoring facilities, but only if privileged software grants that access.

The performance-monitoring facilities allow the counting of events, or the duration of events.
Performance-analysis software can use the data to calculate the frequency of certain events, or the time
spent performing specific activities. That information can be used to suggest areas for improvement
and the types of optimizations that are helpful.

The performance-monitoring facilities are fully described in “Performance Monitoring Counters” on
page 390. The specific events that can be monitored are generally implementation specific. For more
information, refer to the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manual (PPR) applicable to your product.

[AMD Public Use]

x86 and AMD64 Architecture Differences 23

24593—Rev. 3.37—March 2021 AMD64 Technology

2 x86 and AMD64 Architecture Differences

The AMD64 architecture is designed to provide full binary compatibility with all previous AMD
implementations of the x86 architecture. This chapter summarizes the new features and architectural
enhancements introduced by the AMD64 architecture, and compares those features and enhancements
with previous AMD x86 processors. Most of the new capabilities introduced by the AMD64
architecture are available only in long mode (64-bit mode, compatibility mode, or both). However,
some of the new capabilities are also available in legacy mode, and are mentioned where appropriate.

The material throughout this chapter assumes the reader has a solid understanding of the x86
architecture. For those who are unfamiliar with the x86 architecture, please read the remainder of this
volume before reading this chapter.

2.1 Operating Modes
See “Operating Modes” on page 11 for a complete description of the operating modes supported by the
AMD64 architecture.

2.1.1 Long Mode

The AMD64 architecture introduces long mode and its two sub-modes: 64-bit mode and compatibility
mode.

64-Bit Mode. 64-bit mode provides full support for 64-bit system software and applications. The new
features introduced in support of 64-bit mode are summarized throughout this chapter. To use 64-bit
mode, a 64-bit operating system and tool chain are required.

Compatibility Mode. Compatibility mode allows 64-bit operating systems to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applications to run,
without recompilation, under control of a 64-bit operating system in long mode. The architectural
enhancements introduced by the AMD64 architecture that support compatibility mode are
summarized throughout this chapter.

Unsupported Modes. Long mode does not support the following two operating modes:

• Virtual-8086 Mode—The virtual-8086 mode bit (EFLAGS.VM) is ignored when the processor is
running in long mode. When long mode is enabled, any attempt to enable virtual-8086 mode is
silently ignored. System software must leave long mode in order to use virtual-8086 mode.

• Real Mode—Real mode is not supported when the processor is operating in long mode because
long mode requires that protected mode be enabled.

2.1.2 Legacy Mode

The AMD64 architecture supports a pure x86 legacy mode, which preserves binary compatibility not
only with existing 16-bit and 32-bit applications but also with existing 16-bit and 32-bit operating

[AMD Public Use]

24 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.37—March 2021

systems. Legacy mode supports real mode, protected mode, and virtual-8086 mode. A reset always
places the processor in legacy mode (real mode), and the processor continues to run in legacy mode
until system software activates long mode. New features added by the AMD64 architecture that are
supported in legacy mode are summarized in this chapter.

2.1.3 System-Management Mode

The AMD64 architecture supports system-management mode (SMM). SMM can be entered from both
long mode and legacy mode, and SMM can return directly to either mode. The following differences
exist between the support of SMM in the AMD64 architecture and the SMM support found in previous
processor generations:

• The SMRAM state-save area format is changed to hold the 64-bit processor state. This state-save
area format is used regardless of whether SMM is entered from long mode or legacy mode.

• The auto-halt restart and I/O-instruction restart entries in the SMRAM state-save area are one byte
instead of two bytes.

• The initial processor state upon entering SMM is expanded to reflect the 64-bit nature of the
processor.

• New conditions exist that can cause a processor shutdown while exiting SMM.
• SMRAM caching considerations are modified because the legacy FLUSH# external signal

(writeback, if modified, and invalidate) is not supported on implementations of the AMD64
architecture.

See Chapter 10, “System-Management Mode,” for more information on the SMM differences.

2.2 Memory Model
The AMD64 architecture provides enhancements to the legacy memory model to support very large
physical-memory and virtual-memory spaces while in long mode. Some of this expanded support for
physical memory is available in legacy mode.

2.2.1 Memory Addressing

Virtual-Memory Addressing. Virtual-memory support is expanded to 64 address bits in long mode.
This allows up to 16 exabytes of virtual-address space to be accessed. The virtual-address space
supported in legacy mode is unchanged.

Physical-Memory Addressing. Physical-memory support is expanded to 52 address bits in long
mode and legacy mode. This allows up to 4 petabytes of physical memory to be accessed. The
expanded physical-memory support is achieved by using paging and the page-size extensions.

Note that given processor may implement less than the architecturally-defined physical address size of
52 bits.

[AMD Public Use]

x86 and AMD64 Architecture Differences 25

24593—Rev. 3.37—March 2021 AMD64 Technology

Effective Addressing. The effective-address length is expanded to 64 bits in long mode. An
effective-address calculation uses 64-bit base and index registers, and sign-extends 8-bit and 32-bit
displacements to 64 bits. In legacy mode, effective addresses remain 32 bits long.

2.2.2 Page Translation

The AMD64 architecture defines an expanded page-translation mechanism supporting translation of a
64-bit virtual address to a 52-bit physical address. See “Long-Mode Page Translation” on page 141 for
detailed information on the enhancements to page translation in the AMD64 architecture. The
enhancements are summarized below.

Physical-Address Extensions (PAE). The AMD64 architecture requires physical-address
extensions to be enabled (CR4.PAE=1) before long mode is entered. When PAE is enabled, all paging
data-structures are 64 bits, allowing references into the full 52-bit physical-address space supported by
the architecture.

Page-Size Extensions (PSE). Page-size extensions (CR4.PSE) are ignored in long mode. Long
mode does not support the 4-Mbyte page size enabled by page-size extensions. Long mode does,
however, support 4-Kbyte and 2-Mbyte page sizes.

Paging Data Structures. The AMD64 architecture extends the page-translation data structures in
support of long mode. The extensions are:

• Page-map level-4 (PML4)—Long mode defines a new page-translation data structure, the PML4
table. The PML4 table sits at the top of the page-translation hierarchy and references PDP tables.

• Page-directory pointer (PDP)—The PDP tables in long mode are expanded from 4 entries to 512
entries each.

• Page-directory pointer entry (PDPE)—Previously undefined fields within the legacy-mode PDPE
are defined by the AMD64 architecture.

CR3 Register. The CR3 register is expanded to 64 bits for use in long-mode page translation. When
long mode is active, the CR3 register references the base address of the PML4 table. In legacy mode,
the upper 32 bits of CR3 are masked by the processor to support legacy page translation. CR3
references the PDP base-address when physical-address extensions are enabled, or the page-directory
table base-address when physical-address extensions are disabled.

Legacy-Mode Enhancements. Legacy-mode software can take advantage of the enhancements
made to the physical-address extension (PAE) support and page-size extension (PSE) support. The
four-level page translation mechanism introduced by long mode is not available to legacy-mode
software.

• PAE—When physical-address extensions are enabled (CR4.PAE=1), the AMD64 architecture
allows legacy-mode software to load up to 52-bit (maximum size) physical addresses into the PDE
and PTE. Note that addresses are expanded to the maximum physical address size supported by the
implementation.

[AMD Public Use]

26 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.37—March 2021

• PSE—The use of page-size extensions allows legacy mode software to define 4-Mbyte pages
using the 32-bit page-translation tables. When page-size extensions are enabled (CR4.PSE=1), the
AMD64 architecture enhances the 4-Mbyte PDE to support 40 physical-address bits.

See “Legacy-Mode Page Translation” on page 133 for more information on these enhancements.

2.2.3 Segmentation

In long mode, the effects of segmentation depend on whether the processor is running in compatibility
mode or 64-bit mode:

• In compatibility mode, segmentation functions just as it does in legacy mode, using legacy 16-bit
or 32-bit protected mode semantics.

• 64-bit mode requires a flat-memory model for creating a flat 64-bit virtual-address space. Much of
the segmentation capability present in legacy mode and compatibility mode is disabled when the
processor is running in 64-bit mode.

The differences in the segmentation model as defined by the AMD64 architecture are summarized in
the following sections. See Chapter 4, “Segmented Virtual Memory,” for a thorough description of
these differences.

Descriptor-Table Registers. In long mode, the base-address portion of the descriptor-table registers
(GDTR, IDTR, LDTR, and TR) are expanded to 64 bits. The full 64-bit base address can only be
loaded by software when the processor is running in 64-bit mode (using the LGDT, LIDT, LLDT, and
LTR instructions, respectively). However, the full 64-bit base address is used by a processor running in
compatibility mode (in addition to 64-bit mode) when making a reference into a descriptor table.

A processor running in legacy mode can only load the low 32 bits of the base address, and the high 32
bits are ignored when references are made to the descriptor tables.

Code-Segment Descriptors. The AMD64 architecture defines a new code-segment descriptor
attribute, L (long). In compatibility mode, the processor treats code-segment descriptors as it does in
legacy mode, with the exception that the processor recognizes the L attribute. If a code descriptor with
L=1 is loaded in compatibility mode, the processor leaves compatibility mode and enters 64-bit mode.
In legacy mode, the L attribute is reserved.

The following differences exist for code-segment descriptors in 64-bit mode only:

• The CS base-address field is ignored by the processor.
• The CS limit field is ignored by the processor.
• Only the L (long), D (default size), and DPL (descriptor-privilege level) fields are used by the

processor in 64-bit mode. All remaining attributes are ignored.

Data-Segment Descriptors. The following differences exist for data-segment descriptors in 64-bit
mode only:

• The DS, ES, and SS descriptor base-address fields are ignored by the processor.

[AMD Public Use]

x86 and AMD64 Architecture Differences 27

24593—Rev. 3.37—March 2021 AMD64 Technology

• The FS and GS descriptor base-address fields are expanded to 64 bits and used in effective-address
calculations. The 64 bits of base address are mapped to model-specific registers (MSRs), and can
only be loaded using the WRMSR instruction.

• The limit fields and attribute fields of all data-segment descriptors (DS, ES, FS, GS, and SS) are
ignored by the processor.

In compatibility mode, the processor treats data-segment descriptors as it does in legacy mode.
Compatibility mode ignores the high 32 bits of base address in the FS and GS segment descriptors
when calculating an effective address.

System-Segment Descriptors. In 64-bit mode only, The LDT and TSS system-segment descriptor
formats are expanded by 64 bits, allowing them to hold 64-bit base addresses. LLDT and LTR
instructions can be used to load these descriptors into the LDTR and TR registers, respectively, from
64-bit mode.

In compatibility mode and legacy mode, the formats of the LDT and TSS system-segment descriptors
are unchanged. Also, unlike code-segment and data-segment descriptors, system-segment descriptor
limits are checked by the processor in long mode.

Some legacy mode LDT and TSS type-field encodings are illegal in long mode (both compatibility
mode and 64-bit mode), and others are redefined to new types. See “System Descriptors” on page 99
for additional information.

Gate Descriptors. The following differences exist between gate descriptors in long mode (both
compatibility mode and 64-bit mode) and in legacy mode:

• In long mode, all 32-bit gate descriptors are redefined as 64-bit gate descriptors, and are expanded
to hold 64-bit offsets. The length of a gate descriptor in long mode is therefore 128 bits (16 bytes),
versus the 64 bits (8 bytes) in legacy mode.

• Some type-field encodings are illegal in long mode, and others are redefined to new types. See
“Gate Descriptors” on page 101 for additional information.

• The interrupt-gate and trap-gate descriptors define a new field, called the interrupt-stack table
(IST) field.

2.3 Protection Checks
The AMD64 architecture makes the following changes to the protection mechanism in long mode:

• The page-protection-check mechanism is expanded in long mode to include the U/S and R/W
protection bits stored in the PML4 entries and PDP entries.

• Several system-segment types and gate-descriptor types that are legal in legacy mode are illegal in
long mode (compatibility mode and 64-bit mode) and fail type checks when used in long mode.

• Segment-limit checks are disabled in 64-bit mode for the CS, DS, ES, FS, GS, and SS segments.
Segment-limit checks remain enabled for the LDT, GDT, IDT and TSS system segments.
All segment-limit checks are performed in compatibility mode.

[AMD Public Use]

28 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.37—March 2021

• Code and data segments used in 64-bit mode are treated as both readable and writable.

See “Page-Protection Checks” on page 158 and “Segment-Protection Overview” on page 104 for
detailed information on the protection-check changes.

2.4 Registers
The AMD64 architecture adds additional registers to the architecture, and in many cases expands the
size of existing registers to 64 bits. The 80-bit floating-point stack registers and their overlaid 64-bit
MMX™ registers are not modified by the AMD64 architecture.

2.4.1 General-Purpose Registers

In 64-bit mode, the general-purpose registers (GPRs) are 64 bits wide, and eight additional GPRs are
available. The GPRs are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and the new R8–R15
registers. To access the full 64-bit operand size, or the new R8–R15 registers, an instruction must
include a new REX instruction-prefix byte (see “REX Prefixes” on page 29 for a summary of this
prefix).

In compatibility and legacy modes, the GPRs consist only of the eight legacy 32-bit registers. All
legacy rules apply for determining operand size.

2.4.2 YMM/XMM Registers

In 64-bit mode, eight additional YMM/XMM registers are available, YMM/XMM8–15. A REX
instruction prefix is used to access these registers. In compatibility and legacy modes, only registers
YMM/XMM0–7 are accessible.

2.4.3 Flags Register

The flags register is expanded to 64 bits, and is called RFLAGS. All 64 bits can be accessed in 64-bit
mode, but the upper 32 bits are reserved and always read back as zeros. Compatibility mode and
legacy mode can read and write only the lower-32 bits of RFLAGS (the legacy EFLAGS).

2.4.4 Instruction Pointer

In long mode, the instruction pointer is extended to 64 bits, to support 64-bit code offsets. This 64-bit
instruction pointer is called RIP.

2.4.5 Stack Pointer

In 64-bit mode, the size of the stack pointer, RSP, is always 64 bits. The stack size is not controlled by
a bit in the SS descriptor, as it is in compatibility or legacy mode, nor can it be overridden by an
instruction prefix. Address-size overrides are ignored for implicit stack references.

[AMD Public Use]

x86 and AMD64 Architecture Differences 29

24593—Rev. 3.37—March 2021 AMD64 Technology

2.4.6 Control Registers

The AMD64 architecture defines several enhancements to the control registers (CRn). In long mode,
all control registers are expanded to 64 bits, although the entire 64 bits can be read and written only
from 64-bit mode. A new control register, the task-priority register (CR8 or TPR) is added, and can be
read and written from 64-bit mode. Last, the function of the page-enable bit (CR0.PG) is expanded.
When long mode is enabled, the PG bit is used to activate and deactivate long mode.

2.4.7 Debug Registers

In long mode, all debug registers are expanded to 64 bits, although the entire 64 bits can be read and
written only from 64-bit mode. Expanded register encodings for the decode registers allow up to eight
new registers to be defined (DR8–DR15), although presently those registers are not supported by the
AMD64 architecture.

2.4.8 Extended Feature Register (EFER)

The EFER is expanded by the AMD64 architecture to include a long-mode-enable bit (LME), and a
long-mode-active bit (LMA). These new bits can be accessed from legacy mode and long mode.

2.4.9 Memory Type Range Registers (MTRRs)

The legacy MTRRs are architecturally defined as 64 bits, and can accommodate the maximum 52-bit
physical address allowed by the AMD64 architecture. From both long mode and legacy mode,
implementations of the AMD64 architecture reference the entire 52-bit physical-address value stored
in the MTRRs. Long mode and legacy mode system software can update all 64 bits of the MTRRs to
manage the expanded physical-address space.

2.4.10 Other Model-Specific Registers (MSRs)

Several other MSRs have fields holding physical addresses. Examples include the APIC-base register
and top-of-memory register. Generally, any model-specific register that contains a physical address is
defined architecturally to be 64 bits wide, and can accommodate the maximum physical-address size
defined by the AMD64 architecture. When physical addresses are read from MSRs by the processor,
the entire value is read regardless of the operating mode. In legacy implementations, the high-order
MSR bits are reserved, and software must write those values with zeros. In legacy mode on AMD64
architecture implementations, software can read and write all supported high-order MSR bits.

2.5 Instruction Set
2.5.1 REX Prefixes

REX prefixes are used in 64-bit mode to:

• Specify the new GPRs and YMM/XMM registers.
• Specify a 64-bit operand size.

[AMD Public Use]

30 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.37—March 2021

• Specify additional control registers. One additional control register, CR8, is defined in 64-bit
mode.

• Specify additional debug registers (although none are currently defined).

Not all instructions require a REX prefix. The prefix is necessary only if an instruction references one
of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is
ignored.

Default 64-Bit Operand Size. In 64-bit mode, two groups of instructions have a default operand size
of 64 bits and thus do not need a REX prefix for this operand size:

• Near branches.
• All instructions, except far branches, that implicitly reference the RSP. See “Instructions that

Reference RSP” on page 31 for additional information.

2.5.2 Segment-Override Prefixes in 64-Bit Mode

In 64-bit mode, the DS, ES, SS, and CS segment-override prefixes have no effect. These four prefixes
are no longer treated as segment-override prefixes in the context of multiple-prefix rules. Instead, they
are treated as null prefixes.

The FS and GS segment-override prefixes are treated as segment-override prefixes in 64-bit mode.
Use of the FS and GS prefixes cause their respective segment bases to be added to the effective address
calculation. See “FS and GS Registers in 64-Bit Mode” on page 80 for additional information on using
these segment registers.

2.5.3 Operands and Results

The AMD64 architecture provides support for using 64-bit operands and generating 64-bit results
when operating in 64-bit mode.

Operand-Size Overrides. In 64-bit mode, the default operand size is 32 bits. A REX prefix can be
used to specify a 64-bit operand size. Software uses a legacy operand-size (66h) prefix to toggle to 16-
bit operand size. The REX prefix takes precedence over the legacy operand-size prefix.

Zero Extension of Results. In 64-bit mode, when performing 32-bit operations with a GPR
destination, the processor zero-extends the 32-bit result into the full 64-bit destination. Both 8-bit and
16-bit operations on GPRs preserve all unwritten upper bits of the destination GPR. This is consistent
with legacy 16-bit and 32-bit semantics for partial-width results.

2.5.4 Address Calculations

The AMD64 architecture modifies aspects of effective-address calculation to support 64-bit mode.
These changes are summarized in the following sections. See “Memory Addressing” in Volume 1 for
details.

[AMD Public Use]

x86 and AMD64 Architecture Differences 31

24593—Rev. 3.37—March 2021 AMD64 Technology

Address-Size Overrides. In 64-bit mode, the default-address size is 64 bits. The address size can be
overridden to 32 bits by using the address-size prefix (67h). 16-bit addresses are not supported in 64-
bit mode. In compatibility mode and legacy mode, address-size overrides function the same as in x86
legacy architecture.

Displacements and Immediates. Generally, displacement and immediate values in 64-bit mode are
not extended to 64 bits. They are still limited to 32 bits and are sign extended during effective-address
calculations. In 64-bit mode, however, support is provided for some 64-bit displacement and
immediate forms of the MOV instruction.

Zero Extending 16-Bit and 32-Bit Addresses. All 16-bit and 32-bit address calculations are zero-
extended in long mode to form 64-bit addresses. Address calculations are first truncated to the
effective-address size of the current mode (64-bit mode or compatibility mode), as overridden by any
address-size prefix. The result is then zero-extended to the full 64-bit address width.

RIP-Relative Addressing. A new addressing form, RIP-relative (instruction-pointer relative)
addressing, is implemented in 64-bit mode. The effective address is formed by adding the
displacement to the 64-bit RIP of the next instruction.

2.5.5 Instructions that Reference RSP

With the exception of far branches, all instructions that implicitly reference the 64-bit stack pointer,
RSP, default to a 64-bit operand size in 64-bit mode (see Table 2-1 for a listing). Pushes and pops of
32-bit stack values are not possible in 64-bit mode with these instructions, but they can be overridden
to 16 bits.

Table 2-1. Instructions That Reference RSP

Mnemonic Opcode
(hex) Description

ENTER C8 Create Procedure Stack Frame
LEAVE C9 Delete Procedure Stack Frame
POP reg/mem 8F/0 Pop Stack (register or memory)
POP reg 58-5F Pop Stack (register)
POP FS 0F A1 Pop Stack into FS Segment Register
POP GS 0F A9 Pop Stack into GS Segment Register
POPF, POPFD, POPFQ 9D Pop to rFLAGS Word, Doubleword, or Quadword
PUSH imm32 68 Push onto Stack (sign-extended doubleword)
PUSH imm8 6A Push onto Stack (sign-extended byte)
PUSH reg/mem FF/6 Push onto Stack (register or memory)
PUSH reg 50-57 Push onto Stack (register)
PUSH FS 0F A0 Push FS Segment Register onto Stack
PUSH GS 0F A8 Push GS Segment Register onto Stack
PUSHF, PUSHFD, PUSHFQ 9C Push rFLAGS Word, Doubleword, or Quadword onto Stack

[AMD Public Use]

32 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.37—March 2021

2.5.6 Branches

The AMD64 architecture expands two branching mechanisms to accommodate branches in the full
64-bit virtual-address space:

• In 64-bit mode, near-branch semantics are redefined.
• In both 64-bit and compatibility modes, a 64-bit call-gate descriptor is defined for far calls.

In addition, enhancements are made to the legacy SYSCALL and SYSRET instructions.

Near Branches. In 64-bit mode, the operand size for all near branches defaults to 64 bits (see
Table 2-2 for a listing). Therefore, these instructions update the full 64-bit RIP without the need for a
REX operand-size prefix. The following aspects of near branches default to 64 bits:

• Truncation of the instruction pointer.
• Size of a stack pop or stack push, resulting from a CALL or RET.
• Size of a stack-pointer increment or decrement, resulting from a CALL or RET.
• Size of operand fetched by indirect-branch operand size.

The operand size for near branches can be overridden to 16 bits in 64-bit mode.

The address size of near branches is not forced in 64-bit mode. Such addresses are 64 bits by default,
but they can be overridden to 32 bits by a prefix.

The size of the displacement field for relative branches is still limited to 32 bits.

Far Branches Through Long-Mode Call Gates. Long mode redefines the 32-bit call-gate
descriptor type as a 64-bit call-gate descriptor and expands the call-gate descriptor size to hold a 64-bit
offset. The long-mode call-gate descriptor allows far branches to reference any location in the
supported virtual-address space. In long mode, the call-gate mechanism is changed as follows:

• In long mode, CALL and JMP instructions that reference call-gates must reference 64-bit call
gates.

• A 64-bit call-gate descriptor must reference a 64-bit code-segment.

Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size

Mnemonic Opcode
(hex) Description

CALL E8, FF/2 Call Procedure Near
Jcc many Jump Conditional Near
JMP E9, EB, FF/4 Jump Near
LOOP E2 Loop
LOOPcc E0, E1 Loop Conditional
RET C3, C2 Return From Call (near)

[AMD Public Use]

x86 and AMD64 Architecture Differences 33

24593—Rev. 3.37—March 2021 AMD64 Technology

• When a control transfer is made through a 64-bit call gate, the 64-bit target address is read from the
64-bit call-gate descriptor. The base address in the target code-segment descriptor is ignored.

Stack Switching. Automatic stack switching is also modified when a control transfer occurs through
a call gate in long mode:

• The target-stack pointer read from the TSS is a 64-bit RSP value.
• The SS register is loaded with a null selector. Setting the new SS selector to null allows nested

control transfers in 64-bit mode to be handled properly. The SS.RPL value is updated to remain
consistent with the newly loaded CPL value.

• The size of pushes onto the new stack is modified to accommodate the 64-bit RIP and RSP values.
• Automatic parameter copying is not supported in long mode.

Far Returns. In long mode, far returns can load a null SS selector from the stack under the following
conditions:

• The target operating mode is 64-bit mode.
• The target CPL<3.

Allowing RET to load SS with a null selector under these conditions makes it possible for the
processor to unnest far CALLs (and interrupts) in long mode.

Task Gates. Control transfers through task gates are not supported in long mode.

Branches to 64-Bit Offsets. Because immediate values are generally limited to 32 bits, the only way
a full 64-bit absolute RIP can be specified in 64-bit mode is with an indirect branch. For this reason,
direct forms of far branches are eliminated from the instruction set in 64-bit mode.

SYSCALL and SYSRET Instructions. The AMD64 architecture expands the function of the legacy
SYSCALL and SYSRET instructions in long mode. In addition, two new STAR registers, LSTAR and
CSTAR, are provided to hold the 64-bit target RIP for the instructions when they are executed in long
mode. The legacy STAR register is not expanded in long mode. See “SYSCALL and SYSRET” on
page 169 for additional information.

SWAPGS Instruction. The AMD64 architecture provides the SWAPGS instruction as a fast method
for system software to load a pointer to system data-structures. SWAPGS is valid only in 64-bit mode.
An undefined-opcode exception (#UD) occurs if software attempts to execute SWAPGS in legacy
mode or compatibility mode. See “SWAPGS Instruction” on page 171 for additional information.

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT instructions are invalid in
long mode, and result in an invalid opcode exception (#UD) if software attempts to use them. Software
should use the SYSCALL and SYSRET instructions when running in long mode. See “SYSENTER
and SYSEXIT (Legacy Mode Only)” on page 171 for additional information.

[AMD Public Use]

34 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.37—March 2021

2.5.7 NOP Instruction

The legacy x86 architecture commonly uses opcode 90h as a one-byte NOP. In 64-bit mode, the
processor treats opcode 90h specially in order to preserve this NOP definition. This is necessary
because opcode 90h is actually the XCHG EAX, EAX instruction in the legacy architecture. Without
special handling in 64-bit mode, the instruction would not be a true no-operation. Therefore, in 64-bit
mode the processor treats opcode 90h (the legacy XCHG EAX, EAX instruction) as a true NOP,
regardless of a REX operand-size prefix.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction. Unless a
64-bit operand size is specified using a REX prefix byte, using the two-byte form of XCHG to
exchange a register with itself does not result in a no-operation, because the default operation size is 32
bits in 64-bit mode.

2.5.8 Single-Byte INC and DEC Instructions

In 64-bit mode, the legacy encodings for the 16 single-byte INC and DEC instructions (one for each of
the eight GPRs) are used to encode the REX prefix values. The functionality of these INC and DEC
instructions is still available, however, using the ModRM forms of those instructions (opcodes FF /0
and FF /1). See “Single-Byte INC and DEC Instructions in 64-Bit Mode” in Volume 3 for additional
information.

2.5.9 MOVSXD Instruction

MOVSXD is a new instruction in 64-bit mode (the legacy ARPL instruction opcode, 63h, is
reassigned as the MOVSXD opcode). It reads a fixed-size 32-bit source operand from a register or
memory and (if a REX prefix is used with the instruction) sign-extends the value to 64 bits. MOVSXD
is analogous to the MOVSX instruction, which sign-extends a byte to a word or a word to a
doubleword, depending on the effective operand size. See the instruction reference page for the
MOVSXD instruction in Volume 3 for additional information.

2.5.10 Invalid Instructions

Table 2-3 lists instructions that are illegal in 64-bit mode. Table 2-4 on page 35 lists instructions that
are invalid in long mode (both compatibility mode and 64-bit mode). Attempted use of these
instructions causes an invalid-opcode exception (#UD) to occur.

Table 2-3. Invalid Instructions in 64-Bit Mode
Mnemonic Opcode (hex) Description

AAA 37 ASCII Adjust After Addition
AAD D5 ASCII Adjust Before Division
AAM D4 ASCII Adjust After Multiply
AAS 3F ASCII Adjust After Subtraction
BOUND 62 Check Array Bounds
CALL (far) 9A Procedure Call Far (absolute)

[AMD Public Use]

x86 and AMD64 Architecture Differences 35

24593—Rev. 3.37—March 2021 AMD64 Technology

DAA 27 Decimal Adjust after Addition
DAS 2F Decimal Adjust after Subtraction
INTO CE Interrupt to Overflow Vector
JMP (far) EA Jump Far (absolute)
LDS C5 Load DS Segment Register
LES C4 Load ES Segment Register
POP DS 1F Pop Stack into DS Segment
POP ES 07 Pop Stack into ES Segment
POP SS 17 Pop Stack into SS Segment
POPA, POPAD 61 Pop All to GPR Words or Doublewords
PUSH CS 0E Push CS Segment Selector onto Stack
PUSH DS 1E Push DS Segment Selector onto Stack
PUSH ES 06 Push ES Segment Selector onto Stack
PUSH SS 16 Push SS Segment Selector onto Stack
PUSHA, PUSHAD 60 Push All GPR Words or Doublewords onto Stack
Redundant Grp1
(undocumented) 82 Redundant encoding of group1 Eb,Ib opcodes

SALC
(undocumented) D6 Set AL According to CF

Table 2-4. Invalid Instructions in Long Mode
Mnemonic Opcode (hex) Description

SYSENTER 0F 34 System Call
SYSEXIT 0F 35 System Return

Table 2-3. Invalid Instructions in 64-Bit Mode (continued)
Mnemonic Opcode (hex) Description

[AMD Public Use]

36 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.37—March 2021

2.5.11 Reassigned Opcodes

Table 2-5 below lists opcodes that are assigned functions in 64-bit mode that differ from their legacy
functions.

2.5.12 FXSAVE and FXRSTOR Instructions

The FXSAVE and FXRSTOR instructions are used to save and restore the entire 128-bit media
(XMM), 64-bit media, and x87 instruction-set environment during a context switch. The AMD64
architecture modifies the memory format used by these instructions in order to save and restore the full
64-bit instruction and data pointers, as well as the XMM8–15 registers. Selection of the 32-bit legacy
format or the expanded 64-bit format is accomplished by using the corresponding operand size with
the FXSAVE and FXRSTOR instructions. When 64-bit software executes an FXSAVE and FXRSTOR
with a 32-bit operand size (no operand-size override) the 32-bit legacy format is used. When 64-bit
software executes an FXSAVE and FXRSTOR with a 64-bit operand size, the 64-bit format is used.

For more information on the save area formats, see Section 11.4.4, “Saving Media and x87 Execution
Unit State,” on page 332

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE and FXRSTOR do not
save or restore the XMM0–15 registers when executed in 64-bit mode at CPL 0. The x87 environment
and MXCSR are saved whether fast-FXSAVE/FXRSTOR is enabled or not. The fast-
FXSAVE/FXRSTOR feature has no effect on FXSAVE/FXRSTOR in non 64-bit mode or when CPL >
0.

Software can use the CPUID instruction to determine whether the fast-FXSAVE/FXRSTOR feature is
available (CPUID Fn8000_0001h_EDX[FFXSR]). For information on using the CPUID instruction to
obtain processor feature information, see Section 3.3, “Processor Feature Identification,” on page 70.

2.6 Interrupts and Exceptions
When a processor is running in long mode, an interrupt or exception causes the processor to enter 64-
bit mode. All long-mode interrupt handlers must be implemented as 64-bit code. The AMD64
architecture expands the legacy interrupt-processing and exception-processing mechanism to support

Table 2-5. Opcodes Reassigned in 64-Bit Mode

Opcode (hex) Compatibility and Legacy
Modes 64-Bit Mode

63 ARPL—Adjust Requestor
Privilege Level

MOVSXD—Move Doubleword
with Sign Extension

40–4F DEC—Decrement by 1
INC—Increment by 1 REX Prefix

Note: Two-byte versions of DEC and INC are still available in 64-bit mode.

[AMD Public Use]

x86 and AMD64 Architecture Differences 37

24593—Rev. 3.37—March 2021 AMD64 Technology

handling of interrupts by 64-bit operating systems and applications. The changes are summarized in
the following sections. See “Long-Mode Interrupt Control Transfers” on page 270 for detailed
information on these changes.

2.6.1 Interrupt Descriptor Table

The long-mode interrupt-descriptor table (IDT) must contain 64-bit mode interrupt-gate or trap-gate
descriptors for all interrupts or exceptions that can occur while the processor is running in long mode.
Task gates cannot be used in the long-mode IDT, because control transfers through task gates are not
supported in long mode. In long mode, the IDT index is formed by scaling the interrupt vector by 16.
In legacy protected mode, the IDT is indexed by scaling the interrupt vector by eight.

2.6.2 Stack Frame Pushes

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-
frame pushes, and SS:eSP is pushed only on a CPL change. In long mode, the size of interrupt stack-
frame pushes is fixed at eight bytes, because interrupts are handled in 64-bit mode. Long mode
interrupts also cause SS:RSP to be pushed unconditionally, rather than pushing only on a CPL change.

2.6.3 Stack Switching

Legacy mode provides a mechanism to automatically switch stack frames in response to an interrupt.
In long mode, a slightly modified version of the legacy stack-switching mechanism is implemented,
and an alternative stack-switching mechanism—called the interrupt stack table (IST)—is supported.

Long-Mode Stack Switches. When stacks are switched as part of a long-mode privilege-level
change resulting from an interrupt, the following occurs:

• The target-stack pointer read from the TSS is a 64-bit RSP value.
• The SS register is loaded with a null selector. Setting the new SS selector to null allows nested

control transfers in 64-bit mode to be handled properly. The SS.RPL value is cleared to 0.
• The old SS and RSP are saved on the new stack.

Interrupt Stack Table. In long mode, a new interrupt stack table (IST) mechanism is available as an
alternative to the modified legacy stack-switching mechanism. The IST mechanism unconditionally
switches stacks when it is enabled. It can be enabled for individual interrupt vectors using a field in the
IDT entry. This allows mixing interrupt vectors that use the modified legacy mechanism with vectors
that use the IST mechanism. The IST pointers are stored in the long-mode TSS. The IST mechanism is
only available when long mode is enabled.

2.6.4 IRET Instruction

In compatibility mode, IRET pops SS:eSP off the stack only if there is a CPL change. This allows
legacy applications to run properly in compatibility mode when using the IRET instruction.

In 64-bit mode, IRET unconditionally pops SS:eSP off of the interrupt stack frame, even if the CPL
does not change. This is done because the original interrupt always pushes SS:RSP. Because interrupt

[AMD Public Use]

38 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.37—March 2021

stack-frame pushes are always eight bytes in long mode, an IRET from a long-mode interrupt handler
(64-bit code) must pop eight-byte items off the stack. This is accomplished by preceding the IRET
with a 64-bit REX operand-size prefix.

In long mode, an IRET can load a null SS selector from the stack under the following conditions:

• The target operating mode is 64-bit mode.
• The target CPL<3.

Allowing IRET to load SS with a null selector under these conditions makes it possible for the
processor to unnest interrupts (and far CALLs) in long mode.

2.6.5 Task-Priority Register (CR8)

The AMD64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest.

A new control register (CR8) is introduced by the AMD64 architecture for managing priority classes.
This register, also called the task-priority register (TPR), uses the four low-order bits for specifying a
task priority. How external interrupts are organized into these priority classes is implementation
dependent. See “External Interrupt Priorities” on page 256 for information on this feature.

2.6.6 New Exception Conditions

The AMD64 architecture defines a number of new conditions that can cause an exception to occur
when the processor is running in long mode. Many of the conditions occur when software attempts to
use an address that is not in canonical form. See “Vectors” on page 234 for information on the new
exception conditions that can occur in long mode.

2.7 Hardware Task Switching
The legacy hardware task-switch mechanism is disabled when the processor is running in long mode.
However, long mode requires system software to create data structures for a single task—the long-
mode task.

• TSS Descriptors—A new TSS-descriptor type, the 64-bit TSS type, is defined for use in long
mode. It is the only valid TSS type that can be used in long mode, and it must be loaded into the TR
by executing the LTR instruction in 64-bit mode. See “TSS Descriptor” on page 354 for additional
information.

• Task Gates—Because the legacy task-switch mechanism is not supported in long mode, software
cannot use task gates in long mode. Any attempt to transfer control to another task through a task
gate causes a general-protection exception (#GP) to occur.

• Task-State Segment—A 64-bit task state segment (TSS) is defined for use in long mode. This new
TSS format contains 64-bit stack pointers (RSP) for privilege levels 0–2, interrupt-stack-table

[AMD Public Use]

x86 and AMD64 Architecture Differences 39

24593—Rev. 3.37—March 2021 AMD64 Technology

(IST) pointers, and the I/O-map base address. See “64-Bit Task State Segment” on page 361 for
additional information.

2.8 Long-Mode vs. Legacy-Mode Differences
Table 2-6 on page 39 summarizes several major system-programming differences between 64-bit
mode and legacy protected mode. The third column indicates whether the difference also applies to
compatibility mode. “Differences Between Long Mode and Legacy Mode” in Volume 3 summarizes
the application-programming model differences.

Table 2-6. Differences Between Long Mode and Legacy Mode

Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

x86 Modes Real and virtual-8086 modes not supported Yes
Task Switching Task switching not supported Yes

Addressing
64-bit virtual addresses No
4-level paging structures

Yes
PAE must always be enabled

Loaded Segment (Usage
during memory reference)

CS, DS, ES, SS segment bases are ignored

No
CS, DS, ES, FS, GS, SS segment limits are ignored
DS, ES, FS, GS attribute are ignored
CS, DS, ES, SS Segment prefixes are ignored

Exception and Interrupt
Handling

All pushes are 8 bytes

Yes
IDT entries are expanded to 16 bytes
SS is not changed for stack switch
SS:RSP is pushed unconditionally

Call Gates

All pushes are 8 bytes

Yes
16-bit call gates are illegal
32-bit call gate type is redefined as 64-bit call gate and is
expanded to 16 bytes
SS is not changed for stack switch

System-Descriptor Registers GDT, IDT, LDT, TR base registers expanded to 64 bits Yes
System-Descriptor Table
Entries and Pseudo-
Descriptors

LGDT and LIDT use expanded 10-byte pseudo-descriptors
No

LLDT and LTR use expanded 16-byte table entries

[AMD Public Use]

40 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

System Resources 41

24593—Rev. 3.37—March 2021 AMD64 Technology

3 System Resources

The operating system manages the software-execution environment and general system operation
through the use of system resources. These resources consist of system registers (control registers and
model-specific registers) and system-data structures (memory-management and protection tables).
The system-control registers are described in detail in this chapter; many of the features they control
are described elsewhere in this volume. The model-specific registers supported by the AMD64
architecture are introduced in this chapter.

Because of their complexity, system-data structures are described in separate chapters. Refer to the
following chapters for detailed information on these data structures:

• Descriptors and descriptor tables are described in Section 4.4 “Segmentation Data Structures and
Registers,” on page 75.

• Page-translation tables are described in Section 5.2 “Legacy-Mode Page Translation,” on page 133
and Section 5.3 “Long-Mode Page Translation,” on page 141.

• The task-state segment is described in Section 12.2.4 “Legacy Task-State Segment,” on page 357
and Section 12.2.5 “64-Bit Task State Segment,” on page 361.

Not all processor implementations are required to support all possible features. The last section in this
chapter addresses processor-feature identification. System software uses the capabilities described in
that section to determine which features are supported so that the appropriate service routines are
loaded.

3.1 System-Control Registers
The registers that control the AMD64 architecture operating environment include:

• CR0—Provides operating-mode controls and some processor-feature controls.
• CR2—This register is used by the page-translation mechanism. It is loaded by the processor with

the page-fault virtual address when a page-fault exception occurs.
• CR3—This register is also used by the page-translation mechanism. It contains the base address of

the highest-level page-translation table, and also contains cache controls for the specified table.
• CR4—This register contains additional controls for various operating-mode features.
• CR8—This new register, accessible in 64-bit mode using the REX prefix, is introduced by the

AMD64 architecture. CR8 is used to prioritize external interrupts and is referred to as the task-
priority register (TPR).

• RFLAGS—This register contains processor-status and processor-control fields. The status and
control fields are used primarily in the management of virtual-8086 mode, hardware multitasking,
and interrupts.

[AMD Public Use]

42 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

• EFER—This model-specific register contains status and controls for additional features not
managed by the CR0 and CR4 registers. Included in this register are the long-mode enable and
activation controls introduced by the AMD64 architecture.

Control registers CR1, CR5–CR7, and CR9–CR15 are reserved.

In legacy mode, all control registers and RFLAGS are 32 bits. The EFER register is 64 bits in all
modes. The AMD64 architecture expands all 32-bit system-control registers to 64 bits. In 64-bit mode,
the MOV CRn instructions read or write all 64 bits of these registers (operand-size prefixes are
ignored). In compatibility and legacy modes, control-register writes fill the low 32 bits with data and
the high 32 bits with zeros, and control-register reads return only the low 32 bits.

In 64-bit mode, the high 32 bits of CR0 and CR4 are reserved and must be written with zeros. Writing
a 1 to any of the high 32 bits results in a general-protection exception, #GP(0). All 64 bits of CR2 are
writable. However, the MOV CRn instructions do not check that addresses written to CR2 are within
the virtual-address limitations of the processor implementation.

All CR3 bits are writable, except for unimplemented physical address bits, which must be cleared to 0.

The upper 32 bits of RFLAGS are always read as zero by the processor. Attempts to load the upper 32
bits of RFLAGS with anything other than zero are ignored by the processor.

3.1.1 CR0 Register

The CR0 register is shown in Figure 3-1 on page 43. The legacy CR0 register is identical to the low 32
bits of this register (CR0 bits 31:0).

[AMD Public Use]

System Resources 43

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 3-1. Control Register 0 (CR0)

The functions of the CR0 control bits are (unless otherwise noted, all bits are read/write):

Protected-Mode Enable (PE) Bit. Bit 0. Software enables protected mode by setting PE to 1, and
disables protected mode by clearing PE to 0. When the processor is running in protected mode,
segment-protection mechanisms are enabled.

See Section 4.9 “Segment-Protection Overview,” on page 104 for information on the segment-
protection mechanisms.

Monitor Coprocessor (MP) Bit. Bit 1. Software uses the MP bit with the task-switched control bit
(CR0.TS) to control whether execution of the WAIT/FWAIT instruction causes a device-not-available
exception (#NM) to occur, as follows:

• If both the monitor-coprocessor and task-switched bits are set (CR0.MP=1 and CR0.TS=1), then
executing the WAIT/FWAIT instruction causes a device-not-available exception (#NM).

• If either the monitor-coprocessor or task-switched bits are clear (CR0.MP=0 or CR0.TS=0), then
executing the WAIT/FWAIT instruction proceeds normally.

63 32

Reserved, MBZ

31 30 29 28 19 18 17 16 15 6 5 4 3 2 1 0

P
G

C
D

N
W Reserved A

M R W
P Reserved N

E
E
T

T
S

E
M

M
P

P
E

Bits Mnemonic Description Access type
63:32 — Reserved MBZ
31 PG Paging R/W
30 CD Cache Disable R/W
29 NW Not Writethrough R/W
28:19 — Reserved - do not change
18 AM Alignment Mask R/W
17 — Reserved - do not change
16 WP Write Protect R/W1

15:6 — Reserved - do not change
5 NE Numeric Error R/W
4 ET Extension Type R
3 TS Task Switched R/W
2 EM Emulation R/W
1 MP Monitor Coprocessor R/W
0 PE Protection Enabled R/W
1. Conditionally -- see description below.

[AMD Public Use]

44 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Software typically should set MP to 1 if the processor implementation supports x87 instructions. This
allows the CR0.TS bit to completely control when the x87-instruction context is saved as a result of a
task switch.

Emulate Coprocessor (EM) Bit. Bit 2. Software forces all x87 instructions to cause a device-not-
available exception (#NM) by setting EM to 1. Likewise, setting EM to 1 forces an invalid-opcode
exception (#UD) when an attempt is made to execute any of the 64-bit or 128-bit media instructions
except the FXSAVE and FXRSTOR instructions. Attempting to execute these instructions when EM is
set results in an #NM exception instead.The exception handlers can emulate these instruction types if
desired. Setting the EM bit to 1 does not cause an #NM exception when the WAIT/FWAIT instruction
is executed.

Task Switched (TS) Bit. Bit 3. When an attempt is made to execute an x87 or media instruction
while TS=1, a device-not-available exception (#NM) occurs. Software can use this mechanism—
sometimes referred to as “lazy context-switching”—to save the unit contexts before executing the next
instruction of those types. As a result, the x87 and media instruction-unit contexts are saved only when
necessary as a result of a task switch.

When a hardware task switch occurs, TS is automatically set to 1. System software that implements
software task-switching rather than using the hardware task-switch mechanism can still use the TS bit
to control x87 and media instruction-unit context saves. In this case, the task-management software
uses a MOV CR0 instruction to explicitly set the TS bit to 1 during a task switch. Software can clear
the TS bit by either executing the CLTS instruction or by writing to the CR0 register directly. Long-
mode system software can use this approach even though the hardware task-switch mechanism is not
supported in long mode.

The CR0.MP bit controls whether the WAIT/FWAIT instruction causes an #NM exception when
TS=1.

Extension Type (ET) Bit. Bit 4, read-only. In some early x86 processors, software set ET to 1 to
indicate support of the 387DX math-coprocessor instruction set. This bit is now reserved and forced to
1 by the processor. Software cannot clear this bit to 0.

Numeric Error (NE) Bit. Bit 5. Clearing the NE bit to 0 disables internal control of x87 floating-point
exceptions and enables external control. When NE is cleared to 0, the IGNNE# input signal controls
whether x87 floating-point exceptions are ignored:

• When IGNNE# is 1, x87 floating-point exceptions are ignored.
• When IGNNE# is 0, x87 floating-point exceptions are reported by setting the FERR# input signal

to 1. External logic can use the FERR# signal as an external interrupt.

When NE is set to 1, internal control over x87 floating-point exception reporting is enabled and the
external reporting mechanism is disabled. It is recommended that software set NE to 1. This enables
optimal performance in handling x87 floating-point exceptions.

Write Protect (WP) Bit. Bit 16. Read-only pages are protected from supervisor-level writes when the
WP bit is set to 1. When WP is cleared to 0, supervisor software can write into read-only pages.

[AMD Public Use]

System Resources 45

24593—Rev. 3.37—March 2021 AMD64 Technology

See Section 5.6 “Page-Protection Checks,” on page 158 for information on the page-protection
mechanism. If the shadow stack feature has been enabled (CR4.CET=1), attempting to clear WP to 0
causes a general-protection exception (#GP).

Alignment Mask (AM) Bit. Bit 18. Software enables automatic alignment checking by setting the
AM bit to 1 when RFLAGS.AC=1. Alignment checking can be disabled by clearing either AM or
RFLAGS.AC to 0. When automatic alignment checking is enabled and CPL=3, a memory reference to
an unaligned operand causes an alignment-check exception (#AC).

Not Writethrough (NW) Bit. Bit 29. Ignored. This bit can be set to 1 or cleared to 0, but its value is
ignored. The NW bit exists only for legacy purposes.

Cache Disable (CD) Bit. Bit 30. When CD is cleared to 0, the internal caches are enabled. When CD
is set to 1, no new data or instructions are brought into the internal caches. However, the processor still
accesses the internal caches when CD = 1 under the following situations:

• Reads that hit in an internal cache cause the data to be read from the internal cache that reported the
hit.

• Writes that hit in an internal cache cause the cache line that reported the hit to be written back to
memory and invalidated in the cache.

Cache misses do not affect the internal caches when CD = 1. Software can prevent cache access by
setting CD to 1 and invalidating the caches.

Setting CD to 1 also causes the processor to ignore the page-level cache-control bits (PWT and PCD)
when paging is enabled. These bits are located in the page-translation tables and CR3 register. See
Section “Page-Level Writethrough (PWT) Bit,” on page 151 and Section “Page-Level Cache Disable
(PCD) Bit,” on page 151 for information on page-level cache control.

See Section 7.6 “Memory Caches,” on page 197 for information on the internal caches.

Paging Enable (PG) Bit. Bit 31. Software enables page translation by setting PG to 1, and disables
page translation by clearing PG to 0. Page translation cannot be enabled unless the processor is in
protected mode (CR0.PE=1). If software attempts to set PG to 1 when PE is cleared to 0, the processor
causes a general-protection exception (#GP).

See Section 5.1 “Page Translation Overview,” on page 129 for information on the page-translation
mechanism.

Reserved Bits. Bits 28:19, 17, 15:6, and 63:32. When writing the CR0 register, software should set
the values of reserved bits to the values found during the previous CR0 read. No attempt should be
made to change reserved bits, and software should never rely on the values of reserved bits. In long
mode, bits 63:32 are reserved and must be written with zero, otherwise a #GP occurs.

[AMD Public Use]

46 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

3.1.2 CR2 and CR3 Registers

The CR2 (page-fault linear address) register, shown in Figure 3-2 on page 46 and Figure 3-3 on
page 46, and the CR3 (page-translation-table base address) register, shown in Figure 3-4 and
Figure 3-5 on page 46, and Figure 3-6 on page 47, are used only by the page-translation mechanism.

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode

Figure 3-3. Control Register 2 (CR2)—Long Mode

See Section “CR2 Register,” on page 245 for a description of the CR2 register.

The CR3 register is used to point to the base address of the highest-level page-translation table.

Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging

31 0

Page-Fault Virtual Address

63 32

Page-Fault Virtual Address

31 0

Page-Fault Virtual Address

31 12 11 5 4 3 2 0

Page-Directory-Table Base Address Reserved
P
C
D

P
W
T

Reserved

31 5 4 3 2 0

Page-Directory-Pointer-Table Base Address
P
C
D

P
W
T

Reserved

[AMD Public Use]

System Resources 47

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 3-6. Control Register 3 (CR3)—Long Mode

The legacy CR3 register is described in Section 5.2.1 “CR3 Register,” on page 134, and the long-mode
CR3 register is described in Section 5.3.2 “CR3,” on page 141.

3.1.3 CR4 Register

The CR4 register is shown in Figure 3-7. In legacy mode, the CR4 register is identical to the low 32
bits of the register (CR4 bits 31:0). The features controlled by the bits in the CR4 register are model-
specific extensions. Except for the performance-counter extensions (PCE) feature, software can use
the CPUID instruction to verify that each feature is supported before using that feature. See
Section 3.3 “Processor Feature Identification,” on page 70 for information on using the CPUID
instruction.

63 52 51 32

Reserved, MBZ Page-Map Level-4 Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 5 4 3 2 0

Page-Map Level-4 Table Base Address Usage depends on state of Processor Context ID
enablement (CR4.PCIDE). See below.

11 5 4 3 2 0

CR4.PCIDE=0 Reserved

PC
D

PW
T Reserved

CR4.PCIDE=1
Processor Context Identifier (See Section 5.5.1

“Process Context Identifier,” on page 154 for more
information.)

63 32

Reserved, MBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved, MBZ

C
ET

PK
E

SM
A

P

SM
EP

R
es

er
ve

d

O
SX

SA
V

E

PC
ID

E

FS
G

SB
A

SE

Reserved, MBZ

U
M

IP

O
SX

M
M

EX
C

PT

O
SF

X
SR

PC
E

PG
E

M
C

E

PA
E

PS
E

D
E

TS
D

PV
I

V
M

E

[AMD Public Use]

48 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

The function of the CR4 control bits are (all bits are read/write):

Virtual-8086 Mode Extensions (VME). Bit 0. Setting VME to 1 enables hardware-supported
performance enhancements for software running in virtual-8086 mode. Clearing VME to 0 disables
this support. The enhancements enabled when VME=1 include:

• Virtualized, maskable, external-interrupt control and notification using the VIF and VIP bits in the
RFLAGS register. Virtualizing affects the operation of several instructions that manipulate the
RFLAGS.IF bit.

• Selective intercept of software interrupts (INTn instructions) using the interrupt-redirection
bitmap in the TSS.

Protected-Mode Virtual Interrupts (PVI). Bit 1. Setting PVI to 1 enables support for protected-
mode virtual interrupts. Clearing PVI to 0 disables this support. When PVI=1, hardware support of
two bits in the RFLAGS register, VIF and VIP, is enabled.

Only the STI and CLI instructions are affected by enabling PVI. Unlike the case when CR0.VME=1,
the interrupt-redirection bitmap in the TSS cannot be used for selective INTn interception.

PVI enhancements are also supported in long mode. See Section 8.10 “Virtual Interrupts,” on
page 277 for more information on using PVI.

Bits Mnemonic Description Access Type
63:24 — Reserved MBZ
23 CET Control-flow Enforcement Technology R/W
22 PKE Protection Key Enable R/W
21 SMAP Supervisor Mode Access Protection R/W
20 SMEP Supervisor Mode Execution Prevention R/W
19 — Reserved MBZ
18 OSXSAVE XSAVE and Processor Extended States Enable Bit R/W
17 PCIDE Process Context Identifier Enable R/W

16 FSGSBASE Enable RDFSBASE, RDGSBASE, WRFSBASE, and
WRGSBASE instructions R/W

15:12 — Reserved MBZ
11 UMIP User Mode Instruction Prevention R/W
10 OSXMMEXCPT Operating System Unmasked Exception Support R/W
9 OSFXSR Operating System FXSAVE/FXRSTOR Support R/W
8 PCE Performance-Monitoring Counter Enable R/W
7 PGE Page-Global Enable R/W
6 MCE Machine Check Enable R/W
5 PAE Physical-Address Extension R/W
4 PSE Page Size Extensions R/W
3 DE Debugging Extensions R/W
2 TSD Time Stamp Disable R/W
1 PVI Protected-Mode Virtual Interrupts R/W
0 VME Virtual-8086 Mode Extensions R/W

[AMD Public Use]

System Resources 49

24593—Rev. 3.37—March 2021 AMD64 Technology

Time-Stamp Disable (TSD). Bit 2. The TSD bit allows software to control the privilege level at
which the time-stamp counter can be read. When TSD is cleared to 0, software running at any privilege
level can read the time-stamp counter using the RDTSC or RDTSCP instructions. When TSD is set to
1, only software running at privilege-level 0 can execute the RDTSC or RDTSCP instructions.

Debugging Extensions (DE). Bit 3. Setting the DE bit to 1 enables the I/O breakpoint capability and
enforces treatment of the DR4 and DR5 registers as reserved. Software that accesses DR4 or DR5
when DE=1 causes a invalid opcode exception (#UD).

When the DE bit is cleared to 0, I/O breakpoint capabilities are disabled. Software references to the
DR4 and DR5 registers are aliased to the DR6 and DR7 registers, respectively.

Page-Size Extensions (PSE). Bit 4. Setting PSE to 1 enables the use of 4-Mbyte physical pages.
With PSE=1, the physical-page size is selected between 4 Kbytes and 4 Mbytes using the page-
directory entry page-size field (PS). Clearing PSE to 0 disables the use of 4-Mbyte physical pages and
restricts all physical pages to 4 Kbytes.

The PSE bit has no effect when physical-address extensions are enabled (CR4.PAE=1). Because long
mode requires CR4.PAE=1, the PSE bit is ignored when the processor is running in long mode.

See Section “4-Mbyte Page Translation,” on page 136 for more information on 4-Mbyte page
translation.

Physical-Address Extension (PAE). Bit 5. Setting PAE to 1 enables the use of physical-address
extensions and 2-Mbyte physical pages. Clearing PAE to 0 disables these features.

With PAE=1, the page-translation data structures are expanded from 32 bits to 64 bits, allowing the
translation of up to 52-bit physical addresses. Also, the physical-page size is selectable between
4 Kbytes and 2 Mbytes using the page-directory-entry page-size field (PS). Long mode requires PAE
to be enabled in order to use the 64-bit page-translation data structures to translate 64-bit virtual
addresses to 52-bit physical addresses.

See Section 5.2.3 “PAE Paging,” on page 137 for more information on physical-address extensions.

Machine-Check Enable (MCE). Bit 6. Setting MCE to 1 enables the machine-check exception
mechanism. Clearing this bit to 0 disables the mechanism. When enabled, a machine-check exception
(#MC) occurs when an uncorrectable machine-check error is encountered.

Regardless of whether machine-check exceptions are enabled, the processor records enabled-errors
when they occur. Error-reporting is performed by the machine-check error-reporting register banks.
Each bank includes a control register for enabling error reporting and a status register for capturing
errors. Correctable machine-check errors are also reported, but they do not cause a machine-check
exception.

See Chapter 9, “Machine Check Architecture,” for a description of the machine-check mechanism, the
registers used, and the types of errors captured by the mechanism.

[AMD Public Use]

50 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Page-Global Enable (PGE). Bit 7. When page translation is enabled, system-software performance
can often be improved by making some page translations global to all tasks and procedures. Setting
PGE to 1 enables the global-page mechanism. Clearing this bit to 0 disables the mechanism.

When PGE is enabled, system software can set the global-page (G) bit in the lowest level of the page-
translation hierarchy to 1, indicating that the page translation is global. Page translations marked as
global are not invalidated in the TLB when the page-translation-table base address (CR3) is updated.
When the G bit is cleared, the page translation is not global. All supported physical-page sizes also
support the global-page mechanism. See Section 5.5.2 “Global Pages,” on page 155 for information
on using the global-page mechanism.

Performance-Monitoring Counter Enable (PCE). Bit 8. Setting PCE to 1 allows software running
at any privilege level to use the RDPMC instruction. Software uses the RDPMC instruction to read the
performance-monitoring counter MSRs, *PerfCtrn. Clearing PCE to 0 allows only the most-privileged
software (CPL=0) to use the RDPMC instruction.

FXSAVE/FXRSTOR Support (OSFXSR). Bit 9. System software must set the OSFXSR bit to 1 to
enable use of the legacy SSE instructions. When this bit is set to 1, it also indicates that system
software uses the FXSAVE and FXRSTOR instructions to save and restore the processor state for the
x87, 64-bit media, and 128-bit media instructions.

Clearing the OSFXSR bit to 0 indicates that legacy SSE instructions cannot be used. Attempts to use
those instructions while this bit is clear result in an invalid-opcode exception (#UD). Software can
continue to use the FXSAVE/FXRSTOR instructions for saving and restoring the processor state for
the x87 and 64-bit media instructions.

Unmasked Exception Support (OSXMMEXCPT). Bit 10. System software must set the
OSXMMEXCPT bit to 1 when it supports the SIMD floating-point exception (#XF) for handling of
unmasked 256-bit and 128-bit media floating-point errors. Clearing the OSXMMEXCPT bit to 0
indicates the #XF handler is not supported. When OSXMMEXCPT=0, unmasked 128-bit media
floating-point exceptions cause an invalid-opcode exception (#UD). See “SIMD Floating-Point
Exception Causes” in Volume 1 for more information on unmasked SSE floating-point exceptions.

User Mode Instruction Prevention (UMIP). Bit 11. Setting UMIP to 1 enables a security mode to
restrict certain instructions executing at CPL>0 so that they do not reveal information about structures
that are controlled by the processor when it is at CPL=0. When UMIP is enabled, execution of SGDT,
SIDT, SLDT, SMSW and STR instructions become available only at CPL=0 and any attempt to
execute them with CPL>0 results in a #GP fault with error code 0. See Section 6 “System
Instructions,” on page 165 for more information about UMIP.

FSGSBASE. Bit 16. System software must set this bit to 1 to enable the execution of the
RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE instructions when supported. When
enabled, these instructions allow software running in 64-bit mode at any privilege level to read and
write the FS.base and GS.base hidden segment register state. See the discussion of segment registers in
64-bit mode in Section 4.5.3 “Segment Registers in 64-Bit Mode,” on page 80. Also see descriptions
of the RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE instructions in Volume 3.

[AMD Public Use]

System Resources 51

24593—Rev. 3.37—March 2021 AMD64 Technology

Processor Context Identifier Enable (PCIDE). Bit 17. Enable support for Process Context
Identifiers (PCIDs). System software must set this bit to 1 to enable execution of the INVPCID
instruction when supported. Can only be set in long mode (EFER.LMA = 1). See <$elempagenum for
more information on Process Context Identifiers.

XSAVE and Extended States (OSXSAVE). Bit 18. After verifying hardware support for the
extended processor state management instructions, operating system software sets this bit to indicate
support for the XGETBV, XSAVE and XRSTOR instructions.

Setting this bit also:

• allows the execution of the XGETBV and XSETBV instructions, and
• enables the XSAVE and XRSTOR instructions to save and restore the x87 FPU state (including

MMX registers), along with other processor extended states enabled in XCR0.

After initializing the XSAVE/XRSTOR save area, XSAVEOPT (if supported) may be used to save x87
FPU and other enabled extended processor state. For more information on XSAVEOPT, see individual
instruction listing in Chapter 2 of Volume 4.

Note that legacy SSE instruction execution must be enabled prior to enabling extended processor state
management.

Supervisor Mode Execution Prevention (SMEP). Bit 20. Setting this bit enables the supervisor
mode execution prevention feature, if supported. This feature prevents the execution of instructions
that reside in pages accessible by user-mode software when the processor is in supervisor-mode. See
Section 5.6 “Page-Protection Checks,” on page 158 for more information.

Supervisor Mode Access Prevention (SMAP). Bit 21. Setting this bit enables the supervisor mode
access prevention feature, if supported. This feature prevents certain data accesses to pages accessible
by user-mode software when the processor is in supervisor mode. See Section 5.6.6 “Supervisor-Mode
Access Prevention(CR4.SMAP) Bit,” on page 160 for more information.

Protection Key Enable (PKE). Bit 22. Enable support for memory Protection Keys. Also enables
support for the RDPKRU and WRPKRU instructions. A MOV to CR4 that changes CR4.PKE from 0
to 1 causes all cached entries in the TLB for the logical processor to be invalidated. (See Section 5.6.7
“Memory Protection Keys (MPK) Bit,” on page 160 for more information on memory protection
keys.)

Control-flow Enforcement Technology (CET). Bit 23. Setting this bit enables the shadow stack
feature. This feature ensures that return addresses read from the stack by RET and IRET instructions
originated from a CALL instruction or similar control transfer.

See Section 18 “Shadow Stacks,” on page 637 for more information. Before setting this bit, CR0.WP
must be set to 1, otherwise a #GP fault is generated.

CR1 and CR5–CR7 Registers. Control registers CR1, CR5–CR7, and CR9–CR15 are reserved.
Attempts by software to use these registers result in an undefined-opcode exception (#UD).

[AMD Public Use]

52 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

3.1.4 Additional Control Registers in 64-Bit-Mode

In 64-bit mode, additional encodings are available to address up to eight additional control registers.
The REX.R bit, in a REX prefix, is used to modify the ModRM reg field when that field encodes a
control register, as shown in “REX Prefixes” in Volume 3. These additional encodings enable the
processor to address CR8–CR15.

One additional control register, CR8, is defined in 64-bit mode for all hardware implementations, as
described in “CR8 (Task Priority Register, TPR),” below. Access to the CR9–CR15 registers is
implementation-dependent. Any attempt to access an unimplemented register results in an invalid-
opcode exception (#UD).

3.1.5 CR8 (Task Priority Register, TPR)

The AMD64 architecture introduces a new control register, CR8, defined as the task priority register
(TPR). The register is accessible in 64-bit mode using the REX prefix. See Section 8.5.2 “External
Interrupt Priorities,” on page 256 for a description of the TPR and how system software can use the
TPR for controlling external interrupts.

3.1.6 RFLAGS Register

The RFLAGS register contains two different types of information :

• Control bits provide system-software controls and directional information for string operations.
Some of these bits can have privilege-level restrictions.

• Status bits provide information resulting from logical and arithmetic operations. These are written
by the processor and can be read by software running at any privilege level.

Figure 3-7 on page 53 shows the format of the RFLAGS register. The legacy EFLAGS register is
identical to the low 32 bits of the register shown in Figure 3-7 (RFLAGS bits 31:0). The term rFLAGS
is used to refer to the 16-bit, 32-bit, or 64-bit flags register, depending on context.

[AMD Public Use]

System Resources 53

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 3-7. RFLAGS Register

The functions of the RFLAGS control and status bits used by application software are described in
“Flags Register” in Volume 1. The functions of RFLAGS system bits are (unless otherwise noted, all
bits are read/write):

Trap Flag (TF) Bit. Bit 8. Software sets the TF bit to 1 to enable single-step mode during software
debug. Clearing this bit to 0 disables single-step mode.

When single-step mode is enabled at the start of an instruction's execution, a debug exception (#DB)
occurs immediately after the instruction completes execution. Single stepping is automatically
disabled (TF is set to 0) when the #DB exception occurs or when any exception or interrupt occurs.

63 32

Reserved, RAZ

31 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved, RAZ I
D

V
I
P

V
I
F

A
C

V
M

R
F 0 N

T IOPL O
F

D
F

I
F

T
F

S
F

Z
F 0 A

F 0 P
F 1 C

F

Bits Mnemonic Description Access type
63:22 — Reserved RAZ
21 ID ID Flag R/W
20 VIP Virtual Interrupt Pending R/W
19 VIF Virtual Interrupt Flag R/W
18 AC Alignment Check R/W
17 VM Virtual-8086 Mode R/W
16 RF Resume Flag R/W
15 — Reserved RAZ
14 NT Nested Task R/W
13:12 IOPL I/O Privilege Level R/W
11 OF Overflow Flag R/W
10 DF Direction Flag R/W
9 IF Interrupt Flag R/W
8 TF Trap Flag R/W
7 SF Sign Flag R/W
6 ZF Zero Flag R/W
5 — Reserved RAZ
4 AF Auxiliary Flag R/W
3 — Reserved RAZ
2 PF Parity Flag R/W
1 — Reserved RA1
0 CF Carry Flag R/W

[AMD Public Use]

54 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

See Section 13.1.4 “Single Stepping,” on page 388 for information on using the single-step mode
during debugging.

Interrupt Flag (IF) Bit. Bit 9. Software sets the IF bit to 1 to enable maskable interrupts. Clearing this
bit to 0 causes the processor to ignore maskable interrupts. The state of the IF bit does not affect the
response of a processor to non-maskable interrupts, software-interrupt instructions, or exceptions.

The ability to modify the IF bit depends on several factors:

• The current privilege-level (CPL)
• The I/O privilege level (RFLAGS.IOPL)
• Whether or not virtual-8086 mode extensions are enabled (CR4.VME=1)
• Whether or not protected-mode virtual interrupts are enabled (CR4.PVI=1)

See Section 8.1.4 “Masking External Interrupts,” on page 233 for information on interrupt masking.
See Section 6.2.3 “Accessing the RFLAGS Register,” on page 173 for information on the specific
instructions used to modify the IF bit.

I/O Privilege Level Field (IOPL) Field. Bits 13:12. The IOPL field specifies the privilege level
required to execute I/O address-space instructions (i.e., instructions that address the I/O space rather
than memory-mapped I/O, such as IN, OUT, INS, OUTS, etc.). For software to execute these
instructions, the current privilege-level (CPL) must be equal to or higher than (lower numerical value
than) the privilege specified by IOPL (CPL <= IOPL). If the CPL is lower than (higher numerical
value than) that specified by the IOPL (CPL > IOPL), the processor causes a general-protection
exception (#GP) when software attempts to execute an I/O instruction. See “Protected-Mode I/O” in
Volume 1 for information on how IOPL controls access to address-space I/O.

Virtual-8086 mode uses IOPL to control virtual interrupts and the IF bit when virtual-8086 mode
extensions are enabled (CR4.VME=1). The protected-mode virtual-interrupt mechanism (PVI) also
uses IOPL to control virtual interrupts and the IF bit when PVI is enabled (CR4.PVI=1). See
Section 8.10 “Virtual Interrupts,” on page 277 for information on how IOPL is used by the virtual
interrupt mechanism.

Nested Task (NT) Bit. Bit 14, IRET reads the NT bit to determine whether the current task is nested
within another task. When NT is set to 1, the current task is nested within another task. When NT is
cleared to 0, the current task is at the top level (not nested).

The processor sets the NT bit during a task switch resulting from a CALL, interrupt, or exception
through a task gate. When an IRET is executed from legacy mode while the NT bit is set, a task switch
occurs. See Section 12.3.3 “Task Switches Using Task Gates,” on page 370 for information on
switching tasks using task gates, and Section 12.3.4 “Nesting Tasks,” on page 372 for information on
task nesting.

Resume Flag (RF) Bit. Bit 16. The RF bit, when set to 1, temporarily disables instruction breakpoint
reporting to prevent repeated debug exceptions (#DB) from occurring. This allows an instruction

[AMD Public Use]

System Resources 55

24593—Rev. 3.37—March 2021 AMD64 Technology

which had been inhibited by an instruction-breakpoint debug exception to be restarted by the debug
exception handler.

The processor clears the RF bit after every instruction is successfully executed, except when the

instruction is:

• An IRET that sets the RF bit.
• JMP, CALL, or INTn through a task gate.

In both of the above cases, RF is not cleared to 0 until the next instruction successfully executes.

When an exception occurs (or when a string instruction is interrupted), the processor normally sets
RF=1 in the RFLAGS image saved on the interrupt stack. However, when a #DB exception occurs as a
result of an instruction breakpoint, the processor clears the RF bit to 0 in the interrupt-stack RFLAGS
image.

For instruction restart to work properly following an instruction breakpoint, the #DB exception
handler must set RF to 1 in the interrupt-stack RFLAGS image. When an IRET is later executed to
return to the instruction that caused the instruction-breakpoint #DB exception, the set RF bit (RF=1) is
loaded from the interrupt-stack RFLAGS image. RF is not cleared by the processor until the
instruction causing the #DB exception successfully executes.

Virtual-8086 Mode (VM) Bit. Bit 17. Software sets the VM bit to 1 to enable virtual-8086 mode.
Software clears the VM bit to 0 to disable virtual-8086 mode. System software can only change this bit
using a task switch or an IRET. It cannot modify the bit using the POPFD instruction.

Alignment Check (AC) Bit. Bit 18. Software enables automatic alignment checking by setting the
AC bit to 1 when CR0.AM=1. Alignment checking can be disabled by clearing either AC or CR0.AM
to 0. When automatic alignment checking is enabled and the current privilege-level (CPL) is 3 (least
privileged), a memory reference to an unaligned operand causes an alignment-check exception (#AC).

When the supervisor mode access prevention feature is enabled (CR4.SMAP=1), certain supervisor-
mode data accesses to pages accessible by user mode are allowed only if RFLAGS.AC=1. See
Section 5.6.6 “Supervisor-Mode Access Prevention(CR4.SMAP) Bit,” on page 160 for more
information.

Virtual Interrupt (VIF) Bit. Bit 19. The VIF bit is a virtual image of the RFLAGS.IF bit. It is enabled
when either virtual-8086 mode extensions are enabled (CR4.VME=1) or protected-mode virtual
interrupts are enabled (CR4.PVI=1), and the RFLAGS.IOPL field is less than 3. When enabled,
instructions that ordinarily would modify the IF bit actually modify the VIF bit with no effect on the
RFLAGS.IF bit.

System software that supports virtual-8086 mode should enable the VIF bit using CR4.VME. This
allows 8086 software to execute instructions that can set and clear the RFLAGS.IF bit without causing
an exception. With VIF enabled in virtual-8086 mode, those instructions set and clear the VIF bit
instead, giving the appearance to the 8086 software that it is modifying the RFLAGS.IF bit. System

[AMD Public Use]

56 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

software reads the VIF bit to determine whether or not to take the action desired by the 8086 software
(enabling or disabling interrupts by setting or clearing the RFLAGS.IF bit).

In long mode, the use of the VIF bit is supported when CR4.PVI=1. See Section 8.10 “Virtual
Interrupts,” on page 277 for more information on virtual interrupts.

Virtual Interrupt Pending (VIP) Bit. Bit 20. The VIP bit is provided as an extension to both virtual-
8086 mode and protected mode. It is used by system software to indicate that an external, maskable
interrupt is pending (awaiting) execution by either a virtual-8086 mode or protected-mode interrupt-
service routine. Software must enable virtual-8086 mode extensions (CR4.VME=1) or protected-
mode virtual interrupts (CR4.PVI=1) before using VIP.

VIP is normally set to 1 by a protected-mode interrupt-service routine that was entered from virtual-
8086 mode as a result of an external, maskable interrupt. Before returning to the virtual-8086 mode
application, the service routine sets VIP to 1 if EFLAGS.VIF=1. When the virtual-8086 mode
application attempts to enable interrupts by clearing EFLAGS.VIF to 0 while VIP=1, a general-
protection exception (#GP) occurs. The #GP service routine can then decide whether to allow the
virtual-8086 mode service routine to handle the pending external, maskable interrupt. (EFLAGS is
specifically referred to in this case because virtual-8086 mode is supported only from legacy mode.)

In long mode, the use of the VIP bit is supported when CR4.PVI=1. See Section 8.10 “Virtual
Interrupts,” on page 277 for more information on virtual-8086 mode interrupts and the VIP bit.

Processor Feature Identification (ID) Bit. Bit 21. The ability of software to modify this bit
indicates that the processor implementation supports the CPUID instruction. See Section 3.3
“Processor Feature Identification,” on page 70 for more information on the CPUID instruction.

3.1.7 Extended Feature Enable Register (EFER)

The extended-feature-enable register (EFER) contains control bits that enable additional processor
features not controlled by the legacy control registers. The EFER is a model-specific register (MSR)
with an address of C000_0080h (see Section 3.2 “Model-Specific Registers (MSRs),” on page 59 for
more information on MSRs). It can be read and written only by privileged software. Figure 3-8 on
page 57 shows the format of the EFER register.

[AMD Public Use]

System Resources 57

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 3-8. Extended Feature Enable Register (EFER)
The defined EFER bits shown in Figure 3-8 above are described below:

System-Call Extension (SCE) Bit. Bit 0, read/write. Setting this bit to 1 enables the SYSCALL and
SYSRET instructions. Application software can use these instructions for low-latency system calls
and returns in a non-segmented (flat) address space. See Section 6.1 “Fast System Call and Return,”
on page 168 for additional information.

Long Mode Enable (LME) Bit. Bit 8, read/write. Setting this bit to 1 enables the processor to activate
long mode. Long mode is not activated until software enables paging some time later. When paging is
enabled after LME is set to 1, the processor sets the EFER.LMA bit to 1, indicating that long mode is
not only enabled but also active. See Chapter 14, “Processor Initialization and Long Mode
Activation,” for more information on activating long mode.

63 32

Reserved, MBZ

31 18 17 16 15 14 13 12 11 10 9 8 7 1 0

Reserved, MBZ

I
N
T
W
B

M
C
O
M
M
I
T

R
S
V
D

M
B
Z

T
C
E

F
F
X
S
R

L
M
S
L
E

S
V
M
E

N
X
E

L
M
A

M
B
Z

L
M
E

Reserved, RAZ
S
C
E

Bits Mnemonic Description Access type
63:19 — Reserved MBZ
18 INTWB Interruptible WBINVD/WBNOINVD enable R/W
17 MCOMMIT Enable MCOMMIT instruction R/W
16 — Reserved MBZ
15 TCE Translation Cache Extension R/W
14 FFXSR Fast FXSAVE/FXRSTOR R/W
13 LMSLE Long Mode Segment Limit Enable R/W
12 SVME Secure Virtual Machine Enable R/W
11 NXE No-Execute Enable R/W
10 LMA Long Mode Active R/W
9 — Reserved MBZ
8 LME Long Mode Enable R/W
7:1 — Reserved RAZ
0 SCE System Call Extensions R/W

[AMD Public Use]

58 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Long Mode Active (LMA) Bit. Bit 10, read/write. This bit indicates that long mode is active. The
processor sets LMA to 1 when both long mode and paging have been enabled by system software. See
Chapter 14, “Processor Initialization and Long Mode Activation,” for more information on activating
long mode.

When LMA=1, the processor is running either in compatibility mode or 64-bit mode, depending on the
value of the L bit in a code-segment descriptor, as shown in Figure 1-6 on page 12.

When LMA=0, the processor is running in legacy mode. In this mode, the processor behaves like a
standard 32-bit x86 processor, with none of the new 64-bit features enabled. When writing the EFER
register the value of this bit must be preserved. Software must read the EFER register to determine the
value of LMA, change any other bits as required and then write the EFER register. An attempt to write
a value that differs from the state determined by hardware results in a #GP fault.

No-Execute Enable (NXE) Bit. Bit 11, read/write. Setting this bit to 1 enables the no-execute page-
protection feature. The feature is disabled when this bit is cleared to 0. See Section “No Execute (NX)
Bit,” on page 152 for more information.

Before setting NXE, system software should verify the processor supports the feature by examining
the feature flag CPUID Fn8000_0001_EDX[NX]. See Section 3.3 “Processor Feature Identification,”
on page 70 for information on using the CPUID instruction.

Secure Virtual Machine Enable (SVME) Bit. Bit 12, read/write. Enables the SVM extensions.
When this bit is zero, the SVM instructions cause #UD exceptions. EFER.SVME defaults to a reset
value of zero. The effect of turning off EFER.SVME while a guest is running is undefined; therefore,
the VMM should always prevent guests from writing EFER. SVM extensions can be disabled by
setting VM_CR.SVME_DISABLE. For more information, see descriptions of LOCK and
SMVE_DISABLE bits in Section 15.30.1 “VM_CR MSR (C001_0114h),” on page 556.

Long Mode Segment Limit Enable (LMSLE) bit. Bit 13, read/write. Setting this bit to 1 enables
certain limit checks in 64-bit mode. This feature has been deprecated and is not supported by all
processor implementations. If CPUID Fn8000_0008_EBX[EferLmlseUnsupported](bit 20)=1, 64-bit
mode segment limit checking is not supported and attempting to set EFER.LMSLE =1 causes a #GP
exception. See Section 4.12.2 “Data Limit Checks in 64-bit Mode,” on page 123, for more information
on these limit checks.

Fast FXSAVE/FXRSTOR (FFXSR) Bit. Bit 14, read/write. Setting this bit to 1 enables the FXSAVE
and FXRSTOR instructions to execute faster in 64-bit mode at CPL 0. This is accomplished by not
saving or restoring the XMM registers (XMM0-XMM15). The FFXSR bit has no effect when the
FXSAVE/FXRSTOR instructions are executed in non 64-bit mode, or when CPL > 0. The FFXSR bit
does not affect the save/restore of the legacy x87 floating-point state, or the save/restore of MXCSR.

Before setting FFXSR, system software should verify whether this feature is supported by examining
the feature flag CPUID Fn8000_0001_EDX[FFXSR]. See Section 3.3 “Processor Feature
Identification,” on page 70 for information on using the CPUID instruction.

[AMD Public Use]

System Resources 59

24593—Rev. 3.37—March 2021 AMD64 Technology

Translation Cache Extension (TCE) Bit. Bit 15, read/write. Setting this bit to 1 changes how the
INVLPG, INVLPGB, and INVPCID instructions operate on TLB entries. When this bit is 0, these
instructions remove the target PTE from the TLB as well as all upper-level table entries that are cached
in the TLB, whether or not they are associated with the target PTE. When this bit is set, these
instructions will remove the target PTE and only those upper-level entries that lead to the target PTE in
the page table hierarchy, leaving unrelated upper-level entries intact. This may provide a performance
benefit.

Page table management software must be written in a way that takes this behavior into account.
Software that was written for a processor that does not cache upper-level table entries may result in
stale entries being incorrectly used for translations when TCE is enabled. Software that is compatible
with TCE mode will operate in either mode.

For software using INVLPGB to broadcast TLB invalidations, the invalidations are controlled by the
EFER.TCE value on the processor executing the INVLPGB instruction.

Before setting TCE, system software should verify that this feature is supported by examining the
feature flag CPUID Fn8000_0001_ECX[TCE]. See Section 3.3 “Processor Feature Identification,” on
page 70 for information on using the CPUID instruction.

MCOMMIT ENABLE (MCOMMIT) Bit. Bit 17, read/write. Setting this bit to 1 enables the
MCOMMIT instruction. When clear, attempting to execute MCOMMIT causes a #UD exception.

INTERRUPTIBLE WBINVD (INTWB) Bit. Bit 18. Setting this bit to1 allows the WBINVD and
WBNOINVD instructions to be interruptible. See WBINVD and WBNOINVD in Volume 3.

3.1.8 Extended Control Registers (XCRn)

Extended control registers (XCRn) form a new register space that is available for managing processor
architectural features and capabilities. Currently only XCR0 is defined. All other XCR registers are
reserved. For more details on the Extended Control Registers, see “Extended Control Registers” in
Volume 4, Chapter 1.

3.2 Model-Specific Registers (MSRs)
Processor implementations provide model-specific registers (MSRs) for software control over the
unique features supported by that implementation. Software reads and writes MSRs using the
privileged RDMSR and WRMSR instructions. Implementations of the AMD64 architecture can
contain a mixture of two basic MSR types:

• Legacy MSRs. The AMD family of processors often share model-specific features with other x86
processor implementations. Where possible, AMD implementations use the same MSRs for the
same functions. For example, the memory-typing and debug-extension MSRs are implemented on
many AMD and non-AMD processors.

[AMD Public Use]

60 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

• AMD model-specific MSRs. There are many MSRs common to the AMD family of processors but
not to legacy x86 processors. Where possible, AMD implementations use the same AMD-specific
MSRs for the same functions.

Every model-specific register, as the name implies, is not necessarily implemented by all members of
the AMD family of processors. Appendix A, “MSR Cross-Reference,” lists MSR-address ranges
currently used by various AMD and other x86 processors.

The AMD64 architecture includes a number of features that are controlled using MSRs. Those MSRs
are shown in Figure 3-9. The EFER register—described in Section 3.1.7 “Extended Feature Enable
Register (EFER),” on page 56—is also an MSR.

Figure 3-9. AMD64 Architecture Model-Specific Registers

The following sections briefly describe the MSRs in the AMD64 architecture.

[AMD Public Use]

System Resources 61

24593—Rev. 3.37—March 2021 AMD64 Technology

3.2.1 System Configuration Register (SYSCFG)

The system-configuration register (SYSCFG) contains control bits for enabling and configuring
system bus features. SYSCFG is a model-specific register (MSR) with an address of C001_0010h.
Figure 3-10 on page 61 shows the format of the SYSCFG register. Some features are implementation
specific, and are described in the BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual applicable to your product. Implementation-specific features are not
shown in Figure 3-10.

Figure 3-10. System-Configuration Register (SYSCFG)

The function of the SYSCFG bits are (all bits are read/write unless otherwise noted):

MtrrFixDramEn Bit. Bit 18. Setting this bit to 1 enables use of the RdMem and WrMem attributes in
the fixed-range MTRR registers. When cleared, these attributes are disabled. The RdMem and
WrMem attributes allow system software to define fixed-range IORRs using the fixed-range MTRRs.
See Section 7.9.1 “Extended Fixed-Range MTRR Type-Field Encodings,” on page 221 for
information on using this feature.

MtrrFixDramModEn Bit. Bit 19. Setting this bit to 1 allows software to read and write the RdMem
and WrMem bits. When cleared, writes do not modify the RdMem and WrMem bits, and reads return
0. See Section 7.9.1 “Extended Fixed-Range MTRR Type-Field Encodings,” on page 221 for
information on using this feature.

31 25 24 23 22 21 20 19 18 17 0

Reserved

V
M
P
L
E

S
N
P
E

M
E
M
E

F
W
B

T
O
M
2

M
V
D
M

M
F
D
M

M
F
D
E

Reserved

Bits Mnemonic Description Access type
31:26 — Reserved MBZ
25 VMPLE VMPLEn R/W
24 SNPE SecureNestedPagingEn R/W
23 MEME MemEncryptionModeEn R/W
22 FWB Tom2ForceMemTypeWB R/W
21 TOM2 MtrrTom2En R/W
20 MVDM MtrrVarDramEn R/W
19 MFDM MtrrFixDramModEn R/W
18 MFDE MtrrFixDramEn R/W
17:0 — Reserved MBZ

[AMD Public Use]

62 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

MtrrVarDramEn Bit. Bit 20. Setting this bit to 1 enables the TOP_MEM register and the variable-
range IORRs. These registers are disabled when the bit is cleared to 0. See Section 7.9.2 “IORRs,” on
page 222 and Section 7.9.4 “Top of Memory,” on page 224 for information on using these features.

MtrrTom2En Bit. Bit 21. Setting this bit to 1 enables the TOP_MEM2 register. The register is
disabled when this bit is cleared to 0. See Section 7.9.4 “Top of Memory,” on page 224 for information
on using this feature.

Tom2ForceMemTypeWB. Bit 22. Setting this bit to 1 forces the default memory type for memory
between 4GB and the address specified by TOP_MEM2 to be write back instead of the memory type
defined by MTRRdefType[Type]. For this bit to have any effect, MTRRdefType[E] must be 1. MTRR
variable-range settings and PAT can be used to override this memory type.

MemEncryptionModeEn. Bit 23. Setting this bit to 1 enables the SME (Section 7.10 “Secure
Memory Encryption,” on page 226) and SEV (Section 15.34 “Secure Encrypted Virtualization,” on
page 561) memory encryption features. When cleared, these features are disabled. If
MSRC001_0015[SmmLock] is set, the MemEncryptionModeEn bit is sticky and cannot be changed
from a 1 to a 0.

SecureNestedPagingEn. Bit 24. Setting this bit to 1 enables SEV-SNP (Section 15.36 “Secure Nested
Paging (SEV-SNP),” on page 575). When cleared, this feature is disabled. Once this bit is set to 1, it
cannot be changed. This bit can only be set if MemEncryptionModeEn is already set or is
simultaneously also set to 1. After SecureNestedPagingEn is set to 1, certain MSRs may no longer be
written. See Section 15.36.2 “Enabling SEV-SNP,” on page 576 for details.

VMPLEn. Bit 25. Setting this bit to 1 enables the VMPL feature (Section 15.36.7 “Virtual Machine
Privilege Levels,” on page 580). Software should set this bit to 1 when SecureNestedPagingEn is
being set to 1. Once SecureNestedPagingEn is set to 1, VMPLEn cannot be changed.

3.2.2 System-Linkage Registers

System-linkage MSRs are used by system software to allow fast control transfers between applications
and the operating system. The functions of these registers are:

STAR, LSTAR, CSTAR, and SFMASK Registers. These registers are used to provide mode-
dependent linkage information for the SYSCALL and SYSRET instructions. STAR is used in legacy
modes, LSTAR in 64-bit mode, and CSTAR in compatibility mode. SFMASK is used by the
SYSCALL instruction for RFLAGS in long mode.

FS.base and GS.base Registers. These registers allow 64-bit base-address values to be specified
for the FS and GS segments, for use in 64-bit mode. See Section “FS and GS Registers in 64-Bit
Mode,” on page 80 for a description of the special treatment the FS and GS segments receive.

KernelGSbase Register. This register is used by the SWAPGS instruction. This instruction
exchanges the value located in KernelGSbase with the value located in GS.base.

[AMD Public Use]

System Resources 63

24593—Rev. 3.37—March 2021 AMD64 Technology

SYSENTERx Registers. The SYSENTER_CS, SYSENTER_ESP, and SYSENTER_EIP registers
are used to provide linkage information for the SYSENTER and SYSEXIT instructions. These
instructions are only used in legacy mode.

The system-linkage instructions and their use of MSRs are described in Section 6.1 “Fast System Call
and Return,” on page 168.

3.2.3 Memory-Typing Registers

Memory-typing MSRs are used to characterize, or type, memory. Memory typing allows software to
control the cacheability of memory, and determine how accesses to memory are ordered. The memory-
typing registers perform the following functions:

MTRRcap Register. This register contains information describing the level of MTRR support
provided by the processor.

MTRRdefType Register. This register establishes the default memory type to be used for physical
memory that is not specifically characterized using the fixed-range and variable-range MTRRs.

MTRRphysBasen and MTRRphysMaskn Registers. These registers form a register pair that can
be used to characterize any address range within the physical-memory space, including all of physical
memory. Up to eight address ranges of varying sizes can be characterized using these registers.

MTRRfixn Registers. These registers are used to characterize fixed-size memory ranges in the first 1
Mbytes of physical-memory space.

PAT Register. This register allows memory-type characterization based on the virtual (linear)
address. It is an extension to the PCD and PWT memory types supported by the legacy paging
mechanism. The PAT mechanism provides the same memory-typing capabilities as the MTRRs, but
with the added flexibility provided by the paging mechanism.

TOP_MEM and TOP_MEM2 Registers. These top-of-memory registers allow system software to
specify physical addresses ranges as memory-mapped I/O locations.

Refer to Section 7.7 “Memory-Type Range Registers,” on page 206 for more information on using
these registers.

3.2.4 Debug-Extension Registers

The debug-extension MSRs provide software-debug capability not available in the legacy debug
registers (DR0–DR7). These MSRs allow single stepping and recording of control transfers to take
place. The debug-extension registers perform the following functions:

DebugCtl Register. This MSR register provides control over control-transfer recording and single
stepping, and external-breakpoint reporting and trace messages.

[AMD Public Use]

64 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

LastBranchx and LastIntx Registers. The four registers, LastBranchToIP, LastBranchFromIP,
LastIntToIP, and LastIntFromIP, are all used to record the source and target of control transfers when
branch recording is enabled.

Refer to Section 13.1.6 “Control-Transfer Breakpoint Features,” on page 388 for more information on
using these debug registers.

3.2.5 Performance-Monitoring Registers

The time-stamp counter and performance-monitoring registers are useful in identifying performance
bottlenecks. The number of performance counters can vary based on the implementation. These
registers perform the following functions:

TSC Register. This register is used to count processor-clock cycles. It can be read using the RDMSR
instruction, or it can be read using the either of the read time-stamp counter instructions, RDTSC or
RDTSCP. System software can make RDTSC or RDTSCP available for use by non-privileged
software by clearing the time-stamp disable bit (CR4.TSD) to 0.

*PerfEvtSeln Registers. These registers are used to specify the events counted by the corresponding
performance counter, and to control other aspects of its operation.

*PerfCtrn Registers. These registers are performance counters that hold a count of processor,
northbridge, or L2 cache events or the duration of events, under the control of the corresponding
*PerfEvtSeln register. Each *PerfCtrn register can be read using the RDMSR instruction, or they can
be read using the read performance-monitor counter instruction, RDPMC. System software can make
RDPMC available for use by non-privileged software by setting the performance-monitor counter
enable bit (CR4.PCE) to 1.

Refer to Section 13.2.3 “Using Performance Counters,” on page 397 for more information on using
these registers.

3.2.6 Machine-Check Registers

The machine-check registers control the detection and reporting of hardware machine-check errors.
The types of errors that can be reported include cache-access errors, load-data and store-data errors,
bus-parity errors, and ECC errors. Two types of machine-check MSRs are shown in Figure 3-9 on
page 60.

The first type is global machine-check registers, which perform the following functions:

MCG_CAP Register. This register identifies the machine-check capabilities supported by the
processor.

MCG_CTL Register. This register provides global control over machine-check-error reporting.

MCG_STATUS Register. This register reports global status on detected machine-check errors.

[AMD Public Use]

System Resources 65

24593—Rev. 3.37—March 2021 AMD64 Technology

The second type is error-reporting register banks, which report on machine-check errors associated
with a specific processor unit (or group of processor units). There can be different numbers of register
banks for each processor implementation, and each bank is numbered from 0 to i. The registers in each
bank perform the following functions:

MCi_CTL Registers. These registers control error-reporting.

MCi_STATUS Registers. These registers report machine-check errors.

MCi_ADDR Registers. These registers report the machine-check error address.

MCi_MISC Registers. These registers report miscellaneous-error information.

Refer to Section 9.5 “Using MCA Features,” on page 302 for more information on using these
registers.

3.2.7 Shadow Stack Registers

These registers are defined if the shadow stack feature is supported as indicated by CPUID Fn
0000_0007_0 ECX[CET_SS] (bit 7) = 1.

PL0_SSP, PL1_SSP, PL2_SSP Registers. These registers specify the linear address to be loaded
into SSP on the next transition to CPLn, where n=0, 1, 2. The linear address must be in canonical
format and aligned to 4 bytes.

PL3_SSP Register. The user mode SSP is saved to and restored from this register. The linear address
must be in canonical format and aligned to 4 bytes.

ISST_ADDR Register. This register specifies the linear address of the Interrupt SSP Table (ISST).
The linear address must be in canonical format.

U_CET Register. This register specifies the user mode shadow stack controls.

S_CET Register. This register specifies the supervisor mode shadow stack controls.

3.2.8 Extended State Save MSRs

XSS Register. This register contains a bitmap of supervisor-level state components. System software
sets bits in the XSS register bitmap to enable management of corresponding state component by the
XSAVES/XRSTORS instructions. XSS register support is indicated by CPUID
Fn0000_000D_EAX[XSAVES]_x1 = 1.

The XSS bitmap is defined as follows:

[AMD Public Use]

66 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 3-11. XSS Register

3.2.9 Speculation Control MSRs

Modern processors implement hardware techniques such as branch prediction, speculative execution
and out-of-order processing to significantly improve performance. If the processor incorrectly predicts
or speculates on an outcome, this is detected and any speculative results are discarded. The processor
then supplies the architecturally correct, in-order response to the program's instructions. Even though
the speculative results are discarded, microarchitectural side effects may remain which can be detected
by software, and which in some cases may lead to side-channel vulnerabilities.

The two speculation control MSRs, SPEC_CTRL (MSR 048h) and PRED_CMD (MSR 049h), enable
hardware features that are designed to limit certain types of speculation. Support for these features is
indicated by CPUID Fn8000_0008_EBX as described in Table 3-1 below. The presence of a given
speculation control feature also implies support for its associated MSR.

See ‘Additional CPUID Functions’ at the end of this subsection and APM volume 3 Appendix E.4
‘CPUID Fn8000_0008_EBX’ for more information on CPUID functions related to speculation
control.

63 32

Reserved, MBZ

31 13 12 11 10 0

Reserved, MBZ CET_S CET_U Reserved, MBZ

Bits Mnemonic Description
63:13 — Reserved, Must be Zero
12 CET_S Enables the CET_U state component.
11 CET_U Enables the CET_S state component.
10:0 — Reserved, Must be Zero

Table 3-1. Speculation Control MSRs
Feature Indicated by CPUID Function MSR
IBRS Fn8000_0008 EBX[14]=1 SPEC_CTRL (MSR 048h)

STIBP Fn8000_0008 EBX[15]=1 SPEC_CTRL (MSR 048h)

SSBD Fn8000_0008 EBX[24]=1 SPEC_CTRL (MSR 048h)

PSFD Fn8000_0008 EBX[28]=1 SPEC_CTRL (MSR 048h)

IBPB Fn8000_0008 EBX[12]=1 PRED_CMD (MSR 049h)

[AMD Public Use]

System Resources 67

24593—Rev. 3.37—March 2021 AMD64 Technology

SPEC_CTRL (MSR 048h)

SPEC_CTRL (MSR 48h) is a read-write register. Attempts to write a 1 into any reserved bit cause a
#GP(0) fault. Unlike most MSRs, a WRMSR to SPEC_CTRL does not serialize memory operations.
However, a write to this register is dispatch serializing and prevents execution of younger instructions
until the WRMSR has completed. The format of SPEC_CTRL is shown in Figure 3-12.

Figure 3-12. SPEC_CTRL Register (MSR 048h)

The SPEC_CTRL bits defined in Figure 3-1 are described below:

Indirect Branch Restricted Speculation (IBRS). Bit 0. Setting this bit to 1 prevents indirect
branches that occurred in a less privileged prediction mode before this bit was set from influencing the
predictions of future indirect branches in a more privileged prediction mode that occur after this bit is
set. A lesser privileged prediction mode is defined as CPL 3 or Guest mode, and a more privileged
prediction mode is defined as CPL 0-2 or Host mode.

After setting IBRS to 1, if software subsequently

• clears IBRS to 0: The processor may allow older indirect branches that occurred when IBRS was
previously 0 to influence future indirect branch predictions.

• writes another 1 to IBRS: The processor starts a new window where older indirect branches do not
influence future indirect branch predictions.

Only indirect branches that occurred prior to setting IBRS are prevented from influencing future
indirect branches. Therefore, if IBRS were already set on a transition to a more privileged mode from
a lesser privileged mode, software at the more privileged mode must write a 1 to IBRS if it requires
indirect branch predictions in the new mode to not be influenced by those from the previous mode.

On processors with a shared indirect branch predictor, setting IBRS also prevents indirect branch
predictions of one thread from influencing the predictions of its sibling threads, as if

31 8 7 6 3 2 1 0

Reserved, MBZ

P
S
F
D

Reserved,
MBZ

S
S
B
D

S
T
I
B
P

I
B
R
S

Bits Mnemonic Description Access type
31:8 — Reserved Must be Zero
7 PSFD Predicted Store Forward Disable. R/W
6:3 — Reserved Must be Zero
2 SSBD Speculative Store Bypass Disable. R/W
1 STIBP Single-Thread Indirect Branch Prediction Mode. R/W
0 IBRS Indirect Branch Restricted Speculation. R/W

[AMD Public Use]

68 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

SPEC_CTRL[STIBP] was also set. For more information on STIBP, see Single Thread Indirect
Branch Predictor below.

Some processors, identified by CPUID Fn8000_0008_EBX[IbrsSameMode] (bit 19) = 1, provide
additional speculation limits. For these processors, when IBRS is set, indirect branch predictions are
not influenced by any prior indirect branches, regardless of mode (CPL and guest/host) and regardless
of whether the prior indirect branches occurred before or after the setting of IBRS.

Although return instructions can be considered a type of indirect branch, IBRS does not affect them.
Software requiring IBRS-style indirect branch speculation limits for RET instructions should clear out
any return address predictions by executing 32 CALL instructions having a non-zero displacement.
Processors implementing more than 32 return predictions include hardware to clear the additional
entries when software writes a 1 to IBRS. If the kernel and user virtual address spaces are disjoint with
at least one unmapped 4K page separating them, and SMEP is enabled, then there is no need to clear
out the return address predictions.

Single Thread Indirect Branch Prediction mode (STIBP). Bit 1. Setting this bit to 1 prevents
indirect branch predictions of one thread from influencing the predictions of any sibling threads, on
processors where branch prediction resources are shared. RET (return) instructions are not influenced
by sibling threads. Therefore, setting STIBP is not required to prevent one thread’s RET predictions
from influencing the predictions of a sibling thread.

Note that STIBP mode is automatically enabled when SPEC_CTRL[IBRS] is set, regardless of value
of SPEC_CTRL[STIBP].

Speculative Store Bypass Disable (SSBD). Bit 2. Setting this bit to 1 prevents load-type instructions
from speculatively bypassing older store instructions whose final address have not yet been resolved.

As specified in Section 7.1.1 “Read Ordering,” on page 182, loads from memory marked with the
proper memory type can read memory out-of-order, speculatively and before older stores have
completed. This means it is possible for a load to read and pass forward, in a speculative manner,
previous values of the memory location. The processor has logic to correct this occurrence and provide
the proper in-order load response to the program. However, this mis-speculation may have resulted in
microarchitectural side effects. When SSBD is set to 1, the processor can return speculative load data
only if there are no older stores with unknown addresses.

Some legacy processors implement SSBD in a different MSR. On these processors, indicated by
CPUID function 8000_0008, EBX[25]=1, SSBD is enabled by setting VIRT_SPEC_CTRL (MSR
C001_011F) bit 2. On processors that support both SPEC_CTRL and VIRT_SPEC_CTRL, if SSBD is
enabled in either MSR, the processor prevents loads from speculating around older stores. However, it
is preferred that software uses SPEC_CTRL[SSBD] in this scenario.

On some processor models, setting SSBD is not needed to prevent speculative loads from bypassing
older stores. This is indicated by CPUID Fn8000_0008_EBX[SsbdNotRequired] (bit 26) = 1.

Predicted Store Forward Disable (PSFD). Bit 7. Setting this bit disables Predictive Store
Forwarding (PSF).

[AMD Public Use]

System Resources 69

24593—Rev. 3.37—March 2021 AMD64 Technology

As specified in Section 7.1.1 “Read Ordering,” on page 182, write data for cacheable memory types
can be forwarded to read instructions before that data is actually written to memory, via a mechanism
called store-to-load forwarding. PSF expands on store-to-load forwarding via a mechanism that
predicts the relationship between loads and stores based on past behavior, without waiting for their
address calculations to complete. Like other forms of speculative store bypass, an incorrect prediction
may result in microarchitectural side effects. PSF speculation can be disabled by setting PFSD.

The PSF feature is also disabled when SPEC_CTRL[SSBD] is set. However, SSBD disables both PSF
and speculative store bypass, while PSFD only disables PSF. PSFD may be desirable for software
which is concerned with the speculative behavior of PSF but desires a smaller performance impact
than setting SSBD.

PRED_CMD (MSR 049h)

PRED_CMD is a write-only register. Attempts to read this register or to write a 1 into any reserved bit
cause a #GP(0) fault. Unlike most MSRs, a WRMSR to PRED_CMD does not serialize memory
operations. However, a write to this register is dispatch serializing and prevents execution of younger
instructions until the WRMSR has completed. The format of the PRED_CMD register is shown in
Figure 3-13 below.

Figure 3-13. PRED_CMD Register (MSR 049h)

Indirect Branch Prediction Barrier (IBPB). Bit 0, write only. Setting this bit to 1 prevents the
processor from using older indirect branch predictions to influence future indirect branches. This
applies to JMP indirect, CALL indirect and to RET (return) instructions. In some implementations,
setting IBPB causes the processor to flush all previous indirect branch predictions. As this restricts the
processor from using any previous indirect branch information, IBPB is intended to be used by
software when switching between contexts that do not trust each other. Examples of such contexts
include switching from one user context to another, or from one guest to another. In some
implementations, IBPB will only flush he indirect predictions that are accessible to the current thread.

Additional CPUID Functions

The following CPUID functions provide more information on the speculation control features to aid
system software in optimizing processor performance:

31 1 0

Reserved, MBZ

I
B
P
B

Bits Mnemonic Description Access type
31:1 — Reserved MBZ
0 IBPB Indirect Branch Prediction Barrier. W

[AMD Public Use]

70 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

• CPUID Function 8000_0008_EBX[16] (IBRS always on). When set, indicates that the processor
prefers that IBRS is only set once during boot and not changed. If IBRS is set on a processor
supporting IBRS always on mode, indirect branches executed in a less privileged prediction mode
will not influence branch predictions for indirect branches in a more privileged prediction mode.
This eliminates the need for WRMSR instructions to manage speculation effects at elevated-
privilege entry and exit points.

• CPUID Function 8000_0008_EBX[17] (STIBP always on). When set, indicates that the processor
prefers that STIBP is only set once during boot and not changed. This eliminates the need for a
WRMSR at the necessary transition points.

• CPUID Function 8000_0008_EBX[18] (IBRS preferred). When set, indicates that the processor
prefers using the IBRS feature instead of other software mitigations such as retpoline. This allows
software to remove the software mitigation and utilize the more performant IBRS mechanism.

3.2.10 Hardware Configuration Register (HWCR)

The HWCR register contains control bits that affect the functionality of other features. Some HWCR
bits are implementation specific, and are described in the BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference Manual applicable to your product. Implementation
specific HWCR bits are not listed below.

SmmLock. Bit 0. Enables SMM code lock. When set to 1, SMM code in the ASeg and TSeg memory
ranges, and the SMM registers, become read-only and SMI interrupts are not intercepted in SVM. See
Section 15.32 “SMM-Lock,” on page 560 for information on using this feature.

CpbDis. Bit 25. Core performance boost disable. When set to 1, core performance boost is disabled.
See Section 17.2 “Core Performance Boost,” on page 631 for further details on this feature.

IRPerfEn. Bit 30. Setting this bit to 1 enables the instructions retired counter. See Section 13.2.1
“Performance Counter MSRs,” on page 391 for information on using this feature.

SmmPgCfgLock. Bit 33. Setting this bit to 1 locks the paging configuration while in SMM. See
Section 10.3.9 “SMM Page Configuration Lock,” on page 316 for information on using this feature.

3.3 Processor Feature Identification
The CPUID instruction provides information about the processor implementation and its capabilities.
Software operating at any privilege level can execute the CPUID instruction to collect this
information. Software can utilize this information to optimize performance.

The CPUID instruction supports multiple functions, each providing specific information about the
processor implementation, including the vendor, model number, revision (stepping), features, cache
organization, and name. The multifunction approach allows the CPUID instruction to return a detailed
picture of the processor implementation and its capabilities — more detailed information than could be
returned by a single function. This flexibility also allows for the addition of new CPUID functions in
future processor generations.

[AMD Public Use]

System Resources 71

24593—Rev. 3.37—March 2021 AMD64 Technology

The desired function number is loaded into the EAX register before executing the CPUID instruction.
CPUID functions are divided into two types:

• Standard functions return information about features common to all x86 implementations,
including the earliest features offered in the x86 architecture, as well as information about the
presence of features such as support for the AVX and FMA instruction subsets. Standard function
numbers are in the range 0000_0000h–0000_FFFFh.

• Extended functions return information about AMD-specific features such as long mode and the
presence of features such as support for the FMA4 and XOP instruction subsets. Extended function
numbers are in the range 8000_0000h–8000_FFFFh.

Feature information is returned in the EAX, EBX, ECX, and EDX registers. Some functions accept a
second input parameter passed to the instruction in the ECX register.

In this and the other three volumes of this Programmer’s Manual, the notation CPUID
FnXXXX_XXXX_RRR[FieldName]_xYY is used to represent the input parameters and return value that
corresponds to a particular processor capability or feature.

In this notation, XXXX_XXXX represents the 32-bit value to be placed in the EAX register prior to
executing the CPUID instruction. This value is the function number. RRR is either EAX, EBX, ECX,
or EDX and represents the register to be examined after the execution of the instruction. If the contents
of the entire 32-bit register provides the capability information, the notation [FieldName] is omitted,
otherwise this provides the name of the field within the return value that represents the capability or
feature.

When the field is a single bit, this is called a feature flag. Normally, if a feature flag bit is set, the
corresponding processor feature is supported and if it is cleared, the feature is not supported. The
optional input parameter passed to the CPUID instruction in the ECX register is represented by the
notation _xYY appended after the return value notation. If a CPUID function does not accept this
optional input parameter, this notation is omitted.

For more specific information on the CPUID instruction, see the instruction reference page in Volume
3. For a description of all feature flags related to instruction subset support, see Volume 3, Appendix
D, "Instruction Subsets and CPUID Feature Flags." For a comprehensive list of all processor
capabilities and feature flags, see Volume 3, Appendix E, "Obtaining Processor Information Via the
CPUID Instruction."

[AMD Public Use]

72 System Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Segmented Virtual Memory 73

24593—Rev. 3.37—March 2021 AMD64 Technology

4 Segmented Virtual Memory

The legacy x86 architecture supports a segment-translation mechanism that allows system software to
relocate and isolate instructions and data anywhere in the virtual-memory space. A segment is a
contiguous block of memory within the linear address space. The size and location of a segment within
the linear address space is arbitrary. Instructions and data can be assigned to one or more memory
segments, each with its own protection characteristics. The processor hardware enforces the rules
dictating whether one segment can access another segment.

The segmentation mechanism provides ten segment registers, each of which defines a single segment.
Six of these registers (CS, DS, ES, FS, GS, and SS) define user segments. User segments hold
software, data, and the stack and can be used by both application software and system software. The
remaining four segment registers (GDT, LDT, IDT, and TR) define system segments. System
segments contain data structures initialized and used only by system software. Segment registers
contain a base address pointing to the starting location of a segment, a limit defining the segment size,
and attributes defining the segment-protection characteristics.

Although segmentation provides a great deal of flexibility in relocating and protecting software and
data, it is often more efficient to handle memory isolation and relocation with a combination of
software and hardware paging support. For this reason, most modern system software bypasses the
segmentation features. However, segmentation cannot be completely disabled, and an understanding
of the segmentation mechanism is important to implementing long-mode system software.

In long mode, the effects of segmentation depend on whether the processor is running in compatibility
mode or 64-bit mode:

• In compatibility mode, segmentation functions just as it does in legacy mode, using legacy 16-bit
or 32-bit protected mode semantics.

• 64-bit mode, segmentation is disabled, creating a flat 64-bit virtual-address space. As will be seen,
certain functions of some segment registers, particularly the system-segment registers, continue to
be used in 64-bit mode.

4.1 Real Mode Segmentation
After reset or power-up, the processor always initially enters real mode. Protected modes are entered
from real mode.

As noted in “Real Addressing” on page 10, real mode (real-address mode), provides a physical-
memory space of 1 Mbyte. In this mode, a 20-bit physical address is determined by shifting a 16-bit
segment selector to the left four bits and adding the 16-bit effective address.

Each 64K segment (CS, DS, ES, FS, GS, SS) is aligned on 16-byte boundaries. The segment base is
the lowest address in a given segment, and is equal to the segment selector * 16. The POP and MOV
instructions can be used to load a (possibly) new segment selector into one of the segment registers.

[AMD Public Use]

74 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

When this occurs, the selector is updated and the segment base is set to selector * 16. The segment
limit and segment attributes are unchanged, but are normally 64K (the maximum allowable limit) and
read/write data, respectively.

On FAR transfers, CS (code segment) selector is updated to the new value, and the CS segment base is
set to selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and
read/write, respectively.

If the interrupt descriptor table (IDT) is used to find the real mode IDT see “Real-Mode Interrupt
Control Transfers” on page 257.

The GDT, LDT, and TSS (see below) are not used in real mode.

4.2 Virtual-8086 Mode Segmentation
Virtual-8086 mode supports 16-bit real mode programs running under protected mode (see below). It
uses a simple form of memory segmentation, optional paging, and limited protection checking.
Programs running in virtual-8086 mode can access up to 1MB of memory space.

As with real mode segmentation, each 64K segment (CS, DS, ES, FS, GS, SS) is aligned on 16-byte
boundaries. The segment base is the lowest address in a given segment, and is equal to the segment
selector * 16. The POP and MOV instructions work exactly as in real mode and can be used to load a
(possibly) new segment selector into one of the segment registers. When this occurs, the selector is
updated and the segment base is set to selector * 16. The segment limit and segment attributes are
unchanged, but are normally 64K (the maximum allowable limit) and read/write data, respectively.

FAR transfers, with the exception of interrupts and exceptions, operate as in real mode. On FAR
transfers, the CS (code segment) selector is updated to the new value, and the CS segment base is set to
selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and read/write,
respectively. Interrupts and exceptions switch the processor to protected mode. (See Chapter 8,
“Exceptions and Interrupts” for more information.)

4.3 Protected Mode Segmented-Memory Models
System software can use the segmentation mechanism to support one of two basic segmented-memory
models: a flat-memory model or a multi-segmented model. These segmentation models are supported
in legacy mode and in compatibility mode. Each type of model is described in the following sections.

4.3.1 Multi-Segmented Model

In the multi-segmented memory model, each segment register can reference a unique base address
with a unique segment size. Segments can be as small as a single byte or as large as 4 Gbytes. When
page translation is used, multiple segments can be mapped to a single page and multiple pages can be
mapped to a single segment. Figure 1-1 on page 6 shows an example of the multi-segmented model.

[AMD Public Use]

Segmented Virtual Memory 75

24593—Rev. 3.37—March 2021 AMD64 Technology

The multi-segmented memory model provides the greatest level of flexibility for system software
using the segmentation mechanism.

Compatibility mode allows the multi-segmented model to be used in support of legacy software.
However, in compatibility mode, the multi-segmented memory model is restricted to the first 4 Gbytes
of virtual-memory space. Access to virtual memory above 4 Gbytes requires the use of 64-bit mode,
which does not support segmentation.

4.3.2 Flat-Memory Model

The flat-memory model is the simplest form of segmentation to implement. Although segmentation
cannot be disabled, the flat-memory model allows system software to bypass most of the segmentation
mechanism. In the flat-memory model, all segment-base addresses have a value of 0 and the segment
limits are fixed at 4 Gbytes. Clearing the segment-base value to 0 effectively disables segment
translation, resulting in a single segment spanning the entire virtual-address space. All segment
descriptors reference this single, flat segment. Figure 1-2 on page 7 shows an example of the flat-
memory model.

4.3.3 Segmentation in 64-Bit Mode

In 64-bit mode, segmentation is disabled. The segment-base value is ignored and treated as 0 by the
segmentation hardware. Likewise, segment limits and most attributes are ignored. There are a few
exceptions. The CS-segment DPL, D, and L attributes are used (respectively) to establish the privilege
level for a program, the default operand size, and whether the program is running in 64-bit mode or
compatibility mode. The FS and GS segments can be used as additional base registers in address
calculations, and those segments can have non-zero base-address values. This facilitates addressing
thread-local data and certain system-software data structures. See “FS and GS Registers in 64-Bit
Mode” on page 80 for details about the FS and GS segments in 64-bit mode. The system-segment
registers are always used in 64-bit mode.

4.4 Segmentation Data Structures and Registers
Figure 4-1 on page 76 shows the following data structures used by the segmentation mechanism:

• Segment Descriptors—As the name implies, a segment descriptor describes a segment, including
its location in virtual-address space, its size, protection characteristics, and other attributes.

• Descriptor Tables—Segment descriptors are stored in memory in one of three tables. The global-
descriptor table (GDT) holds segment descriptors that can be shared among all tasks. Multiple
local-descriptor tables (LDT) can be defined to hold descriptors that are used by specific tasks and
are not shared globally. The interrupt-descriptor table (IDT) holds gate descriptors that are used to
access the segments where interrupt handlers are located.

• Task-State Segment—A task-state segment (TSS) is a special type of system segment that contains
task-state information and data structures for each task. For example, a TSS holds a copy of the
GPRs and EFLAGS register when a task is suspended. A TSS also holds the pointers to privileged-

[AMD Public Use]

76 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

software stacks. The TSS and task-switch mechanism are described in Chapter 12, “Task
Management.”

• Segment Selectors—Descriptors are selected for use from the descriptor tables using a segment
selector. A segment selector contains an index into either the GDT or LDT. The IDT is indexed
using an interrupt vector, as described in “Legacy Protected-Mode Interrupt Control Transfers” on
page 259, and in “Long-Mode Interrupt Control Transfers” on page 270.

Figure 4-1. Segmentation Data Structures

Figure 4-2 on page 77 shows the registers used by the segmentation mechanism. The registers have the
following relationship to the data structures:

• Segment Registers—The six segment registers (CS, DS, ES, FS, GS, and SS) are used to point to
the user segments. A segment selector selects a descriptor when it is loaded into one of the segment
registers. This causes the processor to automatically load the selected descriptor into a software-
invisible portion of the segment register.

• Descriptor-Table Registers—The three descriptor-table registers (GDTR, LDTR, and IDTR) are
used to point to the system segments. The descriptor-table registers identify the virtual-memory
location and size of the descriptor tables.

• Task Register (TR)—Describes the location and limit of the current task state segment (TSS).

513-263.eps

Segment Descriptors

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Global-Descriptor Table (GDT)

Descriptor

Descriptor

. . .

Descriptor

Local-Descriptor Table (LDT)

Descriptor

Descriptor

. . .

Descriptor

Segment Selectors

Selector 1

Selector 2

. . .

Selector n
Interrupt-Descriptor Table (IDT)

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

[AMD Public Use]

Segmented Virtual Memory 77

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 4-2. Segment and Descriptor-Table Registers

A fourth system-segment register, the TR, points to the TSS. The data structures and registers
associated with task-state segments are described in “Task-Management Resources” on page 352.

4.5 Segment Selectors and Registers
4.5.1 Segment Selectors

Segment selectors are pointers to specific entries in the global and local descriptor tables. Figure 4-3
shows the segment selector format.

Figure 4-3. Segment Selector

The selector format consists of the following fields:

15 3 2 1 0

SI TI RPL

Bits Mnemonic Description R/W
15:3 SI Selector Index R/W
2 TI Table Indicator R/W
1:0 RPL Requestor Privilege Level R/W

513-264.eps

DS

ES

FS

GS

Data Segment Registers

CS

Code Segment Register

SS

Stack Segment Register

IDTR

Interrupt-Descriptor-Table Register

GDTR

Global-Descriptor-Table Register

LDTR

Local-Descriptor-Table Register

TR

Task Register

[AMD Public Use]

78 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Selector Index Field. Bits 15:3. The selector-index field specifies an entry in the descriptor table.
Descriptor-table entries are eight bytes long, so the selector index is scaled by 8 to form a byte offset
into the descriptor table. The offset is then added to either the global or local descriptor-table base
address (as indicated by the table-index bit) to form the descriptor-entry address in virtual-address
space.

Some descriptor entries in long mode are 16 bytes long rather than 8 bytes (see “Legacy Segment
Descriptors” on page 88 for more information on long-mode descriptor-table entries). These expanded
descriptors consume two entries in the descriptor table. Long mode, however, continues to scale the
selector index by eight to form the descriptor-table offset. It is the responsibility of system software to
assign selectors such that they correctly point to the start of an expanded entry.

Table Indicator (TI) Bit. Bit 2. The TI bit indicates which table holds the descriptor referenced by the
selector index. When TI=0 the GDT is used and when TI=1 the LDT is used. The descriptor-table base
address is read from the appropriate descriptor-table register and added to the scaled selector index as
described above.

Requestor Privilege-Level (RPL) Field. Bits 1:0. The RPL represents the privilege level (CPL) the
processor is operating under at the time the selector is created.

RPL is used in segment privilege-checks to prevent software running at lesser privilege levels from
accessing privileged data. See “Data-Access Privilege Checks” on page 106 and “Control-Transfer
Privilege Checks” on page 109 for more information on segment privilege-checks.

Null Selector. Null selectors have a selector index of 0 and TI=0, corresponding to the first entry in
the GDT. However, null selectors do not reference the first GDT entry but are instead used to
invalidate unused segment registers. A general-protection exception (#GP) occurs if a reference is
made to use a segment register containing a null selector in non-64-bit mode. By initializing unused
segment registers with null selectors software can trap references to unused segments.

Null selectors can only be loaded into the DS, ES, FS and GS data-segment registers, and into the
LDTR descriptor-table register. A #GP occurs if software attempts to load the CS register with a null
selector or if software attempts to load the SS register with a null selector in non 64-bit mode or at CPL
3.

If CPUID Fn8000_0021_EAX[NullSelectorClearsBase] (bit 6) = 1, loading a segment register with a
null selector clears the base address and limit of the segment register in all cases except a load of DS,
ES, FS, or GS by an IRET, IRETD, IRETQ, or RETF instruction that changes the current privilege
level, in which case these fields are left untouched. If CPUID
Fn8000_0021_EAX[NullSelectorClearsBase] (bit 6) = 0, loading a segment register with a null
selector makes the base address and limit of the segment register undefined. Because references to
segment registers containing a null selector cause a #GP exception, the segment base and limit values
have no effect. However, OS management of segment state may be simplified for processors
supporting this clearing functionality.

[AMD Public Use]

Segmented Virtual Memory 79

24593—Rev. 3.37—March 2021 AMD64 Technology

4.5.2 Segment Registers

Six 16-bit segment registers are provided for referencing up to six segments at one time. All software
tasks require segment selectors to be loaded in the CS and SS registers. Use of the DS, ES, FS, and GS
segments is optional, but nearly all software accesses data and therefore requires a selector in the DS
register. Table 4-1 on page 79 lists the supported segment registers and their functions.

The processor maintains a hidden portion of the segment register in addition to the selector value
loaded by software. This hidden portion contains the values found in the descriptor-table entry
referenced by the segment selector. The processor loads the descriptor-table entry into the hidden
portion when the segment register is loaded. By keeping the corresponding descriptor-table entry in
hardware, performance is optimized for the majority of memory references.

Figure 4-4 shows the format of the visible and hidden portions of the segment register. Except for the
FS and GS segment base, software cannot directly read or write the hidden portion (shown as gray-
shaded boxes in Figure 4-4).

Figure 4-4. Segment-Register Format

CS Register. The CS register contains the segment selector referencing the current code-segment
descriptor entry. All instruction fetches reference the CS descriptor. When a new selector is loaded into

Table 4-1. Segment Registers
Segment
Register Encoding Segment Register Function

ES /0 References optional data-segment descriptor entry
CS /1 References code-segment descriptor entry
SS /2 References stack segment descriptor entry
DS /3 References default data-segment descriptor entry
FS /4 References optional data-segment descriptor entry
GS /5 References optional data-segment descriptor entry

Hidden From Software 513-221.eps

32-Bit Segment Limit

32-Bit Segment Base Address

Segment Attributes

Selector

[AMD Public Use]

80 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

the CS register, the current-privilege level (CPL) of the processor is set to that of the CS-segment
descriptor-privilege level (DPL).

Data-Segment Registers. The DS register contains the segment selector referencing the default
data-segment descriptor entry. The SS register contains the stack-segment selector. The ES, FS, and
GS registers are optionally loaded with segment selectors referencing other data segments. Data
accesses default to referencing the DS descriptor except in the following two cases:

• The ES descriptor is referenced for string-instruction destinations.
• The SS descriptor is referenced for stack operations.

4.5.3 Segment Registers in 64-Bit Mode

CS Register in 64-Bit Mode. In 64-bit mode, most of the hidden portion of the CS register is
ignored. Only the L (long), D (default operation size), and DPL (descriptor privilege-level) attributes
are recognized by 64-bit mode. Address calculations assume a CS.base value of 0. CS references do
not check the CS.limit value, but instead check that the effective address is in canonical form.

DS, ES, and SS Registers in 64-Bit Mode. In 64-bit mode, the contents of the ES, DS, and SS
segment registers are ignored. All fields (base, limit, and attribute) in the hidden portion of the
segment registers are ignored.

Address calculations in 64-bit mode that reference the ES, DS, or SS segments are treated as if the
segment base is 0. Instead of performing limit checks, the processor checks that all virtual-address
references are in canonical form.

Neither enabling and activating long mode nor switching between 64-bit and compatibility modes
changes the contents of the visible or hidden portions of the segment registers. These registers remain
unchanged during 64-bit mode execution unless explicit segment loads are performed.

FS and GS Registers in 64-Bit Mode. Unlike the CS, DS, ES, and SS segments, the FS and GS
segment overrides can be used in 64-bit mode. When FS and GS segment overrides are used in 64-bit
mode, their respective base addresses are used in the effective-address (EA) calculation. The complete
EA calculation then becomes (FS or GS).base + base + (scale ∗ index) + displacement. The FS.base
and GS.base values are also expanded to the full 64-bit virtual-address size, as shown in Figure 4-5.
The resulting EA calculation is allowed to wrap across positive and negative addresses.

[AMD Public Use]

Segmented Virtual Memory 81

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode

In 64-bit mode, FS-segment and GS-segment overrides are not checked for limit or attributes. Instead,
the processor checks that all virtual-address references are in canonical form.

Segment register-load instructions (MOV to Sreg and POP Sreg) load only a 32-bit base-address value
into the hidden portion of the FS and GS segment registers. The base-address bits above the low 32 bits
are cleared to 0 as a result of a segment-register load. When a null selector is loaded into FS or GS, the
contents of the corresponding hidden descriptor register are not altered.

There are two methods to update the contents of the FS.base and GS.base hidden descriptor fields. The
first is available exclusively to privileged software (CPL = 0). The FS.base and GS.base hidden
descriptor-register fields are mapped to MSRs. Privileged software can load a 64-bit base address in
canonical form into FS.base or GS.base using a single WRMSR instruction. The FS.base MSR address
is C000_0100h while the GS.base MSR address is C000_0101h.

The second method of updating the FS and GS base fields is available to software running at any
privilege level (when supported by the implementation and enabled by setting CR4[FSGSBASE]).
The WRFSBASE and WRGSBASE instructions copy the contents of a GPR to the FS.base and
GS.base fields respectively. When the operand size is 32 bits, the upper doubleword of the base is
cleared. WRFSBASE and WRGSBASE are only supported in 64-bit mode.

The addresses written into the expanded FS.base and GS.base registers must be in canonical form. Any
instruction that attempts to write a non-canonical address to these registers causes a general-protection
exception (#GP) to occur.

When in compatibility mode, the FS and GS overrides operate as defined by the legacy x86
architecture regardless of the value loaded into the high 32 bits of the hidden descriptor-register base-
address field. Compatibility mode ignores the high 32 bits when calculating an effective address.

Hidden from Software and Unused in 64-bit Mode 513-267.eps

64-Bit Segment Base Address

32-Bit Segment Limit

Segment Attributes

Selector

[AMD Public Use]

82 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

4.6 Descriptor Tables
Descriptor tables are used by the segmentation mechanism when protected mode is enabled
(CR0.PE=1). These tables hold descriptor entries that describe the location, size, and privilege
attributes of a segment. All memory references in protected mode access a descriptor-table entry.

As previously mentioned, there are three types of descriptor tables supported by the x86 segmentation
mechanism:

• Global descriptor table (GDT)
• Local descriptor table (LDT)
• Interrupt descriptor table (IDT)

Software establishes the location of a descriptor table in memory by initializing its corresponding
descriptor-table register. The descriptor-table registers and the descriptor tables are described in the
following sections.

4.6.1 Global Descriptor Table

Protected-mode system software must create a global descriptor table (GDT). The GDT contains code-
segment and data-segment descriptor entries (user segments) for segments that can be shared by all
tasks. In addition to the user segments, the GDT can also hold gate descriptors and other system-
segment descriptors. System software can store the GDT anywhere in memory and should protect the
segment containing the GDT from non-privileged software.

Segment selectors point to the GDT when the table-index (TI) bit in the selector is cleared to 0. The
selector index portion of the segment selector references a specific entry in the GDT. Figure 4-6 on
page 83 shows how the segment selector indexes into the GDT. One special form of a segment selector
is the null selector. A null selector points to the first entry in the GDT (the selector index is 0 and
TI=0). However, null selectors do not reference memory, so the first GDT entry cannot be used to
describe a segment (see “Null Selector” on page 78 for information on using the null selector). The
first usable GDT entry is referenced with a selector index of 1.

[AMD Public Use]

Segmented Virtual Memory 83

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 4-6. Global and Local Descriptor-Table Access

4.6.2 Global Descriptor-Table Register

The global descriptor-table register (GDTR) points to the location of the GDT in memory and defines
its size. This register is loaded from memory using the LGDT instruction (see “LGDT and LIDT
Instructions” on page 174). Figure 4-7 shows the format of the GDTR in legacy mode and
compatibility mode.

Figure 4-7. GDTR and IDTR Format—Legacy Modes

Figure 4-8 on page 84 shows the format of the GDTR in 64-bit mode.

513-209.eps

Descriptor Table Base Address Descriptor Table Limit

Global (TI=0)
Local (TI=1)

Descriptor Table

+

+

Global or Local Descriptor-Table Register

Selector Index 000

Selector Index TI Segment Selector

Unused in GDT

513-220.eps

16-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

[AMD Public Use]

84 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 4-8. GDTR and IDTR Format—Long Mode

The GDTR contains two fields:

Limit. 2 bytes. These bits define the 16-bit limit, or size, of the GDT in bytes. The limit value is added
to the base address to yield the ending byte address of the GDT. A general-protection exception (#GP)
occurs if software attempts to access a descriptor beyond the GDT limit.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the GDTR and IDTR limit-field sizes are unchanged from the legacy sizes. The
processor does check the limits in long mode during GDT and IDT accesses.

Base Address. 8 bytes. The base-address field holds the starting byte address of the GDT in virtual-
memory space. The GDT can be located at any byte address in virtual memory, but system software
should align the GDT on a quadword boundary to avoid the potential performance penalties associated
with accessing unaligned data.

The AMD64 architecture increases the base-address field of the GDTR to 64 bits so that system
software running in long mode can locate the GDT anywhere in the 64-bit virtual-address space. The
processor ignores the high-order 4 bytes of base address when running in legacy mode.

4.6.3 Local Descriptor Table

Protected-mode system software can optionally create a local descriptor table (LDT) to hold segment
descriptors belonging to a single task or even multiple tasks. The LDT typically contains code-
segment and data-segment descriptors as well as gate descriptors referenced by the specified task. Like
the GDT, system software can store the LDT anywhere in memory and should protect the segment
containing the LDT from non-privileged software.

Segment selectors point to the LDT when the table-index bit (TI) in the selector is set to 1. The selector
index portion of the segment selector references a specific entry in the LDT (see Figure 4-6 on
page 83). Unlike the GDT, however, a selector index of 0 references the first entry in the LDT (when
TI=1, the selector is not a null selector).

LDTs are described by system-segment descriptor entries located in the GDT, and a GDT can contain
multiple LDT descriptors. The LDT system-segment descriptor defines the location, size, and
privilege rights for the LDT. Figure 4-9 on page 85 shows the relationship between the LDT and GDT
data structures.

513-266.eps

16-Bit Descriptor-Table Limit

64-Bit Descriptor-Table Base Address

[AMD Public Use]

Segmented Virtual Memory 85

24593—Rev. 3.37—March 2021 AMD64 Technology

Loading a null selector into the LDTR is useful if software does not use an LDT. This causes a #GP if
an erroneous reference is made to the LDT.

Figure 4-9. Relationship between the LDT and GDT

4.6.4 Local Descriptor-Table Register

The local descriptor-table register (LDTR) points to the location of the LDT in memory, defines its
size, and specifies its attributes. The LDTR has two portions. A visible portion holds the LDT selector,
and a hidden portion holds the LDT descriptor. When the LDT selector is loaded into the LDTR, the
processor automatically loads the LDT descriptor from the GDT into the hidden portion of the LDTR.
The LDTR is loaded in one of two ways:

• Using the LLDT instruction (see “LLDT and LTR Instructions” on page 175).
• Performing a task switch (see “Switching Tasks” on page 365).

Figure 4-10 on page 86 shows the format of the LDTR in legacy mode.

513-208.eps

Global
Descriptor

Table

GDT Limit

GDT Base Address

LDT Selector

LDT Attributes

LDT Limit

LDT Base Address

Local
Descriptor

Table

Global Descriptor Table Register Local Descriptor Table Register

[AMD Public Use]

86 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 4-10. LDTR Format—Legacy Mode

Figure 4-11 shows the format of the LDTR in long mode (both compatibility mode and 64-bit mode).

Figure 4-11. LDTR Format—Long Mode

The LDTR contains four fields:

LDT Selector. 2 bytes. These bits are loaded explicitly from the TSS during a task switch, or by using
the LLDT instruction. The LDT selector must point to an LDT system-segment descriptor entry in the
GDT. If it does not, a general-protection exception (#GP) occurs.

The following three fields are loaded automatically from the LDT descriptor in the GDT as a result of
loading the LDT selector. The register fields are shown as shaded boxes in Figure 4-10 and
Figure 4-11.

Base Address. The base-address field holds the starting byte address of the LDT in virtual-memory
space. Like the GDT, the LDT can be located anywhere in system memory, but software should align
the LDT on a quadword boundary to avoid performance penalties associated with accessing unaligned
data.

Hidden From Software 513-221.eps

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Descriptor Attributes

Selector

Hidden From Software 513-267.eps

64-Bit Descriptor-Table Base Address

32-Bit Descriptor-Table Limit

Descriptor Attributes

Selector

[AMD Public Use]

Segmented Virtual Memory 87

24593—Rev. 3.37—March 2021 AMD64 Technology

The AMD64 architecture expands the base-address field of the LDTR to 64 bits so that system
software running in long mode can locate an LDT anywhere in the 64-bit virtual-address space. The
processor ignores the high-order 32 base-address bits when running in legacy mode. Because the
LDTR is loaded from the GDT, the system-segment descriptor format (LDTs are system segments) has
been expanded by the AMD64 architecture in support of 64-bit mode. See “Long Mode Descriptor
Summary” on page 103 for more information on this expanded format. The high-order base-address
bits are only loaded from 64-bit mode using the LLDT instruction (see “LLDT and LTR Instructions”
on page 175 for more information on this instruction).

Limit. This field defines the limit, or size, of the LDT in bytes. The LDT limit as stored in the LDTR
is 32 bits. When the LDT limit is loaded from the GDT descriptor entry, the 20-bit limit field in the
descriptor is expanded to 32 bits and scaled based on the value of the descriptor granularity (G) bit. For
details on the limit biasing and granularity, see “Granularity (G) Bit” on page 90.

If an attempt is made to access a descriptor beyond the LDT limit, a general-protection exception
(#GP) occurs.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the LDTR limit-field size is unchanged from the legacy size. The processor does
check the LDT limit in long mode during LDT accesses.

Attributes. This field holds the descriptor attributes, such as privilege rights, segment presence and
segment granularity.

4.6.5 Interrupt Descriptor Table

The final type of descriptor table is the interrupt descriptor table (IDT). Multiple IDTs can be
maintained by system software. System software selects a specific IDT by loading the interrupt
descriptor table register (IDTR) with a pointer to the IDT. As with the GDT and LDT, system software
can store the IDT anywhere in memory and should protect the segment containing the IDT from non-
privileged software.

The IDT can contain only the following types of gate descriptors:

• Interrupt gates
• Trap gates
• Task gates.

The use of gate descriptors by the interrupt mechanism is described in Chapter 8, “Exceptions and
Interrupts.” A general-protection exception (#GP) occurs if the IDT descriptor referenced by an
interrupt or exception is not one of the types listed above.

IDT entries are selected using the interrupt vector number rather than a selector value. The interrupt
vector number is scaled by the interrupt-descriptor entry size to form an offset into the IDT. The
interrupt-descriptor entry size depends on the processor operating mode as follows:

• In long mode, interrupt descriptor-table entries are 16 bytes.

[AMD Public Use]

88 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

• In legacy mode, interrupt descriptor-table entries are eight bytes.

Figure 4-12 shows how the interrupt vector number indexes the IDT.

Figure 4-12. Indexing an IDT

4.6.6 Interrupt Descriptor-Table Register

The interrupt descriptor-table register (IDTR) points to the IDT in memory and defines its size. This
register is loaded from memory using the LIDT instruction (see “LGDT and LIDT Instructions” on
page 174). The format of the IDTR is identical to that of the GDTR in all modes. Figure 4-7 on
page 83 shows the format of the IDTR in legacy mode. Figure 4-8 on page 84 shows the format of the
IDTR in long mode.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the IDTR limit-field size is unchanged from the legacy size. The processor does
check the IDT limit in long mode during IDT accesses.

4.7 Legacy Segment Descriptors
4.7.1 Descriptor Format

Segment descriptors define, protect, and isolate segments from each other. There are two basic types of
descriptors, each of which are used to describe different segment (or gate) types:

• User Segments—These include code segments and data segments. Stack segments are a type of
data segment.

513-207.eps

IDT Base Address IDT Limit

Interrupt
Descriptor Table

*

Interrupt Vector

Descriptor Entry
Size

+

+

Interrupt Descriptor Table Register

[AMD Public Use]

Segmented Virtual Memory 89

24593—Rev. 3.37—March 2021 AMD64 Technology

• System Segments—System segments consist of LDT segments and task-state segments (TSS).
Gate descriptors are another type of system-segment descriptor. Rather than describing segments,
gate descriptors point to program entry points.

Figure 4-13 shows the generic format for user-segment and system-segment descriptors. User and
system segments are differentiated using the S bit. S=1 indicates a user segment, and S=0 indicates a
system segment. Gray shading indicates the field or bit is reserved. The format for a gate descriptor
differs from the generic segment descriptor, and is described separately in “Gate Descriptors” on
page 95.

Figure 4-13. Generic Segment Descriptor—Legacy Mode

Figure 4-13 shows the fields in a generic, legacy-mode, 8-byte (two doubleword) segment descriptor.
In this figure, the upper doubleword (located at byte offset +4) is shown on top and the lower
doubleword (located at byte offset +0) is shown on the bottom. The fields are defined as follows:

Segment Limit. The 20-bit segment limit is formed by concatenating bits 19:16 of the upper
doubleword with bits 15:0 of lower doubleword. The segment limit defines the segment size, in bytes.
The granularity (G) bit controls how the segment-limit field is scaled (see “Granularity (G) Bit” on
page 90). For data segments, the expand-down (E) bit determines whether the segment limit defines
the lower or upper segment-boundary (see “Expand-Down (E) Bit” on page 93).

If software references a segment descriptor with an address beyond the segment limit, a general-
protection exception (#GP) occurs. The #GP occurs if any part of the memory reference falls outside
the segment limit. For example, a doubleword (4-byte) address reference causes a #GP if one or more
bytes are located beyond the segment limit.

Base Address. The 32-bit base address is formed by concatenating bits 31:24 of the upper
doubleword with bits 7:0 of the same doubleword and bits 15:0 of the lower doubleword. The
segment-base address field locates the start of a segment in virtual-address space.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

Base Address[31:24] G
D
/
B

A
V
L

Segment Limit
[19:16] P DPL S Type Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

[AMD Public Use]

90 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

S Bit and Type Field. Bit 12 and bits 11:8 of the upper doubleword. The S and Type fields, together,
specify the descriptor type and its access characteristics. Table 4-2 summarizes the descriptor types by
S-field encoding and gives a cross reference to descriptions of the Type-field encodings.

Descriptor Privilege-Level (DPL) Field. Bits 14:13 of the upper doubleword. The DPL field
indicates the descriptor-privilege level of the segment. DPL can be set to any value from 0 to 3, with 0
specifying the most privilege and 3 the least privilege. See “Data-Access Privilege Checks” on
page 106 and “Control-Transfer Privilege Checks” on page 109 for more information on how the DPL
is used during segment privilege-checks.

Present (P) Bit. Bit 15 of the upper doubleword. The segment-present bit indicates that the segment
referenced by the descriptor is loaded in memory. If a reference is made to a descriptor entry when
P = 0, a segment-not-present exception (#NP) occurs. This bit is set and cleared by system software
and is never altered by the processor.

Available To Software (AVL) Bit. Bit 20 of the upper doubleword. This field is available to software,
which can write any value to it. The processor does not set or clear this field.

Default Operand Size (D/B) Bit. Bit 22 of the upper doubleword. The default operand-size bit is
found in code-segment and data-segment descriptors but not in system-segment descriptors. Setting
this bit to 1 indicates a 32-bit default operand size, and clearing it to 0 indicates a 16-bit default size.
The effect this bit has on a segment depends on the segment-descriptor type. See “Code-Segment
Default-Operand Size (D) Bit” on page 92 for a description of the D bit in code-segment descriptors.
“Data-Segment Default Operand Size (D/B) Bit” on page 94 describes the D bit in data-segment
descriptors, including stack segments, where the bit is referred to as the “B” bit.

Granularity (G) Bit. Bit 23 of the upper doubleword. The granularity bit specifies how the segment-
limit field is scaled. Clearing the G bit to 0 indicates that the limit field is not scaled. In this case, the
limit equals the number of bytes available in the segment. Setting the G bit to 1 indicates that the limit
field is scaled by 4 Kbytes (4096 bytes). Here, the limit field equals the number of 4-Kbyte blocks
available in the segment.

Setting a limit of 0 indicates a 1-byte segment limit when G = 0. Setting the same limit of 0 when G =
1 indicates a segment limit of 4095.

Table 4-2. Descriptor Types

S Field Descriptor
Type Type-Field Encoding

0 (System)
LDT

See Table 4-5 on page 94TSS
Gate

1 (User)
Code See Table 4-3 on page 92
Data See Table 4-4 on page 93

[AMD Public Use]

Segmented Virtual Memory 91

24593—Rev. 3.37—March 2021 AMD64 Technology

Reserved Bits. Generally, software should clear all reserved bits to 0, so they can be defined in future
revisions to the AMD64 architecture.

4.7.2 Code-Segment Descriptors

Figure 4-14 shows the code-segment descriptor format (gray shading indicates the bit is reserved). All
software tasks require that a segment selector, referencing a valid code-segment descriptor, is loaded
into the CS register. Code segments establish the processor operating mode and execution privilege-
level. The segments generally contain only instructions and are execute-only, or execute and read-
only. Software cannot write into a segment whose selector references a code-segment descriptor.

Figure 4-14. Code-Segment Descriptor—Legacy Mode

Code-segment descriptors have the S bit set to 1, identifying the segments as user segments. Type-field
bit 11 differentiates code-segment descriptors (bit 11 set to 1) from data-segment descriptors (bit 11
cleared to 0). The remaining type-field bits (10:8) define the access characteristics for the code-
segment, as follows:

Conforming (C) Bit. Bit 10 of the upper doubleword. Setting this bit to 1 identifies the code segment
as conforming. When control is transferred to a higher-privilege conforming code-segment (C=1) from
a lower-privilege code segment, the processor CPL does not change. Transfers to non-conforming
code-segments (C = 0) with a higher privilege-level than the CPL can occur only through gate
descriptors. See “Control-Transfer Privilege Checks” on page 109 for more information on
conforming and non-conforming code-segments.

Readable (R) Bit. Bit 9 of the upper doubleword. Setting this bit to 1 indicates the code segment is
both executable and readable as data. When this bit is cleared to 0, the code segment is executable, but
attempts to read data from the code segment cause a general-protection exception (#GP) to occur.

Accessed (A) Bit. Bit 8 of the upper doubleword. The accessed bit is set to 1 by the processor when
the descriptor is copied from the GDT or LDT into the CS register. This bit is only cleared by software.

Table 4-3 on page 92 summarizes the code-segment type-field encodings.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address[31:24] G D
A
V
L

Segment
Limit[19:16] P DPL 1 1 C R A Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

[AMD Public Use]

92 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Code-Segment Default-Operand Size (D) Bit. Bit 22 of byte +4. In code-segment descriptors, the
D bit selects the default operand size and address sizes. In legacy mode, when D=0 the default operand
size and address size is 16 bits and when D=1 the default operand size and address size is 32 bits.
Instruction prefixes can be used to override the operand size or address size, or both.

4.7.3 Data-Segment Descriptors

Figure 4-15 shows the data-segment descriptor format. Data segments contain non-executable
information and can be accessed as read-only or read/write. They are referenced using the DS, ES, FS,
GS, or SS data-segment registers. The DS data-segment register holds the segment selector for the
default data segment. The ES, FS and GS data-segment registers hold segment selectors for additional
data segments usable by the current software task.

The stack segment is a special form of data-segment register. It is referenced using the SS segment
register and must be read/write. When loading the SS register, the processor requires that the selector
reference a valid, writable data-segment descriptor.

Figure 4-15. Data-Segment Descriptor—Legacy Mode

Table 4-3. Code-Segment Descriptor Types

Hex
Value

Type Field

DescriptionBit 11
(Code/Data)

Bit 10 Bit 9 Bit 8
Conforming

(C)
Readable

(R)
Accessed

(A)
8

1

0 0 0 Execute-Only
9 0 0 1 Execute-Only — Accessed
A 0 1 0 Execute/Readable
B 0 1 1 Execute/Readable — Accessed
C 1 0 0 Conforming, Execute-Only
D 1 0 1 Conforming, Execute-Only — Accessed
E 1 1 0 Conforming, Execute/Readable

F 1 1 1 Conforming, Execute/Readable —
Accessed

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address[31:24] G
D
/
B

A
V
L

Segment Limit
[19:16] P DPL 1 0 E W A Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

[AMD Public Use]

Segmented Virtual Memory 93

24593—Rev. 3.37—March 2021 AMD64 Technology

Data-segment descriptors have the S bit set to 1, identifying them as user segments. Type-field bit 11
differentiates data-segment descriptors (bit 11 cleared to 0) from code-segment descriptors (bit 11 set
to 1). The remaining type-field bits (10:8) define the data-segment access characteristics, as follows:

Expand-Down (E) Bit. Bit 10 of the upper doubleword. Setting this bit to 1 identifies the data
segment as expand-down. In expand-down segments, the segment limit defines the lower segment
boundary while the base is the upper boundary. Valid segment offsets in expand-down segments lie in
the byte range limit+1 to FFFFh or FFFF_FFFFh, depending on the value of the data segment default
operand size (D/B) bit.

Expand-down segments are useful for stacks, which grow in the downward direction as elements are
pushed onto the stack. The stack pointer, ESP, is decremented by an amount equal to the operand size
as a result of executing a PUSH instruction.

Clearing the E bit to 0 identifies the data segment as expand-up. Valid segment offsets in expand-up
segments lie in the byte range 0 to segment limit.

Writable (W) Bit. Bit 9 of the upper doubleword. Setting this bit to 1 identifies the data segment as
read/write. When this bit is cleared to 0, the segment is read-only. A general-protection exception
(#GP) occurs if software attempts to write into a data segment when W=0.

Accessed (A) Bit. Bit 8 of the upper doubleword. The accessed bit is set to 1 by the processor when
the descriptor is copied from the GDT or LDT into one of the data-segment registers or the stack-
segment register. This bit is only cleared by software.

Table 4-4 summarizes the data-segment type-field encodings.

Table 4-4. Data-Segment Descriptor Types

Hex
Value

Type Field

DescriptionBit 11
(Code/Data)

Bit 10 Bit 9 Bit 8
Expand-

Down
(E)

Writable
(W)

Accessed
(A)

0

0

0 0 0 Read-Only
1 0 0 1 Read-Only — Accessed
2 0 1 0 Read/Write
3 0 1 1 Read/Write — Accessed
4 1 0 0 Expand-down, Read-Only
5 1 0 1 Expand-down, Read-Only — Accessed
6 1 1 0 Expand-down, Read/Write
7 1 1 1 Expand-down, Read/Write — Accessed

[AMD Public Use]

94 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Data-Segment Default Operand Size (D/B) Bit. Bit 22 of the upper doubleword. For expand-down
data segments (E=1), setting D=1 sets the upper bound of the segment at 0_FFFF_FFFFh. Clearing
D=0 sets the upper bound of the segment at 0_FFFFh.

In the case where a data segment is referenced by the stack selector (SS), the D bit is referred to as the
B bit. For stack segments, the B bit sets the default stack size. Setting B=1 establishes a 32-bit stack
referenced by the 32-bit ESP register. Clearing B=0 establishes a 16-bit stack referenced by the 16-bit
SP register.

4.7.4 System Descriptors

There are two general types of system descriptors: system-segment descriptors and gate descriptors.
System-segment descriptors are used to describe the LDT and TSS segments. Gate descriptors do not
describe segments, but instead hold pointers to code-segment descriptors. Gate descriptors are used for
protected-mode control transfers between less-privileged and more-privileged software.

System-segment descriptors have the S bit cleared to 0. The type field is used to differentiate the
various LDT, TSS, and gate descriptors from one another. Table 4-5 summarizes the system-segment
type-field encodings.

Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode
Hex

Value
Type Field
(Bits 11:8) Description

0 0000 Reserved (Illegal)
1 0001 Available 16-bit TSS
2 0010 LDT
3 0011 Busy 16-bit TSS
4 0100 16-bit Call Gate
5 0101 Task Gate
6 0110 16-bit Interrupt Gate
7 0111 16-bit Trap Gate
8 1000 Reserved (Illegal)
9 1001 Available 32-bit TSS
A 1010 Reserved (Illegal)
B 1011 Busy 32-bit TSS
C 1100 32-bit Call Gate
D 1101 Reserved (Illegal)
E 1110 32-bit Interrupt Gate
F 1111 32-bit Trap Gate

[AMD Public Use]

Segmented Virtual Memory 95

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 4-16 shows the legacy-mode system-segment descriptor format used for referencing LDT and
TSS segments (gray shading indicates the bit is reserved). This format is also used in compatibility
mode. The system-segments are used as follows:

• The LDT typically holds segment descriptors belonging to a single task (see “Local Descriptor
Table” on page 84).

• The TSS is a data structure for holding processor-state information. Processor state is saved in a
TSS when a task is suspended, and state is restored from the TSS when a task is restarted. System
software must create at least one TSS referenced by the task register, TR. See “Legacy Task-State
Segment” on page 357 for more information on the TSS.

Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes

4.7.5 Gate Descriptors

Gate descriptors hold pointers to code segments and are used to control access between code segments
with different privilege levels. There are four types of gate descriptors:

• Call Gates—These gates (Figure 4-17 on page 96) are located in the GDT or LDT and are used to
control access between code segments in the same task or in different tasks. See “Control Transfers
Through Call Gates” on page 113 for information on how call gates are used to control access
between code segments operating in the same task. The format of a call-gate descriptor is shown in
Figure 4-17 on page 96.

• Interrupt Gates and Trap Gates—These gates (Figure 4-18 on page 96) are located in the IDT and
are used to control access to interrupt-service routines. “Legacy Protected-Mode Interrupt Control
Transfers” on page 259 contains information on using these gates for interrupt-control transfers.
The format of interrupt-gate and trap-gate descriptors is shown in Figure 4-17 on page 96.

• Task Gates—These gates (Figure 4-19 on page 96) are used to control access between different
tasks. They are also used to transfer control to interrupt-service routines if those routines are
themselves a separate task. See “Task-Management Resources” on page 352 for more information
on task gates and their use.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

Base Address[31:24] G
I
G
N

A
V
L

Segment
Limit[19:16] P DPL 0 Type Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

[AMD Public Use]

96 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 4-17. Call-Gate Descriptor—Legacy Mode

Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode

Figure 4-19. Task-Gate Descriptor—Legacy Mode

There are several differences between the gate-descriptor format and the system-segment descriptor
format. These differences are described as follows, from least-significant to most-significant bit
positions:

Target Code-Segment Offset. The 32-bit segment offset is formed by concatenating bits 31:16 of
byte +4 with bits 15:0 of byte +0. The segment-offset field specifies the target-procedure entry point
(offset) into the segment. This field is loaded into the EIP register as a result of a control transfer using
the gate descriptor.

Target Code-Segment Selector. Bits 31:16 of byte +0. The segment-selector field identifies the
target-procedure segment descriptor, located in either the GDT or LDT. The segment selector is loaded
into the CS segment register as a result of a control transfer using the gate descriptor.

TSS Selector. Bits 31:16 of byte +0 (task gates only). This field identifies the target-task TSS
descriptor, located in any of the three descriptor tables (GDT, LDT, and IDT).

31 16 15 14 13 12 11 8 7 6 5 4 0

Target Code-Segment Offset[31:16] P DPL 0 Type Reserved
IGN Parameter Count +4

Target Code-Segment Selector Target Code-Segment Offset[15:0] +0

31 16 15 14 13 12 11 8 7 0

Target Code-Segment Offset[31:16] P DPL 0 Type Reserved, IGN +4

Target Code-Segment Selector Target Code-Segment Offset[15:0] +0

31 16 15 14 13 12 11 8 7 0

Reserved, IGN P DPL 0 Type Reserved, IGN +4

TSS Selector Reserved, IGN +0

[AMD Public Use]

Segmented Virtual Memory 97

24593—Rev. 3.37—March 2021 AMD64 Technology

Parameter Count (Call Gates Only). Bits 4:0 of byte +4. Legacy-mode call-gate descriptors contain
a 5-bit parameter-count field. This field specifies the number of parameters to be copied from the
currently-executing program stack to the target program stack during an automatic stack switch.
Automatic stack switches are performed by the processor during a control transfer through a call gate
to a greater privilege-level. The parameter size depends on the call-gate size as specified in the type
field. 32-bit call gates copy 4-byte parameters, and 16-bit call gates copy 2-byte parameters. See
“Stack Switching” on page 117 for more information on call-gate parameter copying.

4.8 Long-Mode Segment Descriptors
The interpretation of descriptor fields is changed in long mode, and in some cases the format is
expanded. The changes depend on the operating mode (compatibility mode or 64-bit mode) and on the
descriptor type. The following sections describe the changes.

4.8.1 Code-Segment Descriptors

Code segments continue to exist in long mode. Code segments and their associated descriptors and
selectors are needed to establish the processor operating mode as well as execution privilege-level.
The new L attribute specifies whether the processor is running in compatibility mode or 64-bit mode
(see “Long (L) Attribute Bit” on page 98). Figure 4-20 shows the long-mode code-segment descriptor
format. In compatibility mode, the code-segment descriptor is interpreted and behaves just as it does in
legacy mode as described in “Code-Segment Descriptors” on page 91.

In Figure 4-20, gray shading indicates the code-segment descriptor fields that are ignored in 64-bit
mode when the descriptor is used during a memory reference. However, the fields are loaded whenever
the segment register is loaded in 64-bit mode.

Figure 4-20. Code-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode, and code segments span
all of virtual memory. In this mode, code-segment base addresses are ignored. For the purpose of
virtual-address calculations, the base address is treated as if it has a value of zero.

Segment-limit checking is not performed, and both the segment-limit field and granularity (G) bit are
ignored. Instead, the virtual address is checked to see if it is in canonical-address form.

The readable (R) and accessed (A) attributes in the type field are also ignored.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address[31:24] G D L
A
V
L

Segment
Limit[19:16] P DPL 1 1 C R A Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

[AMD Public Use]

98 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Long (L) Attribute Bit. Bit 21 of byte +4. Long mode introduces a new attribute, the long (L) bit, in
code-segment descriptors. This bit specifies that the processor is running in 64-bit mode (L=1) or
compatibility mode (L=0). When the processor is running in legacy mode, this bit is reserved.

Compatibility mode maintains binary compatibility with legacy 16-bit and 32-bit applications.
Compatibility mode is selected on a code-segment basis, and it allows legacy applications to coexist
under the same 64-bit system software along with 64-bit applications running in 64-bit mode. System
software running in long mode can execute existing 16-bit and 32-bit applications by clearing the L bit
of the code-segment descriptor to 0.

When L=0, the legacy meaning of the code-segment D bit (see “Code-Segment Default-Operand Size
(D) Bit” on page 92)—and the address-size and operand-size prefixes—are observed. Segmentation is
enabled when L=0. From an application viewpoint, the processor is in a legacy 16-bit or 32-bit
operating environment (depending on the D bit), even though long mode is activated.

If the processor is running in 64-bit mode (L=1), the only valid setting of the D bit is 0. This setting
produces a default operand size of 32 bits and a default address size of 64 bits. The combination L=1
and D=1 is reserved for future use.

“Instruction Prefixes” in Volume 3 describes the effect of the code-segment L and D bits on default
operand and address sizes when long mode is activated. These default sizes can be overridden with
operand size, address size, and REX prefixes.

4.8.2 Data-Segment Descriptors

Data segments continue to exist in long mode. Figure 4-21 shows the long-mode data-segment
descriptor format. In compatibility mode, data-segment descriptors are interpreted and behave just as
they do in legacy mode.

In Figure 4-21, gray shading indicates the fields that are ignored in 64-bit mode when the descriptor is
used during a memory reference. However, the fields are loaded whenever the segment register is
loaded in 64-bit mode.

Figure 4-21. Data-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode. The interpretation of the
segment-base address depends on the segment register used:

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address[31:24] G
D
/
B

A
V
L

Segment
Limit[19:16] P DPL 1 0 E W A Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

[AMD Public Use]

Segmented Virtual Memory 99

24593—Rev. 3.37—March 2021 AMD64 Technology

• In data-segment descriptors referenced by the DS, ES and SS segment registers, the base-address
field is ignored. For the purpose of virtual-address calculations, the base address is treated as if it
has a value of zero.

• Data segments referenced by the FS and GS segment registers receive special treatment in 64-bit
mode. For these segments, the base address field is not ignored, and a non-zero value can be used
in virtual-address calculations. A 64-bit segment-base address can be specified using model-
specific registers. See “FS and GS Registers in 64-Bit Mode” on page 80 for more information.

Segment-limit checking is not performed on any data segments in 64-bit mode, and both the segment-
limit field and granularity (G) bit are ignored. The D/B bit is unused in 64-bit mode.

The expand-down (E), writable (W), and accessed (A) type-field attributes are ignored.

A data-segment-descriptor DPL field is ignored in 64-bit mode, and segment-privilege checks are not
performed on data segments. System software can use the page-protection mechanisms to isolate and
protect data from unauthorized access.

4.8.3 System Descriptors

In long mode, the allowable system-descriptor types encoded by the type field are changed. Some
descriptor types are modified, and others are illegal. The changes are summarized in Table 4-6. An
attempt to use an illegal descriptor type causes a general-protection exception (#GP).

Table 4-6. System-Segment Descriptor Types—Long Mode

Hex
Value

Type Field
Description

Bit 11 Bit 10 Bit 9 Bit 8
0 0 0 0 0

Reserved (Illegal)
1 0 0 0 1

2 0 0 1 0 64-bit LDT1

3 0 0 1 1

Reserved (Illegal)

4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1 Available 64-bit TSS
A 1 0 1 0 Reserved (Illegal)
B 1 0 1 1 Busy 64-bit TSS
C 1 1 0 0 64-bit Call Gate

Note(s):
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

[AMD Public Use]

100 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

In long mode, the modified system-segment descriptor types are:

• The 32-bit LDT (02h), which is redefined as the 64-bit LDT.
• The available 32-bit TSS (09h), which is redefined as the available 64-bit TSS.
• The busy 32-bit TSS (0Bh), which is redefined as the busy 64-bit TSS.

In 64-bit mode, the LDT and TSS system-segment descriptors are expanded by 64 bits, as shown in
Figure 4-22. In this figure, gray shading indicates the fields that are ignored in 64-bit mode. Expanding
the descriptors allows them to hold 64-bit base addresses, so their segments can be located anywhere
in the virtual-address space. The expanded descriptor can be loaded into the corresponding descriptor-
table register (LDTR or TR) only from 64-bit mode. In compatibility mode, the legacy system-
segment descriptor format, shown in Figure 4-16 on page 95, is used. See “LLDT and LTR
Instructions” on page 175 for more information.

Figure 4-22. System-Segment Descriptor—64-Bit Mode

The 64-bit system-segment base address must be in canonical form. Otherwise, a general-protection
exception occurs with a selector error-code, #GP(selector), when the system segment is loaded.
System-segment limit values are checked by the processor in both 64-bit and compatibility modes,
under the control of the granularity (G) bit.

Figure 4-22 shows that bits 12:8 of doubleword +12 must be cleared to 0. These bits correspond to the
S and Type fields in a legacy descriptor. Clearing these bits to 0 corresponds to an illegal type in legacy

D 1 1 0 1 Reserved (Illegal)
E 1 1 1 0 64-bit Interrupt Gate
F 1 1 1 1 64-bit Trap Gate

31 23 20 19 16 15 14 13 12 11 10 9 8 7 0

Reserved, IGN 0 0 0 0 0 Reserved, IGN +12

Base Address[63:32] +8

Base Address[31:24] G
A
V
L

Segment
Limit[19:16] P DPL 0 Type Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

Table 4-6. System-Segment Descriptor Types—Long Mode (continued)

Hex
Value

Type Field
Description

Bit 11 Bit 10 Bit 9 Bit 8

Note(s):
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

[AMD Public Use]

Segmented Virtual Memory 101

24593—Rev. 3.37—March 2021 AMD64 Technology

mode and causes a #GP if an attempt is made to access the upper half of a 64-bit mode system-segment
descriptor as a legacy descriptor or as the lower half of a 64-bit mode system-segment descriptor.

4.8.4 Gate Descriptors

As shown in Table 4-6 on page 99, the allowable gate-descriptor types are changed in long mode.
Some gate-descriptor types are modified and others are illegal. The modified gate-descriptor types in
long mode are:

• The 32-bit call gate (0Ch), which is redefined as the 64-bit call gate.
• The 32-bit interrupt gate (0Eh), which is redefined as the 64-bit interrupt gate.
• The 32-bit trap gate (0Fh), which is redefined as the 64-bit trap gate.

In long mode, several gate-descriptor types are illegal. An attempt to use these gates causes a general-
protection exception (#GP) to occur. The illegal gate types are:

• The 16-bit call gate (04h).
• The task gate (05h).
• The 16-bit interrupt gate (06h).
• The 16-bit trap gate (07h).

In long mode, gate descriptors are expanded by 64 bits, allowing them to hold 64-bit offsets. The 64-
bit call-gate descriptor is shown in Figure 4-23 and the 64-bit interrupt gate and trap gate are shown in
Figure 4-24 on page 102. In these figures, gray shading indicates the fields that are ignored in long
mode. The interrupt and trap gates contain an additional field, the IST, that is not present in the call
gate—see “IST Field (Interrupt and Trap Gates)” on page 102.

Figure 4-23. Call-Gate Descriptor—Long Mode

31 16 15 14 13 12 11 10 9 8 7 0

Reserved, IGN 0 0 0 0 0 Reserved, IGN +12

Target Offset[63:32] +8

Target Offset[31:16] P DPL 0 Type Reserved, IGN +4

Target Selector Target Offset[15:0] +0

[AMD Public Use]

102 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode

The target code segment referenced by a long-mode gate descriptor must be a 64-bit code segment
(CS.L=1, CS.D=0). If the target is not a 64-bit code segment, a general-protection exception,
#GP(error), occurs. The error code reported depends on the gate type:

• Call gates report the target code-segment selector as the error code.
• Interrupt and trap gates report the interrupt vector number as the error code.

A general-protection exception, #GP(0), occurs if software attempts to reference a long-mode gate
descriptor with a target-segment offset that is not in canonical form.

It is possible for software to store legacy and long mode gate descriptors in the same descriptor table.
Figure 4-23 on page 101 shows that bits 12:8 of byte +12 in a long-mode call gate must be cleared to 0.
These bits correspond to the S and Type fields in a legacy call gate. Clearing these bits to 0
corresponds to an illegal type in legacy mode and causes a #GP if an attempt is made to access the
upper half of a 64-bit mode call-gate descriptor as a legacy call-gate descriptor.

It is not necessary to clear these same bits in a long-mode interrupt gate or trap gate. In long mode, the
interrupt-descriptor table (IDT) must contain 64-bit interrupt gates or trap gates. The processor
automatically indexes the IDT by scaling the interrupt vector by 16. This makes it impossible to access
the upper half of a long-mode interrupt gate, or trap gate, as a legacy gate when the processor is
running in long mode.

IST Field (Interrupt and Trap Gates). Bits 2:0 of byte +4. Long-mode interrupt gate and trap gate
descriptors contain a new, 3-bit interrupt-stack-table (IST) field not present in legacy gate descriptors.
The IST field is used as an index into the IST portion of a long-mode TSS. If the IST field is not 0, the
index references an IST pointer in the TSS, which the processor loads into the RSP register when an
interrupt occurs. If the IST index is 0, the processor uses the legacy stack-switching mechanism (with
some modifications) when an interrupt occurs. See “Interrupt-Stack Table” on page 274 for more
information.

31 16 15 14 13 12 11 8 7 3 2 0

Reserved, IGN +12

Target Offset[63:32] +8

Target Offset[31:16] P DPL 0 Type Reserved, IGN IST +4

Target Selector Target Offset[15:0] +0

[AMD Public Use]

Segmented Virtual Memory 103

24593—Rev. 3.37—March 2021 AMD64 Technology

Count Field (Call Gates). The count field found in legacy call-gate descriptors is not supported in
long-mode call gates. In long mode, the field is reserved and should be cleared to zero.

4.8.5 Long Mode Descriptor Summary

System descriptors and gate descriptors are expanded by 64 bits to handle 64-bit base addresses in
long mode or 64-bit mode. The mode in which the expansion occurs depends on the purpose served by
the descriptor, as follows:

• Expansion Only In 64-Bit Mode—The system descriptors and pseudo-descriptors that are loaded
into the GDTR, IDTR, LDTR, and TR registers are expanded only in 64-bit mode. They are not
expanded in compatibility mode.

• Expansion In Long Mode—Gate descriptors (call gates, interrupt gates, and trap gates) are
expanded in long mode (both 64-bit mode and compatibility mode). Task gates and 16-bit gate
descriptors are illegal in long mode.

The AMD64 architecture redefines several of the descriptor-entry fields in support of long mode. The
specific change depends on whether the processor is in 64-bit mode or compatibility mode. Table 4-7
summarizes the changes in the descriptor entry field when the descriptor entry is loaded into a segment
register (as opposed to when the segment register is subsequently used to access memory).

Table 4-7. Descriptor-Entry Field Changes in Long Mode

Descriptor
Field

Descriptor
Type

Long Mode
Compatibility Mode 64-Bit Mode

Limit
Code

Same as legacy x86 Same as legacy x86Data
System

Offset Gate Expanded to 64 bits Expanded to 64 bits

Base
Code

Same as legacy x86
Same as legacy x86

Data
System

Selector Gate Same as legacy x86

IST1 Gate Interrupt and trap gates only. (New for long mode.)

S and Type

Code
Same as legacy x86 Same as legacy x86

Data

System
Types 02h, 09h, and 0Bh redefined
Types 01h and 03h are illegal

Gate
Types 0Ch, 0Eh, and 0Fh redefined
Types 04h–07h are illegal

Note(s):
1. Not available (reserved) in legacy mode.

[AMD Public Use]

104 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

4.9 Segment-Protection Overview
The AMD64 architecture is designed to fully support the legacy segment-protection mechanism. The
segment-protection mechanism provides system software with the ability to restrict program access
into other software routines and data.

Segment-level protection remains enabled in compatibility mode. 64-bit mode eliminates most type
checking, and limit checking is not performed, except on accesses to system-descriptor tables.

The preferred method of implementing memory protection in a long-mode operating system is to rely
on the page-protection mechanism as described in “Page-Protection Checks” on page 158. System
software still needs to create basic segment-protection data structures for 64-bit mode. These
structures are simplified, however, by the use of the flat-memory model in 64-bit mode, and the limited
segmentation checks performed when executing in 64-bit mode.

DPL

Code

Same as legacy x86 Same as legacy x86
Data
System
Gate

Present

Code

Same as legacy x86 Same as legacy x86
Data
System
Gate

Default Size
Code

Same as legacy x86
D=0 Indicates 64-bit address, 32-bit data
D=1 Reserved

Data Same as legacy x86

Long1 Code Specifies compatibility mode Specifies 64-bit mode

Granularity
Code

Same as legacy x86 Same as legacy x86Data
System

Available
Code

Same as legacy x86 Same as legacy x86Data
System

Table 4-7. Descriptor-Entry Field Changes in Long Mode (continued)

Descriptor
Field

Descriptor
Type

Long Mode
Compatibility Mode 64-Bit Mode

Note(s):
1. Not available (reserved) in legacy mode.

[AMD Public Use]

Segmented Virtual Memory 105

24593—Rev. 3.37—March 2021 AMD64 Technology

4.9.1 Privilege-Level Concept

Segment protection is used to isolate and protect programs and data from each other. The segment-
protection mechanism supports four privilege levels in protected mode. The privilege levels are
designated with a numerical value from 0 to 3, with 0 being the most privileged and 3 being the least
privileged. System software typically assigns the privilege levels in the following manner:

• Privilege-level 0 (most privilege)—This level is used by critical system-software components that
require direct access to, and control over, all processor and system resources. This can include
platform firmware, memory-management functions, and interrupt handlers.

• Privilege-levels 1 and 2 (moderate privilege)—These levels are used by less-critical system-
software services that can access and control a limited scope of processor and system resources.
Software running at these privilege levels might include some device drivers and library routines.
These software routines can call more-privileged system-software services to perform functions
such as memory garbage-collection and file allocation.

• Privilege-level 3 (least privilege)—This level is used by application software. Software running at
privilege-level 3 is normally prevented from directly accessing most processor and system
resources. Instead, applications request access to the protected processor and system resources by
calling more-privileged service routines to perform the accesses.

Figure 4-25 shows the relationship of the four privilege levels to each other.

Figure 4-25. Privilege-Level Relationships

4.9.2 Privilege-Level Types

There are three types of privilege levels the processor uses to control access to segments. These are
CPL, DPL, and RPL.

Current Privilege-Level. The current privilege-level (CPL) is the privilege level at which the
processor is currently executing. The CPL is stored in an internal processor register that is invisible to

513-236.eps Application Programs

Memory Management
File Allocation
Interrupt Handling

Device-Drivers
Library Routines

Privilege
0

Privilege 1

Privilege 2

Privilege 3

[AMD Public Use]

106 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

software. Software changes the CPL by performing a control transfer to a different code segment with
a new privilege level.

Descriptor Privilege-Level. The descriptor privilege-level (DPL) is the privilege level that system
software assigns to individual segments. The DPL is used in privilege checks to determine whether
software can access the segment referenced by the descriptor. In the case of gate descriptors, the DPL
determines whether software can access the descriptor reference by the gate. The DPL is stored in the
segment (or gate) descriptor.

Requestor Privilege-Level. The requestor privilege-level (RPL) reflects the privilege level of the
program that created the selector. The RPL can be used to let a called program know the privilege level
of the program that initiated the call. The RPL is stored in the selector used to reference the segment
(or gate) descriptor.

The following sections describe how the CPL, DPL, and RPL are used by the processor in performing
privilege checks on data accesses and control transfers. Failure to pass a protection check generally
causes an exception to occur.

4.10 Data-Access Privilege Checks
4.10.1 Accessing Data Segments

Before loading a data-segment register (DS, ES, FS, or GS) with a segment selector, the processor
checks the privilege levels as follows to see if access is allowed:

1. The processor compares the CPL with the RPL in the data-segment selector and determines the
effective privilege level for the data access. The processor sets the effective privilege level to the
lowest privilege (numerically-higher value) indicated by the comparison.

2. The processor compares the effective privilege level with the DPL in the descriptor-table entry
referenced by the segment selector. If the effective privilege level is greater than or equal to
(numerically lower-than or equal-to) the DPL, then the processor loads the segment register with
the data-segment selector. The processor automatically loads the corresponding descriptor-table
entry into the hidden portion of the segment register.
If the effective privilege level is lower than (numerically greater-than) the DPL, a general-
protection exception (#GP) occurs and the segment register is not loaded.

Figure 4-26 on page 107 shows two examples of data-access privilege checks.

[AMD Public Use]

Segmented Virtual Memory 107

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 4-26. Data-Access Privilege-Check Examples

Example 1 in Figure 4-26 shows a failing data-access privilege check. The effective privilege level is 3
because CPL=3. This value is greater than the descriptor DPL, so access to the data segment is denied.

Example 2 in Figure 4-26 shows a passing data-access privilege check. Here, the effective privilege
level is 0 because both the CPL and RPL have values of 0. This value is less than the descriptor DPL,
so access to the data segment is allowed, and the data-segment register is successfully loaded.

4.10.2 Accessing Stack Segments

Before loading the stack segment register (SS) with a segment selector, the processor checks the
privilege levels as follows to see if access is allowed:

513-229.eps

DPL=2

Effective
Privilege

3

≤

Max

CPL=3

RPL=0 Access Denied Data
Segment

Descriptor

CS

Data
Selector

Example 1: Privilege Check Fails

DPL=2

Effective
Privilege

0

≤

Max

CPL=0

RPL=0 Access Allowed Data
Segment

CS

Descriptor

Example 2: Privilege Check Passes

Data
Selector

[AMD Public Use]

108 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

1. The processor checks that the CPL and the stack-selector RPL are equal. If they are not equal, a
general-protection exception (#GP) occurs and the SS register is not loaded.

2. The processor compares the CPL with the DPL in the descriptor-table entry referenced by the
segment selector. The two values must be equal. If they are not equal, a #GP occurs and the SS
register is not loaded.

Figure 4-27 shows two examples of stack-access privilege checks. In Example 1 the CPL, stack-
selector RPL, and stack segment-descriptor DPL are all equal, so access to the stack segment using the
SS register is allowed. In Example 2, the stack-selector RPL and stack segment-descriptor DPL are
both equal. However, the CPL is not equal to the stack segment-descriptor DPL, and access to the
stack segment through the SS register is denied.

Figure 4-27. Stack-Access Privilege-Check Examples

513-235.eps

DPL=3

=

CPL=3

RPL=3 Access Allowed Stack
Segment

Descriptor

CS

Stack
Selector

Example 1: Privilege Check Passes

DPL=3

=

CPL=2

RPL=3 Access Denied Stack
Segment

CS

Descriptor

Example 2: Privilege Check Fails

Stack
Selector

[AMD Public Use]

Segmented Virtual Memory 109

24593—Rev. 3.37—March 2021 AMD64 Technology

4.11 Control-Transfer Privilege Checks
Control transfers between code segments (also called far control transfers) cause the processor to
perform privilege checks to determine whether the source program is allowed to transfer control to the
target program. If the privilege checks pass, access to the target code-segment is granted. When access
is granted, the target code-segment selector is loaded into the CS register. The rIP register is updated
with the target CS offset taken from either the far-pointer operand or the gate descriptor. Privilege
checks are not performed during near control transfers because such transfers do not change
segments.

The following mechanisms can be used by software to perform far control transfers:

• System-software control transfers using the system-call and system-return instructions. See
“SYSCALL and SYSRET” on page 169 and “SYSENTER and SYSEXIT (Legacy Mode Only)”
on page 171 for more information on these instructions. SYSCALL and SYSRET are the preferred
method of performing control transfers in long mode. SYSENTER and SYSEXIT are not supported
in long mode.

• Direct control transfers using CALL and JMP instructions. These are discussed in the next section,
“Direct Control Transfers.”

• Call-gate control transfers using CALL and JMP instructions. These are discussed in “Control
Transfers Through Call Gates” on page 113.

• Return control transfers using the RET instruction. These are discussed in “Return Control
Transfers” on page 120.

• Interrupts and exceptions, including the INTn and IRET instructions. These are discussed in
Chapter 8, “Exceptions and Interrupts.”

• Task switches initiated by CALL and JMP instructions. Task switches are discussed in Chapter 12,
“Task Management.” The hardware task-switch mechanism is not supported in long mode.

4.11.1 Direct Control Transfers

A direct control transfer occurs when software executes a far-CALL or a far-JMP instruction without
using a call gate. The privilege checks and type of access allowed as a result of a direct control transfer
depends on whether the target code segment is conforming or nonconforming. The code-segment-
descriptor conforming (C) bit indicates whether or not the target code-segment is conforming (see
“Conforming (C) Bit” on page 91 for more information on the conforming bit).

Privilege levels are not changed as a result of a direct control transfer. Program stacks are not
automatically switched by the processor as they are with privilege-changing control transfers through
call gates (see “Stack Switching” on page 117 for more information on automatic stack switching
during privilege-changing control transfers).

Nonconforming Code Segments. Software can perform a direct control transfer to a
nonconforming code segment only if the target code-segment descriptor DPL and the CPL are equal
and the RPL is less than or equal to the CPL. Software must use a call gate to transfer control to a

[AMD Public Use]

110 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

more-privileged, nonconforming code segment (see “Control Transfers Through Call Gates” on
page 113 for more information).

In far calls and jumps, the far pointer (CS:rIP) references the target code-segment descriptor. Before
loading the CS register with a nonconforming code-segment selector, the processor checks as follows
to see if access is allowed:

1. DPL = CPL Check—The processor compares the target code-segment descriptor DPL with the
currently executing program CPL. If they are equal, the processor performs the next check. If they
are not equal, a general-protection exception (#GP) occurs.

2. RPL ≤ CPL Check—The processor compares the target code-segment selector RPL with the
currently executing program CPL. If the RPL is less than or equal to the CPL, access is allowed. If
the RPL is greater than the CPL, a #GP exception occurs.

If access is allowed, the processor loads the CS and rIP registers with their new values and begins
executing from the target location. The CPL is not changed—the target-CS selector RPL value is
disregarded when the selector is loaded into the CS register.

Figure 4-28 on page 111 shows three examples of privilege checks performed as a result of a far
control transfer to a nonconforming code-segment. In Example 1, access is allowed because CPL =
DPL and RPL ≤ CPL. In Example 2, access is denied because CPL ≠ DPL. In Example 3, access is
denied because RPL > CPL.

[AMD Public Use]

Segmented Virtual Memory 111

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples

Conforming Code Segments. On a direct control transfer to a conforming code segment, the target
code-segment descriptor DPL can be lower than (at a greater privilege) the CPL. Before loading the

513-230.eps

Access Allowed

Code
Segment

Example 1: Privilege Check Passes

CS CPL=2

=

DPL=2

Descriptor

RPL=0
Code

Selector
≤

?

Access
Allowed

Access
Allowed

Access Denied

Code
Segment

Example 2: Privilege Check Fails

CS CPL=2

=

DPL=3

Descriptor

RPL=0
Code

Selector
≤

?

Access
Allowed

Access
Denied

Access Denied

Code
Segment

Example 3: Privilege Check Fails

CS CPL=2

=

DPL=2

Descriptor

RPL=3
Code

Selector
≤

?

Access
Denied

Access
Allowed

[AMD Public Use]

112 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

CS register with a conforming code-segment selector, the processor compares the target code-segment
descriptor DPL with the currently-executing program CPL. If the DPL is less than or equal to the CPL,
access is allowed. If the DPL is greater than the CPL, a #GP exception occurs.

On an access to a conforming code segment, the RPL is ignored and not involved in the privilege
check.

When access is allowed, the processor loads the CS and rIP registers with their new values and begins
executing from the target location. The CPL is not changed—the target CS-descriptor DPL value is
disregarded when the selector is loaded into the CS register. The target program runs at the same
privilege as the program that called it.

Figure 4-29 shows two examples of privilege checks performed as a result of a direct control transfer
to a conforming code segment. In Example 1, access is allowed because the CPL of 3 is greater than
the DPL of 0. As the target code selector is loaded into the CS register, the old CPL value of 3 replaces
the target-code selector RPL value, and the target program executes with CPL=3. In Example 2, access
is denied because CPL < DPL.

Figure 4-29. Conforming Code-Segment Privilege-Check Examples

513-231.eps

Access Allowed
Code

Segment

Example 1: Privilege Check Passes

CS CPL=3

≥

DPL=0

Descriptor

Code
Selector

Access Denied
Code

Segment

Example 2: Privilege Check Fails

CS CPL=0

≥

DPL=3

Descriptor

Code
Selector

[AMD Public Use]

Segmented Virtual Memory 113

24593—Rev. 3.37—March 2021 AMD64 Technology

4.11.2 Control Transfers Through Call Gates

Control transfers to more-privileged code segments are accomplished through the use of call gates.
Call gates are a type of descriptor that contain pointers to code-segment descriptors and control access
to those descriptors. System software uses call gates to establish protected entry points into system-
service routines.

Transfer Mechanism. The pointer operand of a far-CALL or far-JMP instruction consists of two
pieces: a code-segment selector (CS) and a code-segment offset (rIP). In a call-gate transfer, the CS
selector points to a call-gate descriptor rather than a code-segment descriptor, and the rIP is ignored
(but required by the instruction).

Figure 4-30 shows a call-gate control transfer in legacy mode. The call-gate descriptor contains
segment-selector and segment-offset fields (see “Gate Descriptors” on page 95 for a detailed
description of the call-gate format and fields). These two fields perform the same function as the
pointer operand in a direct control-transfer instruction. The segment-selector field points to the target
code-segment descriptor, and the segment-offset field is the instruction-pointer offset into the target
code-segment. The code-segment base taken from the code-segment descriptor is added to the offset
field in the call-gate descriptor to create the target virtual address (linear address).

Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism

513-233.eps

Virtual-Address
Space

Virtual Address

Code Segment

Far Pointer

DPL Code-Segment Limit

Code-Segment Base

DPL Code-Segment Selector

Code-Segment Offset

Segment Selector Instruction Offset

Descriptor Table

+

Call-Gate
Descriptor

Code-Segment
Descriptor

[AMD Public Use]

114 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 4-31 shows a call-gate control transfer in long mode. The long-mode call-gate descriptor
format is expanded by 64 bits to hold a full 64-bit offset into the virtual-address space. Only long-
mode call gates can be referenced in long mode (64-bit mode and compatibility mode). The legacy-
mode 32-bit call-gate types are redefined in long mode as 64-bit types, and 16-bit call-gate types are
illegal.

Figure 4-31. Long-Mode Call-Gate Access Mechanism

A long-mode call gate must reference a 64-bit code-segment descriptor. In 64-bit mode, the code-
segment descriptor base-address and limit fields are ignored. The target virtual-address is the 64-bit
offset field in the expanded call-gate descriptor.

Privilege Checks. Before loading the CS register with the code-segment selector located in the call
gate, the processor performs three privilege checks. The following checks are performed when either
conforming or nonconforming code segments are referenced:

1. The processor compares the CPL with the call-gate DPL from the call-gate descriptor (DPLG).
The CPL must be numerically less than or equal to DPLG for this check to pass. In other words,
the following expression must be true: CPL ≤ DPLG.

513-234.eps

Virtual-Address
Space

Virtual Address

Flat Code-Segment

DPL Code-Segment Limit

Code-Segment Base

DPL Code-Segment Selector

Code-Segment Offset (31:0)

Far Pointer

Segment Selector

Unused

Instruction Offset

Descriptor Table

Code-Segment Offset (63:32)

Call-Gate
Descriptor

Code-Segment
Descriptor

[AMD Public Use]

Segmented Virtual Memory 115

24593—Rev. 3.37—March 2021 AMD64 Technology

2. The processor compares the RPL in the call-gate selector with DPLG. The RPL must be
numerically less than or equal to DPLG for this check to pass. In other words, the following
expression must be true: RPL ≤ DPLG.

3. The processor compares the CPL with the target code-segment DPL from the code-segment
descriptor (DPLS). The type of comparison varies depending on the type of control transfer.
- When a call—or a jump to a conforming code segment—is used to transfer control through a

call gate, the CPL must be numerically greater than or equal to DPLS for this check to pass.
(This check prevents control transfers to less-privileged programs.) In other words, the
following expression must be true: CPL DPLS.

- When a JMP instruction is used to transfer control through a call gate to a nonconforming code
segment, the CPL must be numerically equal to DPLS for this check to pass. (JMP instructions
cannot change CPL.) In other words, the following expression must be true: CPL = DPLS.

Figure 4-32 on page 116 shows two examples of call-gate privilege checks. In Example 1, all privilege
checks pass as follows:

• The call-gate DPL (DPLG) is at the lowest privilege (3), specifying that software running at any
privilege level (CPL) can access the gate.

• The selector referencing the call gate passes its privilege check because the RPL is numerically
less than or equal to DPLG.

• The target code segment is at the highest privilege level (DPLS = 0). This means software running
at any privilege level can access the target code segment through the call gate.

[AMD Public Use]

116 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 4-32. Privilege-Check Examples for Call Gates

In Example 2, all privilege checks fail as follows:

• The call-gate DPL (DPLG) specifies that only software at privilege-level 0 can access the gate. The
current program does not have enough privilege to access the call gate because its CPL is 2.

• The selector referencing the call-gate descriptor does not have enough privilege to complete the
reference. Its RPL is numerically greater than DPLG.

513-232.eps

Example 1: Privilege Check Passes

DPLG=3

Call-Gate Descriptor

Code
Segment

CS CPL=2

DPLS=0

Code-Segment Descriptor

Call-Gate
Selector

RPL=3

Example 2: Privilege Check Fails

DPLG=0

Call-Gate Descriptor
Code

Segment

CS CPL=2

DPLS=3

Code-Segment Descriptor

Call-Gate
Selector

RPL=3

Access Allowed

Access Denied

[AMD Public Use]

Segmented Virtual Memory 117

24593—Rev. 3.37—March 2021 AMD64 Technology

• The target code segment is at a lower privilege (DPLS = 3) than the currently running software
(CPL = 2). Transitions from more-privileged software to less-privileged software are not allowed,
so this privilege check fails as well.

Although all three privilege checks failed in Example 2, failing only one check is sufficient to deny
access into the target code segment.

Stack Switching. The processor performs an automatic stack switch when a control transfer causes a
change in privilege levels to occur. Switching stacks isolates more-privileged software stacks from
less-privileged software stacks and provides a mechanism for saving the return pointer back to the
program that initiated the call.

When switching to more-privileged software, as is done when transferring control using a call gate, the
processor uses the corresponding stack pointer (privilege-level 0, 1, or 2) stored in the task-state
segment (TSS). The format of the stack pointer stored in the TSS depends on the system-software
operating mode:

• Legacy-mode system software stores a 32-bit ESP value (stack offset) and 16-bit SS selector
register value in the TSS for each of three privilege levels 0, 1, and 2.

• Long-mode system software stores a 64-bit RSP value in the TSS for privilege levels 0, 1, and 2.
No SS register value is stored in the TSS because in long mode a call gate must reference a 64-bit
code-segment descriptor. 64-bit mode does not use segmentation, and the stack pointer consists
solely of the 64-bit RSP. Any value loaded in the SS register is ignored.

See “Task-Management Resources” on page 352 for more information on the legacy-mode and long-
mode TSS formats.

Figure 4-33 on page 118 shows a 32-bit stack in legacy mode before and after the automatic stack
switch. This particular example assumes that parameters are passed from the current program to the
target program. The process followed by legacy mode in switching stacks and copying parameters is:

1. The target code-segment DPL is read by the processor and used as an index into the TSS for
selecting the new stack pointer (SS:ESP). For example, if DPL=1 the processor selects the
SS:ESP for privilege-level 1 from the TSS.

2. The SS and ESP registers are loaded with the new SS:ESP values read from the TSS.

3. The old values of the SS and ESP registers are pushed onto the stack pointed to by the new
SS:ESP.

4. The 5-bit count field is read from the call-gate descriptor.

5. The number of parameters specified in the count field (up to 31) are copied from the old stack to
the new stack. The size of the parameters copied by the processor depends on the call-gate size:
32-bit call gates copy 4-byte parameters and 16-bit call gates copy 2-byte parameters.

6. The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the EIP of the instruction following the calling instruction.

[AMD Public Use]

118 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

7. The CS register is loaded from the segment-selector field in the call-gate descriptor, and the EIP is
loaded from the offset field in the call-gate descriptor.

8. The target program begins executing with the instruction referenced by new CS:EIP.

Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters

Figure 4-34 shows a 32-bit stack in legacy mode before and after the automatic stack switch when no
parameters are passed (count=0). Most software does not use the call-gate descriptor count-field to
pass parameters. System software typically defines linkage mechanisms that do not rely on automatic
parameter copying.

Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode

Figure 4-35 on page 119 shows a long-mode stack switch. In long mode, all call gates must reference
64-bit code-segment descriptors, so a long-mode stack switch uses a 64-bit stack. The process of

513-224.eps

Parameter n
. . .

Parameter 1
Parameter 2 +(n-2)*4

+(n-1)*4

Old SS:ESP

Old
32-Bit Stack
Before CALL

New
32-Bit Stack
After CALL

Old SS
Old ESP

Old EIP

Parameter n
. . .

Parameter 1
Parameter 2

Old CS +4

+8

+(n*4)+8

+(n*4)+12

+(n*4)

+(n*4)+4

New SS:ESP

Stack Switch

513-225.eps

Old SS:ESP

Old
32-Bit Stack
Before CALL

New
32-Bit Stack
After CALL

Old EIP

Old ESP
Old SS

Old CS +4

+8

+12

New SS:ESP

Stack Switch

[AMD Public Use]

Segmented Virtual Memory 119

24593—Rev. 3.37—March 2021 AMD64 Technology

switching stacks in long mode is similar to switching in legacy mode when no parameters are passed.
The process is as follows:

1. The target code-segment DPL is read by the processor and used as an index into the 64-bit TSS
for selecting the new stack pointer (RSP).

2. The RSP register is loaded with the new RSP value read from the TSS. The SS register is loaded
with a null selector (SS=0). Setting the new SS selector to null allows proper handling of nested
control transfers in 64-bit mode. See “Nested Returns to 64-Bit Mode Procedures” on page 121
for additional information.
As in legacy mode, it is desirable to keep the stack-segment requestor privilege-level (SS.RPL)
equal to the current privilege-level (CPL). When using a call gate to change privilege levels, the
SS.RPL is updated to reflect the new CPL. The SS.RPL is restored from the return-target CS.RPL
on the subsequent privilege-level-changing far return.

3. The old values of the SS and RSP registers are pushed onto the stack pointed to by the new RSP.
The old SS value is popped on a subsequent far return. This allows system software to set up the
SS selector for a compatibility-mode process by executing a RET (or IRET) that changes the
privilege level.

4. The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the RIP of the instruction following the calling instruction.

5. The CS register is loaded from the segment-selector field in the long-mode call-gate descriptor,
and the RIP is loaded from the offset field in the long-mode call-gate descriptor.

The target program begins execution with the instruction referenced by the new RIP.

Figure 4-35. Stack Switch—Long Mode

All long-mode stack pushes resulting from a privilege-level-changing far call are eight-bytes wide and
increment the RSP by eight. Long mode ignores the call-gate count field and does not support the
automatic parameter-copy feature found in legacy mode. Software can access parameters on the old
stack, if necessary, by referencing the old stack segment selector and stack pointer saved on the new
process stack.

Old SS:RSP

Old
64-Bit Stack
Before CALL

New
64-Bit Stack
After CALL

Old RIP

Old RSP
Old SS

Old CS +8

+16

+24

New RSP

Stack Switch

(SS=0 + new_CPL)

[AMD Public Use]

120 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

4.11.3 Return Control Transfers

Returns to calling programs can be performed by using the RET instruction. The following types of
returns are possible:

• Near Return—Near returns perform control transfers within the same code segment, so the CS
register is unchanged. The new offset is popped off the stack and into the rIP register. No privilege
checks are performed.

• Far Return, Same Privilege—A far return transfers control from one code segment to another.
When the original code segment is at the same privilege level as the target code segment, a far
pointer (CS:rIP) is popped off the stack and the RPL of the new code segment (CS) is checked. If
the requested privilege level (RPL) matches the current privilege level (CPL), then a return is made
to the same privilege level. This prevents software from changing the CS value on the stack in an
attempt to return to higher-privilege software.

• Far Return, Less Privilege—Far returns can change privilege levels, but only to a lower-privilege
level. In this case a stack switch is performed between the current, higher-privilege program and
the lower-privilege return program. The CS-register and rIP-register values are popped off the
stack. The lower-privilege stack pointer is also popped off the stack and into the SS register and
rSP register. The processor checks both the CS and SS privilege levels to ensure they are equal and
at a lesser privilege than the current CS.
In the case of nested returns to 64-bit mode, a null selector can be popped into the SS register. See
“Nested Returns to 64-Bit Mode Procedures” on page 121.
Far returns also check the privilege levels of the DS, ES, FS and GS selector registers. If any of
these segment registers have a selector with a higher privilege than the return program, the
segment register is loaded with the null selector.

Stack Switching. The stack switch performed by a far return to a lower-privilege level reverses the
stack switch of a call gate to a higher-privilege level, except that parameters are never automatically
copied as part of a return. The process followed by a far-return stack switch in long mode and legacy
mode is:

1. The return code-segment RPL is read by the processor from the CS value stored on the stack to
determine that a lower-privilege control transfer is occurring.

2. The return-program instruction pointer is popped off the current-program (higher privilege) stack
and loaded into the CS and rIP registers.

3. The return instruction can include an immediate operand that specifies the number of additional
bytes to be popped off of the stack. These bytes may correspond to the parameters pushed onto the
stack previously by a call through a call gate containing a non-zero parameter-count field. If the
return includes the immediate operand, then the stack pointer is adjusted upward by adding the
specified number of bytes to the rSP.

4. The return-program stack pointer is popped off the current-program (higher privilege) stack and
loaded into the SS and rSP registers. In the case of nested returns to 64-bit mode, a null selector
can be popped into the SS register.

[AMD Public Use]

Segmented Virtual Memory 121

24593—Rev. 3.37—March 2021 AMD64 Technology

The operand size of a far return determines the size of stack pops when switching stacks. If a far return
is used in 64-bit mode to return from a prior call through a long-mode call gate, the far return must use
a 64-bit operand size. The 64-bit operand size allows the far return to properly read the stack
established previously by the far call.

Nested Returns to 64-Bit Mode Procedures. In long mode, a far call that changes privilege levels
causes the SS register to be loaded with a null selector (this is the same action taken by an interrupt in
long mode). If the called procedure performs another far call to a higher-privileged procedure, or is
interrupted, the null SS selector is pushed onto the stack frame, and another null selector is loaded into
the SS register. Using a null selector in this way allows the processor to properly handle returns nested
within 64-bit-mode procedures and interrupt handlers.

Normally, a RET that pops a null selector into the SS register causes a general-protection exception
(#GP) to occur. However, in long mode, the null selector acts as a flag indicating the existence of
nested interrupt handlers or other privileged software in 64-bit mode. Long mode allows RET to pop a
null selector into SS from the stack under the following conditions:

• The target mode is 64-bit mode.
• The target CPL is less than 3.

In this case, the processor does not load an SS descriptor, and the null selector is loaded into SS
without causing a #GP exception.

4.12 Limit Checks
Except in 64-bit mode, limit checks are performed by all instructions that reference memory. Limit
checks detect attempts to access memory outside the current segment boundary, attempts at executing
instructions outside the current code segment, and indexing outside the current descriptor table. If an
instruction fails a limit check, either (1) a general-protection exception occurs for all other segment-
limit violations or (2) a stack-fault exception occurs for stack-segment limit violations.

In 64-bit mode, segment limits are not checked during accesses to any segment referenced by the CS,
DS, ES, FS, GS, and SS selector registers. Instead, the processor checks that the virtual addresses used
to reference memory are in canonical-address form. In 64-bit mode, as with legacy mode and
compatibility mode, descriptor-table limits are checked.

4.12.1 Determining Limit Violations

To determine segment-limit violations, the processor checks a virtual (linear) address to see if it falls
outside the valid range of segment offsets determined by the segment-limit field in the descriptor. If
any part of an operand or instruction falls outside the segment-offset range, a limit violation occurs.
For example, a doubleword access, two bytes from an upper segment boundary, causes a segment
violation because half of the doubleword is outside the segment.

[AMD Public Use]

122 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

Three bits from the descriptor entry are used to control how the segment-limit field is interpreted: the
granularity (G) bit, the default operand-size (D) bit, and for data segments, the expand-down (E) bit.
See “Legacy Segment Descriptors” on page 88 for a detailed description of each bit.

For all segments other than expand-down segments, the minimum segment-offset is 0. The maximum
segment-offset depends on the value of the G bit:

• If G=0 (byte granularity), the maximum allowable segment-offset is equal to the value of the
segment-limit field.

• If G=1 (4096-byte granularity), the segment-limit field is first scaled by 4096 (1000h). Then 4095
(0FFFh) is added to the scaled value to arrive at the maximum allowable segment-offset, as shown
in the following equation:
maximum segment-offset = (limit × 1000h) + 0FFFh
For example, if the segment-limit field is 0100h, then the maximum allowable segment-offset is
(0100h × 1000h) + 0FFFh = 10_1FFFh.

In both cases, the maximum segment-size is specified when the descriptor segment-limit field is
0F_FFFFh.

Expand-Down Segments. Expand-down data segments are supported in legacy mode and
compatibility mode but not in 64-bit mode. With expand-down data segments, the maximum segment
offset depends on the value of the D bit in the data-segment descriptor:

• If D=0 the maximum segment-offset is 0_FFFFh.
• If D=1 the maximum segment-offset is 0_FFFF_FFFFh.

The minimum allowable segment offset in expand-down segments depends on the value of the G bit:

• If G=0 (byte granularity), the minimum allowable segment offset is the segment-limit value plus 1.
For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is
0101h.

• If G=1 (4096-byte granularity), the segment-limit value in the descriptor is first scaled by 4096
(1000h), and then 4095 (0FFFh) is added to the scaled value to arrive at a scaled segment-limit
value. The minimum allowable segment-offset is this scaled segment-limit value plus 1, as shown
in the following equation:
minimum segment-offset = (limit × 1000) + 0FFFh + 1
For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is
(0100h × 1000h) + 0FFFh + 1 = 10_1000h.

For expand-down segments, the maximum segment size is specified when the segment-limit value is
0.

[AMD Public Use]

Segmented Virtual Memory 123

24593—Rev. 3.37—March 2021 AMD64 Technology

4.12.2 Data Limit Checks in 64-bit Mode

In 64-bit mode, data reads and writes are not normally checked for segment-limit violations. When
EFER.LMSLE = 1, reads and writes in 64-bit mode at CPL > 0, using the DS, ES, FS, or SS segments,
have a segment-limit check applied.

This limit-check uses the 32-bit segment-limit to find the maximum allowable address in the top 4GB
of the 64-bit virtual (linear) address space.

This segment-limit check does not apply to accesses through the GS segment, or to code reads. If the
DS, ES, FS, or SS segment is null or expand-down, the effect of the limit check is undefined. Data
segment limit checking in 64-bit mode is not supported by all processor implementations and has been
deprecated. If CPUID Fn8000_0008_EBX[EferLmlseUnsupported](bit 20) = 1, 64-bit mode segment
limit checking is not supported and attempting to enable this feature by setting EFER.LMSLE =1 will
result in a #GP exception.

4.13 Type Checks
Type checks prevent software from using descriptors in invalid ways. Failing a type check results in an
exception. Type checks are performed using five bits from the descriptor entry: the S bit and the 4-bit
Type field. Together, these five bits are used to specify the descriptor type (code, data, segment, or
gate) and its access characteristics. See “Legacy Segment Descriptors” on page 88 for a detailed
description of the S bit and Type-field encodings. Type checks are performed by the processor in
compatibility mode as well as legacy mode. Limited type checks are performed in 64-bit mode.

4.13.1 Type Checks in Legacy and Compatibility Modes

The type checks performed in legacy mode and compatibility mode are listed in the following sections.

Descriptor-Table Register Loads. Loads into the LDTR and TR descriptor-table registers are
checked for the appropriate system-segment type. The LDTR can only be loaded with an LDT
descriptor, and the TR only with a TSS descriptor. The checks are performed during any action that
causes these registers to be loaded. This includes execution of the LLDT and LTR instructions and
during task switches.

Segment Register Loads. The following restrictions are placed on the segment-descriptor types that
can be loaded into the six user segment registers:

• Only code segments can be loaded into the CS register.
• Only writable data segments can be loaded into the SS register.

Table 4-8. Segment Limit Checks in 64-Bit Mode
Memory Address Effect of Limit Check

Linear Address £ (0FFFFFFFF_00000000h + 32-bit Limit) Access OK.
Linear Address > (0FFFFFFFF_00000000h + 32-bit Limit) Exception (#GP or #SS)

[AMD Public Use]

124 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

• Only the following segment types can be loaded into the DS, ES, FS, or GS registers:
- Read-only or read/write data segments.
- Readable code segments.

These checks are performed during any action that causes the segment registers to be loaded. This
includes execution of the MOV segment-register instructions, control transfers, and task switches.

Control Transfers. Control transfers (branches and interrupts) place additional restrictions on the
segment types that can be referenced during the transfer:

• The segment-descriptor type referenced by far CALLs and far JMPs must be one of the following:
- A code segment
- A call gate or a task gate
- An available TSS (only allowed in legacy mode)
- A task gate (only allowed in legacy mode)

• Only code-segment descriptors can be referenced by call-gate, interrupt-gate, and trap-gate
descriptors.

• Only TSS descriptors can be referenced by task-gate descriptors.
• The link field (selector) in the TSS can only point to a TSS descriptor. This is checked during an

IRET control transfer to a task.
• The far RET and far IRET instructions can only reference code-segment descriptors.
• The interrupt-descriptor table (IDT), which is referenced during interrupt control transfers, can

only contain interrupt gates, trap gates, and task gates.

Segment Access. After a segment descriptor is successfully loaded into one of the segment
registers, reads and writes into the segments are restricted in the following ways:

• Writes are not allowed into read-only data-segment types.
• Writes are not allowed into code-segment types (executable segments).
• Reads from code-segment types are not allowed if the readable (R) type bit is cleared to 0.

These checks are generally performed during execution of instructions that access memory.

4.13.2 Long Mode Type Check Differences

Compatibility Mode and 64-Bit Mode. The following type checks differ in long mode (64-bit mode
and compatibility mode) as compared to legacy mode:

• System Segments—System-segment types are checked, but the following types that are valid in
legacy mode are illegal in long mode:
- 16-bit available TSS.
- 16-bit busy TSS.

[AMD Public Use]

Segmented Virtual Memory 125

24593—Rev. 3.37—March 2021 AMD64 Technology

- Type-field encoding of 00h in the upper half of a system-segment descriptor to indicate an
illegal type and prevent access as a legacy descriptor.

• Gates—Gate-descriptor types are checked, but the following types that are valid in legacy mode
are illegal in long mode:
- 16-bit call gate.
- 16-bit interrupt gate.
- 16-bit trap gate.
- Task gate.

64-Bit Mode. 64-bit mode disables segmentation, and most of the segment-descriptor fields are
ignored. The following list identifies situations where type checks in 64-bit mode differ from those in
compatibility mode and legacy mode:

• Code Segments—The readable (R) type bit is ignored in 64-bit mode. None of the legacy type-
checks that prevent reads from or writes into code segments are performed in 64-bit mode.

• Data Segments—Data-segment type attributes are ignored in 64-bit mode. The writable (W) and
expand-down (E) type bits are ignored. All data segments are treated as writable.

[AMD Public Use]

126 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Page Translation and Protection 127

24593—Rev. 3.37—March 2021 AMD64 Technology

5 Page Translation and Protection

The x86 page-translation mechanism (or simply paging mechanism) enables system software to create
separate address spaces for each process or application. These address spaces are known as virtual-
address spaces. System software uses the paging mechanism to selectively map individual pages of
physical memory into the virtual-address space using a set of hierarchical address-translation tables
known collectively as page tables.

The paging mechanism and the page tables are used to provide each process with its own private
region of physical memory for storing its code and data. Processes can be protected from each other by
isolating them within the virtual-address space. A process cannot access physical memory that is not
mapped into its virtual-address space by system software.

System software can use the paging mechanism to selectively map physical-memory pages into
multiple virtual-address spaces. Mapping physical pages in this manner allows them to be shared by
multiple processes and applications. The physical pages can be configured by the page tables to allow
read-only access. This prevents applications from altering the pages and ensures their integrity for use
by all applications.

Shared mapping is typically used to allow access of shared-library routines by multiple applications. A
read-only copy of the library routine is mapped to each application virtual-address space, but only a
single copy of the library routine is present in physical memory. This capability also allows a copy of
the operating-system kernel and various device drivers to reside within the application address space.
Applications are provided with efficient access to system services without requiring costly address-
space switches.

The system-software portion of the address space necessarily includes system-only data areas that
must be protected from accesses by applications. System software uses the page tables to protect this
memory by designating the pages as supervisor pages. Such pages are only accessible by system
software.

When the supervisor mode execution prevention (SMEP) feature is supported and enabled, attempted
instruction fetches from user-mode accessible pages while in supervisor-mode triggers a page fault
(#PF). This protects the integrity of system software by preventing the execution of instructions at a
supervisor privilege level (CPL < 3) when these instructions could have been written or modified by
user-mode code.

When the supervisor mode access prevention (SMAP) feature is supported and enabled and
RFLAGS.AC=0, some attempted explicit data accesses from user-mode accessible pages while in
supervisor-mode trigger a page fault (#PF). This protects the integrity of system software by
preventing the use of data at a supervisor privilege level (CPL < 3) that could have been modified by
user-mode code. Supervisor software that requires access to data which is marked as user-mode
accessible may temporarily suppress SMAP checks by modifying RFLAGS.AC, such as with the
CLAC/STAC instructions.

[AMD Public Use]

128 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

Finally, system software can use the paging mechanism to map multiple, large virtual-address spaces
into a much smaller amount of physical memory. Each application can use the entire 32-bit or 64-bit
virtual-address space. System software actively maps the most-frequently-used virtual-memory pages
into the available pool of physical-memory pages. The least-frequently-used virtual-memory pages are
swapped out to the hard drive. This process is known as demand-paged virtual memory.

[AMD Public Use]

Page Translation and Protection 129

24593—Rev. 3.37—March 2021 AMD64 Technology

5.1 Page Translation Overview
The legacy x86 architecture provides support for translating 32-bit virtual addresses into 32-bit
physical addresses (larger physical addresses, such as 36-bit or 40-bit addresses, are supported as a
special mode). The AMD64 architecture enhances this support to allow translation of 64-bit virtual
addresses into 52-bit physical addresses, although processor implementations can support smaller
virtual-address and physical-address spaces.

Virtual addresses are translated to physical addresses through hierarchical translation tables created
and managed by system software. Each table contains a set of entries that point to the next-lower table
in the translation hierarchy. A single table at one level of the hierarchy can have hundreds of entries,
each of which points to a unique table at the next-lower hierarchical level. Each lower-level table can
in turn have hundreds of entries pointing to tables further down the hierarchy. The lowest-level table in
the hierarchy points to the translated physical page.

Figure 5-1 on page 130 shows an overview of the page-translation hierarchy used in long mode.
Legacy mode paging uses a subset of this translation hierarchy (the page-map level-4 table does not
exist in legacy mode and the PDP table may or may not be used, depending on which paging mode is
enabled). As this figure shows, a virtual address is divided into fields, each of which is used as an
offset into a translation table. The complete translation chain is made up of all table entries referenced
by the virtual-address fields. The lowest-order virtual-address bits are used as the byte offset into the
physical page.

[AMD Public Use]

130 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 5-1. Virtual to Physical Address Translation—Long Mode

513-200.eps

PML4E PDE

Physical
Address

PDPE

PTE

Physical Page
Offset

Sign
Extension

63 0

Page Directory
Offset

Page Map
Level-4 Offset

Page Directory
Pointer Offset

Page Table
Offset

Page Map Base Register CR3

64-Bit Virtual Address

Page Directory Pointer
Table

Page Directory
Table

Physical Page
Frame

Page
Table

Page Map
Level 4
Table

[AMD Public Use]

Page Translation and Protection 131

24593—Rev. 3.37—March 2021 AMD64 Technology

The following physical-page sizes are supported: 4 Kbytes, 2 Mbytes, 4 Mbytes, and 1 Gbytes. In long
mode 4-Kbyte, 2-MByte, and 1-GByte sizes are available. In legacy mode 4-Kbyte, 2-MByte, and 4-
MByte sizes are available.

Virtual addresses are 32 bits long, and physical addresses up to the supported physical-address size can
be used. The AMD64 architecture enhances the legacy translation support by allowing virtual
addresses of up to 64 bits long to be translated into physical addresses of up to 52 bits long.

Currently, the AMD64 architecture defines a mechanism for translating 48-bit virtual addresses to 52-
bit physical addresses. The mechanism used to translate a full 64-bit virtual address is reserved and
will be described in a future AMD64 architectural specification.

5.1.1 Page-Translation Options

The form of page-translation support available to software depends on which paging features are
enabled. Four controls are available for selecting the various paging alternatives:

• Page-Translation Enable (CR0.PG)
• Physical-Address Extensions (CR4.PAE)
• Page-Size Extensions (CR4.PSE)
• Long-Mode Active (EFER.LMA)

Not all paging alternatives are available in all modes. Table 5-1 summarizes the paging support
available in each mode.

5.1.2 Page-Translation Enable (PG) Bit

Page translation is controlled by the PG bit in CR0 (bit 31). When CR0.PG is set to 1, page translation
is enabled. When CR0.PG is cleared to 0, page translation is disabled.

Table 5-1. Supported Paging Alternatives (CR0.PG=1)

Mode

Physical-
Address

Extensions
(CR4.PAE)

Page-Size
Extensions
(CR4.PSE)

Page-
Directory

Pointer Offset

Page-
Directory
Page Size

Resulting
Physical-
Page Size

Maximum
Virtual
Address

Maximum
Physical
Address

Long Mode
(64-bit and
compatability
modes)

Enabled –
PDPE.PS=0

PDE.PS=0 4 Kbyte

64-bit 52-bitPDE.PS=1 2 Mbyte

PDPE.PS=1 – 1 Gbyte

Legacy Mode

Enabled –

PDPE.PS=0

PDE.PS=0 4 Kbyte

32-bit

52-bit
PDE.PS=1 2 Mbyte 52-bit

Disabled
Disabled – 4 Kbyte 32-bit

Enabled
PDE.PS=0 4 Kbyte 32-bit
PDE.PS=1 4 Mbyte 40-bit

[AMD Public Use]

132 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

The AMD64 architecture uses CR0.PG to activate and deactivate long mode when long mode is
enabled. See “Enabling and Activating Long Mode” on page 464 for more information.

5.1.3 Physical-Address Extensions (PAE) Bit

Physical-address extensions are controlled by the PAE bit in CR4 (bit 5). When CR4.PAE is set to 1,
physical-address extensions are enabled. When CR4.PAE is cleared to 0, physical-address extensions
are disabled.

Setting CR4.PAE = 1 enables virtual addresses to be translated into physical addresses up to 52 bits
long. This is accomplished by doubling the size of paging data-structure entries from 32 bits to 64 bits
to accommodate the larger physical base-addresses for physical-pages.

PAE must be enabled before activating long mode. See “Enabling and Activating Long Mode” on
page 464.

5.1.4 Page-Size Extensions (PSE) Bit

Page-size extensions are controlled by the PSE bit in CR4 (bit 4). Setting CR4.PSE to 1 allows
operating-system software to use 4-Mbyte physical pages in the translation process. The 4-Mbyte
physical pages can be mixed with standard 4-Kbyte physical pages or replace them entirely. The
selection of physical-page size is made on a page-directory-entry basis. See “Page Size (PS) Bit” on
page 152 for more information on physical-page size selection. When CR4.PSE is cleared to 0, page-
size extensions are disabled.

The choice of 2 Mbyte or 4 Mbyte as the large physical-page size depends on the value of CR4.PSE
and CR4.PAE, as follows:

• If physical-address extensions are enabled (CR4.PAE=1), the large physical-page size is 2 Mbytes,
regardless of the value of CR4.PSE.

• If physical-address extensions are disabled (CR4.PAE=0) and CR4.PSE=1, the large physical-
page size is 4 Mbytes.

• If both CR4.PAE=0 and CR4.PSE=0, the only available page size is 4 Kbytes.

The value of CR4.PSE is ignored when long mode is active. This is because physical-address
extensions must be enabled in long mode, and the only available page sizes are 4 Kbytes and
2 Mbytes.

In legacy mode, physical addresses up to 40 bits long can be translated from 32-bit virtual addresses
using 32-bit paging data-structure entries when 4-Mbyte physical-page sizes are selected. In this
special case, CR4.PSE=1 and CR4.PAE=0. See “4-Mbyte Page Translation” on page 136 for a
description of the 4-Mbyte PDE that supports 40-bit physical-address translation. The 40-bit physical-
address capability is an AMD64 architecture enhancement over the similar capability available in the
legacy x86 architecture.

[AMD Public Use]

Page Translation and Protection 133

24593—Rev. 3.37—March 2021 AMD64 Technology

5.1.5 Page-Directory Page Size (PS) Bit

The page directory offset entry (PDE) and page directory pointer offset entry (PDPE) are data
structures used in page translation (see Figure 5-1 on page 130). The page-size (PS) bit in the PDE (bit
7, referred to as PDE.PS) selects between standard 4-Kbyte physical-page sizes and larger (2-Mbyte or
4-Mbyte) physical-page sizes. The page-size (also PS) bit in the PDPE (bit 7, referred to as PDPE.PS)
selects between 2-Mbyte and 1-Gbyte physical-page sizes in long mode.

When PDE.PS is set to 1, large physical pages are used, and the PDE becomes the lowest level of the
translation hierarchy. The size of the large page is determined by the values of CR4.PAE and
CR4.PSE, as shown in Figure 5-1 on page 131. When PDE.PS is cleared to 0, standard 4-Kbyte
physical pages are used, and the PTE is the lowest level of the translation hierarchy.

When PDPE.PS is set to 1, 1-Gbyte physical pages are used, and the PDPE becomes the lowest level of
the translation hierarchy. Neither the PDE nor PTE are used for 1-Gbyte paging.

5.2 Legacy-Mode Page Translation
Legacy mode supports two forms of translation:

• Normal (non-PAE) Paging—This is used when physical-address extensions are disabled
(CR4.PAE=0). Entries in the page translation table are 32 bits and are used to translate 32-bit
virtual addresses into physical addresses as large as 40 bits.

• PAE Paging—This is used when physical-address extensions are enabled (CR4.PAE=1). Entries in
the page translation table are 64 bits and are used to translate 32-bit virtual addresses into physical
addresses as large as 52 bits.

Legacy paging uses up to three levels of page-translation tables, depending on the paging form used
and the physical-page size. Entries within each table are selected using virtual-address bit fields. The
legacy page-translation tables are:

• Page Table—Each page-table entry (PTE) points to a physical page. If 4-Kbyte pages are used, the
page table is the lowest level of the page-translation hierarchy. PTEs are not used when translating
2-Mbyte or 4-Mbyte pages.

• Page Directory—If 4-Kbyte pages are used, each page-directory entry (PDE) points to a page
table. If 2-Mbyte or 4-Mbyte pages are used, a PDE is the lowest level of the page-translation
hierarchy and points to a physical page. In non-PAE paging, the page directory is the highest level
of the translation hierarchy.

• Page-Directory Pointer—Each page-directory pointer entry (PDPE) points to a page directory.
Page-directory pointers are only used in PAE paging (CR4.PAE=1), and are the highest level in the
legacy page-translation hierarchy.

The translation-table-entry formats and how they are used in the various forms of legacy page
translation are described beginning on page 135.

[AMD Public Use]

134 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

5.2.1 CR3 Register

The CR3 register is used to point to the base address of the highest-level page-translation table. The
base address is either the page-directory pointer table or the page directory table. The CR3 register
format depends on the form of paging being used. Figure 5-2 on page 134 shows the CR3 format when
normal (non-PAE) paging is used (CR4.PAE=0). Figure 5-3 shows the CR3 format when PAE paging
is used (CR4.PAE=1).

Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode

The CR3 register fields for legacy-mode paging are:

Table Base Address Field. This field points to the starting physical address of the highest-level
page-translation table. The size of this field depends on the form of paging used:

• Normal (Non-PAE) Paging (CR4.PAE=0)—This 20-bit field occupies bits 31:12, and points to the
base address of the page-directory table. The page-directory table is aligned on a 4-Kbyte
boundary, with the low-order 12 address bits 11:0 assumed to be 0. This yields a total base-address
size of 32 bits.

• PAE Paging (CR4.PAE=1)—This field is 27 bits and occupies bits 31:5. The CR3 register points to
the base address of the page-directory-pointer table. The page-directory-pointer table is aligned on
a 32-byte boundary, with the low 5 address bits 4:0 assumed to be 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-translation table has a writeback or writethrough caching policy. When PWT=0, the table
has a writeback caching policy. When PWT=1, the table has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disable indicates whether the highest-
level page-translation table is cacheable. When PCD=0, the table is cacheable. When PCD=1, the table
is not cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

31 12 11 5 4 3 2 0

Page-Directory-Table Base Address Reserved
P
C
D

P
W
T

Reserved

31 5 4 3 2 0

Page-Directory-Pointer-Table Base Address
P
C
D

P
W
T

Reserved

[AMD Public Use]

Page Translation and Protection 135

24593—Rev. 3.37—March 2021 AMD64 Technology

5.2.2 Normal (Non-PAE) Paging

Non-PAE paging (CR4.PAE=0) supports 4-Kbyte and 4-Mbyte physical pages, as described in the
following sections.

4-Kbyte Page Translation. 4-Kbyte physical-page translation is performed by dividing the 32-bit
virtual address into three fields. Each of the upper two fields is used as an index into a two-level page-
translation hierarchy. The virtual-address fields are used as follows, and are shown in Figure 5-4:

• Bits 31:22 index into the 1024-entry page-directory table.
• Bits 21:12 index into the 1024-entry page table.
• Bits 11:0 provide the byte offset into the physical page.

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode

Figure 5-5 on page 136 shows the format of the PDE (page-directory entry), and Figure 5-6 on
page 136 shows the format of the PTE (page-table entry). Each table occupies 4 Kbytes and can hold
1024 of the 32-bit table entries. The fields within these table entries are described in “Page-
Translation-Table Entry Fields” on page 150.

Figure 5-5 shows bit 7 cleared to 0. This bit is the page-size bit (PS), and specifies a 4-Kbyte physical-
page translation.

Virtual Address

Page Offset
Page-Directory

Offset
Page-Table

Offset

01112212231

Physical
Address

PTE

PDE

1010

32

32

Page-Directory Base

1231

CR3

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

12

[AMD Public Use]

136 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode

4-Mbyte Page Translation. 4-Mbyte page translation is only supported when page-size extensions
are enabled (CR4.PSE=1) and physical-address extensions are disabled (CR4.PAE=0).

PSE defines a page-size bit in the 32-bit PDE format (PDE.PS). This bit is used by the processor
during page translation to support both 4-Mbyte and 4-Kbyte pages. 4-Mbyte pages are selected when
PDE.PS is set to 1, and the PDE points directly to a 4-Mbyte physical page. PTEs are not used in a 4-
Mbyte page translation. If PDE.PS is cleared to 0, or if 4-Mbyte page translation is disabled, the PDE
points to a PTE.

4-Mbyte page translation is performed by dividing the 32-bit virtual address into two fields. Each field
is used as an index into a single-level page-translation hierarchy. The virtual-address fields are used as
follows, and are shown in Figure 5-7 on page 137:

• Bits 31:22 index into the 1024-entry page-directory table.
• Bits 21:0 provide the byte offset into the physical page.

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

[AMD Public Use]

Page Translation and Protection 137

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode

The AMD64 architecture modifies the legacy 32-bit PDE format in PSE mode to increase physical-
address size support to 40 bits. This increase in address size is accomplished by using bits 20:13 to
hold eight additional high-order physical-address bits. Bit 21 is reserved and must be cleared to 0.

Figure 5-8 shows the format of the PDE when PSE mode is enabled. The physical-page base-address
bits are contained in a split field. The high-order, physical-page base-address bits 39:32 are located in
PDE[20:13], and physical-page base-address bits 31:22 are located in PDE[31:22].

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode

5.2.3 PAE Paging

PAE paging is used when physical-address extensions are enabled (CR4.PAE=1). PAE paging doubles
the size of page-translation table entries to 64 bits so that the table entries can hold larger physical

31 22 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address [31:22] 0 Physical-Page Base Address
[39:32]

P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Virtual Address

Page Offset
Page-Directory

Offset

0212231

Physical
Address

PDE

10

40

Page-Directory Base

1231

CR3

Page-
Directory

Table

4 Mbyte
Physical

Page

22

[AMD Public Use]

138 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

addresses (up to 52 bits). The size of each table remains 4 Kbytes, which means each table can hold
512 of the 64-bit entries. PAE paging also introduces a third-level page-translation table, known as the
page-directory-pointer table (PDP).

The size of large pages in PAE-paging mode is 2 Mbytes rather than 4 Mbytes. PAE uses the page-
directory page-size bit (PDE.PS) to allow selection between 4-Kbyte and 2-Mbyte page sizes. PAE
automatically uses the page-size bit, so the value of CR4.PSE is ignored by PAE paging.

4-Kbyte Page Translation. With PAE paging, 4-Kbyte physical-page translation is performed by
dividing the 32-bit virtual address into four fields, each of the upper three fields is used as an index into
a 3-level page-translation hierarchy. The virtual-address fields are described as follows and are shown
in Figure 5-9:

• Bits 31:30 index into a 4-entry page-directory-pointer table.
• Bits 29:21 index into the 512-entry page-directory table.
• Bits 20:12 index into the 512-entry page table.
• Bits 11:0 provide the byte offset into the physical page.

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode

Figures 5-10 through 5-12 show the legacy-mode 4-Kbyte translation-table formats:

Virtual Address

Page Offset
Page-Directory

Offset
Page-Table

Offset

011122021293031

Physical
Address

PTE

PDE

PDPE

992

52*

52*

52*

Page-Directory-Pointer Base

531

CR3

Page-
Directory-

Pointer
Table

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

Page-Directory-
Pointer Offset

12

*This is an architectural limit. A given processor
implementation may support fewer bits.

[AMD Public Use]

Page Translation and Protection 139

24593—Rev. 3.37—March 2021 AMD64 Technology

• Figure 5-10 shows the PDPE (page-directory-pointer entry) format.
• Figure 5-11 shows the PDE (page-directory entry) format.
• Figure 5-12 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 150.

Figure 5-11 shows the PDE.PS bit cleared to 0 (bit 7), specifying a 4-Kbyte physical-page translation.

Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode

Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode

Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode

2-Mbyte Page Translation. 2-Mbyte page translation is performed by dividing the 32-bit virtual
address into three fields. Each field is used as an index into a 2-level page-translation hierarchy. The
virtual-address fields are described as follows and are shown in Figure 5-13 on page 140:

• Bits 31:30 index into the 4-entry page-directory-pointer table.

63 52 51 32

Reserved, MBZ Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 5 4 3 2 1 0

Page-Directory Base Address AVL Reserved, MBZ
P
C
D

P
W
T

MBZ P

63 62 52 51 32

N
X

Reserved, MBZ Page-Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Reserved, MBZ Physical-Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

[AMD Public Use]

140 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

• Bits 29:21 index into the 512-entry page-directory table.
• Bits 20:0 provide the byte offset into the physical page.

Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode

Figure 5-14 shows the format of the PDPE (page-directory-pointer entry) and Figure 5-15 on page 141
shows the format of the PDE (page-directory entry). PTEs are not used in 2-Mbyte page translations.

Figure 5-15 on page 141 shows the PDE.PS bit set to 1 (bit 7), specifying a 2-Mbyte physical-page
translation.

Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode

63 52 51 32

Reserved, MBZ Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 5 4 3 2 1 0

Page-Directory Base Address AVL Reserved, MBZ
P
C
D

P
W
T

MBZ P

Virtual Address

Page Offset
Page-Directory

Offset

02021293031

Physical
Address

PDE

PDPE

92

52*

52*

Page-Directory-Pointer Base Register

531

CR3

Page-
Directory-

Pointer
Table

Page-
Directory

Table

2 Mbyte
Physical

Page

Page-Directory-
Pointer Offset

21

*This is an architectural limit. A given processo
implementation may support fewer bits.

[AMD Public Use]

Page Translation and Protection 141

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode

5.3 Long-Mode Page Translation
Long-mode page translation requires the use of physical-address extensions (PAE). Before activating
long mode, PAE must be enabled by setting CR4.PAE to 1. Activating long mode before enabling PAE
causes a general-protection exception (#GP) to occur.

The PAE-paging data structures support mapping of 64-bit virtual addresses into 52-bit physical
addresses. PAE expands the size of legacy page-directory entries (PDEs) and page-table entries
(PTEs) from 32 bits to 64 bits, allowing physical-address sizes of greater than 32 bits.

The AMD64 architecture enhances the page-directory-pointer entry (PDPE) by defining previously
reserved bits for access and protection control. A new translation table is added to PAE paging, called
the page-map level-4 (PML4). The PML4 table precedes the PDP table in the page-translation
hierarchy.

Because PAE is always enabled in long mode, the PS bit in the page directory entry (PDE.PS) selects
between 4-Kbyte and 2-Mbyte page sizes, and the CR4.PSE bit is ignored. When 1-Gbyte pages are
supported, the PDPE. PS bit selects the 1-Gbyte page size.

5.3.1 Canonical Address Form

The AMD64 architecture requires implementations supporting fewer than the full 64-bit virtual
address to ensure that those addresses are in canonical form. An address is in canonical form if the
address bits from the most-significant implemented bit up to bit 63 are all ones or all zeros. If the
addresses of all bytes in a virtual-memory reference are not in canonical form, the processor generates
a general-protection exception (#GP) or a stack fault (#SS) as appropriate.

5.3.2 CR3

In long mode, the CR3 register is used to point to the PML4 base address. CR3 is expanded to 64 bits
in long mode, allowing the PML4 table to be located anywhere in the 52-bit physical-address space.
Figure on page 142 shows the long-mode CR3 format.

63 62 52 51 32

N
X

Reserved, MBZ Physical-Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

[AMD Public Use]

142 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 5-16. Control Register 3 (CR3)—Long Mode

The CR3 register fields for long mode are:

Table Base Address Field. Bits 51:12. This 40-bit field points to the PML4 base address. The PML4
table is aligned on a 4-Kbyte boundary with the low-order 12 address bits (11:0) assumed to be 0. This
yields a total base-address size of 52 bits. System software running on processor implementations
supporting less than the full 52-bit physical-address space must clear the unimplemented upper base-
address bits to 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-translation table has a writeback or writethrough caching policy. When PWT=0, the table
has a writeback caching policy. When PWT=1, the table has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disable indicates whether the highest-
level page-translation table is cacheable. When PCD=0, the table is cacheable. When PCD=1, the table
is not cacheable.

Process Context Identifier. Bits 11:0. This 12-bit field determines the current Processor Context
Identifier (PCID) when CR4.PCIDE=1.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

5.3.3 4-Kbyte Page Translation

In long mode, 4-Kbyte physical-page translation is performed by dividing the virtual address into six
fields. Four of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-17 on page 143:

• Bits 63:48 are a sign extension of bit 47, as required for canonical-address forms.

63 52 51 32

Reserved, MBZ Page-Map Level-4 Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 5 4 3 2 0

Page-Map Level-4 Table Base Address Usage depends on state of Processor Context ID
enablement (CR4.PCIDE). See below.

11 5 4 3 2 0

CR4.PCIDE=0 Reserved

PC
D

PW
T Reserved

CR4.PCIDE=1 Processor Context Identifier (See “Process Context
Identifier” on page 154 for more information.)

[AMD Public Use]

Page Translation and Protection 143

24593—Rev. 3.37—March 2021 AMD64 Technology

• Bits 47:39 index into the 512-entry page-map level-4 table.
• Bits 38:30 index into the 512-entry page-directory pointer table.
• Bits 29:21 index into the 512-entry page-directory table.
• Bits 20:12 index into the 512-entry page table.
• Bits 11:0 provide the byte offset into the physical page.
Note: The sizes of the sign extension and the PML4 fields depend on the number of virtual address

bits supported by the implementation.

Figure 5-17. 4-Kbyte Page Translation—Long Mode

Figures 5-18 through 5-20 on page 144 and Figure 5-21 on page 145 show the long-mode 4-Kbyte
translation-table formats:

• Figure 5-18 on page 144 shows the PML4E (page-map level-4 entry) format.
• Figure 5-19 on page 144 shows the PDPE (page-directory-pointer entry) format.
• Figure 5-20 on page 144 shows the PDE (page-directory entry) format.
• Figure 5-21 on page 145 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 150.

Virtual Address

Sign Extend
Page-Map

Level-4 Offset
(PML4)

Page-Directory-
Pointer Offset

Page-Directory
Offset

Page-Table
Offset

01112202129303839474863

Physical
Address

PTE

PDE

PDPE
PML4E

9999

52*
52*

52*

52*

1251

CR3

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

Physical-
Page Offset

Page-Map Level-4

12

*This is an architectural limit. A given processor
implementation may support fewer bits.

Base Address

[AMD Public Use]

144 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 5-20 on page 144 shows the PDE.PS bit (bit 7) cleared to 0, indicating a 4-Kbyte physical-page
translation.

Figure 5-18. 4-Kbyte PML4E—Long Mode

Figure 5-19. 4-Kbyte PDPE—Long Mode

Figure 5-20. 4-Kbyte PDE—Long Mode

63 62 52 51 32

N
X

Available Page-Directory-Pointer Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL
M
B
Z

M
B
Z

I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Page-Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

[AMD Public Use]

Page Translation and Protection 145

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 5-21. 4-Kbyte PTE—Long Mode

5.3.4 2-Mbyte Page Translation

In long mode, 2-Mbyte physical-page translation is performed by dividing the virtual address into five
fields. Three of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-22:

• Bits 63:48 are a sign extension of bit 47 as required for canonical address forms.
• Bits 47:39 index into the 512-entry page-map level-4 table.
• Bits 38:30 index into the 512-entry page-directory-pointer table.
• Bits 29:21 index into the 512-entry page-directory table.
• Bits 20:0 provide the byte offset into the physical page.

63 62 59 58 52 51 32

N
X

Usage depends
on CR4.PKE
 (see below)

Available Physical-Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

62 59

CR4.PKE=0 Available

CR4.PKE=1
Memory Protection Key (See “Memory Pro-

tection Keys (MPK) Bit” on page 160 for
more information)

[AMD Public Use]

146 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 5-22. 2-Mbyte Page Translation—Long Mode

Figures 5-23 through 5-25 on page 147 show the long-mode 2-Mbyte translation-table formats (the
PML4 and PDPT formats are identical to those used for 4-Kbyte page translations and are repeated
here for clarity):

• Figure 5-23 on page 147 shows the PML4E (page-map level-4 entry) format.
• Figure 5-24 on page 147 shows the PDPE (page-directory-pointer entry) format.
• Figure 5-25 on page 147 shows the PDE (page-directory entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 150. PTEs are not used in 2-Mbyte page translations.

Figure 5-25 shows the PDE.PS bit (bit 7) set to 1, indicating a 2-Mbyte physical-page translation.

Virtual Address

Page OffsetSign Extend
Page-Map

Level-4 Table Offset
(PML4)

Page-Directory-
Pointer Offset

Page-Directory
Offset

0202129303839474863

Physical
Address

PDE

PDPE
PML4E

999

52*
52*

52*

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

Page-
Directory

Table

2 Mbyte
Physical

Page

CR3Page-Map Level-4
1251

*This is an architectural limit. A given processo
implementation may support fewer bits.

21

Base Address

[AMD Public Use]

Page Translation and Protection 147

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 5-23. 2-Mbyte PML4E—Long Mode

Figure 5-24. 2-Mbyte PDPE—Long Mode

Figure 5-25. 2-Mbyte PDE—Long Mode

5.3.5 1-Gbyte Page Translation

In long mode, 1-Gbyte physical-page translation is performed by dividing the virtual address into four
fields. Two of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-26 on page 148:

• Bits 63:48 are a sign extension of bit 47 as required for canonical address forms.
• Bits 47:39 index into the 512-entry page-map level-4 table.

63 62 52 51 32

N
X

Available Page-Directory-Pointer Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL
M
B
Z

M
B
Z

I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 52 51 32

N
X

Usage depends
on CR4.PKE
 (see below)

Available Physical-Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

62 59

CR4.PKE=0 Available

CR4.PKE=1
Memory Protection Key (See “Memory Pro-

tection Keys (MPK) Bit” on page 160 for
more information.

[AMD Public Use]

148 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

• Bits 38:30 index into the 512-entry page-directory-pointer table.
• Bits 29:0 provide the byte offset into the physical page.

Figure 5-26. 1-Gbyte Page Translation—Long Mode

Figure 5-27 and Figure 5-28 on page 149 show the long mode 1-Gbyte translation-table formats (the
PML4 format is identical to the one used for 4-Kbyte page translations and is repeated here for clarity):

• Figure 5-27 shows the PML4E (page-map level-4 entry) format.
• Figure 5-28 shows the PDPE (page-directory-pointer entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 150 in the current volume. PTEs and PDEs are not used in 1-Gbyte page translations.

Figure 5-28 on page 149 shows the PDPE.PS bit (bit 7) set to 1, indicating a 1-Gbyte physical-page
translation.

Virtual Address

Page OffsetSign Extend
Page-Map

Level-4 Table Offset
(PML4)

Page-Directory-
Pointer Offset

029303839474863

Physical
Address

PDPE
PML4E

99

52*
52*

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

1 Gbyte
Physical

Page

CR3Page-Map Level-4 Base Address

 1251
*This is an architectural limit. A given process

implementation may support fewer bits.

30

[AMD Public Use]

Page Translation and Protection 149

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 5-27. 1-Gbyte PML4E—Long Mode

Figure 5-28. 1-Gbyte PDPE—Long Mode

1-Gbyte Paging Feature Identification. EDX bit 26 as returned by CPUID function 8000_0001h
indicates 1-Gbyte page support. The EAX register as returned by CPUID function 8000_0019h reports
the number of 1-Gbyte L1 TLB entries supported and EBX reports the number of 1-Gbyte L2 TLB
entries. For more information using the CPUID instruction see Section 3.3 “Processor Feature
Identification” on page 70.

63 62 52 51 32

N
X

Available Page Directory Pointer Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL
M
B
Z

M
B
Z

I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 59 58 52 51 32

N
X

Usage depends
on CR4.PKE
 (see below)

Available Physical Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 30 12 11 9 8 7 6 5 4 3 2 1 0

Phy
Page
Base
Addr

Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

62 59

CR4.PKE=0 Available

CR4.PKE=1
Memory Protection Key (See “Memory Pro-

tection Keys (MPK) Bit” on page 160 for
more information.

[AMD Public Use]

150 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

5.4 Page-Translation-Table Entry Fields
The page-translation-table entries contain control and informational fields used in the management of
the virtual-memory environment. Most fields are common across all translation table entries and
modes and occupy the same bit locations. However, some fields are located in different bit positions
depending on the page translation hierarchical level, and other fields have different sizes depending on
which physical-page size, physical-address size, and operating mode are selected. Although these
fields can differ in bit position or size, their meaning is consistent across all levels of the page
translation hierarchy and in all operating modes.

5.4.1 Field Definitions

The following sections describe each field within the page-translation table entries.

Translation-Table Base Address Field. The translation-table base-address field points to the
physical base address of the next-lower-level table in the page-translation hierarchy. Page data-
structure tables are always aligned on 4-Kbyte boundaries, so only the address bits above bit 11 are
stored in the translation-table base-address field. Bits 11:0 are assumed to be 0. The size of the field
depends on the mode:

• In normal (non-PAE) paging (CR4.PAE=0), this field specifies a 32-bit physical address.
• In PAE paging (CR4.PAE=1), this field specifies a 52-bit physical address.

52 bits correspond to the maximum physical-address size allowed by the AMD64 architecture. If a
processor implementation supports fewer than the full 52-bit physical address, software must clear the
unimplemented high-order translation-table base-address bits to 0. For example, if a processor
implementation supports a 40-bit physical-address size, software must clear bits 51:40 when writing a
translation-table base-address field in a page data-structure entry.

Physical-Page Base Address Field. The physical-page base-address field points to the base
address of the translated physical page. This field is found only in the lowest level of the page-
translation hierarchy. The size of the field depends on the mode:

• In normal (non-PAE) paging (CR4.PAE=0), this field specifies a 32-bit base address for a physical
page.

• In PAE paging (CR4.PAE=1), this field specifies a 52-bit base address for a physical page.

Physical pages can be 4 Kbytes, 2 Mbytes, 4 Mbytes, or 1-Gbyte and they are always aligned on an
address boundary corresponding to the physical-page length. For example, a 2-Mbyte physical page is
always aligned on a 2-Mbyte address boundary. Because of this alignment, the low-order address bits
are assumed to be 0, as follows:

• 4-Kbyte pages, bits 11:0 are assumed 0.
• 2-Mbyte pages, bits 20:0 are assumed 0.
• 4-Mbyte pages, bits 21:0 are assumed 0.
• 1-Gbyte pages, bits 29:0 are assumed 0.

[AMD Public Use]

Page Translation and Protection 151

24593—Rev. 3.37—March 2021 AMD64 Technology

Present (P) Bit. Bit 0. This bit indicates whether the page-translation table or physical page is loaded
in physical memory. When the P bit is cleared to 0, the table or physical page is not loaded in physical
memory. When the P bit is set to 1, the table or physical page is loaded in physical memory.

Software clears this bit to 0 to indicate a page table or physical page is not loaded in physical memory.
A page-fault exception (#PF) occurs if an attempt is made to access a table or page when the P bit is 0.
System software is responsible for loading the missing table or page into memory and setting the P bit
to 1.

When the P bit is 0, indicating a not-present page, all remaining bits in the page data-structure entry are
available to software.

Entries with P cleared to 0 are never cached in TLB nor will the processor set the Accessed or Dirty bit
for the table entry.

Read/Write (R/W) Bit. Bit 1. This bit controls read/write access to all physical pages mapped by the
table entry. For example, a page-map level-4 R/W bit controls read/write access to all 128M
(512 × 512 × 512) physical pages it maps through the lower-level translation tables. When the R/W bit
is cleared to 0, access is restricted to read-only. When the R/W bit is set to 1, both read and write access
is allowed. See “Page-Protection Checks” on page 158 for a description of the paging read/write
protection mechanism.

User/Supervisor (U/S) Bit. Bit 2. This bit controls user (CPL 3) access to all physical pages mapped
by the table entry. For example, a page-map level-4 U/S bit controls the access allowed to all 128M
(512 × 512 × 512) physical pages it maps through the lower-level translation tables. When the U/S bit
is cleared to 0, access is restricted to supervisor level (CPL 0, 1, 2). When the U/S bit is set to 1, both
user and supervisor access is allowed. See “Page-Protection Checks” on page 158 for a description of
the paging user/supervisor protection mechanism.

Page-Level Writethrough (PWT) Bit. Bit 3. This bit indicates whether the page-translation table or
physical page to which this entry points has a writeback or writethrough caching policy. When the
PWT bit is cleared to 0, the table or physical page has a writeback caching policy. When the PWT bit is
set to 1, the table or physical page has a writethrough caching policy. See “Memory Caches” on
page 197 for additional information on caching.

Page-Level Cache Disable (PCD) Bit. Bit 4. This bit indicates whether the page-translation table or
physical page to which this entry points is cacheable. When the PCD bit is cleared to 0, the table or
physical page is cacheable. When the PCD bit is set to 1, the table or physical page is not cacheable.
See “Memory Caches” on page 197 for additional information on caching.

Accessed (A) Bit. Bit 5. This bit indicates whether the page-translation table or physical page to
which this entry points has been accessed. The A bit is set to 1 by the processor the first time the table
or physical page is either read from or written to. The A bit is never cleared by the processor. Instead,
software must clear this bit to 0 when it needs to track the frequency of table or physical-page accesses.

Dirty (D) Bit. Bit 6. This bit is only present in the lowest level of the page-translation hierarchy. It
indicates whether the physical page to which this entry points has been written. The D bit is set to 1 by

[AMD Public Use]

152 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

the processor the first time there is a write to the physical page. The D bit is never cleared by the
processor. Instead, software must clear this bit to 0 when it needs to track the frequency of physical-
page writes.

Page Size (PS) Bit. Bit 7. This bit is present in page-directory entries and long-mode page-directory-
pointer entries. When the PS bit is set in the page-directory-pointer entry (PDPE) or page-directory
entry (PDE), that entry is the lowest level of the page-translation hierarchy. When the PS bit is cleared
to 0 in all levels above PTE, the lowest level of the page-translation hierarchy is the page-table entry
(PTE), and the physical-page size is 4 Kbytes. The physical-page size is determined as follows:

• If EFER.LMA=1 and PDPE.PS=1, the physical-page size is 1 Gbyte.
• If CR4.PAE=0 and PDE.PS=1, the physical-page size is 4 Mbytes.
• If CR4.PAE=1 and PDE.PS=1, the physical-page size is 2 Mbytes.

See Table 5-1 on page 131 for a description of the relationship between the PS bit, PAE, physical-page
sizes, and page-translation hierarchy.

Global Page (G) Bit. Bit 8. This bit is only present in the lowest level of the page-translation
hierarchy. It indicates the physical page is a global page. The TLB entry for a global page (G=1) is not
invalidated when CR3 is loaded either explicitly by a MOV CRn instruction or implicitly during a task
switch. Use of the G bit requires the page-global enable bit in CR4 to be set to 1 (CR4.PGE=1). See
“Global Pages” on page 155 for more information on the global-page mechanism.

Available to Software (AVL) Bit. These bits are not interpreted by the processor and are available for
use by system software.

Page-Attribute Table (PAT) Bit. This bit is only present in the lowest level of the page-translation
hierarchy, as follows:

• If the lowest level is a PTE (PDE.PS=0), PAT occupies bit 7.
• If the lowest level is a PDE (PDE.PS=1) or PDPE (PDPE.PS=1), PAT occupies bit 12.

The PAT bit is the high-order bit of a 3-bit index into the PAT register (Figure 7-10 on page 216). The
other two bits involved in forming the index are the PCD and PWT bits. Not all processors support the
PAT bit by implementing the PAT registers. See “Page-Attribute Table Mechanism” on page 216 for a
description of the PAT mechanism and how it is used.

Memory Protection Key (MPK) Bits. Bits 62:59. When Memory Protection Keys are enabled
(CR4.PKE=1), this 4-bit field selects the memory protection key for the physical page mapped by this
entry. Ignored if memory protection keys are disabled (CR4.PKE=0). (See “Memory Protection Keys
(MPK) Bit” on page 160 for a description of this mechanism.)

No Execute (NX) Bit. Bit 63. This bit is present in the translation-table entries defined for PAE
paging, with the exception that the legacy-mode PDPE does not contain this bit. This bit is not
supported by non-PAE paging.

[AMD Public Use]

Page Translation and Protection 153

24593—Rev. 3.37—March 2021 AMD64 Technology

The NX bit can only be set when the no-execute page-protection feature is enabled by setting
EFER.NXE to 1 (see “Extended Feature Enable Register (EFER)” on page 56). If EFER.NXE=0, the
NX bit is treated as reserved. In this case, a page-fault exception (#PF) occurs if the NX bit is not
cleared to 0.

This bit controls the ability to execute code from all physical pages mapped by the table entry. For
example, a page-map level-4 NX bit controls the ability to execute code from all 128M
(512 × 512 × 512) physical pages it maps through the lower-level translation tables. When the NX bit
is cleared to 0, code can be executed from the mapped physical pages. When the NX bit is set to 1,
code cannot be executed from the mapped physical pages. See “No Execute (NX) Bit” on page 152 for
a description of the no-execute page-protection mechanism.

Reserved Bits. Software should clear all reserved bits to 0. If the processor is in long mode, or if
page-size and physical-address extensions are enabled in legacy mode, a page-fault exception (#PF)
occurs if reserved bits are not cleared to 0.

5.4.2 Notes on Accessed and Dirty Bits

The processor never sets the Accessed bit or the Dirty bit for a not present page (P = 0). The ordering
of Accessed and Dirty bit updates with respect to surrounding loads and stores is discussed below.

Accessed (A) Bit. The Accessed bit can be set for instructions that are speculatively executed by the
processor.

For example, the Accessed bit may be set by instructions in a mispredicted branch path even though
those instructions are never retired. Thus, software must not assume that the TLB entry has not been
cached in the TLB, just because no instruction that accessed the page was successfully retired.
Nevertheless, a table entry is never cached in the TLB without its Accessed bit being set at the same
time.

The processor does not order Accessed bit updates with respect to loads done by other instructions.

Dirty (D) Bit. The Dirty bit is not updated speculatively. For instructions with multiple writes, the D
bit may be set for any writes completed up to the point of a fault. In rare cases, the Dirty bit may be set
even if a write was not actually performed, including MASKMOVQ with a mask of zero and certain
x87 floating point instructions that cause an exception. Thus software can not assume that the page has
actually been written even where PTE[D] is set to 1.

If PTE[D] is cleared to 0, software can rely on the fact that the page has not been written.

In general, Dirty bit updates are ordered with respect to other loads and stores, although not
necessarily with respect to accesses to WC memory; in particular, they may not cause WC buffers to
be flushed. However, to ensure compatibility with future processors, a serializing operation should be
inserted before reading the D bit.

[AMD Public Use]

154 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

5.5 Translation-Lookaside Buffer (TLB)
When paging is enabled, every memory access has its virtual address automatically translated into a
physical address using the page-translation hierarchy. Translation-lookaside buffers (TLBs), also
known as page-translation caches, nearly eliminate the performance penalty associated with page
translation. TLBs are special on-chip caches that hold the most-recently used virtual-to-physical
address translations. Each memory reference (instruction and data) is checked by the TLB. If the
translation is present in the TLB, it is immediately provided to the processor, thus avoiding external
memory references for accessing page tables.

TLBs take advantage of the principle of locality. That is, if a memory address is referenced, it is likely
that nearby memory addresses will be referenced in the near future. In the context of paging, the
proximity of memory addresses required for locality can be broad—it is equal to the page size. Thus, it
is possible for a large number of addresses to be translated by a small number of page translations. This
high degree of locality means that almost all translations are performed using the on-chip TLBs.

System software is responsible for managing the TLBs when updates are made to the linear-to-
physical mapping of addresses. A change to any paging data-structure entry is not automatically
reflected in the TLB, and hardware snooping of TLBs during memory-reference cycles is not
performed. Software must invalidate the TLB entry of a modified translation-table entry so that the
change is reflected in subsequent address translations. TLB invalidation is described in “TLB
Management” on page 155. Only privileged software running at CPL=0 can manage the TLBs.

5.5.1 Process Context Identifier

The Process Context Identifier (PCID) feature allows a logical processor to cache TLB mappings
concurrently for multiple virtual address spaces. When enabled (by setting CR4.PCIDE=1), the
processor associates the current 12-bit PCID with each TLB mapping it creates. Only entries matching
the current PCID are used when performing address translations. In this way, the processor may retain
cached TLB mappings for multiple contexts.

The current PCID is the value in CR3[11:0]. When PCIDs are enabled the system software can store
12-bit Process Context Identifiers in CR3 for different address spaces. Subsequently, when system
software switches address spaces (by writing the page table base pointer in CR3[62:12]), the processor
may use TLB mappings previously stored for that address space and PCID. A MOV to CR4 that clears
CR4.PCIDE causes all cached entries in the TLB for the logical processor to be invalidated. When
PCIDs are not enabled (CR4.PCIDE=0) the current PCID is always zero and all TLB mappings are
associated with PCID=0.

 Attempting to set CR4.PCIDE with a MOV to CR4 if EFER.LMA = 0 or CR3[11:0] <> 0 causes in a
#GP exception. Attempting to clear CR0.PG with a MOV to CR0 if CR4.PCIDE is set causes a #GP
exception. The presence of PCID functionality is indicated by CPUID Function 1, ECX[PCID]=1.

[AMD Public Use]

Page Translation and Protection 155

24593—Rev. 3.37—March 2021 AMD64 Technology

5.5.2 Global Pages

The processor invalidates the TLB whenever CR3 is loaded either explicitly or implicitly. After the
TLB is invalidated, subsequent address references can consume many clock cycles until their
translations are cached as new entries in the TLB. Invalidation of TLB entries for frequently-used or
critical pages can be avoided by specifying the translations for those pages as global. TLB entries for
global pages are not invalidated as a result of a CR3 load. Global pages are invalidated using the
INVLPG instruction.

Global-page extensions are controlled by setting and clearing the PGE bit in CR4 (bit 7). When
CR4.PGE is set to 1, global-page extensions are enabled. When CR4.PGE is cleared to 0, global-page
extensions are disabled. When CR4.PGE=1, setting the global (G) bit in the translation-table entry
marks the page as global.

The INVLPG instruction ignores the G bit and can be used to invalidate individual global-page entries
in the TLB. To invalidate all entries, including global-page entries, disable global-page extensions
(CR4.PGE=0).

5.5.3 TLB Management

Generally, unless system software modifies the linear-to-physical address mapping, the processor
manages the TLB transparently to software. This includes allocating entries and replacing old entries
with new entries. In general, software changes made to paging-data structures are not automatically
reflected in the TLB. In these situations, it is necessary for software to invalidate TLB entries so that
these changes will be propagated to the page-translation mechanism.

TLB entries can be explicitly invalidated using operations intended for that purpose or implicitly
invalidated as a result of another operation. TLB invalidation has no effect on the associated page-
translation tables in memory.

Explicit Invalidations. Three mechanisms are provided to explicitly invalidate the TLB:

• The Invalidate TLB Entry instruction (INVLPG) can be used to invalidate a specific entry within
the TLB. This instruction invalidates an entry regardless of whether it is marked as global or not.

• The Invalidate TLB entry in a Specified ASID instruction (INVLPGA) operates similarly, but
operates only on entries associated with the specified ASID. See “Invalidate Page, Alternate
ASID” on page 504.

• The Invalidate TLB with Broadcast instruction (INVLPGB) can be used to invalidate a specified
range of TLB entries on the local processor and broadcast the invalidation operation to remote
processors. See INVLPGB in Volume 3.

• The Invalidate TLB entries in Specified PCID instruction (INVPCID) can be used to invalidate
TLB entries of the specified Processor Context ID. See INVPCID in Volume 3.

• Updates to the CR3 register cause the entire TLB to be invalidated except for global pages. The
CR3 register can be updated with the MOV CR3 instruction. CR3 is also updated during a task
switch, with the updated CR3 value read from the TSS of the new task.

[AMD Public Use]

156 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

• The TLB_CONTROL field of a VMCB can request specific flushes of the TLB to occur when the
VMRUN instruction is executed on that VMCB. See “TLB Flush” on page 503.

Implicit Invalidations. The following operations cause the entire TLB to be invalidated, including
global pages:

• Modifying the CR0.PG bit (paging enable).
• Modifying the CR4.PAE bit (physical-address extensions), the CR4.PSE bit (page-size

extensions), or the CR4.PGE bit (page-global enable).
• Entering SMM as a result of an SMI interrupt.
• Executing the RSM instruction to return from SMM.
• Updating a memory-type range register (MTRR) with the WRMSR instruction.
• External initialization of the processor.
• External masking of the A20 address bit (asserting the A20M# input signal).
• Writes to certain model-specific registers with the WRMSR instruction; see the BIOS and Kernel

Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your
product for more information.

• A MOV to CR4 that changes CR4.PKE from 0 to 1.
• A MOV to CR4 that clears CR4.PCIDE from 1 to 0.

Invalidation of Table Entry Upgrades. If a table entry is updated to remove a page access
constraint, such as removing supervisor, read-only, and/or no-execute restrictions, an invalidation is
not required because the hardware will automatically detect the changes. If a table entry is updated and
does not remove a permission violation, it is unpredictable whether the old or updated entry will be
used until an invalidation is performed.

Speculative Caching of Address Translations. For performance reasons, AMD64 processors may
speculatively load valid address translations into the TLB on false execution paths. Such translations
are not based on references that a program makes from an “architectural state” perspective, but which
the processor may make in speculatively following an instruction path which turns out to be
mispredicted. In general, the processor may create a TLB entry for any linear address for which valid
entries exist in the page table structure currently pointed to by CR3. This may occur for both
instruction fetches and data references. Such entries remain cached in the TLBs and may be used in
subsequent translations. Loading a translation speculatively will set the Accessed bit, if not already
set. A translation will not be loaded speculatively if the Dirty bit needs to be set.

Caching of Upper Level Translation Table Entries. Similarly, to improve the performance of table
walks on TLB misses, AMD64 processors may save upper level translation table entries in special
table walk caching structures which are kept coherent with the tables in memory via the same
mechanisms as the TLBs—by means of the INVLPG instruction, moves to CR3, and modification of
paging control bits in CR0 and CR4. Like address translations in the TLB, these upper level entries
may also be cached speculatively and by false-path execution. These entries are never cached if their P
(present) bits are set to 0.

[AMD Public Use]

Page Translation and Protection 157

24593—Rev. 3.37—March 2021 AMD64 Technology

Under certain circumstances, an upper-level table entry that cannot ultimately lead to a valid
translation (because there are no valid entries in the lower level table to which it points) may also be
cached. This can happen while executing down a false path, when an in-progress table walk gets
cancelled by the branch mispredict before the low level table entry that would cause a fault is
encountered. Said another way, the fact that a page table has no valid entries does not guarantee that
upper level table entries won't be accessed and cached in the processor, as long as those upper level
entries are marked as present. For this reason, it is not safe to modify an upper level entry, even if no
valid lower-level entries exist, without first clearing its present bit, followed by an INVLPG
instruction.

Use of Cached Entries When Reporting a Page Fault Exception. On current AMD64
processors, when any type of page fault exception is encountered by the MMU, any cached upper-
level entries that lead to the faulting entry are flushed (along with the TLB entry, if already cached) and
the table walk is repeated to confirm the page fault using the table entries in memory. This is done
because a table entry is allowed to be upgraded (by marking it as present, or by removing its write,
execute or supervisor restrictions) without explicitly maintaining TLB coherency. Such an upgrade
will be found when the table is re-walked, which resolves the fault. If the fault is confirmed on the re-
walk however, a page fault exception is reported, and upper level entries that may have been cached on
the re-walk are flushed.

Handling of D-Bit Updates. When the processor needs to set the D bit in the PTE for a TLB entry
that is already marked as writable at all cached TLB levels, the table walk that is performed to access
the PTE in memory may use cached upper level table entries. This differs from the fault situation
previously described, in which cached entries aren’t used to confirm the fault during the table walk.

Invalidation of Cached Upper-level Entries by INVLPG. The effect of INVLPG on TLB caching
of upper-level page table entries is controlled by EFER[TCE] on processors that support the
translation cache extension feature. If EFER[TCE] is 0, or if the processor does not support the
translation cache extension feature, an INVLPG will flush all upper-level page table entries in the TLB
as well as the target PTE. If EFER[TCE] is 1, INVLPG will flush only those upper-level entries that
lead to the target PTE, along with the target PTE itself. INVLPGA may flush all upper-level entries
regardless of the state of TCE. For further details, see Section 3.1.7 “Extended Feature Enable
Register (EFER)” on page 56.

Handling of PDPT Entries in PAE Mode. When 32-bit PAE mode is enabled on AMD64 processors
(CR4.PAE is set to 1) a third level of the address translation table hierarchy, the page directory pointer
table (PDPT), is enabled. This table contains four entries. On current AMD64 processors, in native
mode, these four entries are unconditionally loaded into the table walk cache whenever CR3 is written
with the PDPT base address, and remain locked in. At this point they are also checked for reserved bit
violations, and if such violations are present a general-protection exception (#GP) occurs.

Under SVM, however, when the processor is in guest mode with PAE enabled, the guest PDPT entries
are not cached or validated at this point, but instead are loaded and checked on demand in the normal
course of address translation, just like page directory and page table entries. Any reserved bit
violations are detected at the point of use, and result in a page-fault (#PF) exception rather than a

[AMD Public Use]

158 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

general-protection (#GP) exception. The cached PDPT entries are subject to displacement from the
table walk cache and reloading from the PDPT, hence software must assume that the PDPT entries
may be read by the processor at any point while those tables are active. Future AMD processors may
implement this same behavior in native mode as well, rather than pre-loading the PDPT entries.

5.6 Page-Protection Checks
The AMD64 architecture provides the following forms of page-level memory protection:

• Supervisor pages. This form of protection prevents non-privileged (user) code from accessing
privileged (supervisor) code and data.

• Read-only pages. This form of protection prevents writes into read-only address spaces.
• Instruction fetch restrictions. Two forms of page-level memory protection prevent the processor

from fetching instructions from pages that are either known to contain non-executable data or that
are accessible by user-mode code.

• Memory protection keys. This form of protection allows an application to manage page-based data
access protections from user mode.

• Shadow stack pages. The processor restricts the types of memory accesses that are allowed to read
or write a shadow stack page and prohibits the shadow stack mechanism from accessing non-
shadow stack pages. See “Shadow Stack Protection” on page 161.

Access protection checks are performed when a virtual address is translated into a physical address.
For those checks, the processor examines the page-level memory-protection bits in the translation
tables to determine if the access is allowed. The page table bits involved in these checks are:

• User/Supervisor (U/S)—See “User/Supervisor (U/S) Bit” on page 151.
• Read/Write (R/W)—See “Read/Write (R/W) Bit” on page 151.
• No-Execute (NX)—See “No Execute (NX) Bit” on page 152.
• Memory Protection Key (MPK)—See “Memory Protection Keys (MPK) Bit” on page 160.

Access protection actions taken by the processor are controlled by the following bits:

• Write-Protect enable (CR0.WP)—See “Write Protect (WP) Bit” on page 44.
• No-Execute Enable (EFER.NXE)—See “No-Execute Enable (NXE) Bit” on page 58.
• Supervisor-mode Execution Prevention enable (CR4.SMEP)—See “Supervisor Mode Execution

Prevention (SMEP)” on page 51.
• Supervisor-mode Access Prevention enable (CR4.SMAP)—See “Supervisor-Mode Access

Prevention(CR4.SMAP) Bit” on page 160.
• Alignment Check Bit (RFLAGS.AC) – See ““Alignment Check (AC) Bit” on page 55.
• Protection Key Enable (CR4.PKE)—See “Protected-Mode Enable (PE) Bit” on page 43.
• Control-flow Enforcement Technology (CR4.CET) - See “CR4 Register” on page 47.

These protection checks are available at all levels of the page-translation hierarchy.

[AMD Public Use]

Page Translation and Protection 159

24593—Rev. 3.37—March 2021 AMD64 Technology

5.6.1 User/Supervisor (U/S) Bit
The U/S bit in the page-translation tables determines the privilege level required to access the page. If
U/S=0 in any of the page table entries traversed during a table walk, the page is considered a
supervisor page. If U/S=1 in all the page table entries traversed during a table walk, the page is
considered a user page. Conceptually, user (non-privileged) pages correspond to a current privilege-
level (CPL) of 3, or least-privileged. Supervisor (privileged) pages correspond to a CPL of 0, 1, or 2,
all of which are jointly regarded as most-privileged.

When the processor is running at a CPL of 0, 1, or 2, it can access both user and supervisor pages
unless restricted by SMEP or SMAP (See sections “Supervisor-Mode Execution Prevention
(CR4.SMEP) Bit” on page 160 and “Supervisor-Mode Access Prevention(CR4.SMAP) Bit” on
page 160 for further details). However, when the processor is running at a CPL of 3, it can only access
user pages. If an attempt is made to access a supervisor page while the processor is running at CPL = 3,
a page-fault exception (#PF) occurs.

See “Privilege-Level Concept” on page 105 for more information on processor privilege levels.

5.6.2 Read/Write (R/W) Bit
The R/W bit in the page-translation tables specifies the access type allowed for the page. If R/W=0 in
any of the page table entries traversed during a table walk, the page is read-only. If R/W=1 in all the
page table entries traversed during a table walk, the page is read/write. A page-fault exception (#PF)
occurs if an attempt is made by user software to write to a read-only page. If supervisor software
attempts to write a read-only page, the outcome depends on the value of the CR0.WP bit (described
below).

5.6.3 No Execute (NX) Bit
The NX bit provides the ability to mark a page as non-executable. If the NX bit is set at any level of the
page-table hierarchy in the table entries traversed during a table walk, the page mapped by those
entries is a no-execute page. When no-execute protection is enabled, any attempt to fetch an
instruction from a no-execute page results in a page-fault exception (#PF).

The no-execute protection check applies to all privilege levels. It does not distinguish between
supervisor and user-level accesses.

The no-execute protection feature is supported only in PAE-paging mode. In 32-bit PAE mode, the NX
bit is not supported at the Page Directory Pointer table level. In this mode, the value of the NX bit at
the PDP level defaults to 0.

No-execute protection is enabled by setting the NXE bit in the EFER register to 1. Before setting this
bit, system software must verify the processor supports the no-execute feature by checking the CPUID
NX feature flag (CPUID Fn8000_0001_EDX[NX]).

[AMD Public Use]

160 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

5.6.4 Write Protect (CR0.WP) Bit

The ability to write to read-only pages is governed by the processor mode and whether write protection
is enabled. If write protection is not enabled, a processor running at CPL 0, 1, or 2 can write to any
physical page, even if it is marked as read-only. Enabling write protection by setting the WP bit in CR0
prevents supervisor code from writing into read-only pages, including read-only user-level pages.

A page-fault exception (#PF) occurs if software attempts to write (at any privilege level) into a read-
only page while write protection is enabled.

5.6.5 Supervisor-Mode Execution Prevention (CR4.SMEP) Bit

When supported and enabled, a page-fault exception (#PF) is generated if the processor attempts to
fetch an instruction from a user page while running at CPL 0, 1, or 2.

Supervisor-mode execution prevention is enabled by setting the SMEP bit (bit 20) in the CR4 register
to 1. Before setting this bit, system software must verify the processor supports the SMEP feature by
checking the SMEP feature flag (CPUID Fn0000_0007_EBX[SMEP]_x0 = 1).

For more information using the CPUID instruction see Section 3.3 “Processor Feature Identification”
on page 70.

5.6.6 Supervisor-Mode Access Prevention(CR4.SMAP) Bit

When SMAP is supported and enabled, a page-fault exception (#PF) is generated if the processor
attempts to read or write data from a user page and one of the following is true:

• The access is an implicit supervisor-mode access OR
• The access is made while running at CPL 0,1, or 2 and RFLAGS.AC=0.

Some accesses are considered implicit supervisor-mode accesses. Implicit supervisor-mode accesses
are subject to the SMAP check regardless of the value of RFLAGS.AC. An implicit supervisor-mode
access is one that is considered a supervisor access regardless of the value of CPL.

Supervisor-mode access prevention is enabled by setting the SMAP bit (bit 21) in the CR4 register to
1. Before setting this bit, system software must verify the processor supports the SMAP feature by
checking the SMAP feature flag CPUID Fn0000_0007_EBX[SMAP]_x0 (bit 20) = 1.

Shadow stack accesses are not subject to the SMAP check.

For more information on using the CPUID instruction see “Processor Feature Identification” on
page 70.

5.6.7 Memory Protection Keys (MPK) Bit

The Memory Protection Key (MPK) feature provides a way for applications to impose page-based
data access protections (read/write, read-only or no access), without requiring modification of page
tables and subsequent TLB invalidations when the application changes protection domains.

[AMD Public Use]

Page Translation and Protection 161

24593—Rev. 3.37—March 2021 AMD64 Technology

When MPK is enabled (CR4.PKE=1), a protection key is located in bits 62:59 of final page table entry
mapping each virtual address. This 4-bit protection key is used as an index (i) into the user-accessible
PKRU register which contains 16 access-disable/write-disable (WDi/ADi) pairs.

Figure 5-29. PKRU Register

The WDi/ADi pairs operate as follows:

If ADi=0, data access is permitted

• If ADi=1, no data access is permitted (regardless of CPL)
• If WDi == 0, write access is allowed
• If WDi == 1: User-mode write access is not allowed. Supervisor access is controlled by CR0.WP:

• If CR0.WP=1, supervisor-mode writes are not allowed
• If CR0.WP=0, supervisor-mode writes are allowed

Software can use the RDPKRU and WRPKRU instructions to read and write the PKRU register. These
instructions are not privileged and can be used in user mode or in supervisor mode.

The MPK mechanism is ignored in the following cases:

• if CR4.PKE=0
• if long mode is disabled (EFER.LMA=0)
• for instruction fetches
• for pages marked in the paging structures as supervisor addresses (U/S=0)

5.7 Shadow Stack Protection
When the shadow stack feature is enabled (CR4.CET=1), certain combinations of page-table
protection bits are used to distinguish pages containing shadow stacks from ordinary pages. As
described in the following sections, the processor restricts the types of memory accesses that can be
made to shadow stack pages and prohibits the shadow stack mechanism from accessing non-shadow
stack pages. (See “Shadow Stacks” on page 637 for details on the shadow stack feature).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PK15 PK14 PK13 PK12 PK11 PK10 PK9 PK8 PK7 PK6 PK5 PK4 PK3 PK2 PK1 PK0

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

W
D

A
D

[AMD Public Use]

162 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

5.7.1 Shadow Stack Accesses

The processor treats certain memory accesses as shadow stack accesses. Shadow stack accesses are
generated only by the shadow stack instructions or by the shadow stack mechanism. As with ordinary
data accesses, a shadow stack access can be either a supervisor access or a user access, depending on
the CPL when the access is made. Shadow stack accesses made when the processor is at CPL 0, 1, or 2
are supervisor-shadow stack accesses, and accesses made at CPL 3 are user-shadow stack accesses.
(An exception is the WRUSS instruction, whose accesses are always treated as user-shadow stack
accesses).

5.7.2 Shadow Stack Pages

Shadow stack accesses are allowed only to linear addresses that are mapped to shadow stack pages. A
shadow stack is described by the following combination of page-table protection bits:

• R/W(Read/Write)=0 and D(Dirty)=1 in the final page-table entry that maps the linear address.
• R/W(Read/Write)=1 in all other page-mapping structures leading to the final page-table entry.

The U/S (User/Supervisor) bit in the page-translation tables determines the privilege level required to
access a given shadow stack page. If U/S=0, the page is considered a supervisor-shadow stack page
and if U/S=1 the page is considered a user-shadow stack page.

5.7.3 Shadow Stack Protection Checks

The processor restricts the types of memory accesses that are allowed to read or write a shadow stack
page. The page-level protection bits and the type of memory access are examined to determine if the
access is allowed. The following section assumes the memory protection key field allows access to the
given page, if memory protection keys are enabled, and that CR0.WP=1 (which is prerequisite for
enabling the shadow stack feature).

The following memory accesses are allowed to shadow stack pages:

• User-shadow stack accesses can read or write user-shadow stack pages,
• Supervisor-shadow stack accesses can read or write supervisor-shadow stack pages.

(Note: shadow stack write accesses are allowed to complete, even though the R/W bit is 0).

• Non-shadow stack reads can read any shadow stack page (subject to U/S page protections).

The following memory accesses are not allowed:

• User-shadow stack access to supervisor-shadow stack pages.
• Supervisor-shadow stack access to user-shadow stack pages.
• Any shadow stack access to a non-shadow stack page.
• Non-shadow stack writes to a shadow stack page.

If the memory access is not allowed, a page-fault exception (#PF) is generated with the paging-
protection violation bits (user/supervisor, read/write, or both) set in the error code as appropriate. The

[AMD Public Use]

Page Translation and Protection 163

24593—Rev. 3.37—March 2021 AMD64 Technology

SS bit is set in the #PF error code if the page-fault was caused by a shadow stack access. (See “Page-
Fault Error Code” on page 252).

5.8 Protection Across Paging Hierarchy
The privilege level and access type specified at each level of the page-translation hierarchy have a
combined effect on the protection of the translated physical page. Enabling and disabling write
protection via CR0.WP further qualifies the protection effect on the physical page.

Table 5-2 shows the overall effect that privilege level and access type have on physical-page
protection when write protection is disabled (CR0.WP=0). In this case, when any translation-table
entry is specified as supervisor level, the physical page is a supervisor page and can only be accessed
by software running at CPL 0, 1, or 2. Such a page allows read/write access even if all levels of the
page-translation hierarchy specify read-only access.

If all table entries in the translation hierarchy are specified as user level the physical page is a user
page, and both supervisor and user software can access it. In this case the physical page is read-only if
any table entry in the translation hierarchy specifies read-only access. All table entries in the
translation hierarchy must specify read/write access for the physical page to be read/write.

Table 5-3 shows the overall effect that privilege level and access type have on physical-page access
when write protection is enabled (CR0.WP=1). When any translation-table entry is specified as
supervisor level, the physical page is a supervisor page and can only be accessed by supervisor
software. In this case, the physical page is read-only if any table entry in the translation hierarchy

Table 5-2. Physical-Page Protection, CR0.WP=0
Page-Map Level-4

Entry
Page-Directory-
Pointer Entry

Page-Directory
Entry Page-Table Entry Effective Result on

Physical Page
U/S R/W U/S R/W U/S R/W U/S R/W U/S R/W

S — — — — — — —

S R/W
— — S — — — — —
— — — — S — — —
— — — — — — S —
U R U — U — U —

U R1U — U R U — U —
U — U — U R U —
U — U — U — U R
U R/W U R/W U R/W U R/W U R/W

Note:
S = Supervisor Level (CPL=0, 1, or 2), U = User Level (CPL = 3), R = Read-Only Access, R/W = Read/Write Access, — = Don’t

Care.
Note:

1. Supervisor-level programs can access these pages as R/W.

[AMD Public Use]

164 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.37—March 2021

specifies read-only access. All table entries in the translation hierarchy must specify read/write access
for the supervisor page to be read/write.

5.8.1 Access to User Pages when CR0.WP=1

As shown in Table 5-2 on page 163, read/write access to user-level pages behaves the same as when
write protection is disabled (CR0.WP=0), with one critical difference. When write protection is
enabled, supervisor programs cannot write into read-only user pages.

5.9 Effects of Segment Protection
Segment-protection and page-protection checks are performed serially by the processor, with
segment-privilege checks performed first, followed by page-protection checks. Page-protection
checks are not performed if a segment-protection violation is found. If a violation is found during
either segment-protection or page-protection checking, an exception occurs and no memory access is
performed. Segment-protection violations cause either a general-protection exception (#GP) or a stack
exception (#SS) to occur. Page-protection violations cause a page-fault exception (#PF) to occur.

Table 5-3. Effect of CR0.WP=1 on Supervisor Page Access

Page-Map
Level-4
Entry

Page
Directory-

Pointer
Entry

Page Directory
Entry

Page Table
Entry Physical Page

R/W R/W R/W R/W R/W
R — — —

R
— R — —
— — R —
— — — R
W W W W W

Note:
R = Read-Only Access Type, W = Read/Write Access Type, — = Don’t Care.
Physical page is in supervisor mode, as determined by U/S settings in Table 5-2.

[AMD Public Use]

System Instructions 165

24593—Rev. 3.37—March 2021 AMD64 Technology

6 System Instructions

System instructions provide control over the resources used to manage the processor operating
environment. This includes memory management, memory protection, task management, interrupt
and exception handling, system-management mode, software debug and performance analysis, and
model-specific features. Most instructions used to access these resources are privileged and can only
be executed while the processor is running at CPL=0, although some instructions can be executed at
any privilege level.

Table 6-1 summarizes the instructions used for system management. These include all privileged
instructions, instructions whose privilege requirement is under the control of system software, non-
privileged instructions that are used primarily by system software, and instructions used to transfer
control to system software. Most of the instructions listed in Table 6-1 are summarized in this chapter,
although a few are introduced elsewhere in this manual, as indicated in the Reference column of
Table 6-1.

For details on individual system instructions, see “System Instruction Reference” in Volume 3.

Table 6-1. System Management Instructions

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

ARPL Adjust Requestor Privilege Level X “Adjusting Access Rights” on
page 176

CLAC Clear Alignment Check Flag X “CLAC and STAC Instructions” on
page 173

CLGI Clear Global Interrupt Flag X “Global Interrupt Flag, STGI and
CLGI Instructions” on page 504

CLI Clear Interrupt Flag X “CLI and STI Instructions” on
page 173

CLRSSBSY Clear Shadow Stack Busy X “CLRSSBSY” on page 177
CLTS Clear Task-Switched Flag in CR0 X “CLTS Instruction” on page 173
HLT Halt X “Processor Halt” on page 176
INCSSP Increment SSP X “INCSSP” on page 177

INT3 Interrupt to Debug Vector X “Breakpoint Instruction (INT3)” on
page 388

INVD Invalidate Caches X “Cache Management” on page 166
INVLPG Invalidate TLB Entry X “INVLPG Instruction” on page 177

INVLPGA Invalidate TLB Entry in a Specified
ASID X “Invalidate Page, Alternate ASID”

on page 504
Note:

1. The operating system controls the privilege required to use the instruction.

[AMD Public Use]

166 System Instructions

AMD64 Technology 24593—Rev. 3.37—March 2021

INVLPGB Invalidate TLB Entries with
Broadcast X “INVLPGB Instruction” on

page 177

INVPCID Invalidate TLB Entries in Specified
Processor Context X “INVPCID Instruction” on

page 177

IRETx Interrupt Return (all forms) X “Returning From Interrupt
Procedures” on page 266

LAR Load Access-Rights Byte X “Checking Access Rights” on
page 175

LGDT Load Global-Descriptor-Table
Register X

“LGDT and LIDT Instructions” on
page 174

LIDT Load Interrupt-Descriptor-Table
Register X

LLDT Load Local-Descriptor-Table
Register X “LLDT and LTR Instructions” on

page 175

LMSW Load Machine-Status Word X “LMSW and SMSW Instructions”
on page 172

LSL Load Segment Limit X “Checking Segment Limits” on
page 175

LTR Load Task Register X “LLDT and LTR Instructions” on
page 175

MONITOR Setup Monitor Address X --

MOV CRn Move to/from Control Registers X “MOV CRn Instructions” on
page 172

MOV DRn Move to/from Debug Registers X “Accessing Debug Registers” on
page 173

MWAIT Monitor Wait X --
RDFSBASE Read FS Base Address X “RDFSBASE, RDGSBASE,

WRFSBASE, and WRGSBASE
Instructions” on page 174RDGSBASE Read GS Base Address X

RDMSR Read Model-Specific Register X “RDMSR and WRMSR
Instructions” on page 173

RDPMC Read Performance-Monitor Counter X “RDPMC Instruction” on page 173
RDSSP Read SSP X “RDSSP” on page 177
RDTSC Read Time-Stamp Counter X “RDTSC Instruction” on page 173

RDTSCP Read Time-Stamp Counter and
Processor ID X “RDTSCP Instruction” on page 174

RSM Return from System-Management
Mode X “Leaving SMM” on page 323

Table 6-1. System Management Instructions (continued)

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

Note:
1. The operating system controls the privilege required to use the instruction.

[AMD Public Use]

System Instructions 167

24593—Rev. 3.37—March 2021 AMD64 Technology

RSTORSSP Restore SSP X “RSTORSSP” on page 177
SAVEPREVSS
P Save Previous SSP X “SAVEPREVSSP” on page 177

SETSSBSY Set Shadow Stack Busy X “SETSSBSY” on page 177

SGDT Store Global-Descriptor-Table
Register X

“SGDT and SIDT Instructions” on
page 175

SIDT Store Interrupt-Descriptor-Table
Register X

SKINIT Secure Init and Jump with
Attestation X “Security” on page 530

SLDT Store Local-Descriptor-Table
Register X “SLDT and STR Instructions” on

page 175

SMSW Store Machine-Status Word X “LMSW and SMSW Instructions”
on page 172

STAC Set Alignment Check Flag X “CLAC and STAC Instructions” on
page 173

STI Set Interrupt Flag X “CLI and STI Instructions” on
page 173

STGI Set Global Interrupt Flag X “Global Interrupt Flag, STGI and
CLGI Instructions” on page 504

STR Store Task Register X “SLDT and STR Instructions” on
page 175

SWAPGS Swap GS and KernelGSbase
Registers X “SWAPGS Instruction” on

page 171

SYSCALL Fast System Call X “SYSCALL and SYSRET” on
page 169

SYSENTER System Call X “SYSENTER and SYSEXIT
(Legacy Mode Only)” on page 171SYSEXIT System Return X

SYSRET Fast System Return X “SYSCALL and SYSRET” on
page 169

VERR Verify Segment for Reads X “Checking Read/Write Rights” on
page 175VERW Verify Segment for Writes X

VMLOAD Load State from VMCB X “VMSAVE and VMLOAD
Instructions” on page 474

VMMCALL Call VMM X “VMMCALL Instruction” on
page 505

VMRUN Run Virtual Machine X “VMRUN Instruction” on page 476

Table 6-1. System Management Instructions (continued)

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

Note:
1. The operating system controls the privilege required to use the instruction.

[AMD Public Use]

168 System Instructions

AMD64 Technology 24593—Rev. 3.37—March 2021

The following instructions are summarized in this chapter but are not categorized as system
instructions, because of their importance to application programming:

• The CPUID instruction returns information critical to system software in initializing the operating
environment. It is fully described in Section 3.3, “Processor Feature Identification,” on page 70.

• The PUSHF and POPF instructions set and clear certain rFLAGS bits depending on the processor
operating mode and privilege level. These dependencies are described in “POPF and PUSHF
Instructions” on page 173.

The MOV, PUSH, and POP instructions can be used to load and store segment registers, as described
in “MOV, POP, and PUSH Instructions” on page 174.

User Mode Instruction Prevention (UMIP)

This security mode restricts certain instructions so that they do not reveal information about structures
that are controlled by the processor when it is at CPL=0. The presence of the UMIP feature is indicated
by CPUID Function 0000_0007, ECX[2]=1 . This mode is enabled by setting CR4 bit 11 to a 1.
Attempts to set CR4 bit 11 when the UMIP feature is not supported result in a #GP fault. Once
CR4[11] is set to 1, the SGDT, SIDT, SLDT, SMSW and STR instructions become available only at
CPL=0. Any attempt to execute them with CPL>0 results in a #GP fault with error code 0.

6.1 Fast System Call and Return
Operating systems can use both paging and segmentation to implement protected memory models.
Segment descriptors provide the necessary memory protection and privilege checking for segment
accesses. By setting segment-descriptor fields appropriately, operating systems can enforce access
restrictions as needed.

VMSAVE Save State to VMCB X “VMSAVE and VMLOAD
Instructions” on page 474

WBINVD Writeback and Invalidate Caches X
“Cache Management” on page 166

WBNOINVD Writeback No Invalidate X
WRFSBASE Write FS Base Address X “RDFSBASE, RDGSBASE,

WRFSBASE, and WRGSBASE
Instructions” on page 174WRGSBASE Write GS Base Address X

WRMSR Write Model-Specific Register X “RDMSR and WRMSR
Instructions” on page 173

WRSS Write to Shadow Stack X “WRSS” on page 178
WRUSS Write to User Shadow Stack X “WRUSS” on page 178

Table 6-1. System Management Instructions (continued)

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

Note:
1. The operating system controls the privilege required to use the instruction.

[AMD Public Use]

System Instructions 169

24593—Rev. 3.37—March 2021 AMD64 Technology

A disadvantage of segment-based protection and privilege checking is the overhead associated with
loading a new segment selector (and its corresponding descriptor) into a segment register. Even when
using the flat-memory model, this overhead still occurs when switching between privilege levels
because code segments (CS) and stack segments (SS) are reloaded with different segment descriptors.

To initiate a call to the operating system, an application transfers control to the operating system
through a gate descriptor (call, interrupt, trap, or task gate). In the past, control was transferred using
either a far CALL instruction or a software interrupt. Transferring control through one of these gates is
slowed by the segmentation-related overhead, as is the later return using a far RET or IRET
instruction. The following checks are performed when control is transferred in this manner:

• Selectors, gate descriptors, and segment descriptors are in the proper form.
• Descriptors lie within the bounds of the descriptor tables.
• Gate descriptors reference the appropriate segment descriptors.
• The caller, gate, and target privileges all allow the control transfer to take place.
• The stack created by the call has sufficient properties to allow the transfer to take place.

In addition to these call-gate checks, other checks are made involving the task-state segment when a
task switch occurs.

6.1.1 SYSCALL and SYSRET

SYSCALL and SYSRET Instructions. SYSCALL and SYSRET are low-latency system call and
return instructions. These instructions assume the operating system implements a flat-memory model,
which greatly simplifies calls to and returns from the operating system. This simplification comes
from eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions). As a result, SYSCALL and SYSRET can take fewer than
one-fourth the number of internal clock cycles to complete than the legacy CALL and RET
instructions. SYSCALL and SYSRET are particularly well-suited for use in 64-bit mode, which
requires implementation of a paged, flat-memory model.

SYSCALL and SYSRET require that the code-segment base, limit, and attributes (except for DPL) are
consistent for all application and system processes. Only the DPL is allowed to vary. The processor
assumes (but does not check) that the SYSCALL target CS segment descriptor entry has DPL=0 and
the SYSRET target CS segment descriptor entry has DPL=3.

For details on the SYSCALL and SYSRET instructions, see “System Instruction Reference” in
Volume 3.

Because SYSCALL and SYSRET do not use the program stack to store return addresses, the shadow
stack mechanism is not used to validate their return addresses. However, when shadow stacks are
enabled, SYSCALL and SYSRET save and restore the current SSP as follows:

• If the shadow stack feature is enabled at the current CPL (typically CPL=3), SYSCALL saves the
current SSP to the PL3_SSP MSR

• If shadow stacks are enabled at the target CPL (CPL=0), SYSCALL clears the SSP to 0.

[AMD Public Use]

170 System Instructions

AMD64 Technology 24593—Rev. 3.37—March 2021

• If shadow stacks are enabled at CPL=3, SYSRET restores SSP from PL3_SSP.

SYSCALL and SYSRET MSRs. The STAR, LSTAR, and CSTAR registers are model-specific
registers (MSRs) used to specify the target address of a SYSCALL instruction as well as the CS and
SS selectors of the called and returned procedures. The SFMASK register is used in long mode to
specify how rFLAGS is handled by these instructions. Figure 6-1 shows the STAR, LSTAR, CSTAR,
and SFMASK register formats.

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs

• STAR—The STAR register has the following fields (unless otherwise noted, all bits are
read/write):
- SYSRET CS and SS Selectors—Bits 63:48. This field is used to specify both the CS and SS

selectors loaded into CS and SS during SYSRET. If SYSRET is returning to 32-bit mode
(either legacy or compatibility), this field is copied directly into the CS selector field. If
SYSRET is returning to 64-bit mode, the CS selector is set to this field + 16. SS.Sel is set to
this field + 8, regardless of the target mode. Because SYSRET always returns to CPL 3, the
RPL bits 49:48 should be initialized to 11b.

- SYSCALL CS and SS Selectors—Bits 47:32. This field is used to specify both the CS and SS
selectors loaded into CS and SS during SYSCALL. This field is copied directly into CS.Sel.
SS.Sel is set to this field + 8. Because SYSCALL always switches to CPL 0, the RPL bits
33:32 should be initialized to 00b.

- 32-bit SYSCALL Target EIP—Bits 31:0. This is the target EIP of the called procedure.
The legacy STAR register is not expanded in long mode to provide a 64-bit target RIP address.
Instead, long mode provides two new STAR registers—long STAR (LSTAR) and compatibility
STAR (CSTAR)—that hold a 64-bit target RIP.

• LSTAR and CSTAR—The LSTAR register holds the target RIP of the called procedure in long
mode when the calling software is in 64-bit mode. The CSTAR register holds the target RIP of the
called procedure in long mode when the calling software is in compatibility mode. The WRMSR
instruction is used to load the target RIP into the LSTAR and CSTAR registers. If the RIP written

63 48 47 32 31 0

STAR C000_0081h SYSRET CS and SS SYSCALL CS and SS 32-bit SYSCALL Target EIP

LSTAR C000_0082h Target RIP for 64-Bit-Mode Calling Software

CSTAR C000_0083h Target RIP for Compatibility-Mode Calling Software

SFMASK C000_0084h Reserved, RAZ SYSCALL Flag Mask

[AMD Public Use]

System Instructions 171

24593—Rev. 3.37—March 2021 AMD64 Technology

to either of the MSRs is not in canonical form, a #GP fault is generated on the WRMSR
instruction.

• SFMASK—The SFMASK register is used to specify which RFLAGS bits are cleared during a
SYSCALL. In long mode, SFMASK is used to specify which RFLAGS bits are cleared when
SYSCALL is executed. If a bit in SFMASK is set to 1, the corresponding bit in RFLAGS is cleared
to 0. If a bit in SFMASK is cleared to 0, the corresponding RFLAGS bit is not modified.

6.1.2 SYSENTER and SYSEXIT (Legacy Mode Only)

SYSENTER and SYSEXIT Instructions. Like SYSCALL and SYSRET, SYSENTER and
SYSEXIT are low-latency system call and return instructions designed for use by system and
application software implementing a flat-memory model. However, these instructions are illegal in
long mode and result in an undefined opcode exception (#UD) if software attempts to use them.
Software should use the SYSCALL and SYSRET instructions when running in long mode.

SYSENTER and SYSEXIT MSRs. Three model-specific registers (MSRs) are used to specify the
target address and stack pointers for the SYSENTER instruction as well as the CS and SS selectors of
the called and returned procedures. The register fields are:

• SYSENTER Target CS—Holds the CS selector of the called procedure.
• SYSENTER Target ESP—Holds the called-procedure stack pointer. The SS selector is updated

automatically to point to the next descriptor entry after the SYSENTER Target CS, and ESP is the
offset into that stack segment.

• SYSENTER Target EIP—Holds the offset into the CS of the called procedure.

Figure 6-2 shows the register formats and their corresponding MSR IDs.

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs

6.1.3 SWAPGS Instruction

The SWAPGS instruction provides a fast method for system software to load a pointer to system data
structures. SWAPGS can be used upon entering system-software routines as a result of a SYSCALL
instruction or as a result of an interrupt or exception. Before returning to application software,
SWAPGS can restore an application data-structure pointer that was replaced by the system data-
structure pointer.

63 32 31 16 15 0

SYSENTER_CS 174h SYSENTER Target CS

SYSENTER_ESP 175h SYSENTER Target ESP

SYSENTER_EIP 176h SYSENTER Target EIP

[AMD Public Use]

172 System Instructions

AMD64 Technology 24593—Rev. 3.37—March 2021

SWAPGS exchanges the base-address value located in the KernelGSbase model-specific register
(MSR address C000_0102h) with the base-address value located in the hidden portion of the GS
selector register (GS.base). This exchange allows the system-kernel software to quickly access kernel
data structures by using the GS segment-override prefix during memory references.

The need for SwapGS arises from the requirement that, upon entry to the OS kernel, the kernel needs
to obtain a 64-bit pointer to its essential data structures. When using SYSCALL to implement system
calls, no kernel stack exists at the OS entry point. Neither is there a straightforward method to obtain a
pointer to kernel structures, from which the kernel stack pointer could be read. Thus, the kernel cannot
save GPRs or reference memory. SwapGS does not require any GPR or memory operands, so no
registers need to be saved before using it. Similarly, when the OS kernel is entered via an interrupt or
exception (where the kernel stack is already set up), SwapGS can be used to quickly get a pointer to the
kernel data structures.

See “FS and GS Registers in 64-Bit Mode” on page 80 for more information on using the GS.base
register in 64-bit mode.

6.2 System Status and Control
System-status and system-control instructions are used to determine the features supported by a
processor, gather information about the current execution state, and control the processor operating
modes.

6.2.1 Processor Feature Identification (CPUID)

CPUID Instruction. The CPUID instruction provides complete information about the processor
implementation and its capabilities. Software operating at any privilege level can execute the CPUID
instruction to collect this information. System software normally uses the CPUID instruction to
determine which optional features are available so the system can be configured appropriately. See
Section 3.3, “Processor Feature Identification,” on page 70.

6.2.2 Accessing Control Registers

MOV CRn Instructions. The MOV CRn instructions can be used to copy data between the control
registers and the general-purpose registers. These instructions are privileged and cause a general-
protection exception (#GP) if non-privileged software attempts to execute them.

LMSW and SMSW Instructions. The machine status word is located in CR0 register bits 15:0. The
load machine status word (LMSW) instruction writes only the least-significant four status-word bits
(CR0[3:0]). All remaining status-word bits (CR0[15:4]) are left unmodified by the instruction. The
instruction is privileged and causes a #GP to occur if non-privileged software attempts to execute it.

The store machine status word (SMSW) instruction stores all 16 status-word bits (CR0[15:0]) into the
target GPR or memory location. The instruction is not privileged and can be executed by all software.

[AMD Public Use]

System Instructions 173

24593—Rev. 3.37—March 2021 AMD64 Technology

CLTS Instruction. The clear task-switched bit instruction (CLTS) clears CR0.TS to 0. The CR0.TS
bit is set to 1 by the processor every time a task switch takes place. The bit is useful to system software
in determining when the x87 and multimedia register state should be saved or restored. See “Task
Switched (TS) Bit” on page 44 for more information on using CR0.TS to manage x87-instruction
state. The CLTS instruction is privileged and causes a #GP to occur if non-privileged software
attempts to execute it.

6.2.3 Accessing the RFLAGS Register

The RFLAGS register contains both application and system bits. This section describes the
instructions used to read and write system bits. Descriptions of instruction effects on application flags
can be found in “Flags Register” in Volume 1 and “Instruction Effects on rFLAGS” in Volume 3.

POPF and PUSHF Instructions. The pop and push rFLAGS instructions are used for moving data
between the rFLAGS register and the stack. They are not strictly system instructions, but their
behavior is mode-dependent.

CLI and STI Instructions. The clear interrupt (CLI) and set interrupt (STI) instructions modify only
the RFLAGS.IF bit or RFLAGS.VIF bit. Clearing RFLAGS.IF to 0 causes the processor to ignore
maskable interrupts. Setting RFLAGS.IF to 1 causes the processor to allow maskable interrupts.

See “Virtual Interrupts” on page 277 for more information on the operation of these instructions when
virtual-8086 mode extensions are enabled (CR4.VME=1).

CLAC and STAC Instructions. The clear alignment check flag (CLAC) and set alignment check flag
(STAC) instructions modify only the RFLAGS.AC bit.

6.2.4 Accessing Debug Registers

The MOV DRn instructions are used to copy data between the debug registers and the general-purpose
registers. These instructions are privileged and cause a general-protection exception (#GP) if non-
privileged software attempts to execute them. See “Debug Registers” on page 376 for a detailed
description of the debug registers.

6.2.5 Accessing Model-Specific Registers

RDMSR and WRMSR Instructions. The read/write model-specific register instructions (RDMSR
and WRMSR) can be used by privileged software to access the 64-bit MSRs. See “Model-Specific
Registers (MSRs)” on page 59 for details about the MSRs.

RDPMC Instruction. The read performance-monitoring counter instruction, RDPMC, is used to read
the model-specific performance-monitoring counter registers.

RDTSC Instruction. The read time-stamp counter instruction, RDTSC, is used to read the model-
specific time-stamp counter (TSC) register.

[AMD Public Use]

174 System Instructions

AMD64 Technology 24593—Rev. 3.37—March 2021

RDTSCP Instruction. The read time-stamp counter and processor ID instruction, RDTSCP, is used
to read the model-specific time-stamp counter (TSC) register. as well as the low 32 bits of the
TSC_AUX register (MSR C000_0103h).

6.3 Segment Register and Descriptor Register Access
The AMD64 architecture supports the legacy instructions that load and store segment registers and
descriptor registers. In some cases the instruction capabilities are expanded to support long mode.

6.3.1 Accessing Segment Registers

MOV, POP, and PUSH Instructions. The MOV and POP instructions can be used to load a selector
into a segment register from a general-purpose register or memory (MOV) or from the stack (POP).
Any segment register, except the CS register, can be loaded with the MOV and POP instructions. The
CS register must be loaded with a far-transfer instruction.

All segment register selectors can be stored in a general-purpose register or memory using the MOV
instruction or pushed onto the stack using the PUSH instruction.

When a selector is loaded into a segment register, the processor automatically loads the corresponding
descriptor-table entry into the hidden portion of the selector register. The hidden portion contains the
base address, limit, and segment attributes.

Segment-load and segment-store instructions work normally in 64-bit mode. The appropriate entry is
read from the system descriptor table (GDT or LDT) and is loaded into the hidden portion of the
segment descriptor register. However, the contents of data-segment and stack-segment descriptor
registers are ignored, except in the case of the FS and GS segment-register base fields—see “FS and
GS Registers in 64-Bit Mode” on page 80 for more information.

The ability to use segment-load instructions allows a 64-bit operating system to set up segment
registers for a compatibility-mode application before switching to compatibility mode.

6.3.2 Accessing Segment Register Hidden State

WRMSR and RDMSR Instructions. The base address field of the hidden state of the FS and GS
registers are mapped to MSRs and may be read and written by privileged software when running in 64-
bit mode.

RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE Instructions. When supported and
enabled, these instructions allow software running at any privilege level to read and write the base
address field of the hidden state of the FS and GS segment registers. These instructions are only
defined in 64-bit mode.

6.3.3 Accessing Descriptor-Table Registers

LGDT and LIDT Instructions. The load GDTR (LGDT) and load IDTR (LIDT) instructions load a
pseudo-descriptor from memory into the GDTR or IDTR registers, respectively.

[AMD Public Use]

System Instructions 175

24593—Rev. 3.37—March 2021 AMD64 Technology

LLDT and LTR Instructions. The load LDTR (LLDT) and load TR (LTR) instructions load a system-
segment descriptor from the GDT into the LDTR and TR segment-descriptor registers (hidden
portion), respectively.

SGDT and SIDT Instructions. The store GDTR (SGDT) and store IDTR (SIDT) instructions reverse
the operation of the LGDT and LIDT instructions. SGDT and SIDT store a pseudo-descriptor from the
GDTR or IDTR register into memory.

SLDT and STR Instructions. In all modes, the store LDTR (SLDT) and store TR (STR) instructions
store the LDT or task selector from the visible portion of the LDTR or TR register into a general-
purpose register or memory, respectively. The hidden portion of the LDTR or TR register is not stored.

6.4 Protection Checking
Several instructions are provided to allow software to determine the outcome of a protection check
before performing a memory access that could result in a protection violation. By performing the
checks before a memory access, software can avoid violations that result in a general-protection
exception (#GP).

6.4.1 Checking Access Rights

LAR Instruction. The load access-rights (LAR) instruction can be used to determine if access to a
segment is allowed, based on privilege checks and type checks. The LAR instruction uses a segment-
selector in the source operand to reference a descriptor in the GDT or LDT. LAR performs a set of
access-rights checks and, if successful, loads the segment-descriptor access rights into the destination
register. Software can further examine the access-rights bits to determine if access into the segment is
allowed.

6.4.2 Checking Segment Limits

LSL Instruction. The load segment-limit (LSL) instruction uses a segment-selector in the source
operand to reference a descriptor in the GDT or LDT. LSL performs a set of preliminary access-rights
checks and, if successful, loads the segment-descriptor limit field into the destination register.
Software can use the limit value in comparisons with pointer offsets to prevent segment limit
violations.

6.4.3 Checking Read/Write Rights

VERR and VERW Instructions. The verify read-rights (VERR) and verify write-rights (VERW) can
be used to determine if a target code or data segment (not a system segment) can be read or written
from the current privilege level (CPL). The source operand for these instructions is a pointer to the
segment selector to be tested. If the tested segment (code or data) is readable from the current CPL, the
VERR instruction sets RFLAGS.ZF to 1; otherwise, it is cleared to zero. Likewise, if the tested data
segment is writable, the VERW instruction sets the RFLAGS.ZF to 1. A code segment cannot be tested
for writability.

[AMD Public Use]

176 System Instructions

AMD64 Technology 24593—Rev. 3.37—March 2021

6.4.4 Adjusting Access Rights

ARPL Instruction. The adjust RPL-field (ARPL) instruction can be used by system software to
prevent access into privileged-data segments by lower-privileged software. This can happen if an
application passes a selector to system software and the selector RPL is less than (has greater privilege
than) the calling-application CPL. To prevent this surrogate access, system software executes ARPL
with the following operands:

• The destination operand is the data-segment selector passed to system software by the application.
• The source operand is the application code-segment selector (available on the system-software

stack as a result of the CALL into system software by the application).

ARPL is not supported in 64-bit mode.

6.5 Processor Halt
The processor halt instruction (HLT) halts instruction execution, leaving the processor in the halt state.
No registers or machine state are modified as a result of executing the HLT instruction. The processor
remains in the halt state until one of the following occurs:

• A non-maskable interrupt (NMI).
• An enabled, maskable interrupt (INTR).
• Processor reset (RESET).
• Processor initialization (INIT).
• System-management interrupt (SMI).

6.6 Cache and TLB Management
Cache-management instructions are used by system software to maintain coherency within the
memory hierarchy. Memory coherency and caches are discussed in Chapter 7, “Memory System.”
Similarly, TLB-management instructions are used to maintain coherency between page translations
cached in the TLB and the translation tables maintained by system software in memory. See
“Translation-Lookaside Buffer (TLB)” on page 154 for more information.

6.6.1 Cache Management

WBINVD and WBNOINVD Instructions. The writeback and invalidate (WBINVD) and writeback
no invalidate (WBNOINVD) instructions are used to write all modified cache lines to memory so that
memory contains the most recent copy of data. After the writes are complete, the WBINVD instruction
invalidates all cache lines, whereas the WBNOINVD instruction may leave the lines in the cache
hierarchy in a non-modified state. These instructions operate on all caches in the memory hierarchy,
including caches that are external to the processor. See the instructions' description in Volume 3 for
further operational details.

[AMD Public Use]

System Instructions 177

24593—Rev. 3.37—March 2021 AMD64 Technology

INVD Instruction. The invalidate (INVD) instruction is used to invalidate all cache lines in all caches
in the memory hierarchy. Unlike the WBINVD instruction, no modified cache lines are written to
memory. The INVD instruction should only be used in situations where memory coherency is not
required.

6.6.2 TLB Invalidation

INVLPG Instruction. The invalidate TLB entry (INVLPG) instruction can be used to invalidate
specific entries within the TLB. The source operand is a virtual-memory address that specifies the
TLB entry to be invalidated. Invalidating a TLB entry does not remove the associated page-table entry
from the data cache. See “Translation-Lookaside Buffer (TLB)” on page 154 for more information.

INVLPGA Instruction. The invalidate TLB entry in a Specified ASID instruction (INVLPGA) can be
used to invalidate TLB entries associated with the specified ASID. See “Invalidate Page, Alternate
ASID” on page 504.

INVLPGB Instruction. The invalidate TLB with Broadcast instruction (INVLPGB) can be used to
invalidate a specified range of TLB entries on the local processor and broadcast the invalidation to
remote processors. See “INVLPGB” in Volume 3.

INVPCID Instruction. The invalidate TLB entries in Specified PCID instruction (INVPCID) can be
used to invalidate TLB entries of the specified Processor Context ID. See “INVPCID” in Volume 3.

6.7 Shadow Stack Management
The following instructions are available to software for use in managing shadow stacks if the shadow
stack feature is present as indicated by CPUID Fn0000_0007_x0_ECX[CET_SS] (bit 7) =1. Except
for RDSSP, attempting to execute these instructions when shadow stacks are disabled results in a #UD
exception. For more information refer to the detailed instruction descriptions in APM volume 3.

CLRSSBSY. Validates a shadow stack token and clears the tokens busy bit. This is a privileged
instruction.

INCSSP. Increment SSP by ‘n’ stack frames. Used to pop unneeded items from a shadow stack.

RDSSP. Read the SSP into a GPR. Treated as a NOP if shadow stacks are disabled.

RSTORSSP. Used to switch shadow stacks. Expects a ‘shadow stack restore token’ at the top of the
new shadow stack. Upon validating this token, sets the token’s busy bit and sets SSP to the top of the
new shadow stack.

SAVEPREVSSP. Copies a ‘previous SSP token’ from the current shadow stack back to the previous
stack for later use by an RSTORSSP instruction.

SETSSBSY. Validates the shadow stack token pointed to by the PL0_SSP MSR. If valid, sets the
busy bit to 1 and sets SSP = PL0_SSP. This is a privileged instruction.

[AMD Public Use]

178 System Instructions

AMD64 Technology 24593—Rev. 3.37—March 2021

WRSS. Writes the source operand to a shadow stack. This instruction must be enabled in the U_CET
and S_CET MSRs, otherwise a #UD is generated.

WRUSS. Writes the source operand to a user shadow stack. This is a privileged instruction.

[AMD Public Use]

Memory System 179

24593—Rev. 3.37—March 2021 AMD64 Technology

7 Memory System

This chapter describes:

• Cache coherency mechanisms
• Cache control mechanisms
• Memory typing
• Memory mapped I/O
• Memory ordering rules
• Serializing instructions

Figure 7-1 on page 180 shows a conceptual picture of a processor and memory system, and how data
and instructions flow between the various components. This diagram is not intended to represent a
specific microarchitectural implementation but instead is used to illustrate the major memory-system
components covered by this chapter.

[AMD Public Use]

180 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 7-1. Processor and Memory System

The memory-system components described in this chapter are shown as unshaded boxes in Figure 7-1.
Those items are summarized in the following paragraphs.

Main memory is external to the processor chip and is the memory-hierarchy level farthest from the
processor execution units.

Caches are the memory-hierarchy levels closest to the processor execution units. They are much
smaller and much faster than main memory, and can be either internal or external to the processor chip.
Caches contain copies of the most frequently used instructions and data. By allowing fast access to
frequently used data, software can run much faster than if it had to access that data from main memory.
Figure 7-1 shows three caches, all internal to the processor:

513-211.eps

Write-Combining
BuffersL1

Instruction Cache

Write Buffers

L2 Cache

L1
Data Cache

Main Memory

System Bus Interface

Load/Store Unit

Execution Units
Processor Chip

[AMD Public Use]

Memory System 181

24593—Rev. 3.37—March 2021 AMD64 Technology

• L1 Data Cache—The L1 (level-1) data cache holds the data most recently read or written by the
software running on the processor.

• L1 Instruction Cache—The L1 instruction cache is similar to the L1 data cache except that it holds
only the instructions executed most frequently. In some processor implementations, the L1
instruction cache can be combined with the L1 data cache to form a unified L1 cache.

• L2 Cache—The L2 (level-2) cache is usually several times larger than the L1 caches, but it is also
slower. It is common for L2 caches to be implemented as a unified cache containing both
instructions and data. Recently used instructions and data that do not fit within the L1 caches can
reside in the L2 cache. The L2 cache can be exclusive, meaning it does not cache information
contained in the L1 cache. Conversely, inclusive L2 caches contain a copy of the L1-cached
information.

Memory-read operations from cacheable memory first check the cache to see if the requested
information is available. A read hit occurs if the information is available in the cache, and a read miss
occurs if the information is not available. Likewise, a write hit occurs if the memory write can be
stored in the cache, and a write miss occurs if it cannot be stored in the cache.

Caches are divided into fixed-size blocks called cache lines. The cache allocates lines to correspond to
regions in memory of the same size as the cache line, aligned on an address boundary equal to the
cache-line size. For example, in a cache with 32-byte lines, the cache lines are aligned on 32-byte
boundaries and byte addresses 0007h and 001Eh are both located in the same cache line. The size of a
cache line is implementation dependent. Most implementations have either 32-byte or 64-byte cache
lines. The implemented cache line size is reported by CPUID Fn8000_0005 and Fn8000_0006 for the
various caches, as described in Appendix E of Volume 3.

The process of loading data into a cache is a cache-line fill. Even if only a single byte is requested, all
bytes in a cache line are loaded from memory. Typically, a cache-line fill must remove (evict) an
existing cache line to make room for the new line loaded from memory. This process is called cache-
line replacement. If the existing cache line was modified before the replacement, the processor
performs a cache-line writeback to main memory when it performs the cache-line fill.

Cache-line writebacks help maintain coherency between the caches and main memory. Internally, the
processor can also maintain cache coherency by internally probing (checking) the other caches and
write buffers for a more recent version of the requested data. External devices can also check processor
caches for more recent versions of data by externally probing the processor. Throughout this
document, the term probe is used to refer to external probes, while internal probes are always qualified
with the word internal.

Write buffers temporarily hold data writes when main memory or the caches are busy with other
memory accesses. The existence of write buffers is implementation dependent.

Implementations of the architecture can use write-combining buffers if the order and size of non-
cacheable writes to main memory is not important to the operation of software. These buffers can
combine multiple, individual writes to main memory and transfer the data in fewer bus transactions.

[AMD Public Use]

182 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

7.1 Single-Processor Memory Access Ordering
The flexibility with which memory accesses can be ordered is closely related to the flexibility in which
a processor implementation can execute and retire instructions. Instruction execution creates results
and status and determines whether or not the instruction causes an exception. Instruction retirement
commits the results of instruction execution, in program order, to software-visible resources such as
memory, caches, write-combining buffers, and registers, or it causes an exception to occur if
instruction execution created one.

Implementations of the AMD64 architecture retire instructions in program order, but implementations
can execute instructions in any order, subject only to data dependencies. Implementations can also
speculatively execute instructions—executing instructions before knowing they are needed. Internally,
implementations manage data reads and writes so that instructions complete in order. However,
because implementations can execute instructions out of order and speculatively, the sequence of
memory accesses performed by the hardware can appear to be out of program order. The following
sections describe the rules governing memory accesses to which processor implementations adhere.
These rules may be further restricted, depending on the memory type being accessed. Further, these
rules govern single processor operation; see “Multiprocessor Memory Access Ordering” on page 184
for multiprocessor ordering rules.

7.1.1 Read Ordering

Generally, reads do not affect program order because they do not affect the state of software-visible
resources other than register contents. However, some system devices might be sensitive to reads. In
such a situation software can map a read-sensitive device to a memory type that enforces strong read-
ordering, or use read/write barrier instructions to force strong read-ordering.

For cacheable memory types, the following rules govern read ordering:

• Out-of-order reads are allowed to the extent that they can be performed transparently to software,
such that the appearance of in-order execution is maintained. Out-of-order reads can occur as a
result of out-of-order instruction execution or speculative execution. The processor can read
memory and perform cache refills out-of-order to allow out-of-order execution to proceed.

• Speculative reads are allowed. A speculative read occurs when the processor begins executing a
memory-read instruction before it knows the instruction will actually complete. For example, the
processor can predict a branch will occur and begin executing instructions following the predicted
branch before it knows whether the prediction is valid. When one of the speculative instructions
reads data from memory, the read itself is speculative. Cache refills may also be performed
speculatively.

• Reads can be reordered ahead of writes. Reads are generally given a higher priority by the
processor than writes because instruction execution stalls if the read data required by an instruction
is not immediately available. Allowing reads ahead of writes usually maximizes software
performance.

• A read cannot be reordered ahead of a prior write if the read is from the same location as the prior
write. In this case, the read instruction stalls until the write instruction completes execution. The

[AMD Public Use]

Memory System 183

24593—Rev. 3.37—March 2021 AMD64 Technology

read instruction requires the result of the write instruction for proper software operation. For
cacheable memory types, the write data can be forwarded to the read instruction before it is
actually written to memory.

• Instruction fetching constitutes a parallel, asynchronous stream of reads that is independent from
and unordered with respect to the read accesses performed by loads in that instruction stream.

7.1.2 Write Ordering

Writes affect program order because they affect the state of software-visible resources. The following
rules govern write ordering:

• Generally, out-of-order writes are not allowed. Write instructions executed out of order cannot
commit (write) their result to memory until all previous instructions have completed in program
order. The processor can, however, hold the result of an out-of-order write instruction in a private
buffer (not visible to software) until that result can be committed to memory.

• It is possible for writes to write-combining memory types to appear to complete out of order,
relative to writes into other memory types. See “Memory Types” on page 190 and “Write
Combining” on page 196 for additional information.

• Speculative writes are not allowed. As with out-of-order writes, speculative write instructions
cannot commit their result to memory until all previous instructions have completed in program
order. Processors can hold the result in a private buffer (not visible to software) until the result can
be committed.

• Write buffering is allowed. When a write instruction completes and commits its result, that result
can be buffered until it is actually written to system memory in program order. Although the write
buffer itself is not directly accessible by software, the results in the buffer are accessible by
subsequent memory accesses to the locations that are buffered, including reads for which only a
subset of bytes being accessed are in the buffer. For example, a doubleword read that overlaps a
single modified byte in the write buffer can return the buffered value for that byte before that write
has been committed to memory.
In general, any read from cacheable memory returns the net result of all prior globally and locally
visible writes to those bytes, as performed in program order. A given implementation may provide
bytes from the write buffer to satisfy this, or may stall the read until any overlapping buffered
writes have been committed to memory. For cacheable memory types, the write buffer can be read
out-of-order and speculatively, just like memory.

• Write combining is allowed. In some situations software can relax the write-ordering rules through
the use of a Write Combining memory type or non-temporal store instructions, and allow several
writes to be combined into fewer writes to memory. When write-combining is used, it is possible
for writes to other memory types to proceed ahead of (out-of-order) memory-combining writes,
unless the writes are to the same address. Write-combining should be used only when the order of
writes does not affect program order (for example, writes to a graphics frame buffer).

[AMD Public Use]

184 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

7.1.3 Read/Write Barriers

When the order of memory accesses must be strictly enforced, software can use read/write barrier
instructions to force reads and writes to proceed in program order. Read/write barrier instructions force
all prior reads or writes to complete before subsequent reads or writes are executed. The LFENCE,
SFENCE, and MFENCE instructions are provided as dedicated read, write, and read/write barrier
instructions (respectively). Serializing instructions, I/O instructions, and locked instructions
(including the implicitly locked XCHG instruction) can also be used as read/write barriers. Barrier
instructions are useful for controlling ordering between differing memory types as well as within one
memory type; see Section 7.3.1, “Special Coherency Considerations,” on page 189 for details.

Table 7-1 on page 192 summarizes the memory-access ordering possible for each memory type
supported by the AMD64 architecture.

7.2 Multiprocessor Memory Access Ordering
The term memory ordering refers to the sequence in which memory accesses are performed by the
memory system, as observed by all processors or programs.

To improve performance of applications, AMD64 processors can speculatively execute instructions
out of program order and temporarily hold out-of-order results. However, certain rules are followed
with regard to normal cacheable accesses on naturally aligned boundaries to WB memory.

In the examples below, all memory values are initialized to zero.

From the point of view of a program, in ascending order of priority:

• All loads, stores and I/O operations from a single processor appear to occur in program order to the
code running on that processor and all instructions appear to execute in program order.

• Successive stores from a single processor are committed to system memory and visible to other
processors in program order. A store by a processor cannot be committed to memory before a read
appearing earlier in the program has captured its targeted data from memory. In other words, stores
from a processor cannot be reordered to occur prior to a load preceding it in program order.
In this context:
- Loads do not pass previous loads (loads are not reordered). Stores do not pass previous stores

(stores are not reordered)

Load A cannot read 0 when Load B reads 1. (This rule may be violated in the case of loads as
part of a string operation, in which one iteration of the string reads 0 for Load A while another
iteration reads 1 for Load B.)

- Stores do not pass loads

Processor 0 Processor 1
Store A ← 1 Load B
Store B ← 1 Load A

[AMD Public Use]

Memory System 185

24593—Rev. 3.37—March 2021 AMD64 Technology

Load A and Load B cannot both read 1.
• Stores from a processor appear to be committed to the memory system in program order; however,

stores can be delayed arbitrarily by store buffering while the processor continues operation.
Therefore, stores from a processor may not appear to be sequentially consistent.

Both Load A and Load B may read 1. Also, due to possible write combining one or both
processors may not actually store a 1 at the designated location.

• Non-overlapping Loads may pass stores.

All combinations of values (00, 01, 10, and 11) may be observed by Processors 0 and 1.
- Where sequential consistency is needed (for example in Dekker’s algorithm for mutual

exclusion), an MFENCE instruction should be used between the store and the subsequent load,
or a locked access, such as XCHG, should be used for the store.

Load A and Load B cannot both read 0.
- Loads that partially overlap prior stores may return the modified part of the load operand from

the store buffer, combining globally visible bytes with bytes that are only locally visible. To
ensure that such loads return only a globally visible value, an MFENCE or locked access must
be used between the store and the dependent load, or the store or load must be performed with
a locked operation such as XCHG.

- Stores to different locations in memory observed from two (or more) other processors will
appear in the same order to all observers. Behavior such as that shown in this code example,

Processor 0 Processor 1
Load A Load B

Store B ← 1 Store A ← 1

Processor 0 Processor 1
Store A ← 1 Store B ← 1

… …
Store A ← 2 Store B ← 2

… …
Load B Load A

Processor 0 Processor 1
Store A ← 1 Store B ← 1

Load B Load A

Processor 0 Processor 1
Store A ← 1 Store B ← 1
MFENCE MFENCE

Load B Load A

[AMD Public Use]

186 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

in which processor X sees store A from processor 0 before store B from processor 1, while
processor Y sees store B from processor 1 before store A from processor 0, is not allowed.

• Dependent stores between different processors appear to occur in program order, as shown in the
code example below.

If processor 1 reads a value from A (written by processor 0) before carrying out a store to B, and if
processor 2 reads the updated value from B, a subsequent read of A must also be the updated value.

• The local visibility (within a processor) for a memory operation may differ from the global
visibility (from another processor). Using a data bypass, a local load can read the result of a local
store in a store buffer, before the store becomes globally visible. Program order is still maintained
when using such bypasses.

Load A in processor 0 can read 1 using the data bypass, while Load A in processor 1 can read 0.
Similarly, Load B in processor 1 can read 1 while Load B in processor 0 can read 0. Therefore, the
result r1 = 1, r2 = 0, r3 = 1 and r4 = 0 may occur. There are no constraints on the relative order of
when the Store A of processor 0 is visible to processor 1 relative to when the Store B of processor
1 is visible to processor 0.
If a very strong memory ordering model is required that does not allow local store-load bypasses,
an MFENCE instruction or a synchronizing instruction such as XCHG or a locked Read-modify-
write should be used between the store and the subsequent load. This enforces a memory ordering
stronger than total store ordering.

Processor 0 Processor 1 Processor X Processor Y
Store A ← 1 Store B ← 1

Load A (1) Load B (1)
Load B (0) Load A (0)

Processor 0 Processor 1 Processor 2
Store A ← 1

Load A (1)
Store B ← 1

Load B (1)
Load A (1)

Processor 0 Processor 1
Store A ← 1 Store B ← 1
Load r1 A Load r3 B
Load r2 B Load r4 A

Processor 0 Processor 1
Store A ← 1 Store B ← 1
MFENCE MFENCE

[AMD Public Use]

Memory System 187

24593—Rev. 3.37—March 2021 AMD64 Technology

In this example, the MFENCE instruction ensures that any buffered stores are globally visible
before the loads are allowed to execute, so the result r1 = 1, r2 = 0, r3 = 1 and r4 = 0 will not occur.

7.3 Memory Coherency and Protocol
Implementations that support caching support a cache-coherency protocol for maintaining coherency
between main memory and the caches. The cache-coherency protocol is also used to maintain
coherency between all processors in a multiprocessor system. The cache-coherency protocol
supported by the AMD64 architecture is the MOESI (modified, owned, exclusive, shared, invalid)
protocol. The states of the MOESI protocol are:

• Invalid—A cache line in the invalid state does not hold a valid copy of the data. Valid copies of the
data can be either in main memory or another processor cache.

• Exclusive—A cache line in the exclusive state holds the most recent, correct copy of the data. The
copy in main memory is also the most recent, correct copy of the data. No other processor holds a
copy of the data.

• Shared—A cache line in the shared state holds the most recent, correct copy of the data. Other
processors in the system may hold copies of the data in the shared state, as well. If no other
processor holds it in the owned state, then the copy in main memory is also the most recent.

• Modified—A cache line in the modified state holds the most recent, correct copy of the data. The
copy in main memory is stale (incorrect), and no other processor holds a copy.

• Owned—A cache line in the owned state holds the most recent, correct copy of the data. The
owned state is similar to the shared state in that other processors can hold a copy of the most recent,
correct data. Unlike the shared state, however, the copy in main memory can be stale (incorrect).
Only one processor can hold the data in the owned state—all other processors must hold the data in
the shared state.

Figure 7-2 on page 188 shows the general MOESI state transitions possible with various types of
memory accesses. This is a logical software view, not a hardware view, of how cache-line state
transitions. Instruction-execution activity and external-bus transactions can both be used to modify the
cache MOESI state in multiprocessing or multi-mastering systems.

Load r1 A Load r3 B
Load r2 B Load r4 A

Processor 0 Processor 1

[AMD Public Use]

188 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 7-2. MOESI State Transitions

To maintain memory coherency, external bus masters (typically other processors with their own
internal caches) need to acquire the most recent copy of data before caching it internally. That copy can
be in main memory or in the internal caches of other bus-mastering devices. When an external master
has a cache read-miss or write-miss, it probes the other mastering devices to determine whether the
most recent copy of data is held in any of their caches. If one of the other mastering devices holds the
most recent copy, it provides it to the requesting device. Otherwise, the most recent copy is provided
by main memory.

513-212.eps

Reset
INVD, WBINVD

Read Hit

Write Miss (WB memory)

Probe Write Hit

Probe R
ead

 Hit

Probe Write Hit

Read Miss, Exclusive

Probe Read Hit

W
rite Hit

Re
ad

 M
iss

, S
ha

re
d

Pr
ob

e
W

rit
e

Hi
t

Invalid Exclusive

Read Hit
Write Hit

Modified

Write Hit
Owned

Read Hit
Probe Read Hit

Shared

Read Hit
Probe Read Hit

Probe W
rite Hit

Write Hit

[AMD Public Use]

Memory System 189

24593—Rev. 3.37—March 2021 AMD64 Technology

There are two general types of bus-master probes:

• Read probes indicate the external master is requesting the data for read purposes.
• Write probes indicate the external master is requesting the data for the purpose of modifying it.

Referring back to Figure 7-2 on page 188, the state transitions involving probes are initiated by other
processors and external bus masters into the processor. Some read probes are initiated by devices that
intend to cache the data. Others, such as those initiated by I/O devices, do not intend to cache the data.
Some processor implementations do not change the data MOESI state if the read probe is initiated by a
device that does not intend to cache the data.

State transitions involving read misses and write misses can cause the processor to generate probes
into external bus masters and to read main memory.

Read hits do not cause a MOESI-state change. Write hits generally cause a MOESI-state change into
the modified state. If the cache line is already in the modified state, a write hit does not change its state.

The specific operation of external-bus signals and transactions and how they influence a cache MOESI
state are implementation dependent. For example, an implementation could convert a write miss to a
WB memory type into two separate MOESI-state changes. The first would be a read-miss placing the
cache line in the exclusive state. This would be followed by a write hit into the exclusive cache line,
changing the cache-line state to modified.

7.3.1 Special Coherency Considerations

In some cases, data can be modified in a manner that is impossible for the memory-coherency protocol
to handle due to the effects of instruction prefetching. In such situations software must use serializing
instructions and/or cache-invalidation instructions to ensure subsequent data accesses are coherent.

An example of this type of a situation is a page-table update followed by accesses to the physical pages
referenced by the updated page tables. The following sequence of events shows what can happen when
software changes the translation of virtual-page A from physical-page M to physical-page N:

1. Software invalidates the TLB entry. The tables that translate virtual-page A to physical-page M
are now held only in main memory. They are not cached by the TLB.

2. Software changes the page-table entry for virtual-page A in main memory to point to physical-
page N rather than physical-page M.

3. Software accesses data in virtual-page A.

During Step 3, software expects the processor to access the data from physical-page N. However, it is
possible for the processor to prefetch the data from physical-page M before the page table for virtual-
page A is updated in Step 2. This is because the physical-memory references for the page tables are
different than the physical-memory references for the data. Because the physical-memory references
are different, the processor does not recognize them as requiring coherency checking and believes it is
safe to prefetch the data from virtual-page A, which is translated into a read from physical page M.
Similar behavior can occur when instructions are prefetched from beyond the page table update
instruction.

[AMD Public Use]

190 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

To prevent this problem, software must use an INVLPG or MOV CR3 instruction immediately after
the page-table update to ensure that subsequent instruction fetches and data accesses use the correct
virtual-page-to-physical-page translation. It is not necessary to perform a TLB invalidation operation
preceding the table update.

7.3.2 Access Atomicity

Cacheable, naturally-aligned single loads or stores of up to a quadword are atomic on any processor
model, as are misaligned loads or stores of less than a quadword that are contained entirely within a
naturally-aligned quadword. Misaligned load or store accesses typically incur a small latency penalty.
Model-specific relaxations of this quadword atomicity boundary, with respect to this latency penalty,
may be found in a given processor's Software Optimization Guide.

Misaligned accesses can be subject to interleaved accesses from other processors or cache-coherent
devices which can result in unintended behavior. Atomicity for misaligned accesses can be achieved
where necessary by using the XCHG instruction or any suitable LOCK-prefixed instruction. Note that
misaligned locked accesses may incur a significant performance penalty on various processor models.

7.4 Memory Types
Memory type is an attribute that can be associated with a specific region of virtual or physical memory.
Memory type designates certain caching and ordering behaviors for loads and stores to addresses in
that region. Most memory types are explicitly assigned, although some are inferred by the hardware
from current processor state and instruction context.

The AMD64 architecture defines the following memory types:

• Uncacheable (UC)—Reads from, and writes to, UC memory are not cacheable. Reads from UC
memory cannot be speculative. Write-combining to UC memory is not allowed. Reads from or
writes to UC memory cause the write buffers to be written to memory and be invalidated prior to
the access to UC memory.
The UC memory type is useful for memory-mapped I/O devices where strict ordering of reads and
writes is important. Note that this strong ordering is with respect to UC accesses only; reads to
memory types which support speculative operation may bypass non-conflicting UC accesses.

• Cache Disable (CD)—The CD memory type is a form of uncacheable memory type that is inferred
when the L1 caches are disabled but not invalidated, or for certain conflicting memory type
assignments from the Page Attribute Table (PAT) and Memory Type Range Register (MTRR)
mechanisms. The former case occurs when caches are disabled by setting CR0.CD to 1 without
invalidating the caches with either the INVD or WBINVD instruction for any reference to a region
designated as cacheable. The latter case occurs when a specific type has been assigned to a virtual
page via PAT, and a conflicting type has been assigned to the mapped physical page via an MTRR
(see “Combined Effect of MTRRs and PAT” on page 219 and “Combining Memory Types,
MTRRs” on page 526 for details).
For the L1 data cache and the L2 cache, reads from, and writes to, CD memory that hit the cache,
or any other caches in the system, cause the cache line(s) to be invalidated before accessing main

[AMD Public Use]

Memory System 191

24593—Rev. 3.37—March 2021 AMD64 Technology

memory. If a cache line is in the modified state, the line is written to main memory prior to being
invalidated. The access is allowed to proceed after any invalidations are complete.
For the L1 instruction cache, instruction fetches from CD memory that hit the cache read the
cached instructions rather than access main memory. Instruction fetches that miss the cache access
main memory and do not cause cache-line replacement. Writes to CD memory that hit in the
instruction cache cause the line to be invalidated.

• Write-Combining (WC)—Reads from, and writes to, WC memory are not cacheable. Reads from
WC memory can be speculative.
Writes to this memory type can be combined internally by the processor and written to memory as
a single write operation to reduce memory accesses. For example, four word writes to consecutive
addresses can be combined by the processor into a single quadword write, resulting in one memory
access instead of four.
The WC memory type is useful for graphics-display memory buffers where the order of writes is
not important.

• Write-Combining Plus (WC+)—WC+ is an uncacheable memory type, and combines writes in
write-combining buffers like WC. Unlike WC (but like the CD memory type), accesses to WC+
memory probe the caches on all processors (including the caches of the processor issuing the
request) to maintain coherency. This ensures that cacheable writes are observed by WC+ accesses.

• Write-Protect (WP)—Reads from WP memory are cacheable and allocate cache lines on a read
miss. Reads from WP memory can be speculative.
Writes to WP memory that hit in the cache do not update the cache. Instead, all writes update
memory (write to memory), and writes that hit in the cache invalidate the cache line. Write
buffering of WP memory is allowed.
The WP memory type is useful for shadowed-ROM memory where updates must be immediately
visible to all devices that read the shadow locations.

• Writethrough (WT)—Reads from WT memory are cacheable and allocate cache lines on a read
miss. Reads from WT memory can be speculative.
All writes to WT memory update main memory, and writes that hit in the cache update the cache
line (cache lines remain in the same state after a write that hits a cache line). Writes that miss the
cache do not allocate a cache line. Write buffering of WT memory is allowed.

• Writeback (WB)—Reads from WB memory are cacheable and allocate cache lines on a read miss.
Cache lines can be allocated in the shared, exclusive, or modified states. Reads from WB memory
can be speculative.
All writes that hit in the cache update the cache line and place the cache line in the modified state.
Writes that miss the cache allocate a new cache line and place the cache line in the modified state.
Writes to main memory only take place during writeback operations. Write buffering of WB
memory is allowed.
The WB memory type provides the highest-possible performance and is useful for most software
and data stored in system memory (DRAM).

[AMD Public Use]

192 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Table 7-1 shows the memory access ordering possible for each memory type supported by the AMD64
architecture. Table 7-3 on page 194 shows the ordering behavior of various operations on various
memory types in greater detail. Table 7-2 on page 192 shows the caching policy for the same memory
types.

7.4.1 Instruction Fetching from Uncacheable Memory

Instruction fetches from an uncacheable memory type (including those for the CD type which don't hit
in the instruction cache) may read a naturally-aligned block of memory no larger than an instruction
cache line that contains multiple instructions, and may or may not repeat reads of a given block in the
course of extracting instructions from it. In general, the exact sequence of read accesses is not
deterministic, regardless of instruction stream contents, aside from the following constraints:

• instruction fetching of branch targets from uncacheable memory will only be done non-
speculatively

Table 7-1. Memory Access by Memory Type

Memory Access
Allowed

Memory Type
UC/CD WC WP WT WB

Read
Out-of-Order no yes yes yes yes
Speculative no yes yes yes yes

Reorder Before Write no yes yes yes yes

Write

Out-of-Order no yes no no no
Speculative no no no no no
Buffering no yes yes yes yes

Combining1 no yes no yes yes
Note:

1. Write-combining buffers are separate from write (store) buffers.

Table 7-2. Caching Policy by Memory Type

Caching Policy
Memory Type

UC CD WC WP WT WB
Read Cacheable no no no yes yes yes
Write Cacheable no no no no yes yes

Read Allocate no no no yes yes yes
Write Allocate no no no no no yes

Write Hits Update Memory yes2 yes1 yes2 yes3 yes no
Note:

1. For the L1 data cache and the L2 cache, if an access hits the cache, the cache line is invalidated. If the cache line is in the
modified state, the line is written to main memory and then invalidated. For the L1 instruction cache, read (instruction fetch)
hits access the cache rather than main memory.

2. The data is not cached, so a cache write hit cannot occur. However, memory is updated.
3. Write hits update memory and invalidate the cache line.

[AMD Public Use]

Memory System 193

24593—Rev. 3.37—March 2021 AMD64 Technology

• sequential instruction fetching will not transition speculatively from a cacheable memory type to
an uncacheable memory type

• sequential instruction fetching will not speculatively cross more than one 4KB page boundary

It is recommended that MMIO devices that have read side-effects be separated from memory that's
subject to uncacheable instruction fetches by at least one 4KB page.

7.4.2 Memory Barrier Interaction with Memory Types

Memory types other than WB may allow weaker ordering in certain respects. When the ordering of
memory accesses to differing memory types must be strictly enforced, software can use the LFENCE,
MFENCE or SFENCE barrier instructions to force loads and stores to proceed in program order.
Table 7-3 on page 194 summarizes the cases where a memory barrier must be inserted between two
memory operations.

The table is read as follows: the ROW is the first memory operation in program order, followed by the
COLUMN, which is the second memory operation in program order. Each cell represents the ordered
combination of the two memory operations and the letters a, b, c, d, e, f, g, h, i, j, k, and l within the cell
represent the applicable memory ordering rule for that combination. These symbols are described in
the footnotes below the table. In the table and footnotes, the abbreviation nt stands for non-temporal
(load or store), io stands for input / output, lf for LFENCE, sf for SFENCE, and mf for MFENCE.

[AMD Public Use]

194 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Table 7-3. Memory Access Ordering Rules

a — A load (wp, wt, wb) may not pass a previous load (wp, wt, wb, wc, wc+, uc).
b — A load (wc, wc+) may pass a previous load (wp, wt, wb, wc, wc+). To ensure memory order, an

LFENCE instruction must be inserted between the two loads.
c — A store (wp, wt, wb, uc, wc, wc+, nt) may not pass a previous load (wp, wt, wb, uc, wc, wc+, nt).
d — All previous loads and stores complete to memory or I/O space before a memory access for an I/O,

locked or serializing instruction is issued.
e — A load (wp, wt, wb, wc, wc+) may pass a previous non-conflicting store (wp, wt, wb, wc, wc+, nt).

To ensure memory order, an MFENCE instruction must be inserted between the store and the load.
f — A load or store (uc) does not pass a previous load or store (wp, wt, wb, uc, wc, wc+, nt).
g — A store (wp, wt, wb, uc) does not pass a previous store (wp, wt, wb, uc).
h — A store (wc, wc+, nt) may pass a previous store (wp, wt, wb) or non-conflicting store (wc, wc+, nt).

To ensure memory order, an SFENCE instruction must be inserted between these two stores. A store
(wc, wc+, nt) does not pass a previous conflicting store (wc, wc+, nt, uc).

i — A load (wp, wt, wb, wc, wc+) may pass a previous non-conflicting store (uc). To ensure memory
order, an MFENCE instruction must be inserted between the store and the load.

j — A store (wp, wt, wb) may pass a previous store (wc, wc+, nt). To ensure memory order, an SFENCE
instruction must be inserted between these two stores.

k — All loads and stores associated with the I/O and locked instructions complete to memory (no buffered
stores) before a load or store from a subsequent instruction is issued.

Second Memory Operation

First Memory Operation

Lo
ad

 (w
p,

 w
t,

w
b)

Lo
ad

 (u
c)

Lo
ad

 (w
c,

 w
c+

)

St
or

e
(w

p,
 w

t,
w

b)

St
or

e
(u

c)

 S
to

re

(w
c,

 w
c+

, n
on

-te
m

po
ra

l)

Lo
ad

/S
to

re
 (i

o)

Lo
ck

 (a
to

m
ic

)

Se
ri

al
iz

e
in

st
ru

ct
io

ns
/

In
te

rr
up

ts
/E

xc
ep

tio
ns

Load (wp, wt, wb) a f b (lf) c c c d d d
Load (uc) a f b (lf) c c c d d d
Load (wc, wc+) a f b (lf) c c c d d d
Store (wp, wt, wb) e (mf) f e (mf) g g h (sf) d d d
Store (uc) i f i g g h (sf) d d d
Store (wc, wc+, non-temporal) e (mf) f e (mf) j (sf) g, m h (sf) d d d
Load/Store (io) k k k k k l d, k d, k d, k
Lock (atomic) k k k k k k d, k d, k d, k
Serialize instruction/
Interrupts/Exceptions l l l l l l d, l d, l d, l

[AMD Public Use]

Memory System 195

24593—Rev. 3.37—March 2021 AMD64 Technology

l — All loads and stores complete to memory for the serializing instruction before the subsequent
instruction fetch is issued.

m — A store (uc) does not pass a previous store (wc, wc+).

7.5 Buffering and Combining Memory Writes
7.5.1 Write Buffering

Writes to memory (main memory and caches) can be stored internally by the processor in write buffers
(also known as store buffers) before actually writing the data into a memory location. System
performance can be improved by buffering writes, as shown in the following examples:

• When higher-priority memory transactions, such as reads, compete for memory access with writes,
writes can be delayed in favor of reads, which minimizes or eliminates an instruction-execution
stall due to a memory-operand read.

• When the memory is busy, buffering writes while the memory is busy removes the writes from the
instruction-execution pipeline, which frees instruction-execution resources.

The processor manages the write buffer so that it is transparent to software. Memory accesses check
the write buffer, and the processor completes writes into memory from the buffer in program order.
Also, the processor completely empties the write buffer by writing the contents to memory as a result
of performing any of the following operations:

• SFENCE Instruction—Executing a store-fence (SFENCE) instruction forces all memory writes
before the SFENCE (in program order) to be written into memory (or, for WB type, the cache)
before memory writes that follow the SFENCE instruction. The memory-fence (MFENCE)
instruction has a similar effect, but it forces the ordering of loads in addition to stores.

• Serializing Instructions—Executing a serializing instruction forces the processor to retire the
serializing instruction (complete both instruction execution and result writeback) before the next
instruction is fetched from memory.

• I/O instructions—Before completing an I/O instruction, all previous reads and writes must be
written to memory, and the I/O instruction must complete before completing subsequent reads or
writes. Writes to I/O-address space (OUT instruction) are never buffered.

• Locked Instructions—A locked instruction (an instruction executed using the LOCK prefix) or an
XCHG instruction (which is implicitly locked) must complete after all previous reads and writes
and before subsequent reads and writes. Locked writes are never buffered, although locked reads
and writes are cacheable.

• Interrupts and Exceptions—Interrupts and exceptions are serializing events that force the
processor to write all results from the write buffer to memory before fetching the first instruction
from the interrupt or exception service routine.

• UC Memory Reads—UC memory reads are not reordered ahead of writes.

[AMD Public Use]

196 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Write buffers can behave similarly to write-combining buffers because multiple writes may be
collected internally before transferring the data to caches or main memory. See the following section
for a description of write combining.

7.5.2 Write Combining

Write-combining memory uses a different buffering scheme than write buffering described above.
Writes to write-combining (WC) memory can be combined internally by the processor in a buffer for
more efficient transfer to main memory at a later time. For example, 16 doubleword writes to
consecutive memory addresses can be combined in the WC buffers and transferred to main memory as
a single burst operation rather than as individual memory writes.

The following instructions perform writes to WC memory:

• (V)MASKMOVDQU
• MASKMOVQ
• (V)MOVNTDQ
• MOVNTI
• (V)MOVNTPD
• (V)MOVNTPS
• MOVNTQ
• MOVNTSD
• MOVNTSS

WC memory is not cacheable. A WC buffer writes its contents only to main memory.

The size and number of WC buffers available is implementation dependent. The processor assigns an
address range to an empty WC buffer when a WC-memory write occurs. The size and alignment of this
address range is equal to the buffer size. All subsequent writes to WC memory that fall within this
address range can be stored by the processor in the WC-buffer entry until an event occurs that causes
the processor to write the WC buffer to main memory. After the WC buffer is written to main memory,
the processor can assign a new address range on a subsequent WC-memory write.

Writes to consecutive addresses in WC memory are not required for the processor to combine them.
The processor combines any WC memory write that falls within the active-address range for a buffer.
Multiple writes to the same address overwrite each other (in program order) until the WC buffer is
written to main memory.

It is possible for writes to proceed out of program order when WC memory is used. For example, a
write to cacheable memory that follows a write to WC memory can be written into the cache before the
WC buffer is written to main memory. For this reason, and the reasons listed in the previous paragraph,
software that is sensitive to the order of memory writes should avoid using WC memory.

WC buffers are written to main memory under the same conditions as the write buffers, namely when:

• Executing a store-fence (SFENCE) instruction.

[AMD Public Use]

Memory System 197

24593—Rev. 3.37—March 2021 AMD64 Technology

• Executing a serializing instruction.
• Executing an I/O instruction.

- Executing an MMIO access (load or store to UC memory type)
• Executing a locked instruction (an instruction executed using the LOCK prefix).
• Executing an XCHG instruction
• An interrupt or exception occurs.

WC buffers are also written to main memory when:

• A subsequent non-write-combining operation has a write address that matches the WC-buffer
active-address range.

• A write to WC memory falls outside the WC-buffer active-address range. The existing buffer
contents are written to main memory, and a new address range is established for the latest WC
write.

7.6 Memory Caches
The AMD64 architecture supports the use of internal and external caches. The size, organization,
coherency mechanism, and replacement algorithm for each cache is implementation dependent.
Generally, the existence of the caches is transparent to both application and system software. In some
cases, however, software can use cache-structure information to optimize memory accesses or manage
memory coherency. Such software can use the extended-feature functions of the CPUID instruction to
gather information on the caching subsystem supported by the processor. For more information, see
Section 3.3, “Processor Feature Identification,” on page 70.

7.6.1 Cache Organization and Operation

Although the detailed organization of a processor cache depends on the implementation, the general
constructs are similar. L1 caches—data and instruction, or unified—and L2 caches usually are
implemented as n-way set-associative caches. Figure 7-3 on page 198 shows a typical logical
organization of an n-way set-associative cache. The physical implementation of the cache can be quite
different.

[AMD Public Use]

198 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 7-3. Cache Organization Example

As shown in Figure 7-3, the cache is organized as an array of cache lines. Each cache line consists of
three parts: a cache-data line (a fixed-size copy of a memory block), a tag, and other information.
Rows of cache lines in the cache array are sets, and columns of cache lines are ways. In an n-way set-
associative cache, each set is a collection of n lines. For example, in a four-way set-associative cache,
each set is a collection of four cache lines, one from each way.

513-213.eps

Physical Address

Tag Field Index Field Offset Field

= = =

Tag Data Other

. . .

Set 1

Set 2

Set 3

Set 0

Set m-1

Tag Data Other Tag Data Other

. . .Way 1Way 0 Way n-1

Line Data 0,2 Line Data 1,2 Line Data n-1,2

MUX n:1

Hit

Miss MissMiss

Hit
Hit

. . .

Data

Hit Data

Cache

[AMD Public Use]

Memory System 199

24593—Rev. 3.37—March 2021 AMD64 Technology

The cache is accessed using the physical address of the data or instruction being referenced. To access
data within a cache line, the physical address is used to select the set, way, and byte from the cache.
This is accomplished by dividing the physical address into the following three fields:

• Index—The index field selects the cache set (row) to be examined for a hit. All cache lines within
the set (one from each way) are selected by the index field.

• Tag—The tag field is used to select a specific cache line from the cache set. The physical-address
tag field is compared with each cache-line tag in the set. If a match is found, a cache hit is
signalled, and the appropriate cache line is selected from the set. If a match is not found, a cache
miss is signalled.

• Offset—The offset field points to the first byte in the cache line corresponding to the memory
reference. The referenced data or instruction value is read from (or written to, in the case of
memory writes) the selected cache line starting at the location selected by the offset field.

In Figure 7-3 on page 198, the physical-address index field is shown selecting Set 2 from the cache.
The tag entry for each cache line in the set is compared with the physical-address tag field. The tag
entry for Way 1 matches the physical-address tag field, so the cache-line data for Set 2, Way 1 is
selected using the n:1 multiplexor. Finally, the physical-address offset field is used to point to the first
byte of the referenced data (or instruction) in the selected cache line.

Cache lines can contain other information in addition to the data and tags, as shown in Figure 7-3 on
page 198. MOESI state and the state bits associated with the cache-replacement algorithm are typical
pieces of information kept with the cache line. Instruction caches can also contain pre-decode or
branch-prediction information. The type of information stored with the cache line is implementation
dependent.

Self-Modifying Code. Software that stores into its own pending instruction stream with the intent of
then executing the modified instructions is classified as self-modifying code. To support self-
modifying code, AMD64 processors will flush any lines from the instruction cache that such stores hit,
and will additionally check whether an instruction being modified is already in decode or execution
behind the store instruction. If so, it will flush the pipeline and restart instruction fetch to acquire and
re-decode the updated instruction bytes. No special action is needed by software for such updates to
be immediately recognized. As with cache coherency, the check for instructions that are in flight is
performed using physical addresses to avoid aliasing issues that could arise with virtual (linear)
addresses.

When the modified bytes are in cacheable memory, the data cache may retain a copy of the modified
cache line in a shared state, and the instruction cache refill may be satisfied from any suitable place in
the memory hierarchy in a model-dependent manner that maintains cache coherency.

Cross-Modifying Code. Software that stores into the active instruction stream of another executing
thread with the intent that the other thread subsequently execute the modified instruction stream is
classified as cross-modifying code. There are two approaches to consider: asynchronous modification
and synchronous modification.

[AMD Public Use]

200 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Asynchronous modification. This is done with a write to the target instruction stream with no
particular coordination being done between the writing and receiving threads. The nature of the code
being executed by the target thread is such that it is insensitive to the exact timing of the update, for
example executing in a known loop until an update to a branch instruction's offset takes it down a new
path (or an update to an immediate operand, or opcode, or other instruction field). Such modifications
must be done via a single store to the target thread's instruction stream that is contained entirely within
a naturally-aligned quadword, and is subject to the constraints given here. A key aspect is that,
although the store is performed atomically, the affected quadword may be read more than once in the
process of extracting instruction bytes from it. This can result in the following scenarios resulting from
a single store:

1. An update to two successive instructions, A and B, to A' and B' may result in execution of an A-B'
sequence rather than A'-B'. However it will not result in an A'-B sequence since stores become
visible to instruction fetchers in program order, and instruction fetchers read memory sequentially
between taken branches.

2. A modification to one instruction A that changes it to two instructions A'-B will only result in
execution of A'-B.

3. A modification to two instructions A-B that combines them into one instruction A' may result in a
sequence of A-X, where X starts at the point in A' where B previously started.

Note that since stores to the instruction stream are observed by the instruction fetcher in program
order, one can do multiple modifications to an area of the target thread's code that is beyond reach of
the thread's current control flow, followed by a final asynchronous update that alters the control flow to
expose the modified code to fetching and execution.

If the desired action cannot be achieved within these constraints, a synchronous modification approach
must be used for reliable operation.

Synchronous modification. This entails a producer-consumer approach to the modification, where
the target thread waits on a signal from the modifying thread, such as changing the state of a shared
variable, before executing the modified code. The modifying thread writes to the target instruction
bytes in any desired manner, then writes the synchronizing variable to release the target thread. Upon
release, the target thread must then execute a serializing instruction such as CPUID or MFENCE (a
locked operation is not sufficient) before proceeding to the modified code to avoid executing a stale
view of the instructions which may have been speculatively fetched. Note that such speculative
fetching is a function of branch predictor operation which is completely beyond the control of
software.

See Volume 1, Chapter 3, “Semaphores,” for a discussion of instructions that are useful for
interprocessor synchronization.

7.6.2 Cache Control Mechanisms

The AMD64 architecture provides a number of mechanisms for controlling the cacheability of
memory. These are described in the following sections.

[AMD Public Use]

Memory System 201

24593—Rev. 3.37—March 2021 AMD64 Technology

Cache Disable. Bit 30 of the CR0 register is the cache-disable bit, CR0.CD. Caching is enabled
when CR0.CD is cleared to 0, and caching is disabled when CR0.CD is set to 1. When caching is
disabled, reads and writes access main memory.

Software can disable the cache while the cache still holds valid data (or instructions). If a read or write
hits the L1 data cache or the L2 cache when CR0.CD=1, the processor does the following:

1. Writes the cache line back if it is in the modified or owned state.

2. Invalidates the cache line.

3. Performs a non-cacheable main-memory access to read or write the data.

If an instruction fetch hits the L1 instruction cache when CR0.CD=1, some processor models may read
the cached instructions rather than access main memory. When CR0.CD=1, the exact behavior of L2
and L3 caches is model-dependent, and may vary for different types of memory accesses.

The processor also responds to cache probes when CR0.CD=1. Probes that hit the cache cause the
processor to perform Step 1. Step 2 (cache-line invalidation) is performed only if the probe is
performed on behalf of a memory write or an exclusive read.

Writethrough Disable. Bit 29 of the CR0 register is the not writethrough disable bit, CR0.NW. In
early x86 processors, CR0.NW is used to control cache writethrough behavior, and the combination of
CR0.NW and CR0.CD determines the cache operating mode.

In early x86 processors, clearing CR0.NW to 0 enables writeback caching for main memory,
effectively disabling writethrough caching for main memory. When CR0.NW=0, software can disable
writeback caching for specific memory pages or regions by using other cache control mechanisms.
When software sets CR0.NW to 1, writeback caching is disabled for main memory, while
writethrough caching is enabled.

In implementations of the AMD64 architecture, CR0.NW is not used to qualify the cache operating
mode established by CR0.CD. Table 7-4 shows the effects of CR0.NW and CR0.CD on the AMD64
architecture cache-operating modes.

Page-Level Cache Disable. Bit 4 of all paging data-structure entries controls page-level cache
disable (PCD). When a data-structure-entry PCD bit is cleared to 0, the page table or physical page
pointed to by that entry is cacheable, as determined by the CR0.CD bit. When the PCD bit is set to 1,
the page table or physical page is not cacheable. The PCD bit in the paging data-structure base-register

Table 7-4. AMD64 Architecture Cache-Operating Modes
CR0.CD CR0.NW Cache Operating Mode

0 0 Cache enabled with a writeback-caching policy.
0 1 Invalid setting—causes a general-protection exception (#GP).
1 0

Cache disabled. See “Cache Disable” on page 201.
1 1

[AMD Public Use]

202 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

(bit 4 in CR3) controls the cacheability of the highest-level page table in the page-translation
hierarchy.

Page-Level Writethrough Enable. Bit 3 of all paging data-structure entries is the page-level
writethrough enable control (PWT). When a data-structure-entry PWT bit is cleared to 0, the page
table or physical page pointed to by that entry has a writeback caching policy. When the PWT bit is set
to 1, the page table or physical page has a writethrough caching policy. The PWT bit in the paging
data-structure base-register (bit 3 in CR3) controls the caching policy of the highest-level page table in
the page-translation hierarchy.

The corresponding PCD bit must be cleared to 0 (page caching enabled) for the PWT bit to have an
effect.

Memory Typing. Two mechanisms are provided for software to control access to and cacheability of
specific memory regions:

• The memory-type range registers (MTRRs) control cacheability based on physical addresses. See
“MTRRs” on page 207 for more information on the use of MTRRs.

• The page-attribute table (PAT) mechanism controls cacheability based on virtual addresses. PAT
extends the capabilities provided by the PCD and PWT page-level cache controls. See “Page-
Attribute Table Mechanism” on page 216 for more information on the use of the PAT mechanism.

System software can combine the use of both the MTRRs and PAT mechanisms to maximize control
over memory cacheability.

If the MTRRs are disabled in implementations that support the MTRR mechanism, the default
memory type is set to uncacheable (UC). Memory accesses are not cached even if the caches are
enabled by clearing CR0.CD to 0. Cacheable memory types must be established using the MTRRs in
order for memory accesses to be cached.

Cache Control Precedence. The cache-control mechanisms are used to define the memory type and
cacheability of main memory and regions of main memory. Taken together, the most restrictive
memory type takes precedence in defining the caching policy of memory. The order of precedence is:

1. Uncacheable (UC)

2. Write-combining (WC)

3. Write-protected (WP)

4. Writethrough (WT)

5. Writeback (WB)

For example, assume a large memory region is designated a writethrough type using the MTRRs.
Individual pages within that region can have caching disabled by setting the appropriate page-table
PCD bits. However, no pages within that region can have a writeback caching policy, regardless of the
page-table PWT values.

[AMD Public Use]

Memory System 203

24593—Rev. 3.37—March 2021 AMD64 Technology

7.6.3 Cache and Memory Management Instructions

Data Prefetch. The prefetch instructions are used by software as a hint to the processor that the
referenced data is likely to be used in the near future. The processor can preload the cache line
containing the data in anticipation of its use. PREFETCH provides a hint that the data is to be read.
PREFETCHW provides a hint that the data is to be written. The processor can mark the line as
modified if it is preloaded using PREFETCHW.

Memory Ordering. Instructions are provided for software to enforce memory ordering (serialization)
in weakly-ordered memory types. These instructions are:

• SFENCE (store fence)—forces all memory writes (stores) preceding the SFENCE (in program
order) to be written into memory before memory writes following the SFENCE.

• LFENCE (load fence)—forces all memory reads (loads) preceding the LFENCE (in program
order) to be read from memory before memory reads following the LFENCE. In some systems,
LFENCE may be configured to be dispatch serializing. In systems where CPUID
Fn8000_0021_EAX[LFenceAlwaysSerializing] (bit 2) = 1, LFENCE is always dispatch
serializing.

• MFENCE (memory fence)—forces all memory accesses (reads and writes) preceding the
MFENCE (in program order) to be written into or read from memory before memory accesses
following the MFENCE.

Cache Line Writeback and Flush. The CLFLUSH instruction (writeback, if modified, and
invalidate) takes the byte memory-address operand (a linear address), and checks to see if the address
is cached. If the address is cached, the entire cache line containing the address is invalidated. If any
portion of the cache line is dirty (in the modified or owned state), the entire line is written to main
memory before it is invalidated. CLFLUSH affects all caches in the memory hierarchy—internal and
external to the processor, and across all cores. The CLWB instruction operates in the same manner
except it does not invalidate the cache line. The checking and invalidation process continues until the
address has been updated in memory and, for CLFLUSH, invalidated in all caches.

In most cases, the underlying memory type assigned to the address has no effect on the behavior of this
instruction. However, when the underlying memory type for the address is UC or WC (as defined by
the MTRRs), the processor does not proceed with checking all caches to see if the address is cached. In
both cases, the address is uncacheable, and invalidation is unnecessary. Write-combining buffers are
written back to memory if the corresponding physical address falls within the buffer active-address
range.

Cache Writeback and Invalidate. Unlike the CLFLUSH and CLWB instructions, the WBINVD and
WBNOINVD instructions operate on the entire cache, rather than a single cache line. The WBINVD
and WBNOINVD instructions first write back all cache lines that are dirty (in the modified or owned
state) to main memory. After writeback is complete, the WBINVD instruction additionally invalidates
all cache lines. The checking and invalidation process continues until all internal caches in the
executing core's path to system memory are invalidated. In some implementations this may include
caches in other branches of the system's cache hierarchy; see the description of these instructions in

[AMD Public Use]

204 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

volume 3 for more detail. For either instruction, a special bus cycle is transmitted to higher-level
external caches directing them to perform a writeback-and-invalidate operation.

Cache Invalidate. The INVD instruction is used to invalidate all cache lines. Unlike the WBINVD
instruction, dirty cache lines are not written to main memory. The process continues until all internal
caches have been invalidated. A special bus cycle is transmitted to higher-level external caches
directing them to perform an invalidation.

The INVD instruction should only be used in situations where memory coherency is not required.

7.6.4 Serializing Instructions

Serializing instructions force the processor to retire the serializing instruction and all previous
instructions before the next instruction is fetched. A serializing instruction is retired when the
following operations are complete:

• The instruction has executed.
• All registers modified by the instruction are updated.
• All memory updates performed by the instruction are complete.
• All data held in the write buffers have been written to memory.

Serializing instructions can be used as a barrier between memory accesses to force strong ordering of
memory operations. Care should be exercised in using serializing instructions because they modify
processor state and may affect program flow. The instructions also force execution serialization, which
can significantly degrade performance. When strongly-ordered memory accesses are required, but
execution serialization is not, it is recommended that software use the memory-ordering instructions
described on page 203.

The following are serializing instructions:

• Non-Privileged Instructions
- CPUID
- IRET
- RSM
- MFENCE

• Privileged Instructions
- MOV CRn
- MOV DRn
- LGDT, LIDT, LLDT, LTR
- SWAPGS
- WRMSR (see note 1)
- WBINVD, WBNOINVD, INVD
- INVLPG

[AMD Public Use]

Memory System 205

24593—Rev. 3.37—March 2021 AMD64 Technology

Note 1: Writes to the following MSRs are not serializing: SPEC_CTRL, PRED_CMD, all x2APIC
MSRs.

A dispatch serializing instruction is a lighter form of ordering than a serializing instruction. A dispatch
serializing instruction forces the processor to retire the serializing instruction and all previous
instructions before the next instruction is executed. In some systems, LFENCE may be configured to
be dispatch serializing. In systems where CPUID Fn8000_0021_EAX[LFenceAlwaysSerializing](bit
2) = 1, LFENCE is always dispatch serializing.

7.6.5 Cache and Processor Topology

Cache and processor topology information is useful in the optimal management of system and
application resources. Exposing processor and cache topology information to the programmer allows
software to make more efficient use of hardware multithreading resources delivering optimal
performance. Shared resources in a specific cache and processor topology may require special
consideration in the optimization of multiprocessing software performance.

The processor topology allows software to determine which cores or logical processors are siblings in
a compute unit, node, and processor package. For example, a scheduler can then choose to either
compact or scatter threads (or processes) to cores in compute units, nodes, or across the cores in the
entire physical package in order to optimize for a power and performance profile.

Topology extensions define processor topology at both the node, compute unit and cache level.
Topology extensions include cache properties with sharing and the processor topology identified. The
result is a simplified extension to the CPUID instruction that describes the processors cache topology
and leverages existing industry cache properties folded into AMD’s topology extension description.

Topology extensions definition supports existing and future processors with varying degrees of cache
level sharing. Topology extensions also support the description of a simple compute unit with one core
or packages where the number of cores in a node and/or compute unit are not an even power of two.

CPUID Function 8000_001D: Cache Topology Definition. CPUID Function 8000_001D describes
the hierarchical relationships of cache levels relative to the cores which share these resources.
Function 8000_001D is defined to be called iteratively with the value 8000001Dh in EAX and an
additional parameter in ECX. To gather information for all cache levels, software must call CPUID
with 8000001Dh in EAX and ECX set to increasing values beginning with 0 until a value of 0 is
returned from EAX[4:0], which indicates no more cache descriptions.

If software dynamically manages cache configuration, it will need to update any stored cache
properties for the processor.

CPUID Function 8000_001E: Processor Topology Definition. CPUID Function 8000_001E
describes processor topology with component identifiers. To read the processor topology, definition
software calls the CPUID instruction with the value 8000001Eh in EAX. After execution the APIC ID
is represented in EAX. EBX contains the compute unit description in the processor, while ECX
contains system unique node identification. Software may read this information once for each core.

[AMD Public Use]

206 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

The following CPUID functions provide information about processor topology:

• CPUID Fn8000_0001_ECX
• CPUID Fn8000_0008_ECX
• CPUID Fn8000_001D_EAX, EBX, ECX, EDX
• CPUID Fn8000_001E_EAX, EBX, ECX

For more information using the CPUID instruction, see Section 3.3, “Processor Feature
Identification,” on page 70.

7.7 Memory-Type Range Registers
The AMD64 architecture supports three mechanisms for software access-control and cacheability-
control over memory regions. These mechanisms can be used in place of similar capabilities provided
by external chipsets used with early x86 processors.

This section describes a control mechanism that uses a set of programmable model-specific registers
(MSRs) called the memory-type-range registers (MTRRs). The MTRR mechanism provides system
software with the ability to manage hardware-device memory mapping. System software can
characterize physical-memory regions by type (e.g., ROM, flash, memory-mapped I/O) and assign
hardware devices to the appropriate physical-memory type.

Another control mechanism is implemented as an extension to the page-translation capability and is
called the page attribute table (PAT). It is described in “Page-Attribute Table Mechanism” on
page 216. Like the MTRRs, PAT provides system software with the ability to manage hardware-device
memory mapping. With PAT, however, system software can characterize physical pages and assign
virtually-mapped devices to those physical pages using the page-translation mechanism. PAT may be
used in conjunction with the MTTR mechanism to maximize flexibility in memory control.

Finally, control mechanisms are provided for managing memory-mapped I/O. These mechanisms
employ extensions to the MTRRs and a separate feature called the top-of-memory registers. The
MTRR extensions include additional MTRR type-field encodings for fixed-range MTRRs and
variable-range I/O range registers (IORRs). These mechanisms are described in “Memory-Mapped
I/O” on page 220.

7.7.1 MTRR Type Fields

The MTRR mechanism provides a means for associating a physical-address range with a memory type
(see “Memory Types” on page 190). The MTRRs contain a type field used to specify the memory type
in effect for a given physical-address range.

There are two variants of the memory type-field encodings: standard and extended. Both the standard
and extended encodings use type-field bits 2:0 to specify the memory type. For the standard
encodings, bits 7:3 are reserved and must be zero. For the extended encodings, bits 7:5 are reserved,
but bits 4:3 are defined as the RdMem and WrMem bits. “Extended Fixed-Range MTRR Type-Field
Encodings” on page 221 describes the function of these extended bits and how software enables them.

[AMD Public Use]

Memory System 207

24593—Rev. 3.37—March 2021 AMD64 Technology

Only the fixed-range MTRRs support the extended type-field encodings. Variable-range MTRRs use
the standard encodings.

Table 7-5 on page 207 shows the memory types supported by the MTRR mechanism and their
encoding in the MTRR type fields referenced throughout this section. Unless the extended type-field
encodings are explicitly enabled, the processor uses the type values shown in Table 7-5.

If the MTRRs are disabled in implementations that support the MTRR mechanism, the default
memory type is set to uncacheable (UC). Memory accesses are not cached even if the caches are
enabled by clearing CR0.CD to 0. Cacheable memory types must be established using the MTRRs to
enable memory accesses to be cached.

7.7.2 MTRRs

Both fixed-size and variable-size address ranges are supported by the MTRR mechanism. The fixed-
size ranges are restricted to the lower 1 Mbyte of physical-address space, while the variable-size
ranges can be located anywhere in the physical-address space.

Figure 7-4 on page 208 shows an example mapping of physical memory using the fixed-size and
variable-size MTRRs. The areas shaded gray are not mapped by the MTRRs. Unmapped areas are set
to the software-selected default memory type.

Table 7-5. MTRR Type Field Encodings
Type Value Type Name Type Description

00h UC—Uncacheable All accesses are uncacheable. Write combining is not
allowed. Speculative accesses are not allowed

01h WC—Write-Combining All accesses are uncacheable. Write combining is allowed.
Speculative reads are allowed

04h WT—Writethrough
Reads allocate cache lines on a cache miss. Cache lines are
not allocated on a write miss. Write hits update the cache and
main memory.

05h WP—Write-Protect
Reads allocate cache lines on a cache miss. All writes update
main memory. Cache lines are not allocated on a write miss.
Write hits invalidate the cache line and update main memory.

06h WB—Writeback
Reads allocate cache lines on a cache miss, and can allocate to
either the shared, exclusive, or modified state. Writes allocate
to the modified state on a cache miss.

[AMD Public Use]

208 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 7-4. MTRR Mapping of Physical Memory

MTRRs are 64-bit model-specific registers (MSRs). They are read using the RDMSR instruction and
written using the WRMSR instruction. See “Memory-Typing MSRs” on page 659 for a listing of the
MTRR MSR numbers. The following sections describe the types of MTRRs and their function.

Fixed-Range MTRRs. The fixed-range MTRRs are used to characterize the first 1 Mbyte of physical
memory. Each fixed-range MTRR contains eight type fields for characterizing a total of eight memory
ranges. Fixed-range MTRRs support extended type-field encodings as described in “Extended Fixed-
Range MTRR Type-Field Encodings” on page 221. The extended type field allows a fixed-range
MTRR to be used as a fixed-range IORR. Figure 7-5 on page 209 shows the format of a fixed-range
MTRR.

513-214.eps

0F_FFFFh
10_0000h

0_FFFF_FFFF_FFFFh

256 Kbytes

256 Kbytes

512 Kbytes

Physical Memory

Up to 8 Variable Ranges

64 4-Kbyte Ranges

16 16-Kbyte Ranges

8 64-Kbyte Ranges

Default (Unmapped) Ranges

00_0000h

[AMD Public Use]

Memory System 209

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 7-5. Fixed-Range MTRR

For the purposes of memory characterization, the first 1 Mbyte of physical memory is segmented into
a total of 88 non-overlapping memory ranges, as follows:

• The 512 Kbytes of memory spanning addresses 00_0000h to 07_FFFFh are segmented into eight
64-Kbyte ranges. A single MTRR is used to characterize this address space.

• The 256 Kbytes of memory spanning addresses 08_0000h to 0B_FFFFh are segmented into 16 16-
Kbyte ranges. Two MTRRs are used to characterize this address space.

• The 256 Kbytes of memory spanning addresses 0C_0000h to 0F_FFFFh are segmented into 64 4-
Kbyte ranges. Eight MTRRs are used to characterize this address space.

Table 7-6 shows the address ranges corresponding to the type fields within each fixed-range MTRR.
The gray-shaded heading boxes represent the bit ranges for each type field in a fixed-range MTTR.
See Table 7-5 on page 207 for the type-field encodings.

63 56 55 48 47 40 39 32

Type Type Type Type

31 24 23 16 15 8 7 0

Type Type Type Type

Table 7-6. Fixed-Range MTRR Address Ranges
Physical Address Range (in hexadecimal)

Register Name
63–56 55–48 47–40 39–32 31–24 23–16 15–8 7–0

70000–7
FFFF

60000–6
FFFF

50000–5
FFFF

40000–4
FFFF

30000–3
FFFF

20000–2
FFFF

10000–1
FFFF

00000–0
FFFF MTRRfix64K_00000

9C000–9
FFFF

98000–9
BFFF

94000–9
7FFF

90000–9
3FFF

8C000–8
FFFF

88000–8
BFFF

84000–8
7FFF

80000–8
3FFF MTRRfix16K_80000

BC000–
BFFFF

B8000–B
BFFF

B4000–B
7FFF

B0000–B
3FFF

AC000–
AFFFF

A8000–
ABFFF

A4000–
A7FFF

A0000–
A3FFF MTRRfix16K_A0000

C7000–C
7FFF

C6000–C
6FFF

C5000–C
5FFF

C4000–C
4FFF

C3000–C
3FFF

C2000–C
2FFF

C1000–C
1FFF

C0000–C
0FFF MTRRfix4K_C0000

CF000–
CFFFF

CE000–
CEFFF

CD000–
CDFFF

CC000–
CCFFF

CB000–
CBFFF

CA000–
CAFFF

C9000–C
9FFF

C8000–C
8FFF MTRRfix4K_C8000

D7000–
D7FFF

D6000–
D6FFF

D5000–
D5FFF

D4000–
D4FFF

D3000–
D3FFF

D2000–
D2FFF

D1000–
D1FFF

D0000–
D0FFF MTRRfix4K_D0000

DF000–
DFFFF

DE000–
DEFFF

DD000–
DDFFF

DC000–
DCFFF

DB000–
DBFFF

DA000–
DAFFF

D9000–
D9FFF

D8000–
D8FFF MTRRfix4K_D8000

E7000–E
7FFF

E6000–E
6FFF

E5000–E
5FFF

E4000–E
4FFF

E3000–E
3FFF

E2000–E
2FFF

E1000–E
1FFF

E0000–E
0FFF MTRRfix4K_E0000

[AMD Public Use]

210 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Variable-Range MTRRs. The variable-range MTRRs can be used to characterize any address range
within the physical-memory space, including all of physical memory. Up to eight address ranges of
varying sizes can be characterized using the MTRR. Two variable-range MTRRs are used to
characterize each address range: MTRRphysBasen and MTRRphysMaskn (n is the address-range
number from 0 to 7). For example, address-range 3 is characterized using the MTRRphysBase3 and
MTRRphysMask3 register pair.

Figure 7-6 shows the format of the MTRRphysBasen register and Figure 7-7 on page 211 shows the
format of the MTRRphysMaskn register. The fields within the register pair are read/write.

MTRRphysBasen Registers. The fields in these variable-range MTRRs, shown in Figure 7-6, are:

• Type—Bits 7:0. The memory type used to characterize the memory range. See Table 7-5 on
page 207 for the type-field encodings. Variable-range MTRRs do not support the extended type-
field encodings.

• Range Physical Base-Address (PhysBase)—Bits 51:12. The memory-range base-address in
physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMD64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11:0 are assumed to be 0.

Note that a given processor may implement less than the architecturally-defined physical address size
of 52 bits.

EF000–E
FFFF

EE000–E
EFFF

ED000–
EDFFF

EC000–
ECFFF

EB000–
EBFFF

EA000–
EAFFF

E9000–E
9FFF

E8000–E
8FFF MTRRfix4K_E8000

F7000–F
7FFF

F6000–F
6FFF

F5000–F
5FFF

F4000–F
4FFF

F3000–F
3FFF

F2000–F
2FFF

F1000–F
1FFF

F0000–F
0FFF MTRRfix4K_F0000

FF000–F
FFFF

FE000–F
EFFF

FD000–F
DFFF

FC000–F
CFFF

FB000–F
BFFF

FA000–F
AFFF

F9000–F
9FFF

F8000–F
8FFF MTRRfix4K_F8000

Table 7-6. Fixed-Range MTRR Address Ranges (continued)
Physical Address Range (in hexadecimal)

Register Name
63–56 55–48 47–40 39–32 31–24 23–16 15–8 7–0

[AMD Public Use]

Memory System 211

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 7-6. MTRRphysBasen Register

MTRRphysMaskn Registers. The fields in these variable-range MTRRs, shown in Figure 7-7, are:

• Valid (V)—Bit 11. Indicates that the MTRR pair is valid (enabled) when set to 1. When the valid bit
is cleared to 0 the register pair is not used.

• Range Physical Mask (PhysMask)—Bits 51:12. The mask value used to specify the memory
range. Like PhysBase, PhysMask is aligned on a 4-Kbyte physical-address boundary. Bits 11:0 of
PhysMask are assumed to be 0.

Figure 7-7. MTRRphysMaskn Register

PhysMask and PhysBase are used together to determine whether a target physical-address falls within
the specified address range. PhysMask is logically ANDed with PhysBase and separately ANDed with
the upper 40 bits of the target physical-address. If the results of the two operations are identical, the
target physical-address falls within the specified memory range. The pseudo-code for the operation is:

63 52 51 32

Reserved, MBZ PhysBase[51:32]

31 12 11 8 7 0

PhysBase[31:12] Reserved, MBZ Type

Bits Mnemonic Description Access type
63:52 — Reserved MBZ
51:12 PhysBase Range Physical Base Address R/W
11:8 — Reserved MBZ
7:0 Type Default Memory Type R/W

63 52 51 32

Reserved, MBZ PhysMask[51:32]

31 12 11 10 0

PhysMask[31:12] V Reserved, MBZ

Bits Mnemonic Description Access type
63:52 — Reserved MBZ
51:12 PhysMask Range Physical Mask R/W
11 V MTRR Pair Enable (Valid) R/W
10:0 — Reserved MBZ

[AMD Public Use]

212 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

MaskBase = PhysMask AND PhysBase
MaskTarget = PhysMask AND Target_Address[51:12]
IF MaskBase == MaskTarget

target address is in range
ELSE

target address is not in range

Variable Range Size and Alignment. The size and alignment of variable memory-ranges (MTRRs)
and I/O ranges (IORRs) are restricted as follows:

• The boundary on which a variable range is aligned must be equal to the range size. For example, a
memory range of 16 Mbytes must be aligned on a 16-Mbyte boundary.

• The range size must be a power of 2 (2n, 52 > n > 11), with a minimum allowable size of 4 Kbytes.
For example, 4 Mbytes and 8 Mbytes are allowable memory range sizes, but 6 Mbytes is not
allowable.

PhysMask and PhysBase Values. Software can calculate the PhysMask value using the following
procedure:

1. Subtract the memory-range physical base-address from the upper physical-address of the memory
range.

2. Subtract the value calculated in Step 1 from the physical memory size.

3. Truncate the lower 12 bits of the result in Step 2 to create the PhysMask value to be loaded into
the MTRRphysMaskn register. Truncation is performed by right-shifting the value 12 bits.

For example, assume a 32-Mbyte memory range is specified within the 52-bit physical address space,
starting at address 200_0000h. The upper address of the range is 3FF_FFFFh. Following the process
outlined above yields:

1. 3FF_FFFFh–200_0000h = 1FF_FFFFh

2. F_FFFF_FFFF_FFFF–1FF_FFFFh = F_FFFF_FE00_0000h

3. Right shift (F_FFFF_FE00_0000h) by 12 = FF_FFFF_E000h

In this example, the 40-bit value loaded into the PhysMask field is FF_FFFF_E000h.

Software must also truncate the lower 12 bits of the physical base-address before loading it into the
PhysBase field. In the example above, the 40-bit PhysBase field is 00_0000_2000h.

Default-Range MTRRs. Physical addresses that are not within ranges established by fixed-range and
variable-range MTRRs are set to a default memory-type using the MTRRdefType register. The format
of this register is shown in Figure 7-8.

[AMD Public Use]

Memory System 213

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 7-8. MTRRdefType Register Format

The fields within the MTRRdefType register are read/write. These fields are:

• Type—Bits 7:0. The default memory-type used to characterize physical-memory space. See
Table 7-5 on page 207 for the type-field encodings. The extended type-field encodings are not
supported by this register.

• Fixed-Range Enable (FE)—Bit 10. All fixed-range MTRRs are enabled when FE is set to 1.
Clearing FE to 0 disables all fixed-range MTRRs. Setting and clearing FE has no effect on the
variable-range MTRRs. The FE bit has no effect unless the E bit is set to 1 (see below).

• MTRR Enable (E)—Bit 11. This is the MTRR memory typing enable bit. The memory typing
capabilities of all fixed-range and variable-range MTRRs are enabled when E is set to 1. Clearing
E to 0 disables the memory typing capabilities of all fixed-range and variable-range MTRRs and
sets the default memory-type to uncacheable (UC) regardless of the value of the Type field. This
bit does not affect the operation of the RdMem and WrMem fields.

7.7.3 Using MTRRs

Identifying MTRR Features. Software determines whether a processor supports the MTRR
mechanism by executing the CPUID instruction with either function 0000_0001h or function
8000_0001h. If MTRRs are supported, bit 12 in the EDX register is set to 1 by CPUID. See “Processor
Feature Identification” on page 70 for more information on the CPUID instruction.

The MTRR capability register (MTRRcap) is a read-only register containing information describing
the level of MTRR support provided by the processor. Figure 7-9 shows the format of this register. If
MTRRs are supported, software can read MTRRcap using the RDMSR instruction. Attempting to
write to the MTRRcap register causes a general-protection exception (#GP).

63 32

Reserved, MBZ

31 12 11 10 9 8 7 0

Reserved, MBZ E F
E

Res,
MBZ Type

Bits Mnemonic Description Access type
63:12 — Reserved MBZ
11 E MTRR Enable R/W
10 FE Fixed Range Enable R/W
9:8 — Reserved MBZ
7:0 Type Default Memory Type R/W

[AMD Public Use]

214 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 7-9. MTRR Capability Register Format

The MTRRcap register field are:

• Variable-Range Register Count (VCNT)—Bits 7:0. The VCNT field contains the number of
variable-range register pairs supported by the processor. For example, a processor supporting eight
register pairs returns a 08h in this field.

• Fixed-Range Registers (FIX)—Bit 8. The FIX bit indicates whether or not the fixed-range registers
are supported. If the processor returns a 1 in this bit, all fixed-range registers are supported. If the
processor returns a 0 in this bit, no fixed-range registers are supported.

• Write-Combining (WC)—Bit 10. The WC bit indicates whether or not the write-combining
memory type is supported. If the processor returns a 1 in this bit, WC memory is supported,
otherwise it is not supported.

7.7.4 MTRRs and Page Cache Controls

When paging and the MTRRs are both enabled, the address ranges defined by the MTRR registers can
span multiple pages, each of which can characterize memory with different types (using the PCD and
PWT page bits). When caching is enabled (CR0.CD=0 and CR0.NW=0), the effective memory type is
determined as follows:

1. If the page is defined as cacheable and writeback (PCD=0 and PWT=0), then the MTRR defines
the effective memory-type.

2. If the page is defined as not cacheable (PCD=1), then UC is the effective memory-type.

3. If the page is defined as cacheable and writethrough (PCD=0 and PWT=1), then the MTRR
defines the effective memory-type unless the MTRR specifies WB memory, in which case WT is
the effective memory-type.

63 32

Reserved

31 11 10 9 8 7 0

Reserved W
C

R
e
s

F
I
X

VCNT

Bits Mnemonic Description Access type
63:11 — Reserved R
10 WC Write Combining R
9 — Reserved R
8 FIX Fixed-Range Registers R
7:0 VCNT Variable-Range Register Count R

[AMD Public Use]

Memory System 215

24593—Rev. 3.37—March 2021 AMD64 Technology

Table 7-7 lists the MTRR and page-level cache-control combinations and their combined effect on the
final memory-type, if the PAT register holds the default settings.

Large Page Sizes. When paging is enabled, software can use large page sizes (2 Mbytes and
4 Mbytes) in addition to the more typical 4-Kbyte page size. When large page sizes are used, it is
possible for multiple MTRRs to span the memory range within a single large page. Each MTRR can
characterize the regions within the page with different memory types. If this occurs, the effective
memory-type used by the processor within the large page is undefined.

Software can avoid the undefined behavior in one of the following ways:

• Avoid using multiple MTRRs to characterize a single large page.
• Use multiple 4-Kbyte pages rather than a single large page.
• If multiple MTRRs must be used within a single large page, software can set the MTRR type fields

to the same value.
• If the multiple MTRRs must have different type-field values, software can set the large page PCD

and PWT bits to the most restrictive memory type defined by the multiple MTRRs.

Overlapping MTRR Registers. If the address ranges of two or more MTRRs overlap, the following
rules are applied to determine the memory type used to characterize the overlapping address range:

1. Fixed-range MTRRs, which characterize only the first 1 Mbyte of physical memory, have
precedence over variable-range MTRRs.

2. If two or more variable-range MTRRs overlap, the following rules apply:

Table 7-7. Combined MTRR and Page-Level Memory Type with
Unmodified PAT MSR

MTRR
Memory Type

Page
PCD Bit

Page
PWT Bit

Effective
Memory-Type

UC — — UC

WC
0 — WC
1 0 WC1

1 1 UC

WP
0 — WP
1 — UC

WT
0 — WT
1 — UC

WB
0 0 WB
0 1 WT
1 — UC

Note:
1. The effective memory-type resulting from the combination of PCD=1, PWT=0, and an MTRR

WC memory type is implementation dependent.

[AMD Public Use]

216 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

a. If the memory types are identical, then that memory type is used.

b. If at least one of the memory types is UC, the UC memory type is used.

c. If at least one of the memory types is WT, and the only other memory type is WB, then the
WT memory type is used.

d. If the combination of memory types is not listed Steps A through C immediately above, then
the memory type used is undefined.

7.7.5 MTRRs in Multi-Processing Environments

In multi-processing environments, the MTRRs located in all processors must characterize memory in
the same way. Generally, this means that identical values are written to the MTRRs used by the
processors. This also means that values CR0.CD and the PAT must be consistent across processors.
Failure to do so may result in coherency violations or loss of atomicity. Processor implementations do
not check the MTRR settings in other processors to ensure consistency. It is the responsibility of
system software to initialize and maintain MTRR consistency across all processors.

7.8 Page-Attribute Table Mechanism
The page-attribute table (PAT) mechanism extends the page-table entry format and enhances the
capabilities provided by the PCD and PWT page-level cache controls. PAT (and PCD, PWT) allow
memory-type characterization based on the virtual (linear) address. The PAT mechanism provides the
same memory-typing capabilities as the MTRRs but with the added flexibility of the paging
mechanism. Software can use both the PAT and MTRR mechanisms to maximize flexibility in
memory-type control.

7.8.1 PAT Register

Like the MTRRs, the PAT register is a 64-bit model-specific register (MSR). The format of the PAT
registers is shown in Figure 7-10. See “Memory-Typing MSRs” on page 659 for more information on
the PAT MSR number and reset value.

Figure 7-10. PAT Register

The PAT register contains eight page-attribute (PA) fields, numbered from PA0 to PA7. The PA fields
hold the encoding of a memory type, as found in Table 7-8 on page 217. The PAT type-encodings

63 59 58 56 55 51 50 48 47 43 42 40 41 35 34 32

Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

[AMD Public Use]

Memory System 217

24593—Rev. 3.37—March 2021 AMD64 Technology

match the MTRR type-encodings, with the exception that PAT adds the 07h encoding. The 07h
encoding corresponds to a UC− type. The UC− type (07h) is identical to the UC type (00h) except it
can be overridden by an MTRR type of WC.

Software can write any supported memory-type encoding into any of the eight PA fields. An attempt to
write anything but zeros into the reserved fields causes a general-protection exception (#GP). An
attempt to write an unsupported type encoding into a PA field also causes a #GP exception.

The PAT register fields are initiated at processor reset to the default values shown in Table 7-9 on
page 218.

7.8.2 PAT Indexing

PA fields in the PAT register are selected using three bits from the page-table entries. These bits are:

• PAT (page attribute table)—The PAT bit is bit 7 in 4-Kbyte PTEs; it is bit 12 in 2-Mbyte and 4-
Mbyte PDEs. Page-table entries that don’t have a PAT bit (PML4 entries, for example) assume PAT
= 0.

• PCD (page cache disable)—The PCD bit is bit 4 in all page-table entries. The PCD from the PTE
or PDE is selected depending on the paging mode.

• PWT (page writethrough)—The PWT bit is bit 3 in all page-table entries. The PWT from the PTE
or PDE is selected depending on the paging mode.

Table 7-9 on page 218 shows the various combinations of the PAT, PCD, and PWT bits used to select a
PA field within the PAT register. Table 7-9 also shows the default memory-type values established in
the PAT register by the processor after a reset. The default values correspond to the memory types

Table 7-8. PAT Type Encodings
Type Value Type Name Type Description

00h UC—Uncacheable All accesses are uncacheable. Write combining is not allowed. Speculative
accesses are not allowed.

01h WC—Write-Combining All accesses are uncacheable. Write combining is allowed. Speculative
reads are allowed.

04h WT—Writethrough
Reads allocate cache lines on a cache miss, but only to the shared state.
Cache lines are not allocated on a write miss. Write hits update the cache
and main memory.

05h WP—Write-Protect
Reads allocate cache lines on a cache miss, but only to the shared state. All
writes update main memory. Cache lines are not allocated on a write miss.
Write hits invalidate the cache line and update main memory.

06h WB—Writeback
Reads allocate cache lines on a cache miss, and can allocate to either the
shared or exclusive state. Writes allocate to the modified state on a cache
miss.

07h UC–
(UC minus)

All accesses are uncacheable. Write combining is not allowed. Speculative
accesses are not allowed. Can be overridden by an MTRR with the WC
type.

[AMD Public Use]

218 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

established by the PCD and PWT bits alone in processor implementations that do not support the PAT
mechanism. In such implementations, the PAT field in page-table entries is reserved and cleared to 0.
See “Page-Translation-Table Entry Fields” on page 150 for more information on the page-table
entries.

7.8.3 Identifying PAT Support

Software determines whether a processor supports the PAT mechanism by executing the CPUID
instruction with either function 0000_0001h or function 8000_0001h. If PAT is supported, bit 16 in the
EDX register is set to 1 by CPUID. See Section 3.3, “Processor Feature Identification,” on page 70 for
more information on the CPUID instruction.

If PAT is supported by a processor implementation, it is always enabled. The PAT mechanism cannot
be disabled by software. Software can effectively avoid using PAT by:

• Not setting PAT bits in page-table entries to 1.
• Not modifying the reset values of the PA fields in the PAT register.

In this case, memory is characterized using the same types that are used by implementations that do
not support PAT.

7.8.4 PAT Accesses

In implementations that support the PAT mechanism, all memory accesses that are translated through
the paging mechanism use the PAT index bits to specify a PA field in the PAT register. The memory
type stored in the specified PA field is applied to the memory access. The process is summarized as:

1. A virtual address is calculated as a result of a memory access.

2. The virtual address is translated to a physical address using the page-translation mechanism.

3. The PAT, PCD and PWT bits are read from the corresponding page-table entry during the virtual-
address to physical-address translation.

Table 7-9. PAT-Register PA-Field Indexing
Page Table Entry Bits

PAT Register Field Default Memory Type
PAT PCD PWT

0 0 0 PA0 WB
0 0 1 PA1 WT
0 1 0 PA2 UC–1

0 1 1 PA3 UC
1 0 0 PA4 WB
1 0 1 PA5 WT
1 1 0 PA6 UC–1

1 1 1 PA7 UC
Note:

1. Can be overridden by WC memory type set by an MTRR.

[AMD Public Use]

Memory System 219

24593—Rev. 3.37—March 2021 AMD64 Technology

4. The PAT, PCD and PWT bits are used to select a PA field from the PAT register.

5. The memory type is read from the appropriate PA field.

6. The memory type is applied to the physical-memory access using the translated physical address.

Page-Translation Table Access. The PAT bit exists only in the PTE (4K paging) or PDEs (2/4
Mbyte paging). In the remaining upper levels (PML4, PDP, and 4KB PDEs), only the PWT and PCD
bits are used to index into the first 4 entries in the PAT register. The resulting memory type is used for
the next lower paging level.

7.8.5 Combined Effect of MTRRs and PAT

The memory types established by the PAT mechanism can be combined with MTRR-established
memory types to form an effective memory-type. The combined effect of MTRR and PAT memory
types are shown in Figure 7-10. In the AMD64 architecture, reserved and undefined combinations of
MTRR and PAT memory types result in undefined behavior. If the MTRRs are disabled in
implementations that support the MTRR mechanism, the default memory type is set to uncacheable
(UC).

Table 7-10. Combined Effect of MTRR and PAT Memory Types
PAT Memory Type MTRR Memory Type Effective Memory Type

UC UC UC
UC WC, WP, WT, WB CD

UC−
UC UC
WC WC

WP, WT, WB CD
WC — WC

WP

UC UC
WC CD
WP WP
WT CD
WB WP

WT
UC UC

WC, WP CD
WT, WB WT

WB

UC UC
WC WC
WP WP
WT WT
WB WB

[AMD Public Use]

220 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

7.8.6 PATs in Multi-Processing Environments

In multi-processing environments, values of CR0.CD and the PAT must be consistent across all
processors and the MTRRs in all processors must characterize memory in the same way. In other
words, matching address ranges and cachability types are written to the MTRRs for each processor.

Failure to do so may result in coherency violations or loss of atomicity. Processor implementations do
not check the MTRR, CR0.CD and PAT values in other processors to ensure consistency. It is the
responsibility of system software to initialize and maintain consistency across all processors.

7.8.7 Changing Memory Type

A physical page should not have differing cacheability types assigned to it through different virtual
mappings; they should be either all of a cacheable type (WB, WT, WP) or all of a non-cacheable type
(UC, WC). Otherwise, this may result in a loss of cache coherency, leading to stale data and
unpredictable behavior. For this reason, certain precautions must be taken when changing the memory
type of a page. In particular, when changing from a cachable memory type to an uncachable type the
caches must be flushed, because speculative execution by the processor may have resulted in memory
being cached even though it was not programatically referenced. The following table summarizes the
serialization requirements for safely changing memory types.

Table 7-11. Serialization Requirements for Changing Memory Types

7.9 Memory-Mapped I/O
Processor implementations can independently direct reads and writes to either system memory or
memory-mapped I/O. The method used for directing those memory accesses is implementation
dependent. In some implementations, separate system-memory and memory-mapped I/O buses can be
provided at the processor interface. In other implementations, system memory and memory-mapped
I/O share common data and address buses, and system logic uses sideband signals from the processor
to route accesses appropriately. Refer to AMD data sheets and application notes for more information
about particular hardware implementations of the AMD64 architecture.

New Type
WB WT WP UC WC

O
ld

 T
yp

e

WB – a a b b
WT a – a b b
WP a a – b b
UC a a a – a
WC a a a a –

Note:
a. Remove the previous mapping (make it not present in the page tables); Flush the TLBs including the TLBs

of other processors that may have used the mapping, even speculatively; Create a new mapping in the
page tables using the new type.

b. In addition to the steps described in note a, software should flush the page from the caches of any processor
that may have used the previous mapping. This must be done after the TLB flushing in note a has been
completed.

[AMD Public Use]

Memory System 221

24593—Rev. 3.37—March 2021 AMD64 Technology

The I/O range registers (IORRs), and the top-of-memory registers allow system software to specify
where memory accesses are directed for a given address range. The MTRR extensions are described in
the following section. “IORRs” on page 222 describes the IORRs and “Top of Memory” on page 224
describes the top-of-memory registers. In implementations that support these features, the default
action taken when the features are disabled is to direct memory accesses to memory-mapped I/O.

7.9.1 Extended Fixed-Range MTRR Type-Field Encodings

The fixed-range MTRRs support extensions to the type-field encodings that allow system software to
direct memory accesses to system memory or memory-mapped I/O. The extended MTRR type-field
encodings use previously reserved bits 4:3 to specify whether reads and writes to a physical-address
range are to system memory or to memory-mapped I/O. The format for this encoding is shown in
Figure 7-11 on page 221. The new bits are:

• WrMem—Bit 3. When set to 1, the processor directs write requests for this physical address range
to system memory. When cleared to 0, writes are directed to memory-mapped I/O.

• RdMem—Bit 4. When set to 1, the processor directs read requests for this physical address range to
system memory. When cleared to 0, reads are directed to memory-mapped I/O.

The type subfield (bits 2:0) allows the encodings specified in Table 7-5 on page 207 to be used for
memory characterization.

Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRs)

These extensions are enabled using the following bits in the SYSCFG MSR:

• MtrrFixDramEn—Bit 18. When set to 1, RdMem and WrMem attributes are enabled. When
cleared to 0, these attributes are disabled. When disabled, accesses are directed to memory-mapped
I/O space.

• MtrrFixDramModEn—Bit 19. When set to 1, software can read and write the RdMem and
WrMem bits. When cleared to 0, writes do not modify the RdMem and WrMem bits, and reads
return 0.

To use the MTRR extensions, system software must first set MtrrFixDramModEn=1 to allow
modification to the RdMem and WrMem bits. After the attribute bits are properly initialized in the
fixed-range registers, the extensions can be enabled by setting MtrrFixDramEn=1.

RdMem and WrMem allow the processor to independently direct reads and writes to either system
memory or memory-mapped I/O. The RdMem and WrMem controls are particularly useful when
shadowing ROM devices located in memory-mapped I/O space. It is often useful to shadow such
devices in RAM system memory to improve access performance, but writes into the RAM location can

7 5 4 3 2 0

Reserved RdMem WrMem Type

[AMD Public Use]

222 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

corrupt the shadowed ROM information. The MTRR extensions solve this problem. System software
can create the shadow location by setting WrMem = 1 and RdMem = 0 for the specified memory range
and then copy the ROM location into itself. Reads are directed to the memory-mapped ROM, but
writes go to the same physical addresses in system memory. After the copy is complete, system
software can change the bit values to WrMem = 0 and RdMem = 1. Now reads are directed to the faster
copy located in system memory, and writes are directed to memory-mapped ROM. The ROM
responds as it would normally to a write, which is to ignore it.

Not all combinations of RdMem and WrMem are supported for each memory type encoded by bits 2:0.
Table 7-12 on page 222 shows the allowable combinations. The behavior of reserved encoding
combinations (shown as gray-shaded cells) is undefined and results in unpredictable behavior.

7.9.2 IORRs

The IORRs operate similarly to the variable-range MTRRs. The IORRs specify whether reads and
writes in any physical-address range map to system memory or memory-mapped I/O. Up to two

Table 7-12. Extended Fixed-Range MTRR Type Encodings
RdMem WrMem Type Implication or Potential Use

0 0

0 (UC) UC I/O
1 (WC) WC I/O
4 (WT) WT I/O
5 (WP) WP I/O
6 (WB) Reserved

0 1

0 (UC)
Used while creating a shadowed ROM

1 (WC)
4 (WT)

Reserved5 (WP)
6 (WB)

1 0

0 (UC) Used to access a shadowed ROM
1 (WC)

Reserved
4 (WT)

5 (WP)
WP Memory

(Can be used to access shadowed ROM)
6 (WB) Reserved

1 1

0 (UC) UC Memory
1 (WC) WC Memory
4 (WT) WT Memory
5 (WP) Reserved
6 (WB) WB Memory

[AMD Public Use]

Memory System 223

24593—Rev. 3.37—March 2021 AMD64 Technology

address ranges of varying sizes can be controlled using the IORRs. A pair of IORRs are used to control
each address range: IORRBasen and IORRMaskn (n is the address-range number from 0 to 1).

Figure 7-12 on page 223 shows the format of the IORRBasen registers and Figure 7-13 on page 224
shows the format of the IORRMaskn registers. The fields within the register pair are read/write.

The intersection of the IORR range with the equivalent effective MTRR range follows the same type
encoding table (Table 7-12) as the fixed-range MTRR, where the RdMem/WrMem and memory type
are directly tied together.

IORRBasen Registers. The fields in these IORRs are:

• WrMem—Bit 3. When set to 1, the processor directs write requests for this physical address range
to system memory. When cleared to 0, writes are directed to memory-mapped I/O.

• RdMem—Bit 4. When set to 1, the processor directs read requests for this physical address range to
system memory. When cleared to 0, reads are directed to memory-mapped I/O.

• Range Physical-Base-Address (PhysBase)—Bits 51:12. The memory-range base-address in
physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMD64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11:0 are assumed to be 0.

Note that a given processor may implement less than the architecturally-defined physical address size
of 52 bits.

The format of these registers is shown in Figure 7-12.

Figure 7-12. IORRBasen Register

IORRMaskn Registers. The fields in these IORRs are:

63 52 51 32

Reserved, IGN PhysBase[51:32]

31 12 11 5 4 3 0

PhysBase[31:12] Reserved, IGN R
d

W
r

Reserved,
IGN

Bits Mnemonic Description Access type
63:52 — Reserved Ignored
51:12 PhysBase Range Physical Base Address R/W
11:5 — Reserved Ignored
4 Rd RdMem Enable R/W
3 Wr WrMem Enable R/W
2:0 — Reserved Ignored

[AMD Public Use]

224 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

• Valid (V)—Bit 11. Indicates that the IORR pair is valid (enabled) when set to 1. When the valid bit
is cleared to 0 the register pair is not used for memory-mapped I/O control (disabled).

• Range Physical-Mask (PhysMask)—Bits 51:12. The mask value used to specify the memory
range. Like PhysBase, PhysMask is aligned on a 4-Kbyte physical-address boundary. Bits 11:0 of
PhysMask are assumed to be 0.

The format of these registers is shown in Figure 7-13 on page 224.

Figure 7-13. IORRMaskn Register

The operation of the PhysMask and PhysBase fields is identical to that of the variable-range MTRRs.
See page 211 for a description of this operation.

7.9.3 IORR Overlapping

The use of overlapping IORRs is not recommended. If overlapping IORRs are specified, the resulting
behavior is implementation-dependent.

7.9.4 Top of Memory

The top-of-memory registers, TOP_MEM and TOP_MEM2, allow system software to specify physical
addresses ranges as memory-mapped I/O locations. Processor implementations can direct accesses to
memory-mapped I/O differently than system I/O, and the precise method depends on the
implementation. System software specifies memory-mapped I/O regions by writing an address into
each of the top-of-memory registers. The memory regions specified by the TOP_MEM registers are
aligned on 8-Mbyte boundaries as follows:

• Memory accesses from physical address 0 to one less than the value in TOP_MEM are directed to
system memory.

• Memory accesses from the physical address specified in TOP_MEM to FFFF_FFFFh are directed
to memory-mapped I/O.

63 52 51 32

Reserved, IGN PhysMask[51:32]

31 12 11 10 0

PhysMask[31:12] V Reserved, IGN

Bits Mnemonic Description Access type
63:52 — Reserved Ignored
51:12 PhysMask Range Physical Mask R/W
11 V I/O Register Pair Enable (Valid) R/W
10:0 — Reserved Ignored

[AMD Public Use]

Memory System 225

24593—Rev. 3.37—March 2021 AMD64 Technology

• Memory accesses from physical address 1_0000_0000h to one less than the value in TOP_MEM2
are directed to system memory.

• Memory accesses from the physical address specified in TOP_MEM2 to the maximum physical
address supported by the system are directed to memory-mapped I/O.

Figure 7-14 on page 225 shows how the top-of-memory registers organize memory into separate
system-memory and memory-mapped I/O regions.

The intersection of the top-of-memory range with the equivalent effective MTRR range follows the
same type encoding table (Table 7-12 on page 222) as the fixed-range MTRR, where the
RdMem/WrMem and memory type are directly tied together.

Figure 7-14. Memory Organization Using Top-of-Memory Registers

Figure 7-15 shows the format of the TOP_MEM and TOP_MEM2 registers. Bits 51:23 specify an 8-
Mbyte aligned physical address. All remaining bits are reserved and ignored by the processor. System
software should clear those bits to zero to maintain compatibility with possible future extensions to the
registers. The TOP_MEM registers are model-specific registers. See “Memory-Typing MSRs” on
page 659 for information on the MSR address and reset values for these registers.

[AMD Public Use]

226 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM2)

The TOP_MEM register is enabled by setting the MtrrVarDramEn bit in the SYSCFG MSR (bit 20) to
1 (one). The TOP_MEM2 register is enabled by setting the MtrrTom2En bit in the SYSCFG MSR (bit
21) to 1 (one). The registers are disabled when their respective enable bits are cleared to 0. When the
top-of-memory registers are disabled, memory accesses default to memory-mapped I/O space.

Note that a given processor may implement fewer than the architecturally-defined number of physical
address bits.

7.10 Secure Memory Encryption
Software running in non-virtualized (native) mode can utilize the Secure Memory Encryption (SME)
feature to mark individual pages of memory as encrypted through the page tables. A page of memory
marked encrypted will be automatically decrypted when read by software and automatically encrypted
when written to DRAM. SME may therefore be used to protect the contents of DRAM from physical
attacks on the system.

All memory encrypted using SME is encrypted with the same AES key which is created randomly
each time a system is booted. The memory encryption key cannot be read or modified by software.

For details on using memory encryption in virtualized environments, please see Section 15.34,
“Secure Encrypted Virtualization,” on page 561.

7.10.1 Determining Support for Secure Memory Encryption

Support for memory encryption features is reported in CPUID Fn8000_001F[EAX]. Bit 0 indicates
support for Secure Memory Encryption. When this feature is present, CPUID Fn8000_001F[EBX]
supplies additional information regarding the use of memory encryption such as which page table bit is
used to mark pages as encrypted.

Additionally, in some implementations, the physical address size of the processor may be reduced
when memory encryption features are enabled, for example from 48 to 43 bits. In this case the upper
physical address bits are treated as reserved when the feature is enabled except where otherwise
indicated. When memory encryption is supported in an implementation, CPUID Fn8000_001F[EBX]
reports any physical address size reduction present. Bits reserved in this mode are treated the same as

63 52 51 32

Reserved, IGN Top-of-Memory Physical Address[51:32]

31 23 22 0

Top-of-Memory Physical
Address[31:23] Reserved, IGN

[AMD Public Use]

Memory System 227

24593—Rev. 3.37—March 2021 AMD64 Technology

other page table reserved bits, and will generate a page fault if found to be non-zero when used for
address translation.

Complete CPUID details for encrypted memory features can be found in Volume 3, section E.4.17.

7.10.2 Enabling Memory Encryption Extensions

Prior to using SME, memory encryption features must be enabled by setting SYSCFG MSR bit 23
(MemEncryptionModEn) to 1. In implementations where the physical address size of the processor is
reduced when memory encryption features are enabled, software must ensure it is executing from
addresses where these upper physical address bits are 0 prior to setting
SYSCFG[MemEncryptionModEn]. Memory encryption is then further controlled via the page tables.

Note that software should keep the value of SYSCFG[MemEncryptionModEn] consistent across all
CPU cores in the system. Failure to do so may lead to unexpected results.

7.10.3 Supported Operating Modes

SME is supported in all CPU modes when CR4.PAE=1 and paging is enabled. This includes long
mode as well as legacy PAE-enabled protected mode.

7.10.4 Page Table Support

Software utilizes the page tables to indicate if a memory page is encrypted or unencrypted. The
location of the specific attribute bit (C-bit, or enCrypted bit) used is implementation-specific but may
be determined by referencing CPUID Fn8000_001F[EBX] (see Volume 3, section E.4.17 for details) .
In some implementations, the bit used may be a physical address bit (e.g., address bit 47), especially in
cases where the physical address size is reduced by hardware when memory encryption features are
enabled.

To mark a memory page for encryption when stored in DRAM, software sets the C-bit to 1 for the
page. If the C-bit is 0, the page is not encrypted when stored in DRAM. The C bit can be applied to
translation table entries for any size of page - 4KB, 2MB, or 1GB.

Note that it is possible for the page tables themselves to be located in encrypted memory. For instance,
if the C-bit is set in a PML4 entry, the PDP table it points to (and thus all PDPEs in that table) will be
loaded from encrypted memory.

[AMD Public Use]

228 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 7-16. Encrypted Memory Accesses

7.10.5 I/O Accesses

In implementations where the physical address size is reduced when memory encryption features are
enabled, memory range checks (e.g. MTRR/TOM/IORR/etc.) to determine memory types or
DRAM/MMIO are performed using the reduced physical address size. In particular, the C-bit is not
considered a physical address bit and is masked by hardware for purposes of these checks.

Additionally, any pages corresponding to MMIO addresses must be configured with the C-bit clear.
Encrypted I/O pages are not allowed and accesses with the C-bit set will be ignored.

7.10.6 Restrictions

In some hardware implementations, coherency between the encrypted and unencrypted mappings of
the same physical page are not enforced. In such a system, prior to changing the value of the C-bit for
a page, software should flush the page from all CPU caches in the system. If a hardware
implementation supports coherency across encryption domains as indicated by CPUID
Fn8000_001F_EAX[10] then this flush is not required.

Simply changing the value of a C-bit on a page will not automatically encrypt the existing contents of
a page, and any data in the page prior to the C-bit modification will become unintelligible. To set the
C-bit on a page and cause its contents to become encrypted so the data remains accessible, see
Section 7.10.8, “Encrypt-in-Place,” on page 229.

CPU
AES Decrypt

AES Encrypt

Data

PTE C-Bit

Memory Read

CPU
Data

PTE C-Bit

DRAM

DRAM

Memory Write

0

0

1

1

[AMD Public Use]

Memory System 229

24593—Rev. 3.37—March 2021 AMD64 Technology

In legacy PAE mode, if the C-bit location is in the upper 32 bits of the page table entry, the first level
page table (the PDP table) cannot be located in encrypted memory. This is because when the CPU is in
32-bit PAE mode, the CR3 value is only 32-bits in length.

7.10.7 SMM Interaction

SME is available when the processor is executing in SMM, once it has enabled paging. Any physical
address bit restrictions that exist due to memory encryption features being enabled remain in place
while in SMM.

7.10.8 Encrypt-in-Place

It is possible to perform an in-place encryption of data in physical memory. This technique is useful
for setting the C-bit on a page while maintaining visibility to the page's contents such as during SME
initialization. This is accomplished by creating two linear mappings of the same page where one
mapping has the C-bit set to 0 and the other has the C-bit set to 1. To avoid possible data corruption,
software should use the following algorithm for performing in-place encryption of memory:

1. Create two linear mappings X and Y that map to the same physical page. Mapping X has C-bit=0
and uses the WP (Write Protect) memory type. Mapping Y has C-bit=1 and uses the WB (Write-
Back) memory type.

2. Perform a WBINVD on all cores in the system.

3. Copy N bytes from mapping X to a temporary buffer in conventionally-mapped memory (for
which the C bit may or may not be set, as desired). N must be equal to the L1 cache line size as
specified by CPUID Fn8000_0005[ECX].

4. Write N bytes from the temporary buffer to Y. Note that the initial cache refill of the line for this
step will cause it to be decrypted, which corrupts the contents since it is not yet encrypted. This
step restores the original contents. (If the line were evicted before this step was completed, the
unwritten portion would get corrupted by the outgoing encryption, which is why the line can't be
copied in-place, but rather must be copied from the temporary buffer.)

5. Repeat steps 3-4 until the entire page has been copied.

[AMD Public Use]

230 Memory System

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Exceptions and Interrupts 231

24593—Rev. 3.37—March 2021 AMD64 Technology

8 Exceptions and Interrupts

Exceptions and interrupts force control transfers from the currently-executing program to a system-
software service routine that handles the interrupting event. These routines are referred to as exception
handlers and interrupt handlers, or collectively as event handlers. Typically, interrupt events can be
handled by the service routine transparently to the interrupted program. During the control transfer to
the service routine, the processor stops executing the interrupted program and saves its return pointer.
The system-software service routine that handles the exception or interrupt is responsible for saving
the state of the interrupted program. This allows the processor to restart the interrupted program after
system software has handled the event.

When an exception or interrupt occurs, the processor uses the interrupt vector number as an index into
the interrupt-descriptor table (IDT). An IDT is used in all processor operating modes, including real
mode (also called real-address mode), protected mode, and long mode.

Exceptions and interrupts come from three general sources:

• Exceptions occur as a result of software execution errors or other internal-processor errors.
Exceptions also occur during non-error situations, such as program single stepping or address-
breakpoint detection. Exceptions are considered synchronous events because they are a direct
result of executing the interrupted instruction.

• Software interrupts occur as a result of executing interrupt instructions. Unlike exceptions and
external interrupts, software interrupts allow intentional triggering of the interrupt-handling
mechanism. Like exceptions, software interrupts are synchronous events.

• External interrupts are generated by system logic in response to an error or some other event
outside the processor. They are reported over the processor bus using external signaling. External
interrupts are asynchronous events that occur independently of the interrupted instruction.

Throughout this section, the term masking can refer to either disabling or delaying an interrupt. For
example, masking external interrupts delays the interrupt, with the processor holding the interrupt as
pending until it is unmasked. With floating-point exceptions (SSE and x87), masking prevents an
interrupt from occurring and causes the processor to perform a default operation on the exception
condition.

8.1 General Characteristics
Exceptions and interrupts have several different characteristics that depend on how events are reported
and the implications for program restart.

8.1.1 Precision

Precision describes how the exception is related to the interrupted program:

• Precise exceptions are reported on a predictable instruction boundary. This boundary is generally
the first instruction that has not completed when the event occurs. All previous instructions (in

[AMD Public Use]

232 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

program order) are allowed to complete before transferring control to the event handler. The
pointer to the instruction boundary is saved automatically by the processor. When the event
handler completes execution, it returns to the interrupted program and restarts execution at the
interrupted-instruction boundary.

• Imprecise exceptions are not guaranteed to be reported on a predictable instruction boundary. The
boundary can be any instruction that has not completed when the interrupt event occurs. Imprecise
events can be considered asynchronous, because the source of the interrupt is not necessarily
related to the interrupted instruction. Imprecise exception and interrupt handlers typically collect
machine-state information related to the interrupting event for reporting through system-
diagnostic software. The interrupted program is not restartable.

8.1.2 Instruction Restart

As mentioned above, precise exceptions are reported on an instruction boundary. The instruction
boundary can be reported in one of two locations:

• Most exceptions report the boundary before the instruction causing the exception. In this case, all
previous instructions (in program order) are allowed to complete, but the interrupted instruction is
not. No program state is updated as a result of partially executing an interrupted instruction.

• Some exceptions report the boundary after the instruction causing the exception. In this case, all
previous instructions—including the one executing when the exception occurred—are allowed to
complete.
Program state can be updated when the reported boundary is after the instruction causing the
exception. This is particularly true when the event occurs as a result of a task switch. In this case,
the general registers, segment-selector registers, page-base address register, and LDTR are all
updated by the hardware task-switch mechanism. The event handler cannot rely on the state of
those registers when it begins execution and must be careful in validating the state of the segment-
selector registers before restarting the interrupted task. This is not an issue in long mode, however,
because the hardware task-switch mechanism is disabled in long mode.

8.1.3 Types of Exceptions

There are three types of exceptions, depending on whether they are precise and how they affect
program restart:

• Faults are precise exceptions reported on the boundary before the instruction causing the
exception. Generally, faults are caused by an error condition involving the faulted instruction. Any
machine-state changes caused by the faulting instruction are discarded so that the instruction can
be restarted. The saved rIP points to the faulting instruction.

• Traps are precise exceptions reported on the boundary following the instruction causing the
exception. The trapped instruction is completed by the processor and all state changes are saved.
The saved rIP points to the instruction following the faulting instruction.

• Aborts are imprecise exceptions. Because they are imprecise, aborts typically do not allow reliable
program restart.

[AMD Public Use]

Exceptions and Interrupts 233

24593—Rev. 3.37—March 2021 AMD64 Technology

8.1.4 Masking External Interrupts

General Masking Capabilities. Software can mask the occurrence of certain exceptions and
interrupts. Masking can delay or even prevent triggering of the exception-handling or interrupt-
handling mechanism when an interrupt-event occurs. External interrupts are classified as maskable or
nonmaskable:

• Maskable interrupts trigger the interrupt-handling mechanism only when RFLAGS.IF=1.
Otherwise they are held pending for as long as the RFLAGS.IF bit is cleared to 0.

• Nonmaskable interrupts (NMI) are unaffected by the value of the RFLAGS.IF bit. However, the
occurrence of an NMI masks further NMIs until an IRET instruction is executed to completion or,
in the event of a task switch, to the completion of the outgoing TSS update. An exception raised
during execution of the IRET prior to these points will result in NMI continuing to be masked for
the duration of the exception handler, until the exception handler completes an IRET.

Masking During Stack Switches. The processor delays recognition of maskable external interrupts
and debug exceptions during certain instruction sequences that are often used by software to switch
stacks. The typical programming sequence used to switch stacks is:

1. Load a stack selector into the SS register.

2. Load a stack offset into the ESP register.

If an interrupting event occurs after the selector is loaded but before the stack offset is loaded, the
interrupted-program stack pointer is invalid during execution of the interrupt handler.

To prevent interrupts from causing stack-pointer problems, the processor does not allow external
interrupts or debug exceptions to occur until the instruction immediately following the MOV SS or
POP SS instruction completes execution.

The recommended method of performing this sequence is to use the LSS instruction. LSS loads both
SS and ESP, and the instruction inhibits interrupts until both registers are updated successfully.

8.1.5 Masking Floating-Point and Media Instructions

Any x87 floating-point exceptions can be masked and reported later using bits in the x87 floating-
point status register (FSW) and the x87 floating-point control register (FCW). The floating-point
exception-pending exception is used for unmasked x87 floating-point exceptions (see Section
“#MF—x87 Floating-Point Exception-Pending (Vector 16)” on page 246).

The SIMD floating-point exception is used for unmasked SSE floating-point exceptions (see Section
“#XF—SIMD Floating-Point Exception (Vector 19)” on page 248). SSE floating-point exceptions are
masked using the MXCSR register. The exception mechanism is not triggered when these exceptions
are masked. Instead, the processor handles the exceptions in a default manner.

[AMD Public Use]

234 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

8.1.6 Disabling Exceptions

Disabling an exception prevents the exception condition from being recognized, unlike masking an
exception which prevents triggering the exception mechanism after the exception is recognized. Some
exceptions can be disabled by system software running at CPL=0, using bits in the CR0 register or
CR4 register:

• Alignment-check exception (see Section “#AC—Alignment-Check Exception (Vector 17)” on
page 247).

• Device-not-available exception (see Section “#NM—Device-Not-Available Exception (Vector 7)”
on page 240).

• Machine-check exception (see Section “#MC—Machine-Check Exception (Vector 18)” on
page 248).

The debug-exception mechanism provides control over when specific breakpoints are enabled and
disabled. See Section “Setting Breakpoints” on page 383 for more information on how breakpoint
controls are used for triggering the debug-exception mechanism.

8.2 Vectors
Specific exception and interrupt sources are assigned a fixed vector-identification number (also called
an “interrupt vector” or simply “vector”). The interrupt vector is used by the interrupt-handling
mechanism to locate the system-software service routine assigned to the exception or interrupt. Up to
256 unique interrupt vectors are available. The first 32 vectors are reserved for predefined exception
and interrupt conditions. Software-interrupt sources can trigger an interrupt using any available
interrupt vector.

Table 8-1 on page 235 lists the supported interrupt vector numbers, the corresponding exception or
interrupt name, the mnemonic, the source of the interrupt event, and a summary of the possible causes.

[AMD Public Use]

Exceptions and Interrupts 235

24593—Rev. 3.37—March 2021 AMD64 Technology

Table 8-2 on page 236 shows how each interrupt vector is classified. Reserved interrupt vectors are
indicated by the gray-shaded rows.

Table 8-1. Interrupt Vector Source and Cause
Vector Exception/Interrupt Mnemonic Cause

0 Divide-by-Zero-Error #DE DIV, IDIV, AAM instructions
1 Debug #DB Instruction accesses and data accesses
2 Non-Maskable-Interrupt #NMI External NMI signal
3 Breakpoint #BP INT3 instruction
4 Overflow #OF INTO instruction
5 Bound-Range #BR BOUND instruction
6 Invalid-Opcode #UD Invalid instructions
7 Device-Not-Available #NM x87 instructions

8 Double-Fault #DF Exception during the handling of another exception or
interrupt

9 Coprocessor-Segment-Overrun — Unsupported (Reserved)
10 Invalid-TSS #TS Task-state segment access and task switch
11 Segment-Not-Present #NP Segment register loads
12 Stack #SS SS register loads and stack references
13 General-Protection #GP Memory accesses and protection checks
14 Page-Fault #PF Memory accesses when paging enabled
15 Reserved —

16 x87 Floating-Point Exception-
Pending #MF x87 floating-point instructions

17 Alignment-Check #AC Misaligned memory accesses
18 Machine-Check #MC Model specific
19 SIMD Floating-Point #XF SSE floating-point instructions
20 Reserved —
21 Control-Protection Exception #CP RET/IRET or other control transfer

22–27 Reserved —
28 Hypervisor Injection Exception #HV Event injection
29 VMM Communication Exception #VC Virtualization event
30 Security Exception #SX Security-sensitive event in host
31 Reserved —

0–255 External Interrupts (Maskable) #INTR External interrupts
0–255 Software Interrupts — INTn instruction

[AMD Public Use]

236 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

The following sections describe each interrupt in detail. The format of the error code reported by each
interrupt is described in Section “Error Codes” on page 251.

Table 8-2. Interrupt Vector Classification
Vector Interrupt (Exception) Type Precise Class2

0 Divide-by-Zero-Error Fault
yes

Contributory
1 Debug Fault or Trap

Benign

2 Non-Maskable-Interrupt — —
3 Breakpoint

Trap

yes
4 Overflow
5 Bound-Range

Fault6 Invalid-Opcode
7 Device-Not-Available
8 Double-Fault Abort no
9 Coprocessor-Segment-Overrun
10 Invalid-TSS

Fault yes
Contributory

11 Segment-Not-Present
12 Stack
13 General-Protection
14 Page-Fault Benign or Contributory
15 Reserved

16 x87 Floating-Point Exception-
Pending Fault

no

Benign17 Alignment-Check yes
18 Machine-Check Abort no
19 SIMD Floating-Point Fault yes
20 Reserved
21 Control Protection Fault yes Contributory

22–27 Reserved
28 Hypervisor Injection Exception – – Benign
29 VMM Communication Exception Fault yes Contributory
30 Security Exception – yes Contributory
31 Reserved

0–255 External Interrupts (Maskable)
—1 —1 Benign

0–255 Software Interrupts
Note:

1. External interrupts are not classified by type or whether or not they are precise.
2. See Section “#DF—Double-Fault Exception (Vector 8)” on page 240 for a definition of benign and contributory

classes.

[AMD Public Use]

Exceptions and Interrupts 237

24593—Rev. 3.37—March 2021 AMD64 Technology

8.2.1 #DE—Divide-by-Zero-Error Exception (Vector 0)

A #DE exception occurs when the denominator of a DIV instruction or an IDIV instruction is 0. A
#DE also occurs if the result is too large to be represented in the destination.

#DE cannot be disabled.

Error Code Returned. None.

Program Restart. #DE is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #DE.

8.2.2 #DB—Debug Exception (Vector 1)

When the debug-exception mechanism is enabled, a #DB exception can occur under any of the
following circumstances:

• Instruction execution.
• Instruction single stepping.
• Data read.
• Data write.
• I/O read.
• I/O write.
• Task switch.
• Debug-register access, or general detect fault (debug register access when DR7.GD=1).
• Executing the INT1 instruction (opcode 0F1h).

#DB conditions are enabled and disabled using the debug-control register, DR7 and RFLAGS.TF.
Each #DB condition is described in more detail in Section “Setting Breakpoints” on page 383.

Error Code Returned. None. #DB information is returned in the debug-status register, DR6.

Program Restart. #DB can be either a fault-type or trap-type exception. In the following cases, the
saved instruction pointer points to the instruction that caused the #DB:

• Instruction execution.
• Invalid debug-register access, or general detect.

In all other cases, the instruction that caused the #DB is completed, and the saved instruction pointer
points to the instruction after the one that caused the #DB.

The RFLAGS.RF bit can be used to restart an instruction following an instruction breakpoint resulting
in a #DB. In most cases, the processor clears RFLAGS.RF to 0 after every instruction is successfully
executed. However, in the case of the IRET, JMP, CALL, and INTn (through a task gate) instructions,
RFLAGS.RF is not cleared to 0 until the next instruction successfully executes.

[AMD Public Use]

238 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

When a non-debug exception occurs (or when a string instruction is interrupted), the processor
normally sets RFLAGS.RF to 1 in the rFLAGS image that is pushed on the interrupt stack. A
subsequent IRET back to the interrupted program pops the rFLAGS image off the stack and into the
RFLAGS register, with RFLAGS.RF=1. The interrupted instruction executes without causing an
instruction breakpoint, after which the processor clears RFLAGS.RF to 0.

However, when a #DB exception occurs, the processor clears RFLAGS.RF to 0 in the rFLAGS image
that is pushed on the interrupt stack. The #DB handler has two options:

• Disable the instruction breakpoint completely.
• Set RFLAGS.RF to 1 in the interrupt-stack rFLAGS image. The instruction breakpoint condition

is ignored immediately after the IRET, but reoccurs if the instruction address is accessed later, as
can occur in a program loop.

8.2.3 NMI—Non-Maskable-Interrupt Exception (Vector 2)

An NMI exception occurs as a result of system logic signaling a non-maskable interrupt to the
processor.

Error Code Returned. None.

Program Restart. NMI is an interrupt. The processor recognizes an NMI at an instruction boundary.
The saved instruction pointer points to the instruction immediately following the boundary where the
NMI was recognized.

Masking. NMI cannot be masked. However, when an NMI is recognized by the processor,
recognition of subsequent NMIs are disabled until an IRET instruction is executed.

8.2.4 #BP—Breakpoint Exception (Vector 3)

A #BP exception occurs when an INT3 instruction is executed. The INT3 is normally used by debug
software to set instruction breakpoints by replacing instruction-opcode bytes with the INT3 opcode.

#BP cannot be disabled.

Error Code Returned. None.

Program Restart. #BP is a trap-type exception. The saved instruction pointer points to the byte after
the INT3 instruction. This location can be the start of the next instruction. However, if the INT3 is used
to replace the first opcode bytes of an instruction, the restart location is likely to be in the middle of an
instruction. In the latter case, the debug software must replace the INT3 byte with the correct
instruction byte. The saved RIP instruction pointer must then be decremented by one before returning
to the interrupted program. This allows the program to be restarted correctly on the interrupted-
instruction boundary.

[AMD Public Use]

Exceptions and Interrupts 239

24593—Rev. 3.37—March 2021 AMD64 Technology

8.2.5 #OF—Overflow Exception (Vector 4)

An #OF exception occurs as a result of executing an INTO instruction while the overflow bit in
RFLAGS is set to 1 (RFLAGS.OF=1).

#OF cannot be disabled.

Error Code Returned. None.

Program Restart. #OF is a trap-type exception. The saved instruction pointer points to the
instruction following the INTO instruction that caused the #OF.

8.2.6 #BR—Bound-Range Exception (Vector 5)

A #BR exception can occur as a result of executing the BOUND instruction. The BOUND instruction
compares an array index (first operand) with the lower bounds and upper bounds of an array (second
operand). If the array index is not within the array boundary, the #BR occurs.

#BR cannot be disabled.

Error Code Returned. None.

Program Restart. #BR is a fault-type exception. The saved instruction pointer points to the BOUND
instruction that caused the #BR.

8.2.7 #UD—Invalid-Opcode Exception (Vector 6)

A #UD exception occurs when an attempt is made to execute an invalid or undefined opcode. The
validity of an opcode often depends on the processor operating mode. A #UD occurs under the
following conditions:

• Execution of any reserved or undefined opcode in any mode.
• Execution of the UD0, UD1 or UD2 instructions.
• Use of the LOCK prefix on an instruction that cannot be locked.
• Use of the LOCK prefix on a lockable instruction with a non-memory target location.
• Execution of an instruction with an invalid-operand type.
• Execution of the SYSENTER or SYSEXIT instructions in long mode.
• Execution of any of the following instructions in 64-bit mode: AAA, AAD, AAM, AAS, BOUND,

CALL (opcode 9A), DAA, DAS, DEC, INC, INTO, JMP (opcode EA), LDS, LES, POP (DS, ES,
SS), POPA, PUSH (CS, DS, ES, SS), PUSHA, SALC.

• Execution of the ARPL, LAR, LLDT, LSL, LTR, SLDT, STR, VERR, or VERW instructions when
protected mode is not enabled, or when virtual-8086 mode is enabled.

• Execution of any legacy SSE instruction when CR4.OSFXSR is cleared to 0. (For further
information, see Section “FXSAVE/FXRSTOR Support (OSFXSR)” on page 50.

[AMD Public Use]

240 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

• Execution of any SSE instruction (uses YMM/XMM registers), or 64-bit media instruction (uses
MMX™ registers) when CR0.EM = 1.

• Execution of any SSE floating-point instruction (uses YMM/XMM registers) that causes a
numeric exception when CR4.OSXMMEXCPT = 0.

• Use of the DR4 or DR5 debug registers when CR4.DE = 1.
• Execution of RSM when not in SMM mode.

See the specific instruction description (in the other volumes) for additional information on invalid
conditions.

#UD cannot be disabled.

Error Code Returned. None.

Program Restart. #UD is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #UD.

8.2.8 #NM—Device-Not-Available Exception (Vector 7)

A #NM exception occurs under any of the following conditions:

• An FWAIT/WAIT instruction is executed when CR0.MP=1 and CR0.TS=1.
• Any x87 instruction other than FWAIT is executed when CR0.EM=1.
• Any x87 instruction is executed when CR0.TS=1. The CR0.MP bit controls whether the

FWAIT/WAIT instruction causes an #NM exception when TS=1.
• Any 128-bit or 64-bit media instruction when CR0.TS=1.

#NM can be enabled or disabled under the control of the CR0.MP, CR0.EM, and CR0.TS bits as
described above. See Section 3.1.1 for more information on the CR0 bits used to control the #NM
exception.

Error Code Returned. None.

Program Restart. #NM is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #NM.

8.2.9 #DF—Double-Fault Exception (Vector 8)

A #DF exception can occur when a second exception occurs during the handling of a prior (first)
exception or interrupt handler.

Usually, the first and second exceptions can be handled sequentially without resulting in a #DF. In this
case, the first exception is considered benign, as it does not harm the ability of the processor to handle
the second exception.

In some cases, however, the first exception adversely affects the ability of the processor to handle the
second exception. These exceptions contribute to the occurrence of a #DF, and are called contributory

[AMD Public Use]

Exceptions and Interrupts 241

24593—Rev. 3.37—March 2021 AMD64 Technology

exceptions. If a contributory exception is followed by another contributory exception, a double-fault
exception occurs. Likewise, if a page fault is followed by another page fault or a contributory
exception, a double-fault exception occurs.

Table 8-3 shows the conditions under which a #DF occurs. Page faults are either benign or
contributory, and are listed separately. See the “Class” column in Table 8-2 on page 236 for
information on whether an exception is benign or contributory.

If a third interrupting event occurs while transferring control to the #DF handler, the processor shuts
down. Only an NMI, RESET, or INIT can restart the processor in this case. However, if the processor
shuts down as it is executing an NMI handler, the processor can only be restarted with RESET or INIT.

#DF cannot be disabled.

Error Code Returned. Zero.

Program Restart. #DF is an abort-type exception. The saved instruction pointer is undefined, and the
program cannot be restarted.

8.2.10 Coprocessor-Segment-Overrun Exception (Vector 9)

This interrupt vector is reserved. It is for a discontinued exception originally used by processors that
supported external x87-instruction coprocessors. On those processors, the exception condition is
caused by an invalid-segment or invalid-page access on an x87-instruction coprocessor-instruction
operand. On current processors, this condition causes a general-protection exception to occur.

Error Code Returned. Not applicable.

Program Restart. Not applicable.

Table 8-3. Double-Fault Exception Conditions
First Interrupting Event Second Interrupting Event

Contributory Exceptions
• Divide-by-Zero-Error Exception
• Invalid-TSS Exception
• Segment-Not-Present Exception
• Stack Exception
• General-Protection Exception

Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

Page Fault Exception

Page Fault Exception
Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

[AMD Public Use]

242 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

8.2.11 #TS—Invalid-TSS Exception (Vector 10)

A #TS exception occurs when an invalid reference is made to a segment selector as part of a task
switch. A #TS also occurs during a privilege-changing control transfer (through a call gate or an
interrupt gate), if a reference is made to an invalid stack-segment selector located in the TSS. Table 8-4
lists the conditions under which a #TS occurs and the error code returned by the exception mechanism.

#TS cannot be disabled.

Error Code Returned. See Table 8-4 for a list of error codes returned by the #TS exception.

Program Restart. #TS is a fault-type exception. If the exception occurs before loading the segment
selectors from the TSS, the saved instruction pointer points to the instruction that caused the #TS.
However, most #TS conditions occur due to errors with the loaded segment selectors. When an error is
found with a segment selector, the hardware task-switch mechanism completes loading the new task
state from the TSS, and then triggers the #TS exception mechanism. In this case, the saved instruction
pointer points to the first instruction in the new task.

In long mode, a #TS cannot be caused by a task switch, because the hardware task-switch mechanism
is disabled. A #TS occurs only as a result of a control transfer through a gate descriptor that results in
an invalid stack-segment reference using an SS selector in the TSS. In this case, the saved instruction
pointer always points to the control-transfer instruction that caused the #TS.

Table 8-4. Invalid-TSS Exception Conditions
Selector

Reference Error Condition Error Code

Task-State
Segment

TSS limit check on a task switch
TSS Selector Index

TSS limit check on an inner-level stack pointer

LDT Segment

LDT does not point to GDT

LDT Selector Index
LDT reference outside GDT
GDT entry is not an LDT descriptor
LDT descriptor is not present

Code Segment

CS reference outside GDT or LDT

CS Selector Index
Privilege check (conforming DPL > CPL)

Privilege check (non-conforming DPL ¹ CPL)

Type check (CS not executable)

Data Segment
Data segment reference outside GDT or LDT

DS, ES, FS or GS Selector Index
Type check (data segment not readable)

Stack Segment

SS reference outside GDT or LDT

SS Selector Index
Privilege check (stack segment descriptor DPL ¹ CPL)

Privilege check (stack segment selector RPL ¹ CPL)

Type check (stack segment not writable)

[AMD Public Use]

Exceptions and Interrupts 243

24593—Rev. 3.37—March 2021 AMD64 Technology

8.2.12 #NP—Segment-Not-Present Exception (Vector 11)

An #NP occurs when an attempt is made to load a segment or gate with a clear present bit, as described
in the following situations:

• Using the MOV, POP, LDS, LES, LFS, or LGS instructions to load a segment selector (DS, ES, FS,
and GS) that references a segment descriptor containing a clear present bit (descriptor.P=0).

• Far transfer to a CS that is not present.
• Referencing a gate descriptor containing a clear present bit.
• Referencing a TSS descriptor containing a clear present bit. This includes attempts to load the TSS

descriptor using the LTR instruction.
• Attempting to load a descriptor containing a clear present bit into the LDTR using the LLDT

instruction.
• Loading a segment selector (CS, DS, ES, FS, or GS) as part of a task switch, with the segment

descriptor referenced by the segment selector having a clear present bit. In long mode, an #NP
cannot be caused by a task switch, because the hardware task-switch mechanism is disabled.

When loading a stack-segment selector (SS) that references a descriptor with a clear present bit, a
stack exception (#SS) occurs. For information on the #SS exception, see the next section, “#SS—
Stack Exception (Vector 12).”

#NP cannot be disabled.

Error Code Returned. The segment-selector index of the segment descriptor causing the #NP
exception.

Program Restart. #NP is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that loaded the segment selector resulting in the #NP. See Section “Exceptions During a
Task Switch” on page 251 for a description of the consequences when this exception occurs during a
task switch.

8.2.13 #SS—Stack Exception (Vector 12)

An #SS exception can occur in the following situations:

• Implied stack references in which the stack address is not in canonical form. Implied stack
references include all push and pop instructions, and any instruction using RSP or RBP as a base
register.

• Attempting to load a stack-segment selector that references a segment descriptor containing a clear
present bit (descriptor.P=0).

• Any stack access that fails the stack-limit check.

#SS cannot be disabled.

Error Code Returned. The error code depends on the cause of the #SS, as shown in Table 8-5 on
page 244:

[AMD Public Use]

244 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

Program Restart. #SS is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #SS. See Section “Exceptions During a Task Switch” on page 251 for a
description of the consequences when this exception occurs during a task switch.

8.2.14 #GP—General-Protection Exception (Vector 13)

Table 8-6 describes the general situations that can cause a #GP exception. The table is not an
exhaustive, detailed list of #GP conditions, but rather a guide to the situations that can cause a #GP. If
an invalid use of an AMD64 architectural feature results in a #GP, the specific cause of the exception is
described in detail in the section describing the architectural feature.

#GP cannot be disabled.

Error Code Returned. As shown in Table 8-6, a selector index is reported as the error code if the
#GP is due to a segment-descriptor access. In all other cases, an error code of 0 is returned.

Program Restart. #GP is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #GP. See Section “Exceptions During a Task Switch” on page 251 for a
description of the consequences when this exception occurs during a task switch.

Table 8-5. Stack Exception Error Codes
Stack Exception Cause Error Code

Stack-segment descriptor present bit is clear SS Selector Index
Stack-limit violation 0
Stack reference using a non-canonical address 0

Table 8-6. General-Protection Exception Conditions
Error Condition Error Code

Any segment privilege-check violation, while loading a segment register.

Selector Index

Any segment type-check violation, while loading a segment register.
Loading a null selector into the CS, SS, or TR register.
Accessing a gate-descriptor containing a null segment selector.
Referencing an LDT descriptor or TSS descriptor located in the LDT.
Attempting a control transfer to a busy TSS (except IRET).
In 64-bit mode, loading a non-canonical base address into the GDTR or IDTR.
In long mode, accessing a system or call-gate descriptor whose extended type field is not 0.
In long mode, accessing a system descriptor containing a non-canonical base address.
In long mode, accessing a gate descriptor containing a non-canonical offset.
In long mode, accessing a gate descriptor that does not point to a 64-bit code segment.
In long mode, accessing a 16-bit gate descriptor.
In long mode, attempting a control transfer to a TSS or task gate.

[AMD Public Use]

Exceptions and Interrupts 245

24593—Rev. 3.37—March 2021 AMD64 Technology

8.2.15 #PF—Page-Fault Exception (Vector 14)

A #PF exception can occur during a memory access in any of the following situations:

• A page-translation-table entry or physical page involved in translating the memory access is not
present in physical memory. This is indicated by a cleared present bit (P=0) in the translation-table
entry.

• An attempt is made by the processor to load the instruction TLB with a translation for a non-
executable page.

• The memory access fails the paging-protection checks (user/supervisor, read/write, or both).
• A reserved bit in one of the page-translation-table entries is set to 1. A #PF occurs for this reason

only when CR4.PSE=1 or CR4.PAE=1.
• A data access to a user-mode address caused a protection key violation.

#PF cannot be disabled.

CR2 Register. The virtual (linear) address that caused the #PF is stored in the CR2 register. The
legacy CR2 register is 32 bits long. The CR2 register in the AMD64 architecture is 64 bits long, as
shown in Figure 8-1 on page 246. In AMD64 implementations, when either software or a page fault
causes a write to the CR2 register, only the low-order 32 bits of CR2 are used in legacy mode; the
processor clears the high-order 32 bits.

Any segment limit-check or non-canonical address violation (except when using the SS register).

0

Accessing memory using a null segment register.
Writing memory using a read-only segment register.
Attempting to execute an SSE instruction specifying an unaligned memory operand.
Attempting to execute code that is past the CS segment limit or at a non-canonical RIP.
Executing a privileged instruction while CPL > 0.
Executing an instruction that is more than 15 bytes long.
Writing a 1 into any register field that is reserved, must be zero (MBZ).
Using WRMSR to write a read-only MSR.
Using WRMSR to write a non-canonical value into an MSR that must be canonical.
Using WRMSR to set an invalid type encoding in an MTRR or the PAT MSR.

0
Enabling paging while protected mode is disabled.
Setting CR0.NW=1 while CR0.CD=0.
Any long-mode consistency-check violation.

Table 8-6. General-Protection Exception Conditions (continued)
Error Condition Error Code

[AMD Public Use]

246 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 8-1. Control Register 2 (CR2)

Error Code Returned. The page-fault error code is pushed onto the page-fault exception-handler
stack. See Section “Page-Fault Error Code” on page 252 for a description of this error code.

Program Restart. #PF is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #PF. See Section “Exceptions During a Task Switch” on page 251 for a
description of what can happen if this exception occurs during a task switch.

8.2.16 #MF—x87 Floating-Point Exception-Pending (Vector 16)

The #MF exception is used to handle unmasked x87 floating-point exceptions. An #MF occurs when
all of the following conditions are true:

• CR0.NE=1.
• An unmasked x87 floating-point exception is pending. This is indicated by an exception bit in the

x87 floating-point status-word register being set to 1
• The corresponding mask bit in the x87 floating-point control-word register is cleared to 0.
• The FWAIT/WAIT instruction or any waiting floating-point instruction is executed.

If there is an exception mask bit (in the FPU control word) set, the exception is not reported. Instead,
the x87-instruction unit responds in a default manner and execution proceeds normally.

The x87 floating-point exceptions reported by the #MF exception are (including mnemonics):

• IE—Invalid-operation exception (also called #I), which is either:
- IE alone—Invalid arithmetic-operand exception (also called #IA), or
- SF and IE together—x87 Stack-fault exception (also called #IS).

• DE—Denormalized-operand exception (also called #D).
• ZE—Zero-divide exception (also called #Z).
• OE—Overflow exception (also called #O).
• UE—Underflow exception (also called #U).
• PE—Precision exception (also called #P or inexact-result exception).

Error Code Returned. None. Exception information is provided by the x87 status-word register. See
“x87 Floating-Point Programming” in Volume 1 for more information on using this register.

Program Restart. #MF is a fault-type exception. The #MF exception is not precise, because multiple
instructions and exceptions can occur before the #MF handler is invoked. Also, the saved instruction

63 0

Page-Fault Virtual Address

[AMD Public Use]

Exceptions and Interrupts 247

24593—Rev. 3.37—March 2021 AMD64 Technology

pointer does not point to the instruction that caused the exception resulting in the #MF. Instead, the
saved instruction pointer points to the x87 floating-point instruction or FWAIT/WAIT instruction that
is about to be executed when the #MF occurs. The address of the last instruction that caused an x87
floating-point exception is in the x87 instruction-pointer register. See “x87 Floating-Point
Programming” in Volume 1 for information on accessing this register.

Masking. Each type of x87 floating-point exception can be masked by setting the appropriate bits in
the x87 control-word register. See “x87 Floating-Point Programming” in Volume 1 for more
information on using this register.

#MF can also be disabled by clearing the CR0.NE bit to 0. See Section “Numeric Error (NE) Bit” on
page 44 for more information on using this bit.

8.2.17 #AC—Alignment-Check Exception (Vector 17)

An #AC exception occurs when an unaligned-memory data reference is performed while alignment
checking is enabled.

After a processor reset, #AC exceptions are disabled. Software enables the #AC exception by setting
the following register bits:

• CR0.AM=1.
• RFLAGS.AC=1.

When the above register bits are set, an #AC can occur only when CPL=3. #AC never occurs when
CPL < 3.

Table 8-7 lists the data types and the alignment boundary required to avoid an #AC exception when the
mechanism is enabled.

Table 8-7. Data-Type Alignment

Supported Data Type Required Alignment
(Byte Boundary)

Word 2
Doubleword 4
Quadword 8
Bit string 2, 4 or 8 (depends on operand size)

256-bit media 16
128-bit media 16
64-bit media 8

Segment selector 2
32-bit near pointer 4
32-bit far pointer 2
48-bit far pointer 4

[AMD Public Use]

248 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

Error Code Returned. Zero.

Program Restart. #AC is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #AC.

8.2.18 #MC—Machine-Check Exception (Vector 18)

The #MC exception is model specific. Processor implementations are not required to support the #MC
exception, and those implementations that do support #MC can vary in how the #MC exception
mechanism works.

The exception is enabled by setting CR4.MCE to 1. The machine-check architecture can include
model-specific masking for controlling the reporting of some errors. Refer to Chapter 9, “Machine
Check Architecture,” for more information.

Error Code Returned. None. Error information is provided by model-specific registers (MSRs)
defined by the machine-check architecture.

Program Restart. #MC is an abort-type exception. There is no reliable way to restart the program. If
the EIPV flag (EIP valid) is set in the MCG_Status MSR, the saved CS and rIP point to the instruction
that caused the error. If EIP is clear, the CS:rIP of the instruction causing the failure is not known or the
machine check is not related to a specific instruction.

8.2.19 #XF—SIMD Floating-Point Exception (Vector 19)

The #XF exception is used to handle unmasked SSE floating-point exceptions. A #XF exception
occurs when all of the following conditions are true:

• A SSE floating-point exception occurs. The exception causes the processor to set the appropriate
exception-status bit in the MXCSR register to 1.

• The exception-mask bit in the MXCSR that corresponds to the SSE floating-point exception is
clear (=0).

• CR4.OSXMMEXCPT=1, indicating that the operating system supports handling of SSE floating-
point exceptions.

The exception-mask bits are used by software to specify the handling of SSE floating-point
exceptions. When the corresponding mask bit is cleared to 0, an exception occurs under the control of

x87 Floating-point single-precision 4
x87 Floating-point double-precision 8

x87 Floating-point extended-precision 8
x87 Floating-point save areas 2 or 4 (depends on operand size)

Table 8-7. Data-Type Alignment (continued)

Supported Data Type Required Alignment
(Byte Boundary)

[AMD Public Use]

Exceptions and Interrupts 249

24593—Rev. 3.37—March 2021 AMD64 Technology

the CR4.OSXMMEXCPT bit. However, if the mask bit is set to 1, the SSE floating-point unit responds
in a default manner and execution proceeds normally.

The CR4.OSXMMEXCPT bit specifies the interrupt vector to be taken when an unmasked SSE
floating-point exception occurs. When CR4.OSXMMEXCPT=1, the #XF interrupt vector is taken
when an exception occurs. When CR4.OSXMMEXCPT=0, the #UD (undefined opcode) interrupt
vector is taken when an exception occurs.

The SSE floating-point exceptions reported by the #XF exception are (including mnemonics):

• IE—Invalid-operation exception (also called #I).
• DE—Denormalized-operand exception (also called #D).
• ZE—Zero-divide exception (also called #Z).
• OE—Overflow exception (also called #O).
• UE—Underflow exception (also called #U).
• PE—Precision exception (also called #P or inexact-result exception).

Each type of SSE floating-point exception can be masked by setting the appropriate bits in the
MXCSR register. #XF can also be disabled by clearing the CR4.OSXMMEXCPT bit to 0.

Error Code Returned. None. Exception information is provided by the SSE floating-point MXCSR
register. See “Instruction Reference” in Volume 4 for more information on using this register.

Program Restart. #XF is a fault-type exception. Unlike the #MF exception, the #XF exception is
precise. The saved instruction pointer points to the instruction that caused the #XF.

8.2.20 #CP—Control-Protection Exception (Vector 21)

A #CP exception is generated when shadow stacks are enabled (CR4.CET=1) and any of the following
situations occur:

• For RET or IRET instructions, the return addresses on the shadow stack and the data stack do not
match.

• An invalid supervisor shadow stack token is encountered by the CALL, RET, IRET, SETSSBSY
or RSTORSSP instructions or during the delivery of an interrupt or exception.

• For inter-privilege RET and IRET instructions, the SSP is not 8-byte aligned, or the previous SSP
from shadow stack is not 4-byte aligned or, in legacy or compatibility mode, is not less than 4GB.

• A task switch initiated by IRET where the incoming SSP is not aligned to 4 bytes or is not less than
4GB.

Error Code Returned. The #CP error code is pushed onto the control-protection exception-handler
stack. See Section “Control-Protection Error Code” on page 252 for a description of this error code.

Program Restart. #CP is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #CP. See Section “Exceptions During a Task Switch” on page 251 for a
description of what can happen if this exception occurs during a task switch.

[AMD Public Use]

250 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

8.2.21 #HV—Hypervisor Injection Exception (Vector 28)

The #HV exception may be injected by the hypervisor into a secure guest VM to notify the VM of
pending events. See Section 15.36.16 for details.

8.2.22 #VC—VMM Communication Exception (Vector 29)

The #VC exception is generated when certain events occur inside a secure guest VM. See
Section 15.35.5 for more details.

8.2.23 #SX—Security Exception (Vector 30)

The #SX exception is generated by security-sensitive events under SVM. See Section 15.28 for
details.

8.2.24 User-Defined Interrupts (Vectors 32–255)

User-defined interrupts can be initiated either by system logic or software. They occur when:

• System logic signals an external interrupt request to the processor. The signaling mechanism and
the method of communicating the interrupt vector to the processor are implementation dependent.

• Software executes an INTn instruction. The INTn instruction operand provides the interrupt vector
number.

Both methods can be used to initiate an interrupt into vectors 0 through 255. However, because vectors
0 through 31 are defined or reserved by the AMD64 architecture, software should not use vectors in
this range for purposes other than their defined use.

Error Code Returned. None.

Program Restart. The saved instruction pointer depends on the interrupt source:

• External interrupts are recognized on instruction boundaries. The saved instruction pointer points
to the instruction immediately following the boundary where the external interrupt was
recognized.

• If the interrupt occurs as a result of executing the INTn instruction, the saved instruction pointer
points to the instruction after the INTn.

Masking. The ability to mask user-defined interrupts depends on the interrupt source:

• External interrupts can be masked using the RFLAGS.IF bit. Setting RFLAGS.IF to 1 enables
external interrupts, while clearing RFLAGS.IF to 0 inhibits them.

• Software interrupts (initiated by the INTn instruction) cannot be disabled.

[AMD Public Use]

Exceptions and Interrupts 251

24593—Rev. 3.37—March 2021 AMD64 Technology

8.3 Exceptions During a Task Switch
An exception can occur during a task switch while loading a segment selector. Page faults can also
occur when accessing a TSS. In these cases, the hardware task-switch mechanism completes loading
the new task state from the TSS, and then triggers the appropriate exception mechanism. No other
checks are performed. When this happens, the saved instruction pointer points to the first instruction in
the new task.

In long mode, an exception cannot occur during a task switch, because the hardware task-switch
mechanism is disabled.

8.4 Error Codes
The processor exception-handling mechanism reports error and status information for some
exceptions using an error code. The error code is pushed onto the stack by the exception mechanism
during the control transfer into the exception handler. The error code formats are described in the
following sections.

8.4.1 Selector-Error Code

Figure 8-2 shows the format of the selector-error code.

Figure 8-2. Selector Error Code

The information reported by the selector-error code includes:

• EXT—Bit 0. If this bit is set to 1, the exception source is external to the processor. If cleared to 0,
the exception source is internal to the processor.

• IDT—Bit 1. If this bit is set to 1, the error-code selector-index field references a gate descriptor
located in the interrupt-descriptor table (IDT). If cleared to 0, the selector-index field references a
descriptor in either the global-descriptor table (GDT) or local-descriptor table (LDT), as indicated
by the TI bit.

• TI—Bit 2. If this bit is set to 1, the error-code selector-index field references a descriptor in the
LDT. If cleared to 0, the selector-index field references a descriptor in the GDT. The TI bit is
relevant only when the IDT bit is cleared to 0.

• Selector Index—Bits 15:3. The selector-index field specifies the index into either the GDT, LDT,
or IDT, as specified by the IDT and TI bits.

Some exceptions return a zero in the selector-error code.

31 16 15 3 2 1 0

Reserved Selector Index T
I

I
D
T

E
X
T

[AMD Public Use]

252 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

8.4.2 Page-Fault Error Code

Figure 8-4 shows the format of the page-fault error code.

Figure 8-3. Page-Fault Error Code

The information reported by the page-fault error code includes:

• P—Bit 0. If this bit is cleared to 0, the page fault was caused by a not-present page. If this bit is set
to 1, the page fault was caused by a page-protection violation.

• R/W—Bit 1. If this bit is cleared to 0, the access that caused the page fault is a memory read. If this
bit is set to 1, the memory access that caused the page fault was a write. This bit does not
necessarily indicate the cause of the page fault was a read or write violation.

• U/S—Bit 2. If this bit is cleared to 0, an access in supervisor mode (CPL=0, 1, or 2) caused the
page fault. If this bit is set to 1, an access in user mode (CPL=3) caused the page fault. This bit does
not necessarily indicate the cause of the page fault was a privilege violation.

• RSV—Bit 3. If this bit is set to 1, the page fault is a result of the processor reading a 1 from a
reserved field within a page-translation-table entry. This type of page fault occurs only when
CR4.PSE=1 or CR4.PAE=1. If this bit is cleared to 0, the page fault was not caused by the
processor reading a 1 from a reserved field.

• I/D—Bit 4. If this bit is set to 1, it indicates that the access that caused the page fault was an
instruction fetch. Otherwise, this bit is cleared to 0. This bit is only defined if no-execute feature is
enabled (EFER.NXE=1 && CR4.PAE=1).

• PK—Bit 5. If this bit is set to 1, it indicates that a data access to a user-mode address caused a
protection key violation. This fault only occurs if memory protection keys are enabled
(CR4.PKE=1).

• SS—Bit 6. If this bit is set to 1, the page fault was caused by a shadow stack access. This bit is only
set when the shadow stack feature is enabled (CR4.CET=1).

• RMP—Bit 31. If this bit is set to 1, the page fault is a result of the processor encountering an RMP
violation. This type of page fault only occurs when SYSCFG[SecureNestedPagingEn]=1. If this
bit is cleared to 0, the page fault was not caused by an RMP violation. See section 15.36.10 for
additional information.

8.4.3 Control-Protection Error Code

Figure 8-4 shows the format of the #CP error code.

31 30 7 6 5 4 3 2 1 0

R
M
P

Reserved
S
S

P
K

I
/
D

R
S
V

U
/
S

R
/

W
P

[AMD Public Use]

Exceptions and Interrupts 253

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 8-4. Control-Protection Error Code

The control-protection error codes are defined below:

8.5 Priorities
To allow for consistent handling of multiple-interrupt conditions, simultaneous interrupts are
prioritized by the processor. The AMD64 architecture defines priorities between groups of interrupts,
and interrupt prioritization within a group is implementation dependent. Table 8-9 shows the interrupt
priorities defined by the AMD64 architecture.

When simultaneous interrupts occur, the processor transfers control to the highest-priority interrupt
handler. Lower-priority interrupts from external sources are held pending by the processor, and they
are handled after the higher-priority interrupt is handled. Lower-priority interrupts that result from
internal sources are discarded. Those interrupts reoccur when the high-priority interrupt handler
completes and transfers control back to the interrupted instruction. Software interrupts are discarded as
well, and reoccur when the software-interrupt instruction is restarted.

31 15 14 0

Reserved Control-protection error code

Table 8-8. Control-Protection Error Codes
Error Code Value Name Cause

1 NEAR-RET A RET (near) instruction encountered a return address mismatch.
2 FAR-RET/IRET A RET (far) or IRET instruction encountered a return address mismatch.

3 RSTORSSP An RSTORSSP instruction encountered an invalid shadow stack restore
token.

4 SETSSBSY A SETSSBSY instruction encountered an invalid supervisor shadow
stack token.

Table 8-9. Simultaneous Interrupt Priorities
Interrupt
Priority Interrupt Condition Interrupt

Vector
(High)

0
Processor Reset —
Machine-Check Exception 18

1
External Processor Initialization (INIT)

—SMI Interrupt
External Clock Stop (Stpclk)

[AMD Public Use]

254 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

8.5.1 Floating-Point Exception Priorities

Floating-point exceptions (SSE and x87 floating-point) can be handled in one of two ways:

• Unmasked exceptions are reported in the appropriate floating-point status register, and a software-
interrupt handler is invoked. See Section “#MF—x87 Floating-Point Exception-Pending (Vector
16)” on page 246 and Section “#XF—SIMD Floating-Point Exception (Vector 19)” on page 248
for more information on the floating-point interrupts.

2
Data, and I/O Breakpoint (Debug Register)

1
Single-Step Execution Instruction Trap (RFLAGS.TF=1)

3 Non-Maskable Interrupt 2
4 Maskable External Interrupt (INTR) 32–255

5

Instruction Breakpoint (Debug Register) 1

Code-Segment-Limit Violation1 13

Instruction-Fetch Page Fault1 14

6
Invalid Opcode Exception1 6

Device-Not-Available Exception 7
Instruction-Length Violation (> 15 Bytes) 13

7

Divide-by-zero Exception 0
Invalid-TSS Exception 10
Segment-Not-Present Exception 11
Stack Exception 12
General-Protection Exception 13
Data-Access Page Fault 14
Floating-Point Exception-Pending Exception 16
Alignment-Check Exception 17
SIMD Floating-Point Exception 19
Control-Protection Exception 21
Hypervisor Injection Exception 28
VMM Communication Exception 29

Note:
1. This reflects the relative priority for faults encountered when fetching the first byte of an instruction. In the fetching and decoding

of subsequent bytes of an instruction, if those bytes span the segment limit or cross into a non-executable or not-present page,
the fetch will result in a #GP(0) fault or #PF as appropriate, preventing those bytes from being accessed. However, if the
instruction can be determined to be invalid based just on the bytes preceding that boundary, a #UD fault may take priority.
This behavior is model-dependent.

Table 8-9. Simultaneous Interrupt Priorities (continued)
Interrupt
Priority Interrupt Condition Interrupt

Vector

[AMD Public Use]

Exceptions and Interrupts 255

24593—Rev. 3.37—March 2021 AMD64 Technology

• Masked exceptions are also reported in the appropriate floating-point status register. Instead of
transferring control to an interrupt handler, however, the processor handles the exception in a
default manner and execution proceeds.

If the processor detects more than one exception while executing a single floating-point instruction, it
prioritizes the exceptions in a predictable manner. When responding in a default manner to masked
exceptions, it is possible that the processor acts only on the high-priority exception and ignores lower-
priority exceptions. In the case of vector (SIMD) floating-point instructions, priorities are set on sub-
operations, not across all operations. For example, if the processor detects and acts on a QNaN
operand in one sub-operation, the processor can still detect and act on a denormal operand in another
sub-operation.

When reporting SSE floating-point exceptions before taking an interrupt or handling them in a default
manner, the processor first classifies the exceptions as follows:

• Input exceptions include SNaN operand (#I), invalid operation (#I), denormal operand (#D), or
zero-divide (#Z). Using a NaN operand with a maximum, minimum, compare, or convert
instruction is also considered an input exception.

• Output exceptions include numeric overflow (#O), numeric underflow (#U), and precision (#P).

Using the above classification, the processor applies the following procedure to report the exceptions:

1. The exceptions for all sub-operations are prioritized.

2. The exception conditions for all sub-operations are logically ORed together to form a single set of
exceptions covering all operations. For example, if two sub-operations produce a denormal result,
only one denormal exception is reported.

3. If the set of exceptions includes any unmasked input exceptions, all input exceptions are reported
in MCXSR, and no output exceptions are reported. Otherwise, all input and output exceptions are
reported in MCXSR.

4. If any exceptions are unmasked, control is transferred to the appropriate interrupt handler.

Table 8-10 on page 255 lists the priorities for simultaneous floating-point exceptions.

Table 8-10. Simultaneous Floating-Point Exception Priorities
Exception
Priority Exception Condition

(High)
0

SNaN Operand

#I
NaN Operand of Maximum, Minimum, Compare, and Convert
Instructions (Vector Floating-Point)
Stack Overflow (x87 Floating-Point)
Stack Underflow (x87 Floating-Point)

1 QNaN Operand —

[AMD Public Use]

256 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

8.5.2 External Interrupt Priorities

The AMD64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest. The organization of these priority classes is implementation dependent. A typical method is to
use the upper four bits of the interrupt vector number to define the priority. Thus, interrupt vector 53h
has a priority of 5 and interrupt vector 37h has a priority of 3.

A new control register (CR8) is introduced by the AMD64 architecture for managing priority classes.
This register, called the task-priority register (TPR), uses its four low-order bits to specify a task
priority. The remaining 60 bits are reserved and must be written with zeros. Figure 8-5 shows the
format of the TPR.

The TPR is available only in 64-bit mode.

Figure 8-5. Task Priority Register (CR8)

System software can use the TPR register to temporarily block low-priority interrupts from
interrupting a high-priority task. This is accomplished by loading TPR with a value corresponding to
the highest-priority interrupt that is to be blocked. For example, loading TPR with a value of 9 (1001b)
blocks all interrupts with a priority class of 9 or less, while allowing all interrupts with a priority class
of 10 or more to be recognized. Loading TPR with 0 enables all external interrupts. Loading TPR with
15 (1111b) disables all external interrupts. The TPR is cleared to 0 on reset.

System software reads and writes the TPR using a MOV CR8 instruction. The MOV CR8 instruction
requires a privilege level of 0. Programs running at any other privilege level cannot read or write the
TPR, and an attempt to do so results in a general-protection exception (#GP).

2
Invalid Operation (Remaining Conditions) #I
Zero Divide #Z

3 Denormal Operand #D

4
Numeric Overflow #O
Numeric Underflow #U

5
(Low)

Precision #P

63 4 3 0

Reserved, MBZ Task Priority
(TPR)

Table 8-10. Simultaneous Floating-Point Exception Priorities (continued)
Exception
Priority Exception Condition

[AMD Public Use]

Exceptions and Interrupts 257

24593—Rev. 3.37—March 2021 AMD64 Technology

A serializing instruction is not required after loading the TPR, because a new priority level is
established when the MOV instruction completes execution. For example, assume two sequential TPR
loads are performed, in which a low value is first loaded into TPR and immediately followed by a load
of a higher value. Any pending, lower-priority interrupt enabled by the first MOV CR8 is recognized
between the two MOVs.

The TPR is an architectural abstraction of the interrupt controller (IC), which prioritizes and manages
external interrupt delivery to the processor. The IC can be an external system device, or it can be
integrated on the chip like the local advanced programmable interrupt controller (APIC). Typically, the
IC contains a priority mechanism similar, if not identical to, the TPR. The IC, however, is
implementation dependent, and the underlying priority mechanisms are subject to change. The TPR,
by contrast, is part of the AMD64 architecture.

Effect of IC on TPR. The features of the implementation-specific IC can impact the operation of the
TPR. For example, the TPR might affect interrupt delivery only if the IC is enabled. Also, the mapping
of an external interrupt to a specific interrupt priority is an implementation-specific behavior of the IC.

While the CR8 register provides the same functionality as the TPR at offset 80h of the local APIC,
software should only use one mechanism to access the TPR. For example, updating the TPR with a
write to the local APIC offset 0x80 but then reading it with a MOV CR8 is not guaranteed to return the
same value that was written by the local APIC write.

8.6 Real-Mode Interrupt Control Transfers
In real mode, the IDT is a table of 4-byte entries, one entry for each of the 256 possible interrupts
implemented by the system. The real mode IDT is often referred to as an interrupt vector table, or IVT.
Table entries contain a far pointer (CS:IP pair) to an exception or interrupt handler. The base of the
IDT is stored in the IDTR register, which is loaded with a value of 00h during a processor reset.
Figure 8-6 on page 258 shows how the real-mode interrupt handler is located by the interrupt
mechanism.

[AMD Public Use]

258 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 8-6. Real-Mode Interrupt Control Transfer

When an exception or interrupt occurs in real mode, the processor performs the following:

1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.

2. Clears EFLAGS.IF to 0 and EFLAGS.TF to 0.

3. Saves the CS register and IP register (RIP[15:0]) by pushing them onto the stack.

4. Locates the interrupt-handler pointer (CS:IP) in the IDT by scaling the interrupt vector by four
and adding the result to the value in the IDTR.

5. Transfers control to the interrupt handler referenced by the CS:IP in the IDT.

Figure 8-7 on page 259 shows the stack after control is transferred to the interrupt handler in real
mode.

513-239.eps

Interrupt-Descriptor
Table

4
* +

IDT Base Address

Interrupt-Descriptor-Table Register

Interrupt Vector CS

Offset

Memory

Interrupt Handler

[AMD Public Use]

Exceptions and Interrupts 259

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 8-7. Stack After Interrupt in Real Mode

An IRET instruction is used to return to the interrupted program. When an IRET is executed, the
processor performs the following:

1. Pops the saved CS value off the stack and into the CS register. The saved IP value is popped into
RIP[15:0].

2. Pops the FLAGS value off of the stack and into EFLAGS[15:0].

3. Execution begins at the saved CS.IP location.

8.7 Legacy Protected-Mode Interrupt Control Transfers
In protected mode, the interrupt mechanism transfers control to an exception or interrupt handler
through gate descriptors. In protected mode, the IDT is a table of 8-byte gate entries, one for each of
the 256 possible interrupt vectors implemented by the system. Three gate types are allowed in the IDT:

• Interrupt gates.
• Trap gates.
• Task gates.

If a reference is made to any other descriptor type in the IDT, a general-protection exception (#GP)
occurs.

Interrupt-gate control transfers are similar to CALLs and JMPs through call gates. The interrupt
mechanism uses gates (interrupt, trap, and task) to establish protected entry-points into the exception
and interrupt handlers.

The remainder of this chapter discusses control transfers through interrupt gates and trap gates. If the
gate descriptor in the IDT is a task gate, a TSS-segment selector is referenced, and a task switch

513-243.eps

Interrupt-Handler and
Interrupted-Program

Stack

SS:SP

+2

+4

Return IP

Return CS

Return FLAGS

[AMD Public Use]

260 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

occurs. See Chapter 12, “Task Management,” for more information on the hardware task-switch
mechanism.

8.7.1 Locating the Interrupt Handler

When an exception or interrupt occurs, the processor scales the interrupt vector number by eight and
uses the result as an offset into the IDT. If the gate descriptor referenced by the IDT offset is an
interrupt gate or a trap gate, it contains a segment-selector and segment-offset field (see Section
“Legacy Segment Descriptors” on page 88 for a detailed description of the gate-descriptor format and
fields). These two fields perform the same function as the pointer operand in a far control-transfer
instruction. The gate-descriptor segment-selector field points to the target code-segment descriptor
located in either the GDT or LDT. The gate-descriptor segment-offset field is the instruction-pointer
offset into the interrupt-handler code segment. The code-segment base taken from the code-segment
descriptor is added to the gate-descriptor segment-offset field to create the interrupt-handler virtual
address (linear address).

Figure 8-8 on page 261 shows how the protected-mode interrupt handler is located by the interrupt
mechanism.

[AMD Public Use]

Exceptions and Interrupts 261

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 8-8. Protected-Mode Interrupt Control Transfer

8.7.2 Interrupt To Same Privilege

When a control transfer to an exception or interrupt handler at the same privilege level occurs (through
an interrupt gate or a trap gate), the processor performs the following:

1. Pushes the EFLAGS register onto the stack.

2. Clears the TF, NT, RF, and VM bits in EFLAGS to 0.

*

Interrupt Vector

+

513-240.eps

Virtual-Address
Space

Interrupt Handler

Code Segment

+

Interrupt
Descriptor Table

Code-Segment Offset

CS Selector DPL

Global or Local
Descriptor Table

Code-Segment Base

CS Limit DPL

Interrupt-Descriptor-Table Register

IDT Base Address IDT Limit

8

[AMD Public Use]

262 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

3. The processor handles EFLAGS.IF based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

4. Saves the return CS register and EIP register (RIP[31:0]) by pushing them onto the stack. The CS
value is padded with two bytes to form a doubleword.

5. If the interrupt has an associated error code, the error code is pushed onto the stack.

6. The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is
loaded from the offset field in the gate descriptor.

7. The interrupt handler begins executing with the instruction referenced by new CS:EIP.

Figure 8-9 shows the stack after control is transferred to the interrupt handler.

Figure 8-9. Stack After Interrupt to Same Privilege Level

8.7.3 Interrupt To Higher Privilege

When a control transfer to an exception or interrupt handler running at a higher privilege occurs
(numerically lower CPL value), the processor performs a stack switch using the following steps:

1. The target CPL is read by the processor from the target code-segment DPL and used as an index
into the TSS for selecting the new stack pointer (SS:ESP). For example, if the target CPL is 1, the
processor selects the SS:ESP for privilege-level 1 from the TSS.

2. Pushes the return stack pointer (old SS:ESP) onto the new stack. The SS value is padded with two
bytes to form a doubleword.

3. Pushes the EFLAGS register onto the new stack.

4. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.

Interrupt-Handler and
Interrupted Program

Stack

Return EIP

Return CS

Return EFLAGS

Error Code SS:ESP

+4

+8

+12

513-242.eps

Return CS

Return EFLAGS

Return EIP SS:ESP

+4

+8

With Error Code With No Error Code

[AMD Public Use]

Exceptions and Interrupts 263

24593—Rev. 3.37—March 2021 AMD64 Technology

5. The processor handles the EFLAGS.IF bit based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

6. Saves the return-address pointer (CS:EIP) by pushing it onto the stack. The CS value is padded
with two bytes to form a doubleword.

7. If the interrupt vector number has an error code associated with it, the error code is pushed onto
the stack.

8. The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is
loaded from the offset field in the gate descriptor.

9. The interrupt handler begins executing with the instruction referenced by new CS:EIP.

Figure 8-10 shows the new stack after control is transferred to the interrupt handler.

Figure 8-10. Stack After Interrupt to Higher Privilege

8.7.4 Privilege Checks

Before loading the CS register with the interrupt-handler code-segment selector (located in the gate
descriptor), the processor performs privilege checks similar to those performed on call gates. The
checks are performed when either conforming or nonconforming interrupt handlers are referenced:

1. The processor reads the gate DPL from the interrupt-gate or trap-gate descriptor. The gate DPL is
the minimum privilege-level (numerically-highest value) needed by a program to access the gate.
The processor compares the CPL with the gate DPL. The CPL must be numerically less-than or
equal-to the gate DPL for this check to pass.

Interrupt-Handler Stack

Return SS

Return EIP

Return CS

Return EFLAGS

Return ESP

Error Code New SS:ESP

+4

+8

+12

+16

+20

513-241.eps

Return SS

Return CS

Return EFLAGS

Return ESP

Return EIP New SS:ESP

+4

+8

+12

+16

With Error Code With No Error Code

[AMD Public Use]

264 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

2. The processor compares the CPL with the interrupt-handler code-segment DPL. For this check to
pass, the CPL must be numerically greater-than or equal-to the code-segment DPL. This check
prevents control transfers to less-privileged interrupt handlers.

Unlike call gates, no RPL comparison takes place. This is because the gate descriptor is referenced in
the IDT using the interrupt vector number rather than a selector, and no RPL field exists in the
interrupt vector number.

Exception and interrupt handlers should be made reachable from software running at any privilege
level that requires them. If the gate DPL value is too low (requiring more privilege), or the interrupt-
handler code-segment DPL is too high (runs at lower privilege), the interrupt control transfer can fail
the privilege checks. Setting the gate DPL=3 and interrupt-handler code-segment DPL=0 makes the
exception handler or interrupt handler reachable from any privilege level.

Figure 8-11 on page 265 shows two examples of interrupt privilege checks. In Example 1, both
privilege checks pass:

• The interrupt-gate DPL is at the lowest privilege (3), which means that software running at any
privilege level (CPL) can access the interrupt gate.

• The interrupt-handler code segment is at the highest-privilege level, as indicated by DPL=0. This
means software running at any privilege can enter the interrupt handler through the interrupt gate.

[AMD Public Use]

Exceptions and Interrupts 265

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 8-11. Privilege-Check Examples for Interrupts

In Example 2, both privilege checks fail:

• The interrupt-gate DPL specifies that only software running at privilege-level 0 can access the
gate. The current program does not have a high enough privilege level to access the interrupt gate,
since its CPL is set at 2.

513-244.epsExample 2: Privilege Check Fails

DPL=0

Gate Descriptor

Access Denied

Interrupt
Handler

CS CPL=2

≤

DPL=3

Code Descriptor

Interrupt Vector

≥

?

Access
Denied

Access
Denied

Example 1: Privilege Check Passes

DPL=3

Gate Descriptor

Access Allowed

Interrupt
Handler

CS CPL=2

≤

DPL=0

Code Descriptor

Interrupt Vector

≥

?

Access
Allowed

Access
Allowed

[AMD Public Use]

266 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

• The interrupt handler has a lower privilege (DPL=3) than the currently-running software (CPL=2).
Transitions from more-privileged software to less-privileged software are not allowed, so this
privilege check fails as well.

Although both privilege checks fail, only one such failure is required to deny access to the interrupt
handler.

8.7.5 Returning From Interrupt Procedures

A return to an interrupted program should be performed using the IRET instruction. An IRET is a far
return to a different code segment, with or without a change in privilege level. The actions of an IRET
in both cases are described in the following sections.

IRET, Same Privilege. Before performing the IRET, the stack pointer must point to the return EIP. If
there was an error code pushed onto the stack as a result of the exception or interrupt, that error code
should have been popped off the stack earlier by the handler. The IRET reverses the actions of the
interrupt mechanism:

1. Pops the return pointer off of the stack, loading both the CS register and EIP register (RIP[31:0])
with the saved values. The return code-segment RPL is read by the processor from the CS value
stored on the stack to determine that an equal-privilege control transfer is occurring.

2. Pops the saved EFLAGS image off of the stack and into the EFLAGS register.

3. Transfers control to the return program at the target CS:EIP.

IRET, Less Privilege. If an IRET changes privilege levels, the return program must be at a lower
privilege than the interrupt handler. The IRET in this case causes a stack switch to occur:

1. The return pointer is popped off of the stack, loading both the CS register and EIP register
(RIP[31:0]) with the saved values. The return code-segment RPL is read by the processor from
the CS value stored on the stack to determine that a lower-privilege control transfer is occurring.

2. The saved EFLAGS image is popped off of the stack and loaded into the EFLAGS register.

3. The return-program stack pointer is popped off of the stack, loading both the SS register and ESP
register (RSP[31:0]) with the saved values.

4. Control is transferred to the return program at the target CS:EIP.

8.7.6 Shadow Stack Support for Interrupts and Exceptions

The operation of the shadow stack for an interrupt control transfer depends whether or not the interrupt
handler runs at the same privilege or at a higher privilege level than the CPL when the interrupt or
exception occurred.

Interrupt Control Transfer to Same Privilege Level. When a control transfer to a interrupt handler
at the same privilege occurs, and the shadow stack feature is enabled for the current CPL, the processor
pushes the interrupted procedure's CS and LIP (CS.base + EIP) onto the current shadow stack.

[AMD Public Use]

Exceptions and Interrupts 267

24593—Rev. 3.37—March 2021 AMD64 Technology

Interrupt Control Transfer to Higher Privilege Level. When a control transfer to a interrupt
handler at a higher privilege occurs, the actions taken by the processor depend on the CPL when the
interrupt or exception occurred.

• If the CPL = 3:

 - if shadow stacks are enabled in user-mode, the current SSP is saved to MSR PL3_SSP.

 - if shadow stacks are enabled in supervisor mode, a new SSP is loaded from MSR PLn_SSP (where
 n = the target CPL 0, 1 or 2).

 - the shadow stack token located at the base of the new shadow stack is checked, and if valid, the
 token's busy bit is set to 1.

 Note: the CS and LIP are not pushed onto the new shadow stack.

• If the CPL =1 or 2, and shadow stacks are enabled in supervisor mode:

 - the new SSP is loaded from MSR PLn_SSP (where n = the target CPL 0 or 1).

 - the shadow stack token located at the base of the new shadow stack is checked, and if valid, the
 token's busy bit is set to 1.

 - the CS, LIP and old SSP are pushed onto the new shadow stack.

For a detailed description of shadow stack operations, see Section “Shadow Stacks” on page 637.

8.8 Virtual-8086 Mode Interrupt Control Transfers
This section describes interrupt control transfers as they relate to virtual-8086 mode. Virtual-8086
mode is not supported by long mode. Therefore, the control-transfer mechanism described here is not
applicable to long mode.

When a software interrupt occurs (not external interrupts, INT1, or INT3) while the processor is
running in virtual-8086 mode (EFLAGS.VM=1), the control transfer that occurs depends on three
system controls:

• EFLAGS.IOPL—This field controls interrupt handling based on the CPL. See Section “I/O
Privilege Level Field (IOPL) Field” on page 54 for more information on this field.
Setting IOPL<3 redirects the interrupt to the general-protection exception (#GP) handler.

• CR4.VME—This bit enables virtual-mode extensions. See Section “Virtual-8086 Mode
Extensions (VME)” on page 48 for more information on this bit.

• TSS Interrupt-Redirection Bitmap—The TSS interrupt-redirection bitmap contains 256 bits, one
for each possible INTn vector (software interrupt). When CR4.VME=1, the bitmap is used by the
processor to direct interrupts to the handler provided by the currently-running 8086 program
(bitmap entry is 0), or to the protected-mode operating-system interrupt handler (bitmap entry is
1). See Section “Legacy Task-State Segment” on page 357 for information on the location of this
field within the TSS.

[AMD Public Use]

268 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

If IOPL<3, CR4.VME=1, and the corresponding interrupt redirection bitmap entry is 0, the processor
uses the virtual-interrupt mechanism. See Section “Virtual Interrupts” on page 277 for more
information on this mechanism.

Table 8-11 summarizes the actions of the above system controls on interrupts taken when the
processor is running in virtual-8086 mode.

8.8.1 Protected-Mode Handler Control Transfer

Control transfers to protected-mode handlers from virtual-8086 mode differ from standard protected-
mode transfers in several ways. The processor follows these steps in making the control transfer:

1. Reads the CPL=0 stack pointer (SS:ESP) from the TSS.

2. Pushes the GS, FS, DS, and ES selector registers onto the stack. Each push is padded with two
bytes to form a doubleword.

3. Clears the GS, FS, DS, and ES selector registers to 0. This places a null selector in each of the
four registers

4. Pushes the return stack pointer (old SS:ESP) onto the new stack. The SS value is padded with two
bytes to form a doubleword.

5. Pushes the EFLAGS register onto the new stack.

6. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.

7. Handles EFLAGS.IF based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

8. Pushes the return-address pointer (CS:EIP) onto the stack. The CS value is padded with two bytes
to form a doubleword.

9. If the interrupt has an associated error code, pushes the error code onto the stack.

10. Loads the segment-selector field from the gate descriptor into the CS register, and loads the offset
field from the gate descriptor into the EIP register.

Table 8-11. Virtual-8086 Mode Interrupt Mechanisms

EFLAGS.IOPL CR4.VME
TSS Interrupt

Redirection
Bitmap Entry

Interrupt Mechanism

0, 1, or 2
0 —

General-Protection Exception
1 1
1 0 Virtual Interrupt

3
0 —

Protected-Mode Handler
1 1
1 0 Virtual 8086 Handler

[AMD Public Use]

Exceptions and Interrupts 269

24593—Rev. 3.37—March 2021 AMD64 Technology

11. Begins execution of the interrupt handler with the instruction referenced by the new CS:EIP.

Figure 8-12 shows the new stack after control is transferred to the interrupt handler with an error code.

Figure 8-12. Stack After Virtual-8086 Mode Interrupt to Protected Mode

An IRET from privileged protected-mode software (CPL=0) to virtual-8086 mode reverses the stack-
build process. After the return pointer, EFLAGS, and return stack-pointer are restored, the processor
restores the ES, DS, FS, and GS registers by popping their values off the stack.

8.8.2 Virtual-8086 Handler Control Transfer

When a control transfer to an 8086 handler occurs from virtual-8086 mode, the processor creates an
interrupt-handler stack identical to that created when an interrupt occurs in real mode (see Figure 8-7
on page 259). The processor performs the following actions during a control transfer:

1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.

2. Clears the EFLAGS.IF and EFLAGS.RF bits to 0.

3. Saves the CS register and IP register (RIP[15:0]) by pushing them onto the stack.

4. Locates the interrupt-handler pointer (CS:IP) in the 8086 IDT by scaling the interrupt vector by
four and adding the result to the virtual (linear) address 0. The value in the IDTR is not used.

5. Transfers control to the interrupt handler referenced by the CS:IP in the IDT.

An IRET from the 8086 handler back to virtual-8086 mode reverses the stack-build process.

With Error Code

Return SS

Return EIP

Return CS

Return EFLAGS

Return ESP

Error Code New SS:ESP
(From TSS, CPL=0)

+4

+8

+12

+16

+20

Return ES

Return DS

Return FS

Return GS

+24

+28

+32

+36

513-249.eps

With No Error Code

Return SS

Return CS

Return EFLAGS

Return ESP

Return EIP New SS:ESP

+4

+8

+12

+16

+20Return ES

Return DS

Return FS

Return GS

+24

+28

+32

Interrupt-Handler Stack

[AMD Public Use]

270 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

8.9 Long-Mode Interrupt Control Transfers
The long-mode architecture expands the legacy interrupt-mechanism to support 64-bit operating
systems and applications. These changes include:

• All interrupt handlers are 64-bit code and operate in 64-bit mode.
• The size of an interrupt-stack push is fixed at 64 bits (8 bytes).
• The interrupt-stack frame is aligned on a 16-byte boundary.
• The stack pointer, SS:RSP, is pushed unconditionally on interrupts, rather than conditionally based

on a change in CPL.
• The SS selector register is loaded with a null selector as a result of an interrupt, if the CPL changes.
• The IRET instruction behavior changes, to unconditionally pop SS:RSP, allowing a null SS to be

popped.
• A new interrupt stack-switch mechanism, called the interrupt-stack table or IST, is introduced.
• When shadow stacks are enabled, a new shadow stack-switch mechanism, called the Interrupt SSP

Table or ISST, is introduced.

8.9.1 Interrupt Gates and Trap Gates

Only long-mode interrupt and trap gates can be referenced in long mode (64-bit mode and
compatibility mode). The legacy 32-bit interrupt-gate and 32-bit trap-gate types (0Eh and 0Fh, as
described in Section “System Descriptors” on page 99) are redefined in long mode as 64-bit interrupt-
gate and 64-bit trap-gate types. 32-bit and 16-bit interrupt-gate and trap-gate types do not exist in long
mode, and software is prohibited from using task gates. If a reference is made to any gate other than a
64-bit interrupt gate or a 64-bit trap gate, a general-protection exception (#GP) occurs.

The long-mode gate types are 16 bytes (128 bits) long. They are an extension of the legacy-mode gate
types, allowing a full 64-bit segment offset to be stored in the descriptor. See Section “Legacy
Segment Descriptors” on page 88 for a detailed description of the gate-descriptor format and fields.

8.9.2 Locating the Interrupt Handler

When an interrupt occurs in long mode, the processor multiplies the interrupt vector number by 16 and
uses the result as an offset into the IDT. The gate descriptor referenced by the IDT offset contains a
segment-selector and a 64-bit segment-offset field. The gate-descriptor segment-offset field contains
the complete virtual address for the interrupt handler. The gate-descriptor segment-selector field
points to the target code-segment descriptor located in either the GDT or LDT. The code-segment
descriptor is only used for privilege-checking purposes and for placing the processor in 64-bit mode.
The code segment-descriptor base field, limit field, and most attributes are ignored.

Figure 8-13 shows how the long-mode interrupt handler is located by the interrupt mechanism.

[AMD Public Use]

Exceptions and Interrupts 271

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 8-13. Long-Mode Interrupt Control Transfer

8.9.3 Interrupt Stack Frame

In long mode, the return-program stack pointer (SS:RSP) is always pushed onto the interrupt-handler
stack, regardless of whether or not a privilege change occurs. Although the SS register is not used in
64-bit mode, SS is pushed to allow returns into compatibility mode. Pushing SS:RSP unconditionally
presents operating systems with a consistent interrupt-stack-frame size for all interrupts, except for
error codes. Interrupt service-routine entry points that handle interrupts generated by non-error-code
interrupts can push an error code on the stack for consistency.

In long mode, when a control transfer to an interrupt handler occurs, the processor performs the
following:

*

Interrupt Vector

+

513-245.eps

Virtual-Address
Space

Interrupt Handler

Interrupt-Descriptor
Table

Code-Segment Offset

CS Selector DPL

Global- or Local-
Descriptor Table

Code-Segment Base

CS Limit DPL

Interrupt-Descriptor-Table Register

IDT Base Address IDT Limit

16

[AMD Public Use]

272 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

1. Aligns the new interrupt-stack frame by masking RSP with FFFF_FFFF_FFFF_FFF0h.

2. If IST field in interrupt gate is not 0, reads IST pointer into RSP.

3. If a privilege change occurs, the target DPL is used as an index into the long-mode TSS to select a
new stack pointer (RSP).

4. If a privilege change occurs, SS is cleared to zero indicating a null selector.

5. Pushes the return stack pointer (old SS:RSP) onto the new stack. The SS value is padded with six
bytes to form a quadword.

6. Pushes the 64-bit RFLAGS register onto the stack. The upper 32 bits of the RFLAGS image on
the stack are written as zeros.

7. Clears the TF, NT, and RF bits in RFLAGS bits to 0.

8. Handles the RFLAGS.IF bit according to the gate-descriptor type:
- If the gate descriptor is an interrupt gate, RFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, RFLAGS.IF is not modified.

9. Pushes the return CS register and RIP register onto the stack. The CS value is padded with six
bytes to form a quadword.

10. If the interrupt vector number has an error code associated with it, pushes the error code onto the
stack. The error code is padded with four bytes to form a quadword.

11. Loads the segment-selector field from the gate descriptor into the CS register. The processor
checks that the target code-segment is a 64-bit mode code segment.

12. Loads the offset field from the gate descriptor into the target RIP. The interrupt handler begins
execution when control is transferred to the instruction referenced by the new RIP.

Figure 8-14 on page 273 shows the stack after control is transferred to the interrupt handler.

[AMD Public Use]

Exceptions and Interrupts 273

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 8-14. Long-Mode Stack After Interrupt—Same Privilege

Interrupt-Stack Alignment. In legacy mode, the interrupt-stack pointer can be aligned at any address
boundary. Long mode, however, aligns the stack on a 16-byte boundary. This alignment is performed
by the processor in hardware before pushing items onto the stack frame. The previous RSP is saved
unconditionally on the new stack by the interrupt mechanism. A subsequent IRET instruction
automatically restores the previous RSP.

Aligning the stack on a 16-byte boundary allows optimal performance for saving and restoring the 16-
byte XMM registers. The interrupt handler can save and restore the XMM registers using the faster 16-
byte aligned loads and stores (MOVAPS), rather than unaligned loads and stores (MOVUPS).
Although the RSP alignment is always performed in long mode, it is only of consequence when the
interrupted program is already running at CPL=0, and it is generally used only within the operating-
system kernel. The operating system should put 16-byte aligned RSP values in the TSS for interrupts
that change privilege levels.

Stack Switch. In long mode, the stack-switch mechanism differs slightly from the legacy stack-
switch mechanism (see Section “Interrupt To Higher Privilege” on page 262). When stacks are
switched during a long-mode privilege-level change resulting from an interrupt, a new SS descriptor is
not loaded from the TSS. Long mode only loads an inner-level RSP from the TSS. However, the SS
selector is loaded with a null selector, allowing nested control transfers, including interrupts, to be
handled properly in 64-bit mode. The SS.RPL is set to the new CPL value. See Section “Nested IRETs
to 64-Bit Mode Procedures” on page 276 for additional information.

Return SS

Return CS

Error Code

With Error Code

Return RIP

Return RFLAGS

Return RSP

RSP

+8

+16

+24

+32

+40

Return SS

Return CS

With No Error Code

Return RIP

Return RFLAGS

Return RSP

RSP

+8

+16

+24

+32

Interrupt-Handler Stack

[AMD Public Use]

274 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

The interrupt-handler stack that results from a privilege change in long mode looks identical to a long-
mode stack when no privilege change occurs. Figure 8-15 shows the stack after the switch is
performed and control is transferred to the interrupt handler.

Figure 8-15. Long-Mode Stack After Interrupt—Higher Privilege

8.9.4 Interrupt-Stack Table

In long mode, a new interrupt-stack table (IST) mechanism is introduced as an alternative to the
modified legacy stack-switch mechanism described above. The IST mechanism provides a method for
specific interrupts, such as NMI, double-fault, and machine-check, to always execute on a known-
good stack. In legacy mode, interrupts can use the hardware task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However,
the hardware task-switch mechanism is not supported in long mode.

When enabled, the IST mechanism unconditionally switches stacks. It can be enabled on an individual
interrupt vector basis using a new field in the IDT gate-descriptor entry. This allows some interrupts to
use the modified legacy mechanism, and others to use the IST mechanism. The IST mechanism is only
available in long mode.

The IST mechanism uses new fields in the 64-bit TSS format and the long-mode interrupt-gate and
trap-gate descriptors:

• Figure 12-8 on page 363 shows the format of the 64-bit TSS and the location of the seven IST
pointers. The 64-bit TSS offsets from 24h to 5Bh provide space for seven IST pointers, each of
which are 64 bits (8 bytes) long.

Return SS

Return CS

Error Code

With Error Code

Return RIP

Return RFLAGS

Return RSP

New RSP
(from TSS)

SS=0
(if CPL changes)

+8

+16

+24

+32

+40

Return SS

Return CS

Without Error Code

Return RIP

Return RFLAGS

Return RSP

New RSP
(from TSS)

SS=0
(if CPL changes)

+8

+16

+24

+32

Interrupt-Handler Stack

[AMD Public Use]

Exceptions and Interrupts 275

24593—Rev. 3.37—March 2021 AMD64 Technology

• The long-mode interrupt-gate and trap-gate descriptors define a 3-bit IST-index field in bits 2:0 of
byte +4. Figure 4-24 on page 102 shows the format of long-mode interrupt-gate and trap-gate
descriptors and the location of the IST-index field.

To enable the IST mechanism for a specific interrupt, system software stores a non-zero value in the
interrupt gate-descriptor IST-index field. If the IST index is zero, the modified legacy stack-switching
mechanism (described in the previous section) is used.

Figure 8-16 shows how the IST mechanism is used to create the interrupt-handler stack. When an
interrupt occurs and the IST index is non-zero, the processor uses the index to select the corresponding
IST pointer from the TSS. The IST pointer is loaded into the RSP to establish a new stack for the
interrupt handler. The SS register is loaded with a null selector if the CPL changes and the SS.RPL is
set to the new CPL value. After the stack is loaded, the processor pushes the old stack pointer,
RFLAGS, the return pointer, and the error code (if applicable) onto the stack. Control is then
transferred to the interrupt handler.

Figure 8-16. Long-Mode IST Mechanism

Software must make sure that an interrupt or exception handler using an IST pointer doesn't take
another exception using the same IST pointer, as this will result in the first stack exception frame being
overwritten.

513-248.eps

Return SS

Return CS

Error Code

64-Bit
Interrupt-Handler Stack

Return RIP

Return RFLAGS

Return RSP

+8

+16

+24

+32

+40

IST

Long-Mode
Interrupt- or Trap-
Gate Descriptor

64-Bit TSS

RSP0 : RSP2

IST1 : IST7
RSP

SS=0

[AMD Public Use]

276 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

8.4.9.1 Interrupt Shadow Stack Table.

When the shadow stack feature is enabled in long mode (EFER.LMA=1), a mechanism similar to the
IST is provided to switch shadow stacks. This mechanism, the Interrupt Shadow Stack Table (ISST) is
described in Section “Shadow Stacks” on page 637.

8.9.5 Returning From Interrupt Procedures

As with legacy mode, a return to an interrupted program in long mode should be performed using the
IRET instruction. However, in long mode, the IRET semantics are different from legacy mode:

• In 64-bit mode, IRET pops the return-stack pointer unconditionally off the interrupt-stack frame
and into the SS:RSP registers. This reverses the action of the long-mode interrupt mechanism,
which saves the stack pointer whether or not a privilege change occurs. IRET also allows a null
selector to be popped off the stack and into the SS register. See Section “Nested IRETs to 64-Bit
Mode Procedures” on page 276 for additional information.

• In compatibility mode, IRET behaves as it does in legacy mode. The SS:ESP is popped off the
stack only if a control transfer to less privilege (numerically greater CPL) is performed. Otherwise,
it is assumed that a stack pointer is not present on the interrupt-handler stack.

The long-mode interrupt mechanism always uses a 64-bit stack when saving values for the interrupt
handler, and the interrupt handler is always entered in 64-bit mode. To work properly, an IRET used to
exit the 64-bit mode interrupt-handler requires a series of eight-byte pops off the stack. This is
accomplished by using a 64-bit operand-size prefix with the IRET instruction. The default stack size
assumed by an IRET in 64-bit mode is 32 bits, so a 64-bit REX prefix is needed by 64-bit mode
interrupt handlers.

Nested IRETs to 64-Bit Mode Procedures. In long mode, an interrupt causes a null selector to be
loaded into the SS register if the CPL changes (this is the same action taken by a far CALL in long
mode). If the interrupt handler performs a far call, or is itself interrupted, the null SS selector is pushed
onto the stack frame, and another null selector is loaded into the SS register. Using a null selector in
this way allows the processor to properly handle returns nested within 64-bit-mode procedures and
interrupt handlers.

The null selector enables the processor to properly handle nested returns to 64-bit mode (which do not
use the SS register), and returns to compatibility mode (which do use the SS register). Normally, an
IRET that pops a null selector into the SS register causes a general-protection exception (#GP) to
occur. However, in long mode, the null selector indicates the existence of nested interrupt handlers
and/or privileged software in 64-bit mode. Long mode allows an IRET to pop a null selector into SS
from the stack under the following conditions:

• The target mode is 64-bit mode.
• The target CPL<3.

In this case, the processor does not load an SS descriptor, and the null selector is loaded into SS
without causing a #GP exception.

[AMD Public Use]

Exceptions and Interrupts 277

24593—Rev. 3.37—March 2021 AMD64 Technology

8.10 Virtual Interrupts
The term virtual interrupts includes two classes of extensions to the interrupt-handling mechanism:

• Virtual-8086 Mode Extensions (VME)—These allow virtual interrupts and interrupt redirection in
virtual-8086 mode. VME has no effect on protected-mode programs.

• Protected-Mode Virtual Interrupts (PVI)—These allow virtual interrupts in protected mode when
CPL=3. Interrupt redirection is not available in protected mode. PVI has no effect on virtual-8086-
mode programs.

Because virtual-8086 mode is not supported in long mode, VME extensions are not supported in long
mode. PVI extensions are, however, supported in long mode.

8.10.1 Virtual-8086 Mode Extensions

The virtual-8086-mode extensions (VME) enable performance enhancements for 8086 programs
running as protected tasks in virtual-8086 mode. These extensions are enabled by setting CR4.VME
(bit 0) to 1. The extensions enabled by CR4.VME are:

• Virtualizing control and notification of maskable external interrupts with the EFLAGS VIF (bit
19) and VIP (bit 20) bits.

• Selective interception of software interrupts (INTn instructions) using the TSS interrupt
redirection bitmap (IRB).

Background. Legacy-8086 programs expect to have full access to the EFLAGS interrupt flag (IF)
bit, allowing programs to enable and disable maskable external interrupts. When those programs run in
virtual-8086 mode under a multitasking protected-mode environment, it can disrupt the operating
system if programs enable or disable interrupts for their own purposes. This is particularly true if
interrupts associated with one program can occur during execution of another program. For example, a
program could request that an area of memory be copied to disk. System software could suspend the
program before external hardware uses an interrupt to acknowledge that the block has been copied.
System software could subsequently start a second program which enables interrupts. This second
program could receive the external interrupt indicating that the memory block of the first program has
been copied. If that were to happen, the second program would probably be unprepared to handle the
interrupt properly.

Access to the IF bit must be managed by system software on a task-by-task basis to prevent corruption
of system resources. In order to completely manage the IF bit, system software must be able to
interrupt all instructions that can read or write the bit. These instructions include STI, CLI, PUSHF,
POPF, INTn, and IRET. These instructions are part of an instruction class that is IOPL-sensitive. The
processor takes a general-protection exception (#GP) whenever an IOPL-sensitive instruction is
executed and the EFLAGS.IOPL field is less than the CPL. Because all virtual-8086 programs run at
CPL=3, system software can interrupt all instructions that modify the IF bit by setting IOPL<3.

[AMD Public Use]

278 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

System software maintains a virtual image of the IF bit for each virtual-8086 program by emulating
the actions of IOPL-sensitive instructions that modify the IF bit. When an external maskable-interrupt
occurs, system software checks the state of the IF image for the current virtual-8086 program to
determine whether the program is masking interrupts. If the program is masking interrupts, system
software saves the interrupt information until the virtual-8086 program attempts to re-enable
interrupts. When the virtual-8086 program unmasks interrupts with an IOPL-sensitive instruction,
system software traps the action with the #GP handler.

The performance of a processor can be significantly degraded by the overhead of trapping and
emulating IOPL-sensitive instructions, and the overhead of maintaining images of the IF bit for each
virtual-8086 program. This performance loss can be eliminated by running virtual-8086 programs
with IOPL set to 3, thus allowing changes to the real IF flag from any privilege level. Unfortunately,
this can leave critical system resources unprotected.

In addition to the performance problems caused by virtualizing the IF bit, software interrupts (INTn
instructions) cannot be masked by the IF bit or virtual copies of the IF bit. The IF bit only affects
maskable external interrupts. Software interrupts in virtual-8086 mode are normally directed to the
real mode interrupt vector table (IVT), but it can be desirable to redirect certain interrupts to the
protected-mode interrupt-descriptor table (IDT).

The virtual-8086-mode extensions are designed to support both external interrupts and software
interrupts, with mechanisms that preserve high performance without compromising protection.
Virtualization of external interrupts is supported using two bits in the EFLAGS register: the virtual-
interrupt flag (VIF) bit and the virtual-interrupt pending (VIP) bit. Redirection of software interrupts is
supported using the interrupt-redirection bitmap (IRB) in the TSS. A separate TSS can be created for
each virtual-8086 program, allowing system software to control interrupt redirection independently
for each virtual-8086 program.

VIF and VIP Extensions for External Interrupts. When VME extensions are enabled, the IF-
modifying instructions normally trapped by system software are allowed to execute. However, instead
of modifying the IF bit, they modify the EFLAGS VIF bit. This leaves control over maskable
interrupts to the system software. It can also be used as an indicator to system software that the virtual-
8086 program is able to, or is expecting to, receive external interrupts.

When an unmasked external interrupt occurs, the processor transfers control from the virtual-8086
program to a protected-mode interrupt handler. If the interrupt handler determines that the interrupt is
for the virtual-8086 program, it can check the state of the VIF bit in the EFLAGS value pushed on the
stack for the virtual-8086 program. If the VIF bit is set (indicating the virtual-8086 program attempted
to unmask interrupts), system software can allow the interrupt to be handled by the appropriate virtual-
8086 interrupt handler.

If the VIF bit is clear (indicating the virtual-8086 program attempted to mask interrupts) and the
interrupt is for the virtual-8086 program, system software can hold the interrupt pending. System
software holds an interrupt pending by saving appropriate information about the interrupt, such as the
interrupt vector, and setting the virtual-8086 program's VIP bit in the EFLAGS image on the stack.
When the virtual-8086 program later attempts to set IF, the previously set VIP bit causes a general-

[AMD Public Use]

Exceptions and Interrupts 279

24593—Rev. 3.37—March 2021 AMD64 Technology

protection exception (#GP) to occur. System software can then pass the saved interrupt information to
the virtual-8086 interrupt handler.

To summarize, when the VME extensions are enabled (CR4.VME=1), the VIF and VIP bits are set and
cleared as follows:

• VIF Bit—This bit is set and cleared by the processor in virtual-8086 mode in response to an
attempt by a virtual-8086 program to set and clear the EFLAGS.IF bit. VIF is used by system
software to determine whether a maskable external interrupt should be passed on to the virtual-
8086 program, emulated by system software, or held pending. VIF is also cleared during software
interrupts through interrupt gates, with the original VIF value preserved in the EFLAGS image on
the stack.

• VIP Bit—System software sets and clears this bit in the EFLAGS image saved on the stack after an
interrupt. It can be set when an interrupt occurs for a virtual-8086 program that has a clear VIF bit.
The processor examines the VIP bit when an attempt is made by the virtual-8086 program to set
the IF bit. If VIP is set when the program attempts to set IF, a general-protection exception (#GP)
occurs before execution of the IF-setting instruction. System software must clear VIP to avoid
repeated #GP exceptions when returning to the interrupted instruction.

The VIF and VIP bits can be used by system software to minimize the overhead associated with
managing maskable external interrupts because virtual copies of the IF flag do not have to be
maintained by system software. Instead, VIF and VIP are maintained during context switches along
with the remaining EFLAGS bits.

Table 8-12 on page 281 shows how the behavior of instructions that modify the IF bit are affected by
the VME extensions.

Interrupt Redirection of Software Interrupts. In virtual-8086 mode, software interrupts (INTn
instructions) are trapped using a #GP exception handler if the IOPL is less than 3 (the CPL for virtual-
8086 mode). This allows system software to interrupt and emulate 8086-interrupt handlers. System
software can set the IOPL to 3, in which case the INTn instruction is vectored through a gate descriptor
in the protected-mode IDT. System software can use the gate to control access to the virtual-8086
mode interrupt vector table (IVT), or to redirect the interrupt to a protected-mode interrupt handler.

When VME extensions are enabled, for INTn instructions to execute normally, vectoring directly to a
virtual-8086 interrupt handler through the virtual-8086 IVT (located at address 0 in the virtual-address
space of the task). For security or performance reasons, however, it can be necessary to intercept INTn
instructions on a vector-specific basis to allow servicing by protected-mode interrupt handlers. This is
performed by using the interrupt-redirection bitmap (IRB), located in the TSS and enabled when
CR4.VME=1. The IRB is available only in virtual-8086 mode.

Figure 12-6 on page 358 shows the format of the TSS, with the interrupt redirection bitmap located
near the top. The IRB contains 256 bits, one for each possible software-interrupt vector. The most-
significant bit of the IRB controls interrupt vector 255, and is located immediately before the IOPB
base. The least-significant bit of the IRB controls interrupt vector 0.

The bits in the IRB function as follows:

[AMD Public Use]

280 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

• When set to 1, the INTn instruction behaves as if the VME extensions are not enabled. The
interrupt is directed through the IDT to a protected-mode interrupt handler if IOPL=3. If IOPL<3,
the INTn causes a #GP exception.

• When cleared to 0, the INTn instruction is directed through the IVT for the virtual-8086 program
to the corresponding virtual-8086 interrupt handler.

Only software interrupts can be redirected using the IRB mechanism. External interrupts are
asynchronous events that occur outside the context of a virtual-8086 program. Therefore, external
interrupts require system-software intervention to determine the appropriate context for the interrupt.
The VME extensions described in Section “VIF and VIP Extensions for External Interrupts” on
page 278 are provided to assist system software with external-interrupt intervention.

8.10.2 Protected Mode Virtual Interrupts

The protected-mode virtual-interrupt (PVI) bit in CR4 enables support for interrupt virtualization in
protected mode. When enabled, the processor maintains program-specific VIF and VIP bits similar to
the manner defined by the virtual-8086 mode extensions (VME). However, unlike VME, only the STI
and CLI instructions are affected by the PVI extension. When a program is running at CPL=3, it can
use STI and CLI to set and clear its copy of the VIF flag without causing a general-protection
exception. The last section of Table 8-12 on page 281 describes the behavior of instructions that
modify the IF bit when PVI extensions are enabled.

The interrupt redirection bitmap (IRB) defined by the VME extensions is not supported by the PVI
extensions.

8.10.3 Effect of Instructions that Modify EFLAGS.IF

Table 8-12 on page 281 shows how the behavior of instructions that modify the IF bit are affected by
the VME and PVI extensions. The table columns specify the following:

• Operating Mode—the processor mode in effect when the instruction is executed.
• Instruction—the IF-modifying instruction.
• IOPL—the value of the EFLAGS.IOPL field.
• VIP—the value of the EFLAGS.VIP bit.
• #GP—indicates whether the conditions in the first four columns cause a general-protection

exception (#GP) to occur.
• Effect on IF Bit—indicates the effect the conditions in the first four columns have on the

EFLAGS.IF bit and the image of EFLAGS.IF on the stack.
• Effect on VIF Bit—indicates the effect the conditions in the first four columns have on the

EFLAGS.VIF bit and the image of EFLAGS.VIF on the stack.

[AMD Public Use]

Exceptions and Interrupts 281

24593—Rev. 3.37—March 2021 AMD64 Technology

Table 8-12. Effect of Instructions that Modify the IF Bit

Operating Mode Instruction IOPL VI
P #GP Effect on IF Bit Effect on VIF Bit

Real Mode
CR0.PE=0
EFLAGS.VM=0
CR4.VME=0
CR4.PVI=0

CLI

no

IF = 0

STI IF = 1

PUSHF EFLAGS.IF Stack Image = IF

POPF IF = EFLAGS.IF stack image

INTn
EFLAGS.IF Stack Image = IF
IF = 0

IRET IF = EFLAGS.IF Stack Image

Protected Mode
CR0.PE=1
EFLAGS.VM=0
CR4.VME=x
CR4.PVI=0

CLI
³CPL no IF = 0

<CPL yes —

STI
³CPL no IF = 1

<CPL yes —

PUSHF x

no

EFLAGS.IF Stack Image = IF

POPF
³CPL IF = EFLAGS.IF Stack Image

<CPL No Change

INTn gate

x

EFLAGS.IF Stack Image = IF
IF = 0

IRET
IF = EFLAGS.IF Stack Image

IRETD

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

[AMD Public Use]

282 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

Virtual-8086 Mode
CR0.PE=1
EFLAGS.VM=1
CR4.VME=0
CR4.PVI=x

CLI
3 no IF = 0

< 3 yes —

STI
3 no IF = 1

< 3 yes —

PUSHF
3 no EFLAGS.IF Stack Image = IF

< 3 yes —

POPF
3 no IF = EFLAGS.IF Stack Image

< 3 yes —

INTn gate
3 no

EFLAGS.IF Stack Image = IF
IF = 0

< 3 yes —

IRET
3 no IF = EFLAGS.IF Stack Image

< 3 yes —

IRETD
3 no IF = EFLAGS.IF Stack Image

< 3 yes —

Table 8-12. Effect of Instructions that Modify the IF Bit (continued)

Operating Mode Instruction IOPL VI
P #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

[AMD Public Use]

Exceptions and Interrupts 283

24593—Rev. 3.37—March 2021 AMD64 Technology

Virtual-8086 Mode
with VME
Extensions

CR0.PE=1
EFLAGS.VM=1
CR4.VME=1
CR4.PVI=x

CLI
3

x no
IF = 0 No Change

<3 No Change VIF = 0

STI

3 x no IF = 1 No Change

<3
0 no No Change VIF = 1

1 yes —

PUSHF
3

x no
EFLAGS.IF Stack Image = IF Not Pushed

<3 Not Pushed EFLAGS.IF Stack Image = VIF

PUSHFD
3

x
no EFLAGS.IF Stack Image = IF EFLAGS.VIF Stack Image = VIF

<3 yes —

POPF

3 x no IF = EFLAGS.IF Stack Image No Change

<3
0 no No Change VIF = EFLAGS.IF Stack Image

1 yes —

POPFD
3

x
no IF = EFLAGS.IF Stack Image No Change

<3 yes —

INTn gate
3

x no

EFLAGS.IF Stack Image = IF
IF = 0

No Change

<3 No Change
EFLAGS.IF Stack Image = VIF
VIF = 0

IRET

3 x no IF = EFLAGS.IF Stack Image No Change

<3

0 no No Change VIF = EFLAGS.IF Stack Image

1
no1 No Change VIF = EFLAGS.IF Stack Image

yes2 —

IRETD
3

x
no IF = EFLAGS.IF Stack Image VIF = EFLAGS.IF Stack Image

<3 yes —

Table 8-12. Effect of Instructions that Modify the IF Bit (continued)

Operating Mode Instruction IOPL VI
P #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

[AMD Public Use]

284 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.37—March 2021

Protected Mode
with PVI Extensions

CR0.PE=1
EFLAGS.VM=0
CR4.VME=x
CR4.PVI=1
CPL=3

CLI
3

x no
IF = 0 No Change

<3 No Change VIF = 0

STI

3 x no IF = 1 No Change

<3
0 no No Change VIF = 1

1 yes —

PUSHF

x x no

EFLAGS.IF Stack Image = IF
Not Pushed

PUSHFD EFLAGS.VIF Stack Image = VIF

POPF
IF = EFLAGS.IF Stack Image

No Change

POPFD VIF = 0

INTn gate
EFLAGS.IF Stack Image = IF
IF = 0 (if interrupt gate)

No Change

IRET
IF = EFLAGS.IF Stack Image

No Change

IRETD VIF = EFLAGS.VIF Stack Image

Table 8-12. Effect of Instructions that Modify the IF Bit (continued)

Operating Mode Instruction IOPL VI
P #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

[AMD Public Use]

Machine Check Architecture 285

24593—Rev. 3.37—March 2021 AMD64 Technology

9 Machine Check Architecture

The AMD64 Machine Check Architecture (MCA) plays a vital role in the reliability, availability, and
serviceability (RAS) of AMD processors, as well as the RAS of the computer systems in which they
are embedded. MCA defines the facilities by which processor and system hardware errors are logged
and reported to system software. This allows system software to serve a strategic role in recovery from
and diagnosis of hardware errors.

Error checking hardware is configured and information about detected error conditions is conveyed
via an architecturally-defined set of registers. The system programming interface of MCA is described
below in Section 9.3 “Machine Check Architecture MSRs” on page 289.

9.1 Introduction
All computer systems are susceptible to errors—results that are contrary to the system design. Errors
can be categorized as soft or hard. Soft errors are caused by transient interference and are not
necessarily indicative of any damage to the computer circuitry. These external events include noise
from electromagnetic radiation and the incursion of sub-atomic particles that cause bit cell storage
capacitors to change state.

Hard errors are repeatable malfunctions that are generally attributable to physical damage to computer
circuitry. Damage may be caused by external forces (for example, voltage surges) or wear processes
inherent in the circuit technology. Damaged circuit elements can manifest symptoms similar to those
that are caused by soft error processes. An increase in the frequency of errors attributable to one circuit
element may indicate that the element has sustained damage or is wearing-out and may, in the future,
cause a hard error.

9.1.1 Reliability, Availability, and Serviceability

This section describes the concepts of reliability, availability, and serviceability (RAS) and shows how
they are interrelated.

The rate at which errors occur in a computer system is a measure of the system’s reliability.
Availability is the percentage of time that the system is available to do useful work. Errors that prevent
a computer system from continued operation result in down-time, that is, periods of unavailability.
Down-time includes the amount of time required to restore the system to operation. This may include
the time to diagnose a failure, determine the field replaceable unit (FRU) containing the faulty
circuitry, carry out the repair action required to replace the identified FRU, and restart the system. This
time directly impacts the system’s availability and is a measure of the system’s serviceability.

The availability of a computer system can be increased without decreasing performance or
significantly increasing cost through the judicious addition of data and control path redundancy in
concert with dedicated error-checking hardware. Together, redundancy and error checking detect and

[AMD Public Use]

286 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

often correct hardware errors. When errors are corrected by hardware, system operation continues
without any perceptible disruption or loss in performance.

Another important technique that can prevent down-time is error containment. Error containment
limits the propagation of an erroneous data. This enhances system availability by limiting the effects of
errors to a subset of software or hardware resources. System software may either correct the error and
resume the interrupted program or, if the error cannot be corrected, terminate software processes that
cannot continue due to the error.

Error logging enhances serviceability by providing information that is used to identify the FRU that
contains the failed circuitry. The mechanical design of the computer system can enhance serviceability
(and thus availability) by making the task of physically replacing a failed FRU quicker and easier.

9.1.2 Error Detection, Logging, and Reporting

Error detection requires specific error-checking hardware that compares the actual result of some data
transfer or transformation to the expected result. Any disparity indicates that an error has occurred.
Error detection is controlled through implementation-specific means. Disabling detection is normally
only appropriate when hardware is being debugged in the laboratory.

When an error is detected, hardware autonomously acts to either correct the error or contain the
propagation of the corrupting effects of an uncorrected error. For some error sources, hardware action
can be disabled by software through the MCA interface.

As hardware acts to correct or contain a detected error, it gathers information about the error to aid in
recovery, diagnosis, and repair. The architecture provides software control of error logging and
reporting. The following describes the characteristics of each:

• Logging
Logging involves saving information about the error in specific MCA registers. If the error
reporting bank associated with the error source is enabled, logging occurs; if disabled, error
information is generally discarded (there are implementation-specific exceptions).

• Reporting
An uncorrected error may be reported to system software via a machine-check exception, if error
reporting for the specific error source is enabled.

Reporting is the hardware-initiated action of interrupting the processor using a machine-check
exception (#MC). Reporting for each specific error type can be enabled or disabled by system software
though the MCA register interface. Even if reporting for an error type is disabled, logging may
continue.

Disabling reporting can negatively impact both error containment and error recovery (see the next
section) and should be avoided.

Hardware categorizes errors into three classes. These are:

• corrected

[AMD Public Use]

Machine Check Architecture 287

24593—Rev. 3.37—March 2021 AMD64 Technology

• uncorrected
• deferred

The following sections describe the characteristics of each of these error classes:

If an error can be corrected by hardware, no immediate action by software is required. In this case,
information is logged, if enabled, to aid in later diagnosis and possible repair.

If correction is not possible, the error is classified as uncorrected. The occurrence of an uncorrected
error requires immediate action by system software to either correct the error and resume the
interrupted program or, if software-based correction is not possible, to determine the extent of the
impact of the uncorrected error to any executing instruction stream or the architectural state of the
processor or system and take actions to contain the error condition by terminating corrupted software
processes.

For errors that are not corrected, but have no immediate impact on the architectural state of the system,
processor core, or any current thread of execution, the error may be classified by hardware as a
deferred error. Information about deferred errors is logged, if enabled, but not reported via a machine-
check exception. Instead hardware monitors the error and escalates the error classification to
uncorrected at the point in time where the error condition is about to impact the execution of an
instruction stream or cause the corruption of the processor core or system architectural state.

This escalation results in a #MC exception, assuming that reporting for that error source is enabled. If
software can correct the error, it may be possible to resume the affected program. If not, software can
terminate the affected program rather than bringing down the entire system. This is referred to as error
localization.

A common example of deferred error processing and localization is the conversion of globally
uncorrected DRAM errors to process-specific consumed memory errors. In this example, uncorrected
ECC-protected data that has not yet been consumed by any processor core is tagged as “poison.”
Hardware reports the uncorrected data as a localized error via a #MC exception when it is about to be
used (“consumed”) by an instruction execution stream.

In contrast, an error that cannot be contained and is of such severity that it has compromised the
continued operation of a processor core requires immediate action to terminate system processing and
may result in a hardware-enforced shutdown. In the shutdown state, the execution of instructions by
that processor core is halted. See Section 8.2.9 “#DF—Double-Fault Exception (Vector 8)” on
page 240 for a description of the shutdown processor state.

If supported, system software can chose to configure and enable hardware to generate an interrupt
when a deferred error is first detected. Corrected errors may be counted as they are logged. If
supported and enabled, exceeding a software-configured count threshold may be signalled via an
interrupt. These notification mechanisms are independent of machine-check reporting.

Specific details on hardware error detection, logging, and reporting are implementation-dependent and
are described in the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manual applicable to your product.

[AMD Public Use]

288 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

9.1.3 Error Recovery

When errors cannot be corrected by hardware, error recovery comes into play. Error recovery, as
defined by MCA, always involves software intervention. Logged information about the uncorrected
error condition that caused the exception allows system software to take actions to either correct the
error and resume the interrupted execution stream or terminate software processes (or higher-level
software constructs) that are known to be affected by the uncorrected error.

From a system perspective, all errors are either recoverable or unrecoverable. The following outlines
the characteristics of each:

• Recoverable—Hardware has determined that the architectural state of the processor experiencing
the uncorrected error has not been compromised. Software execution can continue if system
software can determine the extent of the error and take actions to either:
- correct the error and resume the interrupted stream of execution or,
- if this is not possible, terminate software processes that have incurred a loss of architectural

state and continue other software processes that are unaffected by the error.
• Unrecoverable—Hardware has determined that the architectural state of the processor

experiencing the uncorrected error has been corrupted. Software execution cannot reliably
continue.
Software saves any diagnostic information that it may be able to gather and halts.

The fact that an error is recoverable does not mean that recovery software will be able to resume
program execution. If it is unable to determine the extent of the corruption or if it determines that
essential state information has been lost, it may only be able to save information about the error and
halt processing.

System software has many options to recover from an uncorrected error. The following is a partial list
of possible actions that system software might take:

• If it can be determined that the corruption caused by the uncorrected error is contained within a
software process, software can kill the process.

• If the uncorrected error has corrupted the architectural state of a virtual machine, the VMM can
rebuild the container (using only hardware resources that are known to be good) and reboot the
guest operating system.

• If the uncorrected error is a part of a block of data being transferred to or from an I/O device, the
data transfer can be flushed and retried or terminated with an error.

• If the uncorrected error is due to a hard link failure, software can reconfigure the network to route
information around the failed link.

• If the uncorrected error is in a cache and the cache line containing the uncorrected (known bad)
data is in the shared state, software can invalidate the line so that it will be reloaded from memory
or another cache that has the line in the owned state.

[AMD Public Use]

Machine Check Architecture 289

24593—Rev. 3.37—March 2021 AMD64 Technology

Many more error scenarios are recoverable depending on the effectiveness of hardware error
containment, the logging capabilities of the system, and the sophistication of the recovery software
that acts on the information conveyed through the MCA reporting structure.

If recovery software is unable to restore a valid system architectural state at some level of software
abstraction (process, guest operating system, virtual machine, or virtual machine monitor), the
uncorrected error is considered system fatal. In this situation, system software must halt the execution
of instructions. A system reset is required to restore the system to a known-good architectural state.

9.2 Determining Machine-Check Architecture Support
Support for the machine-check architecture is implementation-dependent. System software executes
the CPUID instruction to determine whether a processor implements the machine-check exception
(#MC) and the global MCA MSRs. The CPUID Fn0000_0001_EDX[MCE] feature bit indicates
support for the machine-check exception and the CPUID Fn0000_0001_EDX[MCA] feature bit
indicates support for the base set of global machine-check MSRs.

Once system software determines that the base set of MCA MSRs is available, it determines the
implemented number of machine-check reporting banks by reading the machine-check capabilities
register (MCG_CAP), which is the first of the global MCA MSRs.

For a processor implementation to provide an architecturally compliant MCA interface, it must
provide support for the machine-check exception, the global machine-check MSRs, the watchdog
timer (see “CPU Watchdog Timer Register” on page 292.), and at least one bank of the machine-check
reporting registers.

Support for the deferred reporting and software-based containment of uncorrected data errors is
indicated by the feature bit CPUID Fn8000_0007_EBX[SUCCOR]. See “Machine-Check Recovery”
on page 295.

Support for recoverable MCA overflow conditions is indicated by feature bit CPUID
Fn8000_0007_EBX[McaOverflowRecov]. See the discussion of recoverable status overflow in
Section “MCA Overflow” on page 294.

Implementation-specific information concerning the machine-check mechanism can be found in the
BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
applicable to your product. For more information on using the CPUID instruction, see Section 3.3,
“Processor Feature Identification,” on page 70.

9.3 Machine Check Architecture MSRs
The AMD64 Machine-Check Architecture defines the set of model-specific registers (MCA MSRs)
used to log and report hardware errors. These registers are:

• Global status and control registers:
- Machine-check global-capabilities register (MCG_CAP)

[AMD Public Use]

290 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

- Machine-check global-status register (MCG_STATUS)
- Machine-check global-control register (MCG_CTL)

• One or more error-reporting register banks, each containing:
- Machine-check control register (MCi_CTL)
- Machine-check status register (MCi_STATUS)
- Machine-check address register (MCi_ADDR)
- At least one machine-check miscellaneous error-information register (MCi_MISC0)
Each error-reporting register bank is associated with a specific processor unit (or group of
processor units).

• CPU Watchdog Timer register (CPU_WATCHDOG_TIMER)

The error-reporting registers retain their values through a warm reset. (A warm reset occurs while
power to the processor is stable. This in contrast to a cold reset, which occurs during the application of
power after a period of power loss.) This preservation of error information allows the platform
firmware or other system-boot software to recover and report information associated with the error
when the processor is forced into a shutdown state.

The RDMSR and WRMSR instructions are used to read and write the machine-check MSRs. See
“Machine-Check MSRs” on page 661 for a listing of the machine-check MSR numbers and their reset
values. The following sections describe each MCA MSR and its function.

9.3.1 Global Status and Control Registers

The global status and control MSRs are the MCG_CAP, MCG_STATUS, and MCG_CTL registers.

Machine-Check Global-Capabilities Register. Figure 9-1 shows the format of the machine-check
global-capabilities register (MCG_CAP). MCG_CAP is a read-only register that specifies the
machine-check mechanism capabilities supported by the processor implementation.

Figure 9-1. MCG_CAP Register

63 32

Reserved

31 9 8 7 0

Reserved

C
T
L
P

BANK_CNT

Bits Mnemonic Description Access type
63:9 — Reserved R
8 CTLP MCG_CTL register present R
7:0 BANK_CNT Number of reporting banks R

[AMD Public Use]

Machine Check Architecture 291

24593—Rev. 3.37—March 2021 AMD64 Technology

The fields within the MCG_CAP register are:

• BANK_CNT (MCi Bank Count)—Bits 7:0. This field specifies how many error-reporting register
banks are supported by the processor implementation.

• CTLP(MCG_CTL Register Present)—Bit 8. This bit specifies whether or not the Machine-Check
Global-Control (MCG_CTL) Register is supported by the processor. When the bit is set to 1, the
register is supported. When the bit is cleared to 0, the register is unsupported. The MCG_CTL
register is described on page 292.

All remaining bits in the MCG_CAP register are reserved. Writing values to the MCG_CAP register
produces undefined results.

Machine-Check Global-Status Register. Figure 9-2 shows the format of the machine-check
global-status register (MCG_STATUS). MCG_STATUS provides basic information about the
processor state after the occurrence of a machine-check error.

Figure 9-2. MCG_STATUS Register

The fields within the MCG_STATUS register are:

• Restart-IP Valid (RIPV)—Bit 0. When this bit is set to 1, the interrupted program can be reliably
restarted at the instruction addressed by the instruction pointer pushed onto the stack by the
machine-check error mechanism. If this bit is cleared to 0, the interrupted program cannot be
reliably restarted.

• Error-IP Valid (EIPV)—Bit 1. When this bit is set to 1, the instruction that is referenced by the
instruction pointer pushed onto the stack by the machine-check error mechanism is responsible for
the machine-check error. If this bit is cleared to 0, it is possible that the instruction referenced by
the instruction pointer is not responsible for the machine-check error.

• Machine Check In-Progress (MCIP)—Bit 2. When this bit is set to 1, it indicates that a machine-
check error is in progress. If another machine-check error occurs while this bit is set, the processor

63 32

Reserved

31 3 2 1 0

Reserved

M
C
I
P

E
I
P
V

R
I
P
V

Bits Mnemonic Description R/W
63:3 Reserved
2 MCIP Machine Check In-Progress R/W
1 EIPV Error IP Valid Flag R/W
0 RIPV Restart IP Valid Flag R/W

[AMD Public Use]

292 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

enters the shutdown state. The processor sets this bit whenever a machine check exception is
generated. Software is responsible for clearing it after the machine check exception is handled.

All remaining bits in the MCG_STATUS register are reserved.

Machine-Check Global-Control Register. Figure 9-3 shows the format of the machine-check
global-control register (MCG_CTL). MCG_CTL is used by software to enable or disable the logging
and reporting of machine-check errors from the implemented error-reporting banks. Depending on the
implementation, detected errors from some error sources associated with a reporting bank that is
disabled are still logged. Setting all bits to 1 in this register enables all implemented error-reporting
register banks to log errors.

Figure 9-3. MCG_CTL Register

CPU Watchdog Timer Register. The CPU watchdog timer is used to generate a machine check
condition when an instruction does not complete within a time period specified by the CPU Watchdog
Timer register. The timer restarts the count each time an instruction completes, when enabled by the
CPU Watchdog Timer Enable bit. The time period is determined by the Count Select and Time Base
fields. The timer does not count during halt or stop-grant.

The format of the CPU watchdog timer is shown in Figure 9-4.

Figure 9-4. CPU Watchdog Timer Register Format

63 2 1 0
E
N
6
3

… Error-Reporting Register-Bank Enable Bits …
E
N
2

E
N
1

E
N
0

63 32

Reserved, MBZ

31 7 6 3 2 1 0

Model dependent; see BKDG or PPR for desired processor. CS TB E
N

Bits Mnemonic Description R/W
63:7 Reserved Reserved, Must be Zero
6:3 CS CPU Watchdog Timer Count Select R/W
2:1 TB CPU Watchdog Timer Time Base R/W
0 EN CPU Watchdog Timer Enable R/W

[AMD Public Use]

Machine Check Architecture 293

24593—Rev. 3.37—March 2021 AMD64 Technology

CPU Watchdog Timer Enable (EN) - Bit 0. This bit specifies whether the CPU Watchdog Timer is
enabled. When the bit is set to 1, the timer increments and generates a machine check when the timer
expires. When cleared to 0, the timer does not increment and no machine check is generated.

CPU Watchdog Timer Time Base (TB) - Bits 2:1. Specifies the time base for the time-out period
indicated in the Count Select field. The allowable time base values are provided in Table 9-1.
.

CPU Watchdog Timer Count Select (CS) - Bits 6:3. Specifies the time period required for the CPU
Watchdog Timer to expire. The time period is this value times the time base specified in the Time Base
field. The allowable values are shown in Table 9-2.

9.3.2 Error-Reporting Register Banks

Each error-reporting register bank contains the following registers:

• Machine-check control register (MCi_CTL).
• Machine-check status register (MCi_STATUS).
• Machine-check address register (MCi_ADDR).
• Machine-check miscellaneous error-information register 0 (MCi_MISC0).

Table 9-1. CPU Watchdog Timer Time Base
TB[1:0] Time Base

00b 1 millisecond
01b 1 microsecond
10b Reserved
11b Reserved

Table 9-2. CPU Watchdog Timer Count Select
CS[3:0] Value
0000b 4095
0001b 2047
0010b 1023
0011b 511
0100b 255
0101b 127
0110b 63
0111b 31
1000b 8191
1001b 16383
1010b–1
111b Reserved

[AMD Public Use]

294 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

The i in each register name corresponds to the number of a supported register bank. Each error-
reporting register bank is normally associated with a specific execution unit. The number of error-
reporting register banks is implementation-specific. For more information, see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your product.

Software reads the MCG_CAP register to determine the number of supported register banks. The first
error-reporting register (MC0_CTL) always starts with MSR address 400h, followed by
MC0_STATUS (401h), MC0_ADDR (402h), and MC0_MISC0 (403h). The addresses of any
additional error-reporting MSRs are assigned sequentially starting at 404h through the remaining
supported register banks.

MCA Overflow. If an error occurs within an error reporting bank while the status register for that
bank contains valid data (MCi_STATUS[VAL] = 1), an MCA overflow condition results. In this
situation, information about the new error will either be discarded or will replace the information about
the prior error.

Hardware sets the MCi_STATUS[OVER] bit to indicate this condition has occurred and follows a set
of rules to determine whether to overwrite the previously logged error information or discard the new
error information. These rules are shown in Table 9-3 below.

If the VAL bit is not set, hardware writes the appropriate logging registers based on the type of error
(writing the MCi_STATUS register last) and then sets the VAL bit to indicate to software that the
information currently contained in the MCi_STATUS register is valid. Software clears the VAL bit
after reading the contents of this register (after reading and saving valid information stored in any of
the other logging registers) to indicate to hardware that it has saved the information, making the
registers available to log the next error.

If survivable MCA overflow is supported by the implementation (as indicated by CPUID
Fn8000_0007_EBX[McaOverflowRecov] = 1), the state of the MCi_STATUS[PCC] bit indicates
whether system execution can continue. If a particular processor does not support survivable MCA
overflow and overflow occurs, software must halt instruction execution on that processor core
regardless of the state of the PCC bit because critical information may have been lost as a result of the

Table 9-3. Error Logging Priorities
Previous Error Type

Corrected Deferred Uncorrected

Current
Error
Type

Corrected Discard Current Discard Current Discard Current
Deferred Overwrite Previous Discard Current Discard Current

Uncorrected Overwrite Previous Overwrite Previous Discard Current
Note(s):

1. Logging a deferred error has priority over the retention of information concerning a prior corrected error.
2. Logging an uncorrected error has priority over the retention of information concerning either a prior deferred

or corrected error.
3. Valid Information concerning an uncorrected error is not overwritten by any subsequent errors.

[AMD Public Use]

Machine Check Architecture 295

24593—Rev. 3.37—March 2021 AMD64 Technology

overflow. See the description of the Machine-Check Status registers below for more information on
the PCC bit.

Machine-Check Recovery. Machine Check Recovery is a feature allowing recovery of the system
when the hardware cannot correct an error. Machine Check Recovery is supported when
Fn8000_0007_EBX[SUCCOR]=1.

When Machine Check Recovery is supported and an uncorrected error has been detected that the
hardware can contain to the task or process to which the machine check has been delivered, it logs a
context-synchronous uncorrectable error (MCi_STATUS[UC]=1, MCi_STATUS[PCC]=0). The rest
of the system is unaffected and may continue running if supervisory software can terminate only the
affected process context.

Machine-Check Control Registers. The machine-check control registers (MCi_CTL), as shown in
Figure 9-5, contain an enable bit for each error source within an error-reporting register bank. Setting
an enable bit to 1 enables error reporting for the specific feature controlled by the bit, and clearing the
bit to 0 disables error reporting for the feature. It is recommended that the value
FFFF_FFFF_FFFF_FFFFh be programmed into each MCi_CTL register.

Disabling the reporting of errors from error sources that are capable of detecting uncorrected errors
can compromise future error recovery and is not recommended. Other implementation-specific values
are documented in the product’s BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual.

Figure 9-5. MCi_CTL Register

Machine-Check Status Registers. Each error-reporting register bank includes a machine-check
status register (MCi_STATUS) that the processor uses to log error information. Hardware writes the
status register bits when an error is detected, and sets the VAL bit of the register to 1, indicating that the
status information is valid. Error reporting for the error source associated with the detected error does
not need to be enabled in the MCi_CTL Register for the processor to write the status register. Error
reporting must be enabled for the error to be reported via a #MC exception. Software is responsible for
clearing the status register after the exception has been handled. Attempting to write a value other than
0 to an MCi_STATUS register will raise a general-protection (#GP) exception.

Figure 9-6 on page 296 shows the format of the MCi_STATUS register.

63 2 1 0
E
N
6
3

… Error-Reporting Register-Bank Enable Bits …
E
N
2

E
N
1

E
N
0

[AMD Public Use]

296 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 9-6. MCi_STATUS Register

The fields within the MCi_STATUS register are:

• MCA Error Code—Bits 15:0. This field encodes information about the error, including:
- The type of transaction that caused the error.
- The memory-hierarchy level involved in the error.
- The type of request that caused the error.
- Other information concerning the transaction type.
See the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference
Manual applicable to your product for information on the format and encoding of the MCA error
code.

• Model-Specific Extended Error Code—Bits 31:16. This field encodes model-specific information
about the error. For further information, see the documentation for particular implementations of
the architecture.

63 62 61 60 59 58 57 56 55 54 45 44 43 42 32

V
A
L

O
V
E
R

U
C

E
N

M
I
S
C
V

A
D
D
R
V

P
C
C

T
C
C

Implementation-specific information

D
ef

er
re

d

Po
is

on Implementation-specific information

31 16 15 0

Model-Specific Extended Error Code MCA Error Code

Bits Mnemonic Description R/W
63 VAL Valid R/W*
62 OVER Status Register Overflow R/W*
61 UC Uncorrected Error R/W*
60 EN Error Condition Enabled R/W*
59 MISCV Miscellaneous-Error Register Valid R/W*
58 ADDRV Error-Address Register Valid R/W*
57 PCC Processor-Context Corrupt R/W*
56 Implementation-specific information R/W*
55 TCC Task-Context Corrupt R/W*
54:45 Implementation-specific information R/W*
44 Deferred Deferred error R/W*
43 Poison Poisoned data consumed R/W*
42:32 Implementation-specific information R/W*
31:16 Model-Specific Extended Error Code R/W*
15:0 MCA Error Code R/W*
*System software can only clear this bit to 0.

[AMD Public Use]

Machine Check Architecture 297

24593—Rev. 3.37—March 2021 AMD64 Technology

• Implementation-specific Information—Bits 56, 54:45, 42:32. These bit ranges hold model-specific
error information. Software should not rely on the field definitions in these ranges being consistent
between processor implementations. For details see the BKDG or PPR for desired
implementations of the architecture.

• Poison—Bit 43. When set to 1, this bit indicates that the uncorrected error condition being
reported is due to the attempted use of data that was previous detected as in error (and could not be
corrected) and marked as known-bad.

• Deferred—Bit 44. When set to 1, this bit indicates that hardware has determined that the error
condition being logged has not affected the execution of any instruction stream and that action by
system software to prevent or correct an error is not required. No machine-check exception is
signalled. Hardware will monitor the error and log an uncorrected error when the execution of any
thread of execution is impacted.

• TCC—Bit 55. When set to 1, this bit indicates that the hardware context of the process thread to
which the error was reported may have been corrupted. Continued operation of the thread may
have unpredictable results. When this bit is cleared, the hardware context of the process thread to
which the error was reported is not corrupted and recovery of the process thread is possible. This
bit is only meaningful when MCA_STATUS[PCC]=0.

• PCC—Bit 57. When set to 1, this bit indicates that the processor state is likely to be corrupt due to
an uncorrected error. In this case, it is possible that software cannot reliably continue execution.
When this bit is cleared, the processor state is not corrupted and recovery is still possible. If the
PCC bit is set in any error bank, the processor will clear RIPV and EIPV in the MCG_STATUS
register.

• ADDRV—Bit 58. When set to 1, this bit indicates that the contents of the corresponding error-
reporting address register (MCi_ADDR) are valid. When this bit is cleared, the contents of
MCi_ADDR are not valid.

• MISCV—Bit 59. When set to 1, this bit indicates that additional information about the error is
saved in the corresponding error-reporting miscellaneous register (MCi_MISC0). When cleared,
this bit indicates that the contents of the MCi_MISC0 register are not valid.

• EN—Bit 60. When set to 1, this bit indicates that the error condition is enabled in the
corresponding error-reporting control register (MCi_CTL). Errors disabled by MCi_CTL do not
cause a machine-check exception.

• UC—Bit 61. When set to 1, this bit indicates that the logged error status is for an uncorrected error.
When cleared, the error class is determined by looking at the Deferred bit; the error is a Corrected
error if the Deferred bit is clear or a Deferred error if the Deferred bit is set. (See Section 9.1.2,
“Error Detection, Logging, and Reporting,” on page 286, for more detail on these error classes.)

• OVER—Bit 62. This bit is set to 1 by the processor if the VAL bit is already set to 1 as the
processor attempts to write error information into MCi_STATUS. In this situation, the machine-
check mechanism handles the contents of MCi_STATUS as follows:
- For processor implementations that log errors for disabled reporting banks, status for an

enabled error replaces status for a disabled error.
- Status for a deferred error replaces status for a corrected error.

[AMD Public Use]

298 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

- Status for an uncorrected error replaces status for a corrected or deferred error.
- Status for an enabled uncorrected error is never replaced.
See Section “MCA Overflow” on page 294 for more information on this field.

• VAL—Bit 63. This bit is set to 1 by the processor if the contents of MCi_STATUS are valid.
Software should clear the VAL bit after reading the MCi_STATUS register, otherwise a subsequent
machine-check error sets the OVER bit as described above.

When a machine-check error occurs, the processor writes an error code into the appropriate
MCi_STATUS register MCA error-code field. The MCi_STATUS[VAL] bit is set to 1, indicating that
the MCi_STATUS register contents are valid.

MCA error-codes are used to report errors in the memory hierarchy, the system bus, and the system-
interconnection logic. Error-codes are divided into subfields that are used to describe the cause of an
error. The information is implementation-specific. For further information, see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your product.

Machine-Check Address Registers. Each error-reporting register bank includes a machine-check
address register (MCi_ADDR) that the processor uses to report the address or location associated with
the logged error. The address field can hold a virtual (linear) address, a physical address, or a value
indicating an internal physical location, depending on the type of error. For further information, see the
documentation for particular implementations of the architecture. The contents of this register are
valid only if the ADDRV bit in the corresponding MCi_STATUS register is set to 1.

Machine-Check Miscellaneous-Error Information Register 0(MCi_MISC0). Each error-reporting
register bank includes the Machine-Check Miscellaneous 0 register that the processor uses to report
additional error information.

In some implementations, the MCi_MISC0 register is used for error thresholding. Thresholding is a
mechanism provided by hardware to:

• count detected errors, and
• (optionally) generate an APIC-based interrupt when a programmed number of errors has been

counted.

Processor hardware counts detected errors and ensures that multiple error sources do not share the
same thresholding register. Software can use corrected error counts to help predict which components
might soon fail (begin generating uncorrectable errors) and schedule their replacement.

Threshold counters increment for error sources that are enabled for logging.

The MCi_MISC0[BlkPtr] field is used to point to any additional MCi_MISCj registers, where j > 0. If
this field is zero, no additional MCi_MISC registers are implemented. If this field is one, and
Fn8000_0007_EBX[ScalableMca]=1, additional MCi_MISC registers are implemented.

Additional Machine-Check Miscellaneous-Error Information Registers (MCi_MISCj). If the
MCi_MISC0[BlkPtr] field is non-zero and Fn8000_0007_EBX[ScalableMca]=0, up to 8 additional

[AMD Public Use]

Machine Check Architecture 299

24593—Rev. 3.37—March 2021 AMD64 Technology

MCi_MISCj registers can be implemented for the error-reporting bank i (for a total of 9). These
registers are allocated in contiguous blocks of 8, with MCi_MISC1 addressed by:

 MCi_MISC1 address = C000_0400h + (MCi_MISC0[BlkPtr] << 3)

This is illustrated in Figure 9-7 below.

Figure 9-7. MCi_MISC1 Addressing

The format of implemented MCi_MISCj registers depends upon their use and use can vary from one
implementation to another. Figure 9-8 below illustrates the format of a miscellaneous error
information register when used as an error thresholding register.

All miscellaneous error information registers will contain the VAL field in bit position 63.
MCi_MISC0 must contain the BLKP field in bits 31:24.

MCi_CTL
MCi_STATUS
MCi_ADDR

C000_0400h + (MCi_MISC0[BlkPtr] << 3)
MCi_MISC1
MCi_MISC2
MCi_MISC3

. . .

MCi_MISC0

MCi_MISC8

[AMD Public Use]

300 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 9-8. Miscellaneous Information Register (Thresholding Register Format)

The fields within the MCi_MISCj register are:

• Valid (VAL)—Bit 63. When set to 1, indicates that the counter present (CTRP) and block pointer
(BLKP) fields in this register are valid.

• Counter Present (CTRP)—Bit 62. When set to 1, indicates the presence of a threshold counter.
• Locked (LKD)—Bit 61. When set to 1, indicates that the threshold counter is not available for OS

use. If this is the case, writes to bits 60:0 of this register are ignored and do not generate a fault.
Software must check the Locked bit before writing into the thresholding register.
This field is write-enabled by MSR C001_0015h Hardware Configuration Register
[MCSTATUSWrEn].

• IntP (Thresholding Interrupt Supported)—Bit 60. When set, this bit indicates that the reporting of
threshold overflow via interrupt is supported. Interrupt type is determined by the setting of the
INTT field.

• LVT Offset (LVTOFF)—Bits 55:52. This field specifies the address of the APIC LVT entry to
deliver the threshold counter interrupt. Software must initialize the APIC LVT entry before
enabling the threshold counter to generate the APIC interrupt; otherwise, undefined behavior may
result.
APIC LVT address = (MCi_MISCj[LvtOff] << 4) + 500h

63 62 61 60 59 56 55 52 51 50 49 48 47 32

V
A
L

C
T
R
P

L
K
D In

tP Reserved LVTOFF

C
N
T
E

I
N
T
T

O
F ERRCT

31 24 23 0

BLKP Reserved

Bits Mnemonic Description R/W Reset
63 VAL Valid R 1b
62 CTRP Counter Present R 1b
61 LKD Locked R/W 0b
60 IntP Thresholding Interrupt Supported R Xb
59:56 Reserved
55:52 LVTOFF LVT Offset R/W 0000b
51 CNTE Counter Enable R/W 0b
50:49 INTT Interrupt Type R/W 00b
48 OF Overflow R/W Xb
47:32 ERRCT Error Counter R/W XXXXh
31:24 BLKP Block pointer for additional MISC registers R
23:0 Reserved

[AMD Public Use]

Machine Check Architecture 301

24593—Rev. 3.37—March 2021 AMD64 Technology

• Counter Enable (CNTE)—Bit 51. When set to 1, counting of implementation-dependent errors is
enabled; otherwise, counting is disabled.

• Interrupt Type (INTT)—Bits 50:49. The value of this field specifies the type of interrupt signaled
when the value of the overflow bit changes from 0 to 1.
- 00b = No interrupt
- 01b = APIC-based interrupt
- 10b = Reserved
- 11b = Reserved

• Overflow (OF)—Bit 48. The value of this field is maintained through a warm reset. This bit is set
by hardware when the error counter increments to its maximum implementation-supported value
(from FFFEh to FFFFh for the maximum implementation-supported value). This is defined as the
threshold level. When the overflow bit is set, the interrupt selected by the interrupt type field is
generated. Software must reset this bit to zero in the interrupt handler routine when they update the
error counter.

• Error Counter (ERRCT)—Bits 47:32. This field is maintained through a warm reset. The size of
the threshold counter is implementation-dependent. Implementations with less than 16 bits fill the
most significant unimplemented bits with zeros.
Software enumerates the counter bits to discover the size of the counter and the threshold level
(when counter increments to the maximum count implemented). Software sets the starting error
count as follows:
Starting error count = threshold level – desired software error count to cause overflow
The error counter is incremented by hardware when errors for the associated error counter are
logged. When this counter overflows, it stays at the maximum error count (with no rollover).

• Block pointer for additional MISC registers (BLKP)—Bits 31:24. This field is only valid when
valid (VAL) bit is set. When non-zero, this field is used to indicate the presence of additional
MCi_MISC registers.

Other formats for miscellaneous information registers are implementation-dependent, see the BIOS
and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to
your product for more details.

9.4 Initializing the Machine-Check Mechanism
Following a processor reset, all machine-check error-reporting enable bits are disabled. System
software must enable these bits before machine-check errors can be reported. Generally, system
software should initialize the machine-check mechanism using the following process:

• Execute the CPUID instruction and verify that the processor supports the machine-check
exception (MCE) and machine-check registers (MCA). Software should not proceed with
initializing the machine-check mechanism if the machine-check registers are not supported.

• If the machine-check registers are supported, system software should take the following steps:

[AMD Public Use]

302 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

- Check to see if the CTLP bit in the MCG_CAP register is set to 1. If it is, then the MCG_CTL
register is supported by the processor. If the MCG_CTL register is supported, software should
set its enable bits to 1 for the machine-check features it uses. Software can load MCG_CTL
with all 1s to enable all available machine-check reporting banks.

- Read the COUNT field from the MCG_CAP register to determine the number of error-
reporting register banks supported by the processor. For each error-reporting register bank,
software should set the enable bits to 1 in the MCi_CTL register for the error types it wants the
processor to report. Software can write each MCi_CTL with all 1s to enable all error-reporting
mechanisms.
Not enabling reporting banks that may be involved in the reporting of uncorrected errors can
lead to the loss of system reliability and error recoverability.

- Check the VAL bit on each implemented MCi_STATUS register. It is possible that valid error-
status information has already been logged in the MCi_STATUS registers at the time software
is attempting to initialize them. The status can reflect errors logged prior to a warm reset or
errors recorded during the system power-up and boot process. Before clearing the
MCi_STATUS registers, software should examine their contents and log any errors found.

- After saving any valid error information contained in the MCi_STATUS, MCi_ADDR, and
any implemented miscellaneous error information registers for each implemented reporting
bank, software should clear all status fields in the MCi_STATUS register for each bank by
writing all 0s to the register.

• As a final step in the initialization process, system software should enable the machine-check
exception by setting CR4[MCE] to 1.

A machine-check condition that occurs while CR4[MCE] is cleared will result in the processor core
entering the shutdown state.

9.5 Using MCA Features
System software can detect and handle logged errors using three methods:

1. Polling
Software can periodically examine the machine-check status registers for errors, and save any
error information found. Uncorrected errors found during polling will require some type of
immediate response to initiate recovery or shutdown.

2. Enabling machine-check reporting
When reporting is enabled, any uncorrected error that occurs causes control to be transferred to the
machine-check exception handler. The exception handler can be designed for a specific processor
implementation or can be generalized to work on multiple implementations.

3. Setting up and enabling interrupts for deferred and corrected errors
In many implementations, MCA hardware can be configured to generate an interrupt hardware on
the detection of a deferred error or when a programmed corrected error threshold is reached.

[AMD Public Use]

Machine Check Architecture 303

24593—Rev. 3.37—March 2021 AMD64 Technology

These methods are not mutually exclusive.

9.5.1 Determining the Scope of Detected Errors

Table 9-4 details the actions that recovery software should take and the level of recovery possible
based on status information returned in the MCi_STATUS and MCG_STATUS registers.

9.5.2 Handling Machine Check Exceptions

The processor uses the interrupt control-transfer mechanism to invoke an exception handler after a
machine-check exception occurs. This requires system software to initialize the interrupt-descriptor
table (IDT) with either an interrupt gate or a trap gate that references the interrupt handler. See
“Legacy Protected-Mode Interrupt Control Transfers” on page 259 and “Long-Mode Interrupt Control
Transfers” on page 270 for more information on interrupt control transfers.

At a minimum, the machine-check exception handler must be capable of logging errors for later
examination. This can be a sufficient implementation for some handlers. More thorough exception-
handler implementations can analyze the error to determine if it is unrecoverable, and whether it can
be recovered in software.

Machine-check exception handlers that attempt recovery must be thorough in their analysis and their
corrective actions. The following guidelines should be used when writing such a handler:

• The status registers in all the enabled error-reporting register banks must be examined to identify
the cause of the machine-check exception. Read the COUNT field from MCG_CAP to determine
the number of status registers supported by the processor.

• Check the valid bit in each status register (MCi_STATUS[VAL]). The MCi_STATUS register does
not need to be examined when its valid bit is clear.

Table 9-4. Error Scope
MCi_STATUS

Error Scope
PCC TCC UC Deferred

1 — 1 — System fatal error. Error has corrupted the processor core architectural state.
System processing must be terminated.

0 0 1 — Recoverable error. If software can correct the error, the interrupted program can
be resumed.

0 1 1 —
Containable error. The interrupted instruction stream cannot be resumed. System-
level recovery may be possible if software can localize the error and terminate
any affected software processes.

0 0 0 1

Deferred error. Immediate software action is not required. A latent error has been
discovered, but not yet consumed. Error handling software may attempt to correct
this data error, or prevent access by processes which map the data, or make the
physical resource containing the data inaccessible.

0 0 0 0 Hardware corrected error. No software action is required. Error information
should be saved for analysis.

[AMD Public Use]

304 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

• Check the valid MCi_STATUS registers to see if error recovery is possible. Error recovery is not
possible when:
- The processor-context corrupt bit (MCi_STATUS[PCC]) is set to 1.
- The error-overflow status bit (MCi_STATUS[OVER]) is set and the processor does not support

recoverable MCi_STATUS overflow (as indicated by feature bit CPUID
Fn8000_0007_EBX[McaOverflowRecov] = 0).

- The processor does not support Machine Check Recovery as indicated by feature bit CPUID
Fn8000_0007_EBX[SUCCOR].

If error recovery is not possible, the handler should log the error information and return to the
system software responsible for shutting down the processor core.

• Check the MCi_STATUS[UC] bit to see if the processor corrected the error. If UC is set, the
processor did not correct the error and the exception handler must correct the error before
restarting the interrupted program.
- If MCA Recovery is supported:

 • Check MCA_STATUS[TCC].
 • If TCC is set, the context of the process thread executing on the interrupted logical core may

be corrupt and the thread cannot be recovered. The rest of the system is unaffected; it is
possible to terminate only the affected process thread.

 • If TCC is clear, the context of the process thread executing on the interrupted logical core is
not corrupt. Recovery of the process thread may be possible, but only if the uncorrected
error condition is first corrected by software; otherwise, the interrupted process thread must
be terminated.

If the handler cannot correct the error or the MCG_STATUS[RIPV] bit is cleared, it should not
return control to the interrupted program, but should log the error information and terminate the
software process that was about to consume the uncorrected data. If the error has compromised the
state of a guest operating system, the guest should be restarted. If the state of the virtual machine
has been corrupted, the virtual machine must be reinitialized.

• When identifying the error condition, portable exception handlers should examine only the
architecturally defined fields of the MCi_STATUS register.

• If the MCG_STATUS[RIPV] bit is set, the interrupted program can be restarted reliably at the
instruction pointer address pushed onto the exception handler stack. If RIPV = 0, the interrupted
program cannot be restarted reliably at that location, although it can be restarted at that location for
debugging purposes.

• When logging errors, particularly those that are not recoverable, check the MCG_STATUS[EIPV]
bit to see if the instruction-pointer address pushed onto the exception handler stack is related to the
machine-check error. If EIPV = 0, the address is not guaranteed to be related to the error.

• Before exiting the machine-check handler, clear the MCG_STATUS[MCIP] bit. MCIP indicates a
machine-check exception occurred. If this bit is set when another machine-check exception occurs,
the processor enters the shutdown state.

[AMD Public Use]

Machine Check Architecture 305

24593—Rev. 3.37—March 2021 AMD64 Technology

• When an exception handler is able to, at a minimum, successfully log an error condition, the
MCi_STATUS registers should be cleared before exiting the machine-check handler. Software is
responsible for clearing at least the MCi_STATUS[VAL] bits.

• Additional machine-check exception-handler portability can be added by having the handler use
the CPUID instruction to identify the processor and its capabilities. Implementation-specific
software can be added to the machine-check exception handler based on the processor information
reported by CPUID.

9.5.3 Reporting Corrected Errors

Machine-check exceptions do not occur if the error is corrected by the processor. If system software
wishes to detect and save information concerning corrected machine-check errors, a system-service
routine must be provided to check the contents of the machine-check status registers for corrected
errors. The service routine can be invoked by system software on a periodic basis, or by an error-
thresholding interrupt.

A service routine that gathers error information for corrected errors should perform the following:

• Examine the status register (MCi_STATUS) in each of the enabled error-reporting register banks.
For each MCi_STATUS register with a set valid bit (VAL=1), the service routine should:
- Save the contents of the MCi_STATUS register.
- Save the contents of the corresponding MCi_ADDR register if MCi_STATUS[ADDRV] = 1.
- Save the contents of the corresponding MCi_MISC register if MCi_STATUS[MISCV] = 1.

• Once the information found in the error-reporting register banks is saved, the MCi_STATUS
register should be cleared. This allows the processor to properly report any subsequent errors in the
MCi_STATUS registers.

• The service routine can save the time-stamp counter with each error logged. This can help in
determining how frequently errors occur. For further information, see “Time-Stamp Counter” on
page 397.

• In multiprocessor configurations, the service routine can save the processor-node identifier. This
can help locate a failing multiprocessor-system component, which can then be isolated from the
rest of the system. For further information, see the documentation for particular implementations
of the architecture.

[AMD Public Use]

306 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

System-Management Mode 307

24593—Rev. 3.37—March 2021 AMD64 Technology

10 System-Management Mode

System-management mode (SMM) is an operating mode designed for system-control activities like
power management. Normally, these activities are transparent to conventional operating systems and
applications. SMM is used by platform firmware and specialized low-level device drivers, rather than
the operating system.

The SMM interrupt-handling mechanism differs substantially from the standard interrupt-handling
mechanism described in Chapter 8, “Exceptions and Interrupts.” SMM is entered using a special
external interrupt called the system-management interrupt (SMI). After an SMI is received by the
processor, the processor saves the processor state in a separate address space, called SMRAM. The
SMM-handler software and data structures are also located in the SMRAM space. Interrupts and
exceptions that ordinarily cause control transfers to the operating system are disabled when SMM is
entered. The processor exits SMM, restores the saved processor state, and resumes normal execution
by using a special instruction, RSM.

In SMM, address translation is disabled and addressing is similar to real mode. SMM programs can
address up to 4 Gbytes of physical memory. See “SMM Operating-Environment” on page 317 for
additional information on memory addressing in SMM.

The following sections describe the components of the SMM mechanism:

• “SMM Resources” on page 308—this section describes SMRAM, the SMRAM save-state area
used to hold the processor state, and special SMRAM save-state entries used in support of SMM.

• “Using SMM” on page 317—this section describes the mechanism of entering and exiting SMM.
It also describes SMM memory allocation, addressing, and interrupts and exceptions.

Of these mechanisms, only the format of the SMRAM save-state area differs between the AMD64
architecture and the legacy architecture.

Note: Model-independent aspects of SMM operation are described here; see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual of a given processor
family for possible model-specific details.

10.1 SMM Differences
There are functional differences between the SMM support in the AMD64 architecture and the SMM
support found in previous architectures. These are:

• The SMRAM state-save area layout is changed to hold the 64-bit processor state.
• The initial processor state upon entering SMM is expanded to reflect the 64-bit nature of the

processor.
• New conditions exist that can cause a processor shutdown while in SMM.

[AMD Public Use]

308 System-Management Mode

AMD64 Technology 24593—Rev. 3.37—March 2021

• The auto-halt restart and I/O-instruction restart entries in the SMRAM state-save area are one byte
each instead of two bytes each.

• SMRAM caching considerations are modified because the legacy FLUSH# external signal
(writeback, if modified, and invalidate) is not supported on implementations of the AMD64
architecture.

• Some previous AMD x86 processors saved and restored the CR2 register in the SMRAM state-
save area. This register is not saved by the SMM implementation in the AMD64 architecture.
SMM handlers that save and restore CR2 must perform the operation in software.

10.2 SMM Resources
The SMM resources supported by the processor consist of SMRAM, the SMRAM state-save area, and
special entries within the SMRAM state-save area. In addition to the save-state area, SMRAM
includes space for the SMM handler.

10.2.1 SMRAM

SMRAM is the memory-address space accessed by the processor when in SMM. The default size of
SMRAM is 64 Kbytes and can range in size between 32 Kbytes and 4 Gbytes. System logic can use
physically separate SMRAM and main memory, directing memory transactions to SMRAM after
recognizing SMM is entered, and redirecting memory transactions back to system memory after
recognizing SMM is exited. When separate SMRAM and main memory are used, the system designer
needs to provide a method of mapping SMRAM into main memory so that the SMI handler and data
structures can be loaded.

Figure 10-1 on page 309 shows the default SMRAM memory map. The default SMRAM code-
segment (CS) has a base address of 0003_0000h (the base address is automatically scaled by the
processor using the CS-selector register, which is set to the value 3000h). This default SMRAM-base
address is known as SMBASE. A 64-Kbyte memory region, addressed from 0003_0000h to
0003_FFFFh, makes up the default SMRAM memory space. The top 32 Kbytes (0003_8000h to
0003_FFFFh) must be supported by system logic, with physical memory covering that entire address
range. The top 512 bytes (0003_FE00h to 0003_FFFFh) of this address range are the default SMM
state-save area. The default entry point for the SMM interrupt handler is located at 0003_8000h.

[AMD Public Use]

System-Management Mode 309

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 10-1. Default SMRAM Memory Map

10.2.2 SMBASE Register

The format of the SMBASE register is shown in Figure 10-2. SMBASE is an internal processor
register that holds the value of the SMRAM-base address. SMBASE is set to 30000h after a processor
reset.

Figure 10-2. SMBASE Register

In some operating environments, relocation of SMRAM to a higher memory area can provide more
low memory for legacy software. SMBASE relocation is supported when the SMM-base relocation bit
in the SMM-revision identifier (bit 17) is set to 1. In processors implementing the AMD64
architecture, SMBASE relocation is always supported.

Software can only modify SMBASE (relocate the SMRAM-base address) by entering SMM,
modifying the SMBASE image stored in the SMRAM state-save area, and exiting SMM. The SMM-

513-250.eps

SMM State-Save Area

SMRAM

0003_FFFFh

0003_FE00h

0003_8000h

0003_0000h

SMM Handler

(SMBASE+8000h)

(SMBASE)

(SMBASE+FFFFh)

031

SMRAM Base

[AMD Public Use]

310 System-Management Mode

AMD64 Technology 24593—Rev. 3.37—March 2021

handler entry point must be loaded at the new memory location specified by SMBASE+8000h. The
next time SMM is entered, the processor saves its state in the new state-save area at
SMBASE+0FE00h, and begins executing the SMM handler at SMBASE+8000h. The new SMBASE
address is used for every SMM until it is changed, or a hardware reset occurs.

When SMBASE is used to relocate SMRAM to an address above 1 Mbyte, 32-bit address-size-
override prefixes must be used to access this memory. This is because addressing in SMM behaves as
it does in real mode, with a 16-bit default operand size and address size. The values in the 16-bit
segment-selector registers are left-shifted four bits to form a 20-bit segment-base address. Without
using address-size overrides, the maximum computable address is 10FFEFh.

Because SMM memory-addressing is similar to real-mode addressing, the SMBASE address must be
less than 4 Gbytes.

10.2.3 SMRAM State-Save Area

When an SMI occurs, the processor saves its state in the 512-byte SMRAM state-save area during the
control transfer into SMM. The format of the state-save area defined by the AMD64 architecture is
shown in Table 10-1. This table shows the offsets in the SMRAM state-save area relative to the
SMRAM-base address. The state-save area is located between offset 0_FE00h (SMBASE+0_FE00h)
and offset 0_FFFFh (SMBASE+0_FFFFh). Software should not modify offsets specified as read-only
or reserved, otherwise unpredictable results can occur.

Table 10-1. AMD64 Architecture SMM State-Save Area
Offset (Hex)

from SMBASE Contents Size Allowable
Access

FE00h

ES

Selector Word

Read-Only
FE02h Attributes Word
FE04h Limit Doubleword
FE08h Base Quadword
FE10h

CS

Selector Word

Read-Only
FE12h Attributes Word
FE14h Limit Doubleword
FE18h Base Quadword
FE20h

SS

Selector Word

Read-Only
FE22h Attributes Word
FE24h Limit Doubleword
FE28h Base Quadword
Note:

1. The offset for the SMM-revision identifier is compatible with previous implementations.

[AMD Public Use]

System-Management Mode 311

24593—Rev. 3.37—March 2021 AMD64 Technology

FE30h

DS

Selector Word

Read-Only
FE32h Attributes Word
FE34h Limit Doubleword
FE38h Base Quadword
FE40h

FS

Selector Word

Read-Only
FE42h Attributes Word
FE44h Limit Doubleword
FE48h Base Quadword
FE50h

GS

Selector Word

Read-Only
FE52h Attributes Word
FE54h Limit Doubleword
FE58h Base Quadword
FE60h–FE63h

GDTR

Reserved 4 Bytes

Read-Only
FE64h Limit Word
FE66h–FE67h Reserved 2 Bytes
FE68h Base Quadword
FE70h

LDTR

Selector Word

Read-Only
FE72h Attributes Word
FE74h Limit Doubleword
FE78h Base Quadword
FE80h–FE83h

IDTR

Reserved 4 Bytes

Read-Only
FE84h Limit Word
FE86h–FE87h Reserved 2 Bytes
FE88h Base Quadword
FE90h

TR

Selector Word

Read-Only
FE92h Attributes Word
FE94h Limit Doubleword
FE98h Base Quadword
FEA0h I/O Instruction Restart RIP Quadword Read-Only
FEA8h I/O Instruction Restart RCX Quadword Read-Only
FEB0h I/O Instruction Restart RSI Quadword Read-Only
FEB8h I/O Instruction Restart RDI Quadword Read-Only
FEC0h I/O Instruction Restart Dword Doubleword Read-Only
FEC4h–FEC7h Reserved 4 Bytes —

Table 10-1. AMD64 Architecture SMM State-Save Area (continued)
Offset (Hex)

from SMBASE Contents Size Allowable
Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

[AMD Public Use]

312 System-Management Mode

AMD64 Technology 24593—Rev. 3.37—March 2021

FEC8h I/O Instruction Restart Byte
Read/Write

FEC9h Auto-Halt Restart Byte
FECAh—FECFh Reserved 6 Bytes —
FED0h EFER Quadword Read-Only
FED8h SVM Guest Quadword

Read-OnlyFEE0h SVM Guest VMCB Physical Address Quadword
FEE8h SVM Guest Virtual Interrupt Quadword
FEF0h—FEFBh Reserved 12 Bytes —

FEFCh SMM-Revision Identifier1 Doubleword Read-Only

FF00h SMBASE Doubleword Read/Write
FF04h—FF17h Reserved 20 Bytes —
FF18h SSP Quadword Read/Write
FF20h SVM Guest PAT Quadword

Read-Only
FF28h SVM Host EFER Quadword
FF30h SVM Host CR4 Quadword
FF38h SVM Host CR3 Quadword
FF40h SVM Host CR0 Quadword
FF48h CR4 Quadword

Read-OnlyFF50h CR3 Quadword
FF58h CR0 Quadword
FF60h DR7 Quadword

Read-Only
FF68h DR6 Quadword
FF70h RFLAGS Quadword Read/Write
FF78h RIP Quadword

Read/Write

FF80h R15 Quadword
FF88h R14 Quadword
FF90h R13 Quadword
FF98h R12 Quadword
FFA0h R11 Quadword
FFA8h R10 Quadword
FFB0h R9 Quadword
FFB8h R8 Quadword

Table 10-1. AMD64 Architecture SMM State-Save Area (continued)
Offset (Hex)

from SMBASE Contents Size Allowable
Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

[AMD Public Use]

System-Management Mode 313

24593—Rev. 3.37—March 2021 AMD64 Technology

A number of other registers are not saved or restored automatically by the SMM mechanism. See
“Saving Additional Processor State” on page 319 for information on using these registers in SMM.

As a reference for legacy processor implementations, the legacy SMM state-save area format is shown
in Table 10-2. Implementations of the AMD64 architecture do not use this format.

FFC0h RDI Quadword

Read/Write

FFC8h RSI Quadword
FFD0h RBP Quadword
FFD8h RSP Quadword
FFE0h RBX Quadword
FFE8h RDX Quadword
FFF0h RCX Quadword
FFF8h RAX Quadword

Table 10-2. Legacy SMM State-Save Area (Not used by AMD64
Architecture)

Offset (Hex)
from SMBASE Contents Size Allowable

Access
FE00h—FEF7h Reserved 248 Bytes —
FEF8h SMBASE Doubleword Read/Write
FEFCh SMM-Revision Identifier Doubleword Read-Only
FF00h I/O Instruction Restart Word

Read/Write
FF02h Auto-Halt Restart Word
FF04h—FF87h Reserved 132 Bytes —
FF88h GDT Base Doubleword Read-Only
FF8Ch—FF93h Reserved Quadword —
FF94h IDT Base Doubleword Read-Only
FF98h—FFA7h Reserved 16 Bytes —
Note:

1. The offset for the SMM-revision identifier is compatible with previous implementations.

Table 10-1. AMD64 Architecture SMM State-Save Area (continued)
Offset (Hex)

from SMBASE Contents Size Allowable
Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

[AMD Public Use]

314 System-Management Mode

AMD64 Technology 24593—Rev. 3.37—March 2021

10.2.4 SMM-Revision Identifier

The SMM-revision identifier specifies the SMM version and the available SMM extensions
implemented by the processor. Software reads the SMM-revision identifier from offset FEFCh in the
SMM state-save area of SMRAM. This offset location is compatible with earlier versions of SMM.
Software must not write to this location. Doing so can produce undefined results. Figure 10-3 on
page 315 shows the format of the SMM-revision identifier.

FFA8h ES Doubleword

Read-Only

FFACh CS Doubleword
FFB0h SS Doubleword
FFB4h DS Doubleword
FFB8h FS Doubleword
FFBCh GS Doubleword
FFC0h LDT Base Doubleword

Read-Only
FFC4h TR Doubleword
FFC8h DR7 Doubleword

Read-Only
FFCCh DR6 Doubleword
FFD0h EAX Doubleword

Read/Write

FFD4h ECX Doubleword
FFD8h EDX Doubleword
FFDCh EBX Doubleword
FFE0h ESP Doubleword
FFE4h EBP Doubleword
FFE8h ESI Doubleword
FFECh EDI Doubleword
FFF0h EIP Doubleword Read/Write
FFF4h EFLAGS Doubleword Read/Write
FFF8h CR3 Doubleword

Read-Only
FFFCh CR0 Doubleword

Table 10-2. Legacy SMM State-Save Area (Not used by AMD64
Architecture) (continued)

Offset (Hex)
from SMBASE Contents Size Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

[AMD Public Use]

System-Management Mode 315

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 10-3. SMM-Revision Identifier

The fields within the SMM-revision identifier are:

• SMM-revision Level—Bits 15:0. Specifies the version of SMM supported by the processor. The
SMM-revision level is of the form 0_xx64h, where xx starts with 00 and is incremented for later
revisions to the SMM mechanism.

• I/O Instruction Restart—Bit 16. When set to 1, the processor supports restarting I/O instructions
that are interrupted by an SMI. This bit is always set to 1 by implementations of the AMD64
architecture. See “I/O Instruction Restart” on page 321 for information on using this feature.

• SMM Base Relocation—Bit 17. When set to 1, the processor supports relocation of SMRAM. This
bit is always set to 1 by implementations of the AMD64 architecture. See “SMBASE Register” on
page 309 for information on using this feature.

All remaining bits in the SMM-revision identifier are reserved.

10.2.5 SMRAM Protected Areas

Two areas are provided as safe areas for SMM code and data that are not readily accessible by non-
SMM applications. The SMI handler can be located in one of these two ranges, or it can be located
outside of these ranges. The handler is placed in the desired range by setting SMBASE accordingly.

The ASeg range is located at a fixed address from A_0000h to B_FFFFh. The TSeg range is located at
a variable base specified by the SMM_ADDR MSR with a variable size specified by the
SMM_MASK MSR. These ranges must never overlap.

Each CPU memory access is in the TSeg range if the following is true:

Phys Addr[51:17] & SMM_MASK[51:17] = SMM_ADDR[51:17] & SMM_MASK[51:17].

513-251eps

SMM-Revision Level

015161731

Reserved

Description Bits

SMM-Revision Level
I/O Instruction Restart
SMM Base Relocation

15:0
16
17

18

1 1

[AMD Public Use]

316 System-Management Mode

AMD64 Technology 24593—Rev. 3.37—March 2021

For example, if the TSeg range spans 256 Kbytes starting at address 10_0000h, then SMM_ADDR
=0010_0000h and SMM_MASK=FFFC_0000h. This results in a TSeg address range from 0010_0000
to 0013_FFFFh. The TSeg range must be aligned to a 128 Kbyte boundary and the minimum TSeg
size is 128 Kbytes.

Figure 10-4. SMM_ADDR Register Format

• SMM TSeg Base Address (BASE)—Bits 51:17. Specifies the base address of the TSeg range of
protected addresses.

Figure 10-5. SMM_MASK Register Format

• ASeg Address Range Enable (AE)—Bit 0. Specifies whether the ASeg address range is enabled for
protection. When the bit is set to 1, the ASeg address range is enabled for protection. When cleared
to 0, the ASeg address range is disabled for protection.

63 52 51 32

Reserved, IGN BASE[51:32]

31 17 16 0

BASE[31:17] Reserved, IGN

Bits Mnemonic Description R/W
63:52 Reserved Reserved, Ignore
51:17 BASE SMM TSeg Base Address R/W
16:0 Reserved Reserved, Ignore

63 52 51 32

Reserved, IGN MASK[51:32]

31 17 16 2 1 0

MASK[31:17] Reserved, IGN TE AE

Bits Mnemonic Description R/W
63:52 Reserved Reserved, Ignore
51:17 MASK TSeg Mask R/W
16:2 Reserved Reserved, Ignore
1 TE Tseg Address Range Enable R/W
0 AE Aseg Address Range Enable R/W

[AMD Public Use]

System-Management Mode 317

24593—Rev. 3.37—March 2021 AMD64 Technology

• TSeg Address Range Enable (TE)—Bit 1. Specifies whether the TSeg address range is enabled for
protection. When the bit is set to 1, the TSeg address range is enabled for protection. When cleared
to 0, the TSeg address range is disabled for protection.

• TSeg Mask (MASK)—Bits 51:17. Specifies the mask used to determine the TSeg range of protected
addresses. The physical address is in the TSeg range if the following is true:
Phys Addr[51:17] & SMM_MASK[51:17] = SMM_ADDR[51:17] & SMM_MASK[51:17].

Note that a processor is not required to implement all 52 bits of the physical address.

10.3 Using SMM
10.3.1 System-Management Interrupt (SMI)

SMM is entered using the system-management interrupt (SMI). SMI is an external non-maskable
interrupt that operates differently from and independently of other interrupts. SMI has priority over all
other external interrupts, including NMI (see “Priorities” on page 253 for a list of the interrupt
priorities). SMIs are disabled when in SMM, which prevents reentrant calls to the SMM handler.

When an SMI is received by the processor, the processor stops fetching instructions and waits for
currently-executing instructions to complete and write their results. The SMI also waits for all
buffered memory writes to update the caches or system memory. When these activities are complete,
the processor uses implementation-dependent external signaling to acknowledge back to the system
that it has received the SMI.

10.3.2 SMM Operating-Environment

The SMM operating-environment is similar to real mode, except that the segment limits in SMM are 4
Gbytes rather than 64 Kbytes. This allows an SMM handler to address memory in the range from 0h to
0FFFF_FFFFh. As with real mode, segment-base addresses are restricted to 20 bits in SMM, and the
default operand-size and address-size is 16 bits. To address memory locations above 1 Mbyte, the
SMM handler must use the 32-bit operand-size-override and address-size-override prefixes.

After saving the processor state in the SMRAM state-save area, a processor running in SMM sets the
segment-selector registers and control registers into a state consistent with real mode. Other registers
are also initialized upon entering SMM, as shown in Table 10-3.

Table 10-3. SMM Register Initialization
Register Initial SMM Contents

CS

Selector SMBASE right-shifted 4 bits
Base SMBASE
Limit FFFF_FFFFh
Attr Read-Write-Execute

[AMD Public Use]

318 System-Management Mode

AMD64 Technology 24593—Rev. 3.37—March 2021

10.3.3 Exceptions and Interrupts

All hardware interrupts are disabled upon entering SMM, but exceptions and software interrupts are
not disabled. If necessary, the SMM handler can re-enable hardware interrupts. Software that handles
interrupts in SMM should consider the following:

• SMI—If an SMI occurs while the processor is in SMM, it is latched by the processor. The latched
SMI occurs when the processor leaves SMM.

• NMI—If an NMI occurs while the processor is in SMM, it is latched by the processor, but the NMI
handler is not invoked until the processor leaves SMM with the execution of an RSM instruction.
A pending NMI causes the handler to be invoked immediately after the RSM completes and before
the first instruction in the interrupted program is executed.
An SMM handler can unmask NMI interrupts by simply executing an IRET. Upon completion of
the IRET instruction, the processor recognizes the pending NMI, and transfers control to the NMI
handler. Once an NMI is recognized within SMM using this technique, subsequent NMIs are
recognized until SMM is exited. Later SMIs cause NMIs to be masked, until the SMM handler
unmasks them.

• Exceptions—Exceptions (internal processor interrupts) are not disabled and can occur while in
SMM. Therefore, the SMM-handler software should be written to avoid generating exceptions.

• Software Interrupts—The software-interrupt instructions (BOUND, INTn, INT3, and INTO) can
be executed while in SMM. However, it is not recommended that the SMM handler use these
instructions.

• Maskable Interrupts—RFLAGS.IF is cleared to 0 by the processor when SMM is entered.
Software can re-enable maskable interrupts while in SMM, but it must follow the guidelines listed
below for handling interrupts.

• Debug Interrupts—The processor disables the debug interrupts when SMM is entered by clearing
DR7 to 0 and clearing RFLAGS.TF to 0. The SMM handler can re-enable the debug facilities
while in SMM, but it must follow the guidelines listed below for handling interrupts.

DS, ES, FS, GS, SS

Selector 0000h
Base 0000_0000_0000_0000h
Limit FFFF_FFFFh
Attr Read-Write

RIP 0000_0000_0000_8000h
RFLAGS 0000_0000_0000_0002h

CR0
PE, EM, TS, PG bits cleared to 0.
All other bits are unmodified.

CR4 0000_0000_0000_0000h
DR7 0000_0000_0000_0400h
EFER 0000_0000_0000_0000h

Table 10-3. SMM Register Initialization (continued)
Register Initial SMM Contents

[AMD Public Use]

System-Management Mode 319

24593—Rev. 3.37—March 2021 AMD64 Technology

• INIT—The processor does not recognize INIT while in SMM.

Because the RFLAGS.IF bit is cleared when entering SMM, the HLT instruction should not be
executed in SMM without first setting the RFLAGS.IF bit to 1. Setting this bit to 1 allows the
processor to exit the halt state by using an external maskable interrupt.

In the cases where an SMM handler must accept and handle interrupts and exceptions, several
guidelines must be followed:

• Interrupt handlers must be loaded and accessible before enabling interrupts.
• A real-mode interrupt vector table located at virtual (linear) address 0 is required.
• Segments accessed by the interrupt handler cannot have a base address greater than 20 bits because

of the real-mode addressing used in SMM. In SMM, the 16-bit value stored in the segment-selector
register is left-shifted four bits to form the 20-bit segment-base address, like real mode.

• Only the IP (rIP[15:0]) is pushed onto the stack as a result of an interrupt in SMM, because of the
real-mode addressing used in SMM. If the SMM handler is interrupted at a code-segment offset
above 64 Kbytes, then the return address on the stack must be adjusted by the interrupt-handler,
and a RET instruction with a 32-bit operand-size override must be used to return to the SMM
handler.

• If the interrupt-handler is located below 1 Mbyte, and the SMM handler is located above 1 Mbyte,
a RET instruction cannot be used to return to the SMM handler. In this case, the interrupt handler
can adjust the return pointer on the stack, and use a far CALL to transfer control back to the SMM
handler.

10.3.4 Invalidating the Caches

The processor can cache SMRAM-memory locations. If the system implements physically separate
SMRAM and system memory, it is possible for SMRAM and system memory locations to alias into
identical cache locations. In some processor implementations, the cache contents must be written to
memory and invalidated when SMM is entered and exited. This prevents the processor from using
previously-cached main-memory locations as aliases for SMRAM-memory locations when SMM is
entered, and vice-versa when SMM is exited.

Implementations of the AMD64 architecture do not require cache invalidation when entering and
exiting SMM. Internally, the processor keeps track of SMRAM and system-memory accesses
separately and properly handles situations where aliasing occurs. Cached system memory and
SMRAM locations can persist across SMM mode changes. Removal of the requirement to writeback
and invalidate the cache simplifies SMM entry and exit and allows SMM code to execute more
rapidly.

10.3.5 Saving Additional Processor State

Several registers are not saved or restored automatically by the SMM mechanism. These are:

• The 128-bit media instruction registers.
• The 64-bit media instruction registers.

[AMD Public Use]

320 System-Management Mode

AMD64 Technology 24593—Rev. 3.37—March 2021

• The x87 floating-point registers.
• The page-fault linear-address register (CR2).
• The task-priority register (CR8).
• The debug registers, DR0, DR1, DR2, and DR3.
• The memory-type range registers (MTRRs).
• Model-specific registers (MSRs).

These registers are not saved because SMM handlers do not normally use or modify them. If an SMI
results in a processor reset (due to powering down the processor, for example) or the SMM handler
modifies the contents of the unsaved registers, the SMM handler should save and restore the original
contents of those registers. The unsaved registers, along with those stored in the SMRAM state-save
area, need to be saved in a non-volatile storage location if a processor reset occurs. The SMM handler
should execute the CPUID instruction to determine the feature set available in the processor, and be
able to save and restore the registers required by those features. For more information on using the
CPUID instruction, see Section 3.3, “Processor Feature Identification,” on page 70.

The SMM handler can execute any of the 128-bit media, 64-bit media, or x87 instructions. A simple
method for saving and restoring those registers is to use the FXSAVE and FXRSTOR instructions,
respectively, if it is supported by the processor. See “Saving Media and x87 Execution Unit State” on
page 332 for information on saving and restoring those registers.

Floating-point exceptions can occur when the SMM handler uses media or x87 floating-point
instructions. If the SMM handler uses floating-point exception handlers, they must follow the usage
guidelines established in “Exceptions and Interrupts” on page 318. A simple method for dealing with
floating-point exceptions while in SMM is to simply mask all exception conditions using the
appropriate floating-point control register. When the exceptions are masked, the processor handles
floating-point exceptions internally in a default manner, and allows execution to continue
uninterrupted.

10.3.6 Operating in Protected Mode and Long Mode

Software can enable protected mode from SMM and it can also enable and activate long mode. An
SMM handler can use this capability to enter 64-bit mode and save additional processor state that
cannot be accessed from outside 64-bit mode (for example, the most-significant 32 bits of CR2).

10.3.7 Auto-Halt Restart

The auto-halt restart entry is located at offset FEC9h in the SMM state-save area. The size of this field
is one byte, as compared with two bytes in previous versions of SMM.

When entering SMM, the processor loads the auto-halt restart entry to indicate whether SMM was
entered from the halt state, as follows:

• Bit 0 indicates the processor state upon entering SMM:
- When set to 1, the processor entered SMM from the halt state.

[AMD Public Use]

System-Management Mode 321

24593—Rev. 3.37—March 2021 AMD64 Technology

- When cleared to 0, the processor did not enter SMM from the halt state.
• Bits 7:1 are cleared to 0.

The SMM handler can write the auto-halt restart entry to specify whether the return from SMM should
take the processor back to the halt state or to the instruction-execution state specified by the SMM
state-save area. The values written are:

• Clear to 00h—The processor returns to the state specified by the SMM state-save area.
• Set to any non-zero value—The processor returns to the halt state.

If the return from SMM takes the processor back to the halt state, the HLT instruction is not re-
executed. However, the halt special bus-cycle is driven on the processor bus after the RSM instruction
executes.

The result of entering SMM from a non-halt state and returning to a halt state is not predictable.

10.3.8 I/O Instruction Restart

The I/O-instruction restart entry is located at offset FEC8h in the SMM state-save area. The size of this
field is one byte, as compared with two bytes in previous versions of SMM. The I/O-instruction restart
mechanism is supported when the I/O-instruction restart bit (bit 16) in the SMM-revision identifier is
set to 1. This bit is always set to 1 in the AMD64 architecture.

When an I/O instruction is interrupted by an SMI, the I/O-instruction restart entry specifies whether
the interrupted I/O instruction should be re-executed following an RSM that returns from SMM. Re-
executing a trapped I/O instruction is useful, for example, when an I/O write is performed to a
powered-down disk drive. When this occurs, the system logic monitoring the access can issue an SMI
to have the SMM handler power-up the disk drive and retry the I/O write. The SMM handler does this
by querying system logic and detecting the failed I/O write, asking system logic to initiate the disk-
drive power-up sequence, enabling the I/O instruction restart mechanism, and returning from SMM.
Upon returning from SMM, the I/O write to the disk drive is restarted.

When an SMI occurs, the processor always clears the I/O-instruction restart entry to 0. If the SMI
interrupted an I/O instruction, then the SMM handler can modify the I/O-instruction restart entry as
follows:

• Clear to 00h (default value)—The I/O instruction is not restarted, and the instruction following the
interrupted I/O-instruction is executed. When a REP (repeat) prefix is used with an I/O instruction,
it is possible that the next instruction to be executed is the next I/O instruction in the repeat loop.

• Set to any non-zero value—The I/O instruction is restarted.

While in SMM, the handler must determine the cause of the SMI and examine the processor state at the
time the SMI occurred to determine whether or not an I/O instruction was interrupted.
Implementations provide state information in the SMM save-state area to assist in this determination:

• I/O Instruction Restart DWORD—indicates whether the SMI interrupted an I/O instruction, and
saves extra information describing the I/O instruction.

[AMD Public Use]

322 System-Management Mode

AMD64 Technology 24593—Rev. 3.37—March 2021

• I/O Instruction Restart RIP—the RIP of the interrupted I/O instruction.
• I/O Instruction Restart RCX—the RCX of the interrupted I/O instruction.
• I/O Instruction Restart RSI—the RSI of the interrupted I/O instruction.
• I/O Instruction Restart RDI—the RDI of the interrupted I/O instruction.

Figure 10-6. I/O Instruction Restart Dword

The fields in the I/O Instruction Restart DWORD are as follows:

• PORT—Intercepted I/O port
• A64—64-bit address
• A32—32-bit address
• A16—16-bit address
• SZ32—32-bit I/O port size
• SZ16—16-bit I/O port size
• SZ8—8-bit I/O port size
• REP—Repeated port access
• STR—String based port access (INS, OUTS)
• VAL—Valid (SMI was detected during an I/O instruction.)
• TYPE—Access type (0 = OUT instruction, 1 = IN instruction).

10.3.9 SMM Page Configuration Lock

The SMM Page Configuration Lock feature allows the SMM handler to lock the paging configuration.
The feature is enabled by setting HWCR.SMM_PGCFG_LOCK=1 (bit 33). Once locked, the paging
configuration cannot be modified until SMM is exited using the RSM instruction. The processor clears
HWCR.SMM_PGCFG_LOCK when completing the RSM instruction. If page configuration locking
is needed when the processor enters SMM again in the future, HWCR.SMM_PGCFG_LOCK must be
set again by the SMM handler.

When SMM Page Configuration Lock is enabled, the following will result in a #GP exception:

• Writing Extended Feature Register (EFER) using the WRMSR instruction.
• Writing CR0, CR3, or CR4 using the MOV CRn instruction.

Attempting to set HWCR.SMM_PGCFG_LOCK when not in SMM results in a #GP exception.
Before setting HWCR.SMM_PGCFG_LOCK, system software must verify the processor supports the
SMM Page Configuration Lock feature by checking that CPUID

31 16 15 10 9 8 7 6 5 4 3 2 1 0

PORT RESERVED A
64

A
32

A
16

S
Z
32

S
Z
16

S
Z
8

R
E
P

S
T
R

V
A
L

T
Y
P
E

[AMD Public Use]

System-Management Mode 323

24593—Rev. 3.37—March 2021 AMD64 Technology

Fn8000_0021_EAX[SmmPgCfgLock] (bit 3) = 1. For more information on using the CPUID
instruction see Section 3.3, “Processor Feature Identification,” on page 70.

10.4 Leaving SMM
Software leaves SMM and returns to the interrupted program by executing the RSM instruction. RSM
causes the processor to load the interrupted state from the SMRAM state-save area and then transfer
control back to the interrupted program. RSM cannot be executed in any mode other than SMM,
otherwise an invalid-opcode exception (#UD) occurs.

An RSM causes a processor shutdown if an invalid-state condition is found in the SMRAM state-save
area. Only an external reset, external processor-initialization, or non-maskable external interrupt
(NMI) can cause the processor to leave the shutdown state. The invalid SMRAM state-save-area
conditions that can cause a processor shutdown during an RSM are:

• CR0.PE=0 and CR0.PG=1.
• CR0.CD=0 and CR0.NW=1.
• Certain reserved bits are set to 1, including:

- Any CR0 bit in the range 63:32 is set to 1.
- Any unsupported bit in CR3 is set to 1.
- Any unsupported bit in CR4 is set to 1.
- Any DR6 bit or DR7 bit in the range 63:32 is set to 1.
- Any unsupported bit in EFER is set to 1.

• Invalid returns to long mode, including:
- EFER.LME=1, CR0.PG=1, and CR4.PAE=0.
- EFER.LME=1, CR0.PG=1, CR4.PAE=1, CS.L=1, and CS.D=1.

• The SSM revision identifier is modified.

Some SMRAM state-save-area conditions are ignored, and the registers, or bits within the registers,
are restored in a default manner by the processor. This avoids a processor shutdown when an invalid
condition is stored in SMRAM. The default conditions restored by the processor are:

• The EFER.LMA register bit is set to the value obtained by logically ANDing the SMRAM values
of EFER.LME, CR0.PG, and CR4.PAE.

• The RFLAGS.VM register bit is set to the value obtained by logically ANDing the SMRAM
values of RFLAGS.VM, CR0.PE, and the inverse of EFER.LMA.

• The base values of FS, GS, GDTR, IDTR, LDTR, and TR are restored in canonical form. Those
values are sign-extended to bit 63 using the most-significant implemented bit.

• Unimplemented segment-base bits in the CS, DS, ES, and SS registers are cleared to 0.
• SSP is canonicalized (i.e., sign-extended to bit 63).

[AMD Public Use]

324 System-Management Mode

AMD64 Technology 24593—Rev. 3.37—March 2021

10.5 Multiprocessor Considerations
For multiprocessor operation, each logical processor must be given a separate SMBASE value so that
the save-state areas do not overlap. For systems with fewer than 64 logical processors it is sufficient to
stagger the SMBASE values by 512 bytes. Note that this also offsets theSMI entry point by the same
amount for each processor. With 64 or more logical processors, the entry points will start to collide
with the save-state areas. Staggering the SMBASE values by 1024 bytes results in 512-byte entry
point areas interleaved with the 512-byte state-save areas, and so provides scaling beyond 63 logical
processors.

Further details on multiprocessor aspects of SMM may be found in the BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming Reference Manual for a given processor family.

[AMD Public Use]

SSE, MMX, and x87 Programming 325

24593—Rev. 3.37—March 2021 AMD64 Technology

11 SSE, MMX, and x87 Programming

This chapter describes the system-software implications of supporting applications that use the
Streaming SIMD Extensions (SSE), MMX™, and x87 instructions. Throughout this chapter, these
instructions are collectively referred to as media and x87 (media/x87) instructions. A complete listing
of the instructions that fall in this category—and the detailed operation of each instruction—can be
found in volumes 4 and 5. Refer to Volume 1 for information on using these instructions in application
software.

The SSE instruction set is comprised of the legacy SSE instruction set which includes the SSE1, SSE2,
SSE3, SSSE3, SSE4A, SSE4.1, and SSE4.2 subsets and the extended SSE instruction set which
includes the AVX, FMA4, and XOP subsets. Many of the extended SSE instructions support both 128-
bit and 256-bit data types.

11.1 Overview of System-Software Considerations
Processor implementations can support different combinations of the SSE, MMX, and x87 instruction
sets. Two sets of registers—independent of the general-purpose registers—support these instructions.
The SSE instructions operate on the YMM/XMM registers, and the 64-bit media and x87-instructions
operate on the aliased MMX/x87 registers. The SSE and x87 floating-point instruction sets have
distinct status registers, control registers, exception vectors, and system-software control bits for
managing the operating environment. System software that supports use of these instructions must be
able to manage these resources properly including:

• Detecting support for the instruction set, and enabling any optional features, as necessary.
• Saving and restoring the processor media or x87 state.
• Execution of floating-point instructions (media or x87) can produce exceptions. System software

must supply exception handlers for all unmasked floating-point exceptions.

11.2 Determining Media and x87 Feature Support
Support for the architecturally defined subsets within the media and x87 instructions is
implementation dependent. System software executes the CPUID instruction to determine whether a
processor implements any of these features (see Section 3.3, “Processor Feature Identification,” on
page 70 for more information on using the CPUID instruction). After CPUID is executed feature
support can be determined by examining specific bit fields returned in the EAX, ECX, and EDX
registers.

The following table summarizes the architecturally defined SSE subsets and state management
instructions and gives the feature bits returned by the CPUID function. If the indicated bit is set, the
feature is supported by the processor.

[AMD Public Use]

326 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

Some instructions may be listed in more than one subset. If software attempts to execute an instruction
belonging to an unsupported instruction subset, an invalid-opcode exception (#UD) occurs. Refer to
Appendix D, “Instruction Subsets and CPUID Feature Flags” in Volume 3 for specific information.

Table 11-1. SSE Subsets – CPUID Feature Identifiers
CPUID Fn Field Name Field Bit Instruction Subset

Legacy SSE
0000_0001h EDX[SSE] EDX[25] Original Streaming SIMD Extensions (SSE1)
0000_0001h EDX[SSE2] EDX[26] SSE2
0000_0001h ECX[SSE3] ECX[0] SSE3
0000_0001h ECX[SSSE3] ECX[9] SSSE3
0000_0001h ECX[SSE41] ECX[19] SSE4.1
0000_0001h ECX[SSE42] ECX[20] SSE4.2

8000_0001h ECX[SSE4A] ECX[6] SSE4A: EXTRQ, INSERTQ, MOVNTSS, and
MOVNTSD instructions

Extended SSE
0000_0001h ECX[AVX] ECX[28] AVX
8000_0001h ECX[XOP] ECX[11] AMD XOP
0000_0001h ECX[FMA] ECX[12] FMA
8000_0001h ECX[FMA4] ECX[16] AMD FMA4

MMX
0000_0001h or

8000_0001h EDX[MMX] EDX[23] Original MMX™ Instructions

8000_0001h EDX[MmxExt] EDX[22] AMD Extensions to MMX
8000_0001h EDX[3DNow] EDX[31] AMD 3DNow!™
8000_0001h EDX[3DNowExt] EDX[30] AMD Extensions to 3DNow!

x87
0000_0001h or

8000_0001h EDX[FPU] EDX[0] x87 instruction set and facilities

Context Management Instructions
0000_0001h or

8000_0001h EDX[FXSR] EDX[24] FXSAVE / FXRSTOR instructions

8000_0001h EDX[FFXSR] EDX[25] Hardware optimizations for FXSAVE / FXRSTOR
0000_0001h ECX[XSAVE] ECX[26] XSAVE / XRSTOR instructions
0000_000Dh

ECX=01h EAX[XSAVEOPT] EAX[0] XSAVEOPT

[AMD Public Use]

SSE, MMX, and x87 Programming 327

24593—Rev. 3.37—March 2021 AMD64 Technology

11.3 Enabling SSE Instructions
Use of the 256-bit and 128-bit media instructions by application software requires system software
support. System software must determine which SSE subsets are supported, enable those that are to be
used, and supply code to handle the various exceptions that may occur during the execution of these
instructions. The legacy SSE instructions and the extended SSE instructions often require unique
exception handling.

11.3.1 Enabling Legacy SSE Instruction Execution

When legacy SSE instructions are supported, system software must set CR4.OSFXSR to let the
processor know that the software supports the FXSAVE/FXRSTOR instructions. When the processor
detects CR4.OSFXSR = 1, it allows execution of the legacy SSE instructions. If system software does
not set CR4.OSFXSR, any attempt to execute these instructions causes an invalid-opcode exception
(#UD). System software must also clear the CR0.EM (emulate coprocessor) bit to 0, otherwise an
attempt to execute a legacy SSE instruction causes a #UD exception. An attempt to execute either
FXSAVE or FXRSTOR when CR0.EM is set results in a #NM exception.

System software should also set the CR0.MP (monitor coprocessor) bit to 1. When CR0.EM=0 and
CR0.MP=1, all media instructions, x87 instructions, and the FWAIT/WAIT instructions cause a
device-not-available exception (#NM) when the CR0.TS bit is set. System software can use the #NM
exception to perform lazy context switching, saving and restoring media and x87 state only when
necessary after a task switch. See “CR0 Register” on page 42 for more information.

11.3.2 Enabling Extended SSE Instruction Execution

After the steps specified above are completed to enable legacy SSE instruction execution, additional
steps are required to enable the extended SSE instructions and state management. System software
must carry out the following process:

• Confirm that the hardware supports the XSAVE, XRSTOR, XSETBV, and XGETBV instructions
and the XCR0 register (XFEATURE_ENABLED_MASK) by executing the CPUID instruction
function 0000_0001h. If CPUID Fn0000_0001_ECX[XSAVE] is set, hardware support is verified.

• Optionally confirm hardware support of the XSAVEOPT instruction by executing CPUID function
0000_000Dh, sub-function 1 (ECX = 1). If CPUID Fn0000_000D_EAX_x1[XSAVEOPT] is set,
the processor supports the XSAVEOPT instruction. XSAVEOPT is a performance optimized
version of XSAVE.

• Confirm that hardware supports the extended SSE instructions by verifying
XFeatureSupportedMask[2:0] = 111b. XFeatureSupportedMask is accessed via the CPUID
instruction function 0000_000Dh, sub-function 0 (ECX = 0). XFeatureSupportedMask[31:0] is
returned in the EAX register.
If CPUID Fn0000_000D_EAX_x0[2:0] = 111b, hardware supports x87, legacy SSE, and extended
SSE instructions. Bit 0 of EAX signifies x87 floating-point and MMX support, bit 1 signifies
legacy SSE support, and bit 2 signifies extended SSE support. Support for both x87 and legacy
SSE instructions are required for processors that support the extended SSE instructions.

[AMD Public Use]

328 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

• Set CR4[OSXSAVE] (bit 18) to enable the use of the XSETBV and XGETBV instructions.
XSETBV is a privileged instruction that writes the XCRn registers. XCR0 is the
XFEATURE_ENABLED_MASK used to manage media and x87 processor state using the
XSAVE, XSAVEOPT, and XRSTOR instructions.

• Enable the x87/MMX, legacy SSE, and extended SSE instructions and processor state
management by setting the x87, SSE, and YMM bits of XCR0
(XFEATURE_ENABLED_MASK). This is done via the privileged instruction XSETBV.
Enabling extended SSE capabilities without enabling legacy SSE capabilities is not allowed. The
x87 flag (bit 0) of the XFEATURE_ENABLED_MASK must be set when writing XCR0.

• Determine the XSAVE/XRSTOR memory save area size requirement. The field
XFeatureEnabledSizeMax specifies the size requirement in bytes based on the currently enabled
extended features and is returned in the EBX register after execution of CPUID Function
0000_000Dh, sub-function 0 (ECX = 0).

• Allocate the save/restore area based on the information obtained in the previous step.

For a detailed description of the XSETBV and XGETBV instructions, see individual instruction
reference pages in Volume 4. See the section entitled “XFEATURE_ENABLED_MASK” in Volume 4
for details on the field definitions for XFEATURE_ENABLED_MASK.

For more information on using the CPUID instruction to obtain processor feature information, see
Section 3.3, “Processor Feature Identification,” on page 70.

11.3.3 SIMD Floating-Point Exception Handling

System software must supply an exception handler if unmasked SSE floating-point exceptions are
allowed to occur. When an unmasked exception is detected, the processor transfers control to the
SIMD floating-point exception (#XF) handler provided by the operating system. System software
must let the processor know that the #XF handler is available by setting CR4.OSXMMEXCPT to 1. If
this bit is set to 1, the processor transfers control to the #XF handler when it detects an unmasked
exception, otherwise a #UD exception occurs. When the processor detects a masked exception, it
handles it in a default manner regardless of the CR4.OSXMMEXCPT value.

11.4 Media and x87 Processor State
The media and x87 processor state includes the contents of the registers used by SSE, MMX, and x87
instructions. System software that supports such applications must be capable of saving and restoring
these registers.

11.4.1 SSE Execution Unit State

Figure 11-1 shows the registers whose contents are affected by execution of SSE instructions. These
include:

• YMM/XMM0–15—Sixteen 256-bit/128-bit SSE registers. In legacy and compatibility modes,
software access is limited to the first eight registers.

[AMD Public Use]

SSE, MMX, and x87 Programming 329

24593—Rev. 3.37—March 2021 AMD64 Technology

• MXCSR—The 32-bit Media eXtensions Control and Status Register.

All of these registers are visible to application software. Refer to “Streaming SIMD Extensions Media
and Scientific Programming” in Volume 1 for more information on these registers.

Figure 11-1. SSE Execution Unit State

11.4.2 MMX Execution Unit State

Figure 11-2 on page 330 shows the register contents that are affected by execution of 64-bit media
instructions. These registers include:

• mmx0–mmx7—Eight 64-bit media registers.
• FSW—Two fields (TOP and ES) in the 16-bit x87 status word register.

513-314 ymm.eps

255 127 0

YMM0

YMM1

YMM2

YMM3

YMM4

YMM5

YMM6

YMM7

YMM8

YMM9

YMM10

YMM11

YMM12

YMM13

YMM14

YMM15

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

XMM8

XMM9

XMM10

XMM11

XMM12

XMM13

XMM14

XMM15

Available in all modes

Available only in 64-bit mode

31 0

MXCSRMedia eXtension Control and Status Register

[AMD Public Use]

330 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

• FTW—The 16-bit x87 tag word.

Figure 11-2. MMX Execution Unit State

The 64-bit media instructions and x87 floating-point instructions share the same physical data
registers. Figure 11-2 shows how the 64-bit registers (MMX0–MMX7) are aliased onto the low 64 bits
of the 80-bit x87 floating-point physical data registers (FPR0–FPR7). Refer to “64-Bit Media
Programming” in Volume 1 for more information on these registers.

Of the registers shown in Figure 11-2, only the eight 64-bit MMX registers are visible to 64-bit media
application software. The processor maintains the contents of the two fields of the x87 status word—
top-of-stack-pointer (TOP) and exception summary (ES)—and the 16-bit x87 tag word during
execution of 64-bit media instructions, as described in “Actions Taken on Executing 64-Bit Media
Instructions” in Volume 1.

64-bit media instructions do not generate x87 floating-point exceptions, nor do they set any status
flags. However, 64-bit media instructions can trigger an unmasked floating-point exception caused by
a previously executed x87 instruction. 64-bit media instructions do this by reading the x87 FSW.ES bit
to determine whether such an exception is pending.

11.4.3 x87 Execution Unit State

Figure 11-3 on page 332 shows the registers whose contents are affected by execution of x87 floating-
point instructions. These registers include:

v2_MMX_regs.eps

MMX Registers
79 0

MMX0

MMX1

MMX2

MMX3

MMX4

MMX5

MMX6

MMX7

015

6364

FPR0

FPR1

FPR2

FPR3

FPR4

FPR5

FPR6

FPR7

FSW

ESTOP

FTWx87 Tag Word

x87 Status Word
Visible to application
software

Written by processor
hardware

[AMD Public Use]

SSE, MMX, and x87 Programming 331

24593—Rev. 3.37—March 2021 AMD64 Technology

• fpr0–fpr7—Eight 80-bit floating-point physical registers.
• FCW—The 16-bit x87 control word register.
• FSW—The 16-bit x87 status word register.
• FTW—The 16-bit x87 tag word.
• Last x87 Instruction Pointer—This value is a pointer (32-bit, 48-bit, or 64-bit, depending on

effective operand size and mode) to the last non-control x87 floating-point instruction executed.
• Last x87 Data Pointer—The pointer (32-bit, 48-bit, or 64-bit, depending on effective operand size

and mode) to the data operand referenced by the last non-control x87 floating-point instruction
executed, if that instruction referenced memory; if it did not, then this value is implementation
dependent.

• Last x87 Opcode—An 11-bit permutation of the instruction opcode from the last non-control x87
floating-point instruction executed.

Of the registers shown in Figure 11-3 on page 332, only FPR0–FPR7, FCW, and FSW are directly
updated by x87 application software. The processor maintains the contents of the FTW, instruction and
data pointers, and opcode registers during execution of x87 instructions. Refer to “Registers” in
Volume 1 for more information on these registers.

The 11-bit instruction opcode register holds a permutation of the two-byte instruction opcode from the
last non-control x87 instruction executed by the processor. (For a definition of non-control x87
instruction, see “Control” in Chapter 6 of Volume 1.) The opcode field is formed as follows:

• Opcode Register Field[10:8] = First x87 opcode byte[2:0].
• Opcode Register Field[7:0] = Second x87 opcode byte[7:0].

For example, the x87 opcode D9 F8h is stored in the opcode register as 001_1111_1000b. The low-
order three bits of the first opcode byte, D9h (1101_1001b), are stored in opcode-register bits 10:8.
The second opcode byte, F8h (1111_1000b), is stored in bits 7:0 of the opcode register. The high-order
five bits of the first opcode byte (1101_1b) are not needed because they are identical for all x87
instructions.

[AMD Public Use]

332 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 11-3. x87 Execution Unit State

11.4.4 Saving Media and x87 Execution Unit State

In most cases, operating systems, exception handlers, and device drivers should save and restore the
media and/or x87 processor state between task switches or other interventions in the execution of 128-
bit, 64-bit, or x87 procedures. Application programs are also free to save and restore state at any time.

In general, system software should use the FXSAVE and FXRSTOR instructions to save and restore
the entire media and x87 processor state. The FSAVE/FNSAVE and FRSTOR instructions can be used
for saving and restoring the x87 state. Because the 64-bit media registers are physically aliased onto
the x87 registers, the FSAVE/FNSAVE and FRSTOR instructions can also be used to save and restore
the 64-bit media state. However, FSAVE/FNSAVE and FRSTOR do not save or restore the 128-bit
media state.

Tag Word

Status Word

Control Word

v2_x87_regs.eps

x87 Floating-Point Registers
79 0

FPR0

FPR1

FPR2

FPR3

FPR4

FPR5

FPR6

FPR7

015

63

010

Last x87 Instruction Pointer

Last x87 Data Pointer

Opcode

FCW

FSW

FTWx87 Tag Word

x87 Status Word

x87 Control Word

[AMD Public Use]

SSE, MMX, and x87 Programming 333

24593—Rev. 3.37—March 2021 AMD64 Technology

FSAVE/FNSAVE and FRSTOR Instructions. The FSAVE/FNSAVE and FRSTOR instructions save
and restore the entire register state for 64-bit media instructions and x87 floating-point instructions.
The FSAVE instruction stores the register state, but only after handling any pending unmasked-x87
floating-point exceptions. The FNSAVE instruction stores the register state but skips the reporting and
handling of these exceptions. The state of all MMX/FPR registers is saved, as well as all other x87
state (the control word register, status word register, tag word, instruction pointer, data pointer, and last
opcode). After saving this state, the tag state for all MMX/FPR registers is changed to empty and is
thus available for a new procedure.

Starting on page 334, Figure 11-4 through Figure 11-7 show the memory formats used by the
FSAVE/FNSAVE and FRSTOR instructions when storing the x87 state in various processor modes
and using various effective-operand sizes. This state includes:

• x87 Data Registers
- FPR0–FPR7 80-bit physical data registers.

• x87 Environment
- FCW: x87 control word register
- FSW: x87 status word register
- FTW: x87 tag word
- Last x87 instruction pointer
- Last x87 data pointer
- Last x87 opcode

The eight data registers are stored in the 80 bytes following the environment information. Instead of
storing these registers in their physical order (FPR0–FPR7), the processor stores the registers in the
their stack order, ST(0)–ST(7), beginning with the top-of-stack, ST(0).

[AMD Public Use]

334 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 11-4. FSAVE/FNSAVE Image (32-Bit, Protected Mode)

Bit Offset Byte
Offset31 16 15 0

ST(7)[79:48] +68h

¼ ¼

ST(1)[15:0] ST(0)[79:64] ¼

ST(0)[63:32] ¼

ST(0)[31:0] +1Ch

Reserved, IGN Data DS Selector[15:0] +18h

Data Offset[31:0] +14h

00000b Instruction Opcode[10:0] Instruction CS Selector[15:0] +10h

Instruction Offset[31:0] +0Ch

Reserved, IGN x87 Tag Word (FTW) +08h

Reserved, IGN x87 Status Word (FSW) +04h

Reserved, IGN x87 Control Word (FCW) +00h

[AMD Public Use]

SSE, MMX, and x87 Programming 335

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 11-5. FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes)

Bit Offset Byte
Offset31 16 15 0

ST(7)[79:48] +68h

¼ ¼

ST(1)[15:0] ST(0)[79:64] ¼

ST(0)[63:32] ¼

ST(0)[31:0] +1Ch

0000b Data Offset[3:16] 0000 0000 0000b +18h

Reserved, IGN Data Offset[15:0] +14h

0000b Instruction Offset[31:16] 0 Instruction Opcode[10:0] +10h

Reserved, IGN Instruction Offset[15:0] +0Ch

Reserved, IGN x87 Tag Word (FTW) +08h

Reserved, IGN x87 Status Word (FSW) +04h

Reserved, IGN x87 Control Word (FCW) +00h

[AMD Public Use]

336 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 11-6. FSAVE/FNSAVE Image (16-Bit, Protected Mode)

Bit Offset Byte
Offset31 16 15 0

Not Part of x87 State ST(7)[79:64] +5Ch

¼ ¼

ST(0)[79:48] +14h

ST(0)[47:16] +10h

ST(0)[15:0] Data DS Selector[15:0] +0Ch

Data Offset[15:0] Instruction CS Selector[15:0] +08h

Instruction Offset[15:0] x87 Tag Word (FTW) +04h

x87 Status Word (FSW) x87 Control Word (FCW) +00h

[AMD Public Use]

SSE, MMX, and x87 Programming 337

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 11-7. FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes)

FLDENV/FNLDENV and FSTENV Instructions. The FLDENV/FNLDENV and FSTENV
instructions load and store only the x87 floating-point environment. These instructions, unlike the
FSAVE/FNSAVE and FRSTOR instructions, do not save or restore the x87 data registers. The
FLDENV/FSTENV instructions do not save the full 64-bit data and instruction pointers. 64-bit
applications should use FXSAVE/FXRSTOR, rather than FLDENV/FSTENV. The format of the
saved x87 environment images for protected mode and real/virtual mode are the same as those of the
first 14-bytes of the FSAVE/FNSAVE images for 16-bit operands or 32/64-bit operands, respectively.
See Figure 11-4 on page 334, Figure 11-5 on page 335, Figure 11-6 on page 336, and Figure 11-7.

FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions save and restore
the entire 128-bit media, 64-bit media, and x87 state. These instructions usually execute faster than
FSAVE/FNSAVE and FRSTOR because they do not normally save and restore the x87 exception
pointers (last-instruction pointer, last data-operand pointer, and last opcode). The only case in which
they do save the exception pointers is the relatively rare case in which the exception-summary bit in

Bit Offset Byte
Offset31 16 15 0

Not Part of x87 State ST(7)[79:64] +5Ch

¼ ¼

ST(0)[79:48] +14h

ST(0)[47:16] +10h

ST(0)[15:0] Data
[19:16] 0000 0000 0000b +0Ch

Data Offset [15:0] Instruction
[19:16] 0 Instruction Opcode[10:0] +08h

Instruction Offset [15:0] x87 Tag Word (FTW) +04h

x87 Status Word (FSW) x87 Control Word (FCW) +00h

[AMD Public Use]

338 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

the x87 status word (FSW.ES) is set to 1, indicating that an unmasked exception has occurred. The
FXSAVE and FXRSTOR memory format contains fields for storing these values.

Unlike FSAVE and FNSAVE, the FXSAVE instruction does not alter the x87 tag word. Therefore, the
contents of the shared 64-bit MMX and 80-bit FPR registers can remain valid after an FXSAVE
instruction (or any other value the tag bits indicated before the save). Also, FXSAVE (like FNSAVE)
does not check for pending unmasked-x87 floating-point exceptions.

Figure 11-8 on page 346 shows the memory format of the media x87 state in long mode. If a 32-bit
operand size is used in 64-bit mode, the memory format is the same, except that RIP and RDS are
stored as sel:offset pointers, as shown in Figure 11-9 on page 346.

For more information on the FXSAVE and FXRSTOR instructions, see individual instruction listings
in "64-Bit Media Instruction Reference" of Volume 5.

[AMD Public Use]

SSE, MMX, and x87 Programming 339

24593—Rev. 3.37—March 2021 AMD64 Technology

11.5 XSAVE/XRSTOR Instructions

The XSAVE, XSAVEOPT, XRSTOR, XGETBV, and XSETBV instructions and associated data
structures extend the FXSAVE/FXRSTOR memory image used to manage processor states and
provide additional functionality. These instructions do not obviate the FXSAVE/FXRSTOR
instructions. For more information about FXSAVE/FXRSTOR, see “FXSAVE and FXRSTOR
Instructions” in Volume 2. For detailed descriptions of FXSAVE and FXRSTOR, see individual
instruction listings in AMD64 Architecture Programmer’s Manual “Volume 5: 64-Bit Media and x87
Floating-Point Instructions.”

The CPUID instruction is used to identify features supported in processor hardware. Extended control
registers are used to enable and disable the handling of processor states associated with supported
hardware features and to communicate to an application whether an operating system supports a
particular feature that has a processor state specific to it.

11.5.1 CPUID Enhancements
• CPUID Fn0000_00001_ECX[XSAVE] indicates that the processor supports XSAVE/XRSTOR

instructions and at least one XCR.
• CPUID Fn0000_00001_ECX[OSXSAVE] indicates whether the operating system has enabled

extensible state management and supports processor extended state management.
• CPUID Fn0000_0000D enumerates processor states (including legacy x87 FPU states, SSE states,

and processor extended states), the offset, and the size of the save area for each processor extended
state. Sub-functions (ECX > 0) provide details concerning features and support of processor states
enumerated in the root function.

11.5.2 XFEATURE_ENABLED_MASK
XFEATURE_ENABLED_MASK is set up by privileged software to enable the saving and restoring
of extended processor architectural state information supported by a specific processor. Clearing
defined bit fields in this mask inhibits the XSAVE instruction from saving (and XRSTOR from
restoring) this state information.

XFEATURE_ENABLED_MASK is addressed as XCR0 in the extended control register space and is
accessed via the XSETBV and XGETBV instructions.

XFEATURE_ENABLED_MASK is defined as follows:

63 62 61 13 12 11 10 9 8 3 2 1 0

X LWP Reserved CET_S CET_U RSVD MPK Reserved YMM SSE x87

[AMD Public Use]

340 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

Hardware initializes XCR0 to 0000_0000_0000_0001h. On writing this register, software must insure
that XCR0[63:3] is clear, XCR0[0] is set, and that XCR0[2:1] is not equal to 10b. An attempt to write
data that violates these rules results in a #GP.

11.5.3 Extended Save Area
The XSAVE/XRSTOR save area extends the legacy 512-byte FXSAVE/FXRSTOR memory image to
provide a compatible register state management environment as well as an upward migration path. The
save area is architecturally defined to be extendable and enumerated by the sub-functions of CPUID
Fn 0000_000Dh. Figure 11-2 shows the format of the XSAVE/XRSTOR area.

The register fields of the first 512 bytes of the XSAVE/XRSTOR area are the same as those of the
FXSAVE/FXRSTOR area, but the 512-byte area is organized as x87 FPU states, MXCSR (including
MXCSR_MASK), and XMM registers. The layout of the save area is fixed and may contain non-
contiguous individual save areas because a processor does not support certain extended states or

Bits Mnemonic Description
63 X Reserved specifically for XCR0 bit vector expansion.

Reserved, MBZ.
62 LWP When set, Lightweight Profiling (LWP) extensions are enabled and

XSAVE/XRSTOR supports LWP state management.
61:13 — Reserved, MBZ

12 CET_S When set, CET supervisor state is supported by XSAVE/XRSTOR
11 CET_U When set, CET user state is supported by XSAVE/XRSTOR
10 — Reserved, MBZ
9 MPK When set, PKRU state management is supported by XSAVE/XRSTOR.

8:3 — Reserved, MBZ
2 YMM When set, 256-bit SSE state management is supported by XSAVE/XRSTOR.

Must be set to enable AVX extensions.
1 SSE When set, 128-bit SSE state management is supported by XSAVE/XRSTOR.

This bit must be set if YMM is set.
Must be set to enable AVX extensions.

0 x87 x87 FPU state management is supported by XSAVE/XRSTOR. Must be set to 1.

Table 11-2. Extended Save Area Format
Save Area Offset (Byte) Size (Bytes)

FPU/SSE Save Area 0 512
Header 512 64

Reserved, (Ext_Save_Area_2) CPUID Fn 0000_000D_EBX_x02 CPUID Fn 0000_000D_EAX_x02
Reserved, (Ext_Save_Area_3) CPUID Fn 0000_000D_EBX_x03 CPUID Fn 0000_000D_EAX_x03
Reserved, (Ext_Save_Area_4) CPUID Fn 0000_000D_EBX_x04 CPUID Fn 0000_000D_EAX_x04

Reserved, (…) … …
Note: Bytes 464–511 are available for software use. XRSTOR ignores bytes 464–511 of an XSAVE image.

[AMD Public Use]

SSE, MMX, and x87 Programming 341

24593—Rev. 3.37—March 2021 AMD64 Technology

because system software does not support certain processor extended states. The save area is not
compacted when features are not saved or are not supported by the processor or by system software.

For more information on using the CPUID instruction to obtain processor implementation
information, see Section 3.3, “Processor Feature Identification,” on page 70.

11.5.4 Instruction Functions
CR4.OSXSAVE and XCR0 can be read at all privilege levels but written only at ring 0.

• XGETBV reads XCR0.
• XSETBV writes XCR0, ring 0 only.
• XRSTOR restores states specified by bitwise AND of a mask operand in EDX:EAX with XCR0.
• XSAVE (and XSAVEOPT) saves states specified by bitwise AND of a mask operand in

EDX:EAX with XCR0.

11.5.5 YMM States and Supported Operating Modes
Extended instructions operate on YMM states by means of extended (XOP/VEX) prefix encoding.
When a processor supports YMM states, the states exist in all operating modes, but interfaces to access
the YMM states may vary by mode. Processor support for extended prefix encoding is independent of
processor support of YMM states.

Instructions that use extended prefix encoding are generally supported in long and protected modes,
but are not supported in real or virtual 8086 modes, or when entering SMM mode. Bits 255:128 of the
YMM register state are maintained across transitions into and out of these modes. The
XSAVE/XRSTOR instructions function in all operating modes; XRSTOR can modify YMM register
state in any operating mode, using state information from the XSAVE/XRSTOR area.

11.5.6 Extended SSE Execution State Management
Operating system software must use the XSAVE/XRSTOR instructions for extended SSE execution
state management. XSAVEOPT, a performance optimized version of XSAVE, may be used instead of
XSAVE once the XSAVE/XRSTOR save area is initialized. In the following discussion XSAVEOPT
may be substituted for the instruction XSAVE. The instructions also provide an interface to manage
XMM/MXCSR states and x87 FPU states in conjunction with processor extended states. An operating
system must enable extended SSE execution state management prior to the execution of extended SSE
instructions. Attempting to execute an extended SSE instruction without enabling execution state
management causes a #UD exception.

11.5.6.1 Enabling Extended SSE Instruction Execution

To enable extended SSE instruction execution and state management, system software must carry out
the following process:

[AMD Public Use]

342 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

• Confirm that the hardware supports the XSAVE, XRSTOR, XSETBV, and XGETBV instructions
and the XCR0 register (XFEATURE_ENABLED_MASK) by executing the CPUID instruction
function 0000_0001h. If CPUID Fn0000_0001_ECX[XSAVE] is set, hardware support is verified.

• Optionally confirm hardware support of the XSAVEOPT instruction by executing CPUID function
0000_000Dh, sub-function 1 (ECX = 1). If CPUID Fn0000_000D_EAX_x1[XSAVEOPT] is set,
the processor supports the XSAVEOPT instruction. XSAVEOPT is a performance optimized
version of XSAVE. (SDCR-3580)

• Confirm that hardware supports the extended SSE instructions by verifying
XFeatureSupportedMask[2:0] = 111b. XFeatureSupportedMask is accessed via the CPUID
instruction function 0000_000Dh, sub-function 0 (ECX = 0).
If CPUID Fn0000_000D_EAX_x0[2:0] = 111b, hardware supports x87, legacy SSE, and extended
SSE instructions. Bit 0 of EAX signifies x87 floating-point and MMX support, bit 1 signifies
legacy SSE support, and bit 2 signifies extended SSE support. Support for both x87 and legacy
SSE instructions are required for processors that support the extended SSE instructions.

• Set CR4[OSXSAVE] (bit 18) to enable the use of the XSETBV and XGETBV instructions.
XSETBV is a privileged instruction that writes the XCRn registers. XCR0 is the
XFEATURE_ENABLED_MASK used to manage media and x87 processor state using the
XSAVE, XSAVEOPT, and XRSTOR instructions.

• Enable the x87/MMX, legacy SSE, and extended SSE instructions and processor state
management by setting the x87, SSE, and YMM bits of XCR0
(XFEATURE_ENABLED_MASK). Enabling extended SSE capabilities without enabling legacy
SSE capabilities is not allowed. The x87 flag (bit 0) of the XFEATURE_ENABLED_MASK must
be set when writing XCR0.

• Determine the XSAVE/XRSTOR memory save area size requirement. The field
XFeatureEnabledSizeMax specifies the size requirement in bytes based on the currently enabled
extended features and is returned in the EAX register after execution of CPUID Function
0000_000Dh, sub-function 0 (ECX = 0).

• Allocate the save/restore area based on the information obtained in the previous step.

For more information on the XSETBV and XGETBV instructions, see individual instruction
descriptions in Volume 4. XFEATURE_ENABLED_MASK fields are defined in Section 11.5.2
above.

For more information on using the CPUID instruction to obtain processor implementation
information, see Section 3.3, “Processor Feature Identification,” on page 70.

[AMD Public Use]

SSE, MMX, and x87 Programming 343

24593—Rev. 3.37—March 2021 AMD64 Technology

11.5.7 Saving Processor State
The XSTATE header starts at byte offset 512 in the save area. XSTATE_BV is the first 64-bit field in
the header. The order of bit vectors in XSTATE_BV matches the order of bit vectors in XCR0. The
XSAVE instruction sets bits in the XSTATE_BV vector field when it writes the corresponding
processor extended state to a save area in memory. XSAVE modifies only bits for processor states
specified by bitwise AND of the XSAVE bit mask operand in EDX:EAX with XCR0. If software
modifies the save area image of a particular processor state component directly, it must also set the
corresponding bit of XSTATE_BV. If the bit is not set, directly modified state information in a save
area image may be ignored by XRSTOR.

XSAVEOPT, a performance optimized version of the XSAVE instruction, may be used (if supported)
in lieu of the XSAVE instruction once the XSAVE/XRSTOR save area has been initialized via the
execution of the XSAVE instruction.

11.5.8 Restoring Processor State
When XRSTOR is executed, processor state components are updated only if the corresponding bits in
the mask operand (EDX:EAX) and XCR0 are both set. For each updated component, when the
corresponding bit in the XSTATE_BV field in the save area header is set, the component is loaded
from the save area in memory. When the XSTATE_BV bit is cleared, the state is set to the hardware-
specified initial values shown in Table 11-3.

11.5.9 MXCSR State Management
The MXCSR has no hardware-specified initial state; it is read from the save area in memory whenever
either XMM or YMM_HI are updated.

Table 11-3. XRSTOR Hardware-Specified Initial Values
Component Initial Value

x87 FCW = 037Fh
FSW = 0000h

Empty/Full = 00h (FTW = FFFFh)
x87 Error Pointers = 0

ST0 - ST7 = 0
 XMM XMM0 - XMM15 = 0, if 64-bit mode

XMM0 - XMM7 = 0, if !64-bit mode
YMM_HI YMM_HI0 -Y MM_HI15 = 0, if 64-bit mode

YMM_HI0-YMM_HI7 = 0, if !64-bit mode
LWP LWP disabled
MPK PKRU = 0

CET_S PL0_SSP = PL1_SSP = PL2_SSP = 0
CET_U U_CET = 0, PL3_SSP = 0

[AMD Public Use]

344 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

11.5.10 Mode-Specific XSAVE/XRSTOR State Management
Some state is conditionally saved or updated, depending on processor state:

• On processors where CPUID Fn8000_0008_EBX[2] is 0, the x87 error pointers are not saved or
restored if the state saved or loaded from memory doesn't have a pending #MF. On processors
where CPUID Fn8000_0008_EBX[2] is 1, the error pointers are always restored from the save
area (and if in 64-bit mode the CS and DS portions of the error pointer registers are zeroed), and
the error pointer fields in the save area are zeroed if there is no pending #MF, else the error pointer
offset registers are written to the save area.

• XMM8–XMM15 are not saved or restored in non 64-bit mode.
• YMM_HI8–YMM_HI15 are not saved or restored in non 64-bit mode.

[AMD Public Use]

SSE, MMX, and x87 Programming 345

24593—Rev. 3.37—March 2021 AMD64 Technology

F E D C B A 9 8 7 6 5 4 3 2 1 0 Byte
Reserved, IGN +1F0h

¼ …

Reserved, IGN +1A0h

XMM15 +190h

XMM14 +180h

XMM13 +170h

XMM12 +160h

XMM11 +150h

XMM10 +140h

XMM9 +130h

XMM8 +120h

XMM7 +110h

XMM6 +100h

XMM5 +F0h

XMM4 +E0h

XMM3 +D0h

XMM2 +C0h

XMM1 +B0h

XMM0 +A0h

Reserved, IGN ST(7) +90h

Reserved, IGN ST(6) +80h

Reserved, IGN ST(5) +70h

Reserved, IGN ST(4) +60h

Reserved, IGN ST(3) +50h

Reserved, IGN ST(2) +40h

Res
erv
ed,
IG
N

ST(1) +30h

Reserved, IGN ST(0) +20h

MXCSR_MASK MXCSR RDP1 +10h

RIP1 FOP 0 FTW FSW FCW +00h

1. Stored as sel:offset if operand size is 32 bits. 32bit sel:offset format of the pointers is shown in figure 11-9.

[AMD Public Use]

346 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 11-8. FXSAVE and FXRSTOR Image (64-bit Mode)

Figure 11-9. FXSAVE and FXRSTOR Image (Non-64-bit Mode)

Software can read and write all fields within the FXSAVE and FXRSTOR memory image. These
fields include:

• FCW—Bytes 01h–00h. x87 control word.
• FSW—Bytes 03h–02h. x87 status word.
• FTW—Byte 04h. x87 tag word. See “FXSAVE Format for x87 Tag Word” on page 347 for

additional information on the FTW format saved by the FXSAVE instruction.
• (Byte 05h contains the value 00h.)
• FOP—Bytes 07h–06h. last x87 opcode.

F E D C B A 9 8 7 6 5 4 3 2 1 0 Byte
Reserved, IGN +1F0h

¼ …

Reserved, IGN +120h

XMM7 +110h

XMM6 +100h

XMM5 +F0h

XMM4 +E0h

XMM3 +D0h

XMM2 +C0h

XMM1 +B0h

XMM0 +A0h

Reserved, IGN ST(7) +90h

Reserved, IGN ST(6) +80h

Reserved, IGN ST(5) +70h

Reserved, IGN ST(4) +60h

Reserved, IGN ST(3) +50h

Reserved, IGN ST(2) +40h

Reserved, IGN ST(1) +30h

Reserved, IGN ST(0) +20h

MXCSR_MASK MXCSR rsrvd, IGN DS DP +10h

rsrvd, IGN CS EIP FOP 0 FTW FSW FCW +00h

[AMD Public Use]

SSE, MMX, and x87 Programming 347

24593—Rev. 3.37—March 2021 AMD64 Technology

• Last x87 Instruction Pointer—A pointer to the last non-control x87 floating-point instruction
executed by the processor:
- RIP (64-bit format)—Bytes 0Fh–08h. 64-bit offset into the code segment (used without a CS

selector).
- EIP (32-bit format)—Bytes 0Bh–08h. 32-bit offset into the code segment.
- CS (32-bit format)—Bytes 0Dh–0Ch. Segment selector portion of the pointer.

• Last x87 Data Pointer—If the last non-control x87 floating point instruction referenced memory,
this value is a pointer to the data operand referenced by the last non-control x87 floating-point
instruction executed by the processor:
- RDP (64-bit format)—Bytes 17h–10h. 64-bit offset into the data segment (used without a DS

selector).
- DP (32-bit format)—Bytes 13h–10h. 32-bit offset into the data segment.
- DS (32-bit format)—Bytes 15h–14h. Segment selector portion of the pointer.
If the last non-control x87 instruction did not reference memory, then the value in the pointer is
implementation dependent.

• MXCSR—Bytes 1Bh–18h. 128-bit media-instruction control and status register. This register is
saved only if CR4.OSFXSR is set to 1.

• MXCSR_MASK—Bytes 1Fh–1Ch. Set bits in MXCSR_MASK indicate supported feature bits in
MXCSR. For example, if bit 6 (the DAZ bit) in the returned MXCSR_MASK field is set to 1, the
DAZ mode and the DAZ flag in MXCSR are supported. Cleared bits in MXCSR_MASK indicate
reserved bits in MXCSR. If software attempts to set a reserved bit in the MXCSR register, a #GP
exception will occur. To avoid this exception, after software clears the FXSAVE memory image
and executes the FXSAVE instruction, software should use the value returned by the processor in
the MXCSR_MASK field when writing a value to the MXCSR register, as follows:
- MXCSR_MASK = 0: If the processor writes a zero value into the MXCSR_MASK field, the

denormals-are-zeros (DAZ) mode and the DAZ flag in MXCSR are not supported. Software
should use the default mask value, 0000_FFBFh (bit 6, the DAZ bit, and bits 31:16 cleared to
0), to mask any value it writes to the MXCSR register to ensure that all reserved bits in
MXCSR are written with 0, thus avoiding a #GP exception.

- MXCSR_MASK … 0: If the processor writes a non-zero value into the MXCSR_MASK field,
software should AND this value with any value it writes to the MXCSR register.

• MMXn/FPRn—Bytes 9Fh–20h. Shared 64-bit media and x87 floating-point registers. As in the
case of the x87 FSAVE instruction, these registers are stored in stack order ST(0)–ST(7). The
upper six bytes in the memory image for each register are reserved.

• XMMn—Bytes 11Fh–A0h. 128-bit media registers. These registers are saved only if
CR4.OSFXSR is set to 1.

FXSAVE Format for x87 Tag Word. Rather than saving the entire x87 tag word, FXSAVE saves a
single-byte encoded version. FXSAVE encodes each of the eight two-bit fields in the x87 tag word as
follows:

[AMD Public Use]

348 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

• Two-bit values of 00, 01, and 10 are encoded as a 1, indicating the corresponding x87 FPRn
register holds a value.

• A two-bit value of 11 is encoded as a 0, indicating the corresponding x87 FPRn is empty.

For example, assume an FSAVE instruction saves an x87 tag word with the value 83F1h. This tag-
word value describes the x87 FPRn contents as follows:

When an FXSAVE is used to write the x87 tag word to memory, it encodes the value as E3h. This
encoded version describes the x87 FPRn contents as follows:

If necessary, software can decode the single-bit FXSAVE tag-word fields into the two-bit field FSAVE
uses by examining the contents of the corresponding FPR registers saved by FXSAVE. Table 11-4 on
page 349 shows how the FPR contents are used to find the equivalent FSAVE tag-field value. The
fraction column refers to fraction portion of the extended-precision significand (bits 62:0). The integer
bit column refers to the integer-portion of the significand (bit 63). See Chapter 11, “SSE, MMX, and
x87 Programming,” on page 325 for more information on floating-point numbering formats.

x87 Register FPR7 FPR6 FPR5 FPR4 FPR3 FPR2 FPR1 FPR0
Tag Word Value (hex) 8 3 F 1

Tag Value (binary) 10 00 00 11 11 11 00 01
Meaning Special Valid Valid Empty Empty Empty Valid Zero

x87 Register FPR7 FPR6 FPR5 FPR4 FPR3 FPR2 FPR1 FPR0
Encoded Tag Byte (hex) E 3

Tag Value (binary) 1 1 1 0 0 0 1 1
Meaning Valid Valid Valid Empty Empty Empty Valid Valid

[AMD Public Use]

SSE, MMX, and x87 Programming 349

24593—Rev. 3.37—March 2021 AMD64 Technology

Performance Considerations. When system software supports multi-tasking, it must be able to
save the processor state for one task and load the state for another. For performance reasons, the media
and/or x87 processor state is usually saved and loaded only when necessary. System software can save
and load this state at the time a task switch occurs. However, if the new task does not use the state,
loading the state is unnecessary and reduces performance.

The task-switch bit (CR0.TS) is provided as a lazy context-switch mechanism that allows system
software to save and load the processor state only when necessary. When CR0.TS=1, a device-not-
available exception (#NM) occurs when an attempt is made to execute a 128-bit media, 64-bit media,
or x87 instruction. System software can use the #NM exception handler to save the state of the
previous task, and restore the state of the current task. Before returning from the exception handler to
the media or x87 instruction, system software must clear CR0.TS to 0 to allow the instruction to be
executed. Using this approach, the processor state is saved only when the registers are used.

In legacy mode, the hardware task-switch mechanism sets CR0.TS=1 during a task switch (see “Task
Switched (TS) Bit” on page 44 for more information). In long mode, the hardware task-switching is
not supported, and the CR0.TS bit is not set by the processor. Instead, the architecture assumes that
system software handles all task-switching and state-saving functions. If CR0.TS is to be used in long
mode for controlling the save and restore of media or x87 state, system software must set and clear it
explicitly.

Table 11-4. Deriving FSAVE Tag Field from FXSAVE Tag Field
Encoded
FXSAVE
Tag Field

Exponent Integer Bit2 Fraction1 Type of Value
Equivalent

FSAVE
Tag Field

1 (Valid)

All 0s

0 All 0s Zero 01 (Zero)
0 Not all 0s Denormal

10 (Special)
1 All 0s

Pseudo Denormal
1 Not all 0s

Neither
all 0s

nor all 1s

0

don’t care

Unnormal

1 Normal 00 (Valid)

All 1s
0 Pseudo Infinity

or Pseudo NaN
10 (Special)

1
All 0s Infinity

Not all 0s NaN
0 (Empty) don’t care Empty 11 (Empty)

Note:
1. Bits 62:0 of the significand. Bit 62, the most-significant bit of the fraction, is also called the M bit.
2. Bit 63 of the significand, also called the J bit.

[AMD Public Use]

350 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Task Management 351

24593—Rev. 3.37—March 2021 AMD64 Technology

12 Task Management

This chapter describes the hardware task-management features. All of the legacy x86 task-
management features are supported by the AMD64 architecture in legacy mode, but most features are
not available in long mode. Long mode, however, requires system software to initialize and maintain
certain task-management resources. The details of these resource-initialization requirements for long
mode are discussed in “Task-Management Resources” on page 352.

12.1 Hardware Multitasking Overview
A task (also called a process) is a program that the processor can execute, suspend, and later resume
executing at the point of suspension. During the time a task is suspended, other tasks are allowed to
execute. Each task has its own execution space, consisting of:

• Code segment and instruction pointer.
• Data segments.
• Stack segments for each privilege level.
• General-purpose registers.
• rFLAGS register.
• Local-descriptor table.
• Task register, and a link to the previously-executed task.
• I/O-permission and interrupt-permission bitmaps.
• Pointer to the page-translation tables (CR3).

The state information defining this execution space is stored in the task-state segment (TSS)
maintained for each task.

Support for hardware multitasking is provided in legacy mode. Hardware multitasking provides
automated mechanisms for switching tasks, saving the execution state of the suspended task, and
restoring the execution state of the resumed task. When hardware multitasking is used to switch tasks,
the processor takes the following actions:

• Suspends execution of the task, allowing any executing instructions to complete and save their
results.

• Saves the task execution state in the task TSS.
• Loads the execution state for the new task from its TSS.
• Begins executing the new task at the location specified in the new task TSS.

Software can switch tasks by branching to a new task using the CALL or JMP instructions. Exceptions
and interrupts can also switch tasks if the exception or interrupt handlers are themselves separate tasks.
IRET can be used to return to an earlier task.

[AMD Public Use]

352 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

12.2 Task-Management Resources
The hardware-multitasking features are available when protected mode is enabled (CR0.PE=1).
Protected-mode software execution, by definition, occurs as part of a task. While system software is
not required to use the hardware-multitasking features, it is required to initialize certain task-
management resources for at least one task (the current task) when running in protected mode. This
single task is needed to establish the protected-mode execution environment. The resources that must
be initialized are:

• Task-State Segment (TSS)—A segment that holds the processor state associated with a task.
• TSS Descriptor—A segment descriptor that defines the task-state segment.
• TSS Selector—A segment selector that references the TSS descriptor located in the GDT.
• Task Register—A register that holds the TSS selector and TSS descriptor for the current task.

Figure 12-1 on page 353 shows the relationship of these resources to each other in both 64-bit and 32-
bit operating environments.

[AMD Public Use]

Task Management 353

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 12-1. Task-Management Resources

A fifth resource is available in legacy mode for use by system software that uses the hardware-
multitasking mechanism to manage more than one task:

• Task-Gate Descriptor—This form of gate descriptor holds a reference to a TSS descriptor and is
used to control access between tasks.

513-254.eps

32-Bit Limit64-Bit or 32-Bit Base Address Attributes

Task Register (Hidden From Software)
015

TSS Selector

Task Register (Visible)

Global-Descriptor
Table

TSS Descriptor

I/O-Bitmap Base Address

I/O-Permission Bitmap

Interrupt-Redirection Bitmap

Task-State Segment

+

[AMD Public Use]

354 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

The task-management resources are described in the following sections.

12.2.1 TSS Selector

TSS selectors are selectors that point to task-state segment descriptors in the GDT. Their format is
identical to all other segment selectors, as shown in Figure 12-2.

Figure 12-2. Task-Segment Selector

The selector format consists of the following fields:

Selector Index. Bits 15:3. The selector-index field locates the TSS descriptor in the global-descriptor
table.

Table Indicator (TI) Bit. Bit 2. The TI bit must be cleared to 0, which indicates that the GDT is used.
TSS descriptors cannot be located in the LDT. If a reference is made to a TSS descriptor in the LDT, a
general-protection exception (#GP) occurs.

Requestor Privilege-Level (RPL) Field. Bits 1:0. RPL represents the privilege level (CPL) the
processor is operating under at the time the TSS selector is loaded into the task register.

12.2.2 TSS Descriptor

The TSS descriptor is a system-segment descriptor, and it can be located only in the GDT. The format
for an 8-byte, legacy-mode and compatibility-mode TSS descriptor can be found in “System
Descriptors” on page 94. The format for a 16-byte, 64-bit mode TSS descriptor can be found in
“System Descriptors” on page 99.

The fields within a TSS descriptor (all modes) are described in “Descriptor Format” on page 88. The
following additional information applies to TSS descriptors:

• Segment Limit—When shadow stacks are not enabled (CR4.CET=0), a TSS descriptor must have a
segment limit value of at least 67h, which defines a minimum TSS size of 68h (104 decimal) bytes.
If shadow stacks are enabled (CR4.CET=1), the TSS segment limit must be at least 06Bh (for a
minimum size of 108 decimal bytes), in order to accommodate the 32-bit shadow stack pointer
(SSP). If the limit is less than the specified values, an invalid-TSS exception (#TS) occurs during
the task switch. When an I/O-permission bitmap, interrupt-redirection bitmap, or additional state

15 3 2 1 0

Selector Index TI RPL

Bits Mnemonic Description
15:3 Selector Index
2 TI Table Indicator
1:0 RPL Requestor Privilege Level

[AMD Public Use]

Task Management 355

24593—Rev. 3.37—March 2021 AMD64 Technology

information is included in the TSS, the limit must be set to a value large enough to enclose that
information. In this case, if the TSS limit is not large enough to hold the additional information, a
#GP exception occurs when an attempt is made to access beyond the TSS limit. No check for the
larger limit is performed during the task switch.

• Type—Four system-descriptor types are defined as TSS types, as shown in Table 4-5 on page 94.
Bit 9 is used as the descriptor busy bit (B). This bit indicates that the task is busy when set to 1, and
available when cleared to 0. Busy tasks are the currently running task and any previous (outer)
tasks in a nested-task hierarchy. Task recursion is not supported, and a #GP exception occurs if an
attempt is made to transfer control to a busy task. See “Nesting Tasks” on page 372 for additional
information.
In long mode, the 32-bit TSS types (available and busy) are redefined as 64-bit TSS types, and
only 64-bit TSS descriptors can be used. Loading the task register with an available 64-bit TSS
causes the processor to change the TSS descriptor type to indicate a busy 64-bit TSS. Because long
mode does not support task switching, the TSS-descriptor busy bit is never cleared by the
processor to indicate an available 64-bit TSS.
Sixteen-bit TSS types are illegal in long mode. A general-protection exception (#GP) occurs if a
reference is made to a 16-bit TSS.

12.2.3 Task Register

The task register (TR) points to the TSS location in memory, defines its size, and specifies its
attributes. As with the other descriptor-table registers, the TR has two portions. A visible portion holds
the TSS selector, and a hidden portion holds the TSS descriptor. When the TSS selector is loaded into
the TR, the processor automatically loads the TSS descriptor from the GDT into the hidden portion of
the TR.

The TR is loaded with a new selector using the LTR instruction. The TR is also loaded during a task
switch, as described in “Switching Tasks” on page 365.

Figure 12-3 shows the format of the TR in legacy mode.

Figure 12-3. TR Format, Legacy Mode

Hidden From Software 513-221.eps

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Descriptor Attributes

Selector

[AMD Public Use]

356 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 12-4 shows the format of the TR in long mode (both compatibility mode and 64-bit mode).

Figure 12-4. TR Format, Long Mode

The AMD64 architecture expands the TSS-descriptor base-address field to 64 bits so that system
software running in long mode can access a TSS located anywhere in the 64-bit virtual-address space.
The processor ignores the 32 high-order base-address bits when running in legacy mode. Because the
TR is loaded from the GDT, the system-segment descriptor format has been expanded to 16 bytes by
the AMD64 architecture in support of 64-bit mode. See “System Descriptors” on page 99 for more
information on this expanded format. The high-order base-address bits are only loaded from 64-bit
mode using the LTR instruction. Figure 12-5 shows the relationship between the TSS and GDT.

Figure 12-5. Relationship between the TSS and GDT

Hidden From Software 513-267.eps

64-Bit Descriptor-Table Base Address

32-Bit Descriptor-Table Limit

Descriptor Attributes

Selector

513-210.eps

Global
Descriptor

Table

GDT Limit

GDT Base Address

Task Selector

TSS Attributes

TSS Limit

TSS Base Address

Task
State

Segment

Global Descriptor Table Register Task Register

[AMD Public Use]

Task Management 357

24593—Rev. 3.37—March 2021 AMD64 Technology

Long mode requires the use of a 64-bit TSS type, and this type must be loaded into the TR by
executing the LTR instruction in 64-bit mode. Executing the LTR instruction in 64-bit mode loads the
TR with the full 64-bit TSS base address from the 16-byte TSS descriptor format (compatibility mode
can only load 8-byte system descriptors). A processor running in either compatibility mode or 64-bit
mode uses the full 64-bit TR.base address.

12.2.4 Legacy Task-State Segment

The task-state segment (TSS) is a data structure in memory that the processor uses to save and restore
the execution state for a task when a task switch occurs. Figure 12-6 on page 358 shows the format of
a legacy 32-bit TSS.

[AMD Public Use]

358 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 12-6. Legacy 32-bit TSS

Bit Offset Byte
Offset31 16 15 0

I/O-Permission Bitmap (IOPB) (Up to 8 Kbytes) IOPB
Base

Interrupt-Redirection Bitmap (IRB) (Eight 32-Bit Locations)

-
¯ Operating-System Data Structure -

¯

SSP +68h

I/O-Permission Bitmap Base Address Reserved, IGN T +64h

Reserved, IGN LDT Selector +60h

Reserved, IGN GS +5Ch

Reserved, IGN FS +58h

Reserved, IGN DS +54h

Reserved, IGN SS +50h

Reserved, IGN CS +4Ch

Reserved, IGN ES +48h

EDI +44h

ESI +40h

EBP +3Ch

ESP +38h

EBX +34h

EDX +30h

ECX +2Ch

EAX +28h

EFLAGS +24h

EIP +20h

CR3 +1Ch

Reserved, IGN SS2 +18h

ESP2 +14h

Reserved, IGN SS1 +10h

ESP1 +0Ch

Reserved, IGN SS0 +08h

ESP0 +04h

Reserved, IGN Link (Prior TSS Selector) +00h

[AMD Public Use]

Task Management 359

24593—Rev. 3.37—March 2021 AMD64 Technology

The 32-bit TSS contains three types of fields:

• Static fields are read by the processor during a task switch when a new task is loaded, but are not
written by the processor when a task is suspended.

• Dynamic fields are read by the processor during a task switch when a new task is loaded, and are
written by the processor when a task is suspended.

• Software-defined fields are read and written by software, but are not read or written by the
processor. All but the first 104 bytes of a TSS can be defined for software purposes, minus any
additional space required for the optional I/O-permission bitmap and interrupt-redirection bitmap.

TSS fields are not read or written by the processor when the LTR instruction is executed. The LTR
instruction loads the TSS descriptor into the TR and marks the task as busy, but it does not cause a task
switch.

The TSS fields used by the processor in legacy mode are:

• Link—Bytes 01h–00h, dynamic field. Contains a copy of the task selector from the previously-
executed task. See “Nesting Tasks” on page 372 for additional information.

• Stack Pointers—Bytes 1Bh–04h, static field. Contains the privilege 0, 1, and 2 stack pointers for
the task. These consist of the stack-segment selector (SSn), and the stack-segment offset (ESPn).

• CR3—Bytes 1Fh–1Ch, static field. Contains the page-translation-table base-address (CR3)
register for the task.

• EIP—Bytes 23h–20h, dynamic field. Contains the instruction pointer (EIP) for the next instruction
to be executed when the task is restored.

• EFLAGS—Bytes 27h–24h, dynamic field. Contains a copy of the EFLAGS image at the point the
task is suspended.

• General-Purpose Registers—Bytes 47h–28h, dynamic field. Contains a copy of the EAX, ECX,
EDX, EBX, ESP, EBP, ESI, and EDI values at the point the task is suspended.

• Segment-Selector Registers—Bytes 59h–48h, dynamic field. Contains a copy of the ES, CS, SS,
DS, FS, and GS, values at the point the task is suspended.

• LDT Segment-Selector Register—Bytes 63h–60h, static field. Contains the local-descriptor-table
segment selector for the task.

• T (Trap) Bit—Bit 0 of byte 64h, static field. This bit, when set to 1, causes a debug exception
(#DB) to occur on a task switch. See “Breakpoint Instruction (INT3)” on page 388 for additional
information.

• Shadow Stack Pointer (SSP)—Bytes 6Bh-68h, static field. Contains the 32-bit SSP for the
incoming task. Note that the SSP of the outgoing task is not saved in this field.

• I/O-Permission Bitmap Base Address—Bytes 67h–66h, static field. This field represents a 16-bit
offset into the TSS. This offset points to the beginning of the I/O-permission bitmap, and the end of
the interrupt-redirection bitmap.

• I/O-Permission Bitmap—Static field. This field specifies protection for I/O-port addresses (up to
the 64K ports supported by the processor), as follows:

[AMD Public Use]

360 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

- Whether the port can be accessed at any privilege level.
- Whether the port can be accessed outside the privilege level established by EFLAGS.IOPL.
- Whether the port can be accessed when the processor is running in virtual-8086 mode.
Because one bit is used per 8-byte I/O-port, this bitmap can take up to 8 Kbytes of TSS space. The
bitmap can be located anywhere within the first 64 Kbytes of the TSS, as long as it is above byte
103. The last byte of the bitmap must contain all ones (0FFh). See “I/O-Permission Bitmap” on
page 360 for more information.

• Interrupt-Redirection Bitmap—Static field. This field defines how each of the 256-possible
software interrupts is directed in a virtual-8086 environment. One bit is used for each interrupt, for
a total bitmap size of 32 bytes. The bitmap can be located anywhere above byte 103 within the first
64 Kbytes of the TSS. See “Interrupt Redirection of Software Interrupts” on page 279 for
information on using this field.

The TSS can be paged by system software. System software that uses the hardware task-switch
mechanism must guarantee that a page fault does not occur during a task switch. Because the processor
only reads and writes the first 104 TSS bytes during a task switch, this restriction only applies to those
bytes. The simplest approach is to align the TSS on a page boundary so that all critical bytes are either
present or not present. Then, if a page fault occurs when the TSS is accessed, it occurs before the first
byte is read. If the page fault occurs after a portion of the TSS is read, the fault is unrecoverable.

I/O-Permission Bitmap. The I/O-permission bitmap (IOPB) allows system software to grant less-
privileged programs access to individual I/O ports, overriding the effect of RFLAGS.IOPL for those
devices. When an I/O instruction is executed, the processor checks the IOPB only if the processor is in
virtual x86 mode or the CPL is greater than the RFLAGS.IOPL field. Each bit in the IOPB
corresponds to a byte I/O port. A word I/O port corresponds to two consecutive IOPB bits, and a
doubleword I/O port corresponds to four consecutive IOPB bits. Access is granted to an I/O port of a
given size when all IOPB bits corresponding to that port are clear. If any bits are set, a #GP occurs.

The IOPB is located in the TSS, as shown by the example in Figure 12-7 on page 361. Each TSS can
have a different copy of the IOPB, so access to individual I/O devices can be granted on a task-by-task
basis. The I/O-permission bitmap base-address field located at byte 66h in the TSS is an offset into the
TSS locating the start of the IOPB. If all 64K IO ports are supported, the IOPB base address must not
be greater than 0DFFFh, otherwise accesses to the bitmap cause a #GP to occur. An extra byte must be
present after the last IOPB byte. This byte must have all bits set to 1 (0FFh). This allows the processor
to read two IOPB bytes each time an I/O port is accessed. By reading two IOPB bytes, the processor
can check all bits when unaligned, multi-byte I/O ports are accessed.

[AMD Public Use]

Task Management 361

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 12-7. I/O-Permission Bitmap Example

Bits in the IOPB sequentially correspond to I/O port addresses. The example in Figure 12-7 shows bits
12 through 15 in the second doubleword of the IOPB cleared to 0. Those bit positions correspond to
byte I/O ports 44h through 47h, or alternatively, doubleword I/O port 44h. Because the bits are cleared
to zero, software running at any privilege level can access those I/O ports.

By adjusting the TSS limit, it may happen that some ports in the I/O-address space have no
corresponding IOPB entry. Ports not represented by the IOPB will cause a #GP exception. Referring
again to Figure 12-7, the last IOPB entry is at bit 23 in the fourth IOPB doubleword, which
corresponds to I/O port 77h. In this example, all ports from 78h and above will cause a #GP exception,
as if their permission bit was set to 1.

12.2.5 64-Bit Task State Segment

Although the hardware task-switching mechanism is not supported in long mode, a 64-bit task state
segment (TSS) must still exist. System software must create at least one 64-bit TSS for use after
activating long mode, and it must execute the LTR instruction, in 64-bit mode, to load the TR register
with a pointer to the 64-bit TSS that serves both 64-bit-mode programs and compatibility-mode
programs.

The legacy TSS contains several fields used for saving and restoring processor-state information. The
legacy fields include general-purpose register, EFLAGS, CR3 and segment-selector register state,
among others. Those legacy fields are not supported by the 64-bit TSS. System software must save and
restore the necessary processor-state information required by the software-multitasking
implementation (if multitasking is supported). Figure 12-8 on page 363 shows the format of a 64-bit
TSS.

The 64-bit TSS holds several pieces of information important to long mode that are not directly related
to the task-switch mechanism:

• RSPn—Bytes 1Bh–04h. The full 64-bit canonical forms of the stack pointers (RSP) for privilege
levels 0 through 2.

Bit Offset Byte
Offset31 16 15 0

1111_1111 IOPB+Ch

IOPB+8h

0 0 0 0 IOPB+4h

IOPB

I/O-Permission Bitmap Base Address +64h

. . .

+00h

[AMD Public Use]

362 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

• ISTn—Bytes 5Bh–24h. The full 64-bit canonical forms of the interrupt-stack-table (IST) pointers.
See “Interrupt-Stack Table” on page 274 for a description of the IST mechanism.

• I/O Map Base Address—Bytes 67h–66h. The 16-bit offset to the I/O-permission bit map from the
64-bit TSS base. The function of this field is identical to that in a legacy 32-bit TSS. See “I/O-
Permission Bitmap” on page 360 for more information.

[AMD Public Use]

Task Management 363

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 12-8. Long Mode TSS Format

Bit Offset Byte
Offset31 16 15 0

I/O-Permission Bitmap (IOPB) (Up to 8 Kbytes) IOPB
Base

-
¯

-
¯

I/O Map Base Address Reserved, IGN +64h

Reserved, IGN
+60h

+5Ch

IST7[63:32] +58h

IST7[31:0] +54h

IST6[63:32] +50h

IST6[31:0] +4Ch

IST5[63:32] +48h

IST5[31:0] +44h

IST4[63:32] +40h

IST4[31:0] +3Ch

IST3[63:32] +38h

IST3[31:0] +34h

IST2[63:32] +30h

IST2[31:0] +2Ch

IST1[63:32] +28h

IST1[31:0] +24h

Reserved, IGN
+20h

+1Ch

RSP2[63:32] +18h

RSP2[31:0] +14h

RSP1[63:32] +10h

RSP1[31:0] +0Ch

RSP0[63:32] +08h

RSP0[31:0] +04h

Reserved, IGN +00h

[AMD Public Use]

364 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

12.2.6 Task Gate Descriptor (Legacy Mode Only)

Task-gate descriptors hold a selector reference to a TSS and are used to control access between tasks.
Unlike a TSS descriptor or other gate descriptors, a task gate can be located in any of the three
descriptor tables (GDT, LDT, and IDT). Figure 12-9 shows the format of a task-gate descriptor.

Figure 12-9. Task-Gate Descriptor, Legacy Mode Only

The task-gate descriptor fields are:

• System (S) and Type—Bits 12 and 11:8 (respectively) of byte +4. These bits are encoded by
software as 00101b to indicate a task-gate descriptor type.

• Present (P)—Bit 15 of byte +4. The segment-present bit indicates the segment referenced by the
gate descriptor is loaded in memory. If a reference is made to a segment when P=0, a segment-not-
present exception (#NP) occurs. This bit is set and cleared by system software and is never altered
by the processor.

• Descriptor Privilege-Level (DPL)—Bits 14:13 of byte +4. The DPL field indicates the gate-
descriptor privilege level. DPL can be set to any value from 0 to 3, with 0 specifying the most
privilege and 3 the least privilege.

12.3 Hardware Task-Management in Legacy Mode
This section describes the operation of the task-switch mechanism when the processor is running in
legacy mode. None of these features are supported in long mode (either compatibility mode or 64-bit
mode).

12.3.1 Task Memory-Mapping

The hardware task-switch mechanism gives system software a great deal of flexibility in managing the
sharing and isolation of memory—both virtual (linear) and physical—between tasks.

Segmented Memory. The segmented memory for a task consists of the segments that are loaded
during a task switch and any segments that are later accessed by the task code. The hardware task-
switch mechanism allows tasks to either share segments with other tasks, or to access segments in
isolation from one another. Tasks that share segments actually share a virtual-address (linear-address)
space, but they do not necessarily share a physical-address space. When paging is enabled, the virtual-
to-physical mapping for each task can differ, as is described in the following section. Shared segments

31 16 15 14 13 12 11 8 7 0

Reserved, IGN P DPL S Type Reserved, IGN +4

TSS Selector Reserved, IGN +0

[AMD Public Use]

Task Management 365

24593—Rev. 3.37—March 2021 AMD64 Technology

do share physical memory when paging is disabled, because virtual addresses are used as physical
addresses.

A number of options are available to system software that shares segments between tasks:

• Sharing segment descriptors using the GDT. All tasks have access to the GDT, so it is possible for
segments loaded in the GDT to be shared among tasks.

• Sharing segment descriptors using a single LDT. Each task has its own LDT, and that LDT selector
is automatically saved and restored in the TSS by the processor during task switches. Tasks,
however, can share LDTs simply by storing the same LDT selector in multiple TSSs. Using the
LDT to manage segment sharing and segment isolation provides more flexibility to system
software than using the GDT for the same purpose.

• Copying shared segment descriptors into multiple LDTs. Segment descriptors can be copied by
system software into multiple LDTs that are otherwise not shared between tasks. Allowing
segment sharing at the segment-descriptor level, rather than the LDT level or GDT level, provides
the greatest flexibility to system software.

In all three cases listed above, the actual data and instructions are shared between tasks only when the
tasks’ virtual-to-physical address mappings are identical.

Paged Memory. Each task has its own page-translation table base-address (CR3) register, and that
register is automatically saved and restored in the TSS by the processor during task switches. This
allows each task to point to its own set of page-translation tables, so that each task can translate virtual
addresses to physical addresses independently. Page translation must be enabled for changes in CR3
values to have an effect on virtual-to-physical address mapping. When page translation is disabled, the
tables referenced by CR3 are ignored, and virtual addresses are equivalent to physical addresses.

12.3.2 Switching Tasks

The hardware task-switch mechanism transfers program control to a new task when any of the
following occur:

• A CALL or JMP instruction with a selector operand that references a task gate is executed. The
task gate can be located in either the LDT or GDT.

• A CALL or JMP instruction with a selector operand that references a TSS descriptor is executed.
The TSS descriptor must be located in the GDT.

• A software-interrupt instruction (INTn) is executed that references a task gate located in the IDT.
• An exception or external interrupt occurs, and the vector references a task gate located in the IDT.
• An IRET is executed while the EFLAGS.NT bit is set to 1, indicating that a return is being

performed from an inner-level task to an outer-level task. The new task is referenced using the
selector stored in the current-task link field. See “Nesting Tasks” on page 372 for additional
information. The RET instruction cannot be used to switch tasks.

When a task switch occurs, the following operations are performed automatically by the processor:

[AMD Public Use]

366 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

• The processor performs privilege-checking to determine whether the currently-executing program
is allowed to access the target task. If this check fails, the task switch is aborted without modifying
the processor state, and a general-protection exception (#GP) occurs. The privilege checks
performed depend on the cause of the task switch:
- If the task switch is initiated by a CALL or JMP instruction through a TSS descriptor, the

processor checks that both the currently-executing program CPL and the TSS-selector RPL are
numerically less-than or equal-to the TSS-descriptor DPL.

- If the task switch takes place through a task gate, the CPL and task-gate RPL are compared
with the task-gate DPL, and no comparison is made using the TSS-descriptor DPL. See “Task
Switches Using Task Gates” on page 370.

- Software interrupts, hardware interrupts, and exceptions all transfer control without checking
the task-gate DPL.

- The IRET instruction transfers control without checking the TSS-descriptor DPL.
• The processor performs limit-checking on the target TSS descriptor to verify that the TSS limit is

greater than or equal to:
- 67h (at least 104 bytes), when shadow stacks are not enabled (CR4.CET=0).
- 6Bh (at least 108 bytes), when shadow stacks are enabled (CR4.CET=1).

 If this check fails, the task switch is aborted without modifying the processor state, and an invalid-
 TSS exception (#TS) occurs.

• If shadow stacks are enabled at the current CPL and the task switch was initiated by an IRET
instruction, the current SSP must be aligned to 8 bytes. If this check fails, the task switch is aborted
without modifying the processor state, and an #TS(current task) exception is generated.

• The current-task state is saved in the TSS. This includes the next-instruction pointer (EIP),
EFLAGS, the general-purpose registers, and the segment-selector registers.
Up to this point, any exception that occurs aborts the task switch without changing the processor
state. From this point forward, any exception that occurs does so in the context of the new task. If
an exception occurs in the context of the new task during a task switch, the processor finishes
loading the new-task state without performing additional checks. The processor transfers control
to the #TS handler after this state is loaded, but before the first instruction is executed in the new
task. When a #TS occurs, it is possible that some of the state loaded by the processor did not
participate in segment access checks. The #TS handler must verify that all segments are accessible
before returning to the interrupted task.

• The task register (TR) is loaded with the new-task TSS selector, and the hidden portion of the TR is
loaded with the new-task descriptor. The TSS now referenced by the processor is that of the new
task.

• The current task is marked as busy. The previous task is marked as available or remains busy,
based on the type of linkage. See “Nesting Tasks” on page 372 for more information.

• CR0.TS is set to 1. This bit can be used to save other processor state only when it becomes
necessary. For more information, see the next section, “Saving Other Processor State.”

[AMD Public Use]

Task Management 367

24593—Rev. 3.37—March 2021 AMD64 Technology

• If shadow stacks are enabled (CR4.CET=1), the following shadow stack actions are performed:
saveCsLipSsp = FALSE
checkCsLip = FALSE
Read CS and EFLAGS from the incoming TSS
newCPL = (EFLAGS.VM == 1) ? 3 : CS.RPL

IF (task switch was initiated by CALL, interrupt or exception)
 {
 IF (ShadowStacksEnabled at current CPL)
 {
 IF ((current CPL == 3) && (newCPL < 3))
 PL3_SSP = SSP // switching from user to supv
 ELSE
 {
 saveCsLipSsp = TRUE // all other priv changes
 tempSSP = SSP
 tempLIP = CS.base + EIP
 tempCS = CS.sel
 }
 }
 } //end task switch initated by CALL,int, or exception

ELSEIF (task switch was initiated by IRET)
 {
 IF (ShadowStacksEnabled at current CPL)
 {
 // pop CS, LIP and SSP from shadow stack
 IF ((newCPL == current CPL) || (newCPL < 3))
 {
 // no priv change, or supv to user/supv
 tempCS = SSTK_READ_MEM.d [SSP+16]
 tempLIP = SSTK_READ_MEM.d [SSP+8]
 tempSSP = SSTK_READ_MEM.d [SSP]

[AMD Public Use]

368 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

 SSP = SSP + 24
 checkCsLip = TRUE
 }
 // check shadow stack token and clear busy bit
 temp_Token = SSTK_READ_MEM.q [SSP] // read supervisor sstk token
 expected_Token = SSP OR 0x01 // busy bit must be set
 IF (temp_token == expected token)
 SSTK_WRITE_MEM.q [SSP] = SSP // token OK, clear busy bit
 SSP = 0
 } // end shadow stacks enabled at current CPL
 } //end task switch initiated by IRET

• The new-task state is loaded from the TSS. This includes the next-instruction pointer (EIP),
EFLAGS, the general-purpose registers, and the segment-selector registers. The processor clears
the segment-descriptor present (P) bits (in the hidden portion of the segment registers) to prevent
access into the new segments, until the task switch completes successfully.

• The LDTR and CR3 registers are loaded from the TSS, changing the virtual-to-physical mapping
from that of the old task to the new task. Because this is done in the middle of accessing the new
TSS, system software must guarantee that TSS addresses are translated identically in all tasks.

• The descriptors for all previously-loaded segment selectors are loaded into the hidden portion of
the segment registers. This sets or clears the P bits for the segments as specified by the new
descriptor values.

• If shadow stacks are enabled (CR4.CET=1), the following shadow stack actions are performed:

IF (ShadowStacksEnabled at current CPL)
 {
 IF (EFLAGS.VM == 1)
 EXCEPTION [#TSS(new task selector)]

 IF (task switch was initiated by a CALL, JMP, interrupt or exception)
 {
 newSSP = SSTK_READ_MEM.d [TSS offset 0x68] // read new SSP
 IF (newSSP[2:0] != 0) // must be 8-byte aligned
 EXCEPTION [#TSS(new task selector)]

[AMD Public Use]

Task Management 369

24593—Rev. 3.37—March 2021 AMD64 Technology

 // check token and set busy
 temp_Token = SSTK_READ_MEM.q [newSSP] // read sstk token
 expected_Token = SSP // busy bit must be clear
 IF (temp_token != expected_token) // token must be valid
 EXCEPTION [#TSS(new task selector)]
 SSTK_WRITE_MEM.q [SSP] = SSP OR 0x01 // valid token, set busy bit
 SSP = newSSP

 IF (saveCsLipSsP == TRUE) // push old CS,LIP,SSP onto new sstk
 {
 SSTK_WRITE_MEM.q [SSP-24] = tempCS
 SSTK_WRITE_MEM.q [SSP-16] = tempLIP
 SSTK_WRITE_MEM.q [SSP-8] = tempSSP
 SSP = SSP - 24
 }
 } // end task switch initiated by CALL, JMP, interrupt or exception
 } // end shadow stacks enabled at current CPL

ELSEIF (task switch was initiated by an IRET)
 {
 IF (checkCsLip == TRUE)
 { // check CS, LIP against shadow stack
 IF (tempCS != CS)
 EXCEPTION [#CP(RETF/IRET)] // CS must match
 IF (tempLIP != (CS.base + EIP))
 EXCEPTION [#CP(RETF/IRET)] // LIP must match
 }

 IF ShadowStackEnabled at newCPL
 {

[AMD Public Use]

370 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

 IF (!checkCsLip)
 tempSSP = PL3_SSP;
 IF (tempSSP[1:0] != 0) // SSP must be 4-byte aligned
 EXCEPTION [#CP(RETF/IRET)]
 IF (tempSSP[63:32] != 0) // and SSP must be <4 GB
 EXCEPTION [#CP(RETF/IRET)]
 SSP = tempSSP
 } // end shadow stacks enabled at new CPL
 } // end task swtich initiated by IRET
If the above steps complete successfully, the processor begins executing instructions in the new task
beginning with the instruction referenced by the CS:EIP far pointer loaded from the new TSS. The
privilege level of the new task is taken from the new CS segment selector’s RPL.

Saving Other Processor State. The processor does not automatically save the registers used by the
media or x87 instructions. Instead, the processor sets CR0.TS to 1 during a task switch. Later, when an
attempt is made to execute any of the media or x87 instructions while TS=1, a device-not-available
exception (#NM) occurs. System software can then save the previous state of the media and x87
registers and clear the CR0.TS bit to 0 before executing the next media/x87 instruction. As a result, the
media and x87 registers are saved only when necessary after a task switch.

12.3.3 Task Switches Using Task Gates

When a control transfer to a new task occurs through a task gate, the processor reads the task-gate DPL
(DPLG) from the task-gate descriptor. Two privilege checks, both of which must pass, are performed
on DPLG before the task switch can occur successfully:

• The processor compares the CPL with DPLG. The CPL must be numerically less than or equal to
DPLG for this check to pass. In other words, the following expression must be true: CPL ≤ DPLG.

• The processor compares the RPL in the task-gate selector with DPLG. The RPL must be
numerically less than or equal to DPLG for this check to pass. In other words, the following
expression must be true: RPL ≤ DPLG.

Unlike call-gate control transfers, the processor does not read the DPL from the target TSS descriptor
(DPLS) and compare it with the CPL when a task gate is used.

Figure 12-10 on page 372 shows two examples of task-gate privilege checks. In Example 1, the
privilege checks pass:

• The task-gate DPL (DPLG) is at the lowest privilege (3), specifying that software running at any
privilege level (CPL) can access the gate.

[AMD Public Use]

Task Management 371

24593—Rev. 3.37—March 2021 AMD64 Technology

• The selector referencing the task gate passes its privilege check because the RPL is numerically
less than or equal to DPLG.

In Example 2, both privilege checks fail:

• The task-gate DPL (DPLG) specifies that only software at privilege-level 0 can access the gate.
The current program does not have enough privilege to access the task gate, because its CPL is 2.

• The selector referencing the task-gate descriptor does not have a high enough privilege to complete
the reference. Its RPL is numerically greater than DPLG.

Although both privilege checks failed in the example, if only one check fails, access into the target task
is denied.

Because the legacy task-switch mechanism is not supported in long mode, software cannot use task
gates in long mode. Any attempt to transfer control to another task using a task gate in long mode
causes a general-protection exception (#GP) to occur.

[AMD Public Use]

372 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 12-10. Privilege-Check Examples for Task Gates

12.3.4 Nesting Tasks

The hardware task-switch mechanism supports task nesting through the use of EFLAGS nested-task
(NT) bit and the TSS link-field. The manner in which these fields are updated and used during a task
switch depends on how the task switch is initiated:

513-255.eps

Example 1: Privilege Check Passes

DPLG=3

Task-Gate Descriptor
Task-State
Segment

CS CPL=2

DPLS

TSS Descriptor

Task-Gate
Selector

RPL=3

Example 2: Privilege Check Fails

DPLG=0

Task-Gate Descriptor

CS CPL=2

DPLS

TSS Descriptor

Task-Gate
Selector

RPL=3

Task-State
Segment

Access Allowed

Access Denied

[AMD Public Use]

Task Management 373

24593—Rev. 3.37—March 2021 AMD64 Technology

• The JMP instruction does not update EFLAGS.NT or the TSS link-field. Task nesting is not
supported by the JMP instruction.

• The CALL instruction, INTn instructions, interrupts, and exceptions can only be performed from
outer-level tasks to inner-level tasks. All of these operations set the EFLAGS.NT bit for the new
task to 1 during a task switch, and copy the selector for the previous task into the new-task link
field.

• An IRET instruction which returns to another task only occurs when the EFLAGS.NT bit for the
current task is set to 1, and only can be performed from an inner-level task to an outer-level task.
When an IRET results in a task switch, the new task is referenced using the selector stored in the
current-TSS link field. The EFLAGS.NT bit for the current task is cleared to 0 during the task
switch.

Table 12-1 summarizes the effect various task-switch initiators have on EFLAGS.NT, the TSS link-
field, and the TSS-busy bit. (For more information on the busy bit, see the next section, “Preventing
Recursion.”)

Programs running at any privilege level can set EFLAGS.NT to 1 and execute the IRET instruction to
transfer control to another task. System software can keep control over improperly nested-task
switches by initializing the link field of all TSSs that it creates. That way, improperly nested-task
switches always transfer control to a known task.

Preventing Recursion. Task recursion is not allowed by the hardware task-switch mechanism. If
recursive-task switches were allowed, they would replace a previous task-state image with a newer
image, discarding the previous information. To prevent recursion from occurring, the processor uses
the busy bit located in the TSS-descriptor type field (bit 9 of byte +4). Use of this bit depends on how
the task switch is initiated:

Table 12-1. Effects of Task Nesting

Task-Switch
Initiator

Old Task New Task

EFLAGS.NT Link
(Selector) Busy EFLAGS.NT Link

(Selector) Busy

JMP — — Clear to 0
(was 1) — — Set to 1

CALL
INTn

Interrupt
Exception

— —
(Was 1) Set to 1 Old Task Set to 1

IRET Clear to 0
(was 1) — Clear to 0

(was 1) —

Note:
“—” indicates no change is made.

[AMD Public Use]

374 Task Management

AMD64 Technology 24593—Rev. 3.37—March 2021

• The JMP instruction clears the busy bit in the old task to 0 and sets the busy bit in the new task to 1.
A general-protection exception (#GP) occurs if an attempt is made to JMP to a task with a set busy
bit.

• The CALL instruction, INTn instructions, interrupts, and exceptions set the busy bit in the new
task to 1. The busy bit in the old task remains set to 1, preventing recursion through task-nesting
levels. A general-protection exception (#GP) occurs if an attempt is made to switch to a task with a
set busy bit.

• An IRET to another task (EFLAGS.NT must be 1) clears the busy bit in the old task to 0. The busy
bit in the new task is not altered, because it was already set to 1.

Table 12-1 on page 373 summarizes the effect various task-switch initiators have on the TSS-busy bit.

[AMD Public Use]

Software Debug and Performance Resources 375

24593—Rev. 3.37—March 2021 AMD64 Technology

13 Software Debug and Performance
Resources

Testing, debug, and performance optimization consume a significant portion of the time needed to
develop a new computer or software product and move it successfully into production. To stay
competitive, product developers need tools that allow them to rapidly detect, isolate, and correct
problems before a product is shipped. The goal of the debug and performance features incorporated
into processor implementations of the AMD64 architecture is to support the tool chain solutions used
in software and hardware product development.

The debug and performance resources that can be supported by AMD64 architecture implementations
include:

• Software Debug—software-debug facilities include the debug registers (DR0–DR7), debug
exception, and breakpoint exception. Additional features are provided using model-specific
registers (MSRs). These registers are used to set breakpoints on branches, interrupts, and
exceptions and to single step from one branch to the next. The software-debug capability is
described in the following section.

• Performance Monitoring Counters—Performance monitoring counters (PMCs) are provided to
count specific processor hardware events. A set of control registers allow the selection of events to
be monitored and a corresponding set of counter registers track the frequency of monitored events.
These counters are described in Section 13.2 “Performance Monitoring Counters” on page 390.

• Instruction-Based Sampling— Instruction-based sampling is a hardware-based facility that
enables system software to capture specific data concerning instruction fetch and instruction
execution operation based on random sampling. This facility is described in Section 13.3
“Instruction-Based Sampling” on page 399.

• Lightweight Profiling—AMD64 architecture provides instructions that allow user-level programs
to manage the gathering of instruction statistics using very little overhead. This facility is
described in Section 13.4 “Lightweight Profiling” on page 412.

Although a subset of the facilities listed are available in all processor implementations, the remainder
are optional. Support for optional facilities is indicated via CPUID feature bits. The means of
determining support for each architected facility is described along with the facility in the sections that
follow.

A given processor product may include additional debug and performance monitoring capabilities
beyond those which are architecturally-defined. For details see the BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming Reference Manual (PPR) applicable to your product.

[AMD Public Use]

376 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

13.1 Software-Debug Resources
Software can program breakpoints into the debug registers, causing a debug exception (#DB) when
matches occur on instruction-memory addresses, data-memory addresses, or I/O addresses. The
breakpoint exception (#BP) is also supported to allow software to set breakpoints by placing INT3
instructions in the instruction memory for a program. Program control is transferred to the breakpoint
exception (#BP) handler when an INT3 instruction is executed.

In addition to the debug features supported by the debug registers (DR0–DR7), the processor also
supports features supported by model-specific registers (MSRs). Together, these capabilities provide a
rich set of breakpoint conditions, including:

• Breakpoint On Address Match—Breakpoints occur when the address stored in a address-
breakpoint register matches the address of an instruction or data reference. Up to four address-
match breakpoint conditions can be set by software.

• Single Step All Instructions—Breakpoints can be set to occur on every instruction, allowing a
debugger to examine the contents of registers as a program executes.

• Single Step Control Transfers—Breakpoints can be set to occur on control transfers, such as calls,
jumps, interrupts, and exceptions. This can allow a debugger to narrow a problem search to a
specific section of code before enabling single stepping of all instructions.

• Breakpoint On Any Instruction—Breakpoints can be set on any specific instruction using either the
address-match breakpoint condition or using the INT3 instruction to force a breakpoint when the
instruction is executed.

• Breakpoint On Task Switch—Software forces a #DB exception to occur when a task switch is
performed to a task with the T bit in the TSS set to 1. Debuggers can use this capability to enable or
disable debug conditions for a specific task.

Problem areas can be identified rapidly using the information supplied by the debug registers when
breakpoint conditions occur:

• Special conditions that cause a #DB exception are recorded in the DR6 debug-status register,
including breakpoints due to task switches and single stepping. The DR6 register also identifies
which address-breakpoint register (DR0–DR3) caused a #DB exception due to an address match.
When combined with the DR7 debug-control register settings, the cause of a #DB exception can be
identified.

• To assist in analyzing the instruction sequence a processor follows in reaching its current state, the
source and destination addresses of control-transfer events are saved by the processor. These
include branches (calls and jumps), interrupts, and exceptions. Debuggers can use this information
to narrow a problem search to a specific section of code before single stepping all instructions.

13.1.1 Debug Registers
The AMD64 architecture supports the legacy debug registers, DR0–DR7. These registers are
expanded to 64 bits by the AMD64 architecture. In legacy mode and in compatibility mode, only the
lower 32 bits are used. In these modes, writes to a debug register fill the upper 32 bits with zeros, and

[AMD Public Use]

Software Debug and Performance Resources 377

24593—Rev. 3.37—March 2021 AMD64 Technology

reads from a debug register return only the lower 32 bits. In 64-bit mode, all 64 bits of the debug
registers are read and written. Operand-size prefixes are ignored.

The debug registers can be read and written only when the current-protection level (CPL) is 0 (most
privileged). Attempts to read or write the registers at a lower-privilege level (CPL>0) cause a general-
protection exception (#GP).

Several debug registers described below are model-specific registers (MSRs). See “Software-Debug
MSRs” on page 662 for a listing of the debug-MSR numbers and their reset values. Some processor
implementations include additional MSRs used to support implementation-specific software debug
features. For more information on these registers and their capabilities, see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual (PPR) applicable to your
product.

13.1.1.1 Address-Breakpoint Registers (DR0-DR3)
Figure 13-1 shows the format of the four address-breakpoint registers, DR0-DR3. Software can load a
virtual (linear) address into any of the four registers, and enable breakpoints to occur when the address
matches an instruction or data reference. The MOV DRn instructions do not check that the virtual
addresses loaded into DR0–DR3 are in canonical form. Breakpoint conditions are enabled using the
debug-control register, DR7 (see “Debug-Control Register (DR7)” on page 379).

Figure 13-1. Address-Breakpoint Registers (DR0–DR3)

13.1.1.2 Reserved Debug Registers (DR4, DR5)
The DR4 and DR5 registers are reserved and should not be used by software. These registers are
aliased to the DR6 and DR7 registers, respectively. When the debug extensions are enabled
(CR4[DE] = 1) attempts to access these registers cause an invalid-opcode exception (#UD).

63 0

Breakpoint 0 64-bit Virtual (linear) Address

63 0

Breakpoint 1 64-bit Virtual (linear) Address

63 0

Breakpoint 2 64-bit Virtual (linear) Address

63 0

Breakpoint 3 64-bit Virtual (linear) Address

[AMD Public Use]

378 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

13.1.1.3 Debug-Status Register (DR6)
Figure 13-2 on page 378 shows the format of the debug-status register, DR6. Debug status is loaded
into DR6 when an enabled debug condition is encountered that causes a #DB exception.

Figure 13-2. Debug-Status Register (DR6)

Bits 15:13 of the DR6 register are not cleared by the processor and must be cleared by software after
the contents have been read. Register fields are:

• Breakpoint-Condition Detected (B3–B0)—Bits 3:0. The processor updates these four bits on every
debug breakpoint or general-detect condition. A bit is set to 1 if the corresponding address-
breakpoint register detects an enabled breakpoint condition, as specified by the DR7 Ln, Gn, R/Wn
and LENn controls, and is cleared to 0 otherwise. For example, B1 (bit 1) is set to 1 if an address-
breakpoint condition is detected by DR1.

• Debug-Register-Access Detected (BD)—Bit 13. The processor sets this bit to 1 if software
accesses any debug register (DR0–DR7) while the general-detect condition is enabled
(DR7[GD] = 1).

• Single Step (BS)—Bit 14. The processor sets this bit to 1 if the #DB exception occurs as a result of
single-step mode (rFLAGS[TF] = 1). Single-step mode has the highest-priority among debug
exceptions. Other status bits within the DR6 register can be set by the processor along with the BS
bit.

• Task-Switch (BT)—Bit 15. The processor sets this bit to 1 if the #DB exception occurred as a result
of task switch to a task with a TSS T-bit set to 1.

63 32

MBZ

31 16 15 14 13 12 11 4 3 2 1 0

Read as 1s B
T

B
S

B
D

R
A
Z

Read as 1s B
3

B
2

B
1

B
0

Bits Mnemonic Description Access type
63:16 — Reserved MBZ
15 BT Breakpoint Task Switch R/W
14 BS Breakpoint Single Step R/W
13 BD Breakpoint Debug Access Detected R/W
12 — Reserved RAZ
11:4 — Reserved RAI
3 B3 Breakpoint #3 Condition Detected R/W
2 B2 Breakpoint #2 Condition Detected R/W
1 B1 Breakpoint #1 Condition Detected R/W
0 B0 Breakpoint #0 Condition Detected R/W

[AMD Public Use]

Software Debug and Performance Resources 379

24593—Rev. 3.37—March 2021 AMD64 Technology

All remaining bits in the DR6 register are reserved. Reserved bits 31:16 and 11:4 must all be set to 1,
while reserved bit 12 must be cleared to 0. In 64-bit mode, the upper 32 bits of DR6 are reserved and
must be written with zeros. Writing a 1 to any of the upper 32 bits results in a general-protection
exception, #GP(0).

13.1.1.4 Debug-Control Register (DR7)
Figure 13-3 shows the format of the debug-control register, DR7. DR7 is used to establish the
breakpoint conditions for the address-breakpoint registers (DR0–DR3) and to enable debug
exceptions for each address-breakpoint register individually. DR7 is also used to enable the general-
detect breakpoint condition.

Figure 13-3. Debug-Control Register (DR7)

63 32

Reserved, MBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LEN3 R/W3 LEN2 R/W2 LEN1 R/W1 LEN0 R/W0 RAZ
G
D

RAZ
R
A
1

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0

Bits Mnemonic Description Access type
63:32 — Reserved MBZ
31:30 LEN3 Length of Breakpoint #3 R/W
29:28 R/W3 Type of Transaction(s) to Trap R/W
27:26 LEN2 Length of Breakpoint #2 R/W
25:24 R/W2 Type of Transaction(s) to Trap R/W
23:22 LEN1 Length of Breakpoint #1 R/W
21:20 R/W1 Type of Transaction(s) to Trap R/W
19:18 LEN0 Length of Breakpoint #0 R/W
17:16 R/W0 Type of Transaction(s) to Trap R/W
15:14 — Reserved RAZ
13 GD General Detect Enabled R/W
12:11 — Reserved RAZ
10 — Reserved RA1
9 GE Global Exact Breakpoint Enabled R/W
8 LE Local Exact Breakpoint Enabled R/W
7 G3 Global Exact Breakpoint #3 Enabled R/W
6 L3 Local Exact Breakpoint #3 Enabled R/W
5 G2 Global Exact Breakpoint #2 Enabled R/W
4 L2 Local Exact Breakpoint #2 Enabled R/W
3 G1 Global Exact Breakpoint #1 Enabled R/W
2 L1 Local Exact Breakpoint #1 Enabled R/W
1 G0 Global Exact Breakpoint #0 Enabled R/W
0 L0 Local Exact Breakpoint #0 Enabled R/W

[AMD Public Use]

380 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

The fields within the DR7 register are all read/write. These fields are:

• Local-Breakpoint Enable (L3–L0)—Bits 6, 4, 2, and 0 (respectively). Software individually sets
these bits to 1 to enable debug exceptions to occur when the corresponding address-breakpoint
register (DRn) detects a breakpoint condition while executing the current task. For example, if L1
(bit 2) is set to 1 and an address-breakpoint condition is detected by DR1, a #DB exception occurs.
These bits are cleared to 0 by the processor when a hardware task-switch occurs.

• Global-Breakpoint Enable (G3–G0)—Bits 7, 5, 3, and 1 (respectively). Software sets these bits to
1 to enable debug exceptions to occur when the corresponding address-breakpoint register (DRn)
detects a breakpoint condition while executing any task. For example, if G1 (bit 3) is set to 1 and an
address-breakpoint condition is detected by DR1, a #DB exception occurs. These bits are never
cleared to 0 by the processor.

• Local-Enable (LE)—Bit 8. Software sets this bit to 1 in legacy implementations to enable exact
breakpoints while executing the current task. This bit is ignored by implementations of the
AMD64 architecture. All breakpoint conditions, except certain string operations preceded by a
repeat prefix, are exact.

• Global-Enable (GE)—Bit 9. Software sets this bit to 1 in legacy implementations to enable exact
breakpoints while executing any task. This bit is ignored by implementations of the AMD64
architecture. All breakpoint conditions, except certain string operations preceded by a repeat
prefix, are exact.

• General-Detect Enable (GD)—Bit 13. Software sets this bit to 1 to cause a debug exception to
occur when an attempt is made to execute a MOV DRn instruction to any debug register
(DR0–DR7). This bit is cleared to 0 by the processor when the #DB handler is entered, allowing
the handler to read and write the DRn registers. The #DB exception occurs before executing the
instruction, and DR6[BD] is set by the processor. Software debuggers can use this bit to prevent
the currently-executing program from interfering with the debug operation.

• Read/Write (R/W3–R/W0)—Bits 29:28, 25:24, 21:20, and 17:16 (respectively). Software sets these
fields to control the breakpoint conditions used by the corresponding address-breakpoint registers
(DRn). For example, control-field R/W1 (bits 21:20) controls the breakpoint conditions for the
DR1 register. The R/Wn control-field encodings specify the following conditions for an address-
breakpoint to occur:
- 00—Only on instruction execution.
- 01—Only on data write.
- 10—This encoding is further qualified by CR4[DE] as follows:

. CR4[DE] = 0—Condition is undefined.

. CR4[DE] = 1—Only on I/O read or I/O write.
- 11—Only on data read or data write.

• Length (LEN3–LEN0)—Bits 31:30, 27:26, 23:22, and 19:18 (respectively). Software sets these
fields to control the range used in comparing a memory address with the corresponding address-
breakpoint register (DRn). For example, control-field LEN1 (bits 23:22) controls the breakpoint-
comparison range for the DR1 register.

[AMD Public Use]

Software Debug and Performance Resources 381

24593—Rev. 3.37—March 2021 AMD64 Technology

The value in DRn defines the low-end of the address range used in the comparison. LENn is used
to mask the low-order address bits in the corresponding DRn register so that they are not used in
the address comparison. To work properly, breakpoint boundaries must be aligned on an address
corresponding to the range size specified by LENn. The LENn control-field encodings specify the
following address-breakpoint-comparison ranges:
- 00—1 byte.
- 01—2 byte, must be aligned on a word boundary.
- 10—8 byte, must be aligned on a quadword boundary. (Long mode only; otherwise undefined.)
- 11—4 byte, must be aligned on a doubleword boundary.
If the R/Wn field is used to specify instruction breakpoints (R/Wn=00), the corresponding LENn
field must be set to 00. Setting LENn to any other value produces undefined results.

All remaining bits in the DR7 register are reserved. Reserved bits 15:14 and 12:11 must all be cleared
to 0, while reserved bit 10 must be set to 1. In 64-bit mode, the upper 32 bits of DR7 are reserved and
must be written with zeros. Writing a 1 to any of the upper 32 bits results in a general-protection
#GP(0) exception.

13.1.1.5 64-Bit-Mode Extended Debug Registers
In 64-bit mode, additional encodings for debug registers are available. The R bit of the REX prefix is
used to modify the ModRM reg field when that field encodes a control register. These additional
encodings enable the processor to address DR8–DR15.

Access to the DR8–DR15 registers is implementation-dependent. The architecture does not require
any of these extended debug registers to be implemented. Any attempt to access an unimplemented
register results in an invalid-opcode exception (#UD).

13.1.1.6 Debug-Control MSR (DebugCtl)
Figure 13-4 on page 382 shows the format of the debug-control MSR (DebugCtl). DebugCtl provides
additional debug controls over control-transfer recording and single stepping, and external-breakpoint
reporting and trace messages. DebugCtl is read and written using the RDMSR and WRMSR
instructions.

[AMD Public Use]

382 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 13-4. Debug-Control MSR (DebugCtl)

The fields within the DebugCtl register are:

• Last-Branch Record (LBR)—Bit 0, read/write. Software sets this bit to 1 to cause the processor to
record the source and target addresses of the last control transfer taken before a debug exception
occurs. The recorded control transfers include branch instructions, interrupts, and exceptions. See
“Control-Transfer Breakpoint Features” on page 388 for more details on the registers. See
Figure 13-5 on page 383 for the format of the control-transfer recording MSRs.

• Branch Single Step (BTF)—Bit 1, read/write. Software uses this bit to change the behavior of the
rFLAGS[TF] bit. When this bit is cleared to 0, the rFLAGS[TF] bit controls instruction single
stepping, (normal behavior). When this bit is set to 1, the rFLAGS[TF] bit controls single stepping
on control transfers. The single-stepped control transfers include branch instructions, interrupts,
and exceptions. Control-transfer single stepping requires both BTF = 1 and rFLAGS[TF] = 1. See
“Control-Transfer Breakpoint Features” on page 388 for more details on control-transfer single
stepping.

• Performance-Monitoring/Breakpoint Pin-Control (PBi)—Bits 5:2, read/write. Software uses these
bits to control the type of information reported by the four external performance-
monitoring/breakpoint pins on the processor. When a PBi bit is cleared to 0, the corresponding
external pin (BPi) reports performance-monitor information. When a PBi bit is set to 1, the
corresponding external pin (BPi) reports breakpoint information.

All remaining bits in the DebugCtl register are reserved.

63 32

Reserved

31 6 5 4 3 2 1 0

Reserved
P
B
3

P
B
2

P
B
1

P
B
0

B
T
F

L
B
R

Bits Mnemonic Description R/W
63:6 Reserved
5 PB3 Performance Monitoring Pin Control R/W
4 PB2 Performance Monitoring Pin Control R/W
3 PB1 Performance Monitoring Pin Control R/W
2 PB0 Performance Monitoring Pin Control R/W
1 BTF Branch Single Step R/W
0 LBR Last-Branch Record R/W

[AMD Public Use]

Software Debug and Performance Resources 383

24593—Rev. 3.37—March 2021 AMD64 Technology

13.1.1.7 Control-Transfer Recording MSRs
Figure 13-5 on page 383 shows the format of the 64-bit control-transfer recording MSRs:
LastBranchToIP, LastBranchFromIP, LastIntToIP, and LastIntFromIP. These registers are loaded
automatically by the processor when the DebugCtl[LBR] bit is set to 1. These MSRs are read-only.

Figure 13-5. Control-Transfer Recording MSRs

13.1.2 Setting Breakpoints
Breakpoints can be set to occur on either instruction addresses or data addresses using the breakpoint-
address registers, DR0–DR3 (DRn). The values loaded into these registers represent the breakpoint-
location virtual address. The debug-control register, DR7, is used to enable the breakpoint registers
and to specify the type of access and the range of addresses that can trigger a breakpoint.

Software enables the DRn registers using the corresponding local-breakpoint enable (Ln) or global-
breakpoint enable (Gn) found in the DR7 register. Ln is used to enable breakpoints only while the
current task is active, and it is cleared by the processor when a task switch occurs. Gn is used to enable
breakpoints for all tasks, and it is never cleared by the processor.

The R/Wn fields in DR7, along with the CR4[DE] bit, specify the type of access required to trigger a
breakpoint when an address match occurs on the corresponding DRn register. Breakpoints can be set to
occur on instruction execution, data reads and writes, and I/O reads and writes. The R/Wn and
CR4[DE] encodings used to specify the access type are described on page 380 of “Debug-Control
Register (DR7).”

The LENn fields in DR7 specify the size of the address range used in comparison with data or
instruction addresses. LENn is used to mask the low-order address bits in the corresponding DRn
register so that they are not used in the address comparison. Breakpoint boundaries must be aligned on
an address corresponding to the range size specified by LENn. Assuming the access type matches the

63 0

LastBranchToIP - 64-bit Segment Offset (RIP)

63 0

LastBranchFromIP - 64-bit Segment Offset (RIP)

63 0

LastIntToIP - 64-bit Segment Offset (RIP)

63 0

LastIntFromIP - 64-bit Segment Offset (RIP)

[AMD Public Use]

384 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

type specified by R/Wn, a breakpoint occurs if any accessed byte falls within the range specified by
LENn. For instruction breakpoints, LENn must specify a single-byte range. The LENn encodings used
to specify the address range are described on page 380 of “Debug-Control Register (DR7).”

Table 13-1 shows several examples of data accesses, and whether or not they cause a #DB exception to
occur based on the breakpoint address in DRn and the breakpoint-address range specified by LENn. In
this table, R/Wn always specifies read/write access.

Table 13-1. Breakpoint-Setting Examples
Data-Access Address

(hexadecimal)
Access Size

(bytes)
Byte-Addresses in Data-Access

(hexadecimal)
Breakpoint-Address Range

(hexadecimal) Result

DRn=F000, LENn=00 (1 Byte)

EFFB 8 EFFB, EFFC, EFFD, EFFE,
EFFF, F000, F001

F000

#DB

EFFE
2 EFFE, EFFF —
4 EFFE, EFFF, F000, F001

#DB
F000 1 F000
F001 2 F001, F002

—
F005 4 F005, F006, F007, F008

DRn=F004, LENn=11 (4 Bytes)

EFFB 8 EFFB, EFFC, EFFD, EFFE,
EFFF, F000, F001

F004–F007
—EFFE

2 EFFE, EFFF
4 EFFE, EFFF, F000, F001

F000 1 F000
F001 2 F001, F002
F005 4 F005, F006, F007, F008 #DB

DRn=F005, LENn=10 (8 Bytes)

EFFB 8 EFFB, EFFC, EFFD, EFFE,
EFFF, F000, F001

F000–F007

#DB

EFFE
2 EFFE, EFFF —
4 EFFE, EFFF, F000, F001

#DB
F000 1 F000
F001 2 F001, F002
F005 4 F005, F006, F007, F008

Note:
“—” indicates no #DB occurs.

[AMD Public Use]

Software Debug and Performance Resources 385

24593—Rev. 3.37—March 2021 AMD64 Technology

13.1.3 Using Breakpoints
A debug exception (#DB) occurs when an enabled-breakpoint condition is encountered during
program execution. The debug-handler must check the debug-status register (DR6), the conditions
enabled by the debug-control register (DR7), and the debug-control MSR (DebugCtl), to determine
the #DB cause. The #DB exception corresponds to interrupt vector 1. See “#DB—Debug Exception
(Vector 1)” on page 237.

Instruction breakpoints and general-detect conditions cause the #DB exception to occur before the
instruction is executed, while all other breakpoint and single-stepping conditions cause the #DB
exception to occur after the instruction is executed. Table 13-2 summarizes where the #DB exception
occurs based on the breakpoint condition.

Instruction breakpoints and general-detect conditions have a lower interrupt-priority than the other
breakpoint and single-stepping conditions (see “Priorities” on page 253). Data-breakpoint conditions
on the previous instruction occur before an instruction-breakpoint condition on the next instruction.
However, if instruction and data breakpoints can occur as a result of executing a single instruction, the
instruction breakpoint occurs first (before the instruction is executed), followed by the data breakpoint
(after the instruction is executed).

13.1.3.1 Instruction Breakpoints
Instruction breakpoints are set by loading a breakpoint-address register (DRn) with the desired
instruction virtual-address, and then setting the corresponding DR7 fields as follows:

• Ln or Gn is set to 1 to enable the breakpoint for either the local task or all tasks, respectively.
• R/Wn is set to 00b to specify that the contents of DRn are to be compared only with the virtual

address of the next instruction to be executed.
• LENn must be set to 00b.

When a #DB exception occurs due to an instruction breakpoint-address in DRn, the corresponding Bn
field in DR6 is set to 1 to indicate that a breakpoint condition occurred. The breakpoint occurs before

Table 13-2. Breakpoint Location by Condition
Breakpoint Condition Breakpoint Location

Instruction
Before Instruction is Executed

General Detect
Data Write Only

After Instruction is Executed1Data Read or Data Write
I/O Read or I/O Write

Single Step1
After Instruction is Executed

Task Switch
Note:

1. Repeated operations (REP prefix) can breakpoint between iterations.

[AMD Public Use]

386 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

the instruction is executed, and the breakpoint-instruction address is pushed onto the debug-handler
stack. If multiple instruction breakpoints are set, the debug handler can use the Bn field to identify
which register caused the breakpoint.

Returning from the debug handler causes the breakpoint instruction to be executed. Before returning
from the debug handler, the rFLAGS[RF] bit should be set to 1 to prevent a reoccurrence of the #DB
exception due to the instruction-breakpoint condition. The processor ignores instruction-breakpoint
conditions when rFLAGS[RF] = 1, until after the next instruction (in this case, the breakpoint
instruction) is executed. After the next instruction is executed, the processor clears rFLAGS[RF].

13.1.3.2 Data Breakpoints
Data breakpoints are set by loading a breakpoint-address register (DRn) with the desired data virtual-
address, and then setting the corresponding DR7 fields as follows:

• Ln or Gn is set to 1 to enable the breakpoint for either the local task or all tasks, respectively.
• R/Wn is set to 01b to specify that the data virtual-address is compared with the contents of DRn

only during a memory-write. Setting this field to 11b specifies that the comparison takes place
during both memory reads and memory writes.

• LENn is set to 00b, 01b, 11b, or 10b to specify an address-match range of one, two, four, or eight
bytes, respectively. Long mode must be active to set LENn to 10b.

When a #DB exception occurs due to a data breakpoint address in DRn, the corresponding Bn field in
DR6 is set to 1 to indicate that a breakpoint condition occurred. The breakpoint occurs after the data-
access instruction is executed, which means that the original data is overwritten by the data-access
instruction. If the debug handler needs to report the previous data value, it must save that value before
setting the breakpoint.

Because the breakpoint occurs after the data-access instruction is executed, the address of the
instruction following the data-access instruction is pushed onto the debug-handler stack. Repeated
string instructions, however, can trigger a breakpoint before all iterations of the repeat loop have
completed. When this happens, the address of the string instruction is pushed onto the stack during a
#DB exception if the repeat loop is not complete. A subsequent IRET from the #DB handler returns to
the string instruction, causing the remaining iterations to be executed. Most implementations cannot
report breakpoints exactly for repeated string instructions, but instead report the breakpoint on an
iteration later than the iteration where the breakpoint occurred.

13.1.3.3 I/O Breakpoints
I/O breakpoints are set by loading a breakpoint-address register (DRn) with the I/O-port address to be
trapped, and then setting the corresponding DR7 fields as follows:

• Ln or Gn is set to 1 to enable the breakpoint for either the local task or all tasks, respectively.
• R/Wn is set to 10b to specify that the I/O-port address is compared with the contents of DRn only

during execution of an I/O instruction. This encoding of R/Wn is valid only when debug
extensions are enabled (CR4[DE] = 1).

[AMD Public Use]

Software Debug and Performance Resources 387

24593—Rev. 3.37—March 2021 AMD64 Technology

• LENn is set to 00b, 01b, or 11b to specify the breakpoint occurs on a byte, word, or doubleword
I/O operation, respectively.

The I/O-port address specified by the I/O instruction is zero extended by the processor to 64 bits before
comparing it with the DRn registers.

When a #DB exception occurs due to an I/O breakpoint in DRn, the corresponding Bn field in DR6 is
set to 1 to indicate that a breakpoint condition occurred. The breakpoint occurs after the instruction is
executed, which means that the original data is overwritten by the breakpoint instruction. If the debug
handler needs to report the previous data value, it must save that value before setting the breakpoint.

Because the breakpoint occurs after the instruction is executed, the address of the instruction following
the I/O instruction is pushed onto the debug-handler stack, in most cases. In the case of INS and OUTS
instructions that use the repeat prefix, however, the breakpoint occurs after the first iteration of the
repeat loop. When this happens, the I/O-instruction address can be pushed onto the stack during a #DB
exception if the repeat loop is not complete. A subsequent return from the debug handler causes the
next I/O iteration to be executed. If the breakpoint condition is still set, the #DB exception reoccurs
after that iteration is complete.

13.1.3.4 Task-Switch Breakpoints
Breakpoints can be set in a task TSS to raise a #DB exception after a task switch. Software enables a
task breakpoint by setting the T bit in the TSS to 1. When a task switch occurs into a task with the T bit
set, the processor completes loading the new task state. Before the first instruction is executed, the
#DB exception occurs, and the processor sets DR6[BT] to 1, indicating that the #DB exception
occurred as a result of task breakpoint.

The processor does not clear the T bit in the TSS to 0 when the #DB exception occurs. Software must
explicitly clear this bit to disable the task breakpoint. Software should never set the T-bit in the debug-
handler TSS if a separate task is used for #DB exception handling, otherwise the processor loops on
the debug handler.

13.1.3.5 General-Detect Condition
General-detect is a special debug-exception condition that occurs when software running at any
privilege level attempts to access any of the DRn registers while DR7[GD] is set to 1. When a #DB
exception occurs due to the general-detect condition, the processor clears DR7[GD] and sets DR6[BD]
to 1. Clearing DR7[GD] allows the debug handler to access the DRn registers without causing infinite
#DB exceptions.

A debugger enables general detection to prevent other software from accessing and interfering with
the debug registers while they are in use by the debugger. The exception is taken before executing the
MOV DRn instruction so that the DRn contents are not altered.

[AMD Public Use]

388 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

13.1.4 Single Stepping
Single-step breakpoints are enabled by setting the rFLAGS[TF] bit to 1. TF may be set by the IRET,
POPF or SYSRET instructions, with an IRET executed by a debugger being the typical use case.
When IRET sets TF, it causes a #DB exception to be taken immediately after the target of the IRET is
executed, returning control to the debugger and thereby single-stepping the target instruction. Setting
TF with a POPF instruction also causes a one-instruction delayed #DB exception. When TF is set by
SYSRET however, a #DB exception is taken before the target instruction executes, hence SYSRET
does not provide the single-stepping behavior of IRET.

When a #DB exception occurs due to single stepping, the processor clears rFLAGS[TF] before
entering the debug handler, so that the debug handler itself is not single stepped. The processor also
sets DR6[BS] to 1, which indicates that the #DB exception occurred as a result of single stepping. The
rFLAGS image pushed onto the debug-handler stack has the TF bit set, and single stepping resumes
when a subsequent IRET pops the stack image into the rFLAGS register.

Single-step breakpoints have a higher priority than external interrupts. If an external interrupt occurs
during single stepping, control is transferred to the #DB handler first, causing the rFLAGS[TF] bit to
be cleared. Next, before the first instruction in the debug handler is executed, the processor transfers
control to the pending-interrupt handler. This allows external interrupts to be handled outside of
single-step mode.

The INTn, INT3, and INTO instructions clear the rFLAGS[TF] bit when they are executed. If a
debugger is used to single-step software that contains these instructions, it must emulate them instead
of executing them.

The single-step mechanism can also be set to single step only control transfers, rather than single step
every instruction. See “Single Stepping Control Transfers” on page 389 for additional information.

13.1.5 Breakpoint Instruction (INT3)
The INT3 instruction, or the INTn instruction with an operand of 3, can be used to set breakpoints that
transfer control to the breakpoint-exception (#BP) handler rather than the debug-exception handler.
When a debugger uses the breakpoint instructions to set breakpoints, it does so by replacing the first
bytes of an instruction with the breakpoint instruction. The debugger replaces the breakpoint
instructions with the original-instruction bytes to clear the breakpoint.

INT3 is a single-byte instruction while INTn with an operand of 3 is a two-byte instruction. The
instructions have slightly different effects on the breakpoint exception-handler stack. See “#BP—
Breakpoint Exception (Vector 3)” on page 238 for additional information on this exception.

13.1.6 Control-Transfer Breakpoint Features
A control transfers is accomplished by using one of following instructions:

• JMP, CALL, RET
• Jcc, JrCXZ, LOOPcc

[AMD Public Use]

Software Debug and Performance Resources 389

24593—Rev. 3.37—March 2021 AMD64 Technology

• JMPF, CALLF, RETF
• INTn, INT 3, INTO, ICEBP
• Exceptions, IRET
• SYSCALL, SYSRET, SYSENTER, SYSEXIT
• INTR, NMI, SMI, RSM

13.1.6.1 Recording Control Transfers
Software enables control-transfer recording by setting DebugCtl[LBR] to 1. When this bit is set, the
processor updates the recording MSRs automatically when control transfers occur:

• LastBranchFromIP and LastBranchToIP Registers—On branch instructions, the
LastBranchFromIP register is loaded with the segment offset of the branch instruction, and the
LastBranchToIP register is loaded with the first instruction to be executed after the branch. On
interrupts and exceptions, the LastBranchFromIP register is loaded with the segment offset of the
interrupted instruction, and the LastBranchToIP register is loaded with the offset of the interrupt or
exception handler.

• LastIntFromIP and LastIntToIP Registers—The processor loads these from the LastBranchFromIP
register and the LastBranchToIP register, respectively, when most interrupts and exceptions are
taken. These two registers are not updated, however, when #DB or #MC exceptions are taken, or
the ICEBP instruction is executed.

The processor automatically disables control-transfer recording when a debug exception (#DB) occurs
by clearing DebugCtl[LBR] to 0. The contents of the control-transfer recording MSRs are not altered
by the processor when the #DB occurs. Before exiting the debug-exception handler, software can set
DebugCtl[LBR] to 1 to re-enable the recording mechanism.

Debuggers can trace a control transfer backward from a bug to its source using the recording MSRs
and the breakpoint-address registers. The debug handler does this by updating the breakpoint registers
from the recording MSRs after a #DB exception occurs, and restarting the program. The program takes
a #DB exception on the previous control transfer, and this process can be repeated. The debug handler
cannot simply copy the contents of the recording MSR into the breakpoint-address register. The
recording MSRs hold segment offsets, while the debug registers hold virtual (linear) addresses. The
debug handler must calculate the virtual address by reading the code-segment selector (CS) from the
interrupt-handler stack, then reading the segment-base address from the CS descriptor, and adding that
base address to the offset in the recording MSR. The calculated virtual-address can then be used as a
breakpoint address.

13.1.6.2 Single Stepping Control Transfers
Software can enable control-transfer single stepping by setting DebugCtl[BTF] to 1 and rFLAGS[TF]
to 1. The processor automatically disables control-transfer single stepping when a debug exception
(#DB) occurs by clearing DebugCtl[BTF]. rFLAGS[TF] is also cleared when a #DB exception occurs.
Before exiting the debug-exception handler, software must set both DebugCtl[BTF] and rFLAGS[TF]
to 1 to restart single stepping.

[AMD Public Use]

390 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

When enabled, this single-step mechanism causes a #DB exception to occur on every branch
instruction, interrupt, or exception. Debuggers can use this capability to perform a “coarse” single step
across blocks of code (bound by control transfers), and then, as the problem search is narrowed, switch
into a “fine” single-step mode on every instruction (DebugCtl[BTF] = 0 and rFLAGS[TF] = 1).

Debuggers can use both the single-step mechanism and recording mechanism to support full backward
and forward tracing of control transfers.

13.1.7 Debug Breakpoint Address Masking
The Breakpoint Address Extension feature extends the DR[0-3] breakpoint capabilities. Processors
with this extension support address mask registers corresponding to each of the DR[0-3] breakpoint
registers, in the form of DR[0-3]_ADDR_MASK MSRs. These masks may be used to increase the
range of breakpoints by excluding address bits from the breakpoint match. Each bit set to one
excludes the corresponding address bit from the breakpoint comparison. Mask bits 11:0 may be used
to expand instruction fetch breakpoint ranges up to a 4KB page, while mask bits 31:12 have no effect
on instruction breakpoints. For DR0 only, the full mask field (31:0) may be used to qualify data
breakpoint matches. This extension is signified by CPUID Fn8000_0001_ECX[26]=1.

An additional extension expands the data breakpoint masking capability of DR0 to the other
breakpoint registers, and extends instruction breakpoint masking to bits 31:0 for all registers. This is
signified by CPUID Fn8000_0001_ECX[30]=1.

13.2 Performance Monitoring Counters
The AMD64 architecture supports a set of hardware-based performance-monitoring counters (PMCs)
that can be utilized to measure the frequency or duration of certain hardware events. MSRs allow the
selection of events to be monitored and include a set of corresponding counter registers that
accumulate a count of monitored events.

Software tools can use these counters to identify performance bottlenecks, such as sections of code
that have high cache-miss rates or frequently mispredicted branches. This information can then be
used as a guide for improving overall performance or eliminating performance problems through
software optimizations or hardware-design improvements.

Software performance analysis tools often require a means to time-stamp an event or measure elapsed
time between two events. The time-stamp counter provides this capability. See Section 13.2.4 “Time-
Stamp Counter” on page 397.

The registers used in support of performance monitoring are model-specific registers (MSRs). See
“Model-Specific Registers (MSRs)” on page 59 for a general discussion of MSRs and “Performance-
Monitoring MSRs” on page 663 for a listing of the performance-monitoring MSR numbers and their
reset values.

[AMD Public Use]

Software Debug and Performance Resources 391

24593—Rev. 3.37—March 2021 AMD64 Technology

13.2.1 Performance Counter MSRs
The legacy architecture defines four performance counters (PerfCtrn) and corresponding event-select
registers (PerfEvtSeln). Extensions add northbridge and L2 cache performance monitoring counters.
Each *PerfCtr register counts events selected by the corresponding *PerfEvtSel register.

An architectural extension augments the number of performance and event-select registers by adding
two more processor counter / event-select pairs. Further extensions add four counter / event-select
pairs dedicated to counting northbridge (NB) events and four counter / event-select pairs dedicated to
counting L2 cache (L2I) events.

Core logic includes instruction execution pipelines, execution units, and caches closest to the
execution hardware. The NB includes logic that routes data traffic between caches, external I/O
devices, and a system memory controller which reads and writes system memory (usually
implemented as external DRAM). The L2 cache is a cache that is further away from the processor core
than the L1 cache or caches. This cache is normally larger than the L1 cache(s) and requires more
processor cycles to access. An L2 cache may be shared between physical processor cores.

All implementations support the base set of four performance counter / event-select pairs. Support for
the extended performance monitoring registers and the performance-related events selectable via the
*PerfEvtSel registers vary by implementation and are described in the BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming Reference Manual (PPR) for that processor.

Core performance counters are used to count processor core events, such as data-cache misses, or the
duration of events, such as the number of clocks it takes to return data from memory after a cache miss.
During event counting, hardware increments a counter each time it detects an occurrence of a specified
event. During duration measurement, hardware counts the number of processor clock cycles required
to complete a specific hardware function.

NB performance counters are used to count events that occur within the northbridge. The L2I
performance counters are used to count events associated with accessing the L2 cache.

Performance counters and event-select registers are implemented as machine-specific registers
(MSRs). The base set of four PerfCtr and PerfEvtSel registers are accessed via a legacy set of MSRs
and the extended set of six core PerfCtr / PerfEvtSel registers are accessed via a different set. Extended
core PerfCtr / PerfEvtSel registers 0–3 alias the legacy set.

Support for the extended set of core PerfCtr registers and associated PerfEvtSel registers, as well as the
sets of northbridge and L2 cache counter / event-select pairs are indicated by CPUID feature bits. See
“Detecting Hardware Support for Performance Counters” on page 397. The MSR address assignments
for the legacy and extended performance / event-select pairs are listed in Appendix A, Section A.6,
“Performance-Monitoring MSRs” on page 663.

The length, in bits, of the performance counters is implementation-dependent, but the maximum
length supported is 64 bits. Figure 13-6 shows the format of the performance counter registers.

[AMD Public Use]

392 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 13-6. Performance Counter Format

For a given processor, all implemented performance counter registers can be read and written by
system software running at CPL = 0 using the RDMSR and WRMSR instructions, respectively. The
architecture also provides an instruction, RDPMC, which may be employed by user-mode software to
read the architected core, northbridge, and L2 performance counters.

The RDPMC instruction loads the contents of the architected performance counter register specified
by the index value contained in the ECX register, into the EDX register and the EAX register. The high
32 bits are returned in EDX, and the low 32 bits are returned in EAX. RDPMC can be executed only at
CPL = 0, unless system software enables use of the instruction at all privilege levels. RDPMC can be
enabled for use at all privilege levels by setting CR4[PCE] (the performance-monitor counter-enable
bit) to 1. When CR4[PCE] = 0 and CPL > 0, attempts to execute RDPMC result in a general-
protection exception (#GP). For more information on the RDPMC instruction, see the instruction
reference page in Volume 3 of this manual.

Writing the performance counters can be useful if software wants to count a specific number of events,
and then trigger an interrupt when that count is reached. An interrupt can be triggered when a
performance counter overflows (see “Counter Overflow” on page 397 for additional information).
Software should use the WRMSR instruction to load the count as a two’s-complement negative
number into the performance counter. This causes the counter to overflow after counting the
appropriate number of times.

The performance counters are not guaranteed to produce identical measurements each time they are
used to measure a particular instruction sequence, and they should not be used to take measurements of
very small instruction sequences. The RDPMC instruction is not serializing, and it can be executed
out-of-order with respect to other instructions around it. Even when bound by serializing instructions,
the system environment at the time the instruction is executed can cause events to be counted before
the counter value is loaded into EDX:EAX. The following sections describe the core performance
event-select and the northbridge performance event-select registers.

Core Performance Event-Select Registers
The core performance event-select registers (PerfEvtSeln) are 64-bit registers used to specify the
events counted by the core performance counters, and to control other aspects of their operation. Each
performance counter supported by the implementation has a corresponding event-select register that
controls its operation. Figure 13-7 below shows the format of the core PerfEvtSel register.

63 0

event or duration count

[AMD Public Use]

Software Debug and Performance Resources 393

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-7. Core Performance Event-Select Register (PerfEvtSeln)

The fields shown in Figure 13-7 above are further described below:

• HG_ONLY (Host/Guest Only): read/write. This field qualifies events to be counted based on
virtualization operating mode (guest or host). The following table defines how HG_ONLY
qualifies the counting of events:

• EVENT_SELECT[11:8] (Event Select): read/write. This field extends the EVENT_SELECT field
from 8 bits to 12 bits. See EVENT_SELECT[7:0] below.

63 42 41 40 39 36 35 32

Reserved HG_
ONLY Reserved EVENT_

SELECT[11:8]

31 24 23 22 21 20 19 18 17 16 15 8 7 0

CNT_MASK
I
N
V

E
N

I
N
T

E
DG
E

O
S

U
S
R

UNIT_MASK EVENT_SELECT[7:0]

Bits Mnemonic Description R/W
63:42 — Reserved
41:40 HG_ONLY Host/Guest Only R/W
39:36 — Reserved
35:32 EVENT_SELECT[11:8] Event select bits 11:8 R/W
31:24 CNT_MASK Counter Mask R/W
23 INV Invert Comparison R/W
22 EN Counter Enable R/W
21 — Reserved
20 INT Interrupt Enable R/W
19 — Reserved
18 EDGE Edge Detect R/W
17 OS Operating-System Mode R/W
16 USR User Mode R/W
15:8 UNIT_MASK Unit Mask R/W
7:0 EVENT_SELECT[7:0] Event select bits 7:0 R/W

Table 13-3. Host/Guest Only Bits
Host Mode

(Bit 41)
Guest Mode

(Bit 40) Events Counted

0 0 All events, irrespective of guest or host mode
0 1 Guest events, if EFER[SVME] = 1
1 0 Host events, if EFER[SVME] = 1
1 1 Guest and host events, if EFER[SVME] = 1

[AMD Public Use]

394 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

• CNT_MASK (Counter Mask): read/write. Used with INV bit to control the counting of multiple
events that occur within one clock cycle. The table below describes this:

• INV (Invert Comparison): read/write. Used with CNT_MASK field to control the counting of
multiple events within one clock cycle. See table above.

• EN (Counter Enable): read/write. Software sets this bit to 1 to enable the PerfEvtSeln register, and
counting in the corresponding PerfCtrn register. Clearing this bit to 0 disables the register pair.

• INT (Interrupt Enable): read/write. Software sets this bit to 1 to enable an interrupt to occur when
the performance counter overflows (see “Counter Overflow” on page 397 for additional
information). Clearing this bit to 0 disables the triggering of the interrupt.

• EDGE (Edge Detect): read/write. Software sets this bit to 1 to count the number of edge transitions
from the negated to asserted state. This feature is useful when coupled with event-duration
monitoring, as it can be used to calculate the average time spent in an event. Clearing this bit to 0
disables edge detection.

• OS (Operating-System Mode) and USR (User Mode): read/write. Software uses these bits to
control the privilege level at which event counting is performed according to Table 13-5.

• UNIT_MASK (Unit Mask): read/write. This field further specifies or qualifies the event specified
by the EVENT_SELECT field. Depending on implementation, it may be used to specify a sub-
event within the class specified by the EVENT_SELECT field or it may act as bit mask and be
used to specify a number of events within the class to be monitored simultaneously.

Table 13-4. Count Control Using CNT_MASK and INV
CNT_MASK INV Increment Value

00h –
Corresponding PerfCtr[n] register is incremented by the number of events occurring in a
clock cycle. If the number of events is equal to or greater than 32, the count register is
incremented by 32.

FFh:01h1
0 Corresponding PerfCtr[n] register is incremented by 1, if the number of events occurring in

a clock cycle is greater than or equal to the CNT_MASK value.

1 Corresponding PerfCtr[n]register is incremented by 1, if the number of events occurring in
a clock cycle is less than the CNT_MASK value.

Note 1: Maximum CNT_MASK value (in the range FFh:01h is implementation dependent. Consult applicable BIOS and Ker-
nel Developer’s Guide (BKDG) or Processor Programming Reference Manual (PPR) .

Table 13-5. Operating-System Mode and User Mode Bits
OS

(Bit 17)
USR

(Bit 16) Event Counting

0 0 No counting.
0 1 Only at CPL > 0.
1 0 Only at CPL = 0.
1 1 At all privilege levels.

[AMD Public Use]

Software Debug and Performance Resources 395

24593—Rev. 3.37—March 2021 AMD64 Technology

• EVENT_SELECT[7:0] (Event Select [7:0]): read/write. This field concatenated with
EVENT_SELECT[11:8] specifies the event or event duration to be counted by the corresponding
PerfCtr[n] register. The events that can be monitored are implementation dependent. In some
implementations, support for a specific EVENT_SELECT value may restricted to a subset of the
available performance counters. For more information, see the BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming Reference Manual (PPR) applicable to your product.

The core performance event-select registers can be read and written only by system software running
at CPL = 0 using the RDMSR and WRMSR instructions, respectively. Any attempt to read or write
these registers at CPL > 0 causes a general-protection exception to occur.

Northbridge (NB) Performance Event-Select Registers
The NB performance event-select registers (NB_PerfEvtSeln) are 64-bit registers used to specify the
events counted by the northbridge performance counters, and to control other aspects of their
operation. Each performance counter supported by the implementation has a corresponding event-
select register that controls its operation. Figure 13-8 below shows the format of the NB_PerfEvtSeln
register.

Figure 13-8. Northbridge Performance Event-Select Register (NB_PerfEvtSeln)

The northbridge performance event-select registers can be read and written only by system software
running at CPL = 0 using the RDMSR and WRMSR instructions, respectively. Any attempt to read or
write these registers at CPL > 0 causes a general-protection exception to occur.

63 36 35 32

Reserved EVENT_
SELECT[11:8]

31 23 22 21 20 19 16 15 8 7 0

Reserved E
N

I
N
T

Reserved UNIT_MASK EVENT_SELECT[7:0]

Bits Mnemonic Description R/W
63:36 — Reserved
35:32 EVENT_SELECT[11:8] Event select bits [11:8] R/W
31:23 — Reserved
22 EN Counter Enable R/W
21 — Reserved
20 INT Interrupt Enable R/W
19:16 — Reserved
15:8 UNIT_MASK Unit Mask R/W
7:0 EVENT_SELECT[7:0] Event select bits [7:0] R/W

[AMD Public Use]

396 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

For more information on the defined fields within the NB_PerfEvtSeln registers, see the BIOS and
Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual (PPR) applicable
to your product.

L2 Cache (L2I) Performance Event-Select Registers
The L2 cache performance event-select registers (L2I_PerfEvtSeln) are 64-bit registers used to specify
the events counted by the L2 cache performance counters, and to control other aspects of their
operation. Each performance counter supported by the implementation has a corresponding event-
select register that controls its operation. Figure 13-9 below shows the format of the L2I_PerfEvtSeln
register.

Figure 13-9. L2 Cache Performance Event-Select Register (L2I_PerfEvtSeln)

The L2 cache performance event-select registers can be read and written only by system software
running at CPL = 0 using the RDMSR and WRMSR instructions, respectively. Any attempt to read or
write these registers at CPL > 0 causes a general-protection exception to occur.

For more information on the defined fields within the L2I_PerfEvtSeln registers, see the BIOS and
Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual (PPR) applicable
to your product.

Instructions Retired Performance counter
This is a dedicated counter that is always counting instructions retired. It exists at MSR address
C000_00E9. It is enabled by setting a 1 to HWCR[30] and its support is indicated by CPUID
Fn8000_0008_EBX[1].

63 36 35 32

Reserved EVENT_
SELECT[11:8]

31 23 22 21 20 19 16 15 8 7 0

Reserved E
N

I
N
T

Reserved UNIT_MASK EVENT_SELECT[7:0]

Bits Mnemonic Description R/W
63:36 — Reserved
35:32 EVENT_SELECT[11:8] Event select bits [11:8] R/W
31:23 — Reserved
22 EN Counter Enable R/W
21 — Reserved
20 INT Interrupt Enable R/W
19:16 — Reserved
15:8 UNIT_MASK Unit Mask R/W
7:0 EVENT_SELECT[7:0] Event select bits [7:0] R/W

[AMD Public Use]

Software Debug and Performance Resources 397

24593—Rev. 3.37—March 2021 AMD64 Technology

13.2.2 Detecting Hardware Support for Performance Counters
Support for extended core, northbridge, and L2 cache performance counters is implementation-
dependent. Support on a given processor implementation can be verified using the CPUID instruction.

CPUID Fn8000_0001_ECX[PerfCtrExtCore] = 1 indicates support for the six architecturally defined
extended core performance counters and their associated event-select registers. CPUID
Fn8000_0001_ECX[PerfCtrExtNB] = 1 indicates support for the four architecturally defined
northbridge performance counter / event-select pairs and CPUID Fn8000_0001_ECX[PerfCtrExtL2I]
= 1 indicates support for the four architecturally defined L2 cache performance counter / event-select
pairs.

See Section 3.3, “Processor Feature Identification,” on page 70 for more information on using the
CPUID instruction.

A given processor may implement other performance measurement MSRs with similar capabilities
even if one of the optional architected facilities are not.

13.2.3 Using Performance Counters

13.2.3.1 Starting and Stopping
Performance measurement using the PerfCtrn, NB_PerfCtrn, and L2I_PerfCtrn registers is initiated by
setting the corresponding *PerfEvtSeln[EN] bit to 1. Counting is stopped by clearing the
*PerfEvtSeln[EN] bit. Software must initialize the remaining *PerfEvtSeln fields with the appropriate
setup information before or at the same time EN is set. Counting begins when the WRMSR instruction
that sets *PerfEvtSeln[EN] to 1 completes execution. Counting stops when the WRMSR instruction
that clears the EN bit completes execution.

13.2.3.2 Counter Overflow
Some processor implementations support an interrupt-on-overflow capability that allows an interrupt
to occur when one of the *PerfCtrn registers overflows. The source and type of interrupt is
implementation dependent. Some implementations cause a debug interrupt to occur, while others
make use of the local APIC to specify the interrupt vector and trigger the interrupt when an overflow
occurs. Software enables or disables the triggering of an interrupt on counter overflow by setting or
clearing the *PerfEvtSeln[INT] bit.

If system software makes use of the interrupt-on-overflow capability, an interrupt handler must be
provided that can record information relevant to the counter overflow. Before returning from the
interrupt handler, the performance counter can be re-initialized to its previous state so that another
interrupt occurs when the appropriate number of events are counted.

13.2.4 Time-Stamp Counter
The time-stamp counter (TSC) is used to count processor-clock cycles. The TSC is cleared to 0 after a
processor reset. After a reset, the TSC is incremented at a rate corresponding to the baseline frequency

[AMD Public Use]

398 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

of the processor (which may differ from actual processor frequency in low power modes of operation).
Each time the TSC is read, it returns a monotonically-larger value than the previous value read from
the TSC. When the TSC contains all ones, it wraps to zero. The TSC in a 1-GHz processor counts for
almost 600 years before it wraps. Figure 13-10 shows the format of the 64-bit time-stamp counter
(TSC).

Figure 13-10. Time-Stamp Counter (TSC)

The TSC is a model-specific register that can also be read using one of the special read time-stamp
counter instructions, RDTSC (Read Time-Stamp Counter) or RDTSCP (Read Time-Stamp Counter
and Processor ID). The RDTSC and RDTSCP instructions load the contents of the TSC into the EDX
register and the EAX register. The high 32 bits are loaded into EDX, and the low 32 bits are loaded into
EAX. The RDTSC and RDTSCP instructions can be executed at any privilege level and from any
processor mode. However, system software can disable the RDTSC or RDTSCP instructions for
programs that run at CPL > 0 by setting CR4[TSD] (the time-stamp disable bit) to 1. When
CR4[TSD] = 1 and CPL > 0, attempts to execute RDSTC or RDSTCP result in a general-protection
exception (#GP).

The TSC register can be read and written using the RDMSR and WRMSR instructions, respectively.
The programmer should use the CPUID instruction to determine whether these features are supported.
If EDX bit 4 (as returned by CPUID function 1) is set, then the processor supports TSC, the RDTSC
instruction and CR4[TSD]. If EDX bit 27 returned by CPUID function 8000_0001h is set, then the
processor supports the RDTSCP instruction.

The TSC register can be used by performance-analysis applications, along with the performance-
monitoring registers, to help determine the relative frequency of an event or its duration. Software can
also use the TSC to time software routines to help identify candidates for optimization. In general, the
TSC should not be used to take very short time measurements, because the resulting measurement is
not guaranteed to be identical each time it is made. The RDTSC instruction (unlike the RDTSCP
instruction) is not serializing, and can be executed out-of-order with respect to other instructions
around it. Even when bound by serializing instructions, the system environment at the time the
instruction is executed can cause additional cycles to be counted before the TSC value is loaded into
EDX:EAX.

When using the TSC to measure elapsed time, programmers must be aware that for some
implementations, the rate at which the TSC is incremented varies based on the processor power
management state (Pstate). For other implementations, the TSC increment rate is fixed and is not
subject to power-management related changes in processor frequency. CPUID Fn
8000_0007h_EDX[TscInvariant] = 1 indicates that the TSC increment rate is a constant.

63 0

TSC

[AMD Public Use]

Software Debug and Performance Resources 399

24593—Rev. 3.37—March 2021 AMD64 Technology

For more information on using the CPUID instruction to obtain processor implementation
information, see Section 3.3, “Processor Feature Identification,” on page 70.

13.3 Instruction-Based Sampling
Instruction-Based Sampling (IBS) is a hardware facility that can be used to gather specific metrics
related to processor instruction fetch and instruction execution activity. Data capture is performed by
hardware at a sampling interval specified by values programmed in IBS sampling control registers.
The IBS facility can be utilized by software to perform code profiling based on statistical sampling.

There are two independent data gathering components of IBS: instruction fetch sampling and
instruction execution sampling. Instruction fetch sampling provides information about instruction
address translation look-aside buffer (ITLB) and instruction cache behavior for a randomly selected
fetch block, under the control of the IBS Fetch Control Register. Instruction execution sampling
provides information about instruction execution behavior by tracking the execution of a single
operation (op) that is randomly selected, under the control of the IBS Execution Control Register.

When the programmed interval for fetch sampling has expired, the fetch sampling component of IBS
selects and tags the next fetch block. IBS hardware records specific performance information about the
tagged fetch. In a similar manner, when the programmed interval for op sampling has expired, the op
sampling component of IBS selects and tags the next op being dispatched for execution.

When data collection for the tagged fetch or op is complete, the hardware signals an interrupt. An
interrupt handler can then read the performance information that was captured for the fetch or op in
IBS MSRs, save it, and re-enable the hardware to take the next sample.

More information about the IBS facility and how software can use it to perform code profiling can be
found in the Software Optimization Guide for your specific product. The Software Optimization Guide
for AMD Family 15h Processors is order #47414.

Support for the IBS feature is indicated by the CPUID Fn 8000_0001h_ECX[IBS]. For more
information on using the CPUID instruction to obtain processor implementation information, see
Section 3.3, “Processor Feature Identification,” on page 70.

13.3.1 IBS Fetch Sampling
When a processor fetches an instruction, it is actually reading a contiguous range of instruction bytes
that contains the instruction from memory or from cache. This range of bytes loaded by the processor
in one operation is called a fetch block. The size and address-alignment characteristics of the fetch
block are implementation-dependent. In the following discussion, the term instruction fetch or simply
fetch refers to this operation of reading a fetch block.

Instruction fetch sampling records the following performance information for each tagged fetch:

• If the fetch completed or was aborted
• The number of core clock cycles spent on the fetch

[AMD Public Use]

400 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

• If the fetch hit or missed the instruction cache
• If the instruction fetch hit or missed the instruction TLBs
• The fetch address translation page size
• The linear and physical address associated with the fetch

IBS selects and tags a fetch at a programmable rate. When enabled by the IBS Fetch Control Register
(IbsFetchEn = 1 and IbsFetchVal = 0), an internal 20-bit fetch interval counter increments for every
successful completion of a fetch operation. When the value in bits 19:4 of the fetch counter equal the
value in the IbsFetchMaxCnt field of the IBS Fetch Control Register, the next fetch block is tagged for
data collection.

When the tagged fetch completes or is aborted, the status of the fetch is written to the IBS Fetch
Control Register and the associated linear address and physical address are written in the IBS Fetch
Linear Address Register and IBS Fetch Physical Address Register, respectively. The IbsFetchVal bit is
set in the IBS Fetch Control Register and an interrupt is generated as specified by the local APIC.

The interrupt service routine saves the performance information stored in the IBS fetch registers.
Software can then initiate another sample by resetting the IbsFetchVal bit in the IBS Fetch Control
Register. Hardware initializes bits 19:4 of the internal fetch interval counter with the value in the
IbsFetchCnt field. If the IbsFetchCtl[IbsRandEn] bit is set, bits 3:0 of the fetch interval counter are re-
initialized by hardware with a pseudo-random value; otherwise bits 3:0 are cleared.

13.3.2 IBS Fetch Sampling Registers
The IBS fetch sampling registers consist of the status and control register (IBS Fetch Control Register)
and the associated fetch address registers (IBS Fetch Linear Address Register and IBS Fetch Physical
Address Register). The IBS fetch sampling registers are accessed using the RDMSR and WRMSR
instructions.

IBS Fetch Control Register
63 58 57 56 55 54 53 52 51 50 49 48 47 32

Reserved, MBZ

Ib
sR

an
dE

n

Ib
sL

1T
lb

M
is

s

Ib
sL

1T
lb

Pg
Sz

Ib
sP

hy
A

dd
rV

al
id

Ib
sI

cM
is

s

Ib
sF

et
ch

C
om

p

Ib
sF

et
ch

Va
l

Ib
sF

et
ch

En

IbsFetchLat

31 16 15 0

IbsFetchCnt IbsFetchMaxCnt

[AMD Public Use]

Software Debug and Performance Resources 401

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-11. IBS Fetch Control Register(IbsFetchCtl)

The fields shown in Figure 13-11 are further described below:

• IbsRandEn (IBS Randomize Tagging Enable)—Bit 57, read/write. Software sets this bit to 1 to add
variability to the interval at which fetch operations are selected for tagging. When set, bits 3:0 of
the fetch interval counter are set to a pseudo-random value when the IbsFetchCtl register is written.
Clearing this bit causes bits 3:0 of the fetch interval counter to be reset to zero.

• IbsL1TlbMiss (IBS Fetch L1 TLB Miss)—Bit 55, read/write. This bit is set if the tagged fetch
missed in the L1 TLB.

• IbsL1TlbPgSz[1:0] (IBS Fetch L1 TLB Page Size)—Bits 54:53, read/write. This field indicates the
page size of the translation in the L1 TLB for the tagged fetch. This field is valid only if
IbsPhyAddrVal = 1. The table below defines the encoding of this two-bit field:

Some implementations might not support all page sizes. Note: The page size in the L1 TLB might
not match the page size in the page table.

• IbsPhyAddrValid (IBS Fetch Physical Address Valid)—Bit 52, read/write. This bit is set if the
physical address of the tagged fetch is valid. When this bit is set, the IbsL1TlbPgSz field and the
contents of the IBS Fetch Physical Address Register (see definition of this register below) are both
valid.

• IbsIcMiss (IBS Instruction Cache Miss)—Bit 51, read/write. This bit is set if the tagged fetch
missed in the instruction cache.

Bit(s) Field Mnemonic Descriptive Name R/W
63:58 — Reserved, MBZ
57 IbsRandEn IBS Randomize Tagging Enable R/W
56 — Reserved
55 IbsL1TlbMiss IBS Fetch L1 TLB Miss R/W
54:53 IbsL1TlbPgSz IBS Fetch L1 TLB Page Size R/W
52 IbsPhyAddrValid IBS Fetch Physical Address Valid R/W
51 IbsIcMiss IBS Instruction Cache Miss R/W
50 IbsFetchComp IBS Fetch Complete R/W
49 IbsFetchVal IBS Fetch Valid R/W
48 IbsFetchEn IBS Fetch Enable R/W
47:32 IbsFetchLat IBS Fetch Latency R/W
31:16 IbsFetchCnt IBS Fetch Count R/W
15:0 IbsFetchMaxCnt IBS Fetch Maximum Count R/W

Value Page Size
00b 4 Kbyte
01b 2 Mbyte
10b 1 Gbyte
11b Reserved

[AMD Public Use]

402 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

• IbsFetchComp (IBS Fetch Complete)—Bit 50, read/write. This bit is set if the tagged fetch
completes and data is available for use by the instruction decoder.

• IbsFetchVal (IBS Fetch Valid)—Bit 49, read/write. This bit is set if the tagged fetch either
completes or is aborted. When the bit is set, captured data for the tagged fetch is available and the
fetch interval counter stops. An interrupt is generated as specified by the local APIC. The interrupt
handler should read and save the captured performance data before clearing the bit.

• IbsFetchEn (IBS Fetch Enable)—Bit 48, read/write. Software sets this bit to enable fetch
sampling. Clearing this bit to 0 disables fetch sampling.

• IbsFetchLat[15:0] (IBS Fetch Latency)—Bits 47:32, read/write. This 16-bit field indicates the
number of core clock cycles from the initiation of the fetch to the delivery of the instruction bytes
to the core. If the fetch is aborted before it completes, this field returns the number of clock cycles
from the initiation of the fetch to its abortion.

• IbsFetchCnt[15:0] (IBS Fetch Count)—Bits 31:16, read/write. This 16-bit field returns the current
value of bits 19:4 of the fetch interval counter on a read. Bits 19:4 of the fetch interval counter are
set to this value on a write.

• IbsFetchMaxCnt[15:0] (IBS Fetch Maximum Count)—Bits 15:0, read/write. This 16-bit field
specifies the maximum count value of bits 19:4 of the fetch interval counter. When the value in bits
19:4 of the fetch counter equals the value in this field, the next fetch block is tagged for profiling.

IBS Fetch Linear Address Register

Figure 13-12. IBS Fetch Linear Address Register (IbsFetchLinAd)

This is a read-only register. Reading the IbsFetchLinAd MSR returns the 64-bit linear address of the
tagged fetch. This address may correspond to the first byte of an AMD64 instruction or the start of the
fetch block. The address is valid only if the IbsFetchVal bit is set. The address is in canonical form.

63 32

IbsFetchLinAd[63:32]

31 0

IbsFetchLinAd[31:0]

Bit(s) Field Mnemonic Descriptive Name R/W
63:0 IbsFetchLinAd IBS Fetch Linear Address RO

[AMD Public Use]

Software Debug and Performance Resources 403

24593—Rev. 3.37—March 2021 AMD64 Technology

IBS Fetch Physical Address Register

Figure 13-13. IBS Fetch Physical Address Register (IbsFetchPhysAd)

This is a read-only register. Reading the IbsFetchPhysAd MSR returns the 52-bit physical address of
the tagged fetch. This address may correspond to the first byte of an AMD64 instruction or the start of
the fetch block. The address is valid only if both the IbsPhyAddrValid and the IbsFetchVal bits of the
IbsFetchCtl register are set. Otherwise, the contents of this register are undefined. The indicated size of
52 bits is an architectural limit. Specific processors may implement fewer bits.

13.3.3 IBS Execution Sampling
Instruction execution performance is measured by tagging an op associated with an instruction. The
tagged op joins other ops in a queue waiting to be dispatched and executed. Instructions that decode to
more than one op may return different performance data depending upon which op associated with the
instruction is tagged. IBS returns the following performance information for each retired tagged op:

• Branch status for branch ops.
• For a load or store op:

- Whether the load or store missed in the data cache.
- Whether the load or store address hit or missed in the TLBs.
- The linear and physical address of the data operand associated with the load or store operation.
- Source information for cache, DRAM, MMIO, or I/O accesses.

IBS selects and tags an op at a programmable rate. When enabled by the IBS Execution Control
Register (IbsOpEn = 1 and IbsOpVal = 0), an internal 27-bit op interval counter increments either once
for every core clock cycle, if IbsOpCntCtl is cleared, or once for every dispatched op, if IbsOpCntCtl
is set.

When the value in bits 26:4 of the op counter equals the value in the IbsOpMaxCnt field of the IBS
Execution Control Register, an op is tagged in the next cycle. When the op is retired, the execution
status of the op is written to the IBS execution registers, and IbsOpVal bit of the IBS Execution Control

63 52 51 32

Reserved, MBZ IbsFetchPhysAd[51:32]

31 0

IbsFetchPhysAd[31:0]

Bit(s) Field Mnemonic Descriptive Name R/W
63:52 — Reserved, MBZ n/a
51:0 IbsFetchPhysAd IBS Fetch Physical Address RO

[AMD Public Use]

404 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Register is set. When this is complete, an interrupt is signalled to the local APIC. The local APIC
should be programmed to deliver this interrupt to the processor core.

The interrupt service routine must save the performance information stored in IBS execution registers.
Software can then initiate another sample by resetting the IbsOpVal bit in the IBS Execution Control
Register.

Aborted ops do not produce an IBS execution sample. If the tagged op aborts (i.e., does not retire),
hardware resets bits 26:7 of the op interval counter to zero, and bits 6:0 to a random value. The op
counter continues to increment and another op is selected when the value in bits 26:4 of the op interval
counter equals the value in the IbsOpMaxCnt field.

Randomization of sampling interval: A degree of randomization of the sampling interval is
necessary to ensure fairness in sampling, especially for loop-intensive code. For execution sampling
this must be done by software. This is accomplished when writing the IbsOpCtl register to clear the
IbsOpVal bit and initiate a new sampling interval. At that time software can provide a small random
number (4-6 bits) in the IbsOpCurCnt field to offset the starting count, thereby randomizing the point
at which the count reaches the IbsOpMaxCnt value and triggers a sample.

13.3.4 IBS Execution Sampling Registers
The IBS execution sampling registers consist of the control register (IBS Execution Control Register),
the linear address register (IBS Op Linear Address Register), and three execution data registers (IBS
Op Data 1–3). The IBS execution sampling registers are accessed using the RDMSR and WRMSR
instructions.

IBS Execution Control Register (IbsOpCtl)
63 59 58 32

Reserved, MBZ IbsOpCurCnt[26:0]

31 27 26 20 19 18 17 16 15 0

Reserved, MBZ IbsOpMaxCnt[26:20]

Ib
sO

pC
nt

C
tl

Ib
sO

pV
al

Ib
sO

pE
n

R
es

er
ve

d

IbsOpMaxCnt[19:4]

[AMD Public Use]

Software Debug and Performance Resources 405

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-14. IBS Execution Control Register (IbsOpCtl)

The fields shown in Figure 13-14 are further described below:

• IbsOpCurCnt[26:0] (IBS Op Current Count)—Bits 58:32, read/write. This field returns the current
value of the op counter, and provides the starting value of the counter when software writes this
register to clear the IbsOpVal bit and start another sampling interval.

• IbsOpMaxCnt[26:20] (IBS Op Maximum Count[26:20])—Bits 26:20, read/write. This field is
used to specify the most significant 7 bits of the IbsOpMaxCnt.

• IbsOpCntCtl (IBS Op Counter Control)—Bit 19, read/write. This bit controls op tagging. When
this bit is zero, IBS counts core clock cycles in order to select an op for tagging. When this bit is
one, IBS counts dispatched ops in order to select an op for tagging.

• IbsOpVal (IBS Op Sample Valid)—Bit 18, read/write. This bit is set when a tagged op retires and
indicates that new instruction execution data is available. The op counter stops counting. An
interrupt is generated as specified by the local APIC. The software interrupt handler captures the
performance data before clearing the bit to enable the hardware to take another sample.

• IbsOpEn (IBS Op Sample Enable)—Bit read/write. Software sets this bit to enable IBS execution
sampling. Clearing this bit disables IBS execution sampling.

• IbsOpMaxCnt[19:4] (IBS Op Maximum Count[19:4]): read/write. This field specifies the
maximum count value for bits 19:4 of the op interval counter. When the value in bits 26:4 of the op
interval counter equal the value specified by the concatenation of the IbsOpMaxCnt[26:20] field
with this field, the next op is tagged for profiling.

Bit(s) Field Mnemonic Descriptive Name R/W
63:59 — Reserved, MBZ
58:32 IbsOpCurCnt[26:0] IBS Op Current Count, bits 26:0 R/W
31:27 — Reserved, MBZ
26:20 IbsOpMaxCnt[26:20] IBS Op Maximum Count, bits 26:20 R/W
19 IbsOpCntCtl IBS Op Counter Control R/W
18 IbsOpVal IBS Op Sample Valid R/W
17 IbsOpEn IBS Op Sampling Enable R/W
16 — Reserved, MBZ
15:0 IbsOpMaxCnt[19:4] IBS Op Maximum Count, bits 19:4 R/W

[AMD Public Use]

406 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

IBS Op Linear Address Register (IbsOpRip)

Figure 13-15. IBS Op Linear Address Register (IbsOpRip)

IbsOpRip[63:0] (IBS Op Linear Address): read/write. Specifies the linear address for the instruction
from which the tagged op was issued. The address is valid only if the IbsOpCtl[IbsOpVal] bit is set and
the IbsOpData1[IbsRipInvalid] bit is cleared. The address is in canonical form.

63 32

IbsOpRip[63:31]

31 0

IbsOpRip[31:0]

Bit(s) Field
Mnemonic

Descriptive Name R/
W

63:0 IbsOpRip IBS Op Linear Address R/W

[AMD Public Use]

Software Debug and Performance Resources 407

24593—Rev. 3.37—March 2021 AMD64 Technology

IBS Op Data 1 Register (IbsOpData1)
The IBS Op Data 1 Register provides core cycle counts for tagged ops and performance data for
tagged ops which perform a branch.

Figure 13-16. IBS Op Data 1 Register (IbsOpData1)

The fields shown in Figure 13-16 are further described below:

• IbsRipInvalid (IbsOpRip Register Invalid)—Bit 38, read/write. If this bit is set, the contents of the
IbsOpRip register are not valid.

• IbsOpBrnRet (IBS Op Branch Retired)—Bit 37, read/write. This bit is set if the tagged op
performs a branch that retired.

• IbsOpBrnMisp (IBS Op Branch Mispredicted)—Bit 36, read/write. This bit is set if the tagged op
performs a retired mispredicted branch.

• IbsOpBrnTaken (IBS Op Branch Taken)—Bit 35, read/write. This bit is set if the tagged op
performs a retired taken branch.

• IbsOpReturn (IBS Op RET)—Bit 34, read/write. This bit is set if the tagged op performs a retired
subroutine return (RET).

63 39 38 37 36 35 34 33 32

Reserved

Ib
sR

ip
In

va
lid

Ib
sO

pB
rn

R
et

Ib
sO

pB
rn

M
is

p

Ib
sO

pB
rn

Ta
ke

n

Ib
sO

pR
et

ur
n

R
es

er
ve

d

31 0

Reserved

Bit(s) Field Mnemonic Descriptive Name R/W
63:39 — Reserved
38 IbsRipInvalid IbsOpRip Register Invalid R/W
37 IbsOpBrnRet IBS Op Branch Retired R/W
36 IbsOpBrnMisp IBS Op Branch Mispredicted R/W
35 IbsOpBrnTaken IBS Op Branch Taken R/W
34 IbsOpReturn IBS Op RET R/W
33:0 — Reserved

[AMD Public Use]

408 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

IBS Op Data 2 Register (IbsOpData2)
The IBS Op Data 2 Register captures northbridge-related performance data. The information captured
is implementation-dependent. See the BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual (PPR) applicable to your product for details.

[AMD Public Use]

Software Debug and Performance Resources 409

24593—Rev. 3.37—March 2021 AMD64 Technology

IBS Op Data 3 Register (IbsOpData3)
Data Cache (first-level cache) performance data is captured in IBS Op Data 3 Register. If a load or
store operation crosses a 128-bit boundary, the data returned in this register is the data for the access to
the data below the 128-bit boundary.

Figure 13-17. IBS Op Data 3 Register (IbsOpData3)

The fields shown in Figure 13-17 are further described below:

63 48 47 32

Reserved IbsDcMissLat[15:0]

31 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
Ib

sD
cP

hy
A

dd
rV

al
id

Ib
sD

cL
in

A
dd

rV
al

id

R
es

er
ve

d

Ib
sD

cL
oc

ke
dO

p

Ib
sD

cU
cM

em
A

cc

Ib
sD

cW
cM

em
A

cc

Reserved

Ib
sD

cM
is

A
cc

Ib
sD

cM
is

s

R
es

er
ve

d

Ib
sD

cL
1t

lb
H

it1
G

Ib
sD

cL
1t

lb
H

it2
M

R
es

er
ve

d

Ib
sD

cL
1t

lb
M

is
s

Ib
sS

tO
p

Ib
sL

dO
p

Bit(s) Field Mnemonic Descriptive Name R/W
63:48 — Reserved
47:32 IbsDcMissLat[15:0] IBS Data Cache Miss Latency R/W
31:19 — Reserved
18 IbsDcPhyAddrValid IBS Data Cache Physical Address Valid R/W
17 IbsDcLinAddrValid IBS Data Cache Linear Address Valid R/W
16 — Reserved
15 IbsDcLockedOp IBS Data Cache Locked Op R/W
14 IbsDcUcMemAcc IBS Data Cache UC Memory Access R/W
13 IbsDcWcMemAcc IBS Data Cache WC Memory Access R/W
12:9 — Reserved
8 IbsDcMisAcc IBS Data Cache Misaligned Access Penalty R/W
7 IbsDcMiss IBS Data Cache Miss R/W
6 — Reserved
5 IbsDcL1tlbHit1G IBS Data Cache L1 TLB Hit 1-Gbyte Page R/W
4 IbsDcL1tlbHit2M IBS Data Cache L1 TLB Hit 2-Mbyte Page R/W
3 — Reserved
2 IbsDcL1tlbMiss IBS Data Cache L1 TLB Miss R/W
1 IbsStOp IBS Store Operation R/W
0 IbsLdOp IBS Load Operation R/W

[AMD Public Use]

410 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

• IbsDcMissLat[15:0] (IBS Data Cache Miss Latency)—Bits 47:32, read/write. This field indicates
the number of core clock cycles from when a miss is detected in the data cache to when the data is
delivered to the core. The value is not valid for data cache store operations.

• IbsDcPhyAddrValid (IBS Data Cache Physical Address Valid)—Bit 18, read/write. This bit is set
if the physical address in the IBS DC Physical Address Register is valid for a load or store
operation.

• IbsDcLinAddrValid (IBS Data Cache Linear Address Valid)—Bit 17, read/write. This bit is set if
the linear address in the IBS DC Linear Address Register is valid for a load or store operation.

• IbsDcLockedOp (IBS Data Cache Locked Op)—Bit 15, read/write. This bit is set if the tagged
load or store operation was a locked operation.

• IbsDcUcMemAcc (IBS Data Cache UC Memory Access)—Bit 14, read/write. This bit is set if the
tagged load or store operation accessed uncacheable memory.

• IbsDcWcMemAcc (IBS Data Cache WC Memory Access)—Bit 13, read/write. This bit is set if the
tagged load or store operation accessed write combining memory.

• IbsDcMisAcc (IBS Data Cache Misaligned Access Penalty)—Bit 8, read/write. This bit is set if a
tagged load or store operation incurred a performance penalty due to a misaligned access.

• IbsDcMiss (IBS Data Cache Miss)—Bit 7, read/write. This bit is set if the cache line used by the
tagged load or store operation was not present in the data cache.

• IbsDcL1tlbHit1G (IBS Data Cache L1 TLB Hit 1-Gbyte Page)—Bit 5, read/write. This bit is set if
the physical address for the tagged load or store operation was present in a 1-Gbyte page table
entry in the data cache L1 TLB.

• IbsDcL1tlbHit2M (IBS Data Cache L1 TLB Hit 2-Mbyte Page)—Bit 4, read/write. This bit is set if
the physical address for the tagged load or store operation was present in a 2-Mbyte page table
entry in the data cache L1 TLB.

• IbsDcL1tlbMiss (IBS Data Cache L1 TLB Miss)—Bit 2, read/write. This bit is set if the physical
address for the tagged load or store operation was not present in the data cache L1 TLB.

• IbsStOp (IBS Store Op)—Bit 1, read/write. This bit is set if the tagged op was a store.
• IbsLdOp (IBS Load Op)—Bit 0, read/write. This bit is set if the tagged op was a load.

IBS Data Cache Linear Address Register (IbsDcLinAd)
63 32

IbsDcLinAd[63:32]

[AMD Public Use]

Software Debug and Performance Resources 411

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-18. IBS Data Cache Linear Address Register (IbsDcLinAd)

IbsDcLinAd[63:0] (IBS Data Cache Linear Address): read/write. Specifies the linear address of the
tagged op's memory operand. The address is valid only if IbsOpData3[IbsDcLinAdVal] is set. The
address is in canonical form.

IBS Data Cache Physical Address Register (IbsDcPhysAd)

Figure 13-19. IBS Data Cache Physical Address Register (IbsDcPhysAd)

IbsDcPhysAd (IBS Data Cache Physical Address): read/write. Specifies the physical address of the
tagged op's memory operand. The address is valid only if IbsOpData3[IbsDcPhyAdVal] is set.

IBS Branch Target Address Register (IbsBrTarget)

31 0

IbsDcLinAd[31:0]

Bit(s) Field Mnemonic Descriptive Name R/W
63:0 IbsDcLinAd IBS Data Cache Linear Address R/W

63 52 51 32

Reserved, MBZ IbsDcPhysAd[51:32]

31 0

IbsDcPhysAd[31:0]

Bit(s) Field Mnemonic Descriptive Name R/W
63:52 — Reserved, MBZ
51:0 IbsDcPhysAd IBS Data Cache Physical Address R/W

63 32

IbsBrTarget[63:32]

[AMD Public Use]

412 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 13-20. IBS Branch Target Address Register (IbsBrTarget)

IbsBrTarget (IBS Branch Target): read/write. Specifies the 64-bit linear address for the branch target.
The address is in canonical form. The branch target address is valid if it is non-zero. For a conditional
branch not taken, the value supplied in this register is the fall-through address.

13.4 Lightweight Profiling
Lightweight Profiling (LWP) is an AMD64 extension that allows user mode processes to gather
performance data about themselves with very low overhead. LWP is supported in both long mode and
legacy mode. Modules such as managed runtime environments and dynamic optimizers can use LWP
to monitor the running program with high accuracy and high resolution. They can quickly discover
performance problems and opportunities and immediately act on this information.

LWP allows a program to gather performance data and examine it either by polling or by taking an
occasional interrupt. It introduces minimal additional state to the CPU and the process. LWP differs
from the existing performance counters and from Instruction Based Sampling (IBS) because it collects
large quantities of data before taking an interrupt. This substantially reduces the overhead of using
performance feedback. An application can avoid the need to enable and process interrupts by polling
the LWP data.

A program can control LWP data collection entirely in user mode. It can start, stop, and reconfigure
profiling without calling the kernel.

LWP runs within the context of a thread, so it can be used by multiple processes in a system at the same
time without interference. This also means that if one thread is using LWP and another is not, the latter
thread incurs no profiling overhead.

LWP can be programmed to run in one of two modes: synchronized mode or continuous mode. In
synchronized mode the recording of events stops when the buffer set up to hold event records becomes
full. In continuous mode, the storing of events wraps in the buffer overwriting older records.

13.4.1 Overview
When enabled, LWP hardware monitors one or more events during the execution of user-mode code
and periodically inserts event records into a ring buffer in the address space of the running process. If
performance timestamping is supported and enabled, each event record captured is timestamped using

31 0

IbsBrTarget[31:0]

Bit(s) Field Mnemonic Descriptive Name R/W
63:0 IbsBrTarget IBS branch target linear address R/W

[AMD Public Use]

Software Debug and Performance Resources 413

24593—Rev. 3.37—March 2021 AMD64 Technology

the value read from the performance timestamp counter (PTSC). Timestamping is enabled by setting
the Flags.PTSC bit of the Lightweight Profiling Control Block (LWPCB). When the ring buffer is
filled beyond a user-specified threshold, the hardware can cause an interrupt which the operating
system (OS) uses to signal a process to empty the ring buffer. With proper OS support, the interrupt
can even be delivered to a separate process or thread.

LWP only counts instructions that retire in user mode (CPL = 3). Instructions that change to CPL 3
from some other level are not counted, since the instruction address is not an address in user mode
space. LWP does not count hardware events while the processor is in system management mode
(SMM) and while entering or leaving SMM.

Once LWP is enabled, each user-mode thread uses the LLWPCB and SLWPCB instructions to control
LWP operation. These instructions refer to a data structure in application memory called the
Lightweight Profiling Control Block, or LWPCB, to specify the profiling parameters and to interact
with the LWP hardware. The LWPCB in turn points to a buffer in memory in which LWP stores event
records.

Each thread in a multi-threaded process must configure LWP separately. A thread has its own ring
buffer and counters which are context switched with the rest of the thread state. However, a single
monitor thread could collect and process LWP data from multiple other threads.

LWP may be set up to run in one of two modes:

• Synchronized Mode
LWP runs in synchronized mode when it is started with LWPCB.Flags.CONT = 0. In this mode,
LWP will not advance the ring buffer pointer when the event ring buffer is full. It simply
increments LWPCB.MissedEvents to count the number of missed event records. In synchronized
mode, a thread can remove event records from the ring buffer by advancing the ring buffer tail
pointer without stopping LWP in the executing thread. If the buffer had been full, event records
will again be written and the ring buffer pointer will be advanced.

• Continuous Mode
LWP runs in continuous mode when it is started with LWPCB.Flags.CONT = 1. In this mode,
LWP will store an event record even when the event ring buffer is full, wrapping around in the ring
buffer and overwriting the oldest event record. In continuous mode, LWPCB.MissedEvents counts
the number of times that such wrapping has occurred. The only reliable way to read events from
the ring buffer when LWP is in continuous mode is to stop LWP in the running thread before
accessing the LWPCB and the ring buffer contents. Support for continuous mode is indicated by
CPUID Fn8000_001C_EAX[LwpCont].

During profiling, the LWP hardware monitors and reports on one or more types of events. Following
are the steps in this process:

[AMD Public Use]

414 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

1. Count—Each time an instruction is retired, LWP decrements its internal event counters for all of
the events associated with the instruction. An instruction can cause zero, one, or multiple events.
For instance, an indirect jump through a pointer in memory counts as an instruction retired, a
branch retired, and may also cause up to two DCache misses (or more, if there is a TLB miss) and
up to two ICache misses.
- Some events may have filters or conditions on them that regulate counting. For instance, the

application may configure LWP so that only cache miss events with latency greater than a
specified minimum are eligible to be counted.

2. Gather—When an event counter becomes negative, the event should be reported. LWP gathers
an event record and, if enabled, samples the value in the PTSC to be included in the record as the
TimeStamp value. The event’s counter may continue to count below zero until the record is
written to the event ring buffer.
For most events, such as instructions retired, LWP gathers an event record describing the
instruction that caused the counter to become negative. However, it is valid for LWP to gather
event record data for the next instruction that causes the event, or to take other measures to capture
a record. Some of these options are described with the individual events.
- An implementation can choose to gather event information on one or many events at any one

time. If multiple event counters become negative, an advanced LWP implementation might
gather one event record per event and write them sequentially. A basic LWP implementation
may choose one of the eligible events. Other events continue counting but wait until the first
event record is written. LWP picks the next eligible instructions for the waiting events. This
situation should be extremely uncommon if software chooses large event interval values.

- LWP may discard an event occurrence. For instance, if the LWPCB or the event ring buffer
needs to be paged in from disk, LWP might choose not to preserve the pending event data. If an
event is discarded, LWP gathers an event record for the next instruction to cause the event.

- Similarly, if LWP needs to replay an instruction to gather a complete event record, the replay
may abort instead of retiring. The event counter continues counting below zero and LWP
gathers an event record for the next instruction to cause the event.

3. Store—When a complete event record is gathered, LWP stores it into the event ring buffer in the
process’ address space and advances the ring buffer head pointer.
- LWP checks to see if the ring buffer is full, i.e., if advancing the ring buffer head pointer would

make it equal to the tail pointer. If the buffer is full, LWP increments the 64-bit counter
LWPCB.MissedEvents. If LWP is running in synchronized mode, it does not advance the head
pointer. If LWP is running in continuous mode, it always advances the head pointer and
LWPCB.MissedEvents counts the number of times that the buffer wrapped.

- If more than one event record reaches the Store stage simultaneously, only one need be stored.
Though LWP might store all such event records, it may delay storing some event records or it
may discard the information and proceed to choose the next eligible instruction for the
discarded event type(s). This behavior is implementation dependent.

- The store need not complete synchronously with the instruction retiring. In other words, if
LWP buffers the event record contents, the Store stage (and subsequent stages) may complete

[AMD Public Use]

Software Debug and Performance Resources 415

24593—Rev. 3.37—March 2021 AMD64 Technology

some number of cycles after the tagged instruction retires. The data about the event and the
instruction are precise, but the Report and Reset steps (below) may complete later.

4. Report—If LWP threshold interrupts are enabled and the space used in the event ring buffer
exceeds a user-defined threshold, LWP initiates an interrupt. The OS can use this to signal the
process to empty the ring buffer. Note that the interrupt may occur significantly later than the
event that caused the threshold to be reached.

5. Reset—For each event that was stored, the counter is reset to its programmed interval. If
requested by the application, LWP applies randomization to the low order bits of the interval.
Counting for that event continues. Reset happens if the ring buffer head pointer was advanced or
if the missed event counter was incremented. If the event counter went below -1, indicating that
additional events occurred between the selected event and the time it was reported, that overrun
value reduces the reset value so as to preserve the statistical distribution of events.
For all events except the LWPVAL instruction, the hardware may impose a minimum on the reset
value of an event counter. This prevents the system from spending too much time storing samples
rather than making forward progress on the application. Any minimum imposed by the hardware
can be detected by examining the EventIntervaln fields in the LWPCB after enabling LWP.

An application should periodically remove event records from the ring buffer and advance the tail
pointer. (If the application does not process the event records quickly enough or often enough, the
LWP hardware will detect that the ring buffer is full and will miss events.) There are two ways to
process the gathered events: interrupts or polling.

The application can wait until a threshold interrupt occurs to process the event records in the ring
buffer. This requires OS or driver support. (As a consequence, interrupts can only be enabled if a
kernel mode routine allows it; see “LWP_CFG — LWP Configuration MSR” on page 429) One usage
model is to associate the LWP interrupt with a semaphore or mutex. When the interrupt occurs, the OS
or driver signals the associated object. A thread waiting on the object wakes up and empties the ring
buffer. Other models are possible, of course.

Alternatively, the application can have a thread that periodically polls the ring buffer. The polling
thread need not be part of the process that is using LWP. It can be in a separate process that shares the
memory containing the LWP control block and ring buffer.

Access to the ring buffer uses a lockless protocol between the LWP hardware and the application. The
hardware owns the head pointer and the area in the ring buffer from the head pointer up to (but not
including) the tail pointer. The application must not modify the head pointer nor rely on any data in the
area of the ring buffer owned by the hardware. If the application has a stale value for the head pointer,
it may miss an existing event record but it will never read invalid data. When the application is done
emptying the ring buffer, it should refresh its copy of the head pointer to see if the LWP hardware has
added any new event records.

Similarly, the application owns the tail pointer and the area in the ring buffer from the tail pointer up to
(but not including) the head pointer. The hardware will never modify the tail pointer or overwrite the
data in that region of the ring buffer. If the hardware has a stale value for the tail pointer, it may

[AMD Public Use]

416 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

consider that the ring buffer is full or at its threshold, but it will never overwrite valid data. Instead, it
refreshes its copy of the tail pointer and rechecks to see if the full or threshold condition still applies.

When LWP is in continuous mode, this lockless protocol does not work, since the LWP hardware may
overwrite the event records in the ring buffer when it advances the head pointer past the tail pointer.
Because of this, the application must stop LWP before removing event records from the ring buffer.
This prevents the hardware from wrapping through the ring buffer asynchronously from the
application’s attempt to remove data from it.

To use continuous mode properly, the application should set LWPCB.MissedEvents to 0 and set the
head and tail pointers to the start of the ring buffer before starting LWP. To empty the ring buffer, the
application should stop LWP. If LWPCB.MissedEvents is 0, the buffer did not wrap and there are event
records starting at the tail pointer and continuing up to (but not including) the head pointer. If
MissedEvents is not 0, the buffer wrapped and there are event records starting with the oldest one
pointed to by the head pointer and continuing (possibly wrapping) all the way around to the newest one
just before the head pointer.

13.4.2 Events and Event Records
When a monitored event overflows its event counter, LWP puts an event record into the LWP event
ring buffer. If event timestamping is supported and enabled, each event record will include a
TimeStamp value. This value is a copy of the contents of Performance Timestamp Counter (PTSC)
zero-extended if necessary to 64 bits.

The PTSC is a free-running counter that increments at a constant rate of 100MHz and is synchronized
across all cores on a node to within +/-1. This counter starts when the processor is initialized and
cannot be reset or modified. It is at least 40 bits wide. Privileged code can read the PTSC value via the
RDMSR instruction. The size of the counter is indicated by the 2-bit field CPUID
Fn8000_0008_ECX[PerfTscSize]. A value of 00b means that the PTSC is 40 bits wide; 01b means 48
bits, 10b means 56 bits, and 11b indicates a full 64 bits.

The PTSC can be correlated to the architectural TSC that runs at the P0 frequency. An application can
read the TSC and PTSC, wait a 1000 clock periods or so, then read them again. The ratio of the
differences is the scaling factor for the counters.

The event record size is fixed but may vary based on implementation. The event record size for a given
processor is discovered by executing CPUID Fn8000_001C and extracting the value of the
LwpEventSize field. (See “Detecting LWP Capabilities” on page 426). Current implementations fix
the record size at 32 bytes and this size is used in the record format specifications below.

Reserved fields and fields that are not defined for a particular event are set to zero when LWP writes an
event record.

[AMD Public Use]

Software Debug and Performance Resources 417

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-21. Generic Event Record

Table 13-6 below lists the event identifiers for the events defined in version 1 of LWP. They are
described in detail in the following sections.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

(Event-specific data) Flags CoreId EventId 0

InstructionAddress 8

(Event-specific address or data) 16

TimeStamp 24

Bytes Field Description

0 EventId Event identifier specifying the event record type. Valid identifiers are 1 to
255. 0 is an invalid identifier.

1 CoreId

CPU core identifier value from COREID field of LWP_CFG (see
“LWP_CFG — LWP Configuration MSR” on page 429). For multicore
systems, this typically identifies the core on which LWP is running. This
allows software to aggregate event records from multiple threads into a
single data structure without losing CPU information. It also allows
software to detect when a thread has migrated from one core to another.

3–2 Flags Event-specific flags.
7–4 Event-specific data.

15–8 InstructionAddress

The Effective Address of the instruction that triggered this event record.
This is the value before adding in the CS base address. If the base is non-
zero, software must track it. (Modern operating systems use a CS base of
zero, and CS is unused in long mode.)

23–16 Event-specific address or other data.

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

Table 13-6. EventId Values
EventId Description

0 Reserved – invalid event
1 Programmed value sample
2 Instructions retired
3 Branches retired
4 DCache misses

[AMD Public Use]

418 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

13.4.2.1 Programmed Value Sample
LWP decrements the event counter each time the program executes the LWPVAL instruction (see
“LWPVAL — Insert Value Sample in LWP Ring Buffer” on page 433). When the counter becomes
negative, it stores an event record with an EventId of 1. The data in the event record come from the
operands to the instruction as detailed in the instruction description.

Figure 13-22. Programmed Value Sample Event Record

13.4.2.2 Instructions Retired
LWP decrements the event counter each time an instruction retires. When the counter becomes
negative, it stores a generic event record with an EventId of 2.

Instructions are counted if they execute entirely in user mode (CPL = 3). Instructions that change to
CPL 3 from some other level are not counted, since the instruction address is not an address in user
mode space. All user mode instructions are counted, including LWPVAL and LWPINS.

5 CPU clocks not halted
6 CPU reference clocks not halted

255 Programmed event

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Data1 Flags CoreId EventId=1 0

InstructionAddress 8

Data2 16

TimeStamp 24

Bytes Field Description
0 EventId Event identifier = 1
1 CoreId CPU core identifier from LWP_CFG
3–2 Flags Immediate value (bottom 16 bits)
7–4 Data1 Reg/mem value
15–8 InstructionAddress Instruction address of LWPVAL instruction
23–16 Data2 Reg value (zero extended if running in legacy mode)

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

Table 13-6. EventId Values (continued)
EventId Description

[AMD Public Use]

Software Debug and Performance Resources 419

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-23. Instructions Retired Event Record

13.4.2.3 Branches Retired
LWP decrements the event counter each time a transfer of control retires, regardless of whether or not
it is taken. When the counter becomes negative, it stores an event record with an EventId of 3.

Control transfer instructions that are counted are:

• JMP (near), Jcc, JCXZ, JEXCZ, and JRCXZ
• LOOP, LOOPE, and LOOPNE
• CALL (near) and RET (near)

LWP does not count JMP (far), CALL (far), RET (far), traps, or interrupts (whether synchronous or
asynchronous), nor does it count operations that switch to or from ring 3, SMM, or SVM, such as
SYSCALL, SYSENTER, SYSEXIT, SYSRET, VMMCALL, INT, or INTO.

Some implementations of the AMD64 architecture perform an optimization called “fusing” when a
compare operation (or other operation that sets the condition codes) is followed immediately by a
conditional branch. The processor fuses these into a single operation internally before they are
executed. While this is invisible to the programmer, the address of the actual branch is not available for
LWP to report when the (fused) instruction retires. In this case, LWP sets the FUS bit in the event
record and reports the address of the operation that set the condition codes. If FUS is set, software can
find the address of the actual branch by decoding the instruction at the reported InstructionAddress and

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Reserved Reserved CoreId EventId=2 0

InstructionAddress 8

Reserved 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 2
1 7:0 CoreId CPU identifier from LWP_CFG
7–2 Reserved
15–8 InstructionAddress Instruction address
23–16 Reserved

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

[AMD Public Use]

420 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

adding its length to that address. (Note that fused instructions do count as 2 instructions for the
Instructions Retired event, since there were 2 x86 instructions originally.)

Figure 13-24. Branch Retired Event Record

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Reserved
T
K
N

P
R
D

P
R
V

F
U
S

Reserved CoreId EventId=3 0

InstructionAddress 8

TargetAddress 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 3
1 7:0 CoreId CPU core identifier from LWP_CFG
3–2 11:0 Reserved

3 4 FUS

1—Fused operation. InstructionAddress points to a compare
operation (or other operation that sets the condition codes)
immediately preceding the branch.

0—InstructionAddress points to the branch instruction.

3 5 PRV

1—PRD bit is valid
0—Prediction information is not available
Some implementations of LWP may be unable to capture branch
prediction information on some or all branches.

3 6 PRD

1—Branch was predicted correctly
0—Mispredicted
If PRV = 0, the value of PRD is unpredictable and should be
ignored.
For unconditional branches, PRD=1 if PRV=1.

3 7 TKN
1—Branch was taken
0—Branch not taken
Always 1 for unconditional branches.

7–4 Reserved
15–8 InstructionAddress Instruction address

23–16 TargetAddress

Address of instruction executed after branch. This is the target if
the branch was taken and the fall-through address if the branch
was a not-taken conditional branch. TargetAddress is the Effective
Address value before adding in the CS base address.

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

[AMD Public Use]

Software Debug and Performance Resources 421

24593—Rev. 3.37—March 2021 AMD64 Technology

13.4.2.4 DCache Misses
LWP decrements the event counter each time a load from memory causes a DCache miss whose
latency exceeds the LwpCacheLatency threshold and/or whose data come from a level of the cache or
memory hierarchy that is selected for counting. When the counter becomes negative, LWP stores an
event record with an EventId of 4.

A misaligned access that causes two misses on a single load decrements the event counter by 1 and, if
it reports an event, the data are for the lowest address that missed. LWP only counts loads directly
caused by the instruction. It does not count cache misses that are indirectly due to TLB walks, LDT or
GDT references, TLB misses, etc. Cache misses caused by LWP itself accessing the LWPCB or the
event ring buffer are not counted.

Measuring Latency
The x86 architecture allows multiple loads to be outstanding simultaneously. An implementation of
LWP might not have a full latency counter for every load that is waiting for a cache miss to be
resolved. Therefore, an implementation may apply any of the following simplifications. Software
using LWP should be prepared for this.

• The implementation may round the latency to a multiple of 2^j. This is a small power of 2, and the
value of j must be 1 to 4. For example, in the rest of this section, assume that j = 4, so 2^j = 16. The
low 4 bits of latency reported in the event record will be 0. The actual latency counter is
incremented by 16 every 16 cycles of waiting. The value of j is returned as LwpLatencyRnd (see
“Detecting LWP Capabilities” on page 426).

• The implementation may do an approximation when starting to count latency. If counting is in
increments of 16, the 16 cycles need not start when the load begins to wait. The implementation
may bump the latency value from 0 to 16 any time during the first 16 cycles of waiting.

• The implementation may cap total latency to 2^n-16 (where n >= 10). The latency counter is thus a
saturating counter that stops counting when it reaches its maximum value. For example, if n = 10,
the latency value will count from 0 to 1008 in steps of 16 and then stop at 1008. (If n = 10, each
counter is only 6 bits wide.) The value of n is returned as LwpLatencyMax (see “Detecting LWP
Capabilities” on page 426).

Note that the latency threshold used to filter events is a multiple of 16. This value is used in the
comparison that decides whether a cache miss event is eligible to be counted.

Reporting the DCache Miss Data Address
The event record for a DCache miss reports the linear address of the data (after adding in the segment
base address, if any). The way an implementation records the linear address affects the exact event that
is reported and the amount of time it takes to report a cache miss event. The implementation may
report the event immediately, report the next eligible event once the counter becomes negative, or
replay the instruction.

[AMD Public Use]

422 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 13-25. DCache Miss Event Record

13.4.2.5 CPU Clocks not Halted
LWP decrements the event counter each clock cycle that the CPU is not in a halted state (due to
STPCLK or a HLT instruction). When the counter becomes negative, it stores a generic event record
with an EventId of 5. This counter varies in real-time frequency as the core clock frequency changes.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Latency SRC
D
A
V

Reserved CoreId EventId=4 0

InstructionAddress 8

DataAddress 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 4
1 7:0 CoreId CPU identifier from LWP_CFG
2–3 11:0 Reserved

3 4 DAV
1—DataAddress is valid
0—Address is unavailable

3 5:7 SRC

Data source for the requested data

7–4 Latency Total latency of cache miss (in cycles)
15–8 InstructionAddress Instruction address
23–16 DataAddress Address of memory reference (if flag bit 28 = 1)

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

0 No valid status
1 Local L3 cache
2 Remote CPU or L3 cache
3 DRAM
4 Reserved (for Remote cache)
5 Reserved
6 Reserved
7 Other (MMIO/Config/PCI/APIC)

[AMD Public Use]

Software Debug and Performance Resources 423

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-26. CPU Clocks not Halted Event Record

13.4.2.6 CPU Reference Clocks not Halted
LWP decrements the event counter each reference clock cycle that the CPU is not in a halted state (due
to STPCLK or a HLT instruction). When the counter becomes negative, it stores a generic event record
with an EventId of 6.

The reference clock runs at a constant frequency that is independent of the core frequency and of the
performance state. The reference clock frequency is processor dependent. The processor may
implement this event by subtracting the ratio of (reference clock frequency / core clock frequency)
each core clock cycle.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Reserved Reserved CoreId EventId=5 0

InstructionAddress 8

Reserved 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 5
1 7:0 CoreId CPU identifier from LWP_CFG
7–2 Reserved
15–8 InstructionAddress Instruction address
23–16 Reserved

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

[AMD Public Use]

424 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 13-27. CPU Reference Clocks not Halted Event Record

13.4.2.7 Programmed Event
When a program executes the LWPINS instruction (see “LWPINS — Insert User Event Record in LWP
Ring Buffer” on page 434), the processor stores an event record with an event identifier of 255. The
data in the event record come from the operands to the instruction as detailed in the instruction
description.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Reserved Reserved CoreId EventId=6 0

InstructionAddress 8

Reserved 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 6
1 7:0 CoreId CPU identifier from LWP_CFG
2–7 Reserved
15–8 InstructionAddress Instruction address
23–16 Reserved

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

[AMD Public Use]

Software Debug and Performance Resources 425

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-28. Programmed Event Record

13.4.2.8 Other Events
The overall design of LWP allows easy extension to the list of events that it can monitor. The following
are possibilities for events that may be added in future versions of LWP:

• DTLB misses
• FPU operations
• ICache misses
• ITLB misses

13.4.3 Detecting LWP
An application uses the CPUID instruction to identify whether Lightweight Profiling is present and
which of its capabilities are available for use. An operating system uses CPUID to determine whether
LWP is supported on the hardware and to determine which features of LWP are supported and can be
made available to applications.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Data1 Flags CoreId EventID =
255 0

InstructionAddress 8

Data2 16

TimeStamp 24

Bytes Field Description
0 EventId Event identifier = 255
1 CoreId CPU identifier from LWP_CFG
3–2 Flags Imm16 value
7–4 Data1 Reg/mem value
15–8 InstructionAddress Instruction address of LWPINS instruction
23–16 Data2 Reg value (zero extended if running in legacy mode)

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

[AMD Public Use]

426 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

13.4.3.1 Detecting LWP Presence
LWP is supported on a processor if CPUID Fn8000_0001_ECX[LWP] (bit 15) is set. This bit is
identical to the value of CPUID Fn0000_000D_EDX_x0[bit 30], which is bit 62 of the
XFeatureSupportedMask and indicates XSAVE support for LWP. A system can check either of those
bits to determine if LWP is supported. Since LWP requires XSAVE, software can assume that this bit
being set implies that CPUID Fn0000_0001_ECX[XSAVE] (bit 26) is also set.

13.4.3.2 Detecting LWP XSAVE Area
The size of the LWP extended state save area used by XSAVE/XRSTOR is 128 bytes (080h). This
value is returned by CPUID Fn0000_000D_ EAX_x3E (ECX=62).

The offset of the LWP save area from the beginning of the XSAVE/XRSTOR area is 832 bytes (340h).
This value is returned by CPUID Fn0000_000D_ EBX_x3E (ECX=62).

The size of the LWP save area is included in the XFeatureSupportedSizeMax value returned by
CPUID Fn0000_000D_ECX_x0 (ECX=0).

If LWP is enabled in the XFEATURE_ENABLED_MASK, the size of the LWP save area is included
in the XFeatureEnabledSizeMax value returned by CPUID Fn0000_000D_EBX_x0 (ECX=0).

13.4.3.3 Detecting LWP Capabilities
The values returned by CPUID Fn8000_001C indicate the capabilities of LWP. See Table 13-7,
“Lightweight Profiling CPUID Values” for a listing of the returned values.

Bit 0 of EAX is a copy of bit 62 from XFEATURE_ENABLED_MASK and indicates whether LWP is
available for use by applications. If it is 1, the processor supports LWP and the operating system has
enabled LWP for applications.

Bits 31:1 returned in EAX are taken from the LWP_CFG MSR and reflect the LWP features that are
available for use. These are a subset of the bits returned in EDX, which reflect the full capabilities of
LWP on current processor. The operating system can make a subset of LWP available if it cannot
handle all supported features. For instance, if the OS cannot handle an LWP threshold interrupt, it can
disable the feature. User-mode software must assume that the bits in EAX describe the features it can
use. Operating systems should use the bits from EDX to determine the supported capabilities of LWP
and make all or some of those features available.

Under SVM, if a VMM allows the migration of guests among processors that all support LWP, it must
arrange for CPUID to report the logical AND of the supported feature bits over all processors in the
migration pool. Other CPUID values must also be reported as the “least common denominator” among
the processors.

[AMD Public Use]

Software Debug and Performance Resources 427

24593—Rev. 3.37—March 2021 AMD64 Technology

Table 13-7. Lightweight Profiling CPUID Values
Reg Bits Field Description

EAX

0 LwpAvail

1—LWP is available to application programs. The hardware and the
operating system support LWP.

0—LWP is not available.
This bit is a copy of bit 62 of the XFEATURE_ENABLED_MASK
register (XCR0).

1 LwpVAL LWPVAL instruction (EventId = 1) is available.
2 LwpIRE Instructions retired event (EventId = 2) is available.
3 LwpBRE Branch retired event (EventId = 3) is available.
4 LwpDME DCache miss event (EventId = 4) is available.
5 LwpCNH CPU clocks not halted event (EventId = 5) is available.
6 LwpRNH CPU reference clocks not halted event (EventId = 6) is available.

28:7 Reserved
29 LwpCont Sampling in continuous mode is available.
30 LwpPTSC Performance Time Stamp Counter in event records is available.
31 LwpInt Interrupt on threshold overflow is available.

EBX

7:0 LwpCbSize
Size in quadwords of the LWPCB. This value is at least
(LwpEventOffset / 8) + LwpMaxEvents but an implementation may
require a larger control block.

15:8 LwpEventSize Size in bytes of an event record in the LWP event ring buffer. (32 for
LWP Version 1.)

23:16 LwpMaxEvents
Maximum supported EventId value (not including EventId 255 used by
the LWPINS instruction). Not all events between 1 and LwpMaxEvents
are necessarily supported.

31:24 LwpEventOffset

Offset from the start of the LWPCB to the EventInterval1 field. Software
uses this value to locate the area of the LWPCB that describes events to
be sampled. This permits expansion of the initial fixed region of the
LWPCB. LwpEventOffset is always a multiple of 8.

[AMD Public Use]

428 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

ECX

4:0 LwpLatencyMax
Number of bits in cache latency counters (10 to 31).
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

5 LwpDataAddress
1—Cache miss event records report the data address of the reference.
0—Data address is not reported.
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

8:6 LwpLatencyRnd

The amount by which cache latency is rounded. The bottom
LwpLatencyRnd bits of latency information will be zero. The actual
number of bits implemented for the counter is (LwpLatencyMax –
LwpLatencyRnd).
Must be 0 to 4.
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

15:9 LwpVersion Version of LWP implementation. (1 for LWP Version 1.)

23:16 LwpMinBufferSize

Minimum size of the LWP event ring buffer, in units of 32 event records.
At least 32*LwpMinBufferSize records must be allocated for the LWP
event ring buffer, and hence the size of the ring buffer must be at least 32
* LwpMinBufferSize * LwpEventSize bytes. If 0, there is no minimum.

27:24 Reserved

28 LwpBranchPrediction

1—Branches Retired events can be filtered based on whether the branch
was predicted properly. The values of NMB and NPB in the LWPCB
enable filtering based on prediction.

0—NMB and NPB fields of the LWPCB are ignored.
0 if Branches Retired event is not supported (EDX[LwpBRE] = 0).

29 LwpIpFiltering
1—IP filtering is supported.
0—IP filtering is not supported. The IPI, IPF, BaseIP, and LimitIP fields

of the LWPCB are ignored.

30 LwpCacheLevels

1—Cache-related events can be filtered by the cache level that returned
the data. The value of CLF in the LWPCB enables cache level
filtering.

0—CLF is ignored.
An implementation must support filtering either by latency or by cache
level. It may support both.
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

31 LwpCacheLatency

1—Cache-related events can be filtered by latency. The value of
MinLatency in the LWPCB controls filtering.

0—MinLatency is ignored.
An implementation must support filtering either by latency or by cache
level. It may support both.
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

EDX 0 LwpAvail
LWP is supported. If 0, the remainder of the data returned by CPUID
should be ignored.
This bit is a copy of CPUID Fn8000_0001_ECX[LWP] (bit 15).

1 LwpVAL LWPVAL instruction (EventId = 1) is supported.

Table 13-7. Lightweight Profiling CPUID Values
Reg Bits Field Description

[AMD Public Use]

Software Debug and Performance Resources 429

24593—Rev. 3.37—March 2021 AMD64 Technology

For more information on using the CPUID instruction, refer to Section 3.3, “Processor Feature
Identification,” on page 70.

13.4.4 LWP Registers
The XFEATURE_ENABLED_MASK register (extended control register XCR0) and the LWP model-
specific registers describe and control the LWP hardware. The MSRs are available if CPUID
Fn8000_0001_ECX[LWP] (bit 15) is set. LWP can only be used if the system has made support for
LWP state management available in XFEATURE_ENABLED_MASK.

13.4.4.1 XFEATURE_ENABLED_MASK Support
LWP requires that the processor support the XSAVE/XRSTOR instructions to manage LWP state,
along with the XSETBV/XGETBV instructions that manage the enabled state mask. An operating
system uses XSETBV to set bit 62 of XFEATURE_ENABLED_MASK to indicate that it supports
management of LWP state and allows applications to use LWP. When the system makes LWP
available by setting bit 62 of XFEATURE_ENABLED_MASK, LWP is initially disabled
(LWP_CBADDR is zero).

See “Guidelines for Operating Systems” on page 452 for details on how to implement LWP support in
an operating system.

13.4.4.2 LWP_CFG — LWP Configuration MSR
LWP_CFG (MSR C000_0105h) controls which features of LWP are available on the processor. The
operating system loads LWP_CFG at start-up time (or at the time an LWP driver is loaded) to indicate
its level of support for LWP. Only bits for supported features (those that are set in CPUID
Fn8000_001C_EDX) can be turned on in LWP_CFG. Attempting to set other bits causes a #GP fault.

User code can examine LWP_CFG bits 31:1 by reading CPUID Fn8000_001C_EAX.

2 LwpIRE Instructions retired event (EventId = 2) is supported.

3 LwpBRE Branch retired event (EventId = 3) is supported.

4 LwpDME DCache miss event (EventId = 4) is supported.

5 LwpCNH CPU clocks not halted event (EventId = 5) is supported.

6 LwpRNH CPU reference clocks not halted event (EventId = 6) is supported.

28:7 Reserved

29 LwpCont Sampling in continuous mode is supported.

30 LwpPTSC Performance Time Stamp Counter in event records is supported.

31 LwpInt Interrupt on threshold overflow is supported.

Table 13-7. Lightweight Profiling CPUID Values
Reg Bits Field Description

[AMD Public Use]

430 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Bits 39:32 of LWP_CFG contains the COREID value that LWP will store into the CoreId field of
every event record written by this core. The operating system should initialize this value to be the local
APIC number, obtained from CPUID Fn0000_0001_EBX[LocalApicId] (bits 31:24). COREID is
present so that when LWP is used in a virtualized environment, it has access to the core number
without needing to enter the hypervisor. On systems that support x2APIC, local APIC numbers may be
more than 8 bits wide. The operating system may then assign LWP COREID values that are small and
identify the core within a cluster. If the system has more than 256 cores, there will be unavoidable
duplication of COREID values.

Bits 47:40 of LWP_CFG specify the vector number that LWP will use when it signals a ring buffer
threshold interrupt.

The reset value of LWP_CFG is 0.

Figure 13-29. LWP_CFG — Lightweight Profiling Features MSR

13.4.4.3 LWP_CBADDR — LWPCB Address MSR
LWP_CBADDR (MSR C000_0106h) provides access to the internal copy of the LWPCB linear
address.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved VECTOR COREID
I
N
T

P
T
S
C

C
O
N
T

Reserved
R
N
H

C
N
H

D
M
E

B
R
E

I
R
E

V
A
L

Bits Field Description
0 Reserved
1 VAL Allow the LWPVAL instruction.
2 IRE Allow LWP to count instructions retired.
3 BRE Allow LWP to count branches retired.
4 DME Allow LWP to count DCache misses.
5 CNH Allow LWP to count CPU clocks not halted.
6 RNH Allow LWP to count CPU reference clocks not halted.
28:7 Reserved
29 CONT Enable continuous mode. If 0, LWP will always use synchronized mode.

30 PTSC Enable storing Performance Time Stamp Counter (PTSC) in the TimeStamp field of
event records, if PTSC is available.

31 INT Allow LWP to generate an interrupt when threshold is exceeded.
39:32 COREID Value to store in CoreId field when writing an event record.

47:40 VECTOR Interrupt vector number to use for LWP Threshold interrupts. Must be provided if
INT=1.

63:48 Reserved

[AMD Public Use]

Software Debug and Performance Resources 431

24593—Rev. 3.37—March 2021 AMD64 Technology

RDMSR from this register returns the current LWPCB address without performing any of the
operations described for the SLWPCB instruction.

WRMSR to this register with a non-zero value generates a #GP fault; use LLWPCB or XRSTOR to
load an LWPCB address.

Writing a zero to LWP_CBADDR immediately disables LWP, discarding any internal state. For
instance, an operating system can write a zero to stop LWP when it terminates a thread.

Note that LWP_CBADDR contains the linear address of the control block. All references to the
LWPCB that are made by microcode during the normal operation of LWP ignore the DS segment
register.

The reset value of LWP_CBADDR is 0. This means that when the system sets bit 62 of
XFEATURE_ENABLED_MASK to make LWP available, it is initially disabled.

13.4.5 LWP Instructions
This section describes the instructions included in the AMD64 architecture to support LWP. These
instructions raise #UD if LWP is not supported or if bit 62 of XFEATURE_ENABLED_MASK is 0
indicating that LWP is not available.

The LLWPCB instruction enables or disables Lightweight Profiling and controls the events being
profiled. The SLWPCB instruction queries the current state of Lightweight Profiling.

LWP provides two instructions for inserting user data into the event ring buffer. The LWPINS
instruction unconditionally stores an event record into the ring buffer, while the LWPVAL instruction
uses an LWP event counter to sample program values at defined intervals.

The instructions LLWPCB, SLWPCB, LWPINS, and LWPVAL are also described in the chapter
"General-Purpose Instruction Reference" of Volume 3. Refer to reference pages for the individual
instruction for information on instruction encoding, flags affected, and exception behavior.

13.4.5.1 LLWPCB — Load LWPCB Address
Parses the Lightweight Profiling Control Block at the address contained in the specified register. If the
LWPCB is valid, writes the address into the LWP_CBADDR MSR and enables Lightweight Profiling.

The LWPCB must be in memory that is readable and writable in user mode. For better performance, it
should be aligned on a 64-byte boundary in memory and placed so that it does not cross a page
boundary, though neither of these suggestions is required.

Action
1. If LWP is not available or if the machine is not in protected mode, LLWPCB immediately causes

a #UD exception.

2. If LWP is already enabled, the processor flushes the LWP state to memory in the old LWPCB. See
“SLWPCB — Store LWPCB Address” on page 433 for details on saving the active LWP state.

[AMD Public Use]

432 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

If the flush causes a #PF exception, LWP remains enabled with the old LWPCB still active. Note
that the flush is done before LWP attempts to access the new LWPCB.

3. If the specified LWPCB address is 0, LWP is disabled and the execution of LLWPCB is complete.

4. The LWPCB address is non-zero. LLWPCB validates it as follows:
- If any part of the LWPCB or the ring buffer is beyond the data segment limit, LLWPCB causes

a #GP exception.
- If the ring buffer size is below the implementation’s minimum ring buffer size, LLWPCB

causes a #GP exception.
- While doing these checks, LWP reads and writes the LWPCB, which may cause a #PF

exception.
If any of these exceptions occurs, LLWPCB aborts and LWP is left disabled. Usually, the operating
system will handle a #PF exception by making the memory available and returning to retry the
LLWPCB instruction. The #GP exceptions indicate application programming errors.

5. LWP converts the LWPCB address and the ring buffer address to linear address form by adding
the DS base address and stores the addresses internally.

6. LWP examines the LWPCB.Flags field to determine which events should be enabled and whether
threshold interrupts should be taken. It clears the bits for any features that are not available and
stores the result back to LWPCB.Flags to inform the application of the actual LWP state.

7. For each event being enabled, LWP examines the EventIntervaln value and, if necessary, sets it to
an implementation-defined minimum. (The minimum event interval for LWPVAL is zero.) It
loads its internal counter for the event from the value in EventCountern. A zero or negative value
in EventCountern means that the next event of that type will cause an event record to be stored. To
count every jth event, a program should set EventIntervaln to j-1 and EventCountern to some
starting value (where j-1 is a good initial count). If the counter value is larger than the interval, the
first event record will be stored after a larger number of events than subsequent records.

8. LWP is started. The execution of LLWPCB is complete.

Notes
If none of the bits in the LWPCB.Flags specifies an available event, LLWPCB still enables LWP to
allow the use of the LWPINS instruction. However, no other event records will be stored.

A program can temporarily disable LWP by executing SLWPCB to obtain the current LWPCB
address, saving that value, and then executing LLWPCB with a register containing 0. It can later re-
enable LWP by executing LLWPCB with a register containing the saved address.

When LWP is enabled, it is typically an error to execute LLWPCB with the address of the active
LWPCB. When the hardware flushes the existing LWP state into the LWPCB, it may overwrite fields
that the application may have set to new LWP parameter values. The flushed values will then be loaded
as LWP is restarted. To reuse an LWPCB, an application should stop LWP by passing a zero to
LLWPCB, then prepare the LWPCB with new parameters and execute LLWPCB again to restart LWP.

[AMD Public Use]

Software Debug and Performance Resources 433

24593—Rev. 3.37—March 2021 AMD64 Technology

Internally, LWP keeps the linear address of the LWPCB and the ring buffer. If the application changes
the value of DS, LWP will continue to collect samples even if the new DS value would no longer
allows it to access the LWPCB or the ring buffer. However, a #GP fault will occur if the application
uses XRSTOR to restore LWP state saved by XSAVE. Programs should avoid using
XSAVE/XRSTOR on LWP state if DS has changed. This only applies when the CPL ≠ 0; kernel mode
operation of XRSTOR is unaffected by changes to DS. See “XSAVE/XRSTOR” on page 445 for
details.

Operating system and hypervisor code that runs when the CPL ≠ 3 should use XSAVE and XRSTOR
to control LWP rather than using LLWPCB (see below). Use WRMSR to write 0 to LWP_CBADDR
to immediately stop LWP without saving its current state (see “LWP_CBADDR — LWPCB Address
MSR” on page 430).

It is possible to execute LLWPCB when the CPL ≠ 3 or when SMM is active, but the system software
must ensure that the LWPCB and the entire ring buffer are properly mapped into writable memory in
order to avoid a #PF or #GP fault. Furthermore, if LWP is enabled when a kernel executes LLWPCB,
both the old and new control blocks and ring buffers must be accessible. Using LLWPCB in these
situations is not recommended.

13.4.5.2 SLWPCB — Store LWPCB Address
Flushes LWP state to memory and returns the current effective address of the LWPCB in the specified
register.

If LWP is not currently enabled, SLWPCB sets the specified register to zero.

The flush operation stores the internal event counters for active events and the current ring buffer head
pointer into the LWPCB. If there is an unwritten event record pending, it is written to the event ring
buffer.

If LWP_CBADDR is not zero, the value returned is an effective address that is calculated by
subtracting the current DS.Base address from the linear address kept in LWP_CBADDR. Note that if
DS has changed between the time LLWPCB was executed and the time SLWPCB is executed, this
might result in an address that is not currently accessible by the application.

SLWPCB generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

It is possible to execute SLWPCB when the CPL ≠ 3 or when SMM is active, but if the LWPCB
pointer is not zero, the system software must ensure that the LWPCB and the entire ring buffer are
properly mapped into writable memory in order to avoid a #PF fault. Using SLWPCB in these
situations is not recommended.

13.4.5.3 LWPVAL — Insert Value Sample in LWP Ring Buffer
Decrements the event counter associated with the Programmed Value Sample event (see “Programmed
Value Sample” on page 418). If the resulting counter value is negative, inserts an event record into the

[AMD Public Use]

434 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

LWP event ring buffer in memory and advances the ring buffer pointer. If the counter is not negative
and the ModRM operand specifies a memory location, that location is not accessed.

The event record has an EventId of 1. The value in the register specified by vvvv (first operand) is
stored in the Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register
or memory location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value
(third operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2. See Figure 13-22 on
page 418.

If the ring buffer is not full or if LWP is running in continuous mode, the head pointer is advanced and
the event counter is reset to the interval for the event (subject to randomization). If the ring buffer
threshold is exceeded and threshold interrupts are enabled, an interrupt is signaled. If LWP is in
continuous mode and the new head pointer equals the tail pointer, the MissedEvents counter is
incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in synchronized mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, and the head pointer is
not advanced.

LWPVAL generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPVAL does nothing if LWP is not enabled or if the Programmed Value Sample event is not enabled
in LWPCB.Flags. This allows LWPVAL instructions to be harmlessly ignored if profiling is turned off.

It is possible to execute LWPVAL when the CPL ≠ 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPVAL in these situations
is not recommended.

LWPVAL can be used by a program to perform value profiling. This is the technique of sampling the
value of some program variable at a predetermined frequency. For example, a managed runtime might
use LWPVAL to sample the value of the divisor for a frequently executed divide instruction in order to
determine whether to generate specialized code for a common division. It might sample the target
location of an indirect branch or call to see if one destination is more frequent than others. Since
LWPVAL does not modify any registers or condition codes, it can be inserted harmlessly between any
instructions.

Note
When LWPVAL completes (whether or not it stored an event record in the event ring buffer), it counts
as an instruction retired. If the Instructions Retired event is active, this might cause that counter to
become negative and immediately store an event record. If LWPVAL also stored an event record, the
buffer will contain two records with the same instruction address (but different EventId values).

13.4.5.4 LWPINS — Insert User Event Record in LWP Ring Buffer
Inserts a record into the LWP event ring buffer in memory and advances the ring buffer pointer.

[AMD Public Use]

Software Debug and Performance Resources 435

24593—Rev. 3.37—March 2021 AMD64 Technology

The record has an EventId of 255. The value in the register specified by vvvv (first operand) is stored
in the Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register or
memory location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value (third
operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2. See Figure 13-28 on
page 425.

If the ring buffer is not full or if LWP is running in continuous mode, the head pointer is advanced and
the CF flag is cleared. If the ring buffer threshold is exceeded and threshold interrupts are enabled, an
interrupt is signaled. If LWP is in continuous mode and the new head pointer equals the tail pointer, the
MissedEvents counter is incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in synchronized mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, the head pointer is not
advanced, and the CF flag is set.

LWPINS generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPINS simply clears CF if LWP is not enabled. This allows LWPINS instructions to be harmlessly
ignored if profiling is turned off.

It is possible to execute LWPINS when the CPL ≠ 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPINS in these situations
is not recommended.

LWPINS can be used by a program to mark significant events in the ring buffer as they occur. For
instance, a program might capture information on changes in the process’ address space such as library
loads and unloads, or changes in the execution environment such as a change in the state of a user-
mode thread of control.

Note that when the LWPINS instruction finishes writing a event record in the event ring buffer, it
counts as an instruction retired. If the Instructions Retired event is active, this might cause that counter
to become negative and immediately store another event record with the same instruction address (but
different EventId values).

13.4.6 LWP Control Block
An application uses the LWP Control Block (LWPCB) to specify the details of Lightweight Profiling
operation. It is an interactive region of memory in which some fields are controlled and modified by
the LWP hardware and others are controlled and modified by the software that processes the LWP
event records.

Most of the fields in the LWPCB are constant for the duration of a LWP session (the time between
enabling LWP and disabling it). This means that they are loaded into the LWP hardware when it is
enabled, and may be periodically reloaded from the same location as needed. The contents of the

[AMD Public Use]

436 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

constant fields must not be changed during a LWP run or results will be unpredictable. Changing the
LWPCB memory to read-only or unmapped will cause an exception the next time LWP attempts to
access it. To change values in the LWPCB, disable LWP, change the LWPCB (or create a new one),
and re-enable LWP.

A few fields are modified by the LWP hardware to communicate progress to the software that is
emptying the event ring buffer. Software may read them but should never modify them during an LWP
session. Other fields are for software to modify to indicate that progress has been made in emptying
the ring buffer. Software writes these fields and the LWP hardware reads them as needed.

For efficiency, some of the LWPCB fields may be shadowed internally in the LWP hardware unit when
profiling is enabled. LWP refreshes these fields from (or flushes them to) memory as needed to allow
software to make progress. For more information, refer to “LWPCB Access” on page 451.

The BufferTailOffset field is at offset 64 in the LWPCB in order to place it in a separate cache line on
most implementations, assuming that the LWPCB itself is aligned properly. This allows the software
thread that is emptying the ring buffer to retain write ownership of that cache line without colliding
with the changes made by LWP when writing BufferHeadOffset. In addition, most implementations
will use a value of 128 as the offset to the EventInterval1 field, since that places the event information
in a separate cache line.

All fields in the LWPCB (as shown in Figure 13-30) that are marked as “Reserved” (or “Rsvd”) should
be zero.

[AMD Public Use]

Software Debug and Performance Resources 437

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-30. LWPCB — Lightweight Profiling Control Block

The R/W column in Table 13-8 below indicates how a field is used while LWP is enabled:

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Random BufferSize Flags 0

BufferBase 8

Reserved BufferHeadOffset 16

MissedEvents 24

Filters Threshold 32

BaseIP 40

LimitIP 48

Reserved 56

Reserved BufferTailOffset 64

Reserved for software 72

Reserved for software 80

.

.
Reserved

.

.

88

7 2

Rsvd
25 0

EventCounter1
7 2

Rsvd
25 0

EventInterval1
E = LwpEventOffset

E

7 2

Rsvd
25 0

EventCounter2
7 2

Rsvd
25 0

EventInterval2
E

+8

. . .
7 2

Rsvd
25 0

EventCounterN
7 2

Rsvd
25 0

EventIntervalN
N = LwpMaxEvents

...

[AMD Public Use]

438 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

• LWP — hardware modifies the field; software may read it, but must not change it
• Init — hardware reads and modifies the field while executing LLWPCB; the field must then remain

unchanged as long as the LWPCB is in use
• SW — software may modify the field; hardware may read it, but does not change it
• No — field must remain unchanged as long as the LWPCB is in use

Table 13-8. LWPCB — Lightweight Profiling Control Block Fields
Bytes Bits Field Description R/W

3–0 Flags

Flags indicating which events should be or are being counted (see
Figure 13-31, “LWPCB Flags”) and whether threshold interrupts should
be enabled.
Before executing LLWPCB, the application sets Flags to a bit mask of
the events (and interrupt) that should be enabled. LLWPCB does a
logical “and” of this mask with the available feature bits in LWP_CFG
and rewrites Flags with the mask of features actually enabled.

Init

7–4 27:0 BufferSize

Total size of the event ring buffer (in bytes). Must be a multiple of the
event record size LwpEventSize (the value used internally will be
rounded down if not). BufferSize must be at least (32 *
LwpMinBufferSize * LwpEventSize).

No

7 7:4 Random

Number of bits of randomness to use in counters. Each time a counter is
loaded from an interval to start counting down to the next event to
record, the bottom Random bits are set to a random value. This avoids
fixed patterns in events.

No

15–8 BufferBase

The Effective Address of the event ring buffer. Should be aligned on a
64-byte boundary for reasonable performance. Software is encouraged
to align the ring buffer to a page boundary for best performance. If the
default address size is less than 64 bits, the upper bits of BufferBase
must be zero.
LLWPCB converts BufferBase to a linear address and stores it
internally. LWPCB.BufferBase is not modified.

No

19–16 BufferHeadOffset

Unsigned offset from BufferBase specifying where the LWP hardware
will store the next event record. When BufferHeadOffset ==
BufferTailOffset, the ring buffer is empty. BufferHeadOffset must
always be less than BufferSize; LWP will use a value of 0 if
BufferHeadOffset is too large. Also, it must always be a multiple of
LwpEventSize; LWP will round it down if not.

LWP

23–20 Reserved

31–24 MissedEvents

The 64-bit count of the number of events that were missed. A missed
event occurs when LWP stores an event record, attempts to advance
BufferHeadOffset, and discovers that it would be equal to
BufferTailOffset. In this case, LWP leaves BufferHeadOffset
unchanged and instead increments the MissedEvents counter. Thus,
when the ring buffer is full, the last event record is overwritten.

LWP

[AMD Public Use]

Software Debug and Performance Resources 439

24593—Rev. 3.37—March 2021 AMD64 Technology

35–32 Threshold

Threshold for signaling an interrupt to indicate that the ring buffer is
filling up. If threshold interrupts are enabled in Flags, then when LWP
advances BufferHeadOffset, it computes the space used as
((BufferHeadOffset – BufferTailOffset) % BufferSize). If the space
used equals or exceeds Threshold, LWP causes an interrupt.
If Threshold is greater than BufferSize, no interrupt will ever be taken.
If Threshold is zero, an interrupt will be taken every time an event
record is stored in the ring buffer.
Threshold is an unsigned integer multiple of LwpEventSize (the value
used internally will be rounded down if not).
Ignored if threshold interrupts are not available in LWP_CFG or if they
are not enabled in Flags

No

39–36 Filters

Filters to qualify which events are eligible to be counted. This field
includes bits to filter branch events by type and prediction status, and
bits and values to filter cache events by type and latency. See Figure
13-32, “LWPCB Filters” for details.

47–40 BaseIP

Low limit of the IP filtering range. An instruction must start at a
location greater than or equal to BaseIP to be in range.
Ignored if IPF is zero or if the CPUID LwpIpFiltering bit is 0 to indicate
that IP filtering is not supported.

No

55–48 LimitIP

High limit of the IP filtering range. An instruction must start at a
location less than or equal to LimitIP to be in range.
Ignored if IPF is zero or if the CPUID LwpIpFiltering bit is 0 to indicate
that IP filtering is not supported.

No

63–56 Reserved

67–64 BufferTailOffset

Unsigned offset from BufferBase to the oldest event record in the ring
buffer. BufferTailOffset is maintained by software and must always be
less than BufferSize and a multiple of LwpEventSize. If software stores
a value of BufferTailOffset into the LWPCB that violates these rules,
the LWP hardware might not detect ring buffer overflow or threshold
conditions properly.

SW

71–68 Reserved

72–87 Reserved for software use. These bytes are never read or written by the
LWP hardware SW

(E-1) –
88

Reserved area between the fixed portion of the LWPCB and the event
specifiers. Should be zero. The EventInterval1 field is at offset E =
LwpEventOffset.

Table 13-8. LWPCB — Lightweight Profiling Control Block Fields (continued)
Bytes Bits Field Description R/W

[AMD Public Use]

440 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

The LLWPCB instruction reads the Flags word from the LWPCB to determine which events to profile
and whether threshold interrupts should be enabled. LLWPCB writes the Flags word after turning off
bits corresponding to features which are not currently available.

(E+3)–
E 25:0 EventInterval1

Reset value for counting events of type EventId = 1 (Programmed Value
Sample). A value of n specifies that after n+1 (modified by Random)
LWPVAL instructions, LWP will store an event record in the ring
buffer.
EventInterval1 is a signed value. If it is negative, LLWPCB will use
zero and will store zero into EventInterval1 in the LWPCB.
The Programmed Value Sample event is the only one which allows an
interval to be below the implementation minimum interval value.

Init

E+3 7:2 Reserved
(E+7)–
(E+4) 25:0 EventCounter1 Starting (LLWPCB) or current (SLWPCB) value of counter. This is a

signed number. LLWPCB treats a negative value as zero. LWP

E+7 7:2 Reserved

(E+11)
–

(E+8)
25:0 EventInterval2

Reset value for counting events of type EventId = 2 (Instructions
Retired). A value of n specifies that after n+1 (modified by Random)
instructions are retired, LWP will store an event record in the ring
buffer.
EventInterval2 is a signed value. If it is negative or is below the
implementation minimum, LLWPCB will use the minimum and will
store that value into EventInterval2 in the LWPCB.

Init

E+11 7:2 Reserved
(E+15)

–
(E+12)

57:32 EventCounter2 Starting (LLWPCB) or current (SLWPCB) value of counter. This is a
signed number. LLWPCB treats a negative value as zero. LWP

E+15 7:2 Reserved

Event3… Repeat event configuration similar to EventInterval2 and
EventCounter2 for EventId values from 3 to LwpMaxEvents.

Table 13-8. LWPCB — Lightweight Profiling Control Block Fields (continued)
Bytes Bits Field Description R/W

[AMD Public Use]

Software Debug and Performance Resources 441

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 13-31. LWPCB Flags

Event counting can be filtered by a number of conditions which are specified in the Filters word of the
LLWPCB. The IP filtering applies to all events. Cache level filtering applies to all events that interact
with the caches. Branch filtering applies to the Branches Retired event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I
N
T

P
T
S
C

C
O
N
T

Reserved
R
N
H

C
N
H

D
M
E

B
R
E

I
R
E

V
A
L

Bit Field Input to LLWPCB Value after LLWPCB
0 Reserved
1 VAL Enable LWPVAL instruction LWPVAL instruction enabled
2 IRE Enable Instructions Retired event Instructions Retired event enabled
3 BRE Enable Branches Retired event Branches Retired event enabled
4 DME Enable DCache miss event DCache Miss event enabled
5 CNH Enable CPU clocks not halted event CPU Clocks Not Halted event enabled

6 RNH Enable CPU reference clocks not halted event CPU Reference Clocks Not Halted event
enabled

28:7 Reserved

29 CONT

1—Use continuous mode. If the ring buffer
overflows, LWP continues to store events
and advance BufferHead. Software must
stop LWP in order to empty the ring
buffer.

0—Use synchronized mode.

LWP operates in continuous mode if input bit
is set and continuous mode is available.
Otherwise, LWP operates in synchronous
mode.

30 PTSC

1—Store the Performance Time Stamp
Counter (PTSC) in the TimeStamp field of
each event record, if PTSC is available.

0—Store 0 in the TimeStamp field.

Performance Time Stamp Counter value will
be stored if input bit is set and PTSC feature is
available. Otherwise 0 is stored.

31 INT Enable threshold interrupts. Threshold interrupts are enabled.

[AMD Public Use]

442 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 13-32. LWPCB Filters

The following table provides detailed descriptions of the fields in the Filters word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I
P
F

I
P
I

N
R
B

N
C
B

N
A
B

N
P
B

N
M
B

Reserved
O
T
H

R
A
M

R
D
C

N
B
C

C
L
F

MinLatency

Bits Field Description
7:0 MinLatency Minimum latency for a cache-related event
8 CLF Cache level filtering
9 NBC Northbridge cache events
10 RDC Remote data cache events
11 RAM DRAM cache events
12 OTH Other cache events
24:13 Reserved
25 NMB No mispredicted branches
26 NPB No predicted branches
27 NAB No absolute branches
28 NCB No conditional branches
29 NRB No unconditional relative branches
30 IPI IP filtering invert
31 IPF IP filtering

[AMD Public Use]

Software Debug and Performance Resources 443

24593—Rev. 3.37—March 2021 AMD64 Technology

Table 13-9. LWPCB Filters Fields
Bits Field Description

7:0 MinLatency

Minimum latency for a cache-related event to be eligible for LWP counting. Applies
to all cache-related events being monitored. MinLatency is multiplied by 16 to get
the actual latency in cycles, providing less resolution but a larger range for filtering.
An implementation may have a maximum for the latency value. If MinLatency*16
exceeds this maximum value, the maximum is used instead. A value of 0 disables
filtering by latency.
Ignored if no cache latency event is enabled or if the CPUID LwpCacheLatency bit
is 0 to indicate that the implementation does not filter by latency (use the CLF bits to
get a similar effect). At least one of these mechanisms is supported if any cache miss
events are supported.

8 CLF

Cache level filtering.
1—Enables filtering cache-related events by the cache level or memory level that

returned the data. It enables the next 4 bits. Cache-related events are only
eligible for counting if the bit describing the memory level is on.

0—Disables cache level filtering. The next 4 bits are ignored, and any cache or
memory level is eligible.

Ignored if no cache latency event is enabled or if the CPUID LwpCacheLevels bit is
0 to indicate that the implementation does not filter by cache level (use the
MinLatency field to get a similar effect). At least one of these mechanisms is
supported if any cache miss events are supported.

9 NBC

Northbridge cache events.
1—Count cache-related events that are satisfied from data held in a cache that

resides on the northbridge.
0—Ignore northbridge cache events
Ignored if CLF is 0.

10 RDC

Remote data cache events.
1—Count cache-related events that are satisfied from data held in a remote data

cache.
0—Ignore remote cache events.
Ignored if CLF is 0.

11 RAM

DRAM cache events.
1—Count cache-related events that are satisfied from DRAM.
0—Ignore DRAM cache events.
Ignored if CLF is 0.

12 OTH

Other cache events.
1—Count cache-related events that are satisfied from other sources, such as MMIO,

Config space, PCI space, or APIC.
0—Ignore such cache events
Ignored if CLF is 0.

24:13 Reserved

[AMD Public Use]

444 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

25 NMB

No mispredicted branches.
1—Mispredicted branches will not be counted.
0—Mispredicted branches will be counted if not suppressed by other filter

conditions.
Caution: If NMB and NPB are both set, no branches will be counted.
Ignored if the Branches Retired event is not enabled or if the CPUID
LwpBranchPrediction bit is 0 to indicate that the implementation does not filter by
prediction.

26 NPB

No predicted branches.
1—Correctly predicted branches will not be counted. Note that since direct branches

are always predicted correctly, this is a superset of the NDB filter.
0—Correctly predicted branches will be counted if not suppressed by other filter

conditions.
Caution: If NMB and NPB are both set, no branches will be counted.
Ignored if the Branches Retired event is not enabled or if the CPUID
LwpBranchPrediction bit is 0 to indicate that the implementation does not filter by
prediction.

27 NAB

No absolute branches.
1—Absolute branches will not be counted. This only applies to jumps through a

register or memory (JMP opcode FF /4) and calls through a register or memory
(CALL opcode FF /2). Relative branches (both conditional and unconditional)
are counted normally if not disabled via the NRB or NCB bits.

0—Absolute branches will be counted if not suppressed by other filter conditions.
Caution: If NRB, NCB, and NAB are all set, no branches will be counted.
Ignored if the Branches Retired event is not enabled.

28 NCB

No conditional branches.
1—Conditional branches will not be counted. This only applies to conditional jumps

(Jcc) and loops (LOOPcc). Unconditional relative branches, indirect jumps
through a register or memory, and returns are counted normally if not disabled
via the NRB or NAB bits.

0—Conditional branches will be counted if not suppressed by other filter conditions.
Caution: If NRB, NCB, and NAB are all set, no branches will be counted.
Ignored if the Branches Retired event is not enabled.

Table 13-9. LWPCB Filters Fields (continued)
Bits Field Description

[AMD Public Use]

Software Debug and Performance Resources 445

24593—Rev. 3.37—March 2021 AMD64 Technology

13.4.7 XSAVE/XRSTOR
LWP requires that the processor support the XSAVE/XRSTOR instructions for managing extended
processor state components.

13.4.7.1 Configuration
The processor uses bit 62 of XFEATURE_ENABLED_MASK (register XCR0) to indicate whether
LWP state can be saved and restored, and thus whether LWP is available to applications. The LWP
XSAVE area length and offset from the beginning of the XSAVE area are available from the CPUID
instruction (see “Detecting LWP XSAVE Area” on page 426). In Version 1 of LWP, the LWP XSAVE
area is 128 (080h) bytes long and the offset is 832 (340h) bytes.

13.4.7.2 XSAVE Area
Figure 13-33 below shows the layout of the XSAVE area for LWP. It is large enough to allow for future
expansion of the number of event counters. Details of the fields are in Table 13-10.

All fields in the XSAVE area that are marked as “Reserved” (or “Rsvd”) must be zero.

29 NRB

No unconditional relative branches.
1—Unconditional relative branches will not be counted. This applies to

unconditional jumps (JMP), calls (CALL), and returns (RET). Conditional
branches and indirect jumps or calls through a register or memory are counted
normally if not disabled via the NCB or NAB bits.

0—Direct branches will be counted if not suppressed by other filter conditions.
Caution: If NRB, NCB, and NAB are all set, no branches will be counted.
Ignored if the Branches Retired event is not enabled.

30 IPI

IP filtering invert.
1—IP filtering inverted. Only instructions outside the range from BaseIP to LimitIP

are eligible for LWP counting.
0—IP filtering normal. Only instructions inside the range from BaseIP to LimitIP

are eligible for LWP counting.
Ignored if IPF is zero or if the CPUID LwpIpFiltering bit is 0 to indicate that IP
filtering is not supported.

31 IPF

IP filtering.
1—IP filtering enabled. The values of the BaseIP and LimitIP fields specify a range

of instruction addresses that are eligible for LWP event counting and reporting.
The range is inclusive if IPI is 0 and exclusive if IPI is 1.

0—IP filtering disabled; instructions at every address are eligible for LWP counting.
Ignored if the CPUID LwpIpFiltering bit is 0 to indicate that IP filtering is not
supported.

Table 13-9. LWPCB Filters Fields (continued)
Bits Field Description

[AMD Public Use]

446 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 13-33. XSAVE Area for LWP

Byte 7 Byte 06 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

LWPCBAddress 0

BufferHeadOffset Counter Flags (Reserved) Cntr Flags 8

BufferBase 16

Filters
31 28

Rsvd
27 0

BufferSize 24

Saved Event Record

32

40

48

56

EventCounter2 EventCounter1 64

EventCounter4 EventCounter3 72

EventCounter6 EventCounter5 80

Reserved for EventCounter8 Reserved for EventCounter7 88

Reserved for EventCounter10 Reserved for EventCounter9 96

Reserved for EventCounter12 Reserved for EventCounter11 104

Reserved for EventCounter14 Reserved for EventCounter13 112

Reserved for EventCounter16 Reserved for EventCounter15 120

[AMD Public Use]

Software Debug and Performance Resources 447

24593—Rev. 3.37—March 2021 AMD64 Technology

13.4.7.3 XSAVE operation
If LWP is not currently enabled (i.e., if LWP_CBADDR = 0), no state needs to be stored. XSAVE sets
bit 62 in XSAVE.HEADER.XSTATE_BV to 0 so that an attempt to restore state from this save area
will use the processor supplied values. See “Processor supplied values” on page 449.

If LWP is enabled, XSAVE stores the various internal LWP values into the XSAVE area with no
checking or conversion and sets bit 62 in XSAVE.HEADER.XSTATE_BV to 1.

13.4.7.4 XRSTOR operation
If bit 62 in XFEATURE_ENABLED_MASK (XCR0) is 0 or if bit 62 of EDX:EAX (EDX[30]) is 0,
XRSTOR does not alter the LWP state.

If the above bits are 1 but bit 62 in XSAVE.HEADER.XSTATE_BV is 0, XRSTOR writes the LWP
state using the processor supplied values, disabling LWP. See “Processor supplied values” on
page 449.

If all of the above bits are 1, XRSTOR loads LWP state from the XSAVE area as follows:

1. The internal pointers and sizes are loaded.

Table 13-10. XSAVE Area for LWP Fields
Bytes Bits Field Description

7–0 LWPCBAddress Address of LWPCB. 0 if LWP is disabled, in which case the rest of the save
area is ignored. This is a linear address.

9–8 0 — Reserved

9–8 1 CntrFlags.Counter1
1—Event with EventId 1 is active. XRSTOR will make the event active

and restore its counter from EventCounter1.
0—Event 1 is not active. XRSTOR will make the event inactive.

9–8 6:2 CntrFlags.Countern Bit flags defined as above for EventCounter2–6.
9–8 15:7 — Reserved for counter flags

11–10 15:0 — Reserved for counter flags
15–12 BufferHeadOffset BufferHeadOffset value
23–16 BufferBase Address of the event ring buffer. This is a linear address.
27–24 27:0 BufferSize Size of the event ring buffer
27–24 31:28 — Reserved
31–28 Filters Profiling filters (same as the Filters field in the LWPCB)

63–32 SavedEventRecord If an event record is pending, the data to write. May be sparse. Zero in the
EventId field means no record pending.

67–64 EventCounter1 Counter for event 1 (valid if CntrFlags.Counter1 bit is set)
87–68 EventCountern Counters for events 2–6 (valid if the respective Countern bit is set)

127–88 — Reserved for future event counters

[AMD Public Use]

448 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

- If BufferSize is below the implementation minimum, LWP is disabled and XRSTOR of LWP
state terminates.

- If BufferSize is not a multiple of the event record size, it is rounded down.
- If BufferHeadOffset is greater than (BufferSize - LwpEventSize), a value of 0 is used instead.
- If BufferHeadOffset is not a multiple of the event record size, it is rounded down.

2. For each bit that is set in the Flags field that corresponds to an available event (as currently set in
the LWP_CFG MSR), the corresponding event is enabled and the event counter is loaded from the
EventCountern field. All other events are disabled.

3. If the EventId field in the SavedEventRecord is non-zero, there was a pending event when
XSAVE was executed. XRSTOR loads the event record into hardware. LWP will store it into the
event ring buffer as soon as possible once the CPL is 3.
Software should not alter the SavedEventRecord field. An implementation may ignore a saved
event record if it was not constructed by XSAVE. Storing an event into SavedEventRecord and
then executing XRSTOR is not a reliable way of injecting an event into the ring buffer.

Note that if LWP is already enabled when executing XRSTOR, the old LWP state is overwritten
without being saved.

No interrupt is generated by XRSTOR if the restored value of BufferHeadOffset results in a buffer that
is filled beyond the threshold. The interrupt will occur the next time an event record is stored.

XRSTOR may not restore all of the state necessary for LWP to operate. The LWP hardware will read
additional state from the LWPCB when it stores then next event record.

If the CPL = 0, XRSTOR simply reloads the LWPCB address and the ring buffer address from the
XSAVE area. Kernel software is trusted not to alter the area in such a way as to allow access to
memory that the application could not otherwise read or write. The linear addresses in the XSAVE area
were validated when the application executed LLWPCB.

If the CPL ≠ 0, XRSTOR first validates the LWPCB and ring buffer pointers. This prevents an
application from altering the XSAVE area in order to gain access to memory that it could not otherwise
read or write (based on the current values in the DS segment register). Note that if a program’s DS
value changes after doing a successful LLWPCB, it might be incapable of doing an XSAVE and then
an XRSTOR of LWP state. The XRSTOR will fail if the new DS value no longer allows access to the
linear addresses corresponding to the LWPCB or the ring buffer. Programs should avoid this behavior.

If XRSTOR is executed when the CPL ≠ 0, the system performs additional checks on the LWPCB and
ring buffer addresses according to the pseudo-code below. A “Store-type Segment_check” fails if the
limit check fails (address is beyond the segment limit) or if the segment is read-only.

bool Check(uint64 addr, uint32 size) { // Utility function
if (!64bit_Mode)

addr = truncate32(addr - DS.BASE)
uint64 top = addr + size - 1;
if (! Store-type Segment_check on DS:[addr] || // Check lower bound
 ! Store-type Segment_check on DS:[top]) // and upper bound

[AMD Public Use]

Software Debug and Performance Resources 449

24593—Rev. 3.37—March 2021 AMD64 Technology

return false;
return true;

}

if (! Check(XSAVE.LWPCBAddress, sizeof(LWPCB)) ||
 ! Check(XSAVE.BufferAddress, XSAVE.BufferSize))

Disable LWP

If any of the address checks fails, LWP is disabled. No fault is generated. A program that executes
XRSTOR when the CPL ≠ 0 and DS has changed can use SLWPCB to check whether LWP is running.

As with all features that use XSAVE and XRSTOR, if bit 62 of XFEATURE_ENABLED_MASK
(XCR0) is 0 but bit 62 of XSAVE.HEADER.XSTATE_BV is 1, XRSTOR will cause a #GP(0)
exception.

13.4.7.5 Processor supplied values
If XRSTOR is executed when bit 62 of XFEATURE_ENABLED_MASK (XCR0) and EDX:EAX are
both 1, but the corresponding bit in XSAVE.HEADER.XSTATE_BV is 0, it indicates that there is no
LWP state to restore. In this case, LWP_CBADDR is set to 0 and LWP is disabled. Other processor
internal state for LWP is set to 0 as necessary to avoid security issues.

13.4.8 Implementation Notes
The following subsections describe other LWP considerations.

13.4.8.1 Multiple Simultaneous Events
Multiple events are possible when an instruction retires. For instance, an indirect jump through a
pointer in memory can trigger the instructions retired, branches retired, and DCache miss events
simultaneously. LWP counts all events that apply to the instruction, but might not store event records
for all events whose event counters became negative. It is implementation dependent as to how many
event records are stored when multiple event counters simultaneously become negative. If not all
events cause event records to be stored, the choice of which event(s) to report is implementation
dependent and may vary from run to run on the same processor.

13.4.8.2 Processor State for Context Switch, SVM, and SMM
Implementations of LWP have internal state to hold information such as the current values of the
counters for the various events, a pointer into the event ring buffer, and a copy of the tail pointer for
quick detection of threshold and overflow states.

There are times when the system must preserve the volatile LWP state. When the operating system
context switches from one user thread to another, the old user state must be saved with the thread’s
context and the new state must be loaded. When a hypervisor decides to switch from one guest OS to
another, the same must be done for the guest systems’ states. Finally, state must be stored and reloaded
when the system enters and exits SMM, since the SMM code may decide to shut off power to the core.

[AMD Public Use]

450 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

Hardware does not maintain the LWP state in the active LWPCB. This is because the counters change
with every event (not just every reported event), so keeping them in memory would generate a large
amount of unnecessary memory traffic. Also, the LWPCB is in user memory and may be paged out to
disk at any time, so the memory may not be available when needed.

Saving State at Thread Context Switches
LWP requires that an operating system use the XSAVE and XRSTOR instructions to save and restore
LWP state across context switches.

XRSTOR restores the LWP volatile state when restoring other system state. Some additional LWP
state will be restored from the LWPCB when operations in ring 3 require that information.

LWP does not support the “lazy” state save and restore that is possible for floating point and SSE state.
It does not interact with the CR0[TS] bit. Operating systems that support LWP must always do an
XSAVE to preserve the old thread’s LWP context and an XRSTOR to set up the new LWP context. The
OS can continue to do a lazy switch of the FP and SSE state by ensuring that the corresponding bits in
EDX:EAX are clear when it executes the XSAVE and XRSTOR to handle the LWP context.

Saving State at SVM Worldswitch to a Different Guest
Hypervisors that allow guests to use LWP must save and restore LWP state when the guest OS
changes. In addition to the usual information in the VMCB, the hypervisor must use
XSAVE/XRSTOR to maintain the volatile LWP state and must also save and restore LWP_CFG. When
switching between a guest that uses LWP and one that does not, the hypervisor changes the value of
XFEATURE_ENABLED_MASK (XCR0), which ensures that LWP is only enabled in the appropriate
guest(s).

A hypervisor need not modify the LWP state if the guest OS is not changed.

Enabling SVM Live Migration
Some hypervisors support live migration of a guest virtual machine. Live migration is when a
hypervisor preserves the entire state of the guest running on one physical machine, copies that state to
another physical machine, and then resumes execution of the guest on the new hardware.

To allow live migration among machines which may have different internal implementations of LWP,
the hypervisor must present the common subset of features among all the hosts in the pool of machines
that can be used. Furthermore, since the hypervisor may XSAVE LWP state on one machine and
XRSTOR it on another machine, the contents of the XSAVE area must be consistent across all
implementations.

This means that an implementation of LWP keeps all event counters internally, not in the LWPCB. If
implementations were permitted to differ in this detail, a counter might not get properly restored after
migrating the guest machine.

[AMD Public Use]

Software Debug and Performance Resources 451

24593—Rev. 3.37—March 2021 AMD64 Technology

Saving State at SMM Entry and Exit
SMM entry and exit must save and restore LWP state when the processor is going to change power
state. SMM must use XSAVE/XRSTOR and must also save and restore LWP_CFG. Since LWP is ring
3 only and is inactive in System Management Mode, its state should not need to be saved and restored
otherwise.

Notes on Restoring LWP State
The LWPCB may not be in memory at all times. Therefore, the LWP hardware does not attempt to
access it while still in the OS kernel/VMM/SMM, since that access might fault. Some LWP state is
restored once the processor is in ring 3 and can take a #PF exception without crashing. This usually
happens the next time LWP needs to store an event record into the ring buffer.

13.4.8.3 LWPCB Access
Several LWPCB fields are written asynchronously by the LWP hardware and by the user software.
This section discusses techniques for reducing the associated memory traffic. This is interesting to
software because it influences what state is kept internally in LWP, and it explains the protocol
between the hardware filling the event ring buffer and the software emptying it.

The hardware keeps an internal copy of the event ring buffer head pointer. It need not flush the head
pointer to the LWPCB every time it stores an event record. The flush can be done periodically or it can
be deferred until a threshold or buffer full condition happens or until the application executes
LLWPCB or SLWPCB. Exceeding the buffer threshold always forces the head pointer to memory so
that the interrupt handler emptying the ring buffer sees the threshold condition.

The hardware may keep an internal copy of the event ring buffer tail pointer. It need not read the
software-maintained tail pointer unless it detects a threshold or buffer full condition. At that point, it
rereads the tail pointer to see if software has emptied some records from the ring buffer. If so, it
recomputes the condition and acts accordingly. This implies that software polling the ring buffer
should begin processing event records when it detects a threshold condition itself. To avoid a race
condition with software, the hardware rereads the tail pointer every time it stores an event record while
the threshold condition appears to be true. (An implementation can relax this to “every nth time” for
some small value of n.) It also rereads it whenever the ring buffer appears to be full.

The interval values used to reset the counters can be cached in the hardware when the LLWPCB
instruction is executed, or they can be read from the LWPCB each time the counter overflows.

The ring buffer base and size are cached in the hardware.

The MissedEvents value is a counter for an exceptional condition and is kept in memory.

The cached LWP state is refreshed from the LWPCB when LWP is enabled either explicitly via
LLWPCB or implicitly when needed in ring 3 after LWP state is restored via XRSTOR.

Caching implies that software cannot reliably change sampling intervals or other cached state by
modifying the LWPCB. The change might not be noticed by the LWP hardware. On the other hand,
changing state in the LWPCB while LWP is running may change the operation at an unpredictable

[AMD Public Use]

452 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

moment in the future if LWP context is saved and restored due to context switching. Software must
stop and restart LWP to ensure that any changes reliably take effect.

13.4.8.4 Security
The operating system must ensure that information does not leak from one process to another or from
the kernel to a user process. Hence, if it supports LWP at all, the operating system must ensure that the
state of the LWP hardware is set appropriately when a context switch occurs and when a new process
or thread is created. LWP state for a new thread can be initialized by executing XRSTOR with bit 62 of
XSAVE.HEADER.XSTATE_BV set to 0 and the corresponding bit in EDX:EAX set to 1.

13.4.8.5 Interrupts
The LWP threshold interrupt vector number is specified in the LWP_CFG MSR. The operating system
must assign a vector for LWP threshold interrupts and fill in the corresponding entry in the interrupt-
descriptor table. Note that the LWP interrupt is not shared with the performance counter interrupt,
since the system allows concurrent and independent use of those two mechanisms.

13.4.8.6 Memory Access During LWP Operation
When LWP needs to save an event record in the event ring buffer, it accesses the user memory
containing the ring buffer and sometimes the memory containing the LWPCB. This causes a Page
Fault (#PF) exception if those pages are not in memory.

A particular implementation of LWP has several ways to deal with page faults when storing an event
record. These may include saving the event record in the XSAVE area and retrying the store later,
reexecuting the instruction, or discarding the event and reporting the next event of the appropriate
type.

Note that this reinforces the notion that LWP is a sampling mechanism. Programs cannot rely on it to
precisely capture every nth instance of an event. It captures approximately every nth instance.

13.4.8.7 Guidelines for Operating Systems
To support LWP, an operating system should follow the following guidelines. Most of these operations
should be done on each core of a multi-core system.

System initialization
1. Use CPUID Fn0000_0000 to ensure that the system is running on an “Authentic AMD”

processor, and then check CPUID Fn8000_0001_ECX[LWP] to ensure that the processor
supports LWP.
Alternatively, check CPUID Fn0000_000D_EDX_x0[30] to ensure that the system supports the
LWP XSAVE area, indicating that the processor supports LWP.

2. Enable XSAVE operations by setting CR4[OSXSAVE].

3. Enable LWP by executing XSETBV to set bit 62 of XCR0.

[AMD Public Use]

Software Debug and Performance Resources 453

24593—Rev. 3.37—March 2021 AMD64 Technology

4. Assign a unique interrupt vector number for LWP threshold interrupts and load the corresponding
entry in the interrupt-descriptor table with the address of the interrupt handler. This handler
should use some system-specific method to forward any threshold interrupts to the application.

5. Make LWP available by setting LWP_CFG. To enable all supported LWP features, set
LWP_CFG[31:0] to the value returned by CPUID Fn8000_001C_EDX. Set
LWP_CFG[COREID] to the APIC core number (or some other value unique to the core) and
LWP_CFG[VECTOR] to the assigned interrupt vector number.

Thread support
• For each thread, allocate an XSAVE area that is at least as big as the XFeatureEnabledSizeMax

value returned by CPUID Fn0000_000D_EBX_x0 (ECX=0). This is good practice for any system
that supports XSAVE.

• When creating a new process or thread, execute XRSTOR with bit 62 of EDX:EAX set to 1 and bit
62 of XSAVE.HEADER.XSTATE_BV set to 0. This ensures that LWP is turned off for any new
thread. Alternatively, use WRMSR to write 0 into LWP_CBADDR before starting the thread.

• When saving a running thread’s context, execute XSAVE with bit 62 of EDX:EAX set to 1 to save
the thread’s LWP state. It takes almost no time or resources if the thread is not using LWP.

• When restoring a thread’s context, execute XRSTOR with bit 62 of EDX:EAX set to 1. This
restores the LWP state for the thread or disables LWP if the thread is not using it.

• When a thread exits or aborts, use WRMSR to store 0 into LWP_CBADDR. This ensures that
LWP is turned off.

13.4.8.8 Summary of LWP State
LWP adds the following visible state to the AMD64 architecture:

• CPUID Fn8000_0001_ECX[LWP] (bit 15) to indicate LWP support.
• CPUID Fn8000_001C to indicate LWP features.
• Two new MSRs: LWP_CFG, LWP_CBADDR,.
• Four new instructions: LLWPCB, SLWPCB, LWPINS, and LWPVAL.
• Bit 62 in XCR0 (XFEATURE_ENABLED_MASK)
• A new XSAVE area for LWP state.
• New fields for LWP state in the SVM and SMM context, whether in the VMCB and SMM save

area or elsewhere.

See Section 3.3, “Processor Feature Identification,” on page 70 for information on using the CPUID
instruction to obtain information about processor capabilites.

[AMD Public Use]

454 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Processor Initialization and Long Mode Activation 455

24593—Rev. 3.37—March 2021 AMD64 Technology

14 Processor Initialization and Long Mode
Activation

This chapter describes the hardware actions taken following a processor reset and the steps that must
be taken to initialize processor resources and activate long mode. In some cases the actions required
are implementation-specific with references made to the appropriate implementation-specific
documentation.

14.1 Processor Initialization
System logic can initialize the processor in either of two ways. One method, called RESET, is usually
initiated by the assertion of an external signal (typically designated RESET#). The other method,
called INIT, is typically initiated by another processor by means of an INIT interprocessor interrupt
(IPI). See “Interprocessor Interrupts (IPI)” on page 605 for more information.

Both initialization techniques place the processor in real mode and initialize processor resources to a
known, consistent state from which software can begin execution. The processor begins execution
when the RESET# pin is deasserted or the INIT state is exited.

The RESET method places the processor in a known state and prepares it to begin execution in real
mode. The INIT method is similar except it does not modify the state of certain registers. See Section
14.1.3 on page 456 for a comparison of these initialization methods.

System logic ensures that the processor transitions through the RESET state whenever power is
reapplied after a planned or unplanned interruption. A RESET can also be performed when power is
stable. An INIT can be performed at any time after the processor is powered up.

14.1.1 Built-In Self Test (BIST)

An optional built-in self-test can be performed after the processor is reset. The mechanism for
triggering the BIST is implementation-specific, and can be found in the hardware documentation for
the implementation. The number of processor cycles BIST can consume before completing is also
implementation-specific but typically consumes several million cycles.

BIST can be used by system implementations to assist in verifying system integrity, thereby improving
system reliability, availability, and serviceability. The internal BIST hardware generally tests all
internal array structures for errors. These structures can include (but are not limited to):

• All internal caches, including the tag arrays as well as the data arrays.
• All TLBs.
• Internal ROMs, such as the microcode ROM and floating-point constant ROM.
• Branch-prediction structures.

[AMD Public Use]

456 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.37—March 2021

EAX is loaded with zero if BIST completes without detecting errors. If any hardware faults are
detected during BIST, a non-zero value is loaded into EAX.

14.1.2 Clock Multiplier Selection

The internal processor clock runs at some multiple of the system clock. The processor-to-system clock
multiple does not have to be fixed by a processor implementation but instead can be programmable
through hardware or software, or some combination of the two. For information on selecting the
processor-clock multiplier, see the BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual applicable to your product.

14.1.3 Processor Initialization State

Table 14-1 shows the initial processor state following either RESET or INIT. Except as indicated,
processor resources generally are set to the same value after either RESET or INIT.

Table 14-1. Initial Processor State
Processor Resource Value After RESET Value After INIT

CR0 0000_0000_6000_0010h
CD and NW are unchanged
Bit 4 (reserved) = 1
All others = 0

CR2, CR3, CR4 0
CR8 0 Not modified
RFLAGS 0000_0000_0000_0002h
EFER 0
RIP 0000_0000_0000_FFF0h

CS

Selector = F000h
Base = 0000_0000_FFFF_0000h
Limit = FFFFh
Attributes = See Table 14-2 on page 458

DS, ES, FS, GS, SS

Selector = 0000h
Base = 0
Limit = FFFFh
Attributes = See Table 14-2 on page 458

GDTR, IDTR
Base = 0
Limit = FFFFh

LDTR, TR

Selector = 0000h
Base = 0
Limit = FFFFh
Attributes = See Table 14-2 on page 458

RAX
0
(non-zero if BIST is run and fails)

0

[AMD Public Use]

Processor Initialization and Long Mode Activation 457

24593—Rev. 3.37—March 2021 AMD64 Technology

Table 14-2 on page 458 shows the initial state of the segment-register attributes (located in the hidden
portion of the segment registers) following either RESET or INIT.

RDX Family/Model/Stepping, including extended family and extended model—see
“Processor Implementation Information” on page 459

RBX, RCX, RBP, RSP, RDI, RSI,
R8, R9, R10, R11, R12, R13, R14,
R15

0

x87 Floating-Point State

FPR0–FPR7 = 0
Control Word = 0040h
Status Word = 0000h
Tag Word = 5555h
Instruction CS = 0000h
Instruction Offset = 0
x87 Instruction Opcode = 0
Data-Operand DS = 0000h
Data-Operand Offset = 0

Not modified

64-Bit Media State MMX0–MMX7 = 0 Not modified

SSE State
XMM0–XMM15 = 0
MXCSR = 1F80h

Not modified

Memory-Type Range Registers See “Memory-Typing MSRs” on
page 659 Not modified

Machine-Check Registers See “Machine-Check MSRs” on
page 661 Not modified

DR0, DR1, DR2, DR3 0
DR6 0000_0000_FFFF_0FF0h
DR7 0000_0000_0000_0400h
Time-Stamp Counter 0 Not modified

Performance-Monitor Resources See “Performance-Monitoring MSRs”
on page 663 Not modified

Other Model-Specific Registers See “MSR Cross-Reference” on
page 651 Not modified

Instruction and Data Caches
Invalidated Not modified

Instruction and Data TLBs
APIC Disabled, see Table 16-2 on page 595. Enabled, see Table 16-2 on page 595.
SMRAM Base Address (SMBASE) 0003_0000h Not modified
XCR0 0000_0000_0000_0001h Not modified
PKRU 0000_0000h Not modified

Table 14-1. Initial Processor State (continued)
Processor Resource Value After RESET Value After INIT

[AMD Public Use]

458 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.37—March 2021

14.1.4 Multiple Processor Initialization

Following reset in multiprocessor configurations, the processors use a multiple-processor
initialization protocol to negotiate which processor becomes the bootstrap processor. This bootstrap
processor then executes the system initialization code while the remaining processors wait for
software initialization to complete. For further information, see the documentation for particular
implementations of the architecture.

14.1.5 Fetching the First Instruction

After a RESET or INIT, the processor is operating in 16-bit real mode. Normally within real mode, the
code-segment base-address is formed by shifting the CS-selector value left four bits. The base address
is then added to the value in EIP to form the physical address into memory. As a result, the processor
can only address the first 1 Mbyte of memory when in real mode.

However, immediately following RESET or INIT, the CS-selector register is loaded with F000h, but
the CS base-address is not formed by left-shifting the selector. Instead, the CS base-address is
initialized to FFFF_0000h. EIP is initialized to FFF0h. Therefore, the first instruction fetched from
memory is located at physical-address FFFF_FFF0h (FFFF_0000h + 0000_FFF0h).

The CS base-address remains at this initial value until the CS-selector register is loaded by software.
This can occur as a result of executing a far jump instruction or call instruction, for example. When CS
is loaded by software, the new base-address value is established as defined for real mode (by left
shifting the selector value four bits).

Table 14-2. Initial State of Segment-Register Attributes
Attribute Value (Binary) Description

G 0 Byte Granularity
D/B 0 16-Bit Segment
L (CS Only) 0 Legacy-Mode Segment
P 1 Segment is Present
DPL 00 Privilege-Level 0

S and Type

Code
Segment

S = 1
Type = 1010

Executable/Readable Code Segment

Data
Segment

S = 1
Type = 0010

Read/Write Data Segment

LDTR
S = 0
Type = 0010

LDT

TR
S = 0
Type = 0011

Busy 16-Bit TSS

[AMD Public Use]

Processor Initialization and Long Mode Activation 459

24593—Rev. 3.37—March 2021 AMD64 Technology

14.2 Hardware Configuration
14.2.1 Processor Implementation Information

Software can read processor-identification information from the EDX register immediately following
RESET or INIT. This information can be used to initialize software to perform processor-specific
functions. The information stored in EDX is defined as follows:

• Stepping ID (bits 3:0)—This field identifies the processor-revision level.
• Extended Model (bits 19:16) and Model (bits 7:4)—These fields combine to differentiate

processor models within a instruction family. For example, two processors may share the same
microarchitecture but differ in their feature set. Such processors are considered different models
within the same instruction family. This is a split field, comprising an extended-model portion in
bits 19:16 with a legacy portion in bits 7:4

• Extended Family (bits 27:20) and Family (bits 11:8)—These fields combine to differentiate
processors by their microarchitecture.

The CPUID instruction can be used to obtain the same information. This is done by executing CPUID
with either function 1 or function 8000_0001h. Additional information about the processor and the
features supported can be gathered using CPUID with other feature codes. See Section 3.3, “Processor
Feature Identification,” on page 70 for additional information.

14.2.2 Enabling Internal Caches

Following a RESET (but not an INIT), all instruction and data caches are disabled, and their contents
are invalidated (the MOESI state is set to the invalid state). Software can enable these caches by
clearing the cache-disable bit (CR0.CD) to zero (RESET sets this bit to 1). Software can further refine
caching based on individual pages and memory regions. Refer to “Cache Control Mechanisms” on
page 200 for more information on cache control.

Memory-Type Range Registers (MTRRs). Following a RESET (but not an INIT), the
MTRRdefType register is cleared to 0, which disables the MTRR mechanism. The variable-range and
fixed-range MTRR registers are not initialized and are therefore in an undefined state. Before enabling
the MTRR mechanism, the initialization software (usually platform firmware) must load these
registers with a known value to prevent unexpected results. Clearing these registers, for example, sets
memory to the uncacheable (UC) type.

14.2.3 Initializing Media and x87 Processor State

Some resources used by x87 floating-point instructions and media instructions must be initialized by
software before being used. Initialization software can use the CPUID instruction to determine
whether the processor supports these instructions, and then initialize their resources as appropriate.

x87 Floating-Point State Initialization. Table 14-3 on page 460 shows the differences between the
initial x87 floating-point state following a RESET and the state established by the FINIT/FNINIT
instruction. An INIT does not modify the x87 floating-point state. The initialization software can

[AMD Public Use]

460 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.37—March 2021

execute an FINIT or FNINIT instruction to prepare the x87 floating-point unit for use by application
software. The FINIT and FNINIT instructions have no effect on the 64-bit media state.

Initialization software should also load the MP, EM, and NE bits in the CR0 register as appropriate for
the operating system. The recommended settings are:

• MP=1—Setting MP to 1 causes a device-not-available exception (#NM) to occur when the
FWAIT/WAIT instruction is executed and the task-switched bit (CR0.TS) is set to 1. This supports
operating systems that perform lazy context-switching of x87 floating-point state.

• EM=0—Clearing EM to 0 allows the x87 floating-point unit to execute instructions rather than
causing a #NM exception (CR0.EM=1). System software sets EM to 1 only when software
emulation of x87 instructions is desired.

• NE=1—Setting NE to 1 causes x87 floating-point exceptions to be handled by the floating-point
exception-pending exception (#MF) handler. Clearing this bit causes the processor to externally
indicate the exception occurred, and an external device can then cause an external interrupt to
occur in response.

Refer to “CR0 Register” on page 42 for additional information on these control bits.

64-Bit Media State Initialization. There are no special requirements placed on software to initialize
the processor state used by 64-bit media instructions. This state is initialized completely by the
processor following a RESET. System software should leave CR0.EM cleared to 0 to allow execution
of the 64-bit media instructions. If CR0.EM is set to 1, attempted execution of the 64-bit media
instructions causes an invalid-opcode exception (#UD).

The 64-bit media state is not modified by an INIT.

Table 14-3. x87 Floating-Point State Initialization
x87 Floating-Point

Resource RESET FINIT/FNINIT
Instructions

FPR0–FPR7 0 Not modified

Control Word

0040h
• Round to nearest
• Single precision
• Unmask all exceptions

037Fh
• Round to nearest
• Extended precision
• Mask all exceptions

Status Word 0000h
Tag Word 5555h (FPRn contain zero) FFFFh (FPRn are empty)
Instruction CS 0000h
Instruction Offset 0
x87 Instruction Opcode 0
Data-Operand DS 0000h
Data-Operand Offset 0

[AMD Public Use]

Processor Initialization and Long Mode Activation 461

24593—Rev. 3.37—March 2021 AMD64 Technology

SSE State Initialization. Platform firmware or system software must also prepare the processor to
allow execution of SSE instructions. The required preparations include:

• Leaving CR0.EM cleared to 0 to allow execution of the SSE instructions. If CR0.EM is set to 1,
attempted execution of the SSE instructions except FXSAVE/FXRSTOR causes an invalid-opcode
exception (#UD). An attempt to execute either of these instructions when CR0.EM is set results in
a #NM exception.

• Enabling the SSE instructions by setting CR4.OSFXSR to 1. Software cannot execute the SSE
instructions unless this bit is set. Setting this bit also indicates that system software uses the
FXSAVE and FXRSTOR instructions to save and restore, respectively, the SSE state. These
instructions also save and restore the 64-bit media state and x87 floating-point state.

• Indicating that system software uses the SIMD floating-point exception (#XF) for handling SSE
floating-point exceptions. This is done by setting CR4.OSXMMEXCPT to 1.

• Setting (optionally) the MXCSR mask bits to mask or unmask SSE floating-point exceptions as
desired. Because this register can be read and written by application software, it is not absolutely
necessary for system software to initialize it.

Refer to “CR4 Register” on page 47 for additional information on these CR4 control bits.

14.2.4 Model-Specific Initialization

Implementations of the AMD64 architecture can contain model-specific features and registers that are
not initialized by the processor and therefore require system-software initialization. System software
must use the CPUID instruction to determine which features are supported. Model-specific features
are generally configured using model-specific registers (MSRs), which can be read and written using
the RDMSR and WRMSR instructions, respectively.

Some of the model-specific features are pervasive across many processor implementations of the
AMD64 architecture and are therefore described within this volume. These include:

• System-call extensions, which must be enabled in the EFER register before using the SYSCALL
and SYSRET instructions. See “System-Call Extension (SCE) Bit” on page 57 for information on
enabling these instructions.

• Memory-typing MSRs. See “Memory-Type Range Registers (MTRRs)” on page 459 for
information on initializing and using these registers.

• The machine-check mechanism. See “Initializing the Machine-Check Mechanism” on page 301
for information on enabling and using this capability.

• Extensions to the debug mechanism. See “Software-Debug Resources” on page 376 for
information on initializing and using these extensions.

• The performance-monitoring resources. See “Performance Monitoring Counters” on page 390 for
information on initializing and using these resources.

Initialization of other model-specific features used by the page-translation mechanism and long mode
are described throughout the remainder of this section.

[AMD Public Use]

462 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.37—March 2021

Some model-specific features are not pervasive across processor implementations and are therefore
not described in this volume. For more information on these features and their initialization
requirements, see the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manual applicable to your product.

14.3 Initializing Real Mode
A basic real-mode (real-address-mode) operating environment must be initialized so that system
software can initialize the protected-mode operating environment. This real-mode environment must
include:

• A real-mode IDT for vectoring interrupts and exceptions to the appropriate handlers while in real
mode. The IDT base-address value in the IDTR initialized by the processor can be used, or system
software can relocate the IDT by loading a new base-address into the IDTR.

• The real-mode interrupt and exception handlers. These must be loaded before enabling external
interrupts.
Because the processor can always accept a non-maskable interrupt (NMI), it is possible an NMI
can occur before initializing the IDT or the NMI handler. System hardware must provide a
mechanism for disabling NMIs to allow time for the IDT and NMI handler to be properly
initialized. Alternatively, the IDT and NMI handler can be stored in non-volatile memory that is
referenced by the initial values loaded into the IDTR.
Maskable interrupts can be enabled by setting EFLAGS.IF after the real-mode IDT and interrupt
handlers are initialized.

• A valid stack pointer (SS:SP) to be used by the interrupt mechanism should interrupts or
exceptions occur. The values of SS:SP initialized by the processor can be used.

• One or more data-segment selectors for storing the protected-mode data structures that are created
in real mode.

Once the real-mode environment is established, software can begin initializing the protected-mode
environment.

14.4 Initializing Protected Mode
Protected mode must be entered before activating long mode. A minimal protected-mode environment
must be established to allow long-mode initialization to take place. This environment must include the
following:

• A protected-mode IDT for vectoring interrupts and exceptions to the appropriate handlers while in
protected mode.

• The protected-mode interrupt and exception handlers referenced by the IDT. Gate descriptors for
each handler must be loaded in the IDT.

• A GDT which contains:

[AMD Public Use]

Processor Initialization and Long Mode Activation 463

24593—Rev. 3.37—March 2021 AMD64 Technology

- A code descriptor for the code segment that is executed in protected mode.
- A read/write data segment that can be used as a protected-mode stack. This stack can be used

by the interrupt mechanism if interrupts or exceptions occur.

Software can optionally load the GDT with one or more data segment descriptors, a TSS descriptor,
and an LDT descriptor for use by long-mode initialization software.

After the protected-mode data structures are initialized, system software must load the IDTR and
GDTR with pointers to those data structures. Once these registers are initialized, protected mode can
be enabled by setting CR0.PE to 1.

If legacy paging is used during the long-mode initialization process, the page-translation tables must
be initialized before enabling paging. At a minimum, one page directory and one page table are
required to support page translation. The CR3 register must be loaded with the starting physical
address of the highest-level table supported in the page-translation hierarchy. After these structures are
initialized and protected mode is enabled, paging can be enabled by setting CR0.PG to 1.

14.5 Initializing Long Mode
From protected mode, system software can initialize the data structures required by long mode and
store them anywhere in the first 4 Gbytes of physical memory. These data structures can be relocated
above 4 Gbytes once long mode is activated. The data structures required by long mode include the
following:

• An IDT with 64-bit interrupt-gate descriptors. Long-mode interrupts are always taken in 64-bit
mode, and the 64-bit gate descriptors are used to transfer control to interrupt handlers running in
64-bit mode. See “Long-Mode Interrupt Control Transfers” on page 270 for more information.

• The 64-bit mode interrupt and exception handlers to be used in 64-bit mode. Gate descriptors for
each handler must be loaded in the 64-bit IDT.

• A GDT containing segment descriptors for software running in 64-bit mode and compatibility
mode, including:
- Any LDT descriptors required by the operating system or application software.
- A TSS descriptor for the single 64-bit TSS required by long mode.
- Code descriptors for the code segments that are executed in long mode. The code-segment

descriptors are used to specify whether the processor is operating in 64-bit mode or
compatibility mode. See “Code-Segment Descriptors” on page 97, “Long (L) Attribute Bit” on
page 98, and “CS Register” on page 79 for more information.

- Data-segment descriptors for software running in compatibility mode. The DS, ES, and SS
segments are ignored in 64-bit mode. See “Data-Segment Descriptors” on page 98 for more
information.

- FS and GS data-segment descriptors for 64-bit mode, if required by the operating system. If
these segments are used in 64-bit mode, system software can also initialize the full 64-bit base

[AMD Public Use]

464 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.37—March 2021

addresses using the WRMSR instruction. See “FS and GS Registers in 64-Bit Mode” on
page 80 for more information.

The existing protected-mode GDT can be used to hold the long-mode descriptors described above.
• A single 64-bit TSS for holding the privilege-level 0, 1, and 2 stack pointers, the interrupt-stack-

table pointers, and the I/O-redirection-bitmap base address (if required). This is the only TSS
required, because hardware task-switching is not supported in long mode. See “64-Bit Task State
Segment” on page 361 for more information.

• The 4-level page-translation tables required by long mode. Long mode also requires the use of
physical-address extensions (PAE) to support physical-address sizes greater than 32 bits. See
“Long-Mode Page Translation” on page 141 for more information.

If paging is enabled during the initialization process, it must be disabled before enabling long mode.
After the long-mode data structures are initialized, and paging is disabled, software can enable and
activate long mode.

14.6 Enabling and Activating Long Mode
Long mode is enabled by setting the long-mode enable control bit (EFER.LME) to 1. However, long
mode is not activated until software also enables paging. When software enables paging while long
mode is enabled, the processor activates long mode, which the processor indicates by setting the long-
mode-active status bit (EFER.LMA) to 1. The processor behaves as a 32-bit x86 processor in all
respects until long mode is activated, even if long mode is enabled. None of the new 64-bit data sizes,
addressing, or system aspects available in long mode can be used until EFER.LMA=1.

Table 14-4 shows the control-bit settings for enabling and activating the various operating modes of
the AMD64 architecture. The default address and data sizes are shown for each mode. For the methods
of overriding these default address and data sizes, see “Instruction Prefixes” in Volume 1.

[AMD Public Use]

Processor Initialization and Long Mode Activation 465

24593—Rev. 3.37—March 2021 AMD64 Technology

Long mode uses two code-segment-descriptor bits, CS.L and CS.D, to control the operating
submodes. If long mode is active, CS.L = 1, and CS.D = 0, the processor is running in 64-bit mode, as
shown in Table 14-4 on page 465. With this encoding (CS.L=1, CS.D=0), default operand size is 32
bits and default address size is 64 bits. Using instruction prefixes, the default operand size can be
overridden to 64 bits or 16 bits, and the default address size can be overridden to 32 bits.

The final encoding of CS.L and CS.D in long mode (CS.L=1, CS.D=1) is reserved for future use.

When long mode is active and CS.L is cleared to 0, the processor is in compatibility mode, as shown in
Table 14-4 on page 465. In compatibility mode, CS.D controls default operand and address sizes
exactly as it does in the legacy x86 architecture. Setting CS.D to 1 specifies default operand and
address sizes as 32 bits. Clearing CS.D to 0 specifies default operand and address sizes as 16 bits.

14.6.1 Activating Long Mode

Switching the processor to long mode requires several steps. In general, the sequence involves
disabling paging (CR0.PG=0), enabling physical-address extensions (CR4.PAE=1), loading CR3,
enabling long mode (EFER.LME=1), and finally enabling paging (CR0.PG=1).

Specifically, software must follow this sequence to activate long mode:

1. If starting from page-enabled protected mode, disable paging by clearing CR0.PG to 0. This
requires that the MOV CR0 instruction used to disable paging be located in an identity-mapped
page (virtual address equals physical address).

2. In any order:

Table 14-4. Processor Operating Modes

Mode

Encoding

Default
Address Size

(bits)2

Default
Data
Size

(bits)2

EF
ER

.L
M

A
1

C
S.

L

C
S.

D

Long Mode

64-Bit
Mode

1
1 0 64 32

Compatibility
Mode

0
1 32 32
0 16 16

Legacy Mode 0 x
1 32 32
0 16 16

Note:
1. EFER.LMA is set by the processor when software sets EFER.LME and CR0.PG according

to the sequence described in “Activating Long Mode” on page 465.
2. See “Instruction Prefixes” in Volume 1 for overrides to default sizes.

[AMD Public Use]

466 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.37—March 2021

- Enable physical-address extensions by setting CR4.PAE to 1. Long mode requires the use of
physical-address extensions (PAE) in order to support physical-address sizes greater than 32
bits. Physical-address extensions must be enabled before enabling paging.

- Load CR3 with the physical base-address of the level-4 page-map-table (PML4). See “Long-
Mode Page Translation” on page 141 for details on creating the 4-level page translation tables
required by long mode.

- Enable long mode by setting EFER.LME to 1.

3. Enable paging by setting CR0.PG to 1. This causes the processor to set the EFER.LMA bit to 1.
The instruction following the MOV CR0 that enables paging must be a branch, and both the MOV
CR0 and the following branch instruction must be located in an identity-mapped page.

14.6.2 Consistency Checks

The processor performs long-mode consistency checks whenever software attempts to modify any of
the control bits directly involved in activating long mode (EFER.LME, CR0.PG, and CR4.PAE). A
general-protection exception (#GP) occurs when a consistency check fails. Long-mode consistency
checks ensure that the processor does not enter an undefined mode or state that results in unpredictable
behavior.

Long-mode consistency checks cause a general-protection exception (#GP) to occur if:

• An attempt is made to enable or disable long mode while paging is enabled.
• Long mode is enabled, and an attempt is made to enable paging before enabling physical-address

extensions (PAE).
• Long mode is enabled, and an attempt is made to enable paging while CS.L=1.
• Long mode is active and an attempt is made to disable physical-address extensions (PAE).

Table 14-5 summarizes the long-mode consistency checks made during control-bit transitions.

14.6.3 Updating System Descriptor Table References

Immediately after activating long mode, the system-descriptor-table registers (GDTR, LDTR, IDTR,
TR) continue to reference legacy descriptor tables. The tables referenced by these descriptors all reside
in the lower 4 Gbytes of virtual-address space. After activating long mode, 64-bit operating-system
software should use the LGDT, LLDT, LIDT, and LTR instructions to load the system descriptor-table

Table 14-5. Long-Mode Consistency Checks
Control Bit Transition Check

EFER.LME
0 ® 1 If (CR0.PG=1) then #GP(0)
1 ® 0 If (CR0.PG=1) then #GP(0)

CR0.PG 0 ® 1
If ((EFER.LME=1) & (CR4.PAE=0) then #GP(0)
If ((EFER.LME=1) & (CS.L=1)) then #GP(0)

CR4.PAE 1 ® 0 If (EFER.LMA=1) then #GP(0)

[AMD Public Use]

Processor Initialization and Long Mode Activation 467

24593—Rev. 3.37—March 2021 AMD64 Technology

registers with references to the 64-bit versions of the descriptor tables. See “Descriptor Tables” on
page 82 for details on descriptor tables in long mode.

Long mode requires 64-bit interrupt-gate descriptors to be stored in the interrupt-descriptor table
(IDT). Software must not allow exceptions or interrupts to occur between the time long mode is
activated and the subsequent update of the interrupt-descriptor-table register (IDTR) that establishes a
reference to the 64-bit IDT. This is because the IDTR continues to reference a 32-bit IDT immediately
after long mode is activated. If an interrupt or exception occurred before updating the IDTR, a legacy
32-bit interrupt gate would be referenced and interpreted as a 64-bit interrupt gate, with unpredictable
results.

External interrupts can be disabled using the CLI instruction. Non-maskable interrupts (NMI) and
system-management interrupts (SMI) must be disabled using external hardware. See “Long-Mode
Interrupt Control Transfers” on page 270 for more information on long mode interrupts.

14.6.4 Relocating Page-Translation Tables

The long-mode page-translation tables must be located in the first 4 Gbytes of physical-address space
before activating long mode. This is necessary because the MOV CR3 instruction used to initialize the
page-map level-4 base address must be executed in legacy mode before activating long mode. Because
the MOV CR3 is executed in legacy mode, only the low 32 bits of the register are written, which limits
the location of the page-map level-4 translation table to the low 4 Gbytes of memory. Software can
relocate the page tables anywhere in physical memory, and re-initialize the CR3 register, after long
mode is activated.

14.7 Leaving Long Mode
To return from long mode to legacy protected mode with paging enabled, software must deactivate and
disable long mode using the following sequence:

1. Switch to compatibility mode and place the processor at the highest privilege level (CPL=0).

2. Deactivate long mode by clearing CR0.PG to 0. This causes the processor to clear the LMA bit to
0. The MOV CR0 instruction used to disable paging must be located in an identity-mapped page.
Once paging is disabled, the processor behaves as a standard 32-bit x86 processor.

3. Load CR3 with the physical base-address of the legacy page tables.

4. Disable long mode by clearing EFER.LME to 0.

5. Enable legacy page-translation by setting CR0.PG to 1. The instruction following the MOV CR0
that enables paging must be a branch, and both the MOV CR0 and the following branch
instruction must be located in an identity-mapped page.

14.8 Long-Mode Initialization Example
Following is sample code that outlines the steps required to place the processor in long mode.

[AMD Public Use]

468 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.37—March 2021

mydata segment para
;;
;
; This generic data-segment holds pseudo-descriptors used
; by the LGDT and LIDT instructions.
;
;;
;
; Establish a temporary 32-bit GDT and IDT.
;
pGDT32 label fword ; Used by LGDT.
 dw gdt32_limit ; GDT limit ...
 dd gdt32_base ; and 32-bit GDT base
pIDT32 label fword ; Used by LIDT.
 dw idt32_limit ; IDT limit ...
 dd idt32_base ; and 32-bit IDT base
;
; Establish a 64-bit GDT and IDT (64-bit linear base-
; address)
;
pGDT64 label tbyte ; Used by LGDT.
 dw gdt64_limit ; GDT limit ...
 dq gdt64_base ; and 64-bit GDT base
pIDT64 label tbyte ; Used by LIDT.
 dw idt64_limit ; IDT limit ...
 dq idt64_base ; and 64-bit IDT base
mydata ends ; end of data segment
code16 segment para use16 ; 16-bit code segment
;;;
; 16-bit code, real mode
;
;;
;
; Initialize DS to point to the data segment containing
; pGDT32 and PIDT32. Set up a real-mode stack pointer, SS:SP,
; in case of interrupts and exceptions.
;

cli
mov ax, seg mydata
mov ds, ax
mov ax, seg mystack
mov ss, ax
mov sp, esp0

;
; Use CPUID to determine if the processor supports long mode. ;

mov eax, 80000000h ; Extended-function 8000000h.
cpuid ; Is largest extended function
cmp eax, 80000000h ; any function > 80000000h?
jbe no_long_mode ; If not, no long mode.
mov eax, 80000001h ; Extended-function 8000001h.

[AMD Public Use]

Processor Initialization and Long Mode Activation 469

24593—Rev. 3.37—March 2021 AMD64 Technology

cpuid ; Now EDX = extended-features flags.
bt edx, 29 ; Test if long mode is supported.
jnc no_long_mode ; Exit if not supported.

;
; Load the 32-bit GDT before entering protected mode.
; This GDT must contain, at a minimum, the following
; descriptors:
; 1) a CPL=0 16-bit code descriptor for this code segment.
; 2) a CPL=0 32/64-bit code descriptor for the 64-bit code.
; 3) a CPL=0 read/write data segment, usable as a stack
; (referenced by SS).
;
; Load the 32-bit IDT, in case any interrupts or exceptions
; occur after entering protected mode, but before enabling
; long mode).
;
; Initialize the GDTR and IDTR to point to the temporary
; 32-bit GDT and IDT, respectively.
;

lgdt ds:[pGDT32]
lidt ds:[pIDT32]

;
; Enable protected mode (CR0.PE=1).
;

mov eax, 000000011h
mov cr0, eax

;
; Execute a far jump to turn protected mode on.
; code16_sel must point to the previously-established 16-bit
; code descriptor located in the GDT (for the code currently
; being executed).
;

db 0eah ;Far jump...
dw offset now_in_prot;to offset...
dw code16_sel ;in current code segment.

;;;
; At this point we are in 16-bit protected mode, but long
; mode is still disabled.
;
;;
now_in_prot:
;
; Set up the protected-mode stack pointer, SS:ESP.
; Stack_sel must point to the previously-established stack
; descriptor (read/write data segment), located in the GDT.
; Skip setting DS/ES/FS/GS, because we are jumping right to
; 64-bit code.
;

mov ax, stack_sel
mov ss, ax
mov esp, esp0

[AMD Public Use]

470 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.37—March 2021

;
; Enable the 64-bit page-translation-table entries by
; setting CR4.PAE=1 (this is _required_ before activating
; long mode). Paging is not enabled until after long mode
; is enabled.
;

mov eax, cr4
bts eax, 5
mov cr4, eax

;
; Create the long-mode page tables, and initialize the
; 64-bit CR3 (page-table base address) to point to the base
; of the PML4 page table. The PML4 page table must be located
; below 4 Gbytes because only 32 bits of CR3 are loaded when
; the processor is not in 64-bit mode.
;

mov eax, pml4_base ; Pointer to PML4 table (<4GB).
mov cr3, eax ; Initialize CR3 with PML4 base.

;
; Enable long mode (set EFER.LME=1).
;

mov ecx, 0c0000080h ; EFER MSR number.
rdmsr ; Read EFER.
bts eax, 8 ; Set LME=1.
wrmsr ; Write EFER.

;
; Enable paging to activate long mode (set CR0.PG=1)
;

mov eax, cr0 ; Read CR0.
bts eax, 31 ; Set PE=1.
mov cr0, eax ; Write CR0.

;
; At this point, we are in 16-bit compatibility mode
; (LMA=1, CS.L=0, CS.D=0).
; Now, jump to the 64-bit code segment. The offset must be
; equal to the linear address of the 64-bit entry point,
; because 64-bit code is in an unsegmented address space.
; The selector points to the 32/64-bit code selector in the
; current GDT.
;

db 066h
db 0eah
dd start64_linear
dw code64_sel

code16ends ; End of the 16-bit code segment
;;;
;;
;;; Start of 64-bit code
;;
;
;;

[AMD Public Use]

Processor Initialization and Long Mode Activation 471

24593—Rev. 3.37—March 2021 AMD64 Technology

code64 para use64
start64: ; At this point, we're using 64-bit code
;
; Point the 64-bit RSP register to the stack’s _linear_
; address. There is no need to set SS here, because the SS
; register is not used in 64-bit mode.
;

mov rsp, stack0_linear
;
; This LGDT is only needed if the long-mode GDT is to be
; located at a linear address above 4 Gbytes. If the long
; mode GDT is located at a 32-bit linear address, putting
; 64-bit descriptors in the GDT pointed to by [pGDT32] is
; just fine. pGDT64_linear is the _linear_ address of the
; 10-byte GDT pseudo-descriptor.
;
; The new GDT should have a valid CPL0 64-bit code segment
; descriptor at the entry-point corresponding to the current
; CS selector. Alternatively, a far transfer to a valid CPL0
; 64-bit code segment descriptor in the new GDT must be done
; before enabling interrupts.
;

lgdt [pGDT64_linear]
;
; Load the 64-bit IDT. This is _required_, because the 64-bit
; IDT uses 64-bit interrupt descriptors, while the 32-bit
; IDT used 32-bit interrupt descriptors. pIDT64_linear is
; the _linear_ address of the 10-byte IDT pseudo-descriptor.
;

lidt [pIDT64_linear]
;
; Set the current TSS. tss_sel should point to a 64-bit TSS
; descriptor in the current GDT. The TSS is used for
; inner-level stack pointers and the IO bit-map.
;

mov ax, tss_sel
ltr ax

;
; Set the current LDT. ldt_sel should point to a 64-bit LDT
; descriptor in the current GDT.
;

mov ax, ldt_sel
lldt ax

;
; Using fs: and gs: prefixes on memory accesses still uses
; the 32-bit fs.base and gs.base. Reload these 2 registers
; before using the fs: and gs: prefixes. FS and GS can be
; loaded from the GDT using a normal “mov fs,foo” type
; instructions, which loads a 32-bit base into FS or GS.
; Alternatively, use WRMSR to assign 64-bit base values to
; MSR_FS_base or MSR_GS_base.

[AMD Public Use]

472 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.37—March 2021

;
mov ecx, MSR_FS_base
mov eax, FsbaseLow
mov edx, FsbaseHi
wrmsr

;
; Reload CR3 if long-mode page tables are to be located above
; 4 Gbytes. Because the original CR3 load was done in 32-bit
; legacy mode, it could only load 32 bits into CR3. Thus, the
; current page tables are located in the lower 4 Gbytes of
; physical memory. This MOV to CR3 is only needed if the
; actual long-mode page tables should be located at a linear
; address above 4 Gbytes.
;

mov rax, final_pml4_base ; Point to PML4
mov cr3, rax ; Load 64-bit CR3

;
; Enable interrupts.
;

sti ; Enabled INTR
<insert 64-bit code here>

[AMD Public Use]

Secure Virtual Machine 473

24593—Rev. 3.37—March 2021 AMD64 Technology

15 Secure Virtual Machine

The AMD Virtualization™ (AMD-V™) architecture is designed to support enterprise-class server
virtualization software technology and facilitate virtualization development and deployment on any
type of system, through the Secure Virtual Machine (SVM) extension. An SVM-enabled virtual
machine architecture provides hardware resources that allow a single physical machine to run multiple
operating systems efficiently, while maintaining secure, hardware-enforced isolation.

15.1 The Virtual Machine Monitor
A virtual machine monitor (VMM), also known as a hypervisor, consists of software that controls the
execution of multiple guest operating systems on a single physical machine. The VMM provides each
guest the appearance of full control over a complete computer system (memory, CPU, and all
peripheral devices). The use of the term host refers to the execution context of the VMM. World switch
refers to the operation of switching between the host and guest. A guest may have one or more virtual
CPUs (vCPUs) managed by the guest OS, just as on a non-virtualized system, and a VMM may run
any mix of vCPUs from the same or different guests on different logical processors simultaneously
with no hardware-imposed constraints.

Fundamentally, VMMs work by intercepting and emulating in a safe manner sensitive operations in
the guest (such as changing the page tables, which could give a guest access to memory it is not
allowed to access, or accessing peripheral devices that are shared among multiple guests). The AMD
SVM architecture provides hardware assists to improve performance and facilitate implementation of
virtualization.

15.2 SVM Hardware Overview
SVM processor support provides a set of hardware extensions designed to enable economical and
efficient implementation of virtual machine systems. Generally speaking, hardware support falls into
two complementary categories: virtualization support and security support.

15.2.1 Virtualization Support

The AMD virtual machine architecture is designed to provide:

• A guest/host tagged TLB to reduce virtualization overhead
• External (DMA) access protection for memory
• Assists for interrupt handling, virtual interrupt support, and enhanced pause filter
• The ability to intercept selected instructions or events in the guest
• Mechanisms for fast world switch between VMM and guest

[AMD Public Use]

474 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.2.2 Guest Mode

This new processor mode is entered through the VMRUN instruction. When in guest mode, the
behavior of some x86 instructions changes to facilitate virtualization.

The CPUID function numbers 4000_0000h–4000_00FFh have been reserved for software use.
Hypervisors can use these function numbers to provide an interface to pass information from the
hypervisor to the guest. This is similar to extracting information about a physical CPU by using
CPUID. Hypervisors use the CPUID Fn 400000[FF:00] bit to denote a virtual platform.

Feature bit CPUID Fn0000_0001_ECX[31] has been reserved for use by hypervisors to indicate the
presence of a hypervisor. Hypervisors set this bit to 1 and physical CPU's set this bit to zero. This bit
can be probed by the guest software to detect whether they are running inside a virtual machine.

15.2.3 External Access Protection

Guests may be granted direct access to selected I/O devices. Hardware support is designed to prevent
devices owned by one guest from accessing memory owned by another guest (or the VMM).

15.2.4 Interrupt Support

To facilitate efficient virtualization of interrupts, the following support is provided under control of
VMCB flags:

Intercepting physical interrupt delivery. The VMM can request that physical interrupts cause a
running guest to exit, allowing the VMM to process the interrupt.

Virtual interrupts. The VMM can inject virtual interrupts into the guest. Under control of the VMM,
a virtual copy of the EFLAGS.IF interrupt mask bit, and a virtual copy of the APIC's task priority
register are used transparently by the guest instead of the physical resources.

Sharing a physical APIC. SVM allows multiple guests to share a physical APIC with isolation of
each guest's manipulation of APIC state from the other guests' views of their own APIC state, so that
no guest can interfere with delivery of interrupts to another guest.

Direct interrupt delivery. On models that support it, the Advanced Virtual Interrupt Controller
(AVIC) extension virtualizes the APIC's interrupt delivery functions. This provides for delivery of
device or inter-processor interrupts directly to a target vCPU or vCPUs, which avoids the overhead of
having the VMM to determine interrupt routing and speeds up interrupt delivery. (see section 15.29).

15.2.5 Restartable Instructions

SVM is designed to safely restart, with the exception of task switches, any intercepted instruction
(either atomic or idempotent) after the intercept.

[AMD Public Use]

Secure Virtual Machine 475

24593—Rev. 3.37—March 2021 AMD64 Technology

15.2.6 Security Support

To further support secure initialization and execution, SVM provides additional system support
through a variety of extensions.

Attestation. The SKINIT instruction and associated system support (the Trusted Platform Module, or
TPM) allow for verifiable startup of trusted software (such as a hypervisor, or a native operating
system), based on secure hash comparison. (section 15.27).

Encrypted memory. On models that support it, the Secure Encrypted Virtualization (SEV) and SEV
Encrypted State (SEV-ES) extensions guard against inspection of guest memory and (for SEV-ES)
guest register state by malicious hypervisor code, memory bus tracing or memory device removal
through encryption of guest memory and register contents (section 15.34 and section 15.35).

Secure Nested Paging. On models that support it, the SEV-SNP extension provides additional
protection for guest memory against malicious manipulation of address translation mechanisms by
hypervisor code. (section 15.36).

15.3 SVM Processor and Platform Extensions
SVM hardware extensions can be grouped into the following categories:

• State switch—VMRUN, VMSAVE, VMLOAD instructions, global interrupt flag (GIF), and
instructions to manipulate the latter (STGI, CLGI). (section 15.5, section 15.5.2, section 15.17)

• Intercepts—allow the VMM to intercept sensitive operations in the guest. (section 15.7 through
section 15.14)

• Interrupt and APIC assists—physical interrupt intercepts, virtual interrupt support, APIC.TPR
virtualization. (section 15.17 and section 15.21)

• SMM intercepts and assists (section 15.22)
• External (DMA) access protection (section 15.24)
• Nested paging support for two levels of address translation. (section 15.25)
• Security—SKINIT instruction. (section 15.27)

15.4 Enabling SVM
The VMRUN, VMLOAD, VMSAVE, CLGI, VMMCALL, and INVLPGA instructions can be used
when the EFER.SVME is set to 1; otherwise, these instructions generate a #UD exception. The
SKINIT and STGI instructions can be used when either the EFER.SVME bit is set to 1 or the feature
flag CPUID Fn8000_0001_ECX[SKINIT] is set to 1; otherwise, these instructions generate a #UD
exception.

Before enabling SVM, software should detect whether SVM can be enabled using the following
algorithm:

[AMD Public Use]

476 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

if (CPUID Fn8000_0001_ECX[SVM] == 0)
 return SVM_NOT_AVAIL;

if (VM_CR.SVMDIS == 0)
 return SVM_ALLOWED;

if (CPUID Fn8000_000A_EDX[SVML]==0)
 return SVM_DISABLED_AT_BIOS_NOT_UNLOCKABLE
 // the user must change a platform firmware setting to enable SVM
else return SVM_DISABLED_WITH_KEY;
 // SVMLock may be unlockable; consult platform firmware or TPM to obtain the
key.

For more information on using the CPUID instruction to obtain processor capability information, see
Section 3.3, “Processor Feature Identification,” on page 70.

15.5 VMRUN Instruction
The VMRUN instruction is the cornerstone of SVM. VMRUN takes, as a single argument, the
physical address of a 4KB-aligned page, the virtual machine control block (VMCB), which describes a
virtual machine (guest) to be executed. The VMCB contains:

• a list of instructions or events in the guest (e.g., write to CR3) to intercept,
• various control bits that specify the execution environment of the guest or that indicate special

actions to be taken before running guest code, and
• guest processor state (such as control registers, etc.).

Note that VMRUN is not supported inside the SMM handler and the behavior is undefined.

15.5.1 Basic Operation

The VMRUN instruction has an implicit addressing mode of [rAX]. Software must load RAX (EAX
in 32-bit mode) with the physical address of the VMCB, a 4-Kbyte-aligned page that describes a
virtual machine to be executed. The portion of RAX used in forming the address is determined by the
current effective address size.

The VMCB is accessed by physical address and should be mapped as writeback (WB) memory.

VMRUN is available only at CPL 0. A #GP(0) exception is raised if the CPL is greater than 0.
Furthermore, the processor must be in protected mode and EFER.SVME must be set to 1, otherwise, a
#UD exception is raised.

The VMRUN instruction saves some host processor state information in the host state-save area in
main memory at the physical address specified in the VM_HSAVE_PA MSR; it then loads
corresponding guest state from the VMCB state-save area. VMRUN also reads additional control bits
from the VMCB that allow the VMM to flush the guest TLB, inject virtual interrupts into the guest,
etc.

[AMD Public Use]

Secure Virtual Machine 477

24593—Rev. 3.37—March 2021 AMD64 Technology

The VMRUN instruction then checks the guest state just loaded. If an illegal state has been loaded, the
processor exits back to the host (section 15.6).

Otherwise, the processor now runs the guest code until an intercept event occurs, at which point the
processor suspends guest execution and resumes host execution at the instruction following the
VMRUN. This is called a #VMEXIT and is described in detail in (section 15.6).

VMRUN saves or restores a minimal amount of state information to allow the VMM to resume
execution after a guest has exited. This allows the VMM to handle simple intercept conditions quickly.
If additional guest state information must be saved or restored (e.g., to handle more complex intercepts
or to switch to a different guest), the VMM must use the VMLOAD and VMSAVE instructions to
handle the additional guest state. (see section 15.5.2).

Saving Host State. To ensure that the host can resume operation after #VMEXIT, VMRUN saves at
least the following host state information:

• CS.SEL, NEXT_RIP—The CS selector and rIP of the instruction following the VMRUN. On
#VMEXIT the host resumes running at this address.

• RFLAGS, RAX—Host processor mode and the register used by VMRUN to address the VMCB.
• SS.SEL, RSP—Stack pointer for host.
• CR0, CR3, CR4, EFER—Paging/operating mode for host.
• IDTR, GDTR—The pseudo-descriptors. VMRUN does not save or restore the host LDTR.
• ES.SEL and DS.SEL.

Processor implementations may store only part or none of host state in the memory area pointed to by
VM_HSAVE_PA MSR and may store some or all host state in hidden on-chip memory. Different
implementations may choose to save the hidden parts of the host’s segment registers as well as the
selectors. For these reasons, software must not rely on the format or contents of the host state save
area, nor attempt to change host state by modifying the contents of the host save area.

Loading Guest State. After saving host state, VMRUN loads the following guest state from the
VMCB:

• CS, rIP—Guest begins execution at this address. The hidden state of the CS segment register is
also loaded from the VMCB.

• RFLAGS, RAX.
• SS, RSP—Includes the hidden state of the SS segment register.
• CR0, CR2, CR3, CR4, EFER—Guest paging mode. Writing paging-related control registers with

VMRUN does not flush the TLB since address spaces are switched. (section 15.16.)
• INTERRUPT_SHADOW—This flag indicates whether the guest is currently in an interrupt

lockout shadow; (section 15.21.5).
• IDTR, GDTR.
• ES and DS—Includes the hidden state of the segment registers.

[AMD Public Use]

478 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

• DR6 and DR7—The guest’s breakpoint state.
• V_TPR—The guest’s virtual TPR.
• V_IRQ—The flag indicating whether a virtual interrupt is pending in the guest.
• CPL—If the guest is in real mode, the CPL is forced to 0; if the guest is in v86 mode, the CPL is

forced to 3. Otherwise, the CPL saved in the VMCB is used.

The processor checks the loaded guest state for consistency. If a consistency check fails while loading
guest state, the processor performs a #VMEXIT. For additional information, see “Canonicalization
and Consistency Checks” on page 479.

If the guest is in PAE paging mode according to the registers just loaded and nested paging is not
enabled, the processor will also read the four PDPEs pointed to by the newly loaded CR3 value; setting
any reserved bits in the PDPEs also causes a #VMEXIT.

It is possible for the VMRUN instruction to load a guest rIP that is outside the limit of the guest code
segment or that is non-canonical (if running in long mode). If this occurs, a #GP fault is delivered
inside the guest; the rIP falling outside the limit of the guest code segment is not considered illegal
guest state.

After all guest state is loaded, and intercepts and other control bits are set up, the processor reenables
interrupts by setting GIF to 1. It is assumed that VMM software cleared GIF some time before
executing the VMRUN instruction, to ensure an atomic state switch.

Some processor models allow the VMM to designate certain guest VMCB fields as “clean,” meaning
that they haven't been modified relative to the current state of hardware. This allows the hardware to
optimize execution of VMRUN. See section 15.15 for details on which fields may be affected by this.
The descriptions below assume all fields are loaded.

Control Bits. Besides loading guest state, the VMRUN instruction reads various control fields from
the VMCB; most of these fields are not written back to the VMCB on #VMEXIT, since they cannot
change during guest execution:

• TSC_OFFSET—an offset to add when the guest reads the TSC (time stamp counter). Guest writes
to the TSC can be intercepted and emulated by changing the offset (without writing the physical
TSC). This offset is cleared when the guest exits back to the host.

• V_INTR_PRIO, V_INTR_VECTOR, V_IGN_TPR—fields used to describe a virtual interrupt for
the guest (see “Injecting Virtual (INTR) Interrupts” on page 508).

• V_INTR_MASKING—controls whether masking of interrupts (in EFLAGS.IF and TPR) is to be
virtualized (section 15.21).

• The address space ID (ASID) to use while running the guest.
• A field to control flushing of the TLB during a VMRUN (see Section 15.16).
• The intercept vectors describing the active intercepts for the guest. On exit from the guest, the

internal intercept registers are cleared so no host operations will be intercepted.

[AMD Public Use]

Secure Virtual Machine 479

24593—Rev. 3.37—March 2021 AMD64 Technology

The maximum ASID value supported by a processor is implementation specific. The value returned in
EBX after executing CPUID Fn8000_000A is the number of ASIDs supported by the processor.

See Section 3.3, “Processor Feature Identification,” on page 70 for more information on using the
CPUID instruction.

Segment State in the VMCB. The segment registers are stored in the VMCB in a format similar to
that for SMM: both base and limit are fully expanded; segment attributes are stored as 12-bit values
formed by the concatenation of bits 55:52 and 47:40 from the original 64-bit (in-memory) segment
descriptors; the descriptor “P” bit is used to signal NULL segments (P=0) where permissible and/or
relevant. The loading of segment attributes from the VMCB (which may have been overwritten by
software) may result in attribute bit values that are otherwise not allowed. However, only some of the
attribute bits are actually observed by hardware, depending on the segment register in question:

• CS—D, L, P, and R.
• SS—B, P, E, W, and Code/Data
• DS, ES, FS, GS —D, P, DPL, E, W, and Code/Data.
• LDTR—P, S, and Type (LDT)
• TR—P, S, and Type (32- or 16-bit TSS)

NOTE: For the Stack Segment attributes, P is observed in legacy and compatibility mode. In 64-bit
mode, P is ignored because all stack segments are treated as present.

The VMM should follow these rules when storing segment attributes into the VMCB:

• For NULL segments, set all attribute bits to zero; otherwise, write the concatenation of bits 55:52
and 47:40 from the original 64-bit (in-memory) segment descriptors.

• The processor reads the current privilege level from the CPL field in the VMCB. The CS.DPL will
match the CPL field.

• When in virtual x86 or real mode, the processor ignores the CPL field in the VMCB and forces the
values of 3 and 0, respectively.

When examining segment attributes after a #VMEXIT:

• Test the Present (P) bit to check whether a segment is NULL; note that CS and TR never contain
NULL segments and so their P bit is ignored;

• Retrieve the CPL from the CPL field in the VMCB, not from any segment DPL.

Canonicalization and Consistency Checks. The VMRUN instruction performs consistency
checks on guest state and #VMEXIT performs the appropriate subset of these consistency checks on
host state. Illegal guest state combinations cause a #VMEXIT with error code VMEXIT_INVALID.
The following conditions are considered illegal state combinations (note that some checks may be
subject to VMCB Clean field settings, see below):

• EFER.SVME is zero.
• CR0.CD is zero and CR0.NW is set.

[AMD Public Use]

480 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

• CR0[63:32] are not zero.
• Any MBZ bit of CR3 is set.
• Any MBZ bit of CR4 is set.
• DR6[63:32] are not zero.
• DR7[63:32] are not zero.
• Any MBZ bit of EFER is set.
• EFER.LMA or EFER.LME is non-zero and this processor does not support long mode.
• EFER.LME and CR0.PG are both set and CR4.PAE is zero.
• EFER.LME and CR0.PG are both non-zero and CR0.PE is zero.
• EFER.LME, CR0.PG, CR4.PAE, CS.L, and CS.D are all non-zero.
• The VMRUN intercept bit is clear.
• The MSR or IOIO intercept tables extend to a physical address that is greater than or equal to the

maximum supported physical address.
• Illegal event injection (section 15.20).
• ASID is equal to zero.
• Any reserved bit is set in S_CET
• CR4.CET=1 when CR0.WP=0
• CR4.CET=1 and U_CET.SS=1 when EFLAGS.VM=1
• any reserved bit set in U_CET (SEV_ES only):

 - VMRUN results in VMEXIT(INVALID)

 - VMEXIT forces reserved bits to 0

VMRUN can load a guest value of CR0 with PE = 0 but PG = 1, a combination that is otherwise illegal
(see Section 15.19).

In addition to consistency checks, VMRUN and #VMEXIT canonicalize (i.e., sign-extend to bit 63):

• All base addresses in the segment registers that have been loaded.
• SSP
• ISST_ADDR
• PL0_SSP, PL1_SSP, PL2_SSP, PL3_SSP

VMCB Clean field behavior: On processor models that support designation of clean fields, the final
merged hardware state is used for consistency checks. This may include state from fields marked as
clean, if the processor chooses to ignore the indication.

VMRUN and TF/RF Bits in EFLAGS. When considering interactions of VMRUN with the TF and
RF bits in EFLAGS, one must distinguish between the behavior of host as opposed to that of the guest.

[AMD Public Use]

Secure Virtual Machine 481

24593—Rev. 3.37—March 2021 AMD64 Technology

From the host point of view, VMRUN acts like a single instruction, even though an arbitrary number
of guest instructions may execute before a #VMEXIT effectively completes the VMRUN. As a single
host instruction, VMRUN interacts with EFLAGS.RF and EFLAGS.TF like ordinary instructions.
EFLAGS.RF suppresses any potential instruction breakpoint match on the VMRUN, and EFLAGS.TF
causes a #DB trap after the VMRUN completes on the host side (i.e., after the #VMEXIT from the
guest). As with any normal instruction, completion of the VMRUN instruction clears the host
EFLAGS.RF bit.

The value of EFLAGS.RF from the VMCB affects the first guest instruction. When VMRUN loads a
guest value of 1 for EFLAGS.RF, that value takes effect and suppresses any potential (guest)
instruction breakpoint on the first guest instruction. When VMRUN loads a guest value of 1 in
EFLAGS.TF, that value does not cause a trace trap between the VMRUN and the first guest
instruction, but rather after completion of the first guest instruction.

Host values of EFLAGS have no effect on the guest and guest values of EFLAGS have no effect on the
host.

See also section 15.7.1 regarding the value of EFLAGS.RF saved on #VMEXIT.

15.5.2 VMSAVE and VMLOAD Instructions

These instructions transfer additional guest register context, including hidden context that is not
otherwise accessible, between the processor and a guest's VMCB for a more complete context switch
than VMRUN and #VMEXIT perform. The system physical address of the VMCB is specified in rAX.
When these operations are needed, VMLOAD would be executed as desired prior to executing a
VMRUN, and VMSAVE at any desired point after a #VMEXIT.

The VMSAVE and VMLOAD instructions take the physical address of a VMCB in rAX. These
instructions complement the state save/restore abilities of VMRUN instruction and #VMEXIT. They
provide access to hidden processor state that software cannot otherwise access, as well as additional
privileged state.

These instructions handle the following register state:

• FS, GS, TR, LDTR (including all hidden state)

• KernelGsBase

• STAR, LSTAR, CSTAR, SFMASK

• SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

Like VMRUN, these instructions are only available at CPL0 (otherwise causing a #GP(0) exception)
and are only valid in protected mode with SVM enabled via EFER.SVME (otherwise causing a #UD
exception).

[AMD Public Use]

482 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.6 #VMEXIT
When an intercept triggers, the processor performs a #VMEXIT (i.e., an exit from the guest to the host
context).

On #VMEXIT, the processor:

• Disables interrupts by clearing the GIF, so that after the #VMEXIT, VMM software can complete
the state switch atomically.

• Writes back to the VMCB the current guest state—the same subset of processor state as is loaded
by the VMRUN instruction, including the V_IRQ, V_TPR, and the INTERRUPT_SHADOW bits.

• Saves the reason for exiting the guest in the VMCB’s EXITCODE field; additional information
may be saved in the EXITINFO1 or EXITINFO2 fields, depending on the intercept. Note that the
contents of the EXITINFO1 and EXITINFO2 fields are undefined for intercepts where their use is
not indicated.

• Clears all intercepts.
• Resets the current ASID register to zero (host ASID).
• Clears the V_IRQ and V_INTR_MASKING bits inside the processor.
• Clears the TSC_OFFSET inside the processor.
• Reloads the host state previously saved by the VMRUN instruction. The processor reloads the

host’s CS, SS, DS, and ES segment registers and, if required, re-reads the descriptors from the
host’s segment descriptor tables, depending on the implementation. The segment descriptor tables
must be mapped as present and writable by the host's page tables. Software should keep the host’s
segment descriptor tables consistent with the segment registers when executing VMRUN
instructions. Immediately after #VMEXIT, the processor still contains the guest value for LDTR.
So for CS, SS, DS, and ES, the VMM must only use segment descriptors from the global descriptor
table. (The VMSAVE instruction can be used for a more complete context switch, allowing the
VMM to then load LDTR and other registers not saved by #VMEXIT with desired values; see
section 15.5.2 for details.) Any exception encountered while reloading the host segments causes a
shutdown.

• If the host is in PAE mode, the processor reloads the host's PDPEs from the page table indicated by
the host's CR3. If the PDPEs contain illegal state, the processor causes a shutdown.

• Forces CR0.PE = 1, RFLAGS.VM = 0.
• Sets the host CPL to zero.
• Disables all breakpoints in the host DR7 register.
• Checks the reloaded host state for consistency; any error causes the processor to shutdown. If the

host’s rIP reloaded by #VMEXIT is outside the limit of the host’s code segment or non-canonical
(in the case of long mode), a #GP fault is delivered inside the host.

[AMD Public Use]

Secure Virtual Machine 483

24593—Rev. 3.37—March 2021 AMD64 Technology

15.7 Intercept Operation
Various instructions and events (such as exceptions) in the guest can be intercepted by means of
control bits in the VMCB “Layout of VMCB” on page 669. The two primary classes of intercepts
supported by SVM are instruction and exception intercepts.

Exception intercepts. Exception intercepts are checked when normal instruction processing must
raise an exception before resolving possible double-fault conditions and before attempting delivery of
the exception (which includes pushing an exception frame, accessing the IDT, etc.).

For some exceptions, the processor still writes certain exception-specific registers even if the
exception is intercepted. (See the descriptions in section 15.12 and following for details.) When an
external or virtual interrupt is intercepted, the interrupt is left pending.

When an intercept occurs while the guest is in the process of delivering a non-intercepted interrupt or
exception using the IDT, SVM provides additional information on #VMEXIT (See section 15.7.2).

Instruction intercepts. These occur at well-defined points in instruction execution—before the
results of the instruction are committed, but ordered in an intercept-specific priority relative to the
instruction’s exception checks. Generally, instruction intercepts are checked after simple exceptions
(such as #GP—when CPL is incorrect—or #UD) have been checked, but before exceptions related to
memory accesses (such as page faults) and exceptions based on specific operand values. There are
several exceptions to this guideline, e.g., the RSM instruction. Instruction breakpoints for the current
instruction and pending data breakpoint traps from the previous instruction are designed to be checked
before instruction intercepts.

15.7.1 State Saved on Exit

When triggered, intercepts write an EXITCODE into the VMCB identifying the cause of the intercept.
The EXITINTINFO field signals whether the intercept occurred while the guest was attempting to
deliver an interrupt or exception through the IDT; a VMM can use this information to transparently
complete the delivery (section 15.20). Some intercepts provide additional information in the
EXITINFO1 and EXITINFO2 fields in the VMCB; see the individual intercept descriptions for
details.

The guest state saved in the VMCB is the processor state as of the moment the intercept triggers. In the
x86 architecture, traps (as opposed to faults) are detected and delivered after the instruction that
triggered them has completed execution. Accordingly, a trap intercept takes place after the execution
of the instruction that triggered the trap in the first place. The saved guest state thus includes the effects
of executing that instruction.

Example: Assume a guest instruction triggers a data breakpoint (#DB) trap which is in turn
intercepted. The VMCB records the guest state after execution of that instruction, so that the saved
CS:rIP points to the following instruction, and the saved DR7 includes the effects of matching the data
breakpoint.

[AMD Public Use]

484 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

The next sequential instruction pointer (nRIP) is saved in the guest VMCB control area at location C8h
on all #VMEXITs that are due to instruction intercepts, as defined in section 15.9, as well as MSR and
IOIO intercepts and exceptions caused by the INT3, INTO, and BOUND instructions. For all other
intercepts, nRIP is reset to zero.

The nRIP is the RIP that would be pushed on the stack if the current instruction were subject to a trap-
style debug exception, if the intercepted instruction were to cause no change in control flow. If the
intercepted instruction would have caused a change in control flow, the nRIP points to the next
sequential instruction rather than the target instruction.

Some exceptions write special registers even when they are intercepted; see the individual descriptions
in section 15.12 for details.

Support for the NRIP save on #VMEXIT is indicated by CPUID Fn8000_000A_EDX[NRIPS]. See
Section 3.3, “Processor Feature Identification,” on page 70 for more information on using the CPUID
instruction.

15.7.2 Intercepts During IDT Interrupt Delivery

It is possible for an intercept to occur while the guest is attempting to deliver an exception or interrupt
through the IDT (e.g., #PF because the VMM has paged out the guest’s exception stack). In some
cases, such an intercept can result in the loss of information necessary for transparent resumption of
the guest. In the case of an external interrupt, for example, the processor will already have performed
an interrupt acknowledge cycle with the PIC or APIC to obtain the interrupt type and vector, and the
interrupt is thus no longer pending.

To recover from such situations, all intercepts indicate (in the EXITINTINFO field in the VMCB)
whether they occurred during exception or interrupt delivery though the IDT. This mechanism allows
the VMM to complete the intercepted interrupt delivery, even when it is no longer possible to recreate
the event in question.

Figure 15-1. EXITINTINFO for All Intercepts

63 32 31 30 12 11 10 8 7 0

ERRORCODE V Reserved, MBZ EV TYPE VECTOR

Bits Mnemonic Description
63:32 ERRORCODE Error Code
31 V Valid
30:12 — Reserved, MBZ
11 EV Error Code Valid
10:8 TYPE Qualifies the guest exception or interrupt. Table 15-1 shows

possible values returned and their corresponding interrupt or
exception types. Values not indicated are unused and reserved.

7:0 VECTOR 8-bit IDT vector of the interrupt or exception.

[AMD Public Use]

Secure Virtual Machine 485

24593—Rev. 3.37—March 2021 AMD64 Technology

Despite the instruction name, the events raised by the INT1 (also known as ICEBP), INT3 and INTO
instructions (opcodes F1h, CCh and CEh) are considered exceptions for the purposes of
EXITINTINFO, not software interrupts. Only events raised by the INTn instruction (opcode CDh) are
considered software interrupts.

• Error Code Valid—Bit 11. Set to 1 if the guest exception would have pushed an error code;
otherwise cleared to zero.

• Valid—Bit 31. Set to 1 if the intercept occurred while the guest attempted to deliver an exception
through the IDT; otherwise cleared to zero.

• Errorcode—Bits 63:32. If EV is set to 1, holds the error code that the guest exception would have
pushed; otherwise is undefined.

In the case of multiple exceptions, EXITINTINFO records the aggregate information on all exceptions
but the last (intercepted) one.

Example: A guest raises a #GP during delivery of which a #NP is raised (a scenario that, according to
x86 rules, resolves to a #DF), and an intercepted #PF occurs during the attempt to deliver the #DF.
Upon intercept of the #PF, EXITINTINFO indicates that the guest was in the process of delivering a
#DF when the #PF occurred. The information about the intercepted page fault itself is encoded in the
EXITCODE, EXITINFO1 and EXITINFO2 fields. If the VMM decides to repair and dismiss the #PF,
it can resume guest execution by re-injecting (see section 15.20) the fault recorded in EXITINTINFO.
If the VMM decides that the #PF should be reflected back to the guest, it must combine the event in
EXITINTINFO with the intercepted exception according to x86 rules. In this case, a #DF plus a #PF
would result in a triple fault or shutdown.

15.7.3 EXITINTINFO Pseudo-Code

When delivering exceptions or interrupts in a guest, the processor checks for exception intercepts and
updates the value of EXITINTINFO should an intercept occur during exception delivery. The
following pseudo-code outlines how the processor delivers an event (exception or interrupt) E.
if E is an exception and is intercepted:
 #VMEXIT(E)
E = (result of combining E with any prior events)

if (result was #DF and #DF is intercepted):
 #VMEXIT(#DF)
if (result was shutdown and shutdown is intercepted):

Table 15-1. Guest Exception or Interrupt Types
Value Type

0 External or virtual interrupt (INTR)
2 NMI
3 Exception (fault or trap)
4 Software interrupt (caused by INTn instruction)

[AMD Public Use]

486 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

 #VMEXIT(#shutdown)
EXITINTINFO = E // Record the event the guest is delivering.

Attempt delivery of E through the IDT
Note that this may cause secondary exceptions

Once an exception has been successfully taken in the guest:

EXITINTINFO.V = 0 // Delivery succeeded; no #VMEXIT.
Dispatch to first instruction of handler

When an exception triggers an intercept, the EXITCODE, and optionally EXITINFO1 and
EXITINFO2, fields always reflect the intercepted exception, while EXITINTINFO, if marked valid,
indicates the prior exception the guest was attempting to deliver when the intercept occurred.

15.8 Decode Assists
Decode assists are provided to allow hypervisors to decode guest instructions more efficiently. CPUID
Fn8000_000A_EDX[DecodeAssists] = 1 indicates support for this feature. See Section 3.3,
“Processor Feature Identification,” on page 70 for more information on using the CPUID instruction.

15.8.1 MOV CRx/DRx Intercepts

The EXITINFO1 field holds a flag indicating whether the instruction was a MOV CRx and the number
of the GPR operand. MOV-to-CR instructions always set bit 63 and provide the GPR number, except
for CR0 as specified below.

MOV-to-CR0 Special Case. If the instruction is MOV-to-CR, the GPR number is provided; if the
instruction is LMSW or CLTS, no additional information is provided and bit 63 is not set.

Table 15-2. EXITINFO1 for MOV CRx

Bit Offsets Field Contents

3:0 GPR number

62:4 0

63 Instruction was MOV CRx—set to1 if the instruction was
a MOV CRx instruction; cleared to 0 otherwise.

Table 15-3. EXITINFO1 for MOV DRx

Bit Offsets Field Contents

3:0 GPR number

63:4 0

[AMD Public Use]

Secure Virtual Machine 487

24593—Rev. 3.37—March 2021 AMD64 Technology

MOV-from-CR0 Special Case. If the instruction is MOV-from-CR, the GPR number is provided and
bit 63 is set; if the instruction is SMSW, no information is provided and bit 63 is not set.

15.8.2 INTn Intercepts

EXITINFO1 records the immediate value of the interrupt number for INT n instructions. See Table
15-4.

15.8.3 INVLPG and INVLPGA Intercepts

For an INVLPG intercept, EXITINFO1 provides the linear address after segment base addition and
address size masking produce the effective address size. See Table 15-5. For an INVLPGA intercept,
the linear address is available directly from the guest rAX register and is not provided in EXITINFO1.

15.8.4 Nested and intercepted #PF

In the case of a Nested Page Fault or intercepted #PF, guest instruction bytes at guest CS:RIP are
stored into the 16-byte wide field Guest Instruction Bytes located at offset 0D0h in the VMCB. The
format of this field is summarized in Table 15-6 below. Up to 15 bytes are recorded, read from guest
CS:RIP. If a faulting condition occurs, such as not-present page or exceeding the CS limit, then the
Guest Instruction Bytes field records as many bytes as could be fetched. The number of bytes fetched
is put into the first byte of this field. Zero indicates that no bytes were fetched. The default number of
bytes is always 15. Fewer bytes are returned only if a fault occurs while fetching.

This field is filled in only during data page faults. Instruction-fetch page faults provide no additional
information.

All other intercepts clear bits 0:7 in this field to zero (to indicate an invalid condition);
implementations may leave the other bytes untouched.

Table 15-4. EXITINFO1 for INTn

Bit Offsets Field Contents

7:0 Software interrupt number

63:8 0

Table 15-5. EXITINFO1 for INVLPG

Bit Offsets Field Contents

63:0 Linear address

[AMD Public Use]

488 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.9 Instruction Intercepts
Table 15-7 specifies the instructions that check a given intercept and, where relevant, how the
intercept is prioritized relative to exceptions.

Table 15-6. Guest Instruction Bytes

Bit Offsets Field Contents

3:0 Number of bytes fetched

4:7 0

127:8 Instruction bytes

Table 15-7. Instruction Intercepts
Instruction Intercept Checked By Priority

Read/Write of CR0 MOV TO/FROM CR0, LMSW,
SMSW, CLTS

Checks non-memory exceptions (CPL, illegal bit
combinations, etc.) before the intercept. For LMSW
and SMSW, checks SVM intercepts before checking
memory exceptions.

Read/Write of CR3
(excluding task switch)

MOV TO/FROM CR3 (not checked
by task switch operations)

Checks non-memory exceptions first, then the
intercept. If the intercept triggers on a write, the
intercept happens before the TLB is flushed. If PAE is
enabled, the loading of the four PDPEs can cause a
#GP; that exception is checked after the intercept
check, so the VMM handling a CR3 intercept cannot
rely on the PDPEs being legal; it must examine them in
software if necessary.
The reads and writes of CR3 that occur in VMRUN,
#VMEXIT or task switches are not subject to this
intercept check.

Read/Write of other
CRs MOV TO/FROM CRn All normal exception checks take precedence over the

SVM intercepts.
Read/Write of Debug
Registers, DRn

MOV TO/FROM DRn. (Not checked
by implicit DR6/DR7 writes.)

All normal exception checks take precedence over the
SVM intercepts.

[AMD Public Use]

Secure Virtual Machine 489

24593—Rev. 3.37—March 2021 AMD64 Technology

Selective CR0 Write
Intercept MOV TO CR0, LMSW

Checks non-memory exceptions (CPL, illegal bit
combinations, etc.) before the intercept. For LMSW
and SMSW, checks SVM intercepts before checking
memory exceptions.
The selective write intercept on CR0 triggers only if a
bit other than CR0.TS or CR0.MP is being changed by
the write. In particular, this means that CLTS does not
check this intercept.
When both selective and non-selective CR0-write
intercepts are active at the same time, the non-selective
intercept takes priority. With respect to exceptions, the
priority of this intercept is the same as the generic CR0-
write intercept.
The LMSW instruction treats the selective CR0-write
intercept as a non-selective intercept (i.e., it intercepts
regardless of the value being written).

Reading or Writing
IDTR, GDTR, LDTR,
TR

LIDT, SIDT, LGDT, SGDT, LLDT,
SLDT, LTR, STR

The SVM intercept is checked after #UD and #GP
exception checks, but before any memory access is
performed.

RDTSC RDTSC Checks all exceptions before the SVM intercept.
RDPMC RDPMC Checks all exceptions before the SVM intercept.
PUSHF PUSHF Takes priority over any exceptions.
POPF POPF Takes priority over any exceptions.
CPUID CPUID No exceptions to check.
RSM RSM The intercept takes priority over any exceptions.
IRET IRET The intercept takes priority over any exceptions.

Software Interrupt INTn

The intercept occurs before any exceptions are checked.
The CS:rIP reported on #VMEXIT are those of the
intercepted INTn instruction.
Though the INTn instruction may dispatch through IDT
vectors in the range of 0–31, those events cannot be
intercepted by means of exception intercepts (see
“Exception Intercepts” on page 494).

INVD INVD Exceptions (#GP) are checked before the intercept.

Table 15-7. Instruction Intercepts (continued)
Instruction Intercept Checked By Priority

[AMD Public Use]

490 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

PAUSE PAUSE

No exceptions to check.
VMRUN copies the VMCB.PauseFilterCount into an
internal counter. Each PAUSE instruction decrements
the counter, and the PAUSE intercept only occurs if the
counter goes below zero while the PAUSE intercept is
enabled. The VMCB.PauseFilterCount field is not
written by the processor. Certain events, including SMI,
can cause the internal count to be reloaded from the
VMCB.
VMCB.PauseFilterCount support is indicated by
EDX[10] as returned by CPUID extended function
8000_000A. If This feature is not supported or
VMCB.PauseFilterCount = 0, then the first PAUSE
instruction can be intercepted.

HLT HLT Checks all exceptions before checking for this
intercept.

INVLPG INVLPG Checks all exceptions (#GP) before the intercept.
INVLPGA INVLPGA Checks all exceptions (#GP) before the intercept.

VMRUN VMRUN
Checks exceptions (#GP) before the intercept.

The current implementation requires that the VMRUN
intercept always be set in the VMCB.

VMLOAD VMLOAD Checks exceptions (#GP) before the intercept.
VMSAVE VMSAVE Checks exceptions (#GP) before the intercept.

VMMCALL VMMCALL
The intercept takes priority over exceptions.
VMMCALL causes #UD in the guest if it is not
intercepted.

STGI STGI Checks exceptions (#GP) before the intercept.
CLGI CLGI Checks exceptions (#GP) before the intercept.
SKINIT SKINIT Checks exceptions (#GP) before the intercept.
RDTSCP RDTSCP Checks all exceptions before the SVM intercept.

ICEBP ICEBP(opcode F1h).
Although the ICEBP instruction dispatches through
IDT vector 1, that event is not interceptable by means
of the #DB exception intercept.

WBINVD WBINVD, WBNOINVD Checks exceptions (#GP) before the intercept.
MONITOR MONITOR, MONITORX Checks all exceptions before the intercept.

Table 15-7. Instruction Intercepts (continued)
Instruction Intercept Checked By Priority

[AMD Public Use]

Secure Virtual Machine 491

24593—Rev. 3.37—March 2021 AMD64 Technology

15.10 IOIO Intercepts
The VMM can intercept IOIO instructions (IN, OUT, INS, OUTS) on a port-by-port basis by means of
the SVM I/O permissions map.

15.10.1 I/O Permissions Map

The I/O Permissions Map (IOPM) occupies 12 Kbytes of contiguous physical memory. The map is
structured as a linear array of 64K+3 bits (two 4-Kbyte pages, and the first three bits of a third 4-Kbyte
page) and must be aligned on a 4-Kbyte boundary; the physical base address of the IOPM is specified
in the IOPM_BASE_PA field in the VMCB and loaded into the processor by the VMRUN instruction.
The VMRUN instruction ignores the lower 12 bits of the address specified in the VMCB. If the
address of the last byte in the IOPM is greater than or equal to the maximum supported physical
address, this is treated as illegal VMCB state and causes a #VMEXIT(VMEXIT_INVALID).

Each bit in the IOPM corresponds to an 8-bit I/O port. Bit 0 in the table corresponds to I/O port 0, bit 1
to I/O port 1 and so on. A bit set to 1 indicates that accesses to the corresponding port should be
intercepted. The IOPM is accessed by physical address, and should reside in memory that is mapped as
writeback (WB).

MWAIT MWAIT, MWAITX

Checks all exceptions before the intercept. There are
conditional and unconditional MWAIT intercepts. The
conditional MWAIT intercept is checked before the
unconditional MWAIT intercept.
When both conditional and unconditional MWAIT
intercepts are active, the conditional intercept is
checked first. A hypervisor that sets both intercepts will
receive the conditional MWAIT intercept exit code for
a guest MWAIT instruction that would have entered a
low-power state, and will receive the unconditional
MWAIT intercept exit code for a guest MWAIT
instruction that would not have entered the low-power
state. These checks also apply to MWAITX.

XSETBV XSETBV Checks intercept before exceptions (#GP).
RDPRU RDPRU Check all exceptions before the intercept.

INVLPGB INVLPGB Intercept takes priority over all exceptions except #GP
for CPL<>0.

INVLPGB_ILLEGAL INVLPGB exception cases Intercept takes priority over all exceptions except #GP
for CPL<>0.

INVPCID INVPCID Intercept takes priority over all exceptions except #GP
for CPL<>0.

TLBSYNC TLBSYNC Checks exceptions (#GP) before the intercept.

Table 15-7. Instruction Intercepts (continued)
Instruction Intercept Checked By Priority

[AMD Public Use]

492 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.10.2 IN and OUT Behavior

If the IOIO_PROT intercept bit is set, the IOPM controls port access. For IN/OUT instructions that
access more than a single byte, the permission bits for all bytes are checked; if any bit is set to 1, the
I/O operation is intercepted.

Exceptions related to virtual x86 mode, IOPL, or the TSS-bitmap are checked before the SVM
intercept check. All other exceptions are checked after the SVM intercept check.

I/O Intercept Information. When an IOIO intercept triggers, the following information (describing
the intercepted operation in order to facilitate emulation) is saved in the VMCB’s EXITINFO1 field:

Figure 15-2. EXITINFO1 for IOIO Intercept

The rIP of the instruction following the IN/OUT is saved in EXITINFO2, so that the VMM can easily
resume the guest after I/O emulation.

15.10.3 (REP) OUTS and INS

Bits 12:10 of the EXITINFO1 field provide the effective segment number (the default segment is DS).
(For segment register encodings, see Table A-32, “16-Bit Register and Memory References” on
page 478, in AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose and System
Instructions.)

31 16 15 13 12 10 9 8 7 6 5 4 3 2 1 0

PORT Reserved SEG A
64

A
32

A
16

S
Z
32

S
Z
16

S
Z
8

R
E
P

S
T
R

R
S
D

T
Y
P
E

Bits Mnemonic Description
31:16 PORT Intercepted I/O port
15-13 — Reserved
12:10 SEG Effective segment number
9 A64 64-bit address
8 A32 32-bit address
7 A16 16-bit address
6 SZ32 32-bit operand size
5 SZ16 16-bit operand size
4 SZ8 8-bit operand size
3 REP Repeated port access
2 STR String based port access (INS, OUTS)
1 — Reserved
0 TYPE Access Type (0 = OUT instruction, 1 = IN instruction)

[AMD Public Use]

Secure Virtual Machine 493

24593—Rev. 3.37—March 2021 AMD64 Technology

INS provides the effective segment (always ES, encoded as 0).

On intercepted SMI-on-I/O, bits 12:10 of EXITINFO1 encode the segment. For definitions of the
remaining bits of this field, (section 15.13.3).

15.11 MSR Intercepts
The VMM can intercept RDMSR and WRMSR instructions by means of the SVM MSR permissions
map (MSRPM) on a per-MSR basis.

MSR Permissions Map. The MSR permissions bitmap consists of four separate bit vectors of 16
Kbits (2 Kbytes) each. Each 16 Kbit vector controls guest access to a defined range of 8K MSRs. Each
MSR is covered by two bits defining the guest read and write access permissions. The lsb of the two
bits controls read access to the MSR and the msb controls write access. A value of 1 indicates that the
operation is intercepted. The four separate bit vectors must be packed together and located in two
contiguous physical pages of memory. If the MSR_PROT intercept is active, any attempt to read or
write an MSR not covered by the MSRPM will automatically cause an intercept.

The following table defines the ranges of MSRs covered by the MSR permissions map. Note that the
MSR ranges are not contiguous.

The MSRPM is accessed by physical address and should reside in memory that is mapped as
writeback (WB). The MSRPM must be aligned on a 4KB boundary. The physical base address of the
MSRPM is specified in MSRPM_BASE_PA field in the VMCB and is loaded into the processor by the
VMRUN instruction. The VMRUN instruction ignores the lower 12 bits of the address specified in the
VMCB, and if the address of the last byte in the table is greater than or equal to the maximum
supported physical address, this is treated as illegal VMCB state and causes a
#VMEXIT(VMEXIT_INVALID).

RDMSR and WRMSR Behavior. If the MSR_PROT bit in the VMCB’s intercept vector is clear,
RDMSR/WRMSR instructions are not intercepted.

RDMSR and WRMSR instructions check for exceptions and intercepts in the following order:

• Exceptions common to all MSRs (e.g., #GP if not at CPL 0)
• Check SVM intercepts in the MSR permission map, if the MSR_PROT intercept is requested.

Table 15-8. MSR Ranges Covered by MSRPM
MSRPM Byte Offset MSR Range

000h–7FFh 0000_0000h–0000_1FFFh
800h–FFFh C000_0000h–C000_1FFFh

1000h–17FFh C001_0000h–C001_1FFFh
1800h–1FFFh Reserved

[AMD Public Use]

494 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

• Exceptions specific to a given MSR (including password protection, unimplemented MSRs,
reserved bits, etc.)

MSR Intercept Information. On #VMEXIT, the processor indicates in the VMCB’s EXITINFO1
whether a RDMSR (EXITINFO1 = 0) or WRMSR (EXITINFO1 = 1) was intercepted.

15.12 Exception Intercepts
When intercepting exceptions that define an error code (normally pushed onto the exception stack),
the SVM hardware delivers that error code in the VMCB’s EXITINFO1 field; the exception vector
number can be derived from the EXITCODE. The CS.SEL and rIP saved in the VMCB on an
exception-intercept match those that would otherwise have been pushed onto the exception stack
frame, except that when an interrupt-based instruction causes an intercept, the rIP of the instruction is
stored in the VMCB, rather than the rIP of the next instruction. The interrupt-based instructions are
INT3 (opcode CC), INTO, and BOUND.

Unless otherwise noted below, no special registers are written before an exception is intercepted. For
details on guest state saved in the VMCB, see section 15.7.1.

External interrupts and software interrupts (INTn instruction) do not check the exception intercepts,
even when they use a vector in the range 0 to 31.

Exceptions that occur during the handling of a prior exception are checked for intercepts before being
combined with the prior exception (e.g., into a double-fault). If the result of combining exceptions is a
double-fault or shutdown, the processor checks whether those are intercepted before attempting
delivery.

Example: Assume that the VMM intercepts #GP and #DF exceptions, and the guest raises a (non-
intercepted) #NP, during the delivery of which it also gets a #GP (e.g., due to an illegal IDT entry)—a
situation that, according to x86 semantics, results in a #DF. In this case, #VMEXIT signals an
intercepted #GP, not an intercepted #DF and fills EXITINTINFO with the #NP fault. On the other
hand, if only the #DF intercept were active in this scenario, #VMEXIT would signal an intercepted
#DF.

The following subsections detail the individual intercepts.

15.12.1 #DE (Divide By Zero)

The EXITINFO1 and EXITINFO2 fields are undefined.

15.12.2 #DB (Debug)

The #DB exception can have fault-type (e.g., instruction breakpoint) or trap-type (e.g., data
breakpoint) behavior; accordingly the intercept differs in what state is saved in the VMCB (see
section 15.7.1). In either case, however, the value saved for DR6 and DR7 matches what would be
visible to a #DB exception handler (i.e., both #DB faults and traps are permitted to write DR6 and DR7
before the intercept). The EXITINFO1 and EXITINFO2 fields are undefined.

[AMD Public Use]

Secure Virtual Machine 495

24593—Rev. 3.37—March 2021 AMD64 Technology

Fault-type #DB exceptions, whether indicated in EXITCODE or EXITINTINFO, cause the CS:rIP
saved in the VMCB to indicate the instruction that caused the #DB exception. Trap-type #DB
exceptions cause the VMCB’s CS:rIP to indicate the instruction following the instruction that caused
the exception. A vector 1 exception generated by the single byte INT1 instruction (also known as
ICEBP) does not trigger the #DB intercept. Software should use the dedicated ICEBP intercept to
intercept ICEBP (see section 15.9).

15.12.3 Vector 2 (Reserved)

This intercept bit is not implemented; use the NMI intercept (section 15.13.2) instead. The effect of
setting this bit is undefined.

15.12.4 #BP (Breakpoint)

This intercept applies to the trap raised by the single byte INT3 (opcode CCh) instruction. The
EXITINFO1 and EXITINFO2 fields are undefined. The CS:rIP reported on #VMEXIT are those of
the INT3 instruction.

15.12.5 #OF (Overflow)

This intercept applies to the trap raised by the INTO (opcode CEh) instruction. The EXITINFO1 and
EXITINFO2 fields are undefined.

15.12.6 #BR (Bound-Range)

This intercept applies to the fault raised by the BOUND instruction. The EXITINFO1 and
EXITINFO2 fields are undefined.

15.12.7 #UD (Invalid Opcode)

The EXITINFO1 and EXITINFO2 fields are undefined.

15.12.8 #NM (Device-Not-Available)

The EXITINFO1 and EXITINFO2 fields are undefined.

15.12.9 #DF (Double Fault)

The EXITINFO1 and EXITINFO2 fields are undefined. The rIP value saved in the VMCB is
undefined (as is the case for the rIP value pushed on the stack for #DF exceptions). If a double fault is
intercepted, the exceptions leading up to the double fault will have written any status registers
normally written by those exceptions.

15.12.10 Vector 9 (Reserved)

This intercept is not implemented. The effect of setting this bit is undefined.

[AMD Public Use]

496 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.12.11 #TS (Invalid TSS)

The EXITINFO1 and EXITINFO2 fields are undefined. The rIP value saved in the VMCB may point
to either the instruction causing the task switch, or to the first instruction of the incoming task. See
section 15.14.1 for information on the EXITINFO1 and EXITINFO2 fields.

15.12.12 #NP (Segment Not Present)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #NP exception.
The EXITINFO2 field is undefined.

15.12.13 #SS (Stack Fault)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #SS exception.
The EXITINFO2 field is undefined.

15.12.14 #GP (General Protection)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #GP exception.

15.12.15 #PF (Page Fault)

This intercept is tested before CR2 is written by the exception. The error code saved in EXITINFO1 is
the same as would be pushed onto the stack by a non-intercepted #PF exception in protected mode.
The faulting address is saved in the EXITINFO2 field in the VMCB. Even when the guest is running in
paged real mode, the processor will deliver the (protected-mode) page-fault error code in
EXITINFO1, for the VMM to use in analyzing the intercepted #PF. The processor may provide
additional instruction decode assist information. (See section 15.8.4.)

15.12.16 #MF (X87 Floating Point)

This intercept is tested after the floating point status word has been written, as is the case for a normal
FP exception. The EXITINFO1 and EXITINFO2 fields are undefined.

15.12.17 #AC (Alignment Check)

The EXITINFO1 field contains the error code that would be pushed on the stack by an #AC exception.
The EXITINFO2 field is undefined.

15.12.18 #MC (Machine Check)

The SVM intercept is checked after all #MC-specific registers have been written, but before other
guest state is modified. When #MC is being intercepted, a machine-check exits to the VMM, whenever
possible, and shuts down the processor only when this is not a reasonable option. The EXITINFO1 and
EXITINFO2 fields are undefined.

Note that in some processors, if the guest VM has disabled machine check handling (CR4.MCE=0)
then all machine check errors that occur in the guest will result in a shutdown event. However in

[AMD Public Use]

Secure Virtual Machine 497

24593—Rev. 3.37—March 2021 AMD64 Technology

processors where CPUID Fn8000_000A_EDX[HOST_MCE_OVERRIDE] (bit 23) = 1 the VMM
may override this behavior by setting CR4.MCE=1 in the host. In this scenario, machine check errors
that occur in the guest and which can be contained by the processor will always result in a
#VMEXIT(MC).

15.12.19 #XF (SIMD Floating Point)

This intercept is tested after the SIMD status word (MXCSR) has been written, as is the case for a
normal FP exception. The EXITINFO1 and EXITINFO2 fields are undefined.

15.12.20 #SX (Security Exception)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #SX exception.
The EXITINFO2 field is undefined.

15.12.21 #CP (Control Protection)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #CP exception.
The EXITINFO2 field is undefined.

15.13 Interrupt Intercepts
External interrupts, when intercepted, cause a #VMEXIT; the interrupt is held pending so that the
interrupt can eventually be taken in the VMM. Exception intercepts do not apply to external or
software interrupts, so it is not possible to intercept an interrupt by means of the exception intercepts,
even if the interrupt should happen to use a vector in the range from 0 to 31.

15.13.1 INTR Intercept

This intercept affects physical, as opposed to virtual, maskable interrupts. See “Virtual Interrupt
Intercept” on page 509 for virtualization of maskable interrupts.

15.13.2 NMI Intercept

This intercept affects non-maskable interrupts. NMI interrupts (and SMIs) may be blocked for one
instruction following an STI.

15.13.3 SMI Intercept

This intercept affects System Management Mode Interrupts (SMIs); see “SMM Support” on page 511
for details on SMI handling.

When this intercept triggers, bit 0 of the EXITINFO1 field distinguishes whether the SMI was caused
internally by I/O Trapping (bit 0 = 0), or asserted externally (bit 0 = 1).

If the SMI was asserted while the guest was executing an I/O instruction, extra information (describing
the I/O instruction) is saved in the upper 32 bits of EXITINFO1, and the rIP of the I/O instruction is

[AMD Public Use]

498 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

saved in EXITINFO2. EXITINFO1 indicates that SMI was asserted during an I/O instruction when the
VALID bit is set.

If the SMI wasn't asserted during an I/O instruction, the extra EXITINFO1 and EXITINFO2 bits are
undefined.

The SMI intercept is ignored when HWCR[SMMLOCK] is set.

Figure 15-3. EXITINFO1 for SMI Intercept

15.13.4 INIT Intercept

The INIT intercept allows the VMM to intercept the assertion of INIT while a guest is running. An
intercepted INIT remains pending until the VMM sets GIF (see “Global Interrupt Flag, STGI and

63 48 47 44 43 42 41 40 39 38 37 36 35 34 33 32

PORT BRP T
F

R
A
Z

A
64

A
32

A
16

S
Z
32

S
Z
16

S
Z
8

R
E
P

S
T
R

V
A
L

T
Y
P
E

31 12 10 1 0

Reserved, RAZ SEG Reserved, RAZ

M
C
R
E
D
I
R

S
M
I
S
R
C

Bits Mnemonic Description
63:48 PORT Intercepted I/O port
47:44 BRP I/O breakpoint matches
43 TF EFLAGS TF value
42 — Reserved, RAZ
41 A64 64-bit address
40 A32 32-bit address
39 A16 16-bit address
38 SZ32 32-bit operand size
37 SZ16 16-bit operand size
36 SZ8 8-bit operand size
35 REP Repeated port access
34 STR String based port access (INS, OUTS)
33 VAL Valid (SMI was detected during an I/O instruction)
32 TYPE Access Type (0 = OUT instruction, 1 = IN instruction)
31:13 — Reserved, RAZ
12:10 SEG Effective segment number (see section 15.9)
9:2 — Reserved, RAZ
1 MCREDIR SMI was due to a redirect machine check error (See “Interaction with SMI and #MC” on page 575)
0 SMISRC SMI source (0 = internal, 1 = external)

[AMD Public Use]

Secure Virtual Machine 499

24593—Rev. 3.37—March 2021 AMD64 Technology

CLGI Instructions” on page 504), at which point it either takes effect or is redirected. See
section 15.21.8 for a discussion of the INIT redirection feature.

15.13.5 Virtual Interrupt Intercept

This intercept is taken just before a guest takes a virtual interrupt. When the intercept triggers, the
virtual interrupt has not been taken, and remains pending in the guest's VMCB V_IRQ field. This
intercept is not required for handling fixed local APIC interrupts, but may be used for emulating
ExtINT interrupt delivery mode (which is not masked by the TPR), or legacy PICs in auto-EOI mode.

15.14 Miscellaneous Intercepts
The SVM architecture includes intercepts to handle task switches, processor freezes due to FERR, and
shutdown operations.

15.14.1 Task Switch Intercept

Checked by—Any instruction or event that causes a task switch (e.g., JMP, CALL, exceptions,
interrupts, software interrupts).

Priority—The intercept is checked before the task switch takes place but after the incoming TSS and
task gate (if one was involved) have been checked for correctness.

Task switches can modify several resources that a VMM may want to protect (CR3, EFLAGS, LDT).
However, instead of checking various intercepts (e.g., CR3 Write, LDTR Write) individually, task
switches check only a single intercept bit.

On #VMEXIT, the following information is delivered in the VMCB:

• EXITINFO1[15:0] holds the segment selector identifying the incoming TSS.
• EXITINFO2[31:0] holds the error code to push in the new task, if applicable; otherwise, this field

is undefined.
• EXITINFO2[63:32] holds auxiliary information for the VMM:

- EXITINFO2[36]—Set to 1 if the task switch was caused by an IRET; else cleared to 0.
- EXITINFO2[38]—Set to 1 if the task switch was caused by a far jump; else cleared to 0.
- EXITINFO2[44]—Set to 1 if the task switch has an error code; else cleared to 0.
- EXITINFO2[48]—The value of EFLAGS.RF that would be saved in the outgoing TSS if the

task switch were not intercepted.

15.14.2 Ferr_Freeze Intercept

Checked when the processor freezes due to assertion of FERR (while IGNNE is deasserted, and legacy
handling of FERR is selected in CR0.NE), i.e., while the processor is waiting to be unfrozen by an
external interrupt.

[AMD Public Use]

500 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.14.3 Shutdown Intercept

When this intercept occurs, any condition that normally causes a shutdown causes a #VMEXIT to the
VMM instead. After an intercepted shutdown, the state saved in the VMCB is undefined.

15.14.4 Pause Intercept Filtering

On processors that support Pause filtering (indicated by CPUID Fn8000_000A_EDX[PauseFilter] =
1), the VMCB provides a 16 bit PAUSE Filter Count value. On VMRUN this value is loaded into an
internal counter. Each time a PAUSE instruction is executed, this counter is decremented until it
reaches zero at which time a #VMEXIT is generated if PAUSE intercept is enabled. If the PAUSE
Filter Count is set to zero and PAUSE Intercept is enabled, every PAUSE instruction will cause a
#VMEXIT.

In addition, some processor families support Advanced Pause Filtering (indicated by CPUID
Fn8000_000A_EDX[PauseFilterThreshold] = 1). In this mode, a 16-bit PAUSE Filter Threshold field
is added in the VMCB. The threshold value is a cycle count that is used to reset the pause counter.

As with simple Pause filtering, VMRUN loads the PAUSE count VMCB value into an internal
counter. Then, on each PAUSE instruction the hardware checks the elapsed number of cycles since the
most recent PAUSE instruction against the PAUSE Filter Threshold. If the elapsed cycle count is
greater than the PAUSE Filter Threshold, then the internal pause count is reloaded from the VMCB
and execution continues. If the elapsed cycle count is less than the PAUSE Filter Threshold, then the
internal pause count is decremented. If the count value is less than zero and PAUSE intercept is
enabled, a #VMEXIT is triggered.

If Advanced Pause Filtering is supported and PAUSE Filter Threshold field is set to zero, the filter will
operate in the simpler, count only mode.

See Section 3.3, “Processor Feature Identification,” on page 70 for more information on using the
CPUID instruction.

15.15 VMCB State Caching
VMCB state caching allows the processor to cache certain guest register values in hardware between a
#VMEXIT and subsequent VMRUN instructions and use the cached values to improve context-switch
performance. Depending on the particular processor implementation, VMRUN loads each guest
register value either from the VMCB or from the VMCB state cache, as specified by the value of the
VMCB Clean field in the VMCB. Support for VMCB state caching is indicated by CPUID
Fn8000_000A_EDX[VmcbClean] = 1.

The SVM architecture uses the physical address of the VMCB as a unique identifier for the guest
virtual CPU for the purposes of deciding whether the cached copy belongs to the guest. For the
purposes of VMCB state caching, the ASID is not a unique identifier for a guest virtual CPU.

[AMD Public Use]

Secure Virtual Machine 501

24593—Rev. 3.37—March 2021 AMD64 Technology

15.15.1 VMCB Clean Bits

The VMCB Clean field (VMCB offset 0C0h, bits 31:0) controls which guest register values are loaded
from the VMCB state cache on VMRUN. Each set bit in the VMCB Clean field allows the processor to
load one guest register or group of registers from the hardware cache; each clear bit requires that the
processor load the guest register from the VMCB. The clean bits are a hint, since any given processor
implementation may ignore bits that are set to 1 on any given VMRUN, unconditionally loading the
associated register value(s) from the VMCB. Clean bits that are set to zero are always honored.

This field is backward-compatible to CPUs that do not support VMCB state caching; older CPUs
neither cache VMCB state nor read the VMCB Clean field.

Older hypervisors that are not aware of VMCB state caching and obey the SBZ property of undefined
VMCB fields will not enable VMCB state caching.

15.15.2 Guidelines for Clearing VMCB Clean Bits

The hypervisor must clear specific bits in the VMCB Clean field every time it explicitly modifies the
associated guest state in the VMCB. The guest's execution can cause cached state to be updated, but
the hypervisor is not responsible for setting VMCB Clean bits corresponding to any state changes
caused by guest execution.

The hypervisor must clear the entire VMCB field to 0 for a guest, under the following circumstances:

• This is the first time a particular guest is run.
• The hypervisor executes the guest on a different CPU core than one used the last time that guest

was executed.
• The hypervisor has moved the guest's VMCB to a different physical page since the last time that

guest was executed.

Failure to clear the VMCB Clean bits to zero in these cases may result in undefined behavior.

The CPU automatically treats the VMCB Clean field as zero on the current VMRUN when the
hypervisor executes a guest that is not currently cached. The CPU compares the VMCB physical
address against all cached VMCB physical addresses and treats the VMCB Clean field as zero, if no
cached VMCB address matches.

SMM software (or any other agent external to the hypervisor that has access to VMCBs) that changes
the contents of a VMCB needs to comprehend the clean bits and adjust them accordingly; otherwise
the guest may not operate as intended.

15.15.3 VMCB Clean Field

The layout of the VMCB Clean field is illustrated in Figure 15-4 below.

[AMD Public Use]

502 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 15-4. Layout of VMCB Clean Field

Bits 31:12 are reserved for future implementations. For forward compatibility, if the hypervisor has
not modified the VMCB, the hypervisor may write FFFF_FFFFh to the VMCB Clean Field to indicate
that it has not changed any VMCB contents other than the fields described below as explicitly
uncached. The hypervisor should write 0h to indicate that the VMCB is new or potentially inconsistent
with the CPU's cached copy, as occurs when the hypervisor has allocated a new location for an existing
VMCB from a list of free pages and does not track whether that page had recently been used as a
VMCB for another guest. If any VMCB fields (excluding explicitly uncached fields) have been
modified, all clean bits that are undefined (within the scope of the hypervisor) must be cleared to zero.

The following are explicitly not cached and not represented by Clean bits:

• TLB_Control
• Interrupt shadow
• VMCB status fields (Exitcode, EXITINFO1, EXITINFO2, EXITINTINFO, Decode Assist, etc.)
• Event injection
• RFLAGS, RIP, RSP, RAX

31 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
C
E
T

A
V
I
C

L
B
R

C
R
2

S
E
G

D
T

D
R
x

C
R
x

N
P

T
P
R

A
S
I
D

I
O
P
M

I

Bits Mnemonic Description
31:13 — Reserved
12 CET S_CET, SSP, ISST_ADDR
11 AVIC AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC PHYSICAL_TABLE and AVIC LOGI-

CAL_TABLE Pointers
10 LBR DbgCtlMsr, br_from/to, lastint_from/to
9 CR2 CR2
8 SEG CS/DS/SS/ES Sel/Base/Limit/Attr, CPL
7 DT GDT/IDT Limit and Base
6 DRx DR6, DR7
5 CRx CR0, CR3, CR4, EFER
4 NP Nested Paging: NCR3, G_PAT
3 TPR V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING, V_INTR_VECTOR (Offset 60h–67h)
2 ASID ASID
1 IOPM IOMSRPM: IOPM_BASE, MSRPM_BASE
0 I Intercepts: all the intercept vectors, TSC offset, Pause Filter Count

[AMD Public Use]

Secure Virtual Machine 503

24593—Rev. 3.37—March 2021 AMD64 Technology

15.16 TLB Control
TLB entries are tagged with Address Space Identifier (ASID) bits to distinguish different guest virtual
address spaces when shadow page tables are used, or different guest physical address spaces when
nested page tables are used. The VMM can choose a software strategy in which it keeps multiple
shadow page tables, and/or multiple nested page tables in processors that support nested paging, up-to-
date; the VMM can allocate a different ASID for each shadow or nested page table. This allows
switching to a new process in a guest under shadow paging (changing CR3 contents), or to a new guest
under nested paging (changing nCR3 contents), without flushing the TLBs. (See section 15.25 for a
complete explanation of nested paging operation.)

With shadow paging, the VMM is responsible for setting up a shadow page table for each guest linear
address space that maps it to system physical addresses. These are used as the active page tables in
place of the guest OS's page tables. The VMM sets the CR3 field in the guest VMCB to point to the
system physical address of the desired shadow page table. The VMM is responsible for updating the
shadow page table when the guest changes its page table or paging control state, and the VMM updates
the access and dirty bits of the guest page table.

The VMRUN instruction and #VMEXIT write the CR0, CR3, CR4 and EFER registers, but these
writes do not flush the TLB. The VMM is responsible for explicitly invalidating any guest translations
that may be affected by its actions. There are two mechanisms available for this described in the next
two sections.

When running with SVM enabled, global page table entries (PTEs) are global only within an ASID,
not across ASIDs.

Software Rule. When the VMM changes a guest’s paging mode by changing entries in the guest’s
VMCB, the VMM must ensure that the guest’s TLB entries are flushed from the TLB. The relevant
VMCB state includes:

• CR0—PG, WP, CD, NW.
• CR3—Any bit.
• CR4—PGE, PAE, PSE.
• EFER—NXE, LMA, LME.

15.16.1 TLB Flush

TLB flush operations function identically whether or not SVM is enabled (e.g., MOV-TO-CR3 flushes
non-global mappings, whereas MOV-TO-CR4 flushes global and non-global mappings). TLB flush
operations must not be assumed to affect all ASIDs. If a VMM sets the intercept bit for any guest
action that would have flushed the TLB, the #VMEXIT intercept occurs and the TLB is not flushed; it
is the VMM's responsibility to flush the TLB appropriately. In implementations that do not provide a
way to selectively flush all translations of a single specified ASID, software may effectively flush the
guest's TLB entries by allocating a new ASID for the guest and not reusing the old ASID until the
entire TLB has been flushed at least once.

[AMD Public Use]

504 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

The TLB_CONTROL field in the VMCB provides the commands specified by the control byte
encodings shown in Table 15-9. The first two commands are available on all processors that support
SVM; support for the other commands is optional and is indicated by
CPUID Fn8000_000A_EDX[FlushByAsid] = 1.

When the VMM sets the TLB_CONTROL field to 1, the VMRUN instruction flushes the TLB for all
ASIDs, for both global and non-global pages. The VMRUN instruction reads, but does not change, the
value of the TLB_CONTROL field.

A MOV-to-CR3, a task switch that changes CR3, or clearing or setting CR0.PG or bits PGE, PAE, PSE
of CR4 affects only the TLB entries belonging to the current ASID, regardless of whether the
operation occurred in host or guest mode. The current ASID is 0 when the CPU is not inside a guest
context.

All TLB entries belonging to all ASIDs are flushed by SMI, RSM, MTRR modifications, IORR
modifications, and access to other system MSRs that affect address translation.

If a hypervisor modifies a nested page table by decreasing permission levels, clearing present bits, or
changing address translations and intends to return to the same ASID, it should use either TLB
command 011b or 001b.

15.16.2 Invalidate Page, Alternate ASID

The INVLPGA instruction allows the VMM to selectively invalidate the TLB mapping for a given
guest virtual page within a given ASID. The linear address is specified in the implicit register operand
rAX; the ASID is specified in ECX. The input address is always interpreted as a guest virtual address,
so INVLPGA is typically meaningful only when used with shadow page tables; it does not provide a
means to invalidate a nested translation by guest physical address.

15.17 Global Interrupt Flag, STGI and CLGI Instructions
The global interrupt flag (GIF) is a bit that controls whether interrupts and other events can be taken by
the processor. The STGI and CLGI instructions set and clear, respectively, the GIF. Table 15-10 shows
how the value of the GIF affects how interrupts and exceptions are handled. Implementations may

Table 15-9. TLB Control Byte Encodings

Encoding Function Definition

00h Do not flush

01h Flush entire TLB (Should be used only on legacy hardware.)

03h Flush this guest's TLB entries

07h Flush this guest's non-global TLB entries

Note: All encodings not defined in this table are reserved.

[AMD Public Use]

Secure Virtual Machine 505

24593—Rev. 3.37—March 2021 AMD64 Technology

provide hardware support for virtualizing the GIF in nested virtualization scenarios; see section 15.33,
for details.

15.18 VMMCALL Instruction
This instruction is meant as a way for a guest to explicitly call the VMM. No CPL checks are
performed, so the VMM can decide whether to make this instruction legal at the user-level or not.

If VMMCALL instruction is not intercepted, the instruction raises a #UD exception.

15.19 Paged Real Mode
To facilitate virtualization of real mode, the VMRUN instruction may legally load a guest CR0 value
with PE = 0 but PG = 1. Likewise, the RSM instruction is permitted to return to paged real mode. This

Table 15-10. Effect of the GIF on Interrupt Handling
Interrupt source GIF==0 GIF ==1

Debug exception or trap, due
to breakpoint register match Ignored and discarded Normal operation

Debug trace trap due to
EFLAGS.TF Normal operation Normal operation

RESET Normal operation Normal operation
INIT Held pending until GIF==1 Normal operation, see Table 15-12
NMI Held pending until GIF==1 Normal operation, see Table 15-13
External SMI Held pending until GIF==1 Normal operation, see Table 15-14
Internal SMI (I/O Trapping) Ignored and discarded Normal operation, see Table 15-14
INTR and vINTR Held pending until GIF==1 Normal operation

#SX (Security Exception) n/a1 Normal operation

Machine Check
If possible (implementation-
dependent), held pending until
GIF==1, otherwise shutdown.

Normal operation

DBREQ# (external debug
request)

Normal operation Normal operation
(VM_CR.DPD always controls DBREQ)

A20M
Normal operation Normal operation

 (VM_CR.DIS_A20M controls A20 masking)
Other implementation-
specific but non-
architecturally-visible
interrupts (STPCLK, IGNNE
toggle, ECC scrub)

Normal operation Normal operation

Note:
1. #SX is caused only by an INIT signal that has been “redirected” (i.e., converted to an #SX; see section 15.28); the conversion

only happens when GIF==1, as the INIT is simply held pending otherwise.

[AMD Public Use]

506 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

processor mode behaves in every way like real mode, with the exception that paging is applied. The
intent is that the VMM run the guest in paged-real mode at CPL0, and with page faults intercepted.
The VMM is responsible for setting up a shadow page table that maps guest physical memory to the
appropriate system physical addresses.

The behavior of running a guest in paged real mode without intercepting page faults to the VMM is
undefined.

15.20 Event Injection
The VMM can inject exceptions or interrupts (collectively referred to as events) into the guest by
setting bits in the VMCB’s EVENTINJ field prior to executing the VMRUN instruction. The format of
the field is shown in Table 15-5. The encoding matches that of the EXITINTINFO field. When an
event is injected by means of this mechanism, the VMRUN instruction causes the guest to take the
specified exception or interrupt unconditionally before executing the first guest instruction.

Injected events are treated in every way as though they had occurred normally in the guest (in
particular, they are recorded in EXITINTINFO) with the following exceptions:

• Injected events are not subject to intercept checks. (Note, however, that if secondary exceptions
occur during delivery of an injected event, those exceptions are subject to exception intercepts.)

• An injected NMI does not block delivery of further NMIs.
• If the VMM attempts to inject an event that is impossible for the guest mode (e.g., a #BR exception

when the guest is in 64-bit mode), the event injection will fail and no guest state instructions will
be executed; VMRUN will immediately exit with an error code of VMEXIT_INVALID.

• Injecting an exception (TYPE = 3) with vectors 3 or 4 behaves like a trap raised by INT3 and INTO
instructions, respectively, in which case the processor checks the DPL of the IDT descriptor before
dispatching to the handler.

• Software interrupts cannot be properly injected if the processor does not support the NextRIP field.
Support is indicated by CPUID Fn8000_000A_EDX[NRIPS] = 1. Hypervisor software should
emulate the event injection of software interrupts if NextRIP is not supported.

• Event injection does not support injection of intercepted #DB faults that are the result of a guest
ICEBP instruction. ICEBP does not perform DPL checks, as does INTn injection. Hypervisor
software should emulate the injection of ICEBP.

Figure 15-5. EVENTINJ Field in the VMCB

63 32 31 12 11 10 8 7 0

ERRORCODE V Reserved, SBZ EV TYPE VECTOR

[AMD Public Use]

Secure Virtual Machine 507

24593—Rev. 3.37—March 2021 AMD64 Technology

The fields in EVENTINJ are as follows:

• VECTOR—Bits 7:0. The 8-bit IDT vector of the interrupt or exception. If TYPE is 2 (NMI), the
VECTOR field is ignored.

• TYPE—Bits 10:8. Qualifies the guest exception or interrupt to generate. Table 15-11 shows
possible values and their corresponding interrupt or exception types. Values not indicated are
unused and reserved.

• EV (Error Code Valid)—Bit 11. Set to 1 if the exception should push an error code onto the stack;
clear to 0 otherwise.

• V (Valid)—Bit 31. Set to 1 if an event is to be injected into the guest; clear to 0 otherwise.
• ERRORCODE—Bits 63:32. If EV is set to 1, the error code to be pushed onto the stack, ignored

otherwise.

VMRUN exits with VMEXIT_INVALID error code if either:

• Reserved values of TYPE have been specified, or
• TYPE = 3 (exception) has been specified with a vector that does not correspond to an exception

(this includes vector 2, which is an NMI, not an exception).

15.21 Interrupt and Local APIC Support
SVM hardware support is designed to ensure efficient virtualization of interrupts.

15.21.1 Physical (INTR) Interrupt Masking in EFLAGS

To prevent the guest from blocking maskable interrupts (INTR), SVM provides a VMCB control bit,
V_INTR_MASKING, which changes the operation of EFLAGS.IF and accesses to the TPR by means
of the CR8 register. While running a guest with V_INTR_MASKING cleared to zero:

• EFLAGS.IF controls both virtual and physical interrupts.

While running a guest with V_INTR_MASKING set to 1:

• The host EFLAGS.IF at the time of the VMRUN is saved and controls physical interrupts while
the guest is running.

• The guest value of EFLAGS.IF controls virtual interrupts only.

Table 15-11. Guest Exception or Interrupt Types
Value Type

0 External or virtual interrupt (INTR)
2 NMI
3 Exception (fault or trap)
4 Software interrupt (INTn instruction)

[AMD Public Use]

508 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.21.2 Virtualizing APIC.TPR

SVM provides a virtual TPR register, V_TPR, for use by the guest; its value is loaded from the VMCB
by VMRUN and written back to the VMCB by #VMEXIT. The APIC's TPR always controls the task
priority for physical interrupts, and the V_TPR always controls virtual interrupts.

While running a guest with V_INTR_MASKING cleared to 0:

• Writes to CR8 affect both the APIC's TPR and the V_TPR register.
• Reads from CR8 operate as they would without SVM.

While running a guest with V_INTR_MASKING set to 1:

• Writes to CR8 affect only the V_TPR register.
• Reads from CR8 return V_TPR.

15.21.3 TPR Access in 32-Bit Mode

The mechanism for TPR virtualization described in section 15.21.2 applies only to accesses that are
performed using the CR8 register. However, in 32-bit mode, the TPR is traditionally accessible only
by using a memory-mapped register. Typically, a VMM virtualizes such TPR accesses by not mapping
the APIC page addresses in the guest. A guest access to that region then causes a #PF intercept to the
VMM, which inspects the guest page tables to determine the physical address and, after recognizing
the physical address as belonging to the APIC, finally invokes software emulation code.

To improve the efficiency of TPR accesses in 32-bit mode, SVM makes CR8 available to 32-bit code
by means of an alternate encoding of MOV TO/FROM CR8 (namely, MOV TO/FROM CR0 with a
LOCK prefix). To achieve better performance, 32-bit guests should be modified to use this access
method, instead of the memory-mapped TPR. (For details, see “MOV CRn” on page 377 of the
AMD64 Programmer’s Reference Volume 3: General Purpose and System Instructions, order# 24594.)

The alternate encodings of the MOV TO/FROM CR8 instructions are available even if SVM is
disabled in EFER.SVME. They are available in both 64-bit and 32-bit mode.

15.21.4 Injecting Virtual (INTR) Interrupts

Virtual Interrupts allow the host to pass an interrupt (#INTR) to a guest. While inside a guest, the
virtual interrupt follows the same rules that a real interrupt follows (virtual #INTR is not taken until
EFLAGS.IF is 1, the guest's TPR has enabled interrupts at the same priority as that of the pending
virtual interrupt).

SVM provides an efficient mechanism by which the VMM can inject virtual interrupts into a guest:

• As described in Section 15.13.1, the VMM can intercept physical interrupts that arrive while a
guest is running, by activating the INTR intercept in the VMCB.

• As described in Section 15.21.4, the VMM can virtualize the interrupt masking logic by setting the
V_INTR_MASKING bit in the VMCB.

[AMD Public Use]

Secure Virtual Machine 509

24593—Rev. 3.37—March 2021 AMD64 Technology

• The three VMCB fields V_IRQ, V_INTR_PRIO, and V_INTR_VECTOR indicate whether there
is a virtual interrupt pending, and, if so, what its vector number and priority are. The VMRUN
instruction loads this information into corresponding on-chip registers.

• The processor takes a virtual INTR interrupt if
- V_IRQ and V_INTR_PRIO indicate that there is a virtual interrupt pending whose priority is

greater than the value in V_TPR,
- interrupts are enabled in EFLAGS.IF,
- interrupts are enabled using GIF, and
- the processor is not in an interrupt shadow (see Section 15.21.5).
The only other difference between virtual INTR handling and normal interrupt handling is that, in
the latter case, the interrupt vector is obtained from the V_INTR_VECTOR register (as opposed to
running an INTACK cycle to the local APIC).

• The V_IGN_TPR field in the VMCB can be set to indicate that the currently pending virtual
interrupt is not subject to masking by TPR. The priority comparison against V_TPR is omitted in
this case. This mechanism can be used to inject ExtINT-type interrupts into the guest.

• When the processor dispatches a virtual interrupt (through the IDT), V_IRQ is cleared after
checking for intercepts of virtual interrupts and before the IDT is accessed.

• On #VMEXIT, V_IRQ is written back to the VMCB, allowing the VMM to track whether a virtual
interrupt has been taken.

• Physical interrupts take priority over virtual interrupts, whether they are taken directly or through a
#VMEXIT.

• On #VMEXIT, the processor clears its internal copies of V_IRQ and V_INTR_MASKING, so
virtual interrupts do not remain pending in the VMM, and interrupt control reverts to normal.

15.21.5 Interrupt Shadows

The x86 architecture defines the notion of an interrupt shadow—a single-instruction window during
which interrupts are not recognized. For example, the instruction after an STI instruction that sets
EFLAGS.IF (from zero to one) does not recognize interrupts or certain debug traps. The VMCB
INTERRUPT_SHADOW field indicates whether the guest is currently in an interrupt shadow. This
information is saved on #VMEXIT and loaded on VMRUN.

15.21.6 Virtual Interrupt Intercept

When virtualizing interrupt handling, a VMM typically needs only gain control when new interrupts
for a guest arrive or are generated, and when the guest issues an EOI (end-of-interrupt). In some
circumstances, it may also be necessary for the VMM to gain control at the moment interrupts become
enabled in the guest (i.e., just before the guest takes a virtual interrupt). The VMM can do so by
enabling the VINTR intercept.

[AMD Public Use]

510 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.21.7 Interrupt Masking in Local APIC

When guests have direct access to devices, interrupts arriving at the local APIC can usually be
dismissed only by the guest that owns the device causing the interrupt. To prevent one guest from
blocking other guests’ interrupts (by never processing their own), the VMM can mask pending
interrupts in the local APIC, so they do not participate in the prioritization of other interrupts.

SVM introduces the following APIC features:

• A 256-bit IER (interrupt enable) register is added to the local APIC. This register resets to all ones
(enabling all 256 vectors). Software can read and write the IER by means of the memory-mapped
APIC page.

• Only vectors that are enabled in the IER participate in the APIC computation of the highest-
priority pending interrupt.

• The VMM can issue specific end-of-interrupt (EOI) commands to the local APIC, allowing the
VMM to clear pending interrupts in any order, rather than always targeting the interrupt with
highest-priority.

15.21.8 INIT Support

The INIT signal interrupts the processor at the next instruction boundary and causes an unconditional
control transfer. INIT reinitializes the control registers, segment registers and GP registers in a manner
similar to RESET, but does not alter the contents of most MSRs, caches or numeric coprocessor (x87
or SSE) state, and then transfers control to the same instruction address as RESET (physical address
FFFFFFF0h). Unlike RESET, INIT is not expected to be visible to the memory controller, and hence
will not trigger automatic clearing of trusted memory pages by memory controller hardware.

To maintain the security of such pages, the VMM can request that INITs be redirected and turned into
#SX exceptions by setting the R_INIT bit in the VM_CR MSR (see Section 15.30.1). This allows the
VMM to gain control when an INIT is requested and scrub any sensitive context. The VMM may then
disable the redirection of INIT and cause the platform to reassert INIT (see the relevant BKDG or PPR
documentation for details), at which point the processor will respond in the normal manner. The
actions initiated by the INIT pin may also be initiated by an incoming APIC INIT interrupt; the
mechanisms described here apply in either case. Table 15-12 summarizes the handling of INITs.

Figure 15-6.

Table 15-12. INIT Handling in Different Operating Modes
GIF INIT Intercept INIT Redirect Processor Response to INIT

0 X X Hold pending until GIF = 1.

1
1 X #VMEXIT(INIT), INIT is still pending.

0
0 Taken normally.
1 #SX, INIT is no longer pending.

[AMD Public Use]

Secure Virtual Machine 511

24593—Rev. 3.37—March 2021 AMD64 Technology

If redirection is enabled without the INIT intercept being enabled, an INIT that asserts during guest
execution will result in #SX being asserted within the guest, with the INIT being cleared. The VMM
may intercept the assertion of #SX as described in “Intercept Operation” on page 483. Note that when
a VMM has intercepted an INIT assertion, it may modify R_INIT any time before setting GIF to
control the behavior when GIF is ultimately set, or the VMM may instead return to a guest VM with
the intercept disabled and redirection enabled to effectively hand off the INIT to the guest as a #SX
exception.

15.21.9 NMI Support

The VMM can intercept non-maskable interrupts (NMI) using a VMCB control bit (see Table 15-13).
When intercepted, NMIs cause an exit from the guest and are held pending.

15.22 SMM Support
This section describes SVM support for virtualization of System Management Mode (SMM).

15.22.1 Sources of SMI

Various events can cause an assertion of a system management interrupt (SMI); these are classified
into three categories

• Internal, synchronous (also known as I/O Trapping)—implementation-specific IOIO or config
space trapping in the CPU itself; always synchronous in response to an IN or OUT instruction. I/O
Trapping is set up by means of MSRs and can be brought under the control of the VMM by
intercepting guest access to those MSRs.

• External, synchronous—IOIO trapping in response to (and synchronous with) IN or OUT
instructions, but generated by an external agent (typically the Southbridge).

• External, asynchronous—generated externally in response to an external, physical event, e.g.,
closing a laptop lid, temperature sensor triggering, etc.

15.22.2 Response to SMI

How hardware responds to SMIs is a function of whether SMM interrupts are being intercepted and
whether interrupts are enabled globally, as shown in Table 15-14.

Table 15-13. NMI Handling in Different Operating Modes
GIF NMI Intercept Processor Response to NMI

0 X Hold pending until GIF=1.

1
1 #VMEXIT(NMI), NMI is still pending.
0 Taken normally.

[AMD Public Use]

512 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

By intercepting SMIs, the VMM can gain control before the processor enters SMM.

15.22.3 Containerizing Platform SMM

In some usage scenarios, the VMM may not trust the existing platform SMM code, or may otherwise
want to ensure that the SMM does not operate in the context of certain guests or the hypervisor. To
address these cases, SVM provides the ability to containerize SMM code, i.e., run it inside a guest,
with the full protection mechanisms of the VMM in place. In other scenarios, the VMM may not want
to exert control over SMM.

There are three solutions for the VMM to control SMM handlers:

• The simplest solution is to not intercept SMI signals. SMIs encountered while in a guest context
are taken from within the guest context. In this case, the SMM handler is not subject to any
intercepts set up by the VMM and consequently runs outside of the virtualization controls. The
state saved in the SMM State-Save area as seen by the SMM handler reflects the state of the guest
that had been running at the time the SMI was encountered. When the SMM handler executes the
RSM instruction, the processor returns to executing in the guest context, and any modifications to
the SMM State-Save area made by the SMM handler are reflected in the guest state.

• A hypervisor may want to emulate all SMI-based I/O interceptions for a guest and to take SMI
signals only in the hypervisor context. The hypervisor should set all IOIO intercept bits and the
SMI intercept bit for the guest to ensure that there is no possibility of encountering synchronous
(internal or external) SMI signals while running the guest. Any #VMEXIT(SMI) encountered is
then known to be due to an external, asynchronous SMI. The hypervisor may respond to the
#VMEXIT(SMI) by executing the STGI instruction, which causes the pending SMI to be taken
immediately. When an SMI due to an I/O instruction is pending, the effect of executing STGI in
the hypervisor is undefined. To handle a pending SMI due to an I/O instruction, the hypervisor
must either containerize SMM or not intercept SMI.

• The most involved solution is to containerize SMM by placing it in a guest. Containerizing gives
the VMM full control over the state that the SMM handler can access.

Containerizing Platform SMM. A VMM can containerize SMM by creating its own trusted SMM
hypervisor and use that handler to run the platform SMM code in a container. The SMM hypervisor
may be the same code as the VMM itself, or may be an entirely different set of code. The trusted SMM
hypervisor sets up a guest context to run the platform SMM as a guest. The guest context consists of a
VMCB and related state and the guest's (real or virtual) SMM save area. The SMM hypervisor

Table 15-14. SMI Handling in Different Operating Modes

GIF Intercept
SMI Internal SMI External SMI

0 x Lost. Hold pending until GIF=1.

1
1 Exit guest,

code #VMEXIT(SMI), SMI is not pending. #VMEXIT(SMI), SMI is still pending.

0 Taken normally. Taken normally.

[AMD Public Use]

Secure Virtual Machine 513

24593—Rev. 3.37—March 2021 AMD64 Technology

emulates SMM entry, including setup of the SMM save area, and emulates RSM at the end of SMM
operation. The guest executes the platform SMM code in paged real mode with appropriate SVM
intercepts in place, thus ensuring security.

For this approach to work, the VMM may need to write the SMM_BASE MSR, as well as related
SMM control registers. As part of the emulation of SMM entry and RSM, the VMM needs to access
the SMM_CTL MSR (see Section 15.30.3). However, these actions conflict with any platform
firmware that locks SMM control registers.

A VMM can determine if it is running with a compatible firmware setup by checking the SMMLOCK
bit in the HWCR MSR (described in the BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual applicable to your product). If the bit is 1, firmware has locked the
SMM control registers and the VMM is unable to move them or insert its own SMM hypervisor.

As the processor physically enters SMM, the SMRAM regions are remapped. The VMM design must
ensure that none of its code or data disappears when the SMRAM areas are mapped or unmapped.
Also note that the ASEG region of the SMRAM overlaps with a portion of video memory, so the SMM
hypervisor should not attempt to write diagnostic messages to the screen. Any attempt by guests to
relocate any of the SMRAM areas (by means of certain MSR writes) must also be intercepted to
prevent malicious SMM code from interfering with VMM operation.

Writes to the SMM_CTL MSR cause a #GP if firmware has locked the SMM control registers.

15.23 Last Branch Record Virtualization
The debug control MSR (DebugCtl) provides control of control-transfer recording and other debug
facilities. (See Chapter 13, “Software Debug and Performance Resources,” on page 375, for more
information on using the debug control MSR.) Software sets the last-branch record (DebugCtl[LBR])
bit to 1 to cause the processor to record the source and target addresses of the last control transfer taken
before a debug exception. These control transfers include branch instructions, interrupts, and
exceptions. Recorded information is stored in four MSRs:

• LastBranchFromIP
• LastBranchToIP
• LastIntFromIP
• LastIntToIP

Under SVM, to virtualize the function of these MSRs, the VMM must save the contents of the control-
transfer recording MSRs on #VMEXIT and restore them prior to the VMRUN for each guest. If
control-transfer recording is to be used in host state as well the values of these registers must be
exchanged between values tracked by host and guest.

[AMD Public Use]

514 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.23.1 Hardware Acceleration for LBR Virtualization

Processors optionally support hardware acceleration for LBR virtualization. The following fields are
allocated in the VMCB state save area to hold the contents of the DebugCTL and control-transfer
recording MSRs:

• DBGCTL—Holds the guest value of the DebugCTL MSR.
• BR_FROM—Holds the guest value of the LastBranchFromIP MSR.
• BR_TO—Holds the guest value of the LastBranchToIP MSR.
• LASTEXCPFROM—Holds the guest value of the LastIntFromIP MSR.
• LASTEXCPTO—Holds the guest value of the LastIntToIPLastIntToIP MSR.

When VMCB.LBR_VIRTUALIZATION_ENABLE is set, VMRUN saves all five host control-
transfer MSRs in the host save area, and then loads the same five MSRs for the guest from the VMCB
save area. Similarly, #VMEXIT saves the guest's MSRs and loads the host's MSRs to and from their
respective save areas.

15.23.2 LBR Virtualization CPUID Feature Detection

CPUID Fn8000_000A_EDX[LbrVirt] = 1 indicates support for the LBR virtualization acceleration
feature on AMD64 processors. See Section 3.3, “Processor Feature Identification,” on page 70 for
more information on using the CPUID instruction.

15.24 External Access Protection
By securing the virtual address translation mechanism, the VMM can restrict guest CPU accesses to
memory. However, should the guest have direct access to DMA-capable devices, an additional
protection mechanism is required. SVM provides multiple protection domains which can restrict
device access to physical memory on a per-page basis. This is accomplished via control logic in the
northbridge’s host bridge which governs any external access port (e.g., PCI or HyperTransport™
technology interfaces).

15.24.1 Device IDs and Protection Domains

The northbridge’s host bridge provides a number of protection domains. Each protection domain has
associated with it a device exclusion vector (DEV) that specifies the per-page access rights of devices
in that domain. Devices are identified by a HyperTransport™ bus/unitID (device ID) and the host
bridge contains a lookup table of fixed size that maps device IDs to a protection domain.

15.24.2 Device Exclusion Vector (DEV)

A DEV is a contiguous array of bits in physical memory; each bit in the DEV (in little-endian order)
corresponds to one 4-Kbyte page in physical memory.

The physical address of the base of a DEV must be 4-Kbyte-aligned and stored in one of the
DEVBASE registers, which are accessed through an indirection mechanism in the DEVCTL PCI

[AMD Public Use]

Secure Virtual Machine 515

24593—Rev. 3.37—March 2021 AMD64 Technology

Configuration Space function block in the host bridge (see “DEV Control and Status Registers” on
page 518). The DEV protection hardware is not operational until enabled by setting a control bit in the
DEV Control Register, also in the DEVCTL function block.

The DEV may have to cover part of MMIO space beyond the DRAM. Especially in 64-bit systems, the
operating system should map MMIO space starting immediately after the DRAM area and building
up, as opposed to starting down from the maximum physical address.

Host Bridge and Processor DEV Caching. For improved performance, the host bridge may cache
portions of the DEV. Any such cached information can be invalidated by setting the DEV_FLUSH flag
in the DEV control register to 1. Software must set this flag after modifying DEV contents to ensure
that the protection logic uses the updated values. The host bridge automatically clears this flag when
the flush operation completes. After setting this flag, software should monitor it until it has cleared, in
order to synchronize DEV updates with subsequent activity.

By default, the host bridge probes the processor caches for the latest data when it accesses the DEV in
DRAM. However, it is possible to disable probing by means of the DEV_CR register (“DEV_CR
Register” on page 518); this is recommended in the case of unified memory architecture (UMA)
graphics systems. If cache probing is disabled, host bridge reads of the DEV will not check processor
caches for more recent copies. This requires software on the CPU to map the memory containing the
DEV as uncacheable (UC) or write-through (WT). Alternatively, software must perform a CLFLUSH
before it can expect a change to the DEV to be visible by the northbridge (and before software flushes
the DEV cache in the host controller).

Multiprocessor Issues. Device-originated memory requests are checked against the DEV at the
point of entry to the system—the northbridge to which the device is physically attached. Each
northbridge can have its own set of domains, device-to-domain mappings, and DEV tables (e.g.,
domain #2 on one node can encompass different devices, and can have different access rights than
domain #2 on another node). Thus, the number of protection domains available to software can scale
with the number of northbridges in the system.

15.24.3 Access Checking

Memory Space Accesses. When a memory-space read or write request is received on an external
host bridge port, the host bridge maps the HyperTransport bus device ID to a protection domain
number, which in turn selects the DEV defining the access permissions for the device (see
Figure 15-7). The host bridge then checks the memory address against the DEV contents by indexing
into the DEV with the PFN portion of the address (bits 39:12). The PFN is used as a bit index within
the DEV. If the bit read from the DEV is set to 1, the host bridge inhibits the access by returning all
ones for the data for a read request, or suppressing the store operation on a write request. A Master
Abort error response will be returned to the requesting device.

Peer-to-peer memory accesses routed up to the host bridge are also subjected to checks against the
DEV. Peer-to-peer transfers that may be occurring behind bridges are not checked.

[AMD Public Use]

516 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

DEV checks are applied before addresses are translated by the GART. The DEV table is never
consulted by accesses originating in the CPU.

I/O Space Accesses. The host bridge can be configured to reject all I/O space accesses from
devices, by setting the IOSPE bit in the DEV_CR control register (see “DEV_CR Register” on
page 518). I/O space peer-to-peer transfers behind bridges are not checked.

Config Space Accesses. Major aspects of host bridge functionality are configured by means of
control registers that are accessed through PCI configuration space. Because this is potentially
accessible by means of device peer-to-peer transfers, the host bridge always blocks access to this space
from anything other than the CPU.

Figure 15-7. Host Bridge DMA Checking

15.24.4 DEV Capability Block

The presence of DEV support is indicated through a new PCI capability block. The capability block
also provides access to the registers that control operation of the DEV feature.

The DEV capability block in PCI space contains three 32-bit words: the capability header
(DEV_HDR), and two registers (DEV_OP and DEV_DATA) which serve as an indirection
mechanism for accessing the actual DEV control and status registers.

DEV Cache

with
 Domain#

Tagged

DEV Table
Walker

HyperTransport

to
Domain#

(Zero if No Match)

Bus/Dev ID

Physical Address

DEV_BASE/LIMIT[0]

DEV_BASE/LIMIT[1]

DEV_BASE/LIMIT[2]

DEV_BASE/LIMIT[3]

Domain#Bus/Dev ID

TM

[AMD Public Use]

Secure Virtual Machine 517

24593—Rev. 3.37—March 2021 AMD64 Technology

DEV Capability Header. The DEV capability header (DEV_HDR) is defined in Table 15-16.

15.24.5 DEV Register Access Mechanism

The northbridge’s DEV control and status registers are accessed through an indirection mechanism:
writing the DEV_OP register selects which internal register is to be accessed, and the DEV_DATA
register can be read or written to access the selected register.

Figure 15-8 shows the format of the DEV_OP register. The DEV_DATA register reflects the format of
the DEV register selected in DEV_OP.

Figure 15-8. Format of DEV_OP Register (in PCI Config Space)

The FUNCTION field in the DEV_OP register selects the function/register to read or write according
to the encoding in Table 15-17; for blocks of registers that have multiple instances (e.g., multiple
DEV_BASE_HI/LO registers), the INDEX field selects the instance; otherwise it is ignored.

Table 15-15. DEV Capability Block, Overall Layout
Byte Offset Register Comments

0 DEV_HDR Capability block header
4 DEV_OP Selects control/status register to access
8 DEV_DATA Read/write to access register selected in DEV_OP

Table 15-16. DEV Capability Header (DEV_HDR) (in PCI Config Space)
Bit(s) Definition
31:22 Reserved, MBZ

21 Interrupt Reporting Capability
20 Machine Check Exception Reporting Capability
19 Reserved, MBZ

18:16 DEV Capability Block Type; hardwired to 000b.
15:8 PCI Capability pointer; points to next capability in list
7:0 PCI Capability ID; hardwired to 0x0F

31 16 15 8 7 0

Reserved, MBZ FUNCTION INDEX

[AMD Public Use]

518 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

For example, to write the DEV_BASE_HI register for protection domain number 2, software sets
DEV_OP.FUNCTION to 1, and DEV_OP.INDEX to 2, and then writes the desired 32-bit value into
DEV_DATA. As the DEV_OP and DEV_DATA registers are accessed through PCI config space
(ports 0CF8h–0CFFh), they may be secured from unauthorized access by software executing on the
processor by appropriate settings in the SVM I/O protection bitmap. These registers are also protected
by the host bridge from external access as described in “Config Space Accesses” on page 516.

15.24.6 DEV Control and Status Registers

The DEV control and status registers are accessible by means of the indirection mechanism; these
registers are not directly visible in PCI config space.

DEV_CAP Register. Read-only register; holds implementation specific information: the number of
protection domains supported, the number of DEV_MAP registers (which map device/unit IDs to
domain numbers), and the revision ID.

Figure 15-9. Format of DEV_CAP Register (in PCI Config Space)

The initial implementation provide four domains and three map registers.

DEV_CR Register. This is the main control register for the DEV mechanism; it is cleared to zero by
RESET.

Table 15-17. Encoding of Function Field in DEV_OP Register
Function Code RegisterType Number of Instances

0 DEV_BASE_LO multiple
1 DEV_BASE_HI multiple
2 DEV_MAP multiple
3 DEV_CAP single
4 DEV_CR single
5 DEV_ERR_STATUS single
6 DEV_ERR_ADDR_LO single
7 DEV_ERR_ADDR_HI single

31 24 23 16 15 8 7 0

Reserved, RAZ N_MAPS N_DOMAINS REVISION

[AMD Public Use]

Secure Virtual Machine 519

24593—Rev. 3.37—March 2021 AMD64 Technology

DEV_BASE Address/Limit Registers. The DEV base address registers (one set per domain) each
point to the physical address of a DEV table corresponding to a protection domain. The address and
size are encoded in a pair (high/low) of 32-bit registers. The N_DOMAINS field in DEV_CAP
indicates how many (pairs of) DEV_BASE registers are implemented. The register format is as shown
in Figures 15-10 and 15-11.

Figure 15-10. Format of DEV_BASE_HI[n] Registers

Figure 15-11. Format of DEV_BASE_LO[n] Registers

Fields of the DEV_BASE_HI and DEV_BASE_LO registers are defined as follows:

• Valid (V)—Bit 0. Indicates whether a DEV table has been defined for the given protection domain;
if this bit is clear, software can leave the other fields undefined, and no protection checks are
performed for memory references in this domain.

Table 15-18. DEV_CR Control Register
Bit(s) Definition
31:7 Reserved, MBZ

6
DEV table walk probe disable.
0 = Use probe on DEV walk; 1 = Do not use probe

5 SL_DEV_EN. Enable bit for limited memory protection, see Section 15.24.8 on
page 520. Set to “1” by SKINIT instruction, can be cleared by software.

4 Invalidate DEV cache. Software must set this bit to 1 to invalidate the DEV cache;
cleared by hardware when invalidation is complete.

3
Enable MCE reporting.
0 = Do not generate MCE; 1 = Generate MCE on errors.

2
I/O space protection enable (IOSPEN)
0 = Allow upstream I/O cycles; 1 = Block.

1
Memory clear disable. If non-zero, memory-clearing on reset is disabled.
This bit is not writable until the memory is enabled.

0 DEV global enable bit. If zero, DEV protection is turned off.

31 8 7 0

Reserved, MBZ BASEADDRESS[39:32]

31 12 11 7 6 2 1 0

BASEADDRESS[31:12] Reserved, MBZ SIZE P V

[AMD Public Use]

520 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

• Protect (P)—Bit 1. Indicates whether accesses to addresses beyond the address range covered by
the DEV are legal (P=0) or illegal (P=1).

• SIZE—Bits 6:2. Specifies how much memory the DEV covers, expressed increments of 4GB *
2size. In other words, a DEV table covers a minimum of 4GB, and can expand by powers of two.

DEV_MAP Registers. The DEV_MAP registers assign protection domain numbers to device-
originated requests by matching the device ID (HT bus and unit number) associated with the request
against bus and unit numbers in the registers. If no match is found in any of the registers, a domain
number of zero is returned. The number of DEV_MAP registers implemented by the chip is indicated
by the N_MAPS field in DEV_CAP.

The format of the DEV_MAP registers is shown in Figure 15-12.

Figure 15-12. Format of DEV_MAP[n] Registers

The fields of the DEV_MAP[n] registers are defined as follows:

• UNIT0—Bits 4:0. Specifies the first of two HyperTransport link unit numbers on the bus number
specified by the BUSNO field.

• V0—Bit 5. Indicates whether UNIT0 is valid (no matches occur on invalid entries).
• UNIT1—Bits 10:6. Specifies the second of two HyperTransport link unit numbers on the bus

number specified by the BUSNO field.
• V1—Bit 11. Indicates whether UNIT1 is valid (no matches occur on invalid entries).
• BUSNO—Bits 19:12. Specifies a HyperTransport link bus number.
• DOM0—Bits 25:20. Specifies the protection domain for the first HyperTransport link unit.
• DOM1—Bits 31:26. Specifies the protection domain for the second HyperTransport link unit.

15.24.7 Unauthorized Access Logging

Any attempted unauthorized access by devices to DEV-protected memory is logged by the host bridge
in the DEV_Error_Status and DEV_Error_Address registers for possible inspection by the VMM.

15.24.8 Secure Initialization Support

The host bridge contains additional logic that operates in conjunction with the SKINIT instruction to
provide a limited form of memory protection during the secure startup protocol. This provides
protection for a Secure Loader image in memory, allowing it to, among other things, set up full DEV
protection. (See Section 15.27 for detailed operation of SKINIT.)

31 26 25 20 19 12 11 10 6 5 4 0

DOM1 DOM0 BUSNO V1 UNIT1 V0 UNIT0

[AMD Public Use]

Secure Virtual Machine 521

24593—Rev. 3.37—March 2021 AMD64 Technology

The host bridge logic includes a hidden (not accessible to software) SL_DEV_BASE address register.
SL_DEV_BASE points to a 64KB-aligned 64KB region of physical memory. When SL_DEV_EN is
1, the 64KB region defined by SL_DEV_BASE is protected from external access (as if it were
protected by the DEV), as well as from any access (both CPU and external accesses) via GART-
translated addresses. Additionally, the SL_DEV mechanism, when enabled, blocks all device accesses
to PCI Configuration space.

15.25 Nested Paging
The optional SVM nested paging feature provides for two levels of address translation, thus
eliminating the need for the VMM to maintain shadow page tables.

15.25.1 Traditional Paging versus Nested Paging

Figure 15-13 shows how a page in the linear address space is mapped to a page in the physical address
space in traditional (single-level) address translation. Control register CR3 contains the physical
address of the base of the page tables (PT, represented by the shaded box in the figure), which governs
the address translation.

Figure 15-13. Address Translation with Traditional Paging

With nested paging enabled, two levels of address translation are applied; refer to Figure 15-14 below.

• Both guest and host levels have their own copy of CR3, referred to as gCR3 and nCR3,
respectively.

• Guest page tables (gPT) map guest linear addresses to guest physical addresses. The guest page
tables are in guest physical memory, and are pointed to by gCR3.

• Nested page tables (nPT) map guest physical addresses to system physical addresses. The nested
page tables are in system physical memory, and are pointed to by nCR3.

• The most-recently used translations from guest linear to system physical address are cached in the
TLB and used on subsequent guest accesses.

Linear Space

PT

0

0

CR3

[AMD Public Use]

522 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

It is important to note that gCR3 and the guest page table entries contain guest physical addresses, not
system physical addresses. Hence, before accessing a guest page table entry, the table walker first
translates that entry’s guest physical address into a system physical address.

Figure 15-14. Address Translation with Nested Paging

The VMM can give each guest a different ASID, so that TLB entries from different guests can coexist
in the TLB. The ASID value of zero is reserved for the host; if the VMM attempts to execute VMRUN
with a guest ASID of zero, the result is #VMEXIT(VMEXIT_INVALID). Note that because an ASID
is associated with the guest's physical address space, it is common across all of the guest's virtual
address spaces within a processor. This differs from shadow page tables where ASIDs tag individual
guest virtual address spaces. Note also that the same ASID may or may not be associated with the same
address space across all processors in a multiprocessor system, for either nested tables or shadow
tables; this depends on how the VMM manages ASID assignment.

15.25.2 Replicated State

Most processor state affecting paging is replicated for host and guest. This includes the paging
registers CR0, CR3, CR4, EFER and PAT. CR2 is not replicated but is loaded by VMRUN. The
MTRRs are not replicated.

While nested paging is enabled, all (guest) references to the state of the paging registers by x86 code
(MOV to/from CRn, etc.) read and write the guest copy of the registers; the VMM's versions of the

Guest Linear

gPT

0

0

Host Linear

0

nPT

0

Guest Physical

pa
ge

d
by

gC
R3gCR3

nCR3

PT

CR3 (used by VMM)

System Physical

paged by

the VMM’s CR3

pa
ge

d
by

nC
R

3
TL

B
En

try VMM

gPT

pa
ge

d
by

nC
R3

[AMD Public Use]

Secure Virtual Machine 523

24593—Rev. 3.37—March 2021 AMD64 Technology

registers are untouched and continue to control the second level translations from guest physical to
system physical addresses. In contrast, when nested paging is disabled, the VMM's paging control
registers are stored in the host state save area and the paging control registers from the guest VMCB
are the only active versions of those registers.

15.25.3 Enabling Nested Paging

The VMRUN instruction enables nested paging when the NP_ENABLE bit in the VMCB is set to 1.
The VMCB contains the hCR3 value for the page tables for the extra translation. The extra translation
uses the same paging mode as the VMM used when it executed the most recent VMRUN.

Nested paging is automatically disabled by #VMEXIT.

Nested paging is allowed only if the host has paging enabled. Support for nested paging is indicated by
CPUID Fn8000_000A_EDX[NP] = 1. If VMRUN is executed with hCR0.PG cleared to zero and
NP_ENABLE set to 1, VMRUN terminates with #VMEXIT(VMEXIT_INVALID). See Section 3.3,
“Processor Feature Identification,” on page 70 for more information on using the CPUID instruction.

15.25.4 Nested Paging and VMRUN/#VMEXIT

When VMRUN is executed with nested paging enabled (NP_ENABLE = 1), the paging registers are
affected as follows:

• VMRUN saves the VMM’s CR3 in the host save area.
• VMRUN loads the guest paging state from the guest VMCB into the guest registers (i.e., VMRUN

loads CR3 with the VMCB CR3 field, etc.). The guest PAT register is loaded from G_PAT field in
the VMCB.

• VMRUN loads nCR3, the version of CR3 to be used while the nested-paging guest is running,
from the N_CR3 field in the VMCB. The other host paging-control bits (hCR4.PAE, etc.) remain
the same as they were in the VMM at the time VMRUN was executed.

When VMRUN is executed with nested paging enabled (NP_ENABLE = 1), the following conditions
are considered illegal state combinations, in addition to those mentioned in “Canonicalization and
Consistency Checks” on page 479:

• Any MBZ bit of nCR3 is set.
• Any G_PAT.PA field has an unsupported type encoding or any reserved field in G_PAT has a non-

zero value. (See Section 7.8.1, “PAT Register,” on page 216.)

When #VMEXIT occurs with nested paging enabled:

• #VMEXIT writes the guest paging state (gCR3, gCR0, etc.) back into the VMCB. nCR3 is not
saved back into the VMCB.

• #VMEXIT need not reload any host paging state other than CR3 from the host save area, though an
implementation is free to do so.

[AMD Public Use]

524 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.25.5 Nested Table Walk

When the guest is running with nested paging enabled, a TLB miss causes several nested table walks:

• Guest Page Tables—the gCR3 register specifies a guest physical address, as do the entries in the
guest's page tables. These guest physical addresses must be translated to system physical addresses
using the nested page tables. Nested page table level faults can occur on these accesses, including
write faults due to setting of accessed and dirty bits in the guest page table.

• Final Guest-Physical Page—once a guest linear to guest physical mapping is known, guest
permissions can be checked. If the guest page tables allow the access, the guest physical address is
walked in the nested page tables to find the system physical address.

Table walks for guest page tables are always treated as user writes at the nested page table level. For
this reason,

• the page must be writable by user at the nested page table level, or else a #VMEXIT(NPF) is
raised, and

• the dirty and accessed bits are always set in the nested page table entries that were touched during
nested page table walks for guest page table entries.

A table walk for the guest page itself is always treated as a user access at the nested page table level,
but is treated as a data read, data write, or code read, depending on the guest access.

If the guest has paging disabled (gCR0.PG = 0), there are no guest page table entries to be translated in
the nested page tables. In this case, the final guest-physical address is equal to the guest-linear address,
and is still translated in the nested page tables.

15.25.6 Nested versus Guest Page Faults, Fault Ordering

In nested paging, page faults can be raised at either the guest or nested page table level. Nested walks
proceed in the following order; faults are generated in the same order:

1. Walk the guest page table entries in the nested page table. Dirty/Accessed bits are set as needed in
the nested page table. Any nested page table faults result in #VMEXIT(NPF).

2. As the guest page table walk proceeds from the top of the page table to the last entry, any not-
present entries or reserved bits in the guest page table entries at each level of the guest walk cause
#PF in the guest. Guest dirty and accessed bits are set as needed in the guest page tables during the
walk. Steps 1 and 2 are repeated for each level of the guest page table that is traversed.

3. Once the guest physical address for the guest access has been determined, check the guest
permissions; any fault at this point causes a #PF in the guest.

4. Perform the final translation from guest physical to system physical using the nested page table;
any fault during this translation results in a #VMEXIT(NPF).

Nested page faults are entirely a function of the nested page table and VMM processor mode. Nested
faults cause a #VMEXIT(NPF) to the VMM. The faulting guest physical address is saved in the
VMCB's EXITINFO2 field; EXITINFO1 delivers an error code similar to a #PF error code:

[AMD Public Use]

Secure Virtual Machine 525

24593—Rev. 3.37—March 2021 AMD64 Technology

• Bit 0 (P)—cleared to 0 if the nested page was not present, 1 otherwise
• Bit 1 (RW)—set to 1 if the nested page table level access was a write. Note that host table walks for

guest page tables are always treated as data writes.
• Bit 2 (US)—set to 1 if the nested page table level access was a user access. Note that nested page

table accesses performed by the MMU are treated as user accesses unless there are features
enabled that override this.

• Bit 3 (RSV)—set to 1 if reserved bits were set in the corresponding nested page table entry
• Bit 4 (ID)—set to 1 if the nested page table level access was a code read. Note that nested table

walks for guest page tables are always treated as data writes, even if the access itself is a code read
• Bit 6 (SS) - set to 1 if the fault was caused by a shadow stack access.

In addition, the VMCB contents for nested page faults indicate whether the page fault was encountered
during the nested page table walk for a guest page TLB entry, or for the final nested walk for the guest
physical address, as indicated by EXITINFO1[33:32]:

• Bit 32—set to 1 if nested page fault occurred while translating the guest’s final physical address
• Bit 33—set to 1 if nested page fault occurred while translating the guest page tables
• Bit 37—set to 1 if the page was marked as a supervisor shadow stack page in the leaf node of the

nested page table and the shadow stack check feature is enabled in VMCB offset 90h.

Guest faults are entirely a function of the guest page tables and processor mode; they are delivered to
the guest as normal #PF exceptions without any VMM intervention, unless the VMM is intercepting
guest #PF exceptions. Bits 32 and 33 of EXITINFO1 are written during nested page faults to indicate
whether the page fault was encountered during the nested page table walk for a guest page table's table
entries, or if the fault was encountered during the nested page table walk for the translation of the final
guest physical address.

The processor may provide additional instruction decode assist information. (See section 15.10.)

15.25.7 Combining Nested and Guest Attributes

Any access to guest physical memory is subjected to a permission check by examining the mapping of
the guest physical address in the nested page table.

A page is considered writable by the guest only if it is marked writable at both the guest and nested
page table levels. Note that the guest’s gCR0.WP affects only the interpretation of the guest page table
entry; setting gCR0.WP cannot make a page writable at any CPL in the guest, if the page is marked
read-only in the nested page table. The host hCR0.WP bit is ignored under nested paging.

A page is considered executable by the guest only if it is marked executable at both the guest and
nested page table levels. If the EFER.NXE bit is cleared for the guest, all guest pages are executable at
the guest level. Similarly, if the EFER.NXE bit is cleared for the host, all nested page table mappings
are executable at the underlying nested level.

[AMD Public Use]

526 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Some attributes are taken from the guest page tables and operating modes only. A page is considered
global within the guest only if is marked global in the guest page tables; the nested page table entry and
host hCR4.PGE are irrelevant. Global pages are only global within their ASID.

A page is considered user in the guest only if it is marked as user at the guest level. The page must be
marked user in the nested page table to allow any guest access at all.

15.25.8 Combining Memory Types, MTRRs

When nested paging is disabled, the processor behaves as though there is no gPAT register.

The host PAT MSR determines memory type attributes for the current VM, and guest writes to the PAT
MSR that aren't intercepted by the VMM will alter the host PAT MSR. The hypervisor is responsible
for context-switching the PAT MSR contents on world switches between VM's.

When nested paging is enabled, the processor combines guest and nested page table memory types.
Registers that affect memory types include:

• The PCD/PWT/PATi bits in the nested and guest page table entries.
• The PCD/PWT bits in the nested CR3 and guest CR3 registers.
• The guest PAT type (obtained by appropriately indexing the gPAT register).
• The host PAT type (obtained by appropriately indexing the host’s PAT register).
• The MTRRs (which are referenced based only on system physical address).
• gCR0.CD and hCR0.CD.

Note that there is no hardware support for guest MTRRs; the VMM can simulate their effect by
altering the memory types in the nested page tables. Note that the MTRRs are only applied to system
physical addresses.

The rules for combining memory types when constructing a guest TLB entry are:

• Nested and guest PAT types are combined according to Table 15-19, producing a “combined PAT
type.”

• Combined PAT type is further combined with the MTRR type according to Table 15-20, where the
relevant MTRRs are determined by the system physical address.

• Either gCR0.CD or hCR0.CD can disable caching.

Memory Consistency Issues. Because the guest uses extra fields to determine the memory type, the
VMM may use a different memory type to access a given piece of memory than does the guest. If one
access is cacheable and the other is not, the VMM and guest could observe different memory images,
which is undesirable. (MP systems are particularly sensitive to this problem when the VMM desires to
migrate a virtual processor from one physical processor to another.)

To address this issue, the following mechanisms are provided:

[AMD Public Use]

Secure Virtual Machine 527

24593—Rev. 3.37—March 2021 AMD64 Technology

• VMRUN and #VMEXIT flush the write combiners. This ensures that all writes to WC memory by
the guest are visible to the host (or vice-versa) regardless of memory type. (It does not ensure that
cacheable writes by one agent are properly observed by WC reads or writes by the other agent.)

• A new memory type WC+ is introduced. WC+ is an uncacheable memory type, and combines
writes in write-combining buffers like WC. Unlike WC (but like the CD memory type), accesses to
WC+ memory also snoop the caches on all processors (including self-snooping the caches of the
processor issuing the request) to maintain coherency. This ensures that cacheable writes are
observed by WC+ accesses.

• When combining nested and guest memory types that are incompatible with respect to caching, the
WC+ memory type is used instead of WC (and Table 15-20 ensures that the snooping behavior is
retained regardless of the host MTRR settings). Refer to Table 15-19 or details.

Table 15-19 shows how guest and host PAT types are combined into an effective PAT type. When
interpreting this table, recall (a) that guest and host PAT types are not combined when nested paging is
disabled and (b) that the intent is for the VMM to use its PAT type to simulate guest MTRRs.

The existing AMD64 table that defines how PAT types are combined with the physical MTRRs is
extended to handle CD and WC+ PAT types as shown in Table 15-20.

Table 15-19. Combining Guest and Host PAT Types
Host PAT Type

UC UC– WC WP WT WB

G
ue

st
 P

AT
 T

yp
e

UC UC UC UC UC UC UC
UC– UC UC– WC UC UC UC
WC WC WC WC WC+ WC+ WC+
WP UC UC UC WP UC WP
WT UC UC UC UC WT WT
WB UC UC WC WP WT WB

Table 15-20. Combining PAT and MTRR Types
MTRR Type

UC WC WP WT WB

Ef
fe

ct
iv

e P
AT

 T
yp

e

UC UC CD CD CD CD
UC– UC WC CD CD CD
WC WC WC WC WC WC

WC+ WC WC WC+ WC+ WC+
WP UC CD WP CD WP
WT UC CD CD WT WT
WB UC WC WP WT WB

[AMD Public Use]

528 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.25.9 Page Splintering

When an address is mapped by guest and nested page table entries with different page sizes, the TLB
entry that is created matches the size of the smaller page.

15.25.10 Legacy PAE Mode

The behavior of PAE mode in a nested-paging guest differs slightly from the behavior of (host-only)
legacy PAE mode, in that the guest’s four PDPEs are not loaded into the processor at the time CR3 is
written. Instead, the PDPEs are accessed on demand as part of a table walk. This has the side-effect
that illegal bit combinations in the PDPEs are not signaled at the time that CR3 is written, but instead
when the faulty PDPE is accessed as part of a table walk.

This means that an operating system cannot rely on the behavior when the in-memory PDPEs are
different than the in-processor copy.

15.25.11 A20 Masking

There is no provision for applying A20 masking to guest physical addresses; the VMM can emulate
A20 masking by changing the nested page mappings accordingly.

15.25.12 Detecting Nested Paging Support

Nested Paging is an optional feature of SVM and is not available in all implementations of SVM-
capable processors. The CPUID instruction should be used to detect nested paging support on a
particular processor. See Section 3.3, “Processor Feature Identification,” on page 70 for more
information on using the CPUID instruction.

15.25.13 Guest Mode Execute Trap Extension

The Guest Mode Execute Trap (GMET) extension allows a hypervisor to cause nested page faults on
attempts by a guest to execute code at CPL0, 1 or 2 from pages designated by the hypervisor. The
presence of the GMET extension is indicated by CPUID Fn8000_000A EDX[17]=1. The GMET
mode is selected for a targeted guest by setting bit 3 of VMCB offset 090h to 1. For processors that
don’t support GMET this bit is ignored.

On GMET capable processors, when this bit is set to 1 on a VMRUN, the processor changes how the
U/S bit in the nested page table is interpreted. The NX bit still prohibits execution of code at any
privilege level when set to 1. However, with GMET enabled and the effective NX bit =0, if the
effective U/S bit =1 and the page is being accessed for execution at CPL0, 1 or 2, a nested page fault
#VMEXIT(NPF) is generated. If the effective NX bit =0 and the effective U/S bit =0 then the

[AMD Public Use]

Secure Virtual Machine 529

24593—Rev. 3.37—March 2021 AMD64 Technology

translation is allowed for the code page. The following table summarizes the behavior when GMET is
enabled.

The EXITINFO1 field for the nested page fault contains the page fault error code describing attributes
of the attempted translation that caused the fault. A GMET violation is not explicitly indicated with a
separate bit. It is up to software to determine if it was NX based or GMET based by inspecting this
error code along with the faulting page’s effective NX and U/S settings.1

15.25.14 Supervisor Shadow Stacks

The Supervisor Shadow Stack (SSS) feature is an extension to nested paging which allows a
hypervisor to restrict which guest physical addresses may be used for a guest supervisor shadow stack.
Supervisor shadow stack accesses made by the guest to pages not designated as SSS pages in the
nested page tables result in a #VMEXIT(NPF).

Determining Support for SSS. Support for the SSS feature is indicated CPUID
Fn8008_000A_EDX[19](SupervisorShadowStack)=1.

Enabling SSS. The SSS feature is enabled by setting bit 4 in VMCB offset 90h (See Table B-1.
VMCB Layout, Control Area). The SSS feature can be enabled only if nested paging is enabled in the
VMCB and the PAE and No Execute paging modes (EFER.NXE=1) are enabled in the host.

• Attempting to execute a VMRUN with SSS enabled and nested paging disable result in a
VMEXIT(INVALID).

• If the host is not legacy non-PAE mode or EFER.NXE=0, attempts to enable the SSS feature are
silently ignored.

The SSS feature can be enabled regardless of whether the guest has enabled shadow stacks or not.

Designating SSS Pages. When the SSS feature is enabled, the hypervisor indicates a page may be
used for a supervisor shadow stack using following combination of nested page table bits:

• NX=1 and U/S=0 in the final nested page table entry used to translate the address.
• R/W=1 in all other nested non-leaf page table entries leading to the final nested page table entry.

Although is not enforced by the SSS feature, R/W should be 0 in the final nested page table entry in
order to achieve the desired security functionality.

Table 15-21. GMET Page Configuration

nPT NX Bit nPT U/S Bit Guest
User-Mode Code

Guest
Supervisor-Mode Code

1 X No Execute No Execute
0 1 Execute No Execute
0 0 Execute Execute

1 The guest user/supervisor indication is normally provided in ExitInfo1, however on some im-
plementations a GMET erratum may require CPL to be read from the guest VMCB.

[AMD Public Use]

530 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

SSS Access Checking. When the SSS feature is enabled, guest supervisor shadow stack accesses
are allowed only to physical pages designated as SSS pages in the nested page tables. Note that
supervisor shadow stack writes to SSS pages are allowed to complete even though R/W=0 in the final
nested page table entry.

The following accesses to SSS pages are not allowed:

• Supervisor shadow accesses made to non-SSS pages. These result in a #VMEXIT(NPF) with the
SS bit set in the EXITINFO1 error code.

• Attempting to execute code from an SSS page. This results in a VMEXIT(#NPF) the same as any
page with NX=1.

See Chapter 15.25.6, “Nested versus Guest Page Faults, Fault Ordering,” on page 524 for more
information on EXITINFO1 error codes for nested page faults.

15.26 Security
SVM provides additional hardware support that is designed to facilitate the construction of trusted
software systems. While the security features described in this section are orthogonal to SVM’s
virtualization support (and are not required for processor virtualization), the two form building blocks
for trusted systems.

SKINIT Instruction. The SKINIT instruction and associated system support (the Trusted Platform
Module or TPM) are designed to allow for verifiable startup of trusted software (such as a VMM),
based on secure hash comparison.

Security Exception. A security exception (#SX) is used to signal certain security-critical events.

15.27 Secure Startup with SKINIT
The SKINIT instruction is one of the keys to creating a “root of trust” starting with an initially
untrusted operating mode. SKINIT reinitializes the processor to establish a secure execution
environment for a software component called the secure loader (SL) and starts execution of the SL in a
way that cannot be tampered with. SKINIT also copies the secure loader executable image to an
external device, such as a Trusted Platform Module (TPM) for verification using unique bus
transactions that preclude SKINIT operation from being emulated by software in a way that the TPM
could not readily detect. (Detailed operation is described in Section 15.27.4.)

15.27.1 Secure Loader

A secure loader (SL) typically initializes SVM hardware mechanisms and related data structures, and
initiates execution of a trusted piece of software such as a VMM (referred to as a Security Kernel, or
SK, in this document), after first having validated the identity of that software.

[AMD Public Use]

Secure Virtual Machine 531

24593—Rev. 3.37—March 2021 AMD64 Technology

SKINIT allows SVM protections to be reliably enabled after the system is already up and running in a
non-trusted mode — there is no requirement to change the typical x86 platform boot process.

Exact details of the handoff from the SL to an SK are dependent on characteristics of the SL, SK and
the initial untrusted operating environment. However, there are specific requirements for the SL
image, as described in Section 15.27.2.

15.27.2 Secure Loader Image

The secure loader (SL) image contains all code and initialized data sections of a secure loader. This
code and initial data are used to initialize and start a security kernel in a completely safe manner,
including setting up DEV protection for memory allocated for use by SL and SK. The SL image is
loaded into a region of memory called the secure loader block (SLB) and can be no larger than
64Kbyte (see Section 15.27.3). The SL image is defined to start at byte offset 0 in the SLB.

The first word (16 bits) of the SL image must specify the SL entry point as an unsigned offset into the
SL image. The second word must contain the length of the image in bytes; the maximum length
allowed is 65535 bytes. These two values are used by the SKINIT instruction. The layout of the rest of
the image is determined by software conventions. The image typically includes a digital signature for
validation purposes. The digital signature hash must include the entry point and length fields. SKINIT
transfers the SL image to the TPM for validation prior to starting SL execution (see Section 15.27.6 for
further details of this transfer). The SL image for which the hash is computed must be ready to execute
without prior manipulation.

15.27.3 Secure Loader Block

The secure loader block is a 64Kbyte range of physical memory which may be located at any 64Kbyte-
aligned address below 4Gbyte. The SL image must have been loaded into the SLB starting at offset 0
before executing SKINIT. The physical address of the SLB is provided as an input operand (in the
EAX register) to SKINIT, which sets up special protection for the SLB against device accesses (i.e.,
the DEV need not be activated yet).

The SL must be written to execute initially in flat 32-bit protected mode with paging disabled. A base
address can be derived from the value in EAX to access data areas within the SL image using
base+displacement addressing, to make the SL code position-independent.

Memory between the end of the SL image and the end of the SLB may be used immediately upon entry
by the SL as secure scratch space, such as for an initial stack, before DEV protections are set up for the
rest of memory. The amount of space required for this will limit the maximum size of the SL image,
and will depend on SL implementation. SKINIT sets the ESP register to the appropriate top-of-stack
value (EAX + 10000h).

Figure 15-15 illustrates the layout of the SLB, showing where EAX and ESP point after SKINIT
execution. Labels in italics indicate suggested uses; other labels reflect required items.

[AMD Public Use]

532 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 15-15. SLB Example Layout

15.27.4 Trusted Platform Module

The trusted platform module, or TPM, is an essential part of full trusted system initialization. This
device is attached to an LPC link off the system I/O hub. It recognizes special SKINIT transactions,
receives the SL image sent by SKINIT and verifies the signature. Based on the outcome, the device
decides whether or not to cooperate with the SL or subsequent SK. The TPM typically contains sealed
storage containing cryptographic keys and other high-security information that may be specific to the
platform.

SL Stack

SL Code
and

Static Data

SL Entry Point
SL Header

Length EP Offset

31 16 15 0

64 KB

SL Runtime
Data Area

SL Image
(Hash Area)

Post SKINIT ESP

Post SKINIT EAX

[AMD Public Use]

Secure Virtual Machine 533

24593—Rev. 3.37—March 2021 AMD64 Technology

15.27.5 System Interface, Memory Controller and I/O Hub Logic

SKINIT uses special support logic in the processor’s system interface unit, the internal controller and
the I/O hub to which the TPM is attached. SKINIT uses special transactions that are unique to SKINIT,
along with this support logic, designed to securely transmit the SL Image to the TPM for validation.

The use of this special protocol is intended to allow the TPM to detect true execution, as opposed to
emulation, of a trusted Secure Loader, which in turn provides a means for verifying the subsequent
loading and startup of a trusted Security Kernel.

15.27.6 SKINIT Operation

The SKINIT instruction is intended to be used primarily in normal mode prior to the VMM taking
control.

SKINIT takes the physical base address of the SLB as its only input operand in EAX, and performs the
following steps:

1. Reinitialize processor state in the same manner as for the INIT signal, then enter flat 32-bit
protected mode with paging off. The CS selector is set to 8h and CS is read only. The SS selector
is set to 10h and SS is read/write and expand-up. The CS and SS bases are cleared to 0 and limits
are set to 4G. DS, ES, FS and GS are left as 16-bit real mode segments and the SL must reload
these with protected mode selectors having appropriate GDT entries before using them. Initialized
data in the SLB may be referenced using the SS segment override prefix until DS is reloaded. The
general purpose registers are cleared except for EAX, which points to the start of the secure
loader, EDX, which contains model, family and stepping information, and ESP, which contains
the initial stack pointer for the secure loader. Cache contents remain intact, as do the x87 and SSE
control registers. Most MSRs also retain their values, except those which might compromise
SVM protections. The EFER MSR, however, is cleared. The DPD, R_INIT and DIS_A20M flags
in the VM_CR register are unconditionally set to 1.

2. Form the SLB base address by clearing bits 15:0 of EAX (EAX is updated), and enable the
SL_DEV protection mechanism (see Section 15.24.8) to protect the 64-Kbyte region of physical
memory starting at the SLB base address from any device access.

3. In multiprocessor operation, perform an interprocessor handshake as described in section 15.27.8.

4. Read the SL image from memory and transmit it to the TPM in a manner that cannot be emulated
by software.

5. Signal the TPM to complete the hash and verify the signature. If any failures have occurred along
the way, the TPM will conclude that no valid SL was started.

6. Clear the Global Interrupt Flag. This disables all interrupts, including NMI, SMI and INIT and
ensures that the subsequent code can execute atomically. If the processor enters the shutdown
state (due to a triple fault for instance) while GIF is clear, it can only be restarted by means of a
RESET.

7. Update the ESP register to point to the first byte beyond the end of the SLB (SLB base + 65536),
so that the first item pushed onto the stack by the SL will be at the top of the SLB.

[AMD Public Use]

534 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

8. Add the unsigned 16-bit entry point offset value from the SLB to the SLB base address to form
the SL entry point address, and jump to it.

The validation of the SL image by the TPM is a one-way transaction as far as SKINIT is concerned. It
does not depend on any response from the TPM after transferring the SL image before jumping to the
SL entry point, and initiates execution of the Secure Loader unconditionally. Because of the processor
initialization performed, SKINIT does not honor instruction or data breakpoint traps, or trace traps due
to EFLAGS.TF.

Pending interrupts. Device interrupts that may be pending prior to SKINIT execution due to
EFLAGS.IF being clear, or that assert during the execution of SKINIT, will be held pending until
software subsequently sets GIF to 1. Similarly, SMI, INIT and NMI interrupts that assert after the start
of SKINIT execution will also be held pending until GIF is set to 1.

Debug Considerations. SKINIT automatically disables various implementation-specific hardware
debug features. A debug version of the SL can reenable those features by clearing the VM_CR.DPD
flag immediately upon entry.

15.27.7 SL Abort

If the SL determines that it cannot properly initialize a valid SK, it must cause GIF to be set to 1 and
clear the VM_CR MSR to re-enable normal processor operation.

15.27.8 Secure Multiprocessor Initialization

The following standard APIC features are used for secure MP initialization:

• The concept of a single Bootstrap Processor (BSP) and multiple Application Processors (APs).
• The INIT interprocessor interrupt (IPI), which puts the target processors into a halted state (INIT

state) which is responsive only to a subsequent Startup IPI.
• The Startup IPI causes target processors to begin execution at a location in memory that is

specified by the Boot Processor and conveyed along with the Startup IPI. The operation of the
processor in response to a Startup IPI is slightly modified to support secure initialization, as
described below.

A Startup IPI normally causes an AP to start execution at a location provided by the IPI. To support
secure MP startup, each AP responds to a startup IPI by additionally clearing its GIF and setting the
DPD, R_INIT and DIS_A20M flags in the VM_CR register if, and only if, the BSP has indicated that
it has executed an SKINIT. All other aspects of Startup IPI behavior remain unchanged.

Software Requirements for Secure MP initialization. The driver that starts the SL must execute on
the BSP. Prior to executing the SKINIT instruction, the driver must save any processor-specific system
register contents to memory for restoration after reinitialization of the APs. The driver should also put
all APs in an idle state. The driver must first confirmed that all APs are idle and then it must issue an
INIT IPI to all APs and wait for its local APIC busy indication to clear. This places the APs into a
halted state which is responsive only to a subsequent Startup IPI. APs will still respond to snoops for
cache coherency. The driver may execute SKINIT at any time after this point. Depending on processor

[AMD Public Use]

Secure Virtual Machine 535

24593—Rev. 3.37—March 2021 AMD64 Technology

implementation, a fixed delay of no more than 1000 processor cycles may be necessary before
executing SKINIT to ensure reliable sensing of APIC INIT state by the SKINIT.

AP Startup Sequence. While the SL starts executing on the BSP, the APs remain halted in APIC
INIT state. Either the SL or the SK may issue the Startup IPI for the APs at whatever point is deemed
appropriate. The Startup IPI conveys an 8-bit vector specified by the software that issues the IPI to the
APs. This vector provides the upper 8 bits of a 20-bit physical address. Therefore, the AP startup code
must reside in the lower 1Mbyte of physical memory—with the entry point at offset 0 on that
particular page.

In response to the Startup IPI, the APs start executing at the specified location in 16-bit real mode. This
AP startup code must set up protections on each processor as determined by the SL or SK. It must also
set GIF to re-enable interrupts, and restore the pre-SKINIT system context (as directed by the SL or
SK executing on the BSP), before resuming normal system operation.

The SL must guarantee the integrity of the AP startup sequence, for example by including the startup
code in the hashed SL image and setting up DEV protection for it before copying it to the desired area.
The AP startup code does not need to (and should not) execute SKINIT. Care must also be taken to
avoid issuing another INIT IPI from any processor after the BSP executes SKINIT and before all APs
have received a Startup IPI, as this could compromise the integrity of AP initialization.

Pending interrupts. Device interrupts that may be pending on an AP prior to the APIC INIT IPI due
to EFLAGS.IF being clear, or that assert any time after the processor has accepted the INIT IPI, will be
held pending through the subsequent Startup IPI, and remain pending until software sets GIF to 1 on
that AP. Similarly, SMI, INIT, and NMI interrupts that assert after the processor has accepted the INIT
IPI will also be held pending until GIF is set to 1.

Aborting MP initialization. In the event that the SL or SK on the BSP decides to abort SVM system
initialization for any reason, the following clean-up actions must be performed by SL code executing
on each processor before returning control to the original operating environment:

• The BSP and all APs that responded to the Startup IPI must restore GIF and clear VM_CR on each
processor for normal operation.

• For each processor that has a distinct memory controller associated with it, the SL_DEV_EN flag
in the DEV control register must be cleared in order to restore normal device accessibility to the
64KB SL memory range.

Any secure context created by the SL that should not be exposed to untrusted code should be cleaned
up as appropriate before these steps are taken.

15.28 Security Exception (#SX)
The Security Exception fault signals security-sensitive events that occur while executing the VMM, in
the form of an exception so that the VMM may take appropriate action. (A VMM would typically
intercept comparable sensitive events in the guest.) Currently, the only use of the #SX is to redirect
external INITs into an exception so that the VMM may — among other possibilities — destroy

[AMD Public Use]

536 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

sensitive information before re-issuing the INIT, this time without redirection. The INIT redirection is
controlled by the VM_CR.R_INIT bit. (See “INIT Support” on page 510 for more details on INIT and
#SX behavior). Note that INIT is gated by the Global Interrupt Flag (GIF), and so will be held pending
if asserted while GIF is 0. When GIF transitions to 1, INIT will either take effect or be redirected to
#SX, depending on the state of R_INIT.

The #SX exception dispatches to vector 30, and behaves like other fault-class exceptions such as
General Protection Fault (#GP). The #SX exception pushes an error code. The only error code
currently defined is 1, and indicates redirection of INIT has occurred.

The #SX exception is a contributory fault.

15.29 Advanced Virtual Interrupt Controller
The AMD Advanced Virtual Interrupt Controller (AVIC) is an important enhancement to AMD
Virtualization™ Technology (AMD-V). In a virtualized environment, AVIC presents to each guest a
virtual interrupt controller that is compliant with the local Advanced Programmable Interrupt
Controller (APIC) architecture. See Chapter 16, “Advanced Programmable Interrupt Controller
(APIC),” on page 591 for a detailed description of APIC.

15.29.1 Introduction

In a virtualized computer system, each guest operating system needs access to an interrupt controller to
send and receive device and interprocessor interrupts. When there is no hardware acceleration, it falls
to the virtual machine monitor (VMM) to intercept guest-initiated attempts to access the interrupt
controller registers and provide direct emulation of the controller system programming interface
allowing the guest to initiate and process interrupts. The VMM uses the underlying physical and
virtual interrupt delivery mechanisms of the system to deliver interrupts from I/O devices and virtual
processors to the target guest virtual processor and to handle any required end of interrupt processing.

Given the high rate of device and interprocessor interrupt generation in certain scenarios, in particular
on server-class systems, the emulation of a local APIC can be a significant burden for the VMM. The
AVIC architecture addresses the overhead of guest interrupt processing in a virtualized environment
by applying hardware acceleration to the following components of interrupt processing:

• Providing a guest operating system access to performance-critical interrupt controller registers
• Initiating intra- and inter-processor interrupts (IPIs) in and between virtual processors in a guest

Software-initiated Interrupts. Modern operating systems use software interrupts (self-IPIs) to
implement software event signalling, inter-process communication and the scheduling of deferred
processing. System software sets up and initiates these interrupts by writing to control registers of the
local APIC. AVIC hardware reduces VMM overhead by providing hardware assist for many of these
operations.

Inter-processor Interrupts. Inter-processor interrupts (IPIs) are used extensively by modern
operating systems to handle communication between processor cores within a machine (or, in a

[AMD Public Use]

Secure Virtual Machine 537

24593—Rev. 3.37—March 2021 AMD64 Technology

virtualized environment, between virtual processors within a virtual machine). IPIs are also employed
to provide signaling and synchronization for operations such as cross-processor TLB invalidations
(also known as TLB shootdowns). AVIC provides hardware mechanisms that deliver the interrupt to
the virtual interrupt controller of the target virtual processor without VMM intervention.

Device Interrupts. Acceleration of the delivery of virtual interrupts from I/O devices to virtual
processors is not addressed directly by AVIC hardware. This acceleration would be provided by an I/O
memory management unit (IOMMU). The AVIC architecture is compatible with the AMD I/O
Memory Management Unit (IOMMU). For more information on the IOMMU architecture, see AMD
I/O Virtualization Technology (IOMMU) Specification (order #48882). See “Device Interrupts” on
page 551 for further details of device interrupt handling under the AVIC extension.

The following subsections describe the AVIC architecture in detail.

15.29.2 Local APIC Register Virtualization

The system programming interface for the local APIC comprises a set of memory-mapped registers. In
a non-virtualized environment, system software directly reads and writes these registers to configure
the interrupt controller and initiate and process interrupts. In a virtualized environment, each guest
operating system still requires access to this system programming interface but does not own the
underlying interrupt processing hardware. To provide this facility to the guest operating system,
VMM-level software emulates the local APIC for each guest virtual processor.

The AVIC architecture provides an image of the local APIC called the guest virtual APIC (guest
vAPIC) in the guest physical address (GPA) space of each virtual processor when the virtual machine
for the guest is instantiated. This image is backed by a page in the system physical address (SPA) space
called a vAPIC backing page. The backing page remains pinned in system memory as long as the
virtual machine persists, even when the specific virtual processor associated with the backing page is
not running. Accesses to the memory-mapped register set by the guest are redirected by AVIC
hardware to this backing page.

The VMM reads configuration, control, and command information written by the guest from the
backing page and writes status information to this page for the guest to read. The guest is allowed to
read most registers directly without the need for VMM intervention. Most writes are intercepted
allowing the VMM to process and act on the configuration, control, and command data from the guest.
However, for certain frequently used command and control operations, specific hardware support
allows the guest to directly initiate interrupts and complete end of interrupt processing, eliminating the
need for VMM intervention in the execution of performance-critical operations.

15.29.3 AVIC Backing Page

AVIC hardware detects attempted accesses by the guest to its local APIC register set and redirects
these accesses to the vAPIC backing page. This is illustrated in the figure below.

[AMD Public Use]

538 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 15-16. vAPIC Backing Page Access

To correctly redirect guest accesses of the guest vAPIC registers to the vAPIC backing page, the hard-
ware needs two addresses. These are:
• vAPIC backing page address in the SPA space
• Guest vAPIC base address (APIC BAR) in the GPA space

System software is responsible for setting up a translation in the nested page table granting guest read
and write permissions for accesses to the vAPIC Backing Page in SPA space. AVIC hardware walks
the nested page table to check permissions, but does not use the SPA address specified in the leaf page
table entry. Instead, AVIC hardware finds this address in the AVIC_BACKING_PAGE pointer field of
the VMCB.

The VMM initializes the backing page with appropriate default APIC register values including items
such as APIC version number. The vAPIC backing page address and the guest vAPIC base address are
stored in the VMCB fields AVIC_BACKING_PAGE pointer and V_APIC_BAR respectively.

v2_AVIC_diagram2.eps

AVIC_BACKING_PAGE ptr

V_APIC_BAR

VMCB

System Physical
Address Space

Memory Mapped Image

Guest
vAPIC

Registers

vAPIC Backing Page

Emulated
vAPIC

Registers

GPA to SPA
Mapping

Register-level
Permissions Filter

Backing
Page SPA

Guest vAPIC
Page GPA

Guest vAPIC Page GPA Backing Page SPA

allow* trap

fault

Guest Physical
Address Space

AVIC Hardware

*Writes to specific registers can initiate AVIC hardware actions

[AMD Public Use]

Secure Virtual Machine 539

24593—Rev. 3.37—March 2021 AMD64 Technology

System firmware initializes the value of guest vAPIC base address (and VMCB.V_APIC_BAR) to
FEE0_0000h. This is the address where the guest operating system expects to find the local APIC
register set when it boots. If the guest attempts to relocate the local APIC register base address in GPA
space by writing to the APIC Base Address Register (MSR 0000_001Bh), the VMM should intercept
the write to update the V_APIC_BAR field of the guest’s VMCB(s) and the GPA part of translation in
the virtual machine’s nested page tables.

The vAPIC backing page must be present in system physical memory for the life of the guest VM
because some fields are updated even when the guest is not running.

15.29.3.1 Virtual APIC Register Accesses
AVIC hardware detects attempted guest accesses to the vAPIC registers in the backing page. These
attempted accesses are handled by the register-level permissions filter in one of three ways:

• Allow—The access to the backing page is allowed to complete. Writes update the backing page
value, while reads return the current value. In certain cases, a write results in specific hardware-
based acceleration actions (summarized in Table 15-22 and described below).

• Fault—The processor performs an SVM intercept before the access. Causes a #VMEXIT.
• Trap— The processor performs an SVM intercept immediately after the access completes. Causes

a #VMEXIT.

The details of this behavior for each of these registers are summarized in the following table:

Table 15-22. Guest vAPIC Register Access Behavior
Offset Register Name Result

20h APIC ID Register Read: Allowed
Write: #VMEXIT (trap)

30h APIC Version Register Read: Allowed
Write: #VMEXIT (fault)

80h Task Priority Register (TPR) Read: Allowed
Write: Accelerated by AVIC

90h Arbitration Priority Register (APR) Read: #VMEXIT (fault)
Write: #VMEXIT (fault)

A0h Processor Priority Register (PPR) Read: Allowed
Write: #VMEXIT (fault)

B0h End of Interrupt Register (EOI)
Read: Allowed
Write: Accelerated by AVIC for edge-triggered interrupts
or #VMEXIT (trap) for level triggered interrupts

C0h Remote Read Register Read: Allowed
Write: #VMEXIT (trap)

D0h Logical Destination Register Read: Allowed
Write: #VMEXIT (trap)

E0h Destination Format Register Read: Allowed
Write: #VMEXIT (trap)

[AMD Public Use]

540 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Accesses to any other register locations not explicitly defined in this table are allowed to read and
write the backing page.

F0h Spurious Interrupt Vector Register Read: Allowed
Write: #VMEXIT (trap)

100h–1
70h In-Service Register (ISR) Read: Allowed

Write: #VMEXIT (fault)
180h–1

F0h Trigger Mode Register (TMR) Read: Allowed
Write: #VMEXIT (fault)

200h–2
70h Interrupt Request Register (IRR) Read: Allowed

Write: #VMEXIT (fault)

280h Error Status Register (ESR) Read: Allowed
Write: #VMEXIT (trap)

300h Interrupt Command Register Low (bits
31:0)

Read: Allowed
Write: Accelerated by AVIC or #VMEXIT (trap) for
advanced functions.

310h Interrupt Command Register High (bits
63:32)

Read: Allowed
Write: Allowed

320h Timer Local Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

330h Thermal Local Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

340h Performance Counter Local Vector Table
Entry

Read: Allowed
Write: #VMEXIT (trap)

350h Local Interrupt 0 Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

360h Local Interrupt 1 Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

370h Error Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

380h Timer Initial Count Register Read: Allowed
Write: #VMEXIT (trap)

390h Timer Current Count Register Read: #VMEXIT (fault)
Write: #VMEXIT (fault)

3E0h Timer Divide Configuration Register Read: Allowed
Write: #VMEXIT (trap)

400h–F
FFh Extended Registers Read: #VMEXIT (fault)

Write: #VMEXIT (fault)

Table 15-22. Guest vAPIC Register Access Behavior (continued)
Offset Register Name Result

[AMD Public Use]

Secure Virtual Machine 541

24593—Rev. 3.37—March 2021 AMD64 Technology

All vAPIC registers are 32-bits wide and are located at 16-byte aligned offsets. The results of an
attempted read or write of any bytes in the range [register_offset + 4:register_offset + 15] are
undefined.

Guest writes to the Task Priority Register (TPR) and specific usage cases of writes to the End of
Interrupt (EOI) Register and the Interrupt Command Register Low (ICRL) cause specific hardware
actions. AVIC hardware allows guest writes to the Interrupt Command Register High (ICRH) since the
writing of this register has no immediate hardware side-effect. AVIC hardware maintains and uses the
value in the Processor Priority Register (PPR) to control the delivery of interrupts to guest virtual
processors. The following sections discuss the handling of accesses by the guest to these registers in
the vAPIC backing page.

Task Priority Register (TPR). When the guest operating system writes to the TPR, the value is
updated in the backing page and the upper 4 bits of the value are automatically copied by the hardware
to the V_TPR value in the VMCB. All reads from the TPR location return the value from the vAPIC
backing page. Also, any TPR accesses using the MOV CR8 semantics update the backing page and
V_TPR values.

The priority value stored in CR8 and V_TPR are not the same format as the APIC TPR register. Only
the Task Priority bits of are maintained in the lower 4 bits of CR8 and V_TPR. The Task Priority Sub-
class value is not stored. Writes to the memory-mapped TPR register update bits 3:0 of CR8 and
V_TPR and writes to CR8 update the TPR backing page value bits 7:4 while bits 3:0 are set to zero.

Figure 15-17. Virtual APIC Task Priority Register Synchronization

The synchronization between the Task Priority field of the TPR and the Task Priority field of CR8 is
normal local APIC behavior which is emulated by AVIC. For more information on the APIC, see
Chapter 16, “Advanced Programmable Interrupt Controller (APIC),” on page 591.

Processor Priority Register (PPR). Writes to the processor priority register by the guest cause a
#VMEXIT without updating the value in the backing page. AVIC hardware maintains the PPR value in
the backing page. AVIC hardware updates the PPR value in the backing page when either the TPR
value or the highest in-service interrupt changes. This value is used to control the delivery of virtual
interrupts to the guest. PPR reads by the guest are allowed.

Task Priority
Task Priority

Subclass

Reserved Task Priority

TPR

CR8 / V_TPR

7 4 03

7 4 03

v2_TPR_figure.eps

[AMD Public Use]

542 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

End of Interrupt (EOI) Register. When the guest writes to the EOI register address, AVIC
hardware clears the highest priority in-service interrupt (ISR) bit in the backing page and re-evaluates
the interrupt state to determine if another pending interrupt should be delivered. If the highest priority
in-service interrupt is set to level mode (in the corresponding TMR bit), the EOI write causes a
#VMEXIT to allow the VMM to emulate the level-triggered behavior.

Interrupt Control Register Low (ICRL). Writes to the ICRL register have the side-effect of
initiating the generation of an interprocessor interrupt (IPI) based on the values written to the fields in
both the ICRL and ICRH registers. AVIC hardware handles the generation of IPIs when the specified
Message Type is Fixed (also known as fixed delivery mode) and the Trigger Mode is edge-triggered.
The hardware also supports self and broadcast delivery modes specified via the Destination Shorthand
(DSH) field of the ICRL. Logical and physical APIC ID formats are supported. All other IPI types
cause a #VMEXIT. For more information on AVIC’s handling of IPI commands, see “Inter-processor
Interrupts” on page 515.

15.29.4 VMCB Changes in Support of AVIC

The following paragraphs provide an overview of new VMCB fields defined as part of the AVIC
architecture.

15.29.4.1 VMCB Control Word
AVIC adds the AVIC Enable bit to the VMCB control word at offset 60h:

Table 15-23. Virtual Interrupt Control (VMCB offset 60h)
VMCB
offset Bit(s) Field Name Description

060h

7:0 V_TPR Virtual TPR for the guest 1 2

8 V_IRQ If nonzero; virtual INTR is pending 2 3

15:9 — Reserved, SBZ

19:16 V_INTR_PRIO Priority for virtual interrupt3

20 V_IGN_TPR If nonzero, the current virtual interrupt ignores the virtual TPR3

23:21 — Reserved, SBZ
24 V_INTR_MASKING Virtualized masking of INTR interrupts
25 — Reserved, SBZ
31 AVIC Enable If set, enables AVIC

39:32 V_INTR_VECTOR Vector to use for this interrupt3

63:40 — Reserved, SBZ
Note(s):
1. Bits 3:0 are used for the 4-bit virtual TPR value; bits 7:4 are Reserved, SBZ.
2. This value is written back to the VMCB at #VMEXIT.
3. This field is ignored on VMRUN when AVIC is enabled.

[AMD Public Use]

Secure Virtual Machine 543

24593—Rev. 3.37—March 2021 AMD64 Technology

AVIC Enable—Virtual Interrupt Control, Bit 31. The AVIC hardware support may be enabled on
a per virtual processor basis. This bit determines whether or not AVIC is enabled for a particular virtual
processor. Any guest configured to use AVIC must also enable RVI (nested paging). Enabling AVIC
implicitly disables the V_IRQ, V_INTR_PRIO, V_IGN_TPR, and V_INTR_VECTOR fields in the
VMCB Control Word. Enabling AVIC also affects CR8 behavior independent of
V_INTR_MASKING enable (bit 24): writes to CR8 affect the V_TPR and update the backing page
and reads from CR8 return V_TPR.

15.29.4.2 Newly Defined VMCB Fields
AVIC utilizes a number of formerly reserved locations in the VMCB. Table 15-24 below lists the new
fields defined by the architecture:

These fields are discussed further in the following paragraphs:

V_APIC_BAR—VMCB, Offset 098h. This entry is used to hold a copy of guest physical base
address of its local APIC register block. The guest can change the GPA of its local APIC register block
by writing to the guest version of the APIC Base Address Register (MSR 0000_001Bh). Writes to this
MSR are intercepted by the VMM and the value is used to update the GPA in the nested page table
entry for the vAPIC backing page and the value to be saved in this field of the VMCB.

APIC_BACKING_Page Pointer—VMCB, Offset 0E0h. This is a 52-bit HPA pointer to the vAPIC
backing page for this virtual processor. The vAPIC backing page is described in more detail in the
following section.

Table 15-24. New VMCB Fields Defined by AVIC
VMCB
Offset Bit(s) Field Name Description

098h
63:52 Reserved, SBZ —
51:12 V_APIC_BAR Bits 51:12 of the GPA of the guest vAPIC register bank
11:0 Reserved, SBZ —

0E0h
63:52 Reserved, SBZ —
51:12 AVIC_BACKING_PAGE Pointer Bits 51:12 of HPA of the vAPIC backing page
11:0 Reserved, SBZ —

0F0h
63:52 Reserved, SBZ —
51:12 AVIC_LOGICAL_TABLE Pointer Bits 51:12 of HPA of the Logical APIC Table
11:0 Reserved, SBZ —

0F8h

63:52 Reserved, SBZ —

51:12 AVIC_PHYSICAL_TABLE
Pointer Bits 51:12 of HPA for the Physical APIC Table

11:8 Reserved, SBZ —
7:0 AVIC_PHYSICAL_MAX_INDEX Index of the last guest physical core ID for this guest

[AMD Public Use]

544 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Logical APIC Table Pointer—VMCB, Offset 0F0h. This is a 52-bit HPA pointer to the Logical
APIC ID Table for the virtual machine containing this virtual processor. This table is described in more
detail in the following section.

Physical APIC Table Pointer—VMCB, Offset 0F8h. This is a 52-bit HPA pointer to the Physical
APIC ID Table for the virtual machine containing this virtual processor. This table is described in more
detail in the following section.

AVIC_PHYSICAL_MAX_INDEX—VMCB, Offset 0F8h. Bits [7:0]. This 8-bit value provides
the index of the last guest physical core ID for this guest.

15.29.4.3 Restrictions on Physical Address Pointers
All of the physical addresses in the previous sections must point to legal, implementation-supported
physical address ranges. These pointers are evaluated on VMRUN and cause a #VMEXIT if they are
outside of the legal range. These memory ranges must be mapped as write-back cacheable memory
type.

All the addresses point to 4-Kbyte aligned data structures. Bits 11:0 are reserved (except for offset
0F8h) and should be set to zero. The lower 8 bits of offset 0F8h are used for the field
AVIC_PHYSICAL_MAX_INDEX.

Multiprocessor VM requirements. When running a VM which has multiple virtual CPUs, and the
VMM runs a virtual CPU on a core which had last run a different virtual CPU from the same VM,
regardless of the respective ASID values, care must be taken to flush the TLB on the VMRUN using a
TLB_CONTROL value of 3h. Failure to do so may result in stale mappings misdirecting virtual APIC
accesses to the previous virtual CPU's APIC backing page.

15.29.5 AVIC Memory Data Structures

The AVIC architecture defines three new memory-resident data structures. Each of these structures is
defined to fit exactly in one 4-Kbyte page. Future implementations may expand the size.

15.29.5.1 Virtual APIC Backing Page
Each virtual processor in the system is assigned a virtual APIC backing page (vAPIC backing page).
Accesses by the guest to the local APIC register block in the guest physical address space are
redirected to the vAPIC backing page in system memory. The vAPIC backing page is used by AVIC
hardware and the VMM to emulate the local APIC. See “Virtual APIC Register Accesses” on
page 539 for a detailed description.

15.29.5.2 Physical APIC ID Table
The physical APIC ID table is set up and maintained by the VMM and is used by the hardware to
locate the proper vAPIC backing page to be used to deliver interrupts based on the guest physical
APIC ID. One physical APIC ID table must be provided per virtual machine.

[AMD Public Use]

Secure Virtual Machine 545

24593—Rev. 3.37—March 2021 AMD64 Technology

The guest physical APIC ID is used as an index into this table. Each entry contains a pointer to the
virtual processor’s vAPIC backing page, a bit to indicate whether the virtual processor is currently
scheduled on a physical core, and if so, the physical APIC ID of that core.

The length of this table is fixed at 4 Kbytes allowing a maximum of 512 virtual processors per virtual
machine. However, in this version of the architecture the maximum number of virtual processors per
guest is limited to 256. The physical ID table can be populated in a sparse manner using the valid bit to
indicate assigned IDs. The index of the last valid entry is stored in the VMCB
AVIC_PHYSICAL_MAX_INDEX field.

A pointer to this table is maintained in the VMCB. Because there is a single Physical APIC ID Table
per virtual machine, the value of this pointer is the same for every virtual processor within the virtual
machine.

Each entry in the table has the following format:

[AMD Public Use]

546 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 15-18. Physical APIC ID Table Entry

Note that the IR bit, when set, indicates that the VMM has assigned a physical core to host this virtual
processor. The bit does not differentiate between a physical processor running in guest mode (actively
executing guest software) or in hypervisor mode (having suspended the execution of guest software).

63 62 61 52 51 32

V I
R Reserved Backing Page Pointer[51:32]

31 12 11 8 7 0

Backing Page Pointer[31:12] Reserved Host Physical APIC ID

Table 15-25. Physical APIC ID Table Entry Fields
Bit(s) Field Name Description

63 V Valid bit. When set, indicates that this entry contains a valid vAPIC backing page
pointer. If cleared, this table entry contains no information.

62 IR IsRunning. This bit indicates that the corresponding guest virtual processor is
currently scheduled by the VMM to run on a physical core.

61:52 — Reserved, SBZ. Should always be set to zero.
51:12 Backing Page Pointer 4-Kbyte aligned HPA of the vAPIC backing page for this virtual processor.

11:8 — Reserved/SBZ for legacy APIC; extension of Host Physical APIC ID when
x2APIC is enabled.

7:0 Host Physical APIC ID Physical APIC ID of the physical core allocated by the VMM to host the guest
virtual processor. This field is not valid unless the IsRunning bit is set.

[AMD Public Use]

Secure Virtual Machine 547

24593—Rev. 3.37—March 2021 AMD64 Technology

The Physical APIC ID Table occupies the lower half of a single 4-Kbyte memory page, formatted as
follows:

Figure 15-19. Physical APIC Table in Memory.

Since a destination of FFh is used to specify a broadcast, physical APIC ID FFh is reserved. The upper
2048 bytes of the table are reserved and should be set to zero.

15.29.5.3 Logical APIC ID Table
In addition to the Physical APIC ID Table, each guest VM is assigned a Logical APIC ID Table. This
table is used to lookup the guest physical APIC ID for logically addressed interrupt requests. Each
entry of this table provides the guest physical APIC ID corresponding to a single logically addressed
APIC. Note that this implies that the logical ID of each vAPIC must be unique. The entries of this table
are selected using the logical ID and interpreted differently depending upon logical APIC addressing
mode of the guest. logical destination modes are supported: flat clustered.

If the guest attempts to change the logical ID of its APIC, the VMM must reflect this change in the
Logical APIC ID Table. AVIC hardware supports the fixed interrupt message type targeting one or
more logical destinations. The hardware also supports self and broadcast delivery modes specified via
the Destination Shorthand (DSH) field of the ICRL. Any other message types must be supported
through emulation by the VMM.

v2_PhysAPIC_diagram.eps

Physical APIC Entry 254

Physical APIC Entry 253

Physical APIC Entry 252

Physical APIC Entry 1

Physical APIC Entry 0 0

8

16

2032

2040

2048

4088

2024

2016

2008Physical APIC Entry 251

Physical APIC Entry 2

Reserved

Reserved

0

2

251

252

253

254

255

1

Guest
Physical
APIC ID

[AMD Public Use]

548 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

A pointer to this table is maintained in the VMCB. Because there is a single Logical APIC ID Table
per virtual machine, the value of this pointer is the same for every virtual processor within the virtual
machine.

For all logical destination modes, the table entries have the following format:

Figure 15-20. Logical APIC ID Table Entry

Logical APIC ID Table Format for Flat Mode. When running in flat mode, AVIC expects the
logical APIC ID table to be formatted as shown in Figure 15-21 below. This mode uses only the first 8
entries of the table. Although the logical APIC ID is an eight bit value, supported encodings must be of
the form 2i, where i = 0 to 7. In the figure the value i is used and represents the index into the table. The
actual byte offset into the table for a given logical APIC ID l_apic_id is 4 * log2(l_apic_id).

31 30 8 7 0

V Reserved Guest Physical APIC ID

Table 15-26. Logical APIC ID Table Entry Fields
Bit(s) Field Name Description

31 V Valid Bit. When set, indicates that this table entry contains a valid physical APIC
ID. If cleared, this table entry contains no information.

30:8 — Reserved, SBZ. Should always be set to zero.

7:0 Guest Physical APIC
ID

Guest physical APIC ID corresponding to the local APIC selected when logically
addressed.

[AMD Public Use]

Secure Virtual Machine 549

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 15-21. Logical APIC ID Table Format, Flat Mode.

Logical APIC ID Table Format for Cluster Mode. In cluster mode, bits [7:4] of the logical APIC
ID represent the cluster number and bits [3:0] represent the APIC index (bit encoded). The cluster
number Fh (15) is reserved. Since the APIC index field is four bits, four encodings are supported for
the APIC index value.

The actual byte offset into the table for a given cluster c and an APIC index apic_ix is (16 * c) + 4 *
log2(apic_ix)

When running in cluster mode, AVIC expects the logical APIC ID table to be formatted as shown in
Figure 15-22 below.

v2_LogicalAPIC_Table_x1_flat.eps

00

2
1 4

8
12
16
20
24
28

4092

Entry for Logical APIC 3
Entry for Logical APIC 2
Entry for Logical APIC 1
Entry for Logical APIC 0

Entry for Logical APIC 7
Entry for Logical APIC 6
Entry for Logical APIC 5
Entry for Logical APIC 4

Reserved

32

3
4
5
6
7

Logical
APIC ID
Index

[AMD Public Use]

550 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 15-22. Logical APIC ID Table Format, Cluster Mode.

15.29.6 Interrupt Delivery

There are two fundamental types of virtual interrupts—interprocessor interrupts (IPIs) and I/O device
interrupts (device interrupts). An IPI is initiated when guest system software writes the ICRL register.
A device interrupt is initiated by a I/O device that has been programmed by guest system software
(usually a device driver) to send a message signaling an event to a specific guest physical processor.
This message usually includes an interrupt vector number indicating the nature of the event.

The following sections discuss the actions taken by AVIC hardware when a virtual processor signals
an IPI and the actions taken by I/O virtualization hardware when a device signals a virtual interrupt.

15.29.6.1 Interprocessor Interrupts
To process an IPI, AVIC hardware executes the following steps:

1. If the destination-shorthand coded in the command is 01b (i.e. self), update the IRR in the backing
page, signal doorbell to self and skip remaining steps.

2. If destination-shorthand is non-zero, or if the destination field is FFh (i.e. broadcast), jump to
step 4.

3. If the destination(s) is (are) logically addressed, lookup the guest physical APIC IDs for each
logical ID using the Logical APIC ID table.
If the entry is not valid (V bit is cleared), cause a #VMEXIT.

v2_LogicalAPIC_Table_x1_cluster.eps

0
4
8

12
16
20
24
28

4092

Entry for Cluster 0, Logical APIC 3
Entry for Cluster 0, Logical APIC 2
Entry for Cluster 0, Logical APIC 1
Entry for Cluster 0, Logical APIC 0

Entry for Cluster 1, Logical APIC 3

Entry for Cluster 14, Logical APIC 1
Entry for Cluster 14, Logical APIC 0

Entry for Cluster 14, Logical APIC 2
Entry for Cluster 14, Logical APIC 3

Entry for Cluster 1, Logical APIC 2
Entry for Cluster 1, Logical APIC 1
Entry for Cluster 1, Logical APIC 0

224

236
240

Reserved

[AMD Public Use]

Secure Virtual Machine 551

24593—Rev. 3.37—March 2021 AMD64 Technology

If the entry is valid, but contains an invalid backing page pointer, cause a #VMEXIT.

4. Lookup the vAPIC backing page address in the Physical APIC table using the guest physical
APIC ID as an index into the table.
For directed interrupts, if the selected table entry is not valid, cause a #VMEXIT. For broadcast
IPIs, invalid entries are ignored.

5. For every valid destination:
- Atomically set the appropriate IRR bit in each of the destinations’ vAPIC backing page.
- Check the IsRunning status of each destination.
- If the destination IsRunning bit is set, send a doorbell message using the host physical core

number from the Physical APIC ID table.

6. If any destinations are identified as not currently scheduled on a physical core (i.e., the IsRunning
bit for that virtual processor is not set), cause a #VMEXIT.

Refer to Section 15.29.9.1, “AVIC IPI Delivery Not Completed,” on page 553 for new exitcodes
associated with the #VMEXIT exceptions listed above.

15.29.6.2 Device Interrupts
The delivery of a I/O device interrupt to a virtual processor is handled by an IOMMU with virtual
interrupt capability. To deliver a virtual interrupt, I/O virtualization hardware executes the following
steps:

1. An interrupt message arrives from the I/O device identifying the source device and interrupt
vector number.

2. I/O virtualization hardware uses the device ID to determine the guest physical APIC ID of the
core that is the target of the device interrupt.

3. I/O virtualization hardware uses the guest physical APID ID to index into the Physical APIC ID
Table to find the SPA of the vAPIC backing page. If the I/O virtualization hardware accesses an
entry in the Physical APIC ID Table that is not valid (V bit is cleared), the I/O virtualization
hardware aborts the virtual interrupt delivery and logs an error.

4. I/O virtualization hardware performs any required vector number translation.

5. I/O virtualization hardware atomically sets the bit in the IRR in the vAPIC backing page that
corresponds to the vector.

6. If the virtual processor that is the target of the interrupt is not currently running on its assigned
physical core, the virtual interrupt will be presented when the virtual processor is made active
again. I/O virtualization hardware may provide additional information to the VMM about the
device interrupt to aid in virtual processor scheduling decisions.
If the virtual processor that is the target of the interrupt is scheduled on a physical processor
(indicated by the IsRunning bit of the Physical APIC ID table entry being set), I/O virtualization
hardware uses the host physical APIC ID in the table entry to send a doorbell signal to the
corresponding processor core to signal that an interrupt needs to be processed.

[AMD Public Use]

552 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.29.7 CPUID Feature Bits for AVIC

A CPUID feature bit is used indicate support for AVIC on a specific hardware implementation. CPUID
Fn8000_000A_EDX[AVIC] is designated for this purpose and is returned in bit 13 of EDX. If
EDX[13] is set, the AVIC architecture is supported on that hardware.

See Section 3.3, “Processor Feature Identification,” on page 70 for more information on using the
CPUID instruction.

15.29.8 New Processor Mechanisms

In order to support the direct injection of interrupts into the guest and to accelerate critical vAPIC
functions, new hardware mechanisms are implemented in the processor.

15.29.8.1 Special Trap/Fault Handling for vAPIC Accesses
To virtualize the local APIC utilized by the guest to generate and process interrupts, all read and write
accesses by the guest virtual processor to its local APIC registers are redirected to the vAPIC backing
page. Most reads and many writes to this guest physical address range read or write the contents of
memory locations within the vAPIC backing page at the corresponding offset.

To support proper handling and emulation of the guest local APIC, the processor provides permissions
filtering hardware (Refer to Figure 15-16.) that detects and intercepts accesses to specific offsets
(representing APIC registers) within the vAPIC backing page. This hardware either allows the access,
blocks the access and causes a #VMEXIT (fault behavior), or allows the access and then causes a
#VMEXIT (trap behavior).

Hardware directly handles the side effects of guest writes to the TPR and EOI registers. Writes to the
ICRL register with simple functional side effects such as the generation of a directed IPI or a self-IPI
request are handled directly. Values written to the ICRL defined to initiate more complex behavior
cause a #VMEXIT to allow the VMM to emulate the function. A guest write to the ICRH register has
no immediate hardware side effect and is allowed.

Most other write access attempts within the vAPIC register bank address range cause a #VMEXIT
with trap or fault behavior allowing the VMM to emulate the function of that register. See Table 15-22
for more detail.

Reads and writes to locations within the vAPIC backing page, but outside the offset range of defined
vAPIC registers are allowed to complete.

15.29.8.2 Doorbell Mechanism
Each core provides a doorbell mechanism that is used by other cores (for IPIs) and the IOMMU (for
device interrupts) to signal to the VMM of the target physical core that a virtual interrupt requires
processing. The exact mechanism is implementation-specific, but must be protected from access from
non-privileged software running on other cores and from direct access by an external device.

[AMD Public Use]

Secure Virtual Machine 553

24593—Rev. 3.37—March 2021 AMD64 Technology

When the doorbell is received in guest mode, hardware on the receiving core evaluates the vAPIC state
in the vAPIC backing page for the currently running virtual processor and injects the interrupt into the
guest as appropriate.

Doorbell Register. The system programming interface to the doorbell mechanism is provided via an
MSR. Sending a doorbell signal to a another core is initiated by writing the physical APIC ID
corresponding to that core to the Doorbell Register (MSR C001_011Bh). The format of this register is
shown in Figure 15-23 below.

Figure 15-23. Doorbell Register, MSR C001_011Bh

Writing to this register causes a doorbell signal to be sent to the specified physical core. The serializing
semantics of WRMSR are relaxed when writing to the Doorbell Register. Any attempt to read from
this register results in a #GP.

Processing of Doorbell Signals. A doorbell signal delivered to a running guest is recognized by the
hardware regardless of whether it can be immediately injected into the guest as a virtual interrupt. On
the next VMRUN, the virtual interrupt delivery mechanism evaluates the state of the IRR register of
the guest’s vAPIC backing page to find the highest priority pending interrupt and injects it if interrupt
masking and priority allow.

15.29.8.3 Additional VMRUN Handling
In addition to the normal VMRUN operations, the core re-evaluates the APIC state in the vAPIC
backing page upon entry into the guest and processes pending interrupts as necessary. Specifically:

• On VMRUN the interrupt state is evaluated and the highest priority pending interrupt indicated in
the IRR is delivered if interrupt masking and priority allow

• Any doorbell signals received during VMRUN processing are recognized immediately after
entering the guest

• When AVIC mode is enabled for a virtual processor, the V_IRQ, V_INTR_PRIO,
V_INTR_VECTOR, and V_IGN_TPR fields in the VMCB are ignored.

15.29.9 New Exit Codes for AVIC

The AVIC architecture defines two new AVIC-related #VMEXIT events. These cases are described in
the following sections. Assigned EXITCODE values are given in Table C-1 on page 683.

15.29.9.1 AVIC IPI Delivery Not Completed
An IPI could not be delivered to all targeted guest virtual processors because at least one guest virtual
processor was not allocated to a physical core at the time. This results in a #VMEXIT with an exit code

63 8 7 0

Reserved, MBZ Physical APIC ID

[AMD Public Use]

554 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

of AVIC_INCOMPLETE_IPI. Additional data associated with this #VMEXIT event is returned in the
EXITINFO1 and EXITINFO2 fields.

EXITINFO1. This field contains the values written to the vAPIC ICRH and ICRL registers.

Figure 15-24. EXITINFO1

EXITINFO2. This field contains information describing the specific reason for the IPI delivery
failure.

Figure 15-25. EXITINFO2

The ID field identifies the reason for the IPI delivery failure:

63 32 31 0

ICRH ICRL

Table 15-27. EXTINFO1 Fields
Bit(s) Field Name Description
63:32 ICRH Value written to the vAPIC ICRH register.
31:0 ICRL Value written to the vAPIC ICRL register.

63 32 31 8 7 0

ID Reserved Index

Table 15-28. EXTINFO2 Fields
Bit(s) Field Name Description
63:32 ID Specific reason for the delivery failure. See Table 15-29 for defined values.
31:8 — Reserved

7:0 Index For ID = 1 – 3, this field provides the index of a logical or physical table entry.
Reserved for all other ID values.

[AMD Public Use]

Secure Virtual Machine 555

24593—Rev. 3.37—March 2021 AMD64 Technology

15.29.9.2 AVIC Access to un-accelerated vAPIC register
A guest access to an APIC register that is not accelerated by AVIC results in a #VMEXIT with the exit
code of AVIC_NOACCEL. This fault is also generated if an EOI is attempted when the highest
priority in-service interrupt is set for level-triggered mode. Additional data associated with this
#VMEXIT event is returned in the EXITINFO1 and EXITINFO2 fields.

EXITINFO1. This field contains the offset of the un-accelerated virtual APIC register and a bit
indicating whether a read or write operation was attempted.

Table 15-29. ID Field—IPI Delivery Failure Cause
ID Cause Description Index

0 Invalid Interrupt type The trigger mode for the specified IPI was set to
level or the destination type is unsupported. Reserved.

1 IPI Target Not
Running

IsRunning bit of the target for a
Singlecast/Broadcast/Multicast IPI is not set in the
physical APIC ID table.

Index of the physical or logical APIC
ID table entry for the target virtual
processor that was not scheduled on a
physical core.

2 Invalid Target in IPI

Target ID invalid. This is due to one the following
reasons:
• In logical mode:

cluster > max_cluster (64)
• In physical mode:

target > max_physical (512)
• address is not present in the physical or logical

ID tables

Index of the physical or logical table
entry for the invalid target.

3 Invalid Backing Page
Pointer

The vAPIC Backing Page Pointer field of the
Physical APIC ID Table contained an invalid
physical address.

For shorthand or broadcast delivery
modes, index of the physical APIC
ID Table containing the invalid
address. For directed IPIs, index of
the logical or physical APIC ID table
depending on the destination mode.

> 3 Reserved — Reserved

63 33 32 31 12 11 4 3 0

Reserved
R
/

W
Reserved APIC Offset[11:4] Reserved

Table 15-30. EXTINFO1 Fields
Bit(s) Field Name Description
63:33 — Reserved.

32 R/W If set, write was attempted. If clear, read was attempted.

[AMD Public Use]

556 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

EXITINFO2. This field contains extra information for the un-accelerated operation. If the
EXITINFO1 fields indicate a write to the vAPIC EOI register (offset = B0h), bits 7:0 of this value
contain the number of the highest in-service vector found in the virtual APIC ISR.

15.30 SVM Related MSRs
SVM uses the following MSRs for various control purposes. These MSRs are available regardless of
whether SVM is enabled in EFER.SVME. For details on implementation-specific features, see the
BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
applicable to your product.

15.30.1 VM_CR MSR (C001_0114h)

The VM_CR MSR controls certain global aspects of SVM. The layout of the MSR is shown in
Figure 15-26.

Figure 15-26. Layout of VM_CR MSR (C001_0114h)

The individual fields are as follows:

• DPD—Bit 0. If set, disables the external hardware debug port and certain internal debug features.
• R_INIT—Bit 1. If set, non-intercepted INIT signals are converted into an #SX exception.

31:12 — Reserved.

11:4 APIC_Offset[11:4] Offset within virtual vAPIC backing page at which read or write was attempted.
APIC_Offset[3:0] = 0, since all registers are aligned on 16-byte boundaries.

3:0 — Reserved.

63 8 7 0

Reserved Vector

Table 15-31. EXTINFO2 Fields
Bit(s) Field Name Description
63:8 — Reserved.
31:0 Vector Vector for attempted EOI; otherwise undefined.

63 5 4 3 2 1 0

Reserved, MBZ SVMDIS LOCK DIS_A20M R_INIT DPD

Table 15-30. EXTINFO1 Fields (continued)
Bit(s) Field Name Description

[AMD Public Use]

Secure Virtual Machine 557

24593—Rev. 3.37—March 2021 AMD64 Technology

• DIS_A20M—Bit 2. If set, disables A20 masking.
• LOCK—Bit 3. When this bit is set, writes to LOCK and SVMDIS are silently ignored. When this

bit is clear, VM_CR bits 3 and 4 can be written. Once set, LOCK can only be cleared using the
SVM_KEY MSR (See Section 15.31.) This bit is not affected by INIT or SKINIT.

• SVMDIS—Bit 4. When this bit is set, writes to EFER treat the SVME bit as MBZ. When this bit is
clear, EFER.SVME can be written normally. This bit does not prevent CPUID from reporting that
SVM is available. Setting SVMDIS while EFER.SVME is 1 generates a #GP fault, regardless of
the current state of VM_CR.LOCK. This bit is not affected by SKINIT. It is cleared by INIT when
LOCK is cleared to 0; otherwise, it is not affected.

15.30.2 IGNNE MSR (C001_0115h)

The read/write IGNNE MSR is used to set the state of the processor-internal IGNNE signal directly.
This is only useful if IGNNE emulation has been enabled in the HW_CR MSR (and thus the external
signal is being ignored). Bit 0 specifies the current value of IGNNE; all other bits are MBZ.

15.30.3 SMM_CTL MSR (C001_0116h)

The write-only SMM_CTL MSR provides software control over SMM signals.

Figure 15-27. Layout of SMM_CTL MSR (C001_0116h)

Writing individual bits causes the following actions:

• DISMISS—Bit 0. Clear the processor-internal “SMI pending” flag.
• ENTER—Bit 1. Enter SMM: map the SMRAM memory areas, record whether NMI was currently

blocked and block further NMI and SMI interrupts.
• SMI_CYCLE—Bit 2. Send SMI special cycle.
• EXIT—Bit 3. Exit SMM: unmap the SMRAM memory areas, restore the previous masking status

of NMI and unconditionally reenable SMI.
• RSM_CYCLE—Bit 4. Send RSM special cycle.

Writes to the SMM_CTL MSR cause a #GP if platform firmware has locked the SMM control
registers by setting HWCR[SMMLOCK].

Conceptually, the bits are processed in the order of ENTER, SMI_CYCLE, DISMISS, RSM_CYCLE,
EXIT, though only the following bit combinations may be set together in a single write (for all other
combinations of more than one bit, behavior is undefined):

• ENTER + SMI_CYCLE
• DISMISS + ENTER

63 5 4 3 2 1 0

Reserved, MBZ RSM_CYCLE EXIT SMI_CYCLE ENTER DISMISS

[AMD Public Use]

558 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

• DISMISS + ENTER + SMI_CYCLE
• EXIT + RSM_CYCLE

The VMM must ensure that ENTER and EXIT operations are properly matched, and not nested,
otherwise processor behavior is undefined. Also undefined are ENTER when the processor is already
in SMM, and EXIT when the processor is not in SMM.

15.30.4 VM_HSAVE_PA MSR (C001_0117h)

The 64-bit read/write VM_HSAVE_PA MSR holds the physical address of a 4KB block of memory
where VMRUN saves host state, and from which #VMEXIT reloads host state. The VMM software is
expected to set up this register before issuing the first VMRUN instruction. Software must not attempt
to read or write the host save-state area directly.

Writing this MSR causes a #GP if:

• any of the low 12 bits of the address written are nonzero, or
• the address written is greater than or equal to the maximum supported physical address for this

implementation.

15.30.5 TSC Ratio MSR (C000_0104h)

Writing to the TSC Ratio MSR allows the hypervisor to control the guest's view of the Time Stamp
Counter. The contents of TSC Ratio MSR sets the value of the TSCRatio. This constant scales the
timestamp value returned when the TSC is read by a guest via the RDTSC or RDTSCP instructions or
when the TSC, MPERF, or MPerfReadOnly MSRs are read via the RDMSR instruction by a guest
running under virtualization.

This facility allows the hypervisor to provide a consistent TSC, MPERF, and MPerfReadOnly rate for
a guest process when moving that process between cores that have a differing P0 rate. The TSCRatio
does not affect the value read from the TSC, MPERF, and MPerfReadOnly MSRs when in host mode
or when virtualization is disabled. System Management Mode (SMM) code sees unscaled TSC,
MPERF and MPerfReadOnly values unless the SMM code is executed within a guest container. The
TSCRatio value does not affect the rate of the underlying TSC, MPERF, and MPerfReadOnly
counters, nor the value that gets written to the TSC, MPERF, and MPerfReadOnly MSRs counters on a
write by either the host or the guest.

The TSC Ratio MSR specifies the TSCRatio value as a fixed-point binary number in 8.32 format,
which is composed of 8 bits of integer and 32 bits of fraction. This number is the ratio of the desired P0
frequency to be presented to the guest relative to the P0 frequency of the core (See Section 17.1, “P-
State Control,” on page 629). The reset value of the TSCRatio is 1.0, which sets the guest P0 frequency
to match the core P0 frequency.

Note that:
TSCFreq = Core P0 frequency * TSCRatio, so TSCRatio = (Desired TSCFreq) / Core P0 frequency.

[AMD Public Use]

Secure Virtual Machine 559

24593—Rev. 3.37—March 2021 AMD64 Technology

The TSC value read by the guest is computed using the TSC Ratio MSR along with the TSC_OFFSET
field from the VMCB so that the actual value returned is:
TSC Value (in guest) = (P0 frequency * TSCRatio * t) + VMCB.TSC_OFFSET + (Last Value Written to TSC) * TSCRa-

tio
Where t is time since the TSC was last written via the TSC MSR (or since reset if not written)

The layout of the TSC Ratio MSR is illustrated in figure below.

Figure 15-28. TSC Ratio MSR (C000_0104h)

INT. Integer Part. Bits 39:32. Integer part of TSCRatio.

FRAC. Fractional Part. Bits 39:32. Fractional part of TSCRatio.

TSCRatio = INT + FRAC × 2-32

CPUID Fn8000_000A_EDX[TscRateMsr] =1 indicates support for the TSC Ratio MSR. See
Section 3.3, “Processor Feature Identification,” on page 70 for more information on using the CPUID
instruction.

15.31 SVM-Lock
The SVM-Lock feature allows software to prevent EFER.SVME from being set, either
unconditionally or with a 64-bit key to re-enable SVM functionality.

Support for SVM-Lock is indicated by CPUID Fn8000_000A_EDX[SVML] = 1. On processors that
support the SVM-Lock feature, SKINIT and STGI can be executed even if EFER.SVME=0. See
descriptions of LOCK and SVMDIS bits in Section 15.30.1. When the SVM-Lock feature is not
available, hypervisors can use the read-only VM_CR.SVMDIS bit to detect SVM (see Section 15.4).

15.31.1 SVM_KEY MSR (C001_0118h)

The write-only SVM_KEY MSR is used to create a password-protected mechanism to clear
VM_CR.LOCK.

When VM_CR.LOCK is zero, writes to SVM_KEY MSR set the 64-bit SVM Key value.

63 40 39 32 31 0

Reserved, MBZ INT FRAC

Bits Mnemonic Description Access Type
63:40 — Reserved Reserved, MBZ
39:32 INT Integer Part R/W
31:0 FRAC Fractional Part R/W

[AMD Public Use]

560 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

When VM_CR.LOCK is one, writes to SVM_KEY MSR compare the written value to the SVM Key
value; if the values match and are non-zero, the VM_CR.LOCK bit is cleared. If the values mismatch
or the SVM Key value is zero, the write to SVM_KEY is ignored, and VM_CR.LOCK is unmodified.
Software should read VM_CR.LOCK after writing SVM_KEY to determine whether the unlock
succeeded.

If SVM Key is zero when VM_CR.LOCK is one, VM_CR.LOCK can only be cleared by a processor
reset.

To preserve the security of the SVM key, reading the SVM_KEY MSR always returns zero.

15.32 SMM-Lock
The SMM-Lock feature allows platform firmware to prevent System Management Interrupts (SMI)
from being intercepted in SVM. The SmmLock bit is located in the HWCR MSR register.

15.32.1 SmmLock Bit — HWCR[0]

The SmmLock bit (bit 0) is located in the HWCR MSR (C001_0015h). When SmmLock is clear, it can
be set to one. Once set, the bit cannot be cleared by software and writes to it are ignored. SmmLock can
only be cleared using the SMM_KEY MSR (see Section 15.32.2), or by a processor reset. This bit is
not affected by INIT or SKINIT. When SmmLock is set, other SMM configuration registers cannot be
written. For complete information on the HWCR register, see the BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference Manual applicable to your product.

15.32.2 SMM_KEY MSR (C001_0119h)

The write-only SMM_KEY MSR is used to create a password-protected mechanism to clear
SmmLock.

When SmmLock is zero, writes to SMM_KEY MSR set the 64-bit SMM Key value.

When SmmLock is one, writes to SMM_KEY MSR compare the written value to the SMM Key value;
if the values match and are non-zero, the SmmLock bit is cleared. If the values mismatch or the SMM
Key value is zero, the write to SMM_KEY is ignored, and SmmLock is unmodified. Software should
read SmmLock after writing SMM_KEY to determine whether the unlock succeeded.

If SMM_Key MSR is equal to zero when SmmLock is one, SmmLock can only be cleared by a
processor reset.

To preserve the security of the SMM key, reading SMM_KEY MSR always returns zero.

15.33 Nested Virtualization
Hardware support for improved performance of nested virtualization, which is the act of running a
hypervisor as a guest under a higher-level hypervisor, is provided through the features described here.

[AMD Public Use]

Secure Virtual Machine 561

24593—Rev. 3.37—March 2021 AMD64 Technology

These relieve the top-level hypervisor from performing certain common, high-overhead operations
that can occur with nested virtualization.

15.33.1 VMSAVE and VMLOAD Virtualization

This feature allows the VMSAVE and VMLOAD instructions to execute in guest mode without
causing a #VMEXIT. The VMCB address in RAX is treated as a guest physical address and is
translated to a host physical address. Any page fault in attempting that translation will result in a
normal #VMEXIT with a nested page fault exit code. If the translation is successful, the register state
transfer to or from the VMCB will then be performed.

Support for virtualized VMSAVE and VMLOAD is indicated by CPUID Fn8000_000A_EDX[15]=1.
When this feature is available, it must be explicitly enabled by setting bit 1 of VMCB offset 0B8h to 1.
This enable bit is only recognized when the hypervisor is in 64 bit mode, nested paging is enabled and
Secure Encrypted Virtualization is disabled, otherwise attempted execution of a VMLOAD or
VMSAVE in the guest will result in a #VMEXIT with a VMSAVE/VMLOAD exit code.

15.33.2 Virtual GIF (VGIF)

This feature allows STGI and CLGI to execute in guest mode and control virtual interrupts in guest
mode while still allowing physical interrupts to be intercepted by the hypervisor. The presence of the
VGIF feature is indicated by CPUID Fn8000_000A_EDX[16]=1.

In order to provide this ability, two new bits are added to the VMCB field at offset 60h:

When a VMRUN is executed and VGIF is enabled, the processor uses bit 9 as the starting value of the
virtual GIF. It then provides masking capability for when virtual interrupts are taken. STGI executed in
the guest sets bit 9 of VMCB offset 60h and allows a virtual interrupt to be taken. CLGI executed in the
guest clears bit 9 of VMCB offset 60h and causes the virtual interrupt to be masked. Bit 9 in the
VMCB is also writeable by the hypervisor, and loaded on VMRUN and is saved on #VMEXIT.

The hypervisor can still use the STGI and CLGI intercept controls in the VMCB to intercept execution
of these in the guest regardless of VGIF enablement.

15.34 Secure Encrypted Virtualization
Secure Encrypted Virtualization (SEV) is available when the CPU is running in guest mode utilizing
AMD-V virtualization features. SEV enables running encrypted virtual machines (VMs) in which the
code and data of the virtual machine are secured so that the decrypted version is available only within
the VM itself. Each virtual machine may be associated with a unique encryption key so if data is

Offset Bit Description
60h 9 VGIF value (0 – Virtual interrupts are masked, 1 – Virtual Interrupts are unmasked)
60h 25 Virtual GIF enable for this guest (0 - Disabled, 1 - Enabled)

[AMD Public Use]

562 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

accessed by a different entity using a different key, the SEV encrypted VM's data will be decrypted
with an incorrect key, leading to unintelligible data.

It is important to note that SEV mode therefore represents a departure from the standard x86
virtualization security model, as the hypervisor is no longer able to inspect or alter all guest code or
data. The guest page tables, managed by the guest, may mark data memory pages as either private or
shared, thus allowing selected pages to be shared outside the guest. Private memory is encrypted using
a guest-specific key, while shared memory is accessible to the hypervisor.

15.34.1 Determining Support for SEV

Support for memory encryption features is reported in CPUID 8000_001F[EAX] as described in
Section 7.10.1, “Determining Support for Secure Memory Encryption,” on page 226. Bit 1 indicates
support for Secure Encrypted Virtualization.

When memory encryption features are present, CPUID 8000_001F[EBX] and 8000_001F[ECX]
supply additional information regarding the use of memory encryption, such as the number of keys
supported simultaneously and which page table bit is used to mark pages as encrypted. Additionally, in
some implementations, the physical address size of the processor may be reduced when memory
encryption features are enabled, for example from 48 to 43 bits. In this example, physical address bits
47:43 would be treated as reserved except where otherwise indicated. When memory encryption is
supported in an implementation, CPUID 8000_001F[EBX] reports any physical address size reduction
present. Bits reserved in this mode are treated the same as other page table reserved bits, and will
generate a page fault if found to be non-zero when used for address translation.

Full CPUID details for memory encryption features may be found in Volume 3, section E.4.17.

15.34.2 Key Management

Under the memory encryption extensions defined here, each SEV-enabled guest virtual machine is
associated with a memory encryption key, and the SME mode (if used, see Section 7.10 on page 226)
is associated with a separate key. Key management for the SEV feature is not handled by the CPU but
rather by a separate processor known as the AMD Secure Processor (AMD-SP) which is present on
AMD SOCs. A detailed discussion of AMD-SP operation is beyond the scope of this manual.

CPU software is not aware of the values of these keys but the hypervisor should coordinate the loading
of virtual machine keys through the AMD-SP driver. This coordination will also determine which
ASID the hypervisor should use for a particular guest. Under SEV, the ASID is used as the key index
that identifies which encryption key is used to encrypt/decrypt memory traffic associated with that
SEV-enabled guest. Encryption keys themselves are never visible to CPU software and are never
stored off-chip in the clear.

[AMD Public Use]

Secure Virtual Machine 563

24593—Rev. 3.37—March 2021 AMD64 Technology

15.34.3 Enabling SEV

Prior to starting an encrypted VM, software must enable MemEncryptionModEn through MSR
C001_0010 (SYSCFG) as described in Section 7.10.2, “Enabling Memory Encryption Extensions,”
on page 227. SEV may then be enabled on a specific virtual machine during the VMRUN instruction if
the hypervisor sets the SEV enable bit in VMCB offset 090h.

When SEV is enabled in a guest, the following additional consistency checks are performed during
VMRUN:

• Nested paging (VMCB offset 090h, bit 0) must be enabled
• MSR C001_0015 (HWCR) [SmmLock] must be set
• ASID (VMCB offset 058h) must be within the allowed range for SEV

The allowed ASIDs for SEV operation may be a subset of the overall number of hardware supported
ASIDs. In this scenario, SEV-enabled guests must use ASIDs in the defined subset, while non-SEV
enabled guests can use the remaining ASID range. The range of ASIDs allowed for SEV-enabled
guests is from 1 to a maximum value defined via CPUID 8000_001F[ECX].

Note that on systems where CPUID Fn8000_001F_EAX[11] is set to 1, the hypervisor must be in 64-
bit mode in order to execute a VMRUN to an SEV-enabled guest. If not the VMRUN fails with a
VMEXIT_INVALID error code.

If any of the above consistency checks fail when SEV is enabled on a guest, the VMRUN instruction
will terminate with a VMEXIT_INVALID error code. If MemEncryptionModEn is 0, SEV cannot be
enabled and the VMCB control bit for SEV is ignored.

15.34.4 Supported Operating Modes

Secure Encrypted Virtualization may be enabled on guests running in any operating mode. However
the guest is only able to control memory encryption when operating in long mode or legacy PAE mode.
In all other modes, all guest memory accesses are unconditionally considered private and are
encrypted with the guest-specific key.

15.34.5 SEV Encryption Behavior

When a guest is executed with SEV enabled, the guest page tables are used to determine the C-bit for a
memory page and hence the encryption status of that memory page. This allows a guest to determine
which pages are private or shared, but this control is available only for data pages. Memory accesses
on behalf of instruction fetches and guest page table walks are always treated as private, regardless of

Byte Offset Bit[s] Description

090h

0 Enable nested paging
1 Enable Secure Encrypted Virtualization
2 Enable Encrypted State for Secure Encrypted Virtualization

63-3 Reserved, SBZ

[AMD Public Use]

564 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

the software value of the C-bit. This behavior ensures non-guest entities (such as the hypervisor)
cannot inject their own code or data into an SEV-enabled guest. If a guest does wish to make data in
instruction pages or page tables accessible to code outside of the guest, this data must be explicitly
copied into a shared data page.

Note that while the guest may choose to set the C-bit explicitly on instruction pages and page table
addresses, the value of this bit is a don't-care in such situations as hardware always performs these as
private accesses.

15.34.6 Page Table Support

An SEV-enabled guest controls encryption in its own guest page tables using the C-bit defined by
CPUID 8000_001F[EBX]. This location is the same C-bit location as defined under SME
(Section 7.10, “Secure Memory Encryption,” on page 226) in non-virtualized mode. If the C-bit is an
address bit, this bit is masked from the guest physical address when it is translated through the nested
page tables. Consequently, the hypervisor does not need to be aware of which pages the guest has
chosen to mark private.

For example if the C-bit is address bit 47, when a guest accesses virtual address 0x54321, it might be
translated to guest physical address 0x8000_00AB_C321, indicating the page should be encrypted
with the private guest key. When this guest physical address is translated through the nested page
tables, host virtual address 0xAB_C321 is used for translation. The C-bit value from the guest physical
address is saved and used on the final system physical address after the nested table translation as
shown in Figure 15-29.

Note that because guest physical addresses are always translated through the nested page tables, the
size of the guest physical address space is not impacted by any physical address space reduction
indicated in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however, the guest
physical address space is effectively reduced by 1 bit.

[AMD Public Use]

Secure Virtual Machine 565

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 15-29. Guest Data Request

15.34.7 Restrictions

As with SME, some hardware implementations may not enforce coherency between mappings of the
same physical page with different encryption enablement or keys. In such a system, when the
encryption enablement or key for a particular memory page is to be changed, software must first
ensure the page is flushed from all CPU caches. Certain conventional cache flushing techniques may
not work however; see Section 15.34.9 for further details.

Note that if the hardware implementation enforces coherency across encryption domains as indicated
by CPUID Fn8000_001F_EAX[10] then this flush is not required.

15.34.8 SEV Interaction with SME

SEV may be used in conjunction with SME mode. In this scenario, the guest page tables control
encryption for guest memory, and the host (nested) page tables control encryption for shared memory.
This behavior is summarized in Table 15-32. SEV is considered active when the CPU is in guest mode
and the guest has SEV enabled in the VMCB.

Guest Page Tables
Address

Nested Page Tables
Address

Guest Physical AddressC-bit

System Physical AddressC-bit

Guest Data Request

[AMD Public Use]

566 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Note that during a nested page table walk, it is possible for both the guest page tables to be encrypted
and the nested page tables to be encrypted. In this scenario, the guest page tables are decrypted using
the guest private encryption key, and the nested page tables are decrypted using the host (SME)
encryption key.

Guest data accesses that are marked shared (C=0) by the guest may still be optionally encrypted using
the host (SME) key if the pages are marked encrypted in the nested tables. If a page is marked
encrypted in both the guest and nested tables, the guest tables have priority and the page will be
encrypted using the guest key. This behavior is summarized in Table 15-33.

Table 15-32. Encryption Control

Type of
Access

MemEncrypt
ionModEn

Guest
Mode

SEV
Mode
Active

Encrypted Encryption
Key Notes

Legacy Mode (memory encryption disabled)
All 0 X X No N/A

Secure Memory Encryption Mode
All 1 0 X Optional Host Key Determined by page tables (CR3)

All 1 1 0 Optional Host Key Determined by nested page tables
(hCR3)

Secure Encrypted Virtualization Mode
Instruction

Fetch 1 1 1 Yes Guest Key

Guest Page
Table

Access
1 1 1 Yes Guest Key

Nested Page
Table

Access
1 1 1 Optional Host Key Determined by nested page tables

(hCR3)

Data Access 1 1 1 Optional1
See Table

15-33:
SEV/SME
Interaction

Determined by guest page tables
(gCR3) and nested page tables
(hCR3)

Note:
1. Encryption is guest-controlled in long mode and legacy PAE mode only. In all other modes, these accesses are always considered

private and are encrypted with the guest key

[AMD Public Use]

Secure Virtual Machine 567

24593—Rev. 3.37—March 2021 AMD64 Technology

15.34.9 Page Flush MSR

If coherency across encryption domains is not supported (see “Restrictions” on page 565), and the
hypervisor wishes to read an encrypted page, it must first flush the guest view of that page from all
CPU caches to ensure it is able to view the most recent copy of that data. This may be accomplished by
issuing a WBINVD instruction on all cores on which the guest has run, or by using the
VMPAGE_FLUSH MSR (C001_011E). Support for the VMPAGE_FLUSH MSR is indicated in
CPUID 8000_001F[EAX] bit 2.

The VMPAGE_FLUSH MSR is a write-only register that may be used to flush 4KB of data on behalf
of a guest. The hypervisor writes the host linear address of the page and guest ASID to the MSR, and
hardware will then perform a write-back invalidation of the page causing any dirty data present in any
CPU caches throughout the system to be encrypted and written to DRAM. Note that the
VMPAGE_FLUSH MSR uses the standard host page tables to perform the page translation. The Page
Flush MSR operation will hit on and evict guest-cached instances of the memory, whereas CLFLUSH
instructions using this same translation will not.

The VMPAGE_FLUSH MSR will only flush memory pages marked private by the guest. If the
hypervisor does not know if the memory page was marked private but wishes to evict the page from
the cache, it should perform a standard CLFLUSH in addition to using the VMPAGE_FLUSH MSR.

Attempts to flush a host virtual address that is not mapped into a physical address or use of an ASID=0
will cause a #GP(0) fault.

15.34.10 SEV_STATUS MSR

Guests can determine what SEV features are currently active by reading the SEV_STATUS MSR
(C001_0131). This MSR indicates which SEV features (if any) were enabled by the hypervisor in the
last VMRUN for that guest as shown in Table 15-34. The SEV_STATUS MSR can only be read in
guest context and is read-only. Additionally, accesses to the SEV_STATUS MSR cannot be
intercepted by the hypervisor. The SEV_STATUS MSR is available on all platforms that support SEV.

Table 15-33. SEV/SME Interaction
Nested Page Table

C=0 C=1

Guest
Page
Table

C=0 Unencrypted Encrypted with host key

C=1 Encrypted with
guest key Encrypted with guest key

Bit[s] Description
63:12 VirtualAddr: Write-only. Host virtual address of page to flush
11:0 ASID: Write-only. Guest ASID to use for the flush

[AMD Public Use]

568 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Bits 9:2 of SEV_STATUS reflect the enablement of various SEV-SNP security features as described in
section 15.36.

15.34.11 Virtual Transparent Encryption (VTE)

The Virtual Transparent Encryption feature can be enabled to force all memory accesses within an
SEV guest to be encrypted with the guest’s key. Support for this feature is indicated in CPUID
Fn8000_001F[EAX] bit 16.

To enable this feature, the hypervisor must set VMCB offset 90h bit 5. Bit 5 is only observed when
SEV (bit 1) is also set to 1 and SEV-ES (bit 2) is cleared to 0. In all other configurations of these bits
(namely SEV disabled or SEV-ES enabled), bit 5 is ignored by hardware.

When this feature is enabled, CPU hardware treats the guest C-bit as 1 for all guest memory
references. The actual C-bit in the guest page tables is ignored by hardware.

Guest address translation is unchanged, so the guest physical address (without the C-bit) is used for
translation in the nested page tables.

15.35 Encrypted State (SEV-ES)
Encrypted VMs that use the SEV feature described in Section 15.34 may additionally use the SEV-ES
feature to protect guest register state from the hypervisor. An SEV-ES VM's CPU register state is
encrypted during world switches and cannot be directly accessed or modified by the hypervisor. This is

Table 15-34. SEV_STATUS MSR Fields
Bit[s] Description
63:10 Reserved

9 SNPBTBIsolation_Enabled: The guest was run with the BTB isolation feature enabled in
SEV_FEATURES[7]

8 PreventHostIBS_Enabled: This guest was run with the PreventHostIBS feature enabled in
SEV_FEATURES[6].

7 DebugSwap_Enabled: This guest was run with debug register swapping enabled in
SEV_FEATURES[5].

6 AlternateInjection_Enabled: The guest was run with the Alternate Injection feature enabled in
SEV_FEATURES[4]

5 RestrictedInjection_Enabled: The guest was run with the Restricted Injection feature enabled in
SEV_FEATURES[3]

4 ReflectVC_Enabled: The guest was run with the ReflectVC feature enabled in SEV_FEATURES[2]

3 vTOM_Enabled: The guest was run with the Virtual TOM feature enabled in SEV_FEATURES[1]

2 SNP_Active: The guest was run in SNP-Active mode as selected by SEV_FEATURES[0]

1 SEV_ES_Enabled: The guest was run with the SEV-ES feature enabled in VMCB offset 90h

0 SEV_Enabled: The guest was run with the SEV feature enabled in VMCB offset 90h

[AMD Public Use]

Secure Virtual Machine 569

24593—Rev. 3.37—March 2021 AMD64 Technology

designed to protect against attacks such as exfiltration (unauthorized reading of VM state) and control
flow attacks (modifying VM state) including rollback attacks (restoring an earlier VM register state).

SEV-ES includes architectural support for notifying a VM's operating system when certain types of
world switches are about to occur, allowing the VM to selectively share information with the
hypervisor when needed for functionality.

15.35.1 Determining Support for SEV-ES

SEV-ES support can be determined by reading CPUID Fn8000_001F[EAX] as described in
Section 15.34.1. Bit 3 of EAX indicates support for SEV-ES.

15.35.2 Enabling SEV-ES

SEV-ES may be enabled on a per-VM basis by setting bit 2 in offset 90h of the VMCB. When enabling
SEV-ES, the hypervisor must also enable SEV (offset 90h bit 1) and LBR virtualization (offset B8h bit
0). Additionally, all other programming requirements related to enabling SEV (see Section 15.34.3)
must be satisfied when running an SEV-ES guest.

On some systems, there is a limitation on which ASID values can be used on SEV guests that are run
with SEV-ES disabled. While SEV-ES may be enabled on any valid SEV ASID (as defined by CPUID
Fn8000_001F[ECX]), there are restrictions on which ASIDs may be used for SEV guests with SEV-
ES disabled. CPUID Fn8000_001F[EDX] indicates the minimum ASID value that must be used for an
SEV-enabled, SEV-ES-disabled guest. For example, if CPUID Fn8000_001F[EDX] returns the value
5, then any VMs which use ASIDs 1-4 and which enable SEV must also enable SEV-ES.

Note that prior to running an SEV-ES VM for the first time, the hypervisor must coordinate with the
AMD Secure Processor to create the initial encrypted state image for the guest VM.

15.35.3 SEV-ES Overview

The SEV-ES architecture is designed to protect guest VM register state by default, and only allow the
guest VM itself to grant selective access as required. This additional security protection functionality
is accomplished in two ways. First, all VM register state is saved and encrypted when a VM exit event
(#VMEXIT) occurs. This state is decrypted and restored on a VMRUN only. Second, certain types of
#VMEXIT events cause a new exception to be taken within the guest VM. This new exception (#VC,
see Section 15.35.5) indicates that the guest VM performed some action which requires hypervisor
involvement, an example of which would be an IO access by the VM. The guest #VC handler is
responsible for determining what register state is necessary to expose to the hypervisor for the purpose
of emulating this operation. The #VC handler also inspects the returned values from the hypervisor
and updates the guest state if the output is deemed acceptable.

Register state that needs to be exposed utilizes a new structure called the Guest-Hypervisor
Communication Block (GHCB). The GHCB location is chosen by the guest who maps the page as a
shared memory page, thus allowing direct hypervisor access. Only state located in the GHCB can be
read by the hypervisor as all state stored in the traditional VMCB save state structure is encrypted
using the guest memory encryption key and integrity protected.

[AMD Public Use]

570 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

In the #VC handler, the guest may utilize a new instruction (Section 15.35.6) to perform a world
switch and invoke the hypervisor. In response to this, the hypervisor can inspect the GHCB and
determine the services requested by the guest.

15.35.4 Types of Exits

When SEV-ES is enabled, all #VMEXIT events are classified as either Automatic Exits (AE) or Non-
Automatic Exits (NAE). AE events are generally events that occur asynchronously with respect to the
guest execution (e.g. interrupts) or events that need not involve exposing any guest register state. All
other #VMEXIT events are classified as NAE events, and with NAE events the guest is allowed to
determine what register state (if any) to expose in the GHCB. During guest execution, #VMEXIT
events (both AE and NAE) are only taken if the corresponding intercept bit in the VMCB control area
is set.

The hypervisor is informed of specific AE events exclusively via the #VMEXIT codes within the
EXITCODE field of the VMCB control area. NAE events result in a #VC exception which is handled
by the guest. Table 15-35 lists the possible AE events, all other events are considered NAE events.

In the case of exits due to specific instructions, the CPU will automatically advance the guest RIP in
response to the AE so that execution will resume at the next instruction on a subsequent VMRUN.

Table 15-35. AE Exitcodes
Code Name Notes HW Advances RIP
52h VMEXIT_MC Machine check exception No
60h VMEXIT_INTR Physical INTR No
61h VMEXIT_NMI Physical NMI No
62h VMEXIT_SMI Physical SMI No
63h VMEXIT_INIT Physical INIT No
64h VMEXIT_VINTR Virtual INTR No
77h VMEXIT_PAUSE PAUSE instruction Yes
78h VMEXIT_HLT HLT instruction Yes
7Fh VMEXIT_SHUTDOWN Shutdown No
8Fh VMEXIT_EFER_WRITE_TRAP See section 15.35.10 Yes

90h -9Fh VMEXIT_CR[0-15]_WRITE_TRAP See section 15.35.10 Yes

400h VMEXIT_NPF Only if PFCODE[3]=0 (no reserved bit
error) No

403h VMEXIT_VMGEXIT VMGEXIT instruction Yes
–1 VMEXIT_INVALID Invalid guest state –

–2 VMEXIT_BUSY Busy bit was set in guest state (see
Section 15.36.16) –

[AMD Public Use]

Secure Virtual Machine 571

24593—Rev. 3.37—March 2021 AMD64 Technology

In the case of nested page faults, these are treated as AEs only if there was no reserved bit error. This is
intended to be used to help distinguish nested page faults due to demand misses (hypervisor needs to
allocate a page) vs MMIO emulation (hypervisor needs to emulate a device). Consequently, the
hypervisor should set a reserved page table bit, such as a reserved address bit, on all MMIO pages that
it intends to emulate. (This can include address bits that may become reserved when SEV is enabled;
see Section 15.34.1.) This will ensure that MMIO page faults become NAE events, which is critical so
the guest #VC handler can be invoked to assist in the MMIO emulation. Nested page faults that are AE
events do not invoke any guest handler and the hypervisor is intended to allocate memory as needed
and then resume the guest.

Note that when a guest is running with SEV-ES enabled, instruction bytes (VMCB offset D0h) are
never saved to the VMCB on a nested page fault.

15.35.5 #VC Exception

The VMM Communication Exception (#VC) is always generated by hardware when an SEV-ES
enabled guest is running and an NAE event occurs. The #VC exception is a precise, contributory, fault-
type exception utilizing exception vector 29. This exception cannot be masked. The error code of the
#VC exception is equal to the #VMEXIT code (see Appendix C) of the event that caused the NAE.

In response to a #VC exception, a typical flow would involve the guest handler inspecting the error
code to determine the cause of the exception and deciding what register state must be copied to the
GHCB for the event to be handled. The handler should then execute the VMGEXIT instruction to
create an AE and invoke the hypervisor. After a later VMRUN, guest execution will resume after the
VMGEXIT instruction where the handler can view the results from the hypervisor and copy state from
the GHCB back to its internal state as needed. This flow is shown in Figure 15-30.

Note that it is inadvisable for the hypervisor to set the VMCB intercept bit for the #VC exception as
this would prevent proper handling of NAEs by the guest. Similarly, the hypervisor should avoid
setting intercept bits for events that would occur in the #VC handler (such as IRET).

[AMD Public Use]

572 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 15-30. EXAMPLE #VC FLOW

Guest triggers
VMEXIT condition

Send #VC exception
to the guest

Hypervisor handles
exit

#VC handler copies
state to GHCB as

needed

VMGEXIT

Save guest state to
protected memory
and load HV state

VMRUN

Load guest state
from protected

memory

Returns to #VC
handler

Handler modifies
state as needed

IRET

Guest AMD64 Hardware Hypervisor

[AMD Public Use]

Secure Virtual Machine 573

24593—Rev. 3.37—March 2021 AMD64 Technology

15.35.6 VMGExit

The VMGEXIT instruction creates an AE and is intended to allow a guest #VC handler to invoke the
hypervisor when needed. VMGEXIT causes an AE with the VMEXIT_VMGEXIT code and behaves
like a trap so that upon a subsequent VMRUN, execution resumes following the VMGEXIT. There is
no hypervisor intercept bit for VMGEXIT as the instruction unconditionally causes an AE when
executed in an SEV-ES guest.

The VMGEXIT opcode is only valid within a guest when run with SEV-ES mode active. If the guest is
not run with SEV-ES mode active, the VMGEXIT opcode will be treated as a VMMCALL opcode and
will behave exactly like a VMMCALL.

15.35.7 GHCB

The GHCB is an unencrypted memory page used to communicate register state between the SEV-ES
guest and the hypervisor. The guest VM is able to set the location of the GHCB via the GHCB MSR
(C001_0130). This value is also included in the VMCB and is saved/restored on VMRUN/#VMEXIT
respectively.

The GHCB MSR is used to set up the location of the GHCB memory page. The format of this MSR is
defined below:

The value of this MSR is saved/restored from the VMCB offset 0A0h. It is recommended software
write this MSR with a page-aligned address. The GHCB MSR can be read/written only in guest mode,
attempts to access this MSR in host mode will result in a #GP.

Hardware never accesses the GHCB directly, and as a result the format of the GHCB is not fixed.

15.35.8 VMRUN

When SEV-ES is enabled, the VM save state area does not reside at offset 400h in the VMCB page.
Instead it resides starting at offset 0h in a separate page called the VM Save Area (VMSA) as indicated
by the VMSA Pointer at offset 108h. The VMSA Pointer value is stored as a host physical address.
Hardware always accesses the VMSA save state area using encrypted memory accesses utilizing the
guest's memory encryption key.

When hardware executes a VMRUN instruction and the VMCB indicates SEV-ES is enabled for the
guest, the hardware loads guest state from the encrypted save state area indicated by the VMSA
Pointer. Also, the VMRUN instruction will perform the following actions in addition to the standard
VMRUN behavior:

• Calculate a checksum over guest state to verify integrity
• Perform a VMLOAD to load additional guest register state
• Load guest GPR state

Bit Function
63:0 Guest physical address of GHCB

[AMD Public Use]

574 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

• Load guest FPU state

When a guest has SEV-ES enabled, the encrypted VM state save area definition is expanded to include
all GPR and FPU state (see Appendix B). If any part of the VMRUN flow faults or if the integrity
checksum fails to match, a #VMEXIT(VMEXIT_INVALID) is generated.

Note that if SEV-ES is enabled, the VMRUN instruction ignores bits 10:5 of the VMCB clean bits and
always reloads the full guest state.

Also note that for SEV-ES guests, while the full guest state is loaded on VMRUN only the minimal
hypervisor state defined by the legacy VMRUN instruction (see Section 15.5.1) is saved to the host
save area. The hypervisor itself should save its desired additional segment state and GPR values to the
host save area since these values will be restored by hardware on a subsequent VMEXIT. Hardware
does not automatically save host state such as FS, STAR, or GPR values from the hypervisor on a
VMRUN. See Appendix B for a detailed breakdown of each piece of VMCB state.

Finally, note that event injection for SEV-ES guests is restricted. Software interrupts and exception
vectors 3 and 4 may not be injected. If this is attempted, the VMRUN will fail with a
VMEXIT_INVALID error code.

15.35.9 Automatic Exits

When an automatic exit event occurs while an SEV-ES enabled guest is executing, hardware
automatically saves guest state to the encrypted save state area and restores hypervisor state from the
host save area. Specifically, in addition to the standard state saved/restored by the VMEXIT flow,
hardware will also perform the following steps:

• Perform a VMSAVE to save additional guest register state
• Save guest GPR state
• Save guest FPU state
• Calculate and store a checksum over the guest state for use in a subsequent VMRUN
• Perform a VMLOAD to load additional host register state
• Load host GPR state
• Re-initialize FPU state to their reset values

The loading of host GPR state from the host save area is done using the format of the expanded VMCB
described in Appendix B. All register state is either loaded from this location or re-initialized to default
values so no guest register state is visible to the hypervisor.

15.35.10 Control Register Write Traps

The use of CR[0-15]_WRITE intercepts are discouraged for guests that are run with SEV-ES. These
intercepts occur prior to the control register being modified, and the hypervisor is not able to modify
the control register itself since the register is located in the encrypted state image. Hypervisors are
encouraged to use the new CR[0-15]_WRITE_TRAP and EFER_WRITE_TRAP intercept bits
instead which cause an AE after a control register has been modified. These intercepts enable the

[AMD Public Use]

Secure Virtual Machine 575

24593—Rev. 3.37—March 2021 AMD64 Technology

hypervisor to track the guest mode and verify if desired features are being enabled. When these traps
are taken, the new value of the control register is saved in EXITINFO1. CR write traps are only
supported for SEV-ES guests.

Note that writes by SEV-ES guests to EFER.SVME are always ignored by hardware.

15.35.11 Interaction with SMI and #MC

If an SMI occurs while an SEV-ES guest is executing, the platform SMI handler is not immediately
executed. Instead, the SMI will remain pending and a #VMEXIT(SMI) is generated. The SMI will
then be taken in hypervisor context after STGI is executed. Note that this behavior occurs regardless of
the value of the SMI intercept bit in the VMCB.

In some systems, machine check errors are first delivered as an SMI. If this occurs while an SEV-ES
guest is executing, #VMEXIT(SMI) will be generated and EXITINFO1[MCREDIR] will be set to 1
(“SMI Intercept” on page 497). As described above, the SMI will be held pending until STGI is
executed. After the platform SMI handler executes following STGI, the hypervisor should check the
MCREDIR bit to determine if the #VMEXIT(SMI) was due to a machine check error in the guest and
handle it appropriately.

15.36 Secure Nested Paging (SEV-SNP)
The SEV-SNP features enable additional protection for encrypted VMs designed to achieve stronger
isolation from the hypervisor. SEV-SNP is used with the SEV and SEV-ES features described in
Section 15.34 and Section 15.35 respectively and requires the enablement and use of these features.

Primarily, SEV-SNP provides integrity protection of VM memory to help prevent hypervisor-based
attacks that rely on guest data corruption, aliasing, replay, and various other attack vectors. To achieve
this, a new system-wide data structure called the Reverse Map Table (RMP) is used to perform
additional security checks on memory access as described in Section 15.36.3.

In addition to memory protection, SEV-SNP also includes several security features including a new
Virtual Machine Privilege Level (VMPL) architecture, interrupt injection restrictions, and side-
channel protection. These features are designed to enable additional use models and enhanced security
protections.

While this chapter describes the CPU hardware behavior of SEV-SNP, the technology also requires the
use of the AMD Secure Processor (AMD-SP) SEV-SNP Application Binary Interface (ABI) to
manage the lifecycle events of SEV-SNP VMs. See the SEV-SNP ABI specification on AMD’s
website for more details.

15.36.1 Determining Support for SEV-SNP

Support for SEV-SNP can be determined by reading CPUID Fn8000_001F[EAX] as described in
Section 15.34.1. Bit 4 indicates support for SEV-SNP, while bit 5 indicates support for VMPLs. The

[AMD Public Use]

576 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

number of VMPLs available in an implementation is indicated in bits [15:12] of CPUID
Fn8000_001F[EBX].

CPUID Fn8000_001F[EAX] also indicates support for additional security features used with SEV-
SNP guests, which are described in the following sections.

15.36.2 Enabling SEV-SNP

SEV-SNP depends on SEV for confidentiality protection. Before enabling SEV-SNP, the
MemEncryptionModEn bit in MSR C001_0010 (SYSCFG) must be set, and all programming
requirements described in Section 15.34.3 must be satisfied. After SecureNestedPagingEn is set to 1 in
MSR C001_0010, certain MSRs may no longer be modified. This includes the fixed range MTRR
registers (see Section 7.7.2), the IORR registers (see Section 7.9.2), the TOP_MEM and TOP_MEM2
registers (see Section 7.9.4), as well as the SYS_CFG MSR. Attempts to write the SYS_CFG MSR via
WRMSR after SecureNestedPagingEn is set to 1 will be ignored while attempts to write the other
MSRs mentioned will result in #GP(0).

Enabling SEV-SNP requires a two-step initialization procedure:

1. Construct the Reverse Map Table (RMP) as described in Section 15.36.4.

2. Set VMPLEn and SecureNestedPagingEn in MSR C001_0010 (SYSCFG) on every core in the
 system.

After the SEV-SNP feature has been globally enabled, SEV-SNP can be activated on a per-VM basis
by setting bit 0 of the SEV_FEATURES field at offset 3B0h of the VMSA during VM creation. SEV-
SNP activated VMs must also enable SEV-ES as described in Section 15.35.2 and SEV as described in
Section 15.34.3.

In this chapter, the term SNP-enabled indicates that SEV-SNP is globally enabled in the SYSCFG
MSR. The term SNP-active indicates that SEV-SNP is enabled for a specific VM in the
SEV_FEATURES field of its VMSA. While SNP-enabled systems support both SNP-active and non-
SNP-active VMs, SNP-active VMs can only run on SNP-enabled systems.

15.36.3 Reverse Map Table

The Reverse Map Table (RMP) is a structure shared globally by all logical processors that resides in
system memory and is used to ensure a one-to-one mapping between system physical addresses and
guest physical addresses. Each page of physical memory that is potentially assignable to guests has
one entry within the RMP. RMP entries contain the security attributes of the system physical page as
described in Table 15-36.

[AMD Public Use]

Secure Virtual Machine 577

24593—Rev. 3.37—March 2021 AMD64 Technology

The integrity of the RMP is maintained by restricting software manipulation of it to the following
special-purpose instructions:

• RMPUPDATE: Available to the hypervisor to alter the Guest_Physical_Address, Assigned,
 Page_Size, Immutable, and ASID fields of an RMP entry. See Section 15.36.5 for details.

• PSMASH: Allows the hypervisor to split a 2MB entry in the RMP into 512 4KB entries in the RMP.
 See Section 15.36.11 for details.

• RMPADJUST: Allows a guest to alter the VMPL permission masks of the RMP entry. See Section
 15.36.7 for details.

• PVALIDATE: Allows a guest to write to the Validated flag in the RMP entry. See Section 15.36.6
 for details.

When SEV-SNP is globally enabled, it adds more restrictions to page access controls. The hypervisor
and the guests use the above instructions to enforce these restrictions on memory accesses. A violation

Table 15-36. Fields of an RMP Entry
Name Notes

Assigned

Flag indicating that the system physical page is assigned to a guest or to the
AMD-SP.
0: Owned by the hypervisor
1: Owned by a guest or the AMD-SP

Page_Size
Encoding of the page size.
0: 4KB page
1: 2MB page

Immutable

Flag indicating that software can alter the entry via x86 RMP manipulation
instructions.
0: RMP entry can be altered by software
1: RMP entry cannot be altered by software

Guest_Physical_Address Guest physical address associated with the page
ASID ASID of guest to which page is assigned

VMSA
Flag indicating that the page is a VMSA page.
0: Non-VMSA page
1: VMSA page

Validated

Flag indicating that the guest has validated the page.
See Section 15.36.6 for details.
0: The guest has not yet validated the page
1: The guest validated the page with PVALIDATE

Permissions[0]
VMPL permission masks for the page. See Section 15.36.7
 for details.

 ...
Permissions[n-1]

[AMD Public Use]

578 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

of memory access restrictions indicated by the RMP will result in an exception. See Section 15.36.10
for details.

15.36.4 Initializing the RMP

MSR C001_0132 (RMP_BASE) defines the system physical address of the first byte of the RMP. The
MSR C001_0133 (RMP_END) defines the system physical address of last byte of the RMP. Software
must program RMP_BASE and RMP_END identically for each core in the system and before
enabling SEV-SNP globally.

RMP_BASE and (RMP_END+1) must be 8KB aligned. The AMD-SP may place further alignment
requirements on these registers. Refer to the latest AMD-SP specifications to determine the required
alignment.

The region of memory between RMP_BASE and RMP_END contains a 16KB region used for
processor bookkeeping followed by the RMP entries, which are each 16B in size. The size of the RMP
determines the range of physical memory that the hypervisor can assign to SNP-active virtual
machines at runtime. The RMP covers the system physical address space from address 0h to the
address calculated by:

((RMP_END + 1 – RMP_BASE – 16KB) / 16B) x 4KB

For example, if the RMP_BASE is equal to 10_0000h, then to cover the first 4GB of physical memory,
RMP_END must be set to 110_3FFFh, which makes the RMP just over 16MB.

Once SEV-SNP is globally enabled, memory accesses are restricted by RMP checks. To ensure that the
RMP starts in a known and non-restrictive state, software should write zeros to all memory from
RMP_BASE to RMP_END before setting the SecureNestedPagingEn bit in the SYSCFG MSR. The
hypervisor then requests the AMD-SP to finalize the initialization of the RMP. The AMD-SP
initializes the RMP to prevent all software from directly writing to the memory between RMP_BASE
and RMP_END. All subsequent RMP entry manipulation must occur either via the x86 RMP
manipulation instructions or through interactions with the AMD-SP.

15.36.5 Hypervisor RMP Management

The hypervisor manages the SEV-SNP security attributes of pages assigned to SNP-active guests by
altering the RMP entries of those pages. Because the RMP is initialized by the AMD-SP to prevent
direct access to the RMP, the hypervisor must use the RMPUPDATE instruction to alter the entries of
the RMP. RMPUPDATE allows the hypervisor to alter the Guest_Physical_Address, Assigned,
Page_Size, Immutable, and ASID fields of an RMP entry.

SEV-SNP associates an owner with each system physical page through settings of the Assigned,
ASID, and Immutable fields of the page’s RMP entry according to Table 15-37. A page can be owned
by the hypervisor, a guest, or the AMD-SP.

[AMD Public Use]

Secure Virtual Machine 579

24593—Rev. 3.37—March 2021 AMD64 Technology

When the hypervisor assigns a page to a guest, it must also set the Guest_Physical_Address and
Page_Size to match the nested page table mapping for the guest. If not, access to the page by the guest
will result in a fault. See Section 15.36.10 for details on the RMP access checks.

The hypervisor may transition any page that has Immutable set to 0 into a hypervisor-owned page by
using RMPUPDATE to set Assigned to 0 and ASID to 0. To transition a page that has Immutable set to
1, the hypervisor must request the AMD-SP to transition the page.

The RMP initialization requirement to write zeros to the RMP (see Section 15.36.4) results in all pages
in the system initially belonging to the hypervisor. Any memory pages which are not covered by the
RMP are considered permanent hypervisor pages. For example, if the RMP is configured to only cover
the first 4GB of memory then all memory above 4GB is considered hypervisor memory for the
purpose of RMP access checks.

15.36.6 Page Validation

Each page assigned to a VM is either validated or unvalidated, as indicated by the Validated flag in the
page’s RMP entry. Memory accesses by the VM to private pages that are unvalidated generate a #VC.
All pages are initially assigned as unvalidated.

The VM may use the PVALIDATE instruction to either set or clear the Validated flag of a page. It is
expected that VMs would use PVALIDATE to set the Validated flag during VM startup to gain access
to the memory the hypervisor has assigned. The VM may later use PVALIDATE to clear the Validated
flag if its memory space is being reduced, such as after a memory hot-plug event.

Page validation allows a VM to detect an unexpected remapping of its pages by the hypervisor. Before
accessing a page, the VM must validate the page. Once validated, any use of RMPUPDATE by the
hypervisor to unassign, reassign, or remap the page will cause the page to become unvalidated. The
VM can then detect tampering with the page mapping via the #VC that occurs from accessing
unvalidated pages.

PVALIDATE takes a page size as an input parameter indicating that either a 4KB or 2MB page should
be validated. If the VM attempts to use PVALIDATE on a 4KB page that is mapped to a 2MB or 1GB
page in the nested page table, PVALIDATE generates an #VMEXIT(NPF). In this case, the hypervisor
can smash the larger page into 4KB pages using the PSMASH instruction as described in
Section 15.36.11. If the VM attempts to use PVALIDATE on a 2MB guest page that is mapped to 4KB
nested pages, PVALIDATE returns an error indication to the VM. The VM can instead attempt to
execute PVALIDATE for each of the 4KB pages individually.

Table 15-37. RMP Page Assignment Settings
Owner Assigned ASID Immutable

Hypervisor 0 0 -
Guest 1 ASID of the guest -
AMD-SP 1 0 1

[AMD Public Use]

580 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

15.36.7 Virtual Machine Privilege Levels

A typical guest VM may consist of multiple vCPUs. SEV-SNP expands on this capability by enabling
the vCPUs to run at distinct Virtual Machine Privilege Levels (VMPLs). Within a vCPU, the different
VMPLs are represented by unique VMSAs and are expected to be run in a mutually exclusive manner.
Each VMSA is assigned a VMPL as indicated by the VMPL field in the VMSA.

VMPLs are identified numerically starting at 0 with VMPL0 being the most privileged. The number of
VMPLs available in an implementation is indicated in bits [15:12] of CPUID Fn8000_001F[EBX].
The VMPL feature enables a guest to sub-divide its address space and implement vCPU-specific
access controls on a page-by-page basis.

The processor restricts guest memory accesses based on VMPL permission masks in RMP entries.
Each RMP entry contains a set of permission masks, one mask for each implemented VMPL. On
memory accesses, the processor checks the current VMPL permission mask of the page to determine
whether the access is allowed. The permission mask bits are defined in Table 15-38.

When a guest access results in a #VMEXIT(NPF) due to a VMPL permission violation, an error code
bit in EXITINFO1 is set as described in Section 15.36.10.

When the hypervisor assigns a page to a guest using RMPUPDATE, full permissions are enabled for
VMPL0 and are disabled for all other VMPLs. A VM can then use the RMPADJUST instruction to
modify the permissions of VMPLs numerically higher than its own. For example, a vCPU executing at
VMPL0 could use RMPADJUST to restrict a page of memory to be only read-write but not executable
at VMPL1. However, the vCPU executing at VMPL1 could not alter its own permissions or the
permissions of VMPL0.

Further, RMPADJUST cannot be used to grant greater permissions than what is allowed by the
permission mask for the current VMPL. For example, if VMPL1 attempts to grant write permission to
a page to VMPL2, but VMPL1 does not have write permission to the page, RMPADJUST will fail.

Table 15-38. VMPL Permission Mask Definition
Bit Name Settings

0 Read
0: Reads cause #VMEXIT(NPF)
1: Reads are allowed

1 Write
0: Writes cause #VMEXIT(NPF)
1: Writes are allowed

2 Execute-User
0: Execution at CPL 3 causes #VMEXIT(NPF)
1: Execution at CPL 3 is allowed

3 Execute-Supervisor
0: Execution at CPL < 3 causes #VMEXIT(NPF)
1: Execution at CPL < 3 is allowed

4-7 Reserved SBZ

[AMD Public Use]

Secure Virtual Machine 581

24593—Rev. 3.37—March 2021 AMD64 Technology

15.36.8 Virtual Top-of-Memory

In the VMSA of an SNP-active guest, the VIRTUAL_TOM field designates a 2MB aligned guest
physical address called the virtual top of memory. When bit 1 (vTOM) of SEV_FEATURES is set in
the VMSA of an SNP-active VM, the VIRTUAL_TOM field is used to determine the C-bit for data
accesses instead of the guest page table contents. All data accesses below VIRTUAL_TOM are
accessed with an effective C-bit of 1 and all addresses at or above VIRTUAL_TOM are accessed with
an effective C-bit of 0. Note that page table accesses and instruction fetches always have an effective
C-bit of 1, regardless of the value of VIRTUAL_TOM or whether the feature is enabled.

When virtual top of memory is enabled in SEV_FEATURES, the C-bit in the guest page table entries
must be zero for all accesses. Any guest memory accesses with the C-bit set to 1 in the guest page
tables will result in a #PF due to a reserved bit error.

15.36.9 Reflect #VC

When running an SEV-SNP VM, the CPU generates #VC exceptions in response to events that may
require hypervisor interaction. #VC exceptions and the events that may lead to them are discussed in
Section 15.35.5. SEV-SNP VMs may either chose to handle #VC exceptions directly in their current
guest context or turn #VC exceptions into Automatic Exits. This behavior is controlled by bit 2
(ReflectVC) of SEV_FEATURES. If this bit is set to 1, then any event that would otherwise lead to a
#VC exception is instead turned into an Automatic Exit.

When a #VC is turned into an Automatic Exit, the guest VM terminates with an exit code of
VMEXIT_VC. The error code for the #VC, which reflects the event which led to the #VC (e.g.,
VMEXIT_CPUID), is saved to the GUEST_EXITCODE field in the VMSA. Additional information
about the event that caused the #VC is saved to the GUEST_EXITINFO1, GUEST_EXITINFO2,
GUEST_EXITINTINFO, and GUEST_NRIP fields in the VMSA. The information saved to these
fields is the same as the standard exit information provided for the event that occurred. For example, if
the VM performs a port I/O instruction which is marked for interception, the GUEST_EXITCODE
field will be set to VMEXIT_IOIO and the GUEST_EXITINFO1 field will contain information about
the I/O port access, as defined in Section 15.10.2.

The Reflect #VC feature enables #VC events to be handled by a vCPU at a VMPL other than the one
that initiated them. For example, a guest may contain a vCPU which consists of two different VMSAs.
One VMSA is defined to execute at VMPL0, while the other has ReflectVC enabled and is defined to
execute at VMPL3. When the vCPU running at VMPL3 encounters a #VC condition, the information
is saved to its VMSA and control is returned to the hypervisor. The hypervisor may then run the vCPU
at VMPL0 which can read the exit information saved to the VMPL3 VMSA, interact with the
hypervisor as required, write appropriate response data back into the VMPL3 VMSA, and instruct the
hypervisor to resume execution of the vCPU at VMPL3.

If the #VC event occurred during the processing of an interrupt or exception, the
GUEST_EXITINTINFO.V bit will be set. If the Alternate Injection feature is enabled (see
Section 15.36.15), hardware will automatically set the VINTR_CTL[BUSY] bit in the VMSA. This
enables a higher privileged VMPL to re-inject the event that caused the #VC.

[AMD Public Use]

582 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

The GUEST_EXITCODE, GUEST_EXITINFO1, GUEST_EXITINFO2, GUEST_EXITINTINFO,
and GUEST_NRIP fields are populated by hardware on every Automatic Exit, regardless of the
ReflectVC feature. For Automatic Exits other than reflected #VC’s, these fields are set to the same
values that are set in the unencrypted VMCB.

15.36.10 RMP and VMPL Access Checks

When SEV-SNP is enabled globally, the processor places restrictions on all memory accesses based on
the contents of the RMP, whether the accesses are performed by the hypervisor, a legacy guest VM, a
non-SNP guest VM or an SNP-active guest VM. The processor may perform one or more of the
following checks depending on the context of the access:

• RMP-Covered: Checks that the target page is covered by the RMP. A page is covered by the RMP
if its corresponding RMP entry is below RMP_END. Any page not covered by the RMP is
considered a Hypervisor-Owned page.

• Hypervisor-Owned: Checks that if the target page is covered by the RMP then the Assigned bit of
the target page is 0. If the page table entry that specifies the sPA indicates that the target page size
is 2MB, then all RMP entries for the 4KB constituent pages of the target page must have the
Assigned bit set to 0. Accesses to 1GB pages only install 2MB TLB entries when SEV-SNP is
enabled, therefore this check treats 1GB accesses as 2MB accesses for purposes of this check.

• Guest-Owned: Checks that the ASID field of the RMP entry of the target page matches the ASID
of the current VM.

• Reverse-Map: Checks that the Guest_Physical_Address of the RMP entry of the target page
matches the guest physical address of the translation.

• Validated: Checks that the Validated field of the RMP entry of the target page is 1.
• Mutable: Checks that the Immutable field of the RMP entry of the target page is 0.
• Page-Size: Checks that the following conditions are met:

- If the nested page table indicates a 2MB or 1GB page size, the Page_Size field of the RMP
entry of the target page is 1.

- If the nested page table indicates a 4KB page size, the Page_Size field of the RMP entry of
the target page is 0.

• VMPL: Checks that the VMPL permission mask allows access. See Section 15.36.7 for details.

Table 15-39 describes under which conditions each check is performed and what fault is produced on
failure.

[AMD Public Use]

Secure Virtual Machine 583

24593—Rev. 3.37—March 2021 AMD64 Technology

In addition, any memory access that results in an RMP check may result in an RMP violation (#PF or
#VMEXIT(NPF)) if the accessed RMP entries are in use by other logical processors. In this case,
software should retry the access.

If a memory access results in a modification of the Accessed or Dirty bits in a page table entry, this
page table modification is treated similarly to data write accesses by SEV-SNP. For any such page
table modification access, the page size of the access is inherently 4KB.

If the virtual TOM feature (see Section 15.36.8) is enabled, then the Virtual TOM setting is used to
determine the C-bit for a given guest access. Guest physical addresses below Virtual TOM are
considered to have a C-bit set to 1.

The following page-fault error bits are set on an RMP check related #PF:

• Bit 31 (RMP): Set to 1 if the fault was caused due to an RMP check or a VMPL check failure, 0
 otherwise. All RMP violations described in this section will set this bit to 1.

Additionally, the following page-fault error bits may be set on a #VMEXIT(NPF) in EXITINFO1:

• Bit 34 (ENC): Set to 1 if the guest’s effective C-bit was 1, 0 otherwise.

Table 15-39. RMP Memory Access Checks

Host/Guest SNP-
Active Type of Access C-Bit Check Fault

Host -
Data write
Page Table Access

- Hypervisor-Owned #PF

Guest No
Data write
Page Table Access

- Hypervisor-Owned #VMEXIT(NPF)

Guest Yes
Instruction Fetch
Page Table Access

-

RMP-Covered,
Guest-Owned,
Reverse-Map,
Mutable,
Page-Size

#VMEXIT(NPF)

Validated #VC
VMPL #VMEXIT(NPF)

Guest Yes Data write 0 Hypervisor-Owned #VMEXIT(NPF)

Guest Yes Data write 1

RMP-Covered,
Guest-Owned,
Reverse-Map,
Mutable,
Page-Size

#VMEXIT(NPF)

Validated #VC
VMPL #VMEXIT(NPF)

[AMD Public Use]

584 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

• Bit 35 (SIZEM): Set to 1 if the fault was caused by a size mismatch between PVALIDATE or
 RMPADJUST and the RMP, 0 otherwise.

• Bit 36 (VMPL): Set to 1 if the fault was caused by a VMPL permission check failure, 0 otherwise.

The effective C-bit is always a 1 on any guest instruction fetch, page table access, or data write to
private (C=1) memory.

All RMP checks described in this section occur after page table and nested page table access checks
and have lower priority than existing paging checks. Table 15-39 reflects the relative priority of RMP
checks. Namely, VMPL checks have the lowest priority, preceded by page validation checks. For
example, if a guest access fails the Page-Size check and the Validated check, a #VMEXIT(NPF) will
occur instead of a #VC since the Page-Size check has priority over the page validation check.

A failure of the page validation check results in a #VC with error code PAGE_NOT_VALIDATED
(0x404). The faulting guest virtual address is saved to CR2 when this error occurs.

15.36.11 Large Page Management

The hypervisor may need to convert a 2MB page assigned to a guest into 4KB pages. This conversion
is called page smashing and requires the hypervisor to alter the RMP. The hypervisor can use
RMPUPDATE to alter the size of the page in the RMP, but this will clear the validated bit.

To convert a 2MB page into 4KB pages without altering the validated status of the region, the
hypervisor may use the PSMASH instruction. PSMASH takes a 2MB aligned system physical address
and smashes the page while preserving the Validated bit in the RMP. After PSMASH successfully
completes, the RMP entries of the resulting 4KB pages have the following contents:

• Consecutive values in the Guest_Physical_Address fields

• Page_Size set to 0 indicating 4KB pages

• All other RMP fields copied from the original 2MB page RMP entry

One reason the hypervisor may need to smash a 2MB page is if the guest executes PVALIDATE or
RMPADJUST on a 4KB page that is backed by a 2MB page. In that case, the instructions generate a
#VMEXIT(NPF) with the SIZEM bit set in EXITINFO1. To resolve this, the hypervisor can smash the
page and then have the guest restart the instruction.

If the guest wishes to validate a 2MB aligned region, the guest should first attempt to execute
PVALIDATE with a size of 2MB. If the page is backed by 4KB pages, PVALIDATE terminates with a
FAIL_SIZEMISMATCH error. In this case, the guest should then execute PVALIDATE on each 4KB
page individually. This allows the guest to take advantage of the more efficient 2MB mappings and
avoid having the hypervisor unnecessarily smash the page.

Table 15-40 summarizes the potential page size mismatches and how to resolve them.

[AMD Public Use]

Secure Virtual Machine 585

24593—Rev. 3.37—March 2021 AMD64 Technology

The reverse operation of converting a set of consecutive 4KB pages into a single 2MB page requires
assistance from either the guest or the AMD-SP to ensure that the operation is safe to perform.

15.36.12 Running SNP-Active Virtual Machines

As with SEV-ES guests, SNP-active guests are described by a hypervisor controlled VMCB and a
guest encrypted VMSA. The initial VMSA for an SNP-active guest must be set up through
coordination with the AMD-SP, the details of which are beyond the scope of this manual. This
includes the initial configuration of the SEV_FEATURES field in the VMSA which indicates which
guest security features are enabled for that particular VM instance. VMRUN to an SNP-active guest
will fail with a VMEXIT_INVALID error code if SEV-SNP is not globally enabled.

VMRUN Checks. When SEV-SNP is globally enabled on a system, the VMRUN instruction performs
additional security checks on various memory pages. These checks are similar to the ones described in
Section 15.36.10. Note that where a check depends on page size, a page size of 4KB is used. In
addition to the checks described in that section, an additional check exists:

• VMSA: Checks that the VMSA field in the RMP entry equals 1.

The VMSA field in an RMP entry may be set by the AMD-SP, or by a vCPU running at VMPL0 using
the RMPADJUST instruction.

The checks performed on VMRUN are as follows:

Table 15-40. PVALIDATE/RMPADJUST Page Size Mismatch Combinations
Requested
Page Size

Page Size in
RMP Error Condition Recommended Handling

4KB 2MB #VMEXIT(NPF) PSMASH
2MB 4KB FAIL_SIZEMISMATCH Guest retries on each 4KB constituent page

Table 15-41. VMRUN Page Checks
Page Type SNP-Active Check Fault

VMCB - Hypervisor-Owned #GP(0)
AVIC Backing Page - Hypervisor-Owned #VMEXIT(VMEXIT_INVALID)
VMSA No Hypervisor-Owned #VMEXIT(VMEXIT_INVALID)

VMSA Yes

RMP-Covered
Guest-Owned
Reverse-Map
Mutable
VMSA

#VMEXIT(VMEXIT_INVALID)

[AMD Public Use]

586 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

The AVIC Logical Table, AVIC Physical Table, IOPM_BASE_PA, MSRPM_BASE_PA, and nCR3
are not checked by VMRUN as these structures are only read by the hardware.

After a successful VMRUN, the VMCB page, as well as any AVIC Backing Page and VMSA Page are
marked as in-use by hardware, and any attempt to modify the RMP entries for these pages via
instructions like RMPUPDATE will result in a FAIL_INUSE response. The in-use marking is
automatically cleared by hardware after a #VMEXIT event.

Other Checks. In addition to the RMP checks performed by VMRUN, a few other VM-related
operations perform special RMP checks.

The address written to the VM_HSAVE_PA MSR, which holds the address of the page used to save
the host state on a VMRUN, must point to a hypervisor-owned page. If this check fails, the WRMSR
will fail with a #GP(0) exception. Note that a value of 0 is not considered valid for the
VM_HSAVE_PA MSR and a VMRUN that is attempted while the HSAVE_PA is 0 will fail with a
#GP(0) exception.

The VMSAVE instruction also performs checks to ensure that the target page is hypervisor-owned.
The VMSAVE instruction is not expected to be used with SEV-ES and SNP-active guests, as described
in Section 15.36.8, but may be used with other guests.

If VMSAVE is executed in host mode and the target page fails the RMP check, a #GP(0) exception is
generated. If VMSAVE is executed in a guest when the VMSAVE instruction is virtualized (see
Section 15.33.1) and the target page fails the RMP check, then a #VMEXIT(NPF) is generated
indicating an RMP permission error. In processors that support SEV-SNP, the execution of the
VMSAVE instruction inside an SEV-ES or SNP-active guest is not supported and will result in a
#VMEXIT(VMSAVE).

Intercept Behavior. All port I/O (IN, INS, OUT, OUTS) and CPUID instructions executed by an
SNP-Active guest are treated as intercepted regardless of the intercept bits set in the VMCB and
IOPM. Execution of these instructions in an SNP-Active guest will unconditionally generate a Non-
Automatic Exit.

15.36.13 Debug Registers

SEV-ES and SNP-active guests may choose to enable full virtualization of CPU debug registers
through SEV_FEATURES bit 5 (DebugSwap).

When enabled, the DR[0-3] registers and DR[0-3]_ADDR_MASK registers are swapped as type ‘B’
state (see Appendix B). Note that the DR6 and DR7 registers are always swapped as type ‘A’ state for
any SEV guest.

15.36.14 Memory Types
When an SNP-active guest accesses memory, the hardware forces the use of coherent memory types.
This prevents the hypervisor from attempting to corrupt guest memory by the use of non-coherent
memory types for accesses by the guest.

[AMD Public Use]

Secure Virtual Machine 587

24593—Rev. 3.37—March 2021 AMD64 Technology

If a guest memory access is determined to be non-coherent after the memory type determination logic
described in Section 15.25.8, the hardware forces a coherent type as described in Table 15-42.

15.36.15 TLB management

For non-SNP-active guests, when a hypervisor moves a VMSA to a new logical processor it must
ensure that the VMSA cannot use any stale (incorrect) TLB translations to prevent corruption of the
guest. For SNP-active guests, to avoid any dependency on the hypervisor for correctly managing guest
TLB contents, the hardware detects when the VMSA is moved and manages the TLB for that guest
automatically. The hardware uses two VMSA fields to track this information: the TLB_ID (byte offset
3D0h) and the PCPU_ID (byte offset 3D8h).

During guest creation, software should initialize the TLB_ID and PCPU_ID by setting both to zero.
The hardware subsequently manages the values in both fields throughout the lifetime of that VMSA.
During operation, software may explicitly write PCPU_ID to 0 to force a TLB flush on the next
VMRUN to that VMSA if desired. If this occurs, the hardware will set the PCPU_ID field to a non-
zero value when it flushes the TLB.

For example, when guest software performs an RMPADJUST to alter the permissions of a VMPL, it
may need to ensure that the existing TLB entries of all vCPUs executing at the targeted VMPL are not
used anymore. The guest software can do this by writing zero to PCPU_ID of the affected VMSAs.
When these VMSAs are re-entered with VMRUN, the hardware will ensure existing TLB entries are
no longer used and set PCPU_ID to a non-zero value. This value can be checked for non-zero by the
guest software to ensure the operation has completed before proceeding.

As with any guest, the hypervisor may use the TLB_CONTROL field in the VMCB to force TLB
flushes when desired. When the hypervisor writes 3h or 7h to TLB_CONTROL, both global and non-
global TLB entries of the guest are invalidated.

15.36.16 Interrupt Injection Restrictions

SNP-active guests may choose to enable the Restricted Injection or Alternate Injection features
through SEV_FEATURES bits 3 and 4 respectively. These features enforce additional interrupt and
event injection security protections designed to help protect against malicious injection attacks. The
two are mutually exclusive for a specific VMSA and an attempt to enable both will result in a
#VMEXIT(VMEXIT_INVALID) when the VMSA is run.

Restricted Injection Operation. This feature disables all hypervisor-based interrupt queuing and
event injection of all vectors except a new exception vector, #HV (28), which is reserved for SNP
guest use, but never generated by hardware. #HV is only allowed to be injected into VMSAs that

Table 15-42. Non-Coherent Memory Type Conversion
Non-Coherent Memory Type Forced Coherent Memory Type

UC CD
WC WC+

[AMD Public Use]

588 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

execute with Restricted Injection. #HV is a benign exception and can only be injected as an exception
(VMCB.EVENTINJ[Type]=3) and without an error code. Guests running with Restricted Injection are
expected to communicate with the hypervisor about events via a software-managed para-virtualization
interface. This interface can use #HV injection as a doorbell to inform the guest that new events have
been added.

The VMRUN instruction with Restricted Injection enabled will fail with a VMEXIT_INVALID error
code if the hypervisor attempts the injection of any unsupported event or attempts to run the guest with
AVIC enabled.

Alternate Injection Operation. This feature replaces all hypervisor-based interrupt queuing and
event injection with guest-controlled queuing and injection. When this is enabled on a VMSA, event
injection information on VMRUN is read from the EventInjCtrl field in the VMSA (offset 3E0h) and
interrupt queuing information is read from the VIntrCtrl field in the VMSA (offset 3B8h). This feature
is intended to be used in a multi-VMPL architecture where a high privilege VMSA injects events and
interrupts directly into a low privilege VMSA by writing to its encrypted VMSA.

When Alternate Injection is enabled, the EventInjCtlr field in the unencrypted VMCB (offset A8h) is
ignored on VMRUN. The VIntrCtrl field in the unencrypted VMCB (offset 70h) is processed, but only
the V_INTR_MASKING, Virtual GIF Mode, and AVIC Enable bits are used. The AVIC Enable bit
must be 0 if the guest is running with Alternate Injection enabled, otherwise the VMRUN will fail with
a VMEXIT_INVALID error code.

The remaining fields of VIntrCtrl (V_TPR, V_IRQ, VGIF, V_INTR_PRIO, V_IGN_TPR,
V_INTR_VECTOR) are read exclusively from the encrypted version in the VMSA. Additionally, bit
10 of the encrypted VIntrCtrl field is defined as the INT_SHADOW bit and the unencrypted
INT_SHADOW bit in VMCB offset 68h bit 0 is ignored. On a VMEXIT, the V_TPR, V_IRQ, and
INT_SHADOW values are written back to the encrypted VIntrCtrl only.

In guests that run with Alternate Injection, bit 63 of the encrypted VIntrCtrl field is defined as a BUSY
bit. On VMRUN, if VIntrCtrl[BUSY] is set to 1, then the VMRUN fails with a VMEXIT_BUSY error
code. The BUSY bit enables a VMSA to be temporarily marked non-runnable while software
modifications are in progress.

Additional Intercept Behavior. Additional hardware-forced intercept behavior exists in guests that
run with either of these features enabled:

• For either feature, hardware treats physical INTR, NMI, INIT, and #MC events as intercepted
 regardless of the intercept bit set in the VMCB.

• Under Alternate Injection, any MSR access to the x2APIC MSR range (MSR 0x800-0x8FF) by the
 guest is intercepted regardless of the MSR_PROT intercept and MSR protection bitmap. In this
 case, the interception behavior is the same as what would occur if the MSR bitmap indicated an
 interception of the corresponding MSR.

[AMD Public Use]

Secure Virtual Machine 589

24593—Rev. 3.37—March 2021 AMD64 Technology

15.36.17 Side-Channel Protection

SEV-SNP provides optional protections against certain side channel attacks.

Branch Target Buffer Isolation

SNP-active guests may choose to enable the Branch Target Buffer Isolation mode through
SEV_FEATURES bit 7 (BTBIsolation). The Branch Target Buffer (BTB) is an internal CPU structure
that is used when predicting indirect branches, and SNP-active guests may choose to impose
additional restrictions on it in order to help prevent certain types of speculative execution-based side
channels.

When executing an SNP-active guest when BTB Isolation is enabled, CPU hardware will ensure that
no code outside of that guest context is able to influence the BTB-based predictions performed by
hardware within the guest. Hardware tracks the source of prediction information in the BTB and may
flush BTB contents when required to maintain this isolation.

In hardware that supports BTB Isolation, new BTB prediction information is never written if
SPEC_CTRL[IBRS] is enabled in the current context. Therefore, it is recommended that non-guest
software that executes temporarily (e.g., hypervisor exit handling code) run with SPEC_CTRL[IBRS]
set to 1. This ensures that indirect branch information from that context is not stored in the BTB and
may avoid the need for a BTB flush when guest execution is resumed.

Instruction Based Sampling

SEV-ES and SNP-active guests may choose to disallow the use of Instruction Based Sampling (IBS)
by the hypervisor in order to limit the information that may be gathered about their execution. Guests
may enable this restriction through SEV_FEATURES bit 6 (PreventHostIBS). When a VMRUN is
executed on a guest that has enabled this protection, the IbsFetchCtl[IbsFetchEn] and
IbsOpCtl[IbsOpEn] MSR bits must be 0. If either of these bits are not 0 then the VMRUN will fail with
a VMEXIT_INVALID error code.

15.37 SPEC_CTRL Hypervisor Model
A hypervisor may wish to impose speculation controls on guest execution or a guest may want to
impose its own speculation controls. Therefore, the processor implements both host and guest versions
of SPEC_CTRL. The presence of this feature is indicated by CPUID Fn8000_000A_EDX[20]=1.

When in host mode, the host SPEC_CTRL value is in effect and writes update only the host version of
SPEC_CTRL. On a VMRUN, the processor loads the guest version of SPEC_CTRL from the VMCB.
For most guests, processor behavior is controlled by the logical OR of the two registers. When the
guest writes SPEC_CTRL, only the guest version is updated. On a VMEXIT, the guest version is
saved into the VMCB and the processor returns to only using the host SPEC_CTRL for speculation
control.

SNP-active guests with BTB isolation enabled behave differently (see section 15.36.17). For these
guests the host value of IBRS does not override the guest value.

[AMD Public Use]

590 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 591

24593—Rev. 3.37—March 2021 AMD64 Technology

16 Advanced Programmable Interrupt
Controller (APIC)

The Advanced Programmable Interrupt Controller (APIC) provides interrupt support on AMD64
architecture processors. The local APIC accepts interrupts from the system and delivers them to the
local CPU core interrupt handler.

Support for APIC is indicated by CPUID Fn0000_0001_EDX[APIC] = 1. For information on using
the CPUID instruction to obtain processor implementation information, see Section 3.3, “Processor
Feature Identification,” on page 70.

The APIC block diagram is provided in Figure 16-1.

Figure 16-1. Block Diagram of a Typical APIC Implementation

Local
APIC

Local
APIC

Local
APIC

CPU#1

Interrupt
Handler

CPU#2
CPU
Core

CPU#N

 Interrupt Messages

IOAPIC PICI/O Interrupts

 Interrupt Messages

Legacy
Interrupts

APIC Timer

PerfMonCntr

ThermalSensor

Extended Intr

Signalled
Message

Interrupts

APIC Error

CPU
Core

CPU
Core

Interrupt
Handler

Interrupt
Handler

APIC Timer

PerfMonCntr

Extended Intr

APIC Error

APIC Timer

PerfMonCntr

ThermalSensor

Extended Intr

APIC Error

APIC Timer

PerfMonCntr

Extended Intr

APIC Error

APIC Timer

PerfMonCntr

ThermalSensor

Extended Intr

APIC Error

APIC Timer

PerfMonCntr

Extended Intr

APIC Error

[AMD Public Use]

592 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

16.1 Sources of Interrupts to the Local APIC
Each CPU core has an associated local APIC which receives interrupts from the following sources:

• I/O interrupts from the IOAPIC interrupt controller (including LINT0 and LINT1)
• Legacy interrupts (INTR and NMI) from the legacy interrupt controller
• Message Signalled Interrupts
• Interprocessor Interrupts (IPIs) from other local APICs. Interprocessor Interrupts are used to send

interrupts or to execute system wide functions between CPU cores in the system, including the
originating CPU core (self-interrupt).

• Locally generated interrupts within the local APIC. The local APIC receives local interrupts from
the APIC timer, Performance Monitor Counters, thermal sensors, APIC errors and extended
interrupts from implementation specific sources.

The sources of interrupts for the local APIC are provided in Table 16-1.

Table 16-1. Interrupt Sources for Local APIC
Source Description Message Type to

Local APIC

I/O interrupts

System interrupts from I/O devices or system hardware
received through the I/O APIC and sent to the local APIC as
interrupt messages. They may be edge-triggered or level-
sensitive.

Fixed, Lowest Priority, SMI,
NMI, INIT, Restart, External

interrupt, LINT0, LINT1

Legacy Interrupts Legacy interrupts (INT and NMI) from the PIC and sent to
the local APIC as interrupt messages. NMI, INT

Interprocessor (IPI) Interprocessor interrupts. Used for interrupt forwarding,
system-wide functions, or software self-interrupts.

Fixed, lowest priority, SMI,
read request, NMI, INIT,
Restart, External interrupt

APIC Timer Local interrupt from the programmed APIC timer reaches
zero, under control of TIMER_LVT. Fixed

Performance Monitor
Counter

Local interrupt from the performance monitoring counter
when it overflows, under control of PERF_CNT_LVT. Fixed, SMI, or NMI

Thermal Sensor Local interrupt from internal thermal sensors when it has
tripped, under control of THERMAL_LVT. Fixed, SMI, or NMI

Extended
Interrupt[3:0]

Local Interrupts from programmable internal CPU core
sources, under the control of the
EXTENDED_INTERRUPT[3:0]_LVT.

Fixed, SMI, NMI, or
External interrupt

APIC Internal Error Local interrupt when an error is detected within the local
APIC, under control of ERROR_LVT. Fixed, SMI, or NMI

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 593

24593—Rev. 3.37—March 2021 AMD64 Technology

16.2 Interrupt Control
I/O, legacy, and interprocessor interrupts are sent via interrupt messages. The interrupt messages
contain the following information:

• Destination address of the local APIC.
• VECTOR[7:0] indicating interrupt priority of up to 256 interrupt vectors. This information is

captured in the IRR register for Fixed and Lowest Priority interrupt message types.
• Trigger Mode indicating edge triggered or level-sensitive (which requires and EOI response to the

source).
• Message Type[3:0] indicating the type of interrupt to be presented to the local APIC. For Fixed and

Lowest Priority message types, the interrupt is processed through the target local APIC. For all
other message types, the interrupt is sent directly to the destination CPU core. There is a 5-line
interrupt interface to the CPU core for INTR, SMI, NMI, INIT and STARTUP interrupts. For
locally-generated interrupts, control is provided by local vector tables or LVTs. Separate LVTs are
provided for each interrupt source, allowing for a unique entry point for each source. The LVT
contains the VECTOR[7:0], trigger mode and message type as well as other fields associated with
the specific interrupt. The message type may be Fixed, SMI, NMI, or External interrupt. A Mask
bit is also provided to mask the interrupt.

16.3 Local APIC
16.3.1 Local APIC Enable

The local APIC is controlled by the APIC enable bit (AE) in the APIC Base Address Register
(MSR 0000_001Bh). See Figure 16-2 on page 594.

When AE is set to 1, the local APIC is enabled and all interrupt types are accepted. When AE is cleared
to 0, the local APIC is disabled, including all local vector table interrupts.

Software can disable the local APIC, using the APIC_SW_EN bit in the Spurious Interrupt Vector
Register (APIC_F0). When this bit is cleared to zero, the local APIC is temporarily disabled:

• SMI, NMI, INIT, Startup, and Remote Read interrupts may be accepted.
• Pending interrupts in the ISR and IRR are held.
• Further fixed, lowest-priority, and ExtInt interrupts are not accepted.
• All LVT entry mask bits are set and cannot be cleared.

[AMD Public Use]

594 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 16-2. APIC Base Address Register (MSR 0000_001Bh)

The fields within the APIC Base Address register are as follows:

• Boot Strap CPU Core (BSC)—Bit 8. The BSC bit indicates that this CPU core is the boot core of
the BSP. Each CPU core that is not the boot core of the boot processor is an AP (Application
Processor).

• APIC Enable (AE)—Bit 11. This is the APIC enable bit. The local APIC is enabled and all
interruption types are accepted when AE is set to 1. Clearing AE to 0 disables the local APIC, and
no local vector table interrupts are supported.

• APIC Base Address (ABA)—Bits 51:12. Specifies the base physical address for the APIC register
set. The address is extended by 12 bits at the least-significant end to form the 52-bit physical base
address. The reset value of the APIC base address is 0_0000_FEE0_0000h. This address is not
affected by INIT.

Note that a given processor may implement a physical address less than 52 bits in length.

16.3.2 APIC Registers

The system programming interface of the local APIC is made up of the registers listed in Table 16-2
below. All APIC registers are memory-mapped into the 4-Kbyte APIC register space, and are accessed
with memory reads and writes. The memory address is indicated as:

APIC Register address = APIC Base Address + Offset

where the APIC Base Address must point to an uncacheable memory region, and is located in APIC
Base Address Register, MSR 0000_001Bh. See Figure 16-2.

APIC registers are aligned to 16-byte offsets and must be accessed using naturally-aligned DWORD
size read and writes. All other accesses cause undefined behavior.

63 52 51 32

Reserved, MBZ ABA[51:32]

31 12 11 10 9 8 7 0

ABA[31:12] A
E

Res.
MBZ

B
S
C

Reserved, MBZ

Bits Mnemonic Description Access Type
63:52 — Reserved, MBZ
51:12 ABA APIC Base Address R/W
11 AE APIC Enable R/W
8 BSC Boot Strap CPU Core RO
7:0 Reserved Reserved, Must be Zero

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 595

24593—Rev. 3.37—March 2021 AMD64 Technology

The table includes the value of each register after reset and INIT.

Table 16-2. APIC Registers
Offset Name Reset

20h APIC ID Register ??000000h
30h APIC Version Register 80??0010h
80h Task Priority Register (TPR) 00000000h
90h Arbitration Priority Register (APR) 00000000h
A0h Processor Priority Register (PPR) 00000000h
B0h End of Interrupt Register (EOI) –
C0h Remote Read Register 00000000h
D0h Logical Destination Register (LDR) 00000000h
E0h Destination Format Register (DFR) FFFFFFFF
F0h Spurious Interrupt Vector Register 000000FFh
100-170h In-Service Register (ISR) 00000000h
180-1F0h Trigger Mode Register (TMR) 00000000h
200-270h Interrupt Request Register (IRR) 00000000h
280h Error Status Register (ESR) 00000000h
300h Interrupt Command Register Low (bits 31:0) 00000000h
310h Interrupt Command Register High (bits 63:32) 00000000h
320h Timer Local Vector Table Entry 00010000h
330h Thermal Local Vector Table Entry 00010000h
340h Performance Counter Local Vector Table Entry 00010000h
350h Local Interrupt 0 Vector Table Entry 00010000h
360h Local Interrupt 1 Vector Table Entry 00010000h
370h Error Vector Table Entry 00010000h
380h Timer Initial Count Register 00000000h
390h Timer Current Count Register 00000000h
3E0h Timer Divide Configuration Register 00000000h
400h Extended APIC Feature Register 00040007h
410h Extended APIC Control Register 00000000h
420h Specific End of Interrupt Register (SEOI) –
480-4F0h Interrupt Enable Registers (IER) FFFFFFFFh
500-530h Extended Interrupt [3:0] Local Vector Table Registers 00000000h

[AMD Public Use]

596 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

16.3.3 Local APIC ID

Unique local APIC IDs are assigned to each CPU core in the system. The value is determined by
hardware, based on the number of CPU cores on the processor and the node ID of the processor.

The APIC ID is located in the APIC ID register at APIC offset 20h. See Figure 16-3. It is model
dependent, whether software can modify the APIC ID Register. The initial value of the APIC ID (after
a reset) is the value returned in CPUID function 0000_0001h_EBX[31:24].

Figure 16-3. APIC ID Register (APIC Offset 20h)

• APIC ID (AID)—Bits 31:24. The APIC ID field contains the unique APIC ID value assigned to
this specific CPU core. A given implementation may use some bits to represent the CPU core and
other bits represent the processor.

16.3.4 APIC Version Register

A version register is provided to allow software to identify which APIC version is used. Bits 7:0 of the
APIC Version Register indicate the version number of the APIC implementation.

The number of entries in the local vector table are specified in bits 23:16 of the register as the
maximum number minus one.

Bit 31 indicates the presence of extended APIC registers which have an offset starting at 400h.

Figure 16-4. APIC Version Register (APIC Offset 30h)

31 24 23 0

AID Reserved, MBZ

Bits Mnemonic Description R/W
31:24 AID APIC ID R/W
23:0 — Reserved, MBZ

31 30 24 23 16 15 8 7 0
E
A
S

Reserved, MBZ MLE Reserved, MBZ VER

Bits Mnemonic Description R/W
31 EAS Extended APIC Register Space Present RO
30:24 — Reserved, MBZ
23:16 MLE Max LVT Entries RO
15:8 — Reserved, MBZ
7:0 VER Version RO

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 597

24593—Rev. 3.37—March 2021 AMD64 Technology

The fields within the APIC Version register are as follows:

• Version (VER)—Bits 7:0. The VER field indicates the version number of the APIC
implementation. The local APIC implementation is identified with a value=1Xh (20h-FFh are
reserved).

• Max LVT Entries (MLE)—Bits 23:16. The MLE field specifies the number of entries in the local
vector table minus one.

• Extended APIC Register Space Present (EAS)—Bit 31. The EAS bit when set to 1 indicates the
presence of an extended APIC register space, starting at offset 400h.

16.3.5 Extended APIC Feature Register

The Extended APIC Feature Register indicates the number of extended Local Vector Table registers in
the local APIC, whether the Interrupt Enable Registers are present, and whether the 8-bit Extended
APIC ID and Specific End Of Interrupt (SEOI) Register are supported.

Figure 16-5. Extended APIC Feature Register (APIC Offset 400h)

• Extended LVT Count (XLC)—(Bits 23:16) Specifies the number of extended local vector table
registers in the local APIC.

• Extended APIC ID Capability (XAIDC)—(Bit 2) Indicates that the processor is capable of
supporting an 8-bit APIC ID.

• Specific End of Interrupt Capable—(Bit 1) Indicates that the Specific End Of Interrupt Register is
present.

• Interrupt Enable Register Capable—(Bit 0) Read-only. Indicates that the Interrupt Enable
Registers are present.

16.3.6 Extended APIC Control Register

This bit enables writes to the interrupt enable registers.

31 24 23 16 15 3 0

Reserved, MBZ XLC Reserved, MBZ

X
A
I
D
C

S
N
I
C

I
N
C

Bits Mnemonic Description R/W
31:24 Reserved Reserved, Must be Zero
23:16 XLC Extended LVT Count RO
15:3 Reserved Reserved, Must be Zero
2 XAIDC Extended APIC ID Capable RO
1 SNIC Specific End of Interrupt Capable RO
0 INC Interrupt Enable Register Capable RO

[AMD Public Use]

598 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 16-6. Extended APIC Control Register (APIC Offset 410h)

• Extended APIC ID Enable (XAIDN)—Bit 2. Setting XAIDN to 1 enables the upper four bits of the
APIC ID field described in “APIC ID Register (APIC Offset 20h)” on page 596. Clearing this bit,
specifies a 4-bit APIC ID using only the lower four bits of the APIC ID field of the APIC ID
register.

• Enable SEOI Generation (SN)—Bit 1. Read-write. This bit enables Specific End of Interrupt
(SEOI) generation when a write to the specific end of interrupt register is received.

• Enable Interrupt Enable Registers (IERN)—Bit 0. This bit enables writes to the interrupt enable
registers.

16.4 Local Interrupts
The local APIC handles the following local interrupts:

• APIC Timer
• Local Interrupt 0 (LINT0)
• Local Interrupt 1 (LINT1)
• Performance Monitor Counters
• Thermal Sensors
• APIC internal error
• Extended (Implementation dependent)

A separate entry in the local vector table is provided for each interrupt to allow software to specify:

• Whether the interrupt is masked or not.
• The delivery status of the interrupt.
• The message type.
• The unique address vector.
• For LINT0 and LINT1 interrupts, the trigger mode, remote IRR, and input pin polarity.

31 3 2 1 0

Reserved, MBZ

X
A
I
D
N

S
N

I
E
R
N

Bits Mnemonic Description R/W
31:3 — Reserved, MBZ
2 XAIDN Extended APIC ID Enable. R/W
1 SN Enable SEOI Generation R/W
0 IERN Enable Interrupt Enable Registers R/W

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 599

24593—Rev. 3.37—March 2021 AMD64 Technology

• For the APIC timer interrupt, the timer mode.

The general format of a Local Vector Table Register is shown in Figure 16-7.

Figure 16-7. General Local Vector Table Register Format

The fields within the General Local Vector Table register are as follows:

• Vector (VEC)—Bits 7:0. The VEC field contains the vector that is sent for this interrupt source
when the message type is fixed. It is ignored when the message type is NMI and is set to 00h when
the message type is SMI. Valid values for the vector field are from 16 to 255. A value of 0 to 15
when the message type is fixed results in an illegal vector APIC error.

• Message Type (MT)—Bits 10:8. The MT field specifies the delivery mode sent to the CPU core
interrupt handler. The legal values are:
- 000b = Fixed - The vector field specifies the interrupt delivered.
- 010b = SMI - An SMI interrupt is delivered. In this case, the vector field should be set to 00h.
- 100b = NMI - A NMI interrupt is delivered with the vector field being ignored.
- 111b = External interrupt is delivered.

• Delivery Status (DS)—Bit 12. The DS bit indicates the interrupt delivery status. The DS bit is set to
1 when the interrupt is pending at the CPU core interrupt handler. After a successful delivery of the
interrupt, the associated bit in the IRR is set and this bit is cleared to zero. See Section 16.6.2,
“Lowest Priority Messages and Arbitration,” on page 610 for details. The bit is cleared to 0 when
the interrupt is idle.

• Remote IRR (RIR)—Bit 14. The RIR bit is set to 1 when the local APIC accepts an LINT0 or
LINT1 interrupt with the trigger mode=1 (level sensitive). The bit is cleared to 0 when the interrupt
completes, as indicated when an EOI is received.

31 18 17 16 15 14 13 12 11 10 8 7 0

Reserved, MBZ
T
M
M

M
T
G
M

R
I
R

R
e
s

D
S

R
e
s

MT VEC

Bits Mnemonic Description R/W
31:18 — Reserved, MBZ
17 TMM Timer Mode R/W
16 M Mask R/W
15 TGM Trigger Mode R/W
14 RIR Remote IRR RO
13 — Reserved, MBZ
12 DS Delivery Status RO
11 — Reserved, MBZ
10:8 MT Message Type R/W
7:0 VEC Vector R/W

[AMD Public Use]

600 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

• Trigger Mode (TGM)—Bit 15. Specifies how interrupts to the local APIC are triggered. The TGM
bit is set to 1 when the interrupt is level-sensitive. It is cleared to 0 when the interrupt is edge-
triggered. When the message type is SMI or NMI, the trigger mode is edge triggered.

• Mask (M)—Bit 16. When the M bit is set to 1, reception of the interrupt is disabled. When the M
bit is cleared to 0, reception of the interrupt is enabled.

• Timer Mode (TMM)—Bit 17. Specifies the timer mode for the APIC Timer interrupt. The TMM bit
set to 1 indicates periodic timer interrupts. The TMM bit cleared to 0 indicates one-shot operation.

16.4.1 APIC Timer Interrupt

The APIC timer is a programmable 32-bit counter used by software to time operations or events. The
timer can operate in two modes, periodic and one-shot, under the control of bit 17 (Timer Mode) in
APIC Timer Local Vector Table Register (see Figure 16-8). In both modes, the APIC timer is set to a
programmable initial value and starts to decrement at a programmable clock rate. When the Initial
Count Register is written to a non-zero value, the APIC timer is initialized to the value just written and
starts decrementing. When the Initial Count Register is written to zero, the APIC timer is initialized to
zero and stops decrementing. In one-shot mode, the APIC timer stops counting when the timer reaches
zero. In periodic mode, the APIC timer is initialized again when it reaches zero, and it starts to
decrement again. Whenever the timer value is decremented to zero, an APIC timer interrupt is
generated under the control of bit 16 (Mask) in the APIC Timer Local Vector Table Register.

To avoid race conditions, software should initialize the Divide Configuration Register and the Timer
Local Vector Table Register prior to writing the Initial Count Register to start the timer.

Figure 16-8. APIC Timer Local Vector Table Register (APIC Offset 320h)

Three APIC registers are defined for the APIC timer function:

• Current Count Register (CCR) is the actual APIC timer. Whenever the ICR is written to a non-zero
value, or when the CCR reaches zero while in periodic mode, it is initialized to a start count loaded
from the ICR and then decrements. The APIC timer interrupt is generated when the CCR value
reaches zero. The counting rate is controlled by the DCR. See Figure 16-9.

• Initial Count Register (ICR) provides the initial value for the APIC timer. See Table 16-10.
• Divide Configuration Register (DCR) controls the counting rate of the APIC timer by dividing the

CPU core clock by a programmable amount. See Figure 16-11. For the specific details on the
implementation of the APIC timer base clock rate, see the BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference Manual applicable to your product.

31 18 17 16 15 13 12 11 8 7 0

Reserved, MBZ
T
M
M

M Res
D
S

Res VEC

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 601

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 16-9. Timer Current Count Register (APIC Offset 390h)

• APIC Timer Current Count (APICTCC)—Bits 31:0. The APICTCC field contains the current
value of the APIC timer.

Figure 16-10. Timer Initial Count Register (APIC Offset 380h)

• APIC Timer Initial Count (APICTIC)—Bits 31:0. The APICTIC field contains the value that is
loaded into the APIC Timer Current Count Register when the APIC timer is initialized.

Figure 16-11. Divide Configuration Register (APIC Offset 3E0h)

31 0

APICTCC

Bits Mnemonic Description R/W
31:0 APICTCC APIC Timer Current Count RO

31 0

APICTIC

Bits Mnemonic Description R/W
31:0 APICTIC APIC Timer Initial Count R/W

31 4 3 2 1 0

Reserved, MBZ D
V DV[1:0]

Bits Mnemonic Description R/W
31:4 — Reserved, MBZ
3 DV[2] Divide Value[2] R/W
2 — Reserved, MBZ
1:0 DV[1:0] Divide Value[1:0] R/W

[AMD Public Use]

602 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

• Divide Value (DV)—Bits 3, 1:0. The DV field specifies the value of the CPU core clock divisor.
Table 16-3 lists the allowable values.

Table 16-3. Divide Values

16.4.2 Local Interrupts LINT0 and LINT1

When the target local APIC receives an interrupt message from an IOAPIC with the LINT0 or LINT1
message type, the appropriate local interrupt is generated under the control of bit 16 (Mask) in the
APIC LINT0 or LINT1 Local Vector Table Register. See Figure 16-12.

Figure 16-12. Local Interrupt 0/1 (LINT0/1) Local Vector Table Register
(APIC Offset 350h/360h)

In addition to the normal LVT control bits (mask, delivery status and vector offset), the LINT0/LINT1
interrupts provide the following controls:

• Trigger Mode - indicates whether the interrupt pin is edge triggered or level sensitive when the
message type is fixed.

• Remote IRR - When the trigger mode indicates level, this flag is set when the local APIC accepts
the interrupt, and is reset when the local APIC receives an EOI. When the flag is set, no additional
local interrupt requests are sent to the local APIC, and they remain pending.

16.4.3 Performance Monitor Counter Interrupts

When a performance monitor counter overflows, an APIC interrupt is generated under the control of
bit 16 (Mask) in the APIC Performance Monitor Counter Local Vector Table Register. See
Figure 16-13 on page 603.

Bits 3, 1:0 Resulting Timer Divide
000b Divide by 2
001b Divide by 4
010b Divide by 8
011b Divide by 16
100b Divide by 32
101b Divide by 64
110b Divide by 128
111b Divide by 1

31 17 16 15 14 13 12 11 10 8 7 0

Reserved, MBZ M
T
G
M

R
I
R

R
e
s

D
S

R
e
s

MT VEC

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 603

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 16-13. Performance Monitor Counter Local Vector Table Register
(APIC Offset 340h)

16.4.4 Thermal Sensor Interrupts

When a thermal event occurs, an APIC interrupt is generated under the control of bit 16 (Mask) in the
APIC Thermal Sensor Local Vector Table Register. See Figure 16-14. See the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your product
for more information on thermal events. This interrupt may not be supported in all implementations.

Figure 16-14. Thermal Sensor Local Vector Table Register (APIC Offset 330h)

16.4.5 Extended Interrupts

The local interrupts are extended to include more LVT registers, to allow additional interrupt sources.
The additional sources are model dependent and can include:

• Counter overflow from the Machine Check Miscellaneous Threshold Register. See “Machine-
Check Miscellaneous-Error Information Register 0(MCi_MISC0)” on page 298 for details.

• ECC Error Count Threshold in memory system.
• Instruction Sampling.

The LVT register used for each interrupt source is specified by the control register associated with the
source.

The Extended LVT Count field (bits 23:16) of the Extended APIC Feature Register specifies the
number of extended LVT registers. Currently there are four additional LVT registers defined,
Extended Interrupt [3:0], Local Vector Table Register, located at APIC offsets 500h–530h. (See
Section 16.7.1, “Specific End of Interrupt Register,” on page 617 and Figure 16-5 on page 597.)

16.4.6 APIC Error Interrupts

Errors that are detected while handling interrupts cause an APIC error interrupt to be generated under
the control of bit 16 (Mask) in the APIC Error Local Vector Table Register. See Figure 16-15 on
page 604.

31 17 16 15 13 12 11 10 8 7 0

Reserved, MBZ M Res
D
S

R
e
s

MT VEC

31 17 16 15 13 12 11 10 8 7 0

Reserved, MBZ M Res
D
S

R
e
s

MT VEC

[AMD Public Use]

604 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 16-15. APIC Error Local Vector Table Register (APIC Offset 370h)

The error information is recorded in the APIC Error Status Registers. The APIC Error Status Register
is a read-write register. Writes to the register cause the internal error state to be recorded in the register,
clearing the original error. See Figure 16-16.

Figure 16-16. APIC Error Status Register (APIC Offset 280h)

The fields within the APIC Error Status register are as follows:

• Sent Accept Error (SAE)—Bit 2. The SAE bit when set to 1 indicates that a message sent by the
local APIC was not accepted by any other APIC.

• Receive Accept Error (RAE)—Bit 3. The RAE bit when set to 1 indicates that a message received
by the local APIC was not accepted by this or any other APIC

• Sent Illegal Vector (SIV)—Bit 5. The SIV bit when set to 1 indicates that the local APIC attempted
to send a message with an illegal vector value.

• Receive Illegal Vector (RIV)—Bit 6. The RIV bit when set to 1 indicates that the local APIC has
received a message with an illegal vector value.

• Illegal Register Address (IRA)—Bit 7. The IRA bit when set to 1 indicates that an access to an
unimplemented register location within the local APIC register range (APIC Base Address + 4
Kbytes) was attempted.

31 17 16 15 13 12 11 10 8 7 0

Reserved, MBZ M Res
D
S

R
e
s

MT VEC

31 8 7 6 5 4 3 2 1 0

Reserved, MBZ
I
R
A

R
I
V

S
I
V

R
S
D

R
A
E

S
A
E

Res,
MBZ

Bits Mnemonic Description R/W
31:8 — Reserved, MBZ
7 IRA Illegal Register Address R/W
6 RIV Received Illegal Vector R/W
5 SIV Sent Illegal Vector R/W
4 — Reserved, MBZ
3 RAE Receive Accept Error R/W
2 SAE Sent Accept Error R/W
1:0 — Reserved, MBZ

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 605

24593—Rev. 3.37—March 2021 AMD64 Technology

16.4.7 Spurious Interrupts

A timing issue exists between software and hardware that, though rare, results in spurious interrupts.
In the event that the task priority is set to or above the level of the interrupt to be serviced while the
interrupt is being acknowledged, the local APIC delivers a spurious interrupt to the CPU core instead,
with the vector number specified by the Vector field of the Spurious Interrupt Register. The ISR is
unaffected by the spurious interrupt, so the interrupt handler completes without sending an EOI back
to the issuing local APIC.

Figure 16-17. Spurious Interrupt Register (APIC Offset F0h)

The fields within the Spurious Interrupt register are as follows:

• Vector (VEC)—Bits 7:0. The VEC field contains the vector that is sent to the CPU core in the event
of a spurious interrupt.

• APIC Software Enable (ASE)—Bit 8. The ASE bit when set to 0 disables the local APIC
temporarily. When the local APIC is disabled, SMI, NMI, INIT, Startup, and Remote Read may be
accepted; pending interrupts in the ISR and IRR are held, but further fixed, lowest-priority, and
ExtInt interrupts are not accepted. All LVT entry mask bits are set and cannot be cleared. Setting
the ASE bit to 1, enables the local APIC.

• Focus CPU Core Checking (FCC)—Bit 9. The FCC bit when set to 1 disables focus CPU core
checking when the lowest-priority message type is used. A CPU core is the focus of an interrupt if
it is already servicing that interrupt (ISR=1) or if it has a pending request for that interrupt
(IRR=1). Clearing the FCC bit to 0 disables focus CPU core checking.

16.5 Interprocessor Interrupts (IPI)
A local APIC can send interrupts to other local APICs (or itself) using software-initiated
Interprocessor Interrupts (IPIs) using the Interrupt Command Register (ICR). Writing into the low
order doubleword of the ICR causes the IPI to be sent.

The ICR can issue the following types of interrupt messages:

31 10 9 8 7 0

Reserved, MBZ
F
C
C

A
S
E

VEC

Bits Mnemonic Description R/W
31:10 Reserved Reserved, Must be Zero
9 FCC Focus CPU Core Checking R/W
8 ASE APIC Software Enable R/W
7:0 VEC Vector R/W

[AMD Public Use]

606 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

• basic interrupt message to another local APIC, including forwarding an interrupt that was received
but not serviced

• basic interrupt message to the same local APIC (self-interrupt)
• system management interrupt (SMI)
• remote read message to another local APIC to read one of its APIC registers.
• non-maskable interrupt (NMI) delivered to another local APIC
• initialization message (INIT) to a target local APIC to be reset to their INIT state and await a

STARTUP IPI.
• startup message (SIPI) to the target local APICs, pointing to a start-up routine.

The format of the Interrupt Command Register is shown in Figure 16-18.

Figure 16-18. Interrupt Command Register (APIC Offset 300h–310h)

The fields within the Interrupt Command register are as follows:

• Vector (VEC)—Bits 7:0. The function of this field varies with the Message Type field. The VEC
field contains the vector that is sent for this interrupt source for fixed and lowest priority message
types.

• Message Type (MT)—Bits 10:8. The MT field specifies the message type sent to the CPU core
interrupt handler. The legal values are:
- 000b = Fixed - The IPI delivers an interrupt to the target local APIC specified in Destination

field.

63 56 55 32

DES Reserved, MBZ

31 20 19 18 17 16 15 14 13 12 11 10 8 7 0

Reserved, MBZ DSH RRS
T
G
M

L
R
e
s

D
S

D
M MT VEC

Bits Mnemonic Description R/W
63:56 DES Destination R/W
55:20 — Reserved, MBZ
19:18 DSH Destination Shorthand R/W
17:16 RRS Remote Read Status RO
15 TGM Trigger Mode R/W
14 L Level R/W
13 — Reserved, MBZ
12 DS Delivery Status RO
11 DM Destination Mode R/W
10:8 MT Message Type R/W
7:0 VEC Vector R/W

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 607

24593—Rev. 3.37—March 2021 AMD64 Technology

- 001b = Lowest Priority - The IPI delivers an interrupt to the local APIC executing at the lowest
priority of all local APICs that match the destination logical ID specified in the Destination
field. See Section 16.6.1, “Receiving System and IPI Interrupts,” on page 609.

- 010b = SMI - The IPI delivers an SMI interrupt to target local APIC(s). The trigger mode is
edge-triggered and the Vector field must = 00h.

- 011b = Remote read - The IPI delivers a read request to read an APIC register in the target local
APIC specified in Destination field. The trigger mode is edge triggered and the Vector field
specifies the APIC offset of the APIC register to be read. The Remote Status field provides the
current status of the remote read access after it has been issued. Data is returned from the target
local APIC and captured in the Remote Read Register of the issuing local APIC. See
Figure 16-19 on page 608.

- 100b = NMI - The IPI delivers a non-maskable interrupt to the target local APIC specified in
the Destination field. The Vector field is ignored.

- 101b = INIT - The IPI delivers an INIT request to the target local APIC(s) specified in the
Destination field, causing the CPU core to assume the INIT state. The trigger mode is edge-
triggered, and the Vector field must =00h. In the INIT state, the target APIC is responsive only
to the STARTUP IPI. All other interrupts (including SMI and NMI) are held pending until the
STARTUP IPI has been accepted.

- 110b = STARTUP - The IPI delivers a start-up request (SIPI) to the target local APIC(s)
specified in Destination field, causing the CPU core to start processing the platform firmware
boot-strap routine whose address is specified by the Vector field.

- 111b = External interrupt - The IPI delivers an external interrupt to the target local APIC
specified in Destination field. The interrupt can be delivered even if the APIC is disabled.

• Destination Mode (DM)—Bit 11. The DM bit when set to 1 specifies a logical destination which
may be one or more local APICs with a common destination logical ID. When cleared to 0, the DM
bit specifies a physical destination which indicates a single local APIC ID.

• Delivery Status (DS)—Bit 12. The DS bit indicates the interrupt delivery status. The DS bit is set to
1 when the local APIC has sent the IPI and is waiting for it to be accepted by another local APIC
(the ICR is not idle). Clearing the DS bit indicates that the target local APIC is idle. Code may
repeatedly write ICRL without polling the DS bit; all requested IPIs will be delivered.

• Level (L)—Bit 14. The L bit when set to 1 indicates assert. Clearing the L bit to 0 indicates
deassert.

• Trigger Mode (TGM)—Bit 15. Specifies how IPIs to the local APIC are triggered. The TGM bit is
set to 1 when the interrupt is level-sensitive. It is cleared to 0 when the interrupt is edge-triggered.

• Remote Read Status (RRS)—Bits 17:16. The RRS field indicates the current read status of a
Remote Read from another local APIC. The encoding for this field is as follows:
- 00b = Read was invalid
- 01b = Delivery pending
- 10b = Delivery done and access was valid. Data available in Remote Read Register.

[AMD Public Use]

608 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

- 11b = Reserved
• Destination Shorthand (DSH)—Bits 19:18. The DSH field indicates whether a shorthand notation

is used, and provides a quick way to specify a destination for a message. It replaces the Destination
field, when the destination field is not required (DSH > 00b), allowing software to use a single
write to the low order ICR. The encoding are as follows:
- 00b = Destination - The Destination field is required to specify the destination.
- 01b = Self - The issuing APIC is the only destination.
- 10b = All including self - The IPI is sent to all local APICs including itself (destination

field=FFh).
- 11b = All excluding self - The IPI is sent to all local APICs except itself (destination

field=FFh).
Note that if the lowest priority is used, the message could end up being reflected back to this
local APIC. If DS=1xb, the destination mode is ignored and physical is automatically used.

• Destination (DES)—Bits 63:56. The DES field identifies the target local APIC(s) for the IPI and
contains the destination encoding used when the Destination Shorthand field=00b. The field
indicates the target local APIC when the destination mode=0 (physical), and the destination logical
ID (as indicated by LDR and DFR) when the destination mode=1 (logical).

Figure 16-19. Remote Read Register (APIC Offset C0h)

• Remote Read Data (RRD)—Bits 31:0. The RRD field contains the data resulting from a valid
completion of a remote read interprocessor interrupt.

Not all combinations of ICR fields are valid. Only the combinations indicated in Table 16-4 are valid.

Table 16-4. Valid ICR Field Combinations

31 0

RRD

Bits Mnemonic Description R/W
31:0 RRD Remote Read Data RO

Message Type Trigger Mode Level Destination Shorthand

Fixed
Edge x x
Level Assert x

Lowest Priority, SMI, NMI, INIT
Edge x Destination or all excluding self.
Level Assert Destination or all excluding self

Startup x x Destination or all excluding self
Note: x indicates a don’t care.

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 609

24593—Rev. 3.37—March 2021 AMD64 Technology

16.6 Local APIC Handling of Interrupts
16.6.1 Receiving System and IPI Interrupts

Each local APIC verifies the destination ID, the destination mode and the message type of an APIC
interrupt to determine if it is the target of the interrupt.

The destination mode is either physical or logical. In physical destination mode, the value of the
interrupt message destination field is compared with the unique APIC ID value of each local APIC to
select the target local APIC. If the destination field of the Interrupt Command Register is set to FFh,
the interrupt is broadcasted and accepted by all local APICs. In physical destination mode, the lowest
priority message type is not supported.

In logical destination mode, all local APICs use the Logical Destination Register and the Destination
Format Register to determine if the interrupt is directed to them. The value of the interrupt message
destination field is compared with the value in the Logical Destination Register (see Figure 16-20) of
all local APICs.

The logical APIC ID must be unique. Since the comparison with the interrupt message destination
field is on a bit-basis, there are only 8 unique logical IDs (01h, 02h, 04h, 08h, 10h, 20h, 40h, and 80h).
For flat mode, the logical ID must be one of these values (for a total of eight local APICs supported). In
cluster mode, the value of the logical ID is constrained to be xyh, where 0 ≤ x ≤ Eh and y = either 1,2,4,
or 8, for a total of (15 × 4) possible unique logical IDs.

Figure 16-20. Logical Destination Register (APIC Offset D0h)

• Destination Logical ID (DLID)—Bits 31:24. The DLID field contains the logical APIC ID
assigned to this specific CPU core. The logical APIC ID must be unique.

Two interrupt models are defined for the logical destination mode, the flat model and the cluster
model, under the control of the Destination Format Register. See Figure 16-21.

31 24 23 0

DLID Reserved, MBZ

Bits Mnemonic Description R/W
31:24 DLID Destination Logical ID R/W
23:0 — Reserved, MBZ

[AMD Public Use]

610 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 16-21. Destination Format Register (APIC Offset E0h)

• Model (MOD)—Bits 31:28. The MOD field controls which format to use when accepting
interrupts in logical destination mode. The allowable values are 0h = cluster model and
Fh = flat model.

With the flat model, up to eight unique logical APIC ID values can be provided by software by setting
a different bit in the LDR. When the logical ID of the destination is compared with the LDR, if any bit
position is set in both fields, this local APIC is a valid destination. A broadcast to all local APICs
occurs when the LDR is set to all ones.

In the cluster model, bits 31:28 of the logical ID of the destination are compared with bits 31:28 of the
LDR. If there is a match, then bits 27:24 are tested for matching ones, similar to the flat model. If bits
31:28 match, and any of bits 27:24 are set in both fields, this local APIC is a valid destination. The
cluster model allows for 15 unique clusters to be defined, with each cluster having four unique logical
APIC values to be addressed. In cluster logical destination mode, lowest priority message type is not
supported.

In both the flat model and the cluster model, if the destination field = FFh, the interrupt is accepted by
all local APICs.

16.6.2 Lowest Priority Messages and Arbitration

In the case where the interrupt is valid for several local APICs in logical destination mode with a
lowest priority message type, the interrupt is accepted by the local APIC with the lowest arbitration
priority, as indicated by the Arbitration Priority field in the Arbitration Priority Register (APR). The
value in the Arbitration Priority field indicates the current priority for a pending interrupt or task, or an
interrupt being serviced by the CPU core. See Figure 16-22.

31 28 27 0

MOD Reserved

Bits Mnemonic Description R/W
31:28 MOD Model R/W
27:0 — Reserved (all ones) R

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 611

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 16-22. Arbitration Priority Register (APIC Offset 90h)

The fields within the Arbitration Priority register are as follows:

• Arbitration Priority Sub-class (APS)—Bits 3:0. The APS field indicates the current sub-priority to
handle arbitrated interrupts to be serviced by the CPU core.

• Arbitration Priority (AP)—Bits 7:4. The AP field indicates the current priority to handle arbitrated
interrupts to be serviced by the CPU core. The priority is used to arbitrate between CPU cores to
determine which core accepts a lowest-priority interrupt request.

The value in the Arbitration Priority field is equal to the highest priority of the Task Priority field of the
Task Priority Register (TPR), the highest bit set in the In-Service Register (ISR) vector, or the highest
bit set in the Interrupt Request Register (IRR) vector. The value in the Arbitration Priority Sub-class
field is equal to the Task Priority Sub-class if the APR is equal to the TPR, and zero otherwise.

If focus CPU core checking is enabled (Spurious Interrupt Register bit 9=0), the focus CPU core for an
interrupt can always accept the interrupt. A CPU core is the focus of an interrupt if it is already
servicing that interrupt (corresponding ISR bit is set) or if it already has a pending request for that
interrupt (corresponding IRR bit is set). If there is no focus CPU core for an interrupt or if focus CPU
core checking is disabled (Spurious Interrupt Register bit 9=1), all target local APICs identified as
candidates for the interrupt arbitrate to determine which is executing with the lowest arbitration
priority. If there is a tie for lowest priority, the local APIC with the highest APIC ID is selected.

16.6.3 Accepting System and IPI Interrupts

If the local APIC accepting the interrupt determines that the message type for the interrupt request
indicates SMI, NMI, INIT, STARTUP or ExtINT, it sends the interrupt directly to the CPU core for
handling. If the message type is fixed or lowest priority, the accepting local APIC places the interrupt
into an open slot in either the IRR or ISR registers. If there is no free slot, the interrupt is rejected and
sent back to the sender with a retry request.

Three 256-bit acceptance registers support interrupts accepted by the local APIC. Bits 255:16
correspond to interrupt vectors 255:16 with 255 being the highest priority; bits 15:0 are reserved.

• Interrupt Request Register (IRR), which contains interrupt requests that have been accepted but
have not been sent to the CPU core for interrupt handling. When a system interrupt is accepted, the
associated bit corresponding to the interrupt vector is set in the IRR. When the CPU core requests a

31 8 7 4 3 0

Reserved, MBZ AP APS

Bits Mnemonic Description R/W
31:8 — Reserved, MBZ
7:4 AP Arbitration Priority RO
3:0 APS Arbitration Priority Sub-class RO

[AMD Public Use]

612 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

new interrupt, the local APIC selects the highest priority IRR interrupt and sends it to the CPU
core. The local APIC then sets the corresponding bit in the ISR and resets the associated IRR bit.
See Figure 16-23 on page 612.

• In-Service Register (ISR) contains the bit map of the interrupts that have been sent to the CPU core
and are still being serviced. When the CPU core writes to the EOI register indicating completion of
the interrupt processing, the associated ISR bit is reset and a new interrupt is selected from the IRR
register. If a higher priority interrupt is accepted by the local APIC while the CPU core is servicing
another interrupt, the higher priority interrupt is sent directly to the CPU core (before the current
interrupt finishes processing) and the associated IRR bit is set. The CPU core interrupts the current
interrupt handler to service the higher priority interrupt. When the interrupt handler for the higher
priority interrupt completes, the associated IRR bit is reset and the interrupt handler returns to
complete the previous interrupt handler routine. If a second interrupt with the same interrupt vector
number is received by the local APIC while the ISR bit is set, the local APIC sets the IRR bit. No
more than two interrupts can be pending for the same interrupt vector number. Subsequent
interrupt requests to the same interrupt vector number will be rejected. See Figure 16-24 on
page 613.

• Trigger Mode Register (TMR) indicates the trigger mode of the interrupt and determines whether
an EOI message is sent to the I/O APIC for level-sensitive interrupts. When the interrupt is
accepted by the local APIC and the IRR bit is set, the associated TMR bit is set for level-sensitive
interrupts or reset for edge-triggered interrupts. At the end of the interrupt handler routine, when
the EOI is received at the local APIC, an EOI message is sent to the I/O APIC if the associated
TMR bit is set for a system interrupt. See Figure 16-25 on page 614.

Figure 16-23. Interrupt Request Register (APIC Offset 200h–270h)

255 16 15 0

IR Res, MBZ

Bits Mnemonic Description R/W
255:16 IR Interrupt Request bits RO
15:0 — Reserved, MBZ

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 613

24593—Rev. 3.37—March 2021 AMD64 Technology

• Interrupt Request bits (IR)—Bits 255:16. The corresponding request bit is set when an interrupt is
accepted by the local APIC. The interrupt request registers provide a bit per interrupt to indicate
that the corresponding interrupt has been accepted by the local APIC. Interrupts are mapped as
follows:

Figure 16-24. In Service Register (APIC Offset 100h–170h)

• In Service bits (IS)—Bits 255:16. These bits are set when the corresponding interrupt is being
serviced by the CPU core. The in-service registers provide a bit per interrupt to indicate that the
corresponding interrupt is being serviced by the CPU core. Interrupts are mapped as follows:

Register Interrupt Number
IRR (APIC offset 200h) 31–16
IRR (APIC offset 210h) 63–32
IRR (APIC offset 220h) 95–64
IRR (APIC offset 230h) 127–96
IRR (APIC offset 240h) 159–128
IRR (APIC offset 250h) 191–160
IRR (APIC offset 260h) 223–192
IRR (APIC offset 270h) 255–224

255 16 15 0

IS Res, MBZ

Bits Mnemonic Description R/W
255:16 IS In Service bits RO
15:0 — Reserved, MBZ

Register Interrupt Number
ISR (APIC offset 100h) 31–16
ISR (APIC offset 110h) 63–32
ISR (APIC offset 120h) 95–64
ISR (APIC offset 130h) 127–96
ISR (APIC offset 140h) 159–128
ISR (APIC offset 150h) 191–160
ISR (APIC offset 160h) 223–192
ISR (APIC offset 170h) 255–224

[AMD Public Use]

614 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 16-25. Trigger Mode Register (APIC Offset 180h–1F0h)

• Trigger Mode bits (TM)—Bits 255:16. These bits provide a bit per interrupt to indicate the
assertion mode of each interrupt. Interrupts are mapped as follows:

16.6.4 Selecting and Handling Interrupts

Interrupts are selected by the local APIC for delivery to the CPU core interrupt handler on a priority
determined by the interrupt vector number. Of the 15 priority levels, 15 is the highest and 1 is the
lowest. The priority level for an interrupt is equal to the interrupt vector number divided by 16,
rounded down to the nearest integer, with vectors 0Fh–00h reserved. Therefore, interrupt vectors 79h
and 70h have the same priority level. The high-order hex digit indicates the priority level while the
low-order hex digit indicates the priority within the same priority level.

Two registers are used to determine the priority threshold for selecting interrupts to be delivered to the
CPU core, the Task Priority Register (TPR) and the Processor Priority Register (PPR). Software uses
the TPR to set a priority threshold for interrupts to the CPU core, allowing the OS to block specific
interrupts. See Figure 16-26 on page 615 for more details on the TPR.

The value in the Task Priority field is set by software to set a threshold priority at which the processor
is to be interrupted. The value varies from 0 (all interrupts are allowed) to 15 (all interrupts with fixed
delivery mode are inhibited). See Figure 16-26.

255 16 15 0

TM Res, MBZ

Bits Mnemonic Description R/W
255:16 TM Trigger Mode bits RO
15:0 — Reserved, MBZ

Register Interrupt Number
TMR (APIC offset 180h) 31–16
TMR (APIC offset 190h) 63–32
TMR (APIC offset 1A0h) 95–64
TMR (APIC offset 1B0h) 127–96
TMR (APIC offset 1C0h) 159–128
TMR (APIC offset 1D0h) 191–160
TMR (APIC offset 1E0h) 223–192
TMR (APIC offset 1F0h) 255–224

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 615

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 16-26. Task Priority Register (APIC Offset 80h)

The fields within the Task Priority register are as follows:

• Task Priority Sub-class (TPS)—Bits 3:0. The TPS field indicates the current sub-priority to be used
when arbitrating lowest-priority messages. This field is written with zero when TPR is written
using the architectural CR8 register.

• Task Priority (TP)—Bits 7:4. The TP field indicates the current priority to be used when a core is
deciding when to handle interrupts. A value of zero allows all interrupts; a value of Fh disables all
interrupts. TP is also used to arbitrate between CPU cores to determine which core accepts a
lowest-priority interrupt request. This field can also be written using the architectural CR8 register.

The PPR is set by the CPU core and represents the current priority level at which the CPU core is
executing. The PPR determines whether a pending interrupt in the local APIC can be selected for
interrupt handling in the CPU core. The value set by hardware is either the interrupt priority level of
the highest priority ISR bit set or the value in the TPR, whichever is higher. The PPR is equal to the
TPR when the CPU core is not servicing a higher priority interrupt. See Figure 16-27 on page 615.

Figure 16-27. Processor Priority Register (APIC Offset A0h)

The fields within the Processor Priority register are as follows:

• Processor Priority Sub-class (PPS)—Bits 3:0. The PPS field is set to the Task Priority sub-class
field of the Task Priority Register (TPR) if the PP field is equal to the Task Priority field of the
TPR.

• Processor Priority (PP)—Bits 7:4. The PP field indicates the CPU core’s current priority for
servicing a task or interrupt, and is used to determine if any pending interrupts should be serviced.

31 8 7 4 3 0

Reserved, MBZ TP TPS

Bits Mnemonic Description R/W
31:8 — Reserved, Must be Zero
7:4 TP Task Priority R/W
3:0 TPS Task Priority Sub-class R/W

31 8 7 4 3 0

Reserved, MBZ PP PPS

Bits Mnemonic Description R/W
31:8 — Reserved, MBZ
7:4 PP Processor Priority RO
3:0 PPS Processor Priority Sub-class RO

[AMD Public Use]

616 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

It is the higher value of either the interrupt priority level of the highest priority ISR bit set or the
value in the TPR.

Pending interrupts must have a higher priority level than the value in the PPR to be selected by the
local APIC for interrupt handling in the core; otherwise, they remain pending in the IRR until the PPR
is lowered below the pending interrupt priority level. No pending interrupts are selected by the local
APIC when the TPR=15.

The local APIC selects the highest priority pending interrupt (highest priority IRR) when the CPU core
is ready, and sends the interrupt (with the IRR vector) to the CPU core. The local APIC resets the
highest priority IRR bit and sets the associated ISR bit.

As part of the completion of the interrupt handling routine, software writes a value of zero to the End-
of-Interrupt Register (EOI) in the local APIC, which causes the local APIC to reset the associated ISR
bit. The EOI register is a write-only register.

If a higher priority interrupt is accepted by the local APIC while the CPU core is servicing another
interrupt, the higher priority interrupt is sent directly to the CPU core (before the current interrupt
finishes processing) and the associated ISR bit is set. The CPU core interrupts the current interrupt
handler to service the higher priority interrupt. When the interrupt handler for the higher priority
interrupt completes, the associated ISR bit is reset and the interrupt handler returns to complete the
previous interrupt handler routine.

Figure 16-28. End of Interrupt (APIC Offset B0h)

• End of Interrupt (EOI)—Bits 31:0. Write-only operation signals end of interrupt processing to
source of interrupt.

16.7 SVM Support for Interrupts and the Local APIC
The SVM hypervisor uses the Extended APIC Feature Register, Extended APIC Control Register,
Specific End of Interrupt Register (SEOI), and Interrupt Enable Register (IER) to control virtualized
interrupts. When guests have direct access to devices, interrupts arriving at the local APIC can usually
be dismissed only by the guest that owns the device causing the interrupt. To prevent one guest from
blocking other guests’ interrupts (by never processing their own), the VMM can mask pending
interrupts in the local APIC, so they do not participate in the prioritization of other interrupts.

31 0

EOI

Bits Mnemonic Description R/W
31:0 EOI End of Interrupt WO

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 617

24593—Rev. 3.37—March 2021 AMD64 Technology

16.7.1 Specific End of Interrupt Register

Software issues a specific EOI (SEOI) by writing the vector number of the interrupt to the SEOI
register in the local APIC. The SEOI register is located at offset 420h in the APIC space. The SEOI
register format is shown in Figure 16-29.

Figure 16-29. Specific End of Interrupt (APIC Offset 420h)

16.7.2 Interrupt Enable Register

The IER is made available to software by means of eight 32-bit registers in the local APIC; bit i of the
256-bit IER is located at bit position (i mod 32) in the local APIC register IER[i / 32]. The eight IER
registers are located at offsets 480h, 490h, ...,4F0h in APIC space. The IER format is shown in Figure
16-30.

Figure 16-30. Interrupt Enable Register (APIC Offset 480h–4F0h)

• Interrupt Enable (IE)—Bits 255:16. Interrupts are mapped as follows:

31 8 7 0

Reserved, MBZ VECTOR

Bits Mnemonic Description R/W
31:8 — Reserved, MBZ
7:0 VECTOR Vector Number of Interrupt R/W

255 16 15 0

IE Res, MBZ

Bits Mnemonic Description R/W
255:16 IE Interrupt Enable R/W
15:0 — Reserved, MBZ

Register Interrupt Number
IER (APIC offset 480h) 31–16
IER (APIC offset 490h) 63–32
IER (APIC offset 4A0h) 95–64
IER (APIC offset 4B0h) 127–96
IER (APIC offset 4C0h) 159–128
IER (APIC offset 4D0h) 191–160

[AMD Public Use]

618 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

The IER and SEOI registers are located in the APIC Extended Space area. The presence of the APIC
Extended Space area is indicated by bit 31 of the APIC Version Register (at offset 30h in APIC space).

The presence of the IER and SEOI functionality is identified by bits 0 and 1, respectively, of the APIC
Extended Feature Register (located at offset 400h in APIC space). IER and SEOI are enabled by
setting bits 0 and 1, respectively, of the APIC Extended Control Register (located at offset 410h).

Only vectors that are enabled in IER participate in APIC's computation of the highest-priority pending
interrupt. The reset value of IER is all ones.

16.8 x2APIC Mode
x2APIC mode is an extension to the local APIC architecture designed to support larger CPU
topologies and to enhance delivery of interrupts. When enabled, x2APIC mode adds the following
features:

• All APIC and x2APIC registers are accessed via an MSR-based interface.
• The Local APIC ID and Logical APIC ID registers are expanded to 32 bits.
• Logical and physical destinations are extended to 32 bits.
• A new self-IPI register simplifies sending IPIs to self.

In general, x2APIC mode maintains backwards compatibility with the key elements of the local APIC
functionality previously described in Section 16. However, the following local APIC functionality is
changed in x2APIC mode:

• The Destination Format Register (DFR) is no longer needed and is not supported.
• The two 32-bit Interrupt Command Registers (ICRs) are merged into a single 64-bit ICR.
• Local APIC Base (MSR 01Bh) bit 10, previously reserved, is used to enable x2APIC mode.

16.8.1 x2APIC Terminology

Although x2APIC is an operational mode of the local APIC, the following sections use the term
‘x2APIC’ as a qualifier to more conveniently identify a given aspect of the local APIC when that mode
is enabled. For example, the term ‘x2APIC programming interface’ may be used instead of ‘the
programming interface when the local APIC is in x2APIC mode’.

16.9 Detecting and Enabling x2APIC Mode
System software can detect the presence of the x2APIC feature by executing the CPUID instruction.
Support for x2APIC mode is indicated by CPUID Fn000_0001_ECX[x2APIC] (bit 21) = 1.

IER (APIC offset 4E0h) 223–192
IER (APIC offset 4F0h) 255–224

Register Interrupt Number

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 619

24593—Rev. 3.37—March 2021 AMD64 Technology

If the feature is present, the local APIC is placed into x2APIC mode by setting bit 10 in the Local
APIC Base register (MSR 01Bh). Before entering x2APIC mode, the local APIC must first be enabled
(AE=1, EXTD=0). System software can then place the local APIC into x2APIC mode by executing a
WRMSR with both AE=1 and EXTD=1. The format of the Local APIC Base register for x2APIC-
capable processors is shown in Figure 16-31.

Figure 16-31. APIC Base Address Register (MSR 01Bh) support for x2APIC

Not all combinations of the local APIC mode bits are valid. See Table 16-5. Attempting to set the
combination of AE=0 and EXTD=1 is invalid and causes the WRMSR instruction to generate a
#GP(0) exception.

Table 16-5. Local APIC Operating Modes

Similarly, not all transitions between local APIC states are valid. The valid state transitions are
illustrated in Figure 16-2. Once the local APIC has been placed into x2APIC mode, the only valid
transition (other than reset) is to “APIC Disabled” mode by simultaneously clearing AE and EXTD to
zero. Executing a WRMSR instruction to attempt a transition other than those specified in Figure
16-32 results in a #GP(0) exception.

63 52 51 32

Reserved, MBZ ABA[51:32]

31 12 11 10 9 8 7 0

ABA[31:12]
A
E

E
X
T
D

R
S
V
D

B
S
C

Reserved, MBZ

Bits Mnemonic Description R/W
63:52 — Reserved, MBZ
51:12 ABA APIC Base Address R/W
11 AE APIC Enable (xAPIC mode) R/W
10 EXTD X2APIC Mode Enable R/W
9 — Reserved, MBZ
8 BSC Boot Strap CPU Core R
[7:0] — Reserved, MBZ

AE (bit 11) EXTD (bit 10) Local APIC Mode
0 0 local APIC disabled
0 1 Invalid
1 0 local APIC enabled in xAPIC mode
1 1 local APIC enabled in x2APIC mode

[AMD Public Use]

620 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 16-32. Valid APIC State Transitions

16.9.1 Enabling x2APIC Mode

Starting from APIC Disabled mode, enabling x2APIC mode is a two-step process. First, a transition is
made to APIC_Enabled mode by setting APIC_Base bit 11 (AE) to 1 with bit 10 (EXTD) left as zero.
Next, the transition to x2APIC mode is made by setting both AE and EXTD to 1 simultaneously.

Most APIC registers previously written by software while in APIC_Enabled mode are not affected by
the transition to x2APIC mode. The exceptions are:

• The Logical Destination Register (LDR) is not preserved.
• The upper half of the Interrupt Command Register (ICR_High) is not preserved.
• A value previously written by software to the 8-bit APIC_ID register (MMIO offset 30h) is

converted by hardware into the appropriate format and reflected into the 32-bit x2APIC_ID
register (MSR 802h).

Leaving x2APIC mode. Once in x2APIC mode, the only valid mode transition (other than a reset) is
to APIC_Disabled mode by using WRMSR to clear APIC_Base bit 11 (AE) bit 10 (EXTD) to 0 at the
same time.

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 621

24593—Rev. 3.37—March 2021 AMD64 Technology

16.10 x2APIC Initialization
A RESET clears the APIC Base Address Register AE bit and EXTD bit, disabling the local APIC. All
local APIC registers are initialized to their reset values as described in section 16.3.2 “APIC
Registers”.

An INIT does not modify the APIC Base Address Register AE and EXTD bits, thus the local APIC
mode is not changed. All other APIC registers are initialized to their values as described in “Reset in
x2APIC mode” above.

16.11 Accessing x2APIC Register
The x2APIC system programming interface consists of the Model Specific Registers listed in
Table 16-6 below. All APIC registers except the APIC Base Address Register are mapped into the
architecturally dedicated MSR range 800h to 8FFh, and accessed using WRMSR and RDMSR
instructions.

The RDMSR/WRMSR instructions read and write the MSR specified in the ECX register using the
EDX:EAX register pair as the destination and source operand. Bits 31:0 of the APIC register are
mapped into EAX[31:0]. For 64-bit x2APIC registers, the high-order bits (bits 63:32) are mapped to
EDX[31:0]. A #GP(0) exception is generated if an unimplemented APIC register is specified in ECX.
When not in x2APIC mode, attempts to access the APIC register set using the MSR interface results in
the WRMSR or RDMSR instruction generating a #GP(0) exception. See APM volume 3 for more
information on the WRMSR and RDMSR instructions.

In x2APIC mode, the legacy MMIO access to the APIC register set is disabled. Attempts to use the
legacy MMIO access mechanism may result in an unintended memory access or a memory-related
exception such as #GP or #PF.

16.11.1 x2APIC Register Address Space

The x2APIC registers are mapped into the MSR address range 800h through 8FFh. This address range
is reserved for accessing the APIC register set in x2APIC mode.

The legacy APIC registers are mapped to this MSR address space using on the following formula:

x2APIC MSR address = 800h + ((APIC MMIO offset) >> 4)

The following registers are exceptions to the above formula:

• The two 32-bit Interrupt Command Registers in APIC mode (MMIO offsets 300h and 310h) are
merged into a single 64-bit x2APIC register at MSR address 830h.

• The x2APIC Self_IPI register is added at MSR address 83Fh
• The Destination Format Register (DFR) at MMIO offset E0h and the Remote Read Register

(RRR) at MMIO offset C0h are not supported in x2APIC mode. Accordingly, MSR addresses
80Eh and 80Ch are not used and are reserved.

[AMD Public Use]

622 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

The system programming interface of the local APIC in x2APIC mode is made up of the MSRs listed
in Table 16-6 below.

Table 16-6. x2APIC Register
MSR Address

(x2APIC mode)
MMIO Offset
(xAPIC mode) Register Name Read/

Write Notes

802h 20h x2APIC ID Register [31:0] RO Expanded to 32-bits in x2APIC mode
803h 30h APIC Version Register RO
808h 80h Task Priority Register (TPR) RW
809h 90h Arbitration Priority Register (APR) RO
80Ah A0h Processor Priority Register (PPR) RO
80Bh B0h End of Interrupt Register (EOI) WO #GP(0) if non-zero value is written
- C0h Remote Read Register - Eliminated in x2APIC mode
80Dh D0h Logical Destination Register (LDR) RO Expanded to 32-bits in x2APIC mode
- E0h Destination Format Register - Eliminated in x2APIC mode
80Fh F0h Spurious Interrupt Vector Register RW
800-817h 100-170h In-Service Register (ISR) RO
818-81Fh 180-1F0h Trigger Mode Register (TMR) RO
820-827h 200-270h Interrupt Request Register (IRR) RO
828h 280h Error Status Register (ESR) RW #GP(0) if non-zero value is written
830h 300h Interrupt Command Register (bits

63:0) RW

832h 320h Timer Local Vector Table Entry RW
833h 330h Thermal Local Vector Table Entry RW
834h 340h Perf Counter Local Vector Table Entry RW
835h 350h Local Interrupt 0 Vector Table Entry RW
836h 360h Local Interrupt 1 Vector Table Entry RW
837h 370h Error Vector Table Entry RW
838h 380h Timer Initial Count Register RW
839h 390h Timer Current Count Register RO
83Eh 3E0h Timer Divide Configuration Register RW
83Fh — Self IPI Register WO See Figure 16-6

840h 400h Extended APIC Feature Register RO
841h 410h Extended APIC Control Register RW

842h 420h Specific End of Interrupt Register
(SEOI) RW

848-84Fh 480-4F0h Interrupt Enable Registers (IER) RW
850-853h 500-530h Extended Interrupt [3:0] Local Vector

Table Registers RW

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 623

24593—Rev. 3.37—March 2021 AMD64 Technology

MSR addresses in the range 800h through 8FFh that are not listed in Table 16-2 are unimplemented
and reserved. A #GP(0) exception is generated if a WRMSR or an RDMSR instruction attempts to
access an unimplemented MSR in the x2APIC address range.

16.11.2 WRMSR / RDMSR serialization for x2APIC Register

The WRMSR instruction is used to write the APIC register set in x2APIC mode. Normally WRMSR is
a serializing instruction, however when accessing x2APIC registers, the serializing aspect of WRMSR
is relaxed to allow for more efficient access to those registers. Consequently, a WRMSR write to an
x2APIC register may complete before older store operations are complete and have become globally
visible. When strong ordering of an x2APIC write access is required with respect to preceding memory
operations, software can insert a serializing instruction (such as MFENCE) before the WRMSR
instruction.

The RDMSR instruction is not a serializing instruction and remains non-serializing when reading
x2APIC MSRs. However, WRMSR and RDMSR instructions targeting the x2APIC MSRs are always
executed in program order with respect to each other.

16.11.3 Reserved Bit Checking in x2APIC Mode

When writing x2APIC MSRs, the WRMSR instruction checks for reserved bits. Attempting to write a
‘1’ to a reserved bit causes a #GP(0) exception. For x2APIC MSRs, WRMSR reserved bit checks are
summarized as follows:

Legacy APIC registers. Reserved bit checks for existing APIC registers are the same as described for
each register in non-x2APIC mode. For details, see the APIC register descriptions in sections 16.3
through section 16.6 above. Except for the Interrupt Command Register, attempting to write a ‘1’ into
bits 63:32 of the legacy APIC registers causes a #GP(0) exception.

Interrupt Command Register (ICR). See the description of the 64-bit ICR register in section 16.13.

Error Status Register (ESR). A WRMSR of a non-zero value causes a #GP(0) exception.

SELF IPI register. See the description of the 32-bit SELF IPI register in section 16.15.

The RDMSR instruction returns a zero for any reserved bit.

16.12 x2APIC_ID
Unique local APIC IDs are assigned to each logical processor in the system. In x2APIC mode, the
APIC ID is expanded to 32 bits and is referred to as the ‘x2APIC_ID’. It is assigned by hardware at
reset time based on the processor topology of the system. The x2APIC_ID is a concatenation of
several fields such as socket ID, core ID and thread ID.

Because the number of sockets, cores and threads may differ for each SOC, the format of x2APIC ID is
model-dependent. Some fields may not be present, depending on the processor model and the

[AMD Public Use]

624 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

processor topology. The presence, size and position of each field is discoverable using the CPUID
instruction (see “Cache and Processor Topology” on page 199).

Figure 16-33. x2APIC_ID Register (MSR 802h)

System software can read x2APIC_ID using either of the following mechanisms:

RDMSR. An RDMSR of MSR 0802h returns the x2APIC_ID in EAX[31:0]. The x2APIC_ID is a
read-only register. Attempting to write MSR 802h or attempting to read this MSR when not in x2APIC
mode causes a #GP(0) exception. See 16.11 “Accessing x2APIC Registers”.

CPUID. The x2APIC ID is reported by the following CPUID functions Fn0000_000B (Extended
Topology Enumeration) and CPUID Fn8000_001E (Extended APIC ID) as follows:

• Fn0000_000B_EDX[31:0]_x0 reports the full 32-bit ID, independent of APIC mode (i.e. even
with APIC disabled)

• Fn8000_001E_EAX[31:0] conditionally reports APIC ID. There are 3 cases:
- 32-bit x2APIC_ID, in x2APIC mode.
- 8-bit APIC ID (upper 24 bits are 0), in xAPIC mode.
- 0, if the APIC is disabled.

The above CPUID functions also report the presence, width and location of the sub-fields comprising
the x2APIC ID. See APM Volume 3 Appendix E, “Obtaining Processor Information Via the CPUID
Instruction” for detailed information.

16.13 x2APIC Interrupt Command Register (ICR) Operations
In legacy APIC mode, two 32-bit registers (ICR Low and ICR High) are used by system software to
send Inter-Processor Interrupts (IPIs) to other local APICs. The x2APIC architecture combines these
two registers into a single 64-bit Interrupt Command Register located at MSR address 830h. Thus in
x2APIC mode sending an IPI requires only a single WRMSR to the ICR as opposed to two MMIO
accesses in xAPIC mode.

The upper half of the x2APIC ICR (bits 63:32) contains the Destination ID (DEST) field, which is
expanded to 32 bits in x2APIC mode. A DEST value of FFFF_FFFFh is used to broadcast IPIs to all
local APICs.

31 0

x2APIC_ID

Bits Mnemonic Description R/W
31:0 x2APIC_ID x2APICID R

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 625

24593—Rev. 3.37—March 2021 AMD64 Technology

The lower half of the x2APIC ICR (bits 31:0) is identical to the APIC Interrupt Command Register
Low[31:0] (see Fig 16-18 on page 582), with the following exceptions:

• The Remote Read Status field (bits 17:16) is eliminated and must be zero.
• Message Type field (bits 10:8). Encodings 1, 3 and 7 are eliminated and the encodings are

reserved.
• The Delivery Status field (bit 12) is eliminated and must be zero.

The format of the x2APIC ICR register is shown in Figure 16-34.

Figure 16-34. Interrupt Command Register (MSR 830h)

16.14 Logical Destination Register
When an IPI is sent using logical destination mode, all local APICs in the system use the Logical
Destination Register to determine if the interrupt message is directed to them (see 16.6.1 Receiving
System and IPI Interrupts). In x2APIC mode, the Logical Destination Register (LDR) is expanded to
32 bits and contains the ‘logical x2APIC_ID’. System hardware initializes LDR with the 32-bit logical
x2APIC_ID whenever x2APIC mode is enabled. The LDR is a read-only register located at MSR
address 080Dh. The format of the Logical Destination Registers is shown inFigure 16-35.

63 0

DEST

31 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

Reserved, MBZ DSH Rsvd
T
G
M

L Rsvd
D
M

MT VEC

Bits Mnemonic Description R/W
63:32 DEST Destination RW
55:20 — Reserved, MBZ
19:18 DSH Destination Shorthand RW
17:16 — Reserved, MBZ
15 TMG Trigger Mode RW
14 L Level RW
13:12 — Reserved, MBZ
11 DM Destination Mode RW
10:8 MT Message Type RW
7:0 VEC Vector RW

[AMD Public Use]

626 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 16-35. Logical Destination (MSR 80Dh)

The logical x2APIC_ID consists of two 16-bit sub-fields: cluster_ID and logical_ID.

• LDR[31:16] cluster_ id. Identifies the cluster of which this processor is a member.
• LDR[15:0] logical_id. A bit vector uniquely identifying this processor within the cluster.

In logical destination mode, a given logical processor is addressed by its unique cluster ID and
logical_ID combination. The use of a bit vector for logical_ID allows an interrupt message to be
routed to multiple processors within the addressed cluster.

The partitioning of logical x2APIC_ID provides for a possible 65,535 (216-1) clusters, with each
cluster having up to 16 logical processors. The legacy “flat logical” addressing is not supported in
x2APIC mode.

Upon receiving an interrupt message in logical destination format, each x2APIC compares bits 31:16
of the message destination with LDR[31:16] (cluster_id). If there is a match, then bits 15:0 of the
destination and LDR[15:0] are tested for matching ones. If bits[31:16] (cluster_id) match and any bit
in 15:0 (logical_id) match, this x2APIC is a valid destination.

A DEST value of FFFF_FFFFh in the ICR is used to broadcast IPIs to all local APICs.

The two sub-fields comprising logical x2APIC_ID are derived from the value of local x2APIC_ID.
The 16-bit logical_ID sub-field is initialized by setting a single bit, ‘n’, where n= the 4 least significant
bits of local x2APIC_ID. The 16-bit cluster_id is derived from the remaining bits of the x2APIC_ID.
Specifically, logical_id[15:0] = 1 << x2APIC_ID[3:0] and cluster_id[15:0] = x2APIC_ID[19:4].

31 0

Logical x2APIC_ID

Bits Mnemonic Description R/W
31:0 x2Logical_ID Logical x2APICID Identifier R

[AMD Public Use]

Advanced Programmable Interrupt Controller (APIC) 627

24593—Rev. 3.37—March 2021 AMD64 Technology

16.15 Self_IPI Register
The Self_IPI register (MSR 83Fh) provides a performance-optimized interface for system software to
send interrupt messages to the local APIC. This register is write-only and attempts to read it cause a
#GP(0) exception. The format of the Self_IPI registers is shown in Figure 16-36.

Figure 16-36. Self_IPI Register (MSR 83Fh)

The Self_IPI register contains a single field: an interrupt vector. Writing to this register causes a to-self
IPI to be generated, equivalent to a to-self IPI generated by writing the Interrupt Command Register
(ICR, MSR 830h) with the following settings:

• Destination shorthand = self
• Trigger Mode = edge-triggered
• Message Type = fixed
• Vector = interrupt vector as specified in the Self_IPI register

The x2APIC’s response to a self-IPI sent via the Self_IPI register is architecturally identical to one
sent via the ICR. In particular, the operation of the Interrupt Response Register (IRR), In-Service
Register (ISR) and Trigger Mode Register (TMR) is the same. See “Accepting System and IPI
Interrupts” on page 611 for IRR, ISR and TMR details.

The Interrupt Request Register (IRR) contains interrupt requests that have been accepted by the
processor core. Completion of the WRMSR to the Self_IPI register guarantees that the resulting IPI
has been entered into the IRR, and that the associated TMR bit is cleared (as expected for edge-
triggered interrupts).

31 8 7 0

Reserved, MBZ VEC

Bits Mnemonic Description R/W
31:8 — Reserved, MBZ
7:0 VEC Interrupt Vector WO

[AMD Public Use]

628 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Hardware Performance Monitoring and Control 629

24593—Rev. 3.37—March 2021 AMD64 Technology

17 Hardware Performance Monitoring and
Control

The AMD64 architecture provides several mechanisms by which software can monitor and control
processor performance to optimize power use. The following lists the facilities that are described in the
sections that follow:

• The P-state control interface allows dynamic control of performance states. See Section 17.1
which follows immediately below.

• Core performance boost (CPB) dynamically increases core clock rate beyond that defined for the
P0 power state to achieve higher performance while maintaining power consumption below a
preset level. See Section 17.2 on page 631.

• The effective frequency interface provides a measure of the actual core clock rate over a specified
period of time. See Section 17.3 on page 632.

• The processor power reporting interface allows system software to measure average processor
core power over a given time period. See Section 17.5 on page 634.

17.1 P-State Control
P-states are operational performance states (states in which the processor is executing instructions, that
is, running software) characterized by a unique frequency of operation for a CPU core. The P-state
control interface supports dynamic P-state changes in up to 16 P-states called P-states 0 through 15 or
P0 though P15. P0 is the highest power, highest performance P-state; each ascending P-state number
represents a lower-power, lower-performance state.

Core P-states are controlled by software. Each CPU core contains one set of P-state control registers.
Software controls the P-states of each CPU core independently; however, hardware may include
interdependencies that affect the P-state achieved by each core.

Hardware provides the highest P-state value in the PstateMaxVal field of the P-State Current Limit
Register. P-states may be limited to a lower performance value under certain conditions. The current
P-state limit is dynamic and is specified in the CurPstateLimit field of the P-State Current Limit
Register.

Software requests a core P-state change by writing a 4-bit index corresponding to the desired core P-
state number to the P-State Control Register of the appropriate core. For example, to request the P3
state for core 0, software writes 3h to the core 0’s PstateCmd field in MSR C001_0062h. If the P-state
value is greater than the value in PstateMaxVal, the value written is clipped to that value.

As the current P-state limit changes, the P-state for the CPU core is either set to the software-requested
P-state value or the new current P-state limit, whichever is the higher P-state value.

[AMD Public Use]

630 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.37—March 2021

The current P-state value can be read using the P-State Status Register. The P-State Current Limit
Register and the P-State Status Register are read-only registers. Writes to these registers cause a #GP
exception. Support for hardware P-state control is indicated by
CPUID Fn8000_0007_EDX[HwPstate] = 1. Figure 17-1 below shows the format of the P-State
Current Limit register.

Figure 17-1. P-State Current Limit Register (MSR C001_0061h)

The fields within the P-State Current Limit register are:

• Current P-State Limit (CurPstateLimit)—Bits 3:0. Provides the current P-state limit, which is the
lowest P-state value (highest-performance state) that is currently supported by the hardware. This
is a dynamic value controlled by hardware. Reset value is implementation specific.

• P-State Maximum Value (PstateMaxVal)—Bits 7:4. Specifies the highest P-state value (lowest
performance state) supported by the hardware. Attempts to change the current P-state number to a
higher value by writes to the P-State Control Register are clipped to the value of this field. Reset
value is implementation specific.

Figure 17-2. P-State Control Register (MSR C001_0062h)

P-State Change Command (PstateCmd)—Bits 3:0. Writes to this field cause the CPU core to change
to the indicated P-state number, which may be clipped by the PstateMaxVal field of the P-State Cur-
rent Limit Register. Reset value is implementation specific.

63 8 7 4 3 0

Reserved, MBZ PstateMaxVal CurPstateLimit

Bits Mnemonic Description R/W
63:8 — Reserved, MBZ
7:4 PstateMaxVal P-state maximum value R
3:0 CurPstateLimit Current P-state limit R

63 4 3 0

Reserved, MBZ PstateCmd

Bits Mnemonic Description R/W
63:4 — Reserved, MBZ
3:0 PstateCmd P-state change command R/W

[AMD Public Use]

Hardware Performance Monitoring and Control 631

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 17-3. P-State Status Register (MSR C001_0063h)

Current P-State (CurPstate)—Bits 3:0. This field provides the current P-state of the CPU core regard-
less of the source of the P-state change, including writes to the P-State Control Register: 0 = P-state 0,
1 = P-state 1, etc. The value of this field is updated when the frequency transitions to a new value
associated with the P-state. Reset value is implementation specific.

17.2 Core Performance Boost
Core performance boost (CPB) dynamically monitors processor activity to create an estimate of power
consumption. If the estimated processor consumption is below an internally defined power limit and
software has requested P0 on a given core, hardware may transition the core to a frequency and voltage
beyond those defined for P0. If the estimated power consumption exceeds the defined power limit,
some or all cores are limited to the frequency and voltage defined by P0. CPB ensures that average
power consumption over a thermally significant time period remains at or below the defined power
limit.

CPB can be disabled using the CPBDis field of the Hardware Configuration Register (HWCR MSR)
on the appropriate core. When CPB is disabled, hardware limits the frequency and voltage of the core
to those defined by P0.

Support for core performance boost is indicated by CPUID Fn8000_0007_EDX[CPB] = 1. See
Section 3.3, “Processor Feature Identification,” on page 70 for more information on using the CPUID
instruction.

63 4 3 0

Reserved, MBZ CurPstate

Bits Mnemonic Description R/W
63:4 — Reserved, MBZ
3:0 CurPstate Current P-state R

[AMD Public Use]

632 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 17-4. Core Performance Boost (MSRC001_0015h)

Core Performance Boost Disable (CpbDis)—Bit 25. Specifies whether core performance boost is
enabled or disabled. 0 = Enabled. 1 = Disabled.

17.3 Determining Processor Effective Frequency
The Max Performance Frequency Clock Count (MPERF) and the Actual Performance Frequency
Clock Count (APERF) registers constitute the effective frequency interface. This interface provides a
means for software to calculate an average, or effective, frequency of a core over a known window of
time. This provides software a measure of actual performance rather than forcing software to assume
that the current frequency of the core is the frequency of the last P-state requested.

To calculate an effective clock frequency of a given processor core, on that processor do the following:

1. Read both MPERF and APERF and save their initial values.
- MPERF_INIT = MPERF and APERF_INIT = APERF

2. Wait an appropriate amount of time.

3. Read both MPERF and APERF again.

4. Effective frequency = {(APERF − APERF_INIT) / (MPERF − MPERF_INIT)} * P0 frequency.

The amount of time that elapses between steps 1 and 3 is determined by software. This allows software
to define the time window over which the processor frequency is averaged. Software should disable
interrupts or any other events that may occur between the read of MPERF and the read of APERF in
step 1 and again when the two MSRs are read in step 3. Step 4 provides the equation for the calculation
of the effective frequency value. Software determines the P0 frequency using ACPI defined data
structures.

The effective frequency interface only counts clock cycles while the core is in the ACPI defined C0
state.

Only the ratio between MPERF and APERF is architecturally defined. Software should not assume
any specific definition of the MPERF or APERF registers. If an overflow of either the MPERF or

63 25 0

Reserved, MBZ Reserved

Bits Mnemonic Description R/W
63:26 — Reserved

25 CPBDis Core Performance Boost Disable R/W

24:0 — Reserved

[AMD Public Use]

Hardware Performance Monitoring and Control 633

24593—Rev. 3.37—March 2021 AMD64 Technology

APERF register occurs between the read of MPERF in step 1 and the read of APERF in step 3, the
effective frequency calculated in step 4 is invalid.

Hardware support for the effective frequency interface is indicated by
CPUID Fn0000_0006_ECX[EffFreq]. See Section 3.3, “Processor Feature Identification,” on page 70
for more information on using the CPUID instruction.

17.3.1 Actual Performance Frequency Clock Count (APERF)
Specifies the numerator of the effective frequency ratio.

Figure 17-5. Actual Performance Frequency Count (MSR0000_00E8h)

17.3.2 Maximum Performance Frequency Clock Count (MPERF)
Specifies the denominator of the effective frequency ratio. The value read is scaled by the TSCRatio
value (MSR C000_0104h) for guest reads, but the underlying counters are not affected. Reads in host
mode or writes to MPERF are not affected.

Figure 17-6. Max Performance Frequency Count (MSR0000_00E7h)

63 0

APERF

Bits Mnemonic Description Access
Type

63:0 APERF Actual Performance Frequency Clock Count R/W

63 0

MPERF

Bits Mnemonic Description Access
Type

63:0 MPERF Max Performance Frequency Clock Count R/W

[AMD Public Use]

634 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.37—March 2021

17.3.3 APERF Read-only (AperfReadOnly)
Specifies the numerator of the effective frequency ratio.

Figure 17-7. APREF Read Only (MSR C000_00E8h)

17.3.4 MPERF Read-only (MperfReadOnly)
Read-only version of MPERF. The value read is scaled by the TSCRatio value (MSR C000_0104h)
for guest reads.

Figure 17-8. MPERF Read Only (MSR C000_00E7h)

17.4 Processor Feedback Interface
The Processor Feedback Interface is deprecated. Some processor products may support this feature. To
determine support on a given processor, software can test the feature bit CPUID
Fn8000_0007_EDX[ProcFeedbackInterface]. For more information, consult the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your
product.

17.5 Processor Core Power Reporting
The processor power reporting interface allows system software to estimate the average power
consumed by a processor core over a software-determined time period. Computing the average power
involves reading a “core power accumulator” register at the beginning and end of the measurement
interval, taking the difference and then dividing by the length of the time interval.

63 0

APERF_RD_ONLY

Bits Mnemonic Description Access
Type

63:0 APERF_RD_ONLY APREF Read Only R/O

63 0

MPERF_RD_ONLY

Bits Mnemonic Description Access
Type

63:0 MPERF_RD_ONLY MPERF Read Only RO

[AMD Public Use]

Hardware Performance Monitoring and Control 635

24593—Rev. 3.37—March 2021 AMD64 Technology

Support for the processor power reporting interface is indicated by
CPUID Fn8000_0007_EDX[ProcPowerReporting] = 1.

17.5.1 Processor Facilities
Estimating core average power involves the use of several processor facilities. Processors that support
the processor power reporting interface define the following three facilities:

• CpuSwPwrAcc MSR
• MaxCpuSwPwrAcc MSR
• CpuPwrSampleTimeRatio (CPUID Fn8000_0007_ECX)

A fourth facility, available on all processors, is the time-stamp counter (TSC). The TSC is a free-
running counter that increments on every processor clock cycle. The current value o f this counter is
read using the RDTSC instruction.

The contents of the CpuSwPwrAcc register represents the cumulative energy consumed by the core.
Each hardware-determined sample period (Tsample) a value that represents the energy consumed
since the previous sample is added to the contents of this register. Tsample is on the order of a few
microseconds. The exact value is immaterial because the CpuPwrSampleTimeRatio register provides
the ratio of Tsample to the TSC period.

CpuSwPwrAcc is cleared to zero at power-on and is never reset. Therefore, it is possible for this
counter to overflow and roll over to zero. To account for this, the interface provides the
MaxCpuSwPwrAcc register. When read, this register provides a value that represents the maximum
energy that the CpuSwPwrAcc register can report.

17.5.2 Software Algorithm
The following algorithm should be used to calculate the average power consumed by a processor core
during the measurement interval TM. To obtain a stable average power value, TM should be on the
order of several milliseconds.

• Determine the value of the ratio of Tsample to the TSC period (CpuPwrSampleTimeRatio) by
executing CPUID Fn8000_0007. Call this value N.
N = CPUID Fn8000_0007_ECX[31:0].

• Read the full range of the cumulative energy value from the register MaxCpuSwPwrAcc.
Jmax = value returned from RDMSR MaxCpuSwPwrAcc.

• At time x, read CpuSwPwrAcc and the TSC
Jx = value returned by RDMSR CpuSwPwrAcc
Tx = value returned by RDTSC

• At time y, read CpuSwPwrAcc and the TSC again
Jy = value returned by RDMSR CpuSwPwrAcc
Ty = value returned by RDTSC

[AMD Public Use]

636 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.37—March 2021

Calculate the average power consumption for the processor core over the measurement interval TM =
(Ty – Tx).

• If (Jy < Jx), rollover has occurred; set Jdelta = (Jy + Jmax) – Jx
else Jdelta = Jy – Jx

• PwrCPUave = N * Jdelta / (Ty - Tx)

Units of result is milliwatts.

[AMD Public Use]

Shadow Stacks 637

24593—Rev. 3.37—March 2021 AMD64 Technology

18 Shadow Stacks

The shadow stack mechanism facilitates protection against a common form of computer exploit
known as Return Oriented Programming (ROP). ROP exploits utilize intentionally corrupted stack
frames to divert normal processor control flow into short fragments of existing executable code, which
ultimately end with a RET instruction. These fragments are then chained together using return
addresses previously written to the stack by the attacker.

The shadow stack mechanism protects against ROP exploits by ensuring that return addresses read
from the stack by RET and IRET instructions originated from a CALL instruction or similar control
transfer.

In the following sections, the term ‘program stack’ is used to distinguish the stack pointed to by the SP
register and manipulated by instructions (such as PUSH, POP, ENTER, LEAVE) from the shadow
stack.

18.1 Shadow Stack Overview
A shadow stack is a separate, protected stack that is conceptually parallel to the program stack and
used only by control-transfer and return instructions. When shadow stacks are enabled, most control
transfers that save a return address (such as CALL, INTn, exceptions and interrupts) write the return
address to the shadow stack in addition to the program stack. Upon the subsequent RET or IRET
operation, the processor reads the return address from both stacks and checks that they match. A
control-protection exception (#CP) is raised if the return addresses do not match.

The shadow stack is implemented in regions of memory marked with the “shadow stack” attribute in
the page tables (see “Page-Protection Checks” on page 158). Pages with the shadow stack attribute are
writeable only by control transfer operations that save a return address and by the shadow stack
management instructions. Shadow stack pages are not writeable by ordinary data-access instructions
and thus protected from tampering.

18.1.1 Detecting and Enabling Shadow Stack Support
Support for the shadow stack feature is indicated CPUID Fn0000_0007_ECX_x0[CET_SS](bit 7)=1.
This bit also indicates the shadow stack MSRs are present.

The shadow stack feature is enabled by setting CR4.CET (bit 23) = 1 (see “CR4 Register” on page 47).
The shadow stack feature is operational when in protected mode (CR0.PE=1) with paging enabled
(CR0.PG=1). Shadow stacks are disabled in virtual mode (rFLAGS.VM=1).

Once the feature is enabled, shadow stack operation can be separately enabled in user mode and in
supervisor mode using control bits in the S_CET and U_CET MSRs (see “Shadow Stack MSRs” on
page 649).

[AMD Public Use]

638 Shadow Stacks

AMD64 Technology 24593—Rev. 3.37—March 2021

18.2 The Shadow Stack Pointer
On processors implementing the shadow stack feature, the Shadow Stack Pointer (SSP) register
contains the address of the current top of the shadow stack. The width of the shadow stack is 64 bits in
64-bit mode and 32 bits in legacy and compatibility modes. The address size of SSP is 64 bits in 64-bit
mode and 32 bits in legacy and compatibility modes.

The SSP register cannot be encoded as a source or destination register by regular instructions and thus
is not directly accessible to software as a general operand, nor as an address operand. The SSP register
is directly accessible only by using the shadow stack management instructions (see “Shadow Stack
Management Instructions” on page 648).

18.3 Shadow Stack Operation for CALL (near) and RET
(near)
When shadow stacks are enabled, the CALL (near) instruction pushes the return address onto the
shadow stack, in addition to pushing it onto the program stack. On the subsequent near RET/RETn
instruction, the return addresses are read from both stacks and compared. If the return addresses do not
match, a control-protection (#CP) exception is generated.

A CALL (near) with a displacement of 0 (CALL +0) does not push the return address onto the shadow
stack since the ’CALL +0’ idiom does not actually branch to another code sequence, and is typically
not followed by a return instruction.

One form of the return instruction, RETn, pops ‘n’ additional parameters from the program stack
before returning to the caller. Since the shadow stack does not store any data items, RETn does not pop
additional parameters from the shadow stack.

18.4 Shadow Stack Operation for Far Transfers
The term ‘far transfer’ in the following discussion encompasses the following types of control
transfers:

• Explicit CALL (far) to a procedure in another code segment
• Exceptions and interrupts that transfer to a handler in another code segment
• RET (far) and IRET instructions

A far transfer may also change the CPL. The exact operation of the shadow stack depends on the type
of far transfer involved, the associated CPL change (if any) and whether the shadow stack capability is
enabled for the target CPL. Shadow stack operations for far transfers are described in the following
sections and summarized in Table 18-1. (See AMD Architecture Programmers Manual Volume 3 for
detailed instruction algorithms for CALL (far), RET (far), IRET and INTn.)

[AMD Public Use]

Shadow Stacks 639

24593—Rev. 3.37—March 2021 AMD64 Technology

18.5 Far Transfer to the Same Privilege Level
When shadow stacks are enabled, a far transfer to the same privilege level pushes the CS and LIP
(linear address of the return IP) onto the current shadow stack in addition to pushing the return IP onto
the program stack. Upon the subsequent RET (far) or IRET operation, the return addresses are popped
from both stacks and the linear forms of the two addresses are compared. If the return addresses do not
match, a control-protection (#CP) exception is generated.

18.6 Far Transfer to Different Privilege Level
In addition to changing code segments, far transfers can also be used to change to a different privilege
level (CPL). When changing the CPL, inter-privilege far transfers switch to a new program stack. In a
similar manner, inter-privilege far transfers also switch to a new shadow stack, providing that shadow
stacks are enabled for the new privilege level.

18.6.1 Shadow Stack Switching
When an inter-privilege far transfer switches to a new program stack, the new program stack pointer is
selected from the either the inner-level stack pointers in the TSS or the Interrupt Stack Table (IST),
depending on the type of far transfer. (See “Interrupt To Higher Privilege” on page 262). Similarly,
when shadow stacks are enabled, inter-privilege far transfers also switch to a new shadow stack. The
new shadow stack pointer is selected from shadow stack pointer MSRs (PLn_SSP) or the Interrupt
Shadow Stack Table (ISST) as described in the following sections.

18.6.1.1 Shadow Stack Switching for Inter-Privilege CALL (far)
When a CALL (far) changes privilege level, a shadow stack switch occurs to an inner-level shadow
stack. The new SSP is loaded from one of the following MSRs:

• PL2_SSP for transitions to CPL 2.
• PL1_SSP for transitions to CPL 1.
• PL0_SSP for transitions to CPL 0.

Table 18-1. Shadow Stack Operations for Far Transfers

CALLF/int/excp
From CPL To CPL

Stack
switch?

New SSP loaded
from: (where
n=new CPL)

CS, LIP saved to
and restored from:

SSP saved to and
restored from:

RETF/IRET
checks returns

address?

0,1,2,3 Same No Uses current SSP Current Shadow
Stack

Current Shadow
Stack Yes

3 0,1,2 Yes PLn_SSP <not saved/restored> PL3_SSP No
2 0,1 Yes PLn_SSP New shadow stack New shadow stack Yes
1 0 Yes PLn_SSP New shadow stack New shadow stack Yes

[AMD Public Use]

640 Shadow Stacks

AMD64 Technology 24593—Rev. 3.37—March 2021

When switching shadow stacks, the processor validates the new shadow stack using a special value
called a shadow stack token as described in Section 18.6.3 “Supervisor Shadow Stack Token” on
page 641.

18.6.1.2 Shadow Stack Switching for Interrupts and Exceptions
In long mode (EFER.LMA=CS.L=1), the processor provides an additional mechanism, the Interrupt
Stack Table (IST) to switch program stacks for interrupts and exceptions. The IST mechanism uses the
IST field in the Interrupt Descriptor Table (IDT) entry as an index into a table of inner-level program
stack pointers (see “Interrupt-Stack Table” on page 274). The shadow stack feature provides a similar
mechanism, the Interrupt Shadow Stack Table (ISST), for switching shadow stacks.

The ISST is an 8-entry table containing supervisor shadow stack pointers. The base of the ISST is
specified by the INTERRUPT_SSP_TABLE MSR. If the IST field in the IDT entry is non-zero, it is
used as an index into the ISST to select a new SSP as shown in Figure 18-1 “Interrupt Shadow Stack
Table (ISST)” on page 640.

If the IST field is zero or if the processor is not in long mode, the ISST mechanism is not used and the
new inner-level SSP is selected from the PLn_SSP MSRs as previously described in Section 18.6.4
“Shadow Stack Switching for Inter-Privilege CALL (far)” on page 639.

Figure 18-1. Interrupt Shadow Stack Table (ISST)

[AMD Public Use]

Shadow Stacks 641

24593—Rev. 3.37—March 2021 AMD64 Technology

18.6.2 Handling CS, LIP and SSP on Privilege Transistions
When changing to a new code segment, the shadow stack behavior for saving and restoring CS, LIP
and SSP depends on the CPL of the originating far transfer.

Transitions from CPL=3

Inter-privilege far transfers originating at CPL=3 save the current user-level SSP to PL3_SSP rather
than to the supervisor shadow stack. Upon the subsequent RETF/IRET back to CPL=3, the user-level
SSP is restored from PL3_SSP and the return CS and LIP are not verified.

Transitions from CPL=1 and CPL=2

Far transfers originating at CPL=1 or CPL=2 to an inner (more privileged) level save the current CS,
LIP and SSP to the inner level shadow stack after switching shadow stacks as described in section
Section 18.6.1, “Shadow Stack Switching,” on page 639. Upon the subsequent RET(far)/IRET, the
SSP is restored (Section 18.6.1, “Shadow Stack Switching,” on page 639) from the inner-level shadow
stack and the CS and LIP popped from the shadow stack are verified against the values read from the
program stack. If the return addresses do not match, a control-protection (#CP) exception is generated.

18.6.3 Supervisor Shadow Stack Token
When switching shadow stacks, the processor validates the new shadow stack by checking a
supervisor shadow stack token located at the base of the stack.

When initially creating a shadow stack for use at privilege levels 0, 1 and 2, system software must
place a supervisor shadow stack token at the base of each stack. System software must also store a
pointer to each shadow stack in the appropriate shadow stack base register, PLn_SSP (n=0,1,2,3) using
the WRMSR instruction.

The relationship of the shadow stacks, supervisor shadow stack tokens, and the PLn_SSP registers are
shown in Figure 18.6.3 “Shadow Stacks and Supervisor Shadow Stack Tokens” on page 642. The
three supervisor shadow stacks (PL0, PL1 and PL2) have shadow stack tokens stored at the base of the
stack. Tokens are not used for PL3 shadow stacks.

[AMD Public Use]

642 Shadow Stacks

AMD64 Technology 24593—Rev. 3.37—March 2021

Figure 18-2. Shadow Stacks and Supervisor Shadow Stack Tokens

The supervisor shadow stack token is a 64-bit value and is formatted as shown in Figure 18-3:

Figure 18-3. Supervisor Shadow Stack Token

The supervisor shadow stack token fields are defined as follows:

Linear Address. Bits 63:3 of the linear address of this token. The linear address is required to be 8-
byte aligned.

Rsvd. Reserved, must be zero.

Busy Bit. If 0, this indicates this supervisor shadow stack is not in use by any logical processor. If 1, it
indicates this supervisor shadow stack is currently in use by one of the logical processors. The
processor sets the busy bit when switching to a supervisor shadow stack and clears it when switching
away from that stack.

18.6.4 Shadow Stack Token Validation for Inter-privilege CALL (far) and
Interrupts/Exceptions
Before switching shadow stacks, a CALL (far) or an interrupt/exception that changes to a more
privileged level validates the supervisor shadow stack token located at the base of the new stack. If the
validation checks pass, the supervisor shadow stack token is marked busy. The following steps are
performed to validate the supervisor shadow stack token and set the busy bit:

63 3 2 1 0

Linear Address Rsvd Busy

[AMD Public Use]

Shadow Stacks 643

24593—Rev. 3.37—March 2021 AMD64 Technology

1. Check that the incoming SSP is 8-byte aligned, otherwise a #GP exception is generated. The
incoming SSP is located in PLn_SSP (where ‘n’ is the new privilege level: 0, 1, 2), or the ISST
for interrupts/exceptions (see Section 18.6.1, “Shadow Stack Switching,” on page 639).

<Steps 2-6 are performed atomically.>

2. Fetch the 8-byte shadow stack token using the address specified by the incoming SSP (using a
locked load with shadow stack access rights).

3. Check that the shadow stack token reserved bits and the busy bit are 0.

4. Check that the address specified in the shadow stack token matches the incoming SSP.

5. If checks 3 and 4 pass, set the supervisor shadow stack token busy bit (using a store, unlock).

6. If checks 3 or 4 fail, the shadow stack token is not modified and a #GP exception is generated.

18.6.5 Shadow Stack Token Validation for Inter-privilege RET and IRET
RET (far) and IRET to lower privilege levels validate the shadow stack token located on the current
supervisor shadow stack before switching shadow stacks. If the token is valid, the token’s busy bit is
cleared. The processor performs the following steps to validate the token:

1. Check that the return SSP (located on the current shadow stack) is 4-byte aligned, else a #CP
exception is generated.

<Steps 2-7 are performed atomically.>

2. Fetch the 8-byte shadow stack token from the current shadow stack at SSP+24 (using a locked
load with shadow stack access rights).

3. Check that the busy bit is 1.

4. Check that the reserved bits are 0.

5. Check that the address specified in the shadow stack token matches the SSP.

6. If checks 3 through 5 pass, the shadow stack token busy bit is cleared.

7. If any of checks 3 through 5 fail, the shadow stack token is not modified. A fault is not generated.

18.7 Shadow Stack Operation for SYSCALL and SYSRET
SYSCALL and SYSRET are low-latency system call and return instructions designed for use by
system and application software implementing a flat-memory model. These instructions do not use the
program stack to store return addresses, and therefore do not use the shadow stack to validate return
addresses. However, SYSCALL and SYSRET modify SSP as described below. The Shadow stack
operations described for SYSCALL and SYSRET also apply to SYSENTER and SYSEXIT
respectively, although the latter are available only in legacy mode.

The SYSCALL instruction is used by application software executing at CPL=3. When shadow stacks
are enabled at CPL=3, SYSCALL saves the current SSP to PL3_SSP. SYSCALL changes to CPL=0

[AMD Public Use]

644 Shadow Stacks

AMD64 Technology 24593—Rev. 3.37—March 2021

before entering the operating system and if shadow stacks are enabled at CPL=0, then SSP is cleared to
0.

Unlike other inter-privilege far transfers, SYSCALL does not automatically perform a switch to a
supervisor shadow stack. If shadow stacks are enabled at CPL=0, prior to executing a CALL
instruction or similar transfer of control that pushes a return address to the shadow stack, software at
the OS entry point must ensure that a supervisor shadow stack is available for use. System software
can use SETSSBSY to set up a supervisor shadow stack.

The operating system uses the SYSRET instruction to return to the application running at CPL=3. If
shadow stacks are enabled at CPL=3, SYSRET restores SSP from PL3_SSP. Prior to using SYSRET
to return to the application, system software can use the CLRSSBSY to tear down the supervisor
shadow stack. Because CLRSSYBSY clears the SSP to 0, system software must ensure that any
subsequent interrupt or exception that may occur in CPL=0 prior to the SYSRET is configured to use
the ISST stack-switching mechanism. Otherwise taking an interrupt or exception with SSP=0 will
likely result in a fault due to SSP wrap-around.

18.8 Shadow Stack Operation for Task Switches
The legacy x86 task-switch mechanism transfers program control to a new task when any of the
following control transfers occur:

• A CALL or JMP instruction references a task gate or TSS descriptor.
• A software-interrupt instruction (INTn), exception or external interrupt references a task gate.
• An IRET is executed when the EFLAGS.NT bit is set to 1.

Shadow stack operations for legacy x86 task switches are summarized in this section. Because the x86
task management feature is supported by the AMD64 architecture only in legacy mode
(EFER.LMA=0), the shadow stack operations described below only apply to legacy mode. (See
“Switching Tasks” on page 365 for more information on task switching).

When switching to a new task with shadow stacks enabled, the new task must use a 32-bit TSS. The
SSP for the new task is located at TSS offset 104. Since the SSP is 4 bytes in legacy mode, the TSS
must be at least 108 bytes in size. The SSP must be aligned to an 8-byte boundary and point to a
supervisor shadow stack token.

If the task switch is initiated by a CALL/JMP/INTn instruction, or an interrupt or exception:

• For task switches originating at CPL=3, and if shadow stacks are enabled at that CPL, the current
SSP is saved to PL3_SSP. Otherwise, for task switches originating at supervisor-level (CPL=0,1,2)
the current SSP is saved onto the new shadow stack along with current CS and LIP. If shadow
stacks are enabled at the CPL of the new task, the busy bit is set in the supervisor shadow stack
token pointed to by the SSP of the incoming task.

If the task switch is initiated by an IRET instruction:

[AMD Public Use]

Shadow Stacks 645

24593—Rev. 3.37—March 2021 AMD64 Technology

• For task switches originating at supervisor-level (CPL=0,1,2) and returning to CPL=3, the SSP is
restored from PL3_SSP, otherwise the SSP is restored from the current shadow stack. The return
CS and LIP are read from the current shadow stack and compared to the CS and linear form of the
EIP in the TSS of the incoming task. A control-protection (#CP) exception is generated if the
return addresses do not match.

18.9 Restricting Speculative Execution of RET targets
When shadow stacks are enabled, the processor will not speculatively execute instructions from a RET
address on the program stack unless the address matches the corresponding address on the shadow
stack, or the target of the RET is predicted by a return address branch prediction mechanism.

18.10 Shadow Stack Switching Using RSTORSSP
As previously described in Section 18.6.1, “Shadow Stack Switching,” on page 639, the processor
automatically switches shadow stacks as part of the inter-privilege far transfer mechanism. In order to
allow programs to switch stacks at other times (when performing operations such as initializing a
shadow stack or recovering from a #CP fault) the RSTORSSP and SAVEPREVSSP instructions are
provided.

The RSTORSSP instruction is used to switch shadow stacks. The instruction expects to find a shadow
stack restore token at the top of the proposed new shadow stack. Upon validating this token,
RSTORSSP points the SSP to the top of the new shadow stack and sets the token’s busy bit, making
the new shadow stack ready for use.

Upon successful completion, the RSTORSSP instruction modifies the restore token by saving the old
SSP into the token’s SSP Restore Value field in order to facilitate a later return to the old shadow stack.

The shadow stack restore token used by RSTORSSP is formatted as follows:

Figure 18-4. Shadow Stack Restore Token

The shadow stack restore token fields are defined as follows:

SSP Restore value. Bits 63:2 of the linear address of this token. Replaced by the previous SSP upon
successful completion of the RSTORSSP instruction.

Busy. Initially must be 0. Set to 1 upon successful completion of the RSTORSSP instruction.

63 2 1 0

SSP Restore Value / Token Address Busy Mode

[AMD Public Use]

646 Shadow Stacks

AMD64 Technology 24593—Rev. 3.37—March 2021

Mode. If 0, this indicates the shadow stack restore token is for use in legacy or compatibility mode. If
1, this indicates the restore token is for use in 64-bit mode.

After RSTORSSP switches to the new stack the modified shadow stack token is at the top of the new
in-use shadow stack. If a return to the old stack is not required, the modified token (to which the
previous SSP has been saved) can be popped from the stack using the INCSSP instruction.

If a return to the old stack is desired, the SAVEPREVSSP instruction can be used to copy the token
back to the previous stack for later use by an RSTORSSP instruction. The SAVEPREVSSP expects to
find a previous SSP token on the top of the current shadow stack. After moving this token to the
previous stack, SAVEPREVSSP pops it off the new stack by incrementing SSP.

The previous SSP token used by SAVEPREVSSP is formatted as follows:

Figure 18-5. Previous SSP Token

The previous SSP token fields are defined as follows:

Previous SSP. Bits 63:2 of the previous SSP. Upon successful completion, the SAVEPREVSSP
instruction copies the token to this address.

Busy. Must be set to 1 initially. Cleared to 0 upon successful completion of the SAVEPREVSSP
instruction.

Mode. If 0, this indicates the previous SSP token is for use in legacy or compatibility mode. If 1, this
indicates the token is for use in 64-bit mode.

Figure 18-6 “RSTORSSP and SAVEPREVSSP Operation” on page 647 illustrates the operation of the
RSTORSSP instruction when switching to a new shadow stack, followed by a SAVEPREVSSP
instruction to save a previous token back to the original stack.

63 2 1 0

Previous SSP Busy Mode

[AMD Public Use]

Shadow Stacks 647

24593—Rev. 3.37—March 2021 AMD64 Technology

Figure 18-6. RSTORSSP and SAVEPREVSSP Operation

[AMD Public Use]

648 Shadow Stacks

AMD64 Technology 24593—Rev. 3.37—March 2021

In this example (Figure 18-6 “RSTORSSP and SAVEPREVSSP Operation” on page 647),
RSTORSSP is used to switch from shadow stack A to shadow stack B. Subsequently, a
SAVEPREVSSP instruction is used to save a shadow stack restore token.

Initially, shadow stack A is in-use, and the proposed shadow stack B contains a shadow stack restore
token at address B - 8. An RSTORSSP instruction is then executed with the operand pointing to the
restore token.

The RSTORSSP instruction checks the restore token for validity, copies the previous SSP to the token,
sets bit 1 of the token and sets the new value of SSP to address B. Shadow stack B is now ready for use.

Next, a SAVEPREVSSP instruction is executed to facilitate a later return to shadow stack A (using a
subsequent RSTORSSP instruction, not shown). The SAVEPREVSSP instruction copies the token to
address A - 8 and clears token bit 1, then pops the old token from shadow stack B.

For detailed RSTORSSP and SAVEPREVSSP algorithms refer to the instruction descriptions in APM
Volume 3.

18.11 Shadow Stack Management Instructions
When shadow stacks are enabled, the following instructions are available to software for use in
managing shadow stacks. Except for RDSSP, attempting to execute these instructions when shadow
stacks are disabled results in a #UD exception. RDSSP is treated as a NOP when shadow stacks are
disabled. For more information refer to the detailed instruction descriptions in APM volume 3.

Table 18-2. Shadow Stack Management Instructions
Mnemonic Name Description

CLRSSBSY Clear Shadow Stack
Busy

Validates a shadow stack token and clears its busy bit. This is a
privileged instruction.

INCSSP Increment Shadow
Stack Pointer

Increment SSP by ‘n’ stack frames. Used to pop unneeded items
from a shadow stack.

RDSSP Read Shadow Stack
Pointer

Read the SSP into a GPR. Treated as a NOP if shadow stacks are
disabled.

RSTORSSP Restore Shadow
Stack Pointer

Used to switch shadow stacks. Expects a ‘shadow stack restore
token’ at the top of the new shadow stack. Upon validating this
token, sets the token’s busy bit and sets SSP to the top of the new
shadow stack.

SAVEPREVSSP
Save Previous
Shadow Stack
Pointer

Copies a ‘previous SSP token’ from the current shadow stack
back to the previous stack for later use by an RSTORSSP
instruction.

[AMD Public Use]

Shadow Stacks 649

24593—Rev. 3.37—March 2021 AMD64 Technology

18.12 Shadow Stack MSRs
The following MSRs are defined if the shadow stack feature is supported as indicated by CPUID Fn
0000_0007_0 ECX[CET_SS] (bit 7) = 1:

U_CET. MSR 0x6A0. Specifies the user mode shadow stack controls. The individual fields are as
follows:

• Bit 0 - SH_STK_EN. When set to 1, enables the shadow stacks in user mode.
• Bit 1 - WR_SHSTK_EN. When set to 1, enables the WRSS instruction is user mode.
• Bits 63:2 – reserved, MBZ

S_CET. MSR 0x6A2. Specifies the supervisor mode shadow stack controls.

• Bit 0 - SH_STK_EN. When set to 1, enables the shadow stacks in supervisor mode.
• Bit 1 - WR_SHSTK_EN. When set to 1, enables the WRSS instruction is supervisor mode.
• Bits 63:2 – reserved, MBZ

PL0_SSP. MSR 0x6A4. Specifies the linear address to be loaded into SSP on the next transition to
CPL=0. The linear address must be in canonical format and aligned to 4 bytes when initializing this
register.

PL1_SSP. MSR 0x6A5. Specifies the linear address to be loaded into SSP on the next transition to
CPL=1. The linear address must be in canonical format and aligned to 4 bytes when initializing this
register.

PL2_SSP. MSR 0x6A6. Specifies the linear address to be loaded into SSP on the next transition to
CPL=2. The linear address must be in canonical format and aligned to 4 bytes when initializing this
register.

PL3_SSP. MSR 0x6A7. The user mode SSP is saved to and restored from this register. The linear
address must be in canonical format and aligned to 4 bytes when initializing this register.

SETSSBSY Set Shadow Stack
Busy

Validates the shadow stack token pointed to by the PL0_SSP
MSR. If valid, clears the busy bit and sets SSP = PL0_SSP. This
is a privileged instruction.

WRSS Write Shadow Stack Writes the source operand to a shadow stack. This instruction has
associated enable bits in the U_CET and S_CET MSRs

WRUSS Write User Shadow
Stack

Writes the source operand to a user shadow stack. This is a
privileged instruction.

Table 18-2. Shadow Stack Management Instructions (continued)
Mnemonic Name Description

[AMD Public Use]

650 Shadow Stacks

AMD64 Technology 24593—Rev. 3.37—March 2021

ISST_ADDR. MSR 0x6A8. This register specifies the linear address of the Interrupt Shadow Stack
Table (ISST). The linear address must be in canonical format.

18.13 XSAVE/XRSTOR
The XSAVE/XRSTOR instructions can be used to manage the shadow stack registers as processor
extended state components 11 (CET_U state) and 12 (CET_S state) as described below:

• CET_U state. The shadow stack user controls are identified as state component 11 in
XFEATURE_ENABLED_MASK and consist of the two 64-bit MSRs U_CET and PL3_SSP.
Bytes 7:0 in the XSAVE area are used for U_CET and bytes 15:8 are used for PL3_SSP. The
XSAVE area size and offset for the CET_U state are available using CPUID
Fn0000_000D_ECX_x0B (ECX=11).

• CET_S state. The shadow stack supervisor controls are identified as state component 12 in
XFEATURE_ENABLED_MASK and consist of the three 64-bit MSRs PL0_SSP, PL1_SSP and
PL2_SSP. Bytes 7:0 in the XSAVE area are used for PL0_SSP, bytes 15:8 are used for PL2_SSP
and bytes 23:16 are used for PL3_SSP. The XSAVE area size and offset for the CET_S state are
available using CPUID Fn0000_000D_ECX_x0C (ECX=12).

The CET_U and CET_S state components are managed by XSAVE/XRSTOR by setting bits 11 and 12
respectively in XFEATURE_ENABLE_MASK. See Section 11.5.2,
“XFEATURE_ENABLED_MASK,” on page 339 for more details. When restoring CET_U and
CET_S state, XRSTOR checks for reserved bits and canonicality as described in Section 18.11
“Shadow Stack Management Instructions” on page 648.

System software can enable XSAVES/XRSTORS management of the CET_U and CET_S state
components by setting bits 11 and 12 respectively in the XSS MSR.

[AMD Public Use]

MSR Cross-Reference 651

24593—Rev. 3.37—March 2021 AMD64 Technology

Appendix A MSR Cross-Reference

This appendix lists the MSRs that are defined in the AMD64 architecture. The AMD64 architecture
supports some of the same MSRs as previous versions of the x86 architecture and implementations
thereof. Where possible, the AMD64 architecture supports the same MSRs, for the same functions, as
these previous architectures and implementations.

The first section lists the MSRs according to their MSR address, and it gives a cross reference for
additional information. The remaining sections list the MSRs by their functional group. Those sections
also give a brief description of the register and specify the register reset value.

Some MSRs are implementation-specific For information about these MSRs, see the documentation
for specific implementations of the AMD64 architecture.

A.1 MSR Cross-Reference by MSR Address
Table A-1 lists the MSRs in the AMD64 architecture in order of MSR address.

Table A-1. MSRs of the AMD64 Architecture

MSR Address MSR Name Functional
Group Cross-Reference

0010h TSC Performance “Time-Stamp Counter” on page 397
001Bh APIC_BASE System Software “Local APIC Enable” on page 593

0048h SPEC_CTRL Speculation
Control “Speculation Control MSRs” on page 66

0049h PRED_CMD Speculation
Control “Speculation Control MSRs” on page 66

00E7h MPERF Performance “Determining Processor Effective Frequency” on
page 632

00E8h APERF Performance “Determining Processor Effective Frequency” on
page 632

00FEh MTRRcap Memory Typing “Identifying MTRR Features” on page 213
0174h SYSENTER_CS

System Software “SYSENTER and SYSEXIT MSRs” on page 1710175h SYSENTER_ESP
0176h SYSENTER_EIP

0179h MCG_CAP

Machine Check

“Machine-Check Global-Capabilities Register” on
page 290

017Ah MCG_STATUS “Machine-Check Global-Status Register” on page 291

017Bh MCG_CTL “Machine-Check Global-Control Register” on
page 292

01D9h DebugCtl Software Debug “Debug-Control MSR (DebugCtl)” on page 381

[AMD Public Use]

652 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.37—March 2021

01DBh LastBranchFromIP

Software Debug “Control-Transfer Recording MSRs” on page 383
01DCh LastBranchToIP
01DDh LastIntFromIP
01DEh LastIntToIP
0200h MTRRphysBase0

Memory Typing “Variable-Range MTRRs” on page 210

0201h MTRRphysMask0
0202h MTRRphysBase1
0203h MTRRphysMask1
0204h MTRRphysBase2
0205h MTRRphysMask2
0206h MTRRphysBase3
0207h MTRRphysMask3
0208h MTRRphysBase4
0209h MTRRphysMask4
020Ah MTRRphysBase5
020Bh MTRRphysMask5
020Ch MTRRphysBase6
020Dh MTRRphysMask6
020Eh MTRRphysBase7
020Fh MTRRphysMask7
0250h MTRRfix64K_00000

Memory Typing “Fixed-Range MTRRs” on page 208

0258h MTRRfix16K_80000
0259h MTRRfix16K_A0000
0268h MTRRfix4K_C0000
0269h MTRRfix4K_C8000
026Ah MTRRfix4K_D0000
026Bh MTRRfix4K_D8000
026Ch MTRRfix4K_E0000
026Dh MTRRfix4K_E8000
026Eh MTRRfix4K_F0000
026Fh MTRRfix4K_F8000
0277h PAT

Memory Typing
“PAT Register” on page 216

02FFh MTRRdefType “Default-Range MTRRs” on page 212
0400h + 4i MCi_CTL Machine Check

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name Functional
Group Cross-Reference

[AMD Public Use]

MSR Cross-Reference 653

24593—Rev. 3.37—March 2021 AMD64 Technology

0400h MC0_CTL

Machine Check See the documentation for particular implementations
of the architecture.

0404h MC1_CTL
0408h MC2_CTL
040Ch MC3_CTL
0410h MC4_CTL
0414h MC5_CTL
0401h MC0_STATUS

Machine Check “Machine-Check Status Registers” on page 295

0405h MC1_STATUS
0409h MC2_STATUS
040Dh MC3_STATUS
0411h MC4_STATUS
0415h MC5_STATUS
0402h MC0_ADDR

Machine Check “Machine-Check Address Registers” on page 298

0406h MC1_ADDR
040Ah MC2_ADDR
040Eh MC3_ADDR
0412h MC4_ADDR
0416h MC5_ADDR
0403h MC0_MISC

Machine Check “Machine-Check Miscellaneous-Error Information
Register 0(MCi_MISC0)” on page 298

0407h MC1_MISC
040Bh MC2_MISC
040Fh MC3_MISC
0413h MC4_MISC
0417h MC5_MISC
06A0h U_CET

Shadow Stack “Shadow Stack MSRs” on page 667.

06A2h S_CET
06A4h PL0_SSP
06A5h PL1_SSP
06A6h PL2_SSP
06A7h PL3_SSP
06A8h ISST_ADDR

0DA0h XSS - XSAVES and XSTRORS instructions in APM volume
4.

C000_0080h EFER System Software “Extended Feature Enable Register (EFER)” on
page 56

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name Functional
Group Cross-Reference

[AMD Public Use]

654 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.37—March 2021

C000_0081h STAR System Software

“SYSCALL and SYSRET MSRs” on page 170
C000_0082h LSTAR System Software
C000_0083h CSTAR System Software
C000_0084h SF_MASK System Software
C000_00E7h MPerfReadOnly Performance “MPERF Read-only (MperfReadOnly)” on page 634
C000_00E8h APerfReadOnly Performance “APERF Read-only (AperfReadOnly)” on page 634

C000_00E9h IRPerfCount Performance “Instructions Retired Performance counter” on
page 396

C000_0100h FS.Base System Software
“FS and GS Registers in 64-Bit Mode” on page 80

C000_0101h GS.Base System Software
C000_0102h KernelGSbase System Software “SWAPGS Instruction” on page 171
C000_0103h TSC_AUX System Software “RDTSCP Instruction” on page 174
C000_0104h TSC Ratio SVM see “TSC Ratio MSR (C000_0104h)” on page 558

C000_0108h PrefetchControl —

Controls enabling / disabling hardware prefetchers.
See appropriate BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference (PPR)
Manual for details.

C000_0408h MC4_MISC1

Machine Check

“Machine-Check Miscellaneous-Error Information
Register 0(MCi_MISC0)” on page 298C000_0409h MC4_MISC2

C000_040Ah MC4_MISC3

C000_0410h McalntrCfg

MCA related interrupt configuration. See appropriate
BIOS and Kernel Developer’s Guide (BKDG) or
Processor Programming Reference (PPR) Manual for
details.

C001_0000h PerfEvtSel0

Performance “Core Performance Event-Select Registers” on
page 392

C001_0001h PerfEvtSel1
C001_0002h PerfEvtSel2
C001_0003h PerfEvtSel3
C001_0004h PerfCtr0

Performance “Performance Counter MSRs” on page 391
C001_0005h PerfCtr1
C001_0006h PerfCtr2
C001_0007h PerfCtr3

C001_0010h SYSCFG Memory Typing “System Configuration Register (SYSCFG)” on
page 61

C001_0015h HWCR System Software “Hardware Configuration Register (HWCR)” on
page 70

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name Functional
Group Cross-Reference

[AMD Public Use]

MSR Cross-Reference 655

24593—Rev. 3.37—March 2021 AMD64 Technology

C001_0016h IORRBase0

Memory Typing “IORRs” on page 222
C001_0017h IORRMask0
C001_0018h IORRBase1
C001_0019h IORRMask1
C001_001Ah TOP_MEM

Memory Typing “Top of Memory” on page 224
C001_001Dh TOP_MEM2
C001_0030h

Processor_Name_String CPUID Name
See appropriate BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference
Manual for details.

C001_0031h
C001_0032h
C001_0033h
C001_0034h
C001_0035h

C001_0056h SMI_Trigger_IO_Cycle SMM
See appropriate BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference
Manual for details.

C001_0061h P-State Current Limit
SMM “Hardware Performance Monitoring and Control” on

page 629C001_0062h P-State Control
C001_0063h P-State Status
C001_0074h CPU_Watchdog_Timer Machine Check “CPU Watchdog Timer Register” on page 292
C001_0104h TSC Ratio SVM “TSC Ratio MSR (C000_0104h)” on page 558
C001_0111h SMBASE

SMM
“SMBASE Register” on page 309

C001_0112h SMM_ADDR
“SMRAM Protected Areas” on page 315

C001_0113h SMM_MASK
C001_0114h VM_CR SVM “SVM Related MSRs” on page 556
C001_0115h IGNNE SVM “SVM Related MSRs” on page 556
C001_0116h SMM_CTL SVM “SVM Related MSRs” on page 556
C001_0117h VM_HSAVE_PA SVM “SVM Related MSRs” on page 556
C001_0118h SVM_KEY_MSR SVM “SVM-Lock” on page 559
C001_0119h SMM_KEY_MSR SMM “SMM-Lock” on page 560

C001_011Ah Local_SMI_Status SMM
See appropriate BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference
Manual for details.

C001_011Bh Doorbell Register SVM “Doorbell Register” on page 553
C001_011Eh VMPAGE_FLUSH SVM “Secure Encrypted Virtualization” on page 561

C001_011Fh VIRT_SPEC_CTRL Speculation
Control “Speculation Control MSRs” on page 66

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name Functional
Group Cross-Reference

[AMD Public Use]

656 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.37—March 2021

C001_0130h GHCB SVM “Guest-HV Communication Block" (see “GHCB” on
page 573)

C001_0131h SEV_STATUS SVM "SEV_STATUS MSR" (see “SEV_STATUS MSR” on
page 567)

C001_0132h RMP_BASE SVM "Initializing the RMP" (see “Initializing the RMP” on
page 578)

C001_0133h RMP_END SVM "Initializing the RMP" (see “Initializing the RMP” on
page 578)

C001_0140h OSVW_ID_Length
OSVW “OS-Visible Workarounds” on page 693

C001_0141h OSVW Status

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name Functional
Group Cross-Reference

[AMD Public Use]

MSR Cross-Reference 657

24593—Rev. 3.37—March 2021 AMD64 Technology

C001_0200h PerfEvtSel0

Performance

“Core Performance Event-Select Registers” on
page 392

C001_0202h PerfEvtSel1
C001_0204h PerfEvtSel2
C001_0206h PerfEvtSel3
C001_0208h PerfEvtSel4
C001_020Ah PerfEvtSel5
C001_0201h PerfCtr0

“Performance Counter MSRs” on page 391

C001_0203h PerfCtr1
C001_0205h PerfCtr2
C001_0207h PerfCtr3
C001_0209h PerfCtr4
C001_020Bh PerfCtr5
C001_0230h L2I_PerfEvtSel0

“Performance-Monitoring MSRs” on page 663

C001_0232h L2I_PerfEvtSel1
C001_0234h L2I_PerfEvtSel2
C001_0236h L2I_PerfEvtSel3
C001_0231h L2I_PerfCtr0
C001_0233h L2I_PerfCtr1
C001_0235h L2I_PerfCtr2
C001_0237h L2I_PerfCtr3
C001_0240h NB_PerfEvtSel0
C001_0242h NB_PerfEvtSel1
C001_0244h NB_PerfEvtSel2
C001_0246h NB_PerfEvtSel3
C001_0241h NB_PerfCtr0
C001_0243h NB_PerfCtr1
C001_0245h NB_PerfCtr2
C001_0247h NB_PerfCtr3
C001_1019h DR1_ADDR_MASK

Software Debug “Debug Breakpoint Address Masking” on page 390
C001_101Ah DR2_ADDR_MASK
C001_101Bh DR3_ADDR_MASK
C001_1027h DR0_ADDR_MASK

Table A-1. MSRs of the AMD64 Architecture (continued)

MSR Address MSR Name Functional
Group Cross-Reference

[AMD Public Use]

658 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.37—March 2021

A.2 System-Software MSRs
Table A-2 lists the MSRs defined for general use by system software in controlling long mode and in
allowing fast control transfers between applications and the operating system.

Table A-2. System-Software MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

0000_001Bh APIC_BASE
See appropriate BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming
Reference Manual for details.

0000_0000_FEE0_0x00h

C000_0080h EFER Contains control bits that enable extended features
supported by the processor, including long mode. 0000_0000_0000_0000h

C000_0081h STAR
In legacy mode, used to specify the target address
of a SYSCALL instruction, as well as the CS and
SS selectors of the called and returned procedures.

undefined

C000_0082h LSTAR In 64-bit mode, used to specify the target RIP of a
SYSCALL instruction. undefined

C000_0083h CSTAR In compatibility mode, used to specify the target
RIP of a SYSCALL instruction. undefined

C000_0084h SF_MASK SYSCALL Flags Mask undefined

C000_0100h FS.Base
Contains the 64-bit base address in the hidden
portion of the FS register (the base address from
the FS descriptor).

0000_0000_0000_0000h

C000_0101h GS.Base
Contains the 64-bit base address in the hidden
portion of the GS register (the base address from
the GS descriptor).

0000_0000_0000_0000h

C000_0102h KernelGSbase

The SWAPGS instruction exchanges the value in
KernelGSbase with the value in GS.base,
providing a fast method for system software to
load a pointer to system data-structures.

undefined

C000_0103h TSC_AUX The RDTSCP instruction copies the value of this
MSR into the ECX register. 0000_0000_0000_0000h

C000_0104h TSC_RATIO Specifies the TSCRatio value which is used to
scale the TSC value read by a Guest. 0000_0001_0000_0000h

0174h SYSENTER_CS In legacy mode, used to specify the CS selector of
the procedure called by SYSENTER. undefined

0175h SYSENTER_ESP In legacy mode, used to specify the stack pointer
for the procedure called by SYSENTER. undefined

0176h SYSENTER_EIP In legacy mode, used to specify the EIP of the
procedure called by SYSENTER. undefined

[AMD Public Use]

MSR Cross-Reference 659

24593—Rev. 3.37—March 2021 AMD64 Technology

A.3 Memory-Typing MSRs
Table A-3 lists the MSRs used to control memory-typing and the page-attribute-table mechanism.

Table A-3. Memory-Typing MSR Cross-Reference

MSR Address MSR
Name Description Reset Value

00FEh MTRRcap
A read-only register containing information
describing the level of MTRR support
provided by the processor.

0000_0000_0000_0508h

0200h MTRRphysBase0

Specifies the memory-range base address in
physical-address space of a variable-range
memory region. These registers also specify
the memory type used for the memory region.

undefined

0202h MTRRphysBase1
0204h MTRRphysBase2
0206h MTRRphysBase3
0208h MTRRphysBase4
020Ah MTRRphysBase5
020Ch MTRRphysBase6
020Eh MTRRphysBase7
0201h MTRRphysMask0

Specifies the size of a variable-range memory
region.

Valid (bit 11) = 0
All Other Bits Undefined

0203h MTRRphysMask1
0205h MTRRphysMask2
0207h MTRRphysMask3
0209h MTRRphysMask4
020Bh MTRRphysMask5
020Dh MTRRphysMask6
020Fh MTRRphysMask7
0250h MTRRfix64K_00000

Fixed-range MTRRs used to characterize the
first 1 Mbyte of physical memory. Each 64-bit
register contains eight type fields for
characterizing a total of eight memory ranges.
• MTRRfix64K_n characterizes 64 Kbyte

ranges.
• MTRRfix16K_n characterizes 16 Kbyte

ranges.
• MTRRfix4K_n characterizes 4 Kbyte

ranges.

undefined

0258h MTRRfix16K_80000
0259h MTRRfix16K_A0000
0268h MTRRfix4K_C0000
0269h MTRRfix4K_C8000
026Ah MTRRfix4K_D0000
026Bh MTRRfix4K_D8000
026Ch MTRRfix4K_E0000
026Dh MTRRfix4K_E8000
026Eh MTRRfix4K_F0000
026Fh MTRRfix4K_F8000

0277h PAT
Used to extend the page-table entry format,
allowing memory-type characterization on a
physical-page basis.

0007_0406_0007_0406h

[AMD Public Use]

660 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.37—March 2021

02FFh MTRRdefType
Sets the default memory-type for physical
addresses not within ranges established by
fixed-range and variable-range MTRRs.

0000_0000_0000_0000h

C001_0010h SYSCFG Contains control bits for enabling and
configuring system bus features. 0000_0000_0002_0601h

C001_0016h IORRBase0 Specifies the memory-range base address in
physical-address space of a variable-range I/O
region.

undefined
C001_0018h IORRBase1

C001_0017h IORRMask0 Specifies the size of a variable-range I/O
region.

Valid (bit 11) = 0
All Other Bits UndefinedC001_0019h IORRMask1

C001_001Ah TOP_MEM
Sets the boundary between system memory
and memory-mapped I/O for addresses below
4 Gbytes.

0000_0000_0400_0000h

C001_001Dh TOP_MEM2
Sets the boundary between system memory
and memory-mapped I/O for addresses above 4
Gbytes.

undefined

Table A-3. Memory-Typing MSR Cross-Reference (continued)

MSR Address MSR
Name Description Reset Value

[AMD Public Use]

MSR Cross-Reference 661

24593—Rev. 3.37—March 2021 AMD64 Technology

A.4 Machine-Check MSRs
Table A-4 lists the MSRs used in support of the machine-check mechanism.

Table A-4. Machine-Check MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

0179h MCG_CAP
A read-only register that specifies the
machine-check mechanism capabilities
supported by the processor.

0000_0000_0000_010xh

017Ah MCG_STATUS
Provides basic information about the
processor state immediately after the
occurrence of a machine-check error.

undefined

017Bh MCG_CTL Controls global reporting of machine-check
errors from various sources. 0000_0000_0000_0000h

0400h MC0_CTL Controls error reporting for the data-cache-
unit register bank. 0000_0000_0000_0000h

0404h MC1_CTL Controls error reporting for the instruction-
cache-unit register bank. 0000_0000_0000_0000h

0408h MC2_CTL Controls error reporting for the bus-unit
register bank. 0000_0000_0000_0000h

040Ch MC3_CTL Controls error reporting for the load/store-unit
register bank. 0000_0000_0000_0000h

0410h MC4_CTL Controls error reporting for the northbridge
register bank. 0000_0000_0000_0000h

0414h MC5_CTL Controls error reporting for the execution unit
register bank. 0000_0000_0000_0000h

0400h + 4i MCi_CTL Control for additional error reporting banks,
per implementation. See BKDG/PPR

0401h MC0_STATUS

Status registers for each error-reporting
register bank, used to report machine-check
error information for the specified register
bank.

undefined

0405h MC1_STATUS
0409h MC2_STATUS
040Dh MC3_STATUS
0411h MC4_STATUS
0415h MC5_STATUS
0402h MC0_ADDR

Reports the instruction memory-address or
data memory-address responsible for the
machine-check error for the specified register
bank.

undefined

0406h MC1_ADDR
040Ah MC2_ADDR
040Eh MC3_ADDR
0412h MC4_ADDR
0416h MC5_ADDR

[AMD Public Use]

662 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.37—March 2021

A.5 Software-Debug MSRs
Table A-5 lists the MSRs used in support of the software-debug architecture.

0403h MC0_MISC

Reports miscellaneous information about the
machine-check error for the specified register
bank.

c00x_xxxx_xx00_0000

0407h MC1_MISC
040Bh MC2_MISC
040Fh MC3_MISC
0413h MC4_MISC
0417h MC5_MISC

C000_0408h MC4_MISC1
c00x_xxxx_0000_0000C000_0409h MC4_MISC2

C000_040Ah MC4_MISC3
C000_0410h McalntrCfg MCA related interrupt configuration. 0000_0000_0000_0000h

C001_0074h CPU_Watchdog_Timer
Timer that can cause a machine check error if
no operation completes after a specified time
period.

0000_0000_0000_0000h

Table A-5. Software-Debug MSR Cross-Reference

MSR Address MSR
Name Description Reset Value

01D9h DebugCtl

Provides debug controls for control-transfer
recording and control-transfer single stepping,
and external-breakpoint reporting and trace
messages.

0000_0000_0000_0000h

01DBh LastBranchFromIP
During control-transfer recording, this register is
loaded with the segment offset of the control-
transfer source.

undefined

01DCh LastBranchToIP
During control-transfer recording, this register is
loaded with the segment offset of the control-
transfer target.

undefined

01DDh LastIntFromIP

When an interrupt occurs during control-transfer
recording, this register is loaded with
LastBranchFromIP before LastBranchFromIP is
updated.

undefined

01DEh LastIntToIP

When an interrupt occurs during control-transfer
recording, this register is loaded with
LastBranchToIP before LastBranchToIP is
updated.

undefined

Table A-4. Machine-Check MSR Cross-Reference (continued)
MSR

Address
MSR
Name Description Reset Value

[AMD Public Use]

MSR Cross-Reference 663

24593—Rev. 3.37—March 2021 AMD64 Technology

A.6 Performance-Monitoring MSRs
Table A-6 lists the MSRs used in support of performance monitoring, including the time-stamp
counter.

C000_1027h DR0_ADDR_MASK Address mask for DR0 breakpoint [31:0] 0000_0000_0000_0000h
C000_1019h DR1_ADDR_MASK Address mask for DR1 breakpoint [31:0] 0000_0000_0000_0000h
C000_101Ah DR2_ADDR_MASK Address mask for DR2 breakpoint [31:0] 0000_0000_0000_0000h
C000_101Bh DR3_ADDR_MASK Address mask for DR3 breakpoint [31:0] 0000_0000_0000_0000h

Table A-6. Performance-Monitoring MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

0010h TSC Counts processor-clock cycles. It is incremented
once for each processor-clock cycle. 0000_0000_0000_0000h

00E7h MPERF Denominator of effective frequency ratio. 0000_0000_0000_0000h
00E8h APERF Numerator of effective frequency ratio. 0000_0000_0000_0000h

C000_00E7h MPerfReadOnly Read only version of MPERF.

0000_0000_0000_0000hC000_00E8h APerfReadOnly Read only version of APERF.

C000_00E9h IRPerfCount Dedicated instructions retired performance
counter.

C001_0000h PerfEvtSel0
For the corresponding performance counter, this
register specifies the events counted, and controls
other aspects of counter operation.

0000_0000_0000_0000h
C001_0001h PerfEvtSel1
C001_0002h PerfEvtSel2
C001_0003h PerfEvtSel3
C001_0004h PerfCtr0

Used to count specific processor events, or the
duration of events, as specified by the
corresponding PerfEvtSeln register.

undefined
C001_0005h PerfCtr1
C001_0006h PerfCtr2
C001_0007h PerfCtr3
C001_0200h PerfEvtSel0

These MSR addresses are aliases for the base set
of performance event-select registers
PerfEvtSel[3:0].

0000_0000_0000_0000h

C001_0202h PerfEvtSel1
C001_0204h PerfEvtSel2
C001_0206h PerfEvtSel3
C001_0208h PerfEvtSel4 Extended core performance event-select registers.

Support for these MSRs is indicated by CPUID
Fn8000_0001_ECX[PerfCtrExtCore] = 1.C001_020Ah PerfEvtSel5

Table A-5. Software-Debug MSR Cross-Reference (continued)

MSR Address MSR
Name Description Reset Value

[AMD Public Use]

664 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.37—March 2021

A.7 Secure Virtual Machine MSRs
Table A-7 lists the MSRs used in support of SVM functions.

C001_0201h PerfCtr0
These MSR addresses are aliases for the base set
of performance-monitoring counter registers
PerfCtr[3:0].

undefined

C001_0203h PerfCtr1
C001_0205h PerfCtr2
C001_0207h PerfCtr3
C001_0209h PerfCtr4 Extended core performance counter registers.

Support for these MSRs is indicated by CPUID
Fn8000_0001_ECX[PerfCtrExtCore] = 1.C001_020Bh PerfCtr5

C001_0230h L2I_PerfEvtSel0 Specifies the L2 cache events to be counted and
controls other aspects of counter operation.
Support for these MSRs is indicated by CPUID
Fn8000_0001_ECX[PerfCtrExtL2I] = 1.

0000_0000_0000_0000h
C001_0232h L2I_PerfEvtSel1
C001_0234h L2I_PerfEvtSel2
C001_0236h L2I_PerfEvtSel3
C001_0231h L2I_PerfCtr0 Counts specific L2 cache events as specified by

the corresponding L2I_PerfEvtSeln Register.
Support for these MSRs is indicated by CPUID
Fn8000_0001_ECX[PerfCtrExtL2I] = 1.

undefined
C001_0233h L2I_PerfCtr1
C001_0235h L2I_PerfCtr2
C001_0237h L2I_PerfCtr3
C001_0240h NB_PerfEvtSel0 Specifies northbridge events to be counted and

controls other aspects of counter operation.
Support for these MSRs is indicated by CPUID
Fn8000_0001_ECX[PerfCtrExtNB] = 1.

0000_0000_0000_0000h
C001_0242h NB_PerfEvtSel1
C001_0244h NB_PerfEvtSel2

C001_0246h NB_PerfEvtSel3

C001_0241h NB_PerfCtr0 Counts specific northbridge events as specified by
the corresponding NB_PerfEvtSeln Register.
Support for these MSRs is indicated by CPUID
Fn8000_0001_ECX[PerfCtrExtNB] = 1.

undefined
C001_0243h NB_PerfCtr1
C001_0245h NB_PerfCtr2
C001_0247h NB_PerfCtr3

Table A-7. Secure Virtual Machine MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

C000_0104h TSC Ratio Ratio for scaling TSC, MPERF, and
MPerfReadOnly values read by guest.

C001_0114h VM_CR Controls certain global aspects of SVM. undefined

C001_0115h IGNNE Sets the state of the processor-internal
IGNNE signal.

Table A-6. Performance-Monitoring MSR Cross-Reference (continued)
MSR

Address
MSR
Name Description Reset Value

[AMD Public Use]

MSR Cross-Reference 665

24593—Rev. 3.37—March 2021 AMD64 Technology

C001_0116h SMM_CTL Provides software control over SMM
signals.

C001_0117h VM_HSAVE_PA

Holds the physical address of a block of
memory where VMRUN saves host state,
and from which #VMEXIT reloads host
state.

C001_0118h SVM_KEY Creates a password-protected mechanism
to clear VM_CR.LOCK.

C001_011Bh Doorbell Register Sends a doorbell signal to the specified
physical APIC.

C001_011E VMPAGE_FLUSH “Secure Encrypted Virtualization” on
page 561

C001_0130 GHCB Guest-HV Communication Block address
(see section 15.35.7)

C001_0131 SEV_STATUS SEV active features indication (see
section 15.35.10)

C001_0132 RMP_BASE Base address of RMP (see 15.36.4) 0000_0000_0000_0000h
C001_0133 RMP_END Ending address of RMP (see 15.36.4) 0000_0000_0000_0000h

Table A-7. Secure Virtual Machine MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

[AMD Public Use]

666 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.37—March 2021

A.8 System Management Mode MSRs
Table A-8 lists the MSRs used in support of SMM functions.

A.9 CPUID Name MSR Cross-Reference
Table A-9 lists the MSRs used to support CPUID namestring.

Table A-8. System Management Mode MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

C001_0056h SMI_Trigger_IO_Cycle

Specifies an IO cycle that may be generated
when a local SMI trigger event occurs. See
the appropriate BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming
Reference Manual for details.

0000_0000_0000_0000h

C001_0061h P-State Current Limit
C001_0062h P-State Control
C001_0063h P-State Status
C001_0111h SMBASE Contains the SMRAM base address. 0000_0000_0003_0000h

C001_0112h SMM_ADDR Contains the base address of protected
memory for the SMM Handler. 0000_0000_0000_0000h

C001_0113h SMM_MASK Contains a mask which determines the size of
the protected area for the SMM handler. 0000_0000_0000_0000h

C001_0119h SMM_KEY_MSR

C001_011Ah Local_SMI_Status

Contains status associated with SMI sources
local to the CPU core. See the appropriate
BIOS and Kernel Developer’s Guide (BKDG)
or Processor Programming Reference
Manual for details.

0000_0000_0000_0000h

Table A-9. CPUID Namestring MSR Cross Reference
MSR

Address
MSR
Name Description Reset Value

C001_0030h

Processor_Name_String

See appropriate BIOS and Kernel
Developer’s Guide (BKDG) or Processor
Programming Reference Manual and
Processor Revision Guide.

0000_0000_0000_0000h

C001_0031h
C001_0032h
C001_0033h
C001_0034h
C001_0035h

[AMD Public Use]

MSR Cross-Reference 667

24593—Rev. 3.37—March 2021 AMD64 Technology

A.10 Shadow Stack MSRs
Table A-10 lists the MSRs that support the shadow stack feature. These registers are defined if the
shadow stack feature is present as indicated by CPUID Fn0000_0007_x0_ECX[CET_SS] (bit 7) =1.

A.11 Speculation Control MSRs
Table A-11 lists the MSRs that support speculation control. See “Speculation Control MSRs” on
page 66 for further details, including how to determine whether these registers are defined.

Table A-10. Shadow Stack MSR Cross Reference
MSR

Address
MSR
Name Description Reset Value

06A0h U_CET User-mode shadow stack controls

0000_0000_0000_0000h

06A2h S_CET Supervisor-mode shadow stack controls
06A4h PL0_SSP CPL 0 shadow stack pointer
06A5h PL1_SSP CPL 1 shadow stack pointer
06A6h PL2_SSP CPL 2 shadow stack pointer
06A7h PL3_SSP CPL 3 shadow stack pointer

06A8h ISST_ADDR Contains the base address of the Interrupt
SSP Table

Table A-11. Speculation Control MSRs
MSR

Address
MSR
Name Description Reset Value

0048h SPEC_CTRL Speculation Control
0000_0000_0000_0000h

0049h PRED_CMD Prediction Control
C000_011Fh VIRT_SPEC_CTRL Virtual Speculation Control

[AMD Public Use]

668 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Layout of VMCB 669

24593—Rev. 3.37—March 2021 AMD64 Technology

Appendix B Layout of VMCB

The VMCB is divided into two areas—the first one contains various control bits including the
intercept vectors and the second one contains saved guest state.

Table B-1 describes the layout of the control area of the VMCB, which starts at offset zero within the
VMCB page. The control area is padded to a size of 1024 bytes. All unused bytes must be zero, as they
are reserved for future expansion. It is recommended that software zero out any newly allocated
VMCB.

Table B-1. VMCB Layout, Control Area
Byte Offset Bit(s) Function

000h (vector 0)
15:0 Intercept reads of CR0–15, respectively.
31:16 Intercept writes of CR0–15, respectively.

004h (vector 1)
15:0 Intercept reads of DR0–15, respectively.
31:16 Intercept writes of DR0–15, respectively.

008h (vector 2) 31:0 Intercept exception vectors 0–31, respectively.

00Ch (vector 3)

0 Intercept INTR (physical maskable interrupt).
1 Intercept NMI.
2 Intercept SMI.
3 Intercept INIT.
4 Intercept VINTR (virtual maskable interrupt).

5 Intercept CR0 writes that change bits other than CR0.TS or
CR0.MP.

6 Intercept reads of IDTR.
7 Intercept reads of GDTR.
8 Intercept reads of LDTR.
9 Intercept reads of TR.
10 Intercept writes of IDTR.
11 Intercept writes of GDTR.
12 Intercept writes of LDTR.
13 Intercept writes of TR.
14 Intercept RDTSC instruction.
15 Intercept RDPMC instruction.

[AMD Public Use]

670 Layout of VMCB

AMD64 Technology 24593—Rev. 3.37—March 2021

00Ch (continued)

16 Intercept PUSHF instruction.
17 Intercept POPF instruction.
18 Intercept CPUID instruction.
19 Intercept RSM instruction.
20 Intercept IRET instruction.
21 Intercept INTn instruction.
22 Intercept INVD instruction.
23 Intercept PAUSE instruction.
24 Intercept HLT instruction.
25 Intercept INVLPG instruction.
26 Intercept INVLPGA instruction.
27 IOIO_PROT—Intercept IN/OUT accesses to selected ports.

28 MSR_PROT—intercept RDMSR or WRMSR accesses to
selected MSRs.

29 Intercept task switches.

30 FERR_FREEZE: intercept processor “freezing” during
legacy FERR handling.

31 Intercept shutdown events.

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

[AMD Public Use]

Layout of VMCB 671

24593—Rev. 3.37—March 2021 AMD64 Technology

010h (vector 4)

0 Intercept VMRUN instruction.
1 Intercept VMMCALL instruction.
2 Intercept VMLOAD instruction.
3 Intercept VMSAVE instruction.
4 Intercept STGI instruction.
5 Intercept CLGI instruction.
6 Intercept SKINIT instruction.
7 Intercept RDTSCP instruction.
8 Intercept ICEBP instruction.
9 Intercept WBINVD and WBNOINVD instructions.
10 Intercept MONITOR/MONITORX instruction.
11 Intercept MWAIT/MWAITX instruction unconditionally.

12 Intercept MWAIT/MWAITX instruction if monitor hardware
is armed.

13 Intercept XSETBV instruction.
14 Intercept RDPRU instruction.

15 Intercept writes of EFER (occurs after guest instruction
finishes).

31:16 Intercept writes of CR0-15 (occurs after guest instruction
finishes).

014h (vector 5)

0 Intercept all INVLPGB instructions.
1 Intercept only illegally specified INVLPGB instructions.
2 Intercept PCID instruction.
3 Intercept MCOMMIT instruction.

4 Intercept TLBSYNC instruction. Presence of this bit is
indicated by CPUID Fn8000_000A, EDX[24] = 1.

31:5 RESERVED, SBZ
018h–03Bh RESERVED, SBZ
03Ch 15:0 PAUSE Filter Threshold.
03Eh 15:0 PAUSE Filter Count.

040h 63:0 IOPM_BASE_PA—Physical base address of IOPM (bits 11:0
are ignored.)

048h 63:0 MSRPM_BASE_PA—Physical base address of MSRPM
(bits 11:0 are ignored.)

050h 63:0 TSC_OFFSET—To be added in RDTSC and RDTSCP.

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

[AMD Public Use]

672 Layout of VMCB

AMD64 Technology 24593—Rev. 3.37—March 2021

058h

31:0 Guest ASID

39:32

TLB_CONTROL
00h—Do nothing.
01h—Flush entire TLB (all entries, all ASIDs) on VMRUN.
Should only be used by legacy hypervisors.
03h—Flush this guest’s TLB entries.
07h—Flush this guest’s non-global TLB entries.

NOTE: All other encodings are reserved.

63:40 RESERVED, SBZ

060h

7:0
V_TPR—The virtual TPR for the guest. Bits 3:0 are used for
a 4-bit virtual TPR value; bits 7:4 are SBZ.

NOTE: This value is written back to the VMCB at #VMEXIT.

8
V_IRQ—If nonzero, virtual INTR is pending.

NOTE: This value is written back to the VMCB at #VMEXIT.
This field is ignored on VMRUN when AVIC is enabled.

9 VGIF value (0 – Virtual interrupts are masked, 1 – Virtual
Interrupts are unmasked)

15:10 RESERVED, SBZ

19:16 V_INTR_PRIO—Priority for virtual interrupt
NOTE: This field is ignored on VMRUN when AVIC is enabled.

20
V_IGN_TPR—If nonzero, the current virtual interrupt
ignores the (virtual) TPR.

NOTE: This field is ignored on VMRUN when AVIC is enabled.

23:21 RESERVED, SBZ

24 V_INTR_MASKING—Virtualize masking of INTR
interrupts (“Virtualizing APIC.TPR” on page 508).

25 AMD Virtual GIF enabled for this guest (0 - Disabled, 1 -
Enabled)

30:26 Reserved, SBZ
31 AVIC Enable

39:32 V_INTR_VECTOR—Vector to use for this interrupt.
NOTE: This field is ignored on VMRUN when AVIC is enabled.

63:40 RESERVED, SBZ

068h

0 INTERRUPT_SHADOW - Guest is in an interrupt shadow

1

GUEST_INTERRUPT_MASK - Value of the RFLAGS.IF
bit for the guest.

Note: This value is written back to the VMCB on #VMEXIT. It is
not used during VMRUN

63:2 RESERVED, SBZ
070h 63:0 EXITCODE
078h 63:0 EXITINFO1

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

[AMD Public Use]

Layout of VMCB 673

24593—Rev. 3.37—March 2021 AMD64 Technology

080h 63:0 EXITINFO2
088h 63:0 EXITINTINFO

090h

0 NP_ENABLE—Enable nested paging.
1 Enable Secure Encrypted Virtualization
2 Enable Encrypted State for Secure Encrypted Virtualization
3 Guest Mode Execute Trap

4
SSSCheckEn - Enable supervisor shadow stack restrictions in
nested page tables. Support for this feature is indicated by
CPUID Fn8000_000A_EDX[19] (SSSCheck).

5 Virtual Transparent Encryption

7

Enable INVLPGB/TLBSYNC.
0 - INVLPGB and TLBSYNC will result in #UD.
1 - INVLPGB and TLBSYNC can be executed in guest.
Presence of this bit is indicated by CPUID bit 8000_000A,
EDX[24] = 1. When in SEV-ES guest or this bit is not
present, INVLPGB/TLBSYNC is always enabled in guest if
supported by processor.

63:8 RESERVED, SBZ

098h
63:52 RESERVED, SBZ
51:0 AVIC APIC_BAR

0A0h 63:0 Guest physical address of GHCB

0A8h 63:0 EVENTINJ—Event injection (“Event Injection” on
page 506 for details.)

0B0h 63:0
N_CR3—Nested page table CR3 to use for nested
paging

0B8h
0

LBR_VIRTUALIZATION_ENABLE
0—Do nothing.
1—Enable LBR virtualization hardware acceleration.

1 Virtualized VMSAVE/VMLOAD (0 –Disabled, 1- Enabled)
63:2 RESERVED, SBZ

0C0h
31:0 VMCB Clean Bits. See “Layout of VMCB Clean Field” on

page 502.
63:32 RESERVED, SBZ

0C8h 63:0 nRIP—Next sequential instruction pointer

0D0h
7:0 Number of bytes fetched
127:8 Guest instruction bytes

0E0h
63:52 RESERVED, SBZ
51:0 AVIC APIC_BACKING_PAGE Pointer

0E8h–0EFh Reserved, SBZ

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

[AMD Public Use]

674 Layout of VMCB

AMD64 Technology 24593—Rev. 3.37—March 2021

When SEV-ES is not enabled, the state-save area within the VMCB starts at offset 400h into the
VMCB page; Table B-2 describes the fields within the state-save area; note that the table lists offsets
relative to the state-save area (not the VMCB as a whole).

0F0h
63:52 RESERVED, SBZ
51:12 AVIC LOGICAL_TABLE Pointer
11:0 Reserved, SBZ

0F8h

63:52 RESERVED, SBZ
51:12 AVIC PHYSICAL_TABLE Pointer[51:12]
11:8 RESERVED, SBZ
7:0 AVIC_PHYSICAL_MAX_INDEX

100h – 107h RESERVED, SBZ

108h
63:52 RESERVED, SBZ
51:12 VMSA Pointer[51:12]
11:0 RESERVED, SBZ

All other fields up to 3FFh RESERVED, SBZ

Table B-2. VMCB Layout, State Save Area
Offset Size Contents Notes

000h word

ES

selector
002h word attrib
004h dword limit
008h qword base Only lower 32 bits are implemented.
010h word

CS

selector
012h word attrib
014h dword limit
018h qword base Only lower 32 bits are implemented.
020h word

SS

selector
022h word attrib
024h dword limit
028h qword base Only lower 32 bits are implemented.
030h word

DS

selector
032h word attrib
034h dword limit
038h qword base Only lower 32 bits are implemented.

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

[AMD Public Use]

Layout of VMCB 675

24593—Rev. 3.37—March 2021 AMD64 Technology

040h word

FS

selector
042h word attrib
044h dword limit
048h qword base
050h word

GS

selector
052h word attrib
054h dword limit
058h qword base
060h word

GDTR

selector reserved
062h word attrib reserved
064h dword limit Only lower 16 bits are implemented.
068h qword base
070h word

LDTR

selector
072h word attrib
074h dword limit
078h qword base
080h word

IDTR

selector reserved
082h word attrib reserved
084h dword limit Only lower 16 bits are implemented.
088h qword base
090h word

TR

selector
092h word attrib
094h dword limit
098h qword base
0A0h–0CAh RESERVED

0CBh byte CPL
If the guest is real-mode then the CPL is forced
to 0; if the guest is virtual-mode then the CPL is
forced to 3.

0CCh dword RESERVED
0D0h qword EFER
0D8h–147h RESERVED
148h qword CR4
150h qword CR3
158h qword CR0
160h qword DR7
168h qword DR6
170h qword RFLAGS

Table B-2. VMCB Layout, State Save Area (continued)
Offset Size Contents Notes

[AMD Public Use]

676 Layout of VMCB

AMD64 Technology 24593—Rev. 3.37—March 2021

When SEV-ES is enabled (Section 15.35 “Encrypted State (SEV-ES)” on page 568), the VMSA
structure starts at offset 0h in the page indicated by the VMSA Pointer. The format of the VM save
state for SEV-ES guests is described in the table below.

178h qword RIP
180h–1D7h RESERVED
1D8h qword RSP
1E0h qword S_CET
1E8h qword SSP
1F0h qword ISST_ADDR
1F8h qword RAX
200h qword STAR
208h qword LSTAR
210h qword CSTAR
218h qword SFMASK
220h qword KernelGsBase
228h qword SYSENTER_CS
230h qword SYSENTER_ESP
238h qword SYSENTER_EIP
240h qword CR2
248h–267h RESERVED
268h qword G_PAT Guest PAT—only used if nested paging enabled.

270h qword DBGCTL

Guest DebugCtl MSR—only used if hardware
acceleration of LBR virtualization is supported
and enabled by setting the
LBR_VIRTUALIZATION_ENABLE bit of the
VMCB control area.

278h qword BR_FROM
Guest LastBranchFromIP MSR—only used if
hardware acceleration of LBR virtualization is
supported and enabled.

280h qword BR_TO
Guest LastBranchToIP MSR—only used if
hardware acceleration of LBR virtualization is
supported and enabled.

288h qword LASTEXCPFROM
Guest LastIntFromIP MSR—Only used if
hardware acceleration of LBR virtualization is
supported and enabled.

298h–2DFh 72 bytes RESERVED
2E0h dword SPEC_CTRL
2E4h to end of VMCB RESERVED

Table B-2. VMCB Layout, State Save Area (continued)
Offset Size Contents Notes

[AMD Public Use]

Layout of VMCB 677

24593—Rev. 3.37—March 2021 AMD64 Technology

All state is categorized into 3 swap types based on how it is handled by hardware during a world
switch:

The format of the host save area is identical to the guest save area described in the table below, except
that it begins at offset 400h in the host save page (e.g., the host TR value is stored at offset 490h
relative to the start of the host save page).

Table B-3. Swap Types
Swap Type Behavior in VMRUN Behavior in AE VMEXIT

A
Host state saved to host save area
Guest state loaded from VMSA

Guest state saved to VMSA
Host state loaded from host save area

B
Guest state loaded from VMSA
(Host state not saved to host save area)

Guest state saved to VMSA
Host state loaded from host save area

C
Guest state loaded from VMSA
(Host state not saved to host save area)

Guest state saved to VMSA
Host state initialized to default (reset) values

Table B-4. VMSA Layout, State Save Area for SEV-ES
Offset Size Content Swap Type Notes

000h 16 bytes ES A
010h 16 bytes CS A
020h 16 bytes SS A
030h 16 bytes DS A
040h 16 bytes FS B
050h 16 bytes GS B
060h 16 bytes GDTR A
070h 16 bytes LDTR B
080h 16 bytes IDTR A
090h 16 bytes TR B
0A0h qword PL0_SSP B
0A8h qword PL1_SSP B
0B0h qword PL2_SSP B
0B8h qword PL3_SSP B
0C0h qword U_CET B
0C8h dword Reserved –

0CAh byte VMPL – Swapped for guest. Not used in
host mode

0CBh byte CPL A
0CCh dword Reserved –

[AMD Public Use]

678 Layout of VMCB

AMD64 Technology 24593—Rev. 3.37—March 2021

0D0h qword EFER A
0D8h-13Fh 104 bytes Reserved –
140h qword XSS B
148h qword CR4 A
150h qword CR3 A
158h qword CR0 A
160h qword DR7 C
168h qword DR6 C
170h qword RFLAGS A
178h qword RIP A
180h qword DR0 B
188h qword DR1 B
190h qword DR2 B
198h qword DR3 B
1A0h qword DR0_ADDR_MASK B
1A8h qword DR1_ADDR_MASK B
1B0h qword DR2_ADDR_MASK B
1B8h qword DR3_ADDR_MASK B
1C0h-1D7h 24 bytes Reserved –
1D8h qword RSP A
1E0h qword S_CET A
1E8h qword SSP A
1F0h qword ISST_ADDR A
1F8h qword RAX A
200h qword STAR B
208h qword LSTAR B
210h qword CSTAR B
218h qword SFMASK B
220h qword KernelGsBase B
228h qword SYSENTER_CS B
230h qword SYSENTER_ESP B
238h qword SYSENTER_EIP B
240h qword CR2 C
248h-267h 32 bytes Reserved –

268h qword G_PAT – Swapped for guest, not used in
host mode

Table B-4. VMSA Layout, State Save Area for SEV-ES (continued)
Offset Size Content Swap Type Notes

[AMD Public Use]

Layout of VMCB 679

24593—Rev. 3.37—March 2021 AMD64 Technology

270h qword DBGCTL A
278h qword BR_FROM A
280h qword BR_TO A
288h qword LASTEXCPFROM A
290h qword LASTEXCPTO A
298h-2DFh 72 bytes Reserved –

2E0h dword G_SPEC_CTRL – Swapped for guest, not used in
host mode

2E4h-2FFh 28 bytes Reserved –
300h qword Reserved –
308h qword RCX B
310h qword RDX B
318h qword RBX B
320h qword Reserved –
328h qword RBP B
330h qword RSI B
338h qword RDI B
340h qword R8 B
348h qword R9 B
350h qword R10 B
358h qword R11 B
360h qword R12 B
368h qword R13 B
370h qword R14 B
378h qword R15 B
380h 16 bytes Reserved –
390h qword GUEST_EXITINFO1 – EXITINFO1 for AE exits.
398h qword GUEST_EXITINFO2 – EXITINFO2 for AE exits.
3A0h qword GUEST_EXITINTINFO – EXITINTINFO for AE exits.

3A8h qword GUEST_NRIP – Next sequential instruction pointer
for AE exits.

Table B-4. VMSA Layout, State Save Area for SEV-ES (continued)
Offset Size Content Swap Type Notes

[AMD Public Use]

680 Layout of VMCB

AMD64 Technology 24593—Rev. 3.37—March 2021

3B0h qword SEV_FEATURES –

Guest-controlled SEV feature
selection.
• Bit 0: SNPActive
• Bit 1: vTOM
• Bit 2: ReflectVC
• Bit 3: RestrictedInjection
• Bit 4: AlternateInjection
• Bit 5: DebugSwap
• Bit 6: PreventHostIBS
• Bit 7: BTBIsolation
• Bits 63:8: Reserved, SBZ

3B8h qword VINTR_CTRL –

Guest-controlled injection control.
• Bits 7:0: V_TPR
• Bit 8: V_IRQ
• Bit 9: VGIF
• Bit 10: INT_SHADOW
• Bits 15:11: Reserved, SBZ
• Bits 19:16: V_INTR_PRIO
• Bit 20: V_IGN_TPR
• Bit 31:21: Reserved, SBZ
• Bit 39:32: V_INTR_VECTOR
• Bit 62:40: Reserved, SBZ
• Bit 63: BUSY

3C0h qword GUEST_EXITCODE – EXITCODE for AE exits.

3C8h qword VIRTUAL_TOM –
Swapped for guest, not used in
host mode. Only bits 51:21 are
observed.

3D0h qword TLB_ID –
3D8h qword PCPU_ID –

3E0h qword EVENTINJ –
Same as the EVENTINJ field in
the VMCB (Table B-1) at offset
0A8h.

3E8h qword XCR0 B
3F0h-3FFh 16 bytes Reserved –
400h qword X87_DP C FP x87 data pointer
408h dword MXCSR C FP MXCSR
40Ch word X87_FTW C FP x87 tag word
40Eh word X87_FSW C FP x87 status word
410h word X87_FCW C FP control word
412h word X87_FOP C FP x87 opcode

Table B-4. VMSA Layout, State Save Area for SEV-ES (continued)
Offset Size Content Swap Type Notes

[AMD Public Use]

Layout of VMCB 681

24593—Rev. 3.37—March 2021 AMD64 Technology

414h word X87_DS C FP x87 DS
416h word X87_CS C FP x87 CS
418h qword X87_RIP C FP x87 RIP
420h-46Fh 80 bytes FPREG_X87 C X87 register state (stack order)
470h-56Fh 256 bytes FPREG_XMM C XMM register state
570h-66Fh 256 bytes FPREG_YMM C YMM_HI register state

Table B-4. VMSA Layout, State Save Area for SEV-ES (continued)
Offset Size Content Swap Type Notes

[AMD Public Use]

682 Layout of VMCB

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

SVM Intercept Exit Codes 683

24593—Rev. 3.37—March 2021 AMD64 Technology

Appendix C SVM Intercept Exit Codes
When the VMRUN instruction exits (back to the host), an exit/reason code is stored in the EXIT-
CODE field in the VMCB. The exit codes are defined in Table C-1. Intercept exit codes 0h–8Dh
equal the bit position of the corresponding flag in the VMCB’s intercept vector.

Table C-1. SVM Intercept Codes
Code Name Cause

0h–Fh VMEXIT_CR[0–15]_READ read of CR 0 through 15, respectively
10h–1Fh VMEXIT_CR[0–15]_WRITE write of CR 0 through 15, respectively
20h–2Fh VMEXIT_DR[0–15]_READ read of DR 0 through 15, respectively
30h–3Fh VMEXIT_DR[0–15]_WRITE write of DR 0 through 15, respectively
40h–5Fh VMEXIT_EXCP[0–31] exception vector 0–31, respectively
60h VMEXIT_INTR physical INTR (maskable interrupt)
61h VMEXIT_NMI physical NMI

62h VMEXIT_SMI physical SMI (the EXITINFO1 field provides more
information)

63h VMEXIT_INIT physical INIT
64h VMEXIT_VINTR virtual INTR

65h VMEXIT_CR0_SEL_WRITE write of CR0 that changed any bits other than CR0.TS or
CR0.MP

66h VMEXIT_IDTR_READ read of IDTR
67h VMEXIT_GDTR_READ read of GDTR
68h VMEXIT_LDTR_READ read of LDTR
69h VMEXIT_TR_READ read of TR
6Ah VMEXIT_IDTR_WRITE write of IDTR
6Bh VMEXIT_GDTR_WRITE write of GDTR
6Ch VMEXIT_LDTR_WRITE write of LDTR
6Dh VMEXIT_TR_WRITE write of TR
6Eh VMEXIT_RDTSC RDTSC instruction
6Fh VMEXIT_RDPMC RDPMC instruction
70h VMEXIT_PUSHF PUSHF instruction
71h VMEXIT_POPF POPF instruction
72h VMEXIT_CPUID CPUID instruction
73h VMEXIT_RSM RSM instruction
74h VMEXIT_IRET IRET instruction
75h VMEXIT_SWINT software interrupt (INTn instructions)
76h VMEXIT_INVD INVD instruction
77h VMEXIT_PAUSE PAUSE instruction
78h VMEXIT_HLT HLT instruction

[AMD Public Use]

684 SVM Intercept Exit Codes

AMD64 Technology 24593—Rev. 3.37—March 2021

79h VMEXIT_INVLPG INVLPG instructions
7Ah VMEXIT_INVLPGA INVLPGA instruction

7Bh VMEXIT_IOIO IN or OUT accessing protected port (the EXITINFO1 field
provides more information)

7Ch VMEXIT_MSR RDMSR or WRMSR access to protected MSR
7Dh VMEXIT_TASK_SWITCH task switch

7Eh VMEXIT_FERR_FREEZE FP legacy handling enabled, and processor is frozen in an
x87/mmx instruction waiting for an interrupt

7Fh VMEXIT_SHUTDOWN Shutdown
80h VMEXIT_VMRUN VMRUN instruction
81h VMEXIT_VMMCALL VMMCALL instruction
82h VMEXIT_VMLOAD VMLOAD instruction
83h VMEXIT_VMSAVE VMSAVE instruction
84h VMEXIT_STGI STGI instruction
85h VMEXIT_CLGI CLGI instruction
86h VMEXIT_SKINIT SKINIT instruction
87h VMEXIT_RDTSCP RDTSCP instruction
88h VMEXIT_ICEBP ICEBP instruction
89h VMEXIT_WBINVD WBINVD or WBNOINVD instruction
8Ah VMEXIT_MONITOR MONITOR or MONITORX instruction
8Bh VMEXIT_MWAIT MWAIT or MWAITX instruction

8Ch VMEXIT_MWAIT_CONDITIONAL MWAIT or MWAITX instruction, if monitor hardware is
armed.

8Eh VMEXIT_RDPRU RDPRU instruction
8Dh VMEXIT_XSETBV XSETBV instruction
8Fh VMEXIT_EFER_WRITE_TRAP Write of EFER MSR (occurs after guest instruction finishes)

90h-9Fh VMEXIT_CR[0-15]_WRITE_TRAP Write of CR0-15, respectively (occurs after guest instruction
finishes)

A0h VMEXIT_INVLPGB INVLPGB instruction
A1h VMEXIT_INVLPGB_ILLEGAL Illegal INVLPGB instruction
A2h VMEXIT_INVPCID INVPCID instruction
A3h VMEXIT_MCOMMIT MCOMMIT instruction
A4h VMEXIT_TLBSYNC TLBSYNC instruction

400h VMEXIT_NPF
Nested paging: host-level page fault occurred (EXITINFO1
contains fault error code; EXITINFO2 contains the guest
physical address causing the fault.)

401h AVIC_INCOMPLETE_IPI AVIC—Virtual IPI delivery not completed. See "AVIC IPI
Delivery Not Completed" for EXITINFO1–2 definitions.

Table C-1. SVM Intercept Codes (continued)
Code Name Cause

[AMD Public Use]

SVM Intercept Exit Codes 685

24593—Rev. 3.37—March 2021 AMD64 Technology

402h AVIC_NOACCEL
AVIC—Attemped access by guest to vAPIC register not
handled by AVIC hardware. See "AVIC Access to un-
accelerated vAPIC register" for EXITINFO1–2 definitions.

403h VMEXIT_VMGEXIT VMGEXIT instruction
–1 VMEXIT_INVALID Invalid guest state in VMCB

–2 VMEXIT_BUSY BUSY bit was set in the encrypted VMSA (see "Interrupt
Injection Restrictions")

Table C-1. SVM Intercept Codes (continued)
Code Name Cause

[AMD Public Use]

686 SVM Intercept Exit Codes

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

SMM Containerization 687

24593—Rev. 3.37—March 2021 AMD64 Technology

Appendix D SMM Containerization

To minimally participate in SMM activity, the VMM can implement simple containerization. This
appendix provides example pseudocode to perform this simple containerization. VMMs that do not
trust SMM code should implement secure containerization, which requires further extension of the
code provided here.

D.1 SMM Containerization Pseudocode
This code emulates transitions to and from SMM:

• The process of entering SMM mode as a result of a system management interrupt (SMI)
• The RSM instruction, which returns the processor from SMM.

A hypervisor that containerizes SMM must set the SMM intercept bit in all guest VMCBs. When the
hypervisor encounters a #VMEXIT(SMI), it should then emulate SMM entry and execute the SMM
handler by means of VMRUN with the RSM intercept bit set. When the RSM instruction is
intercepted, the hypervisor should emulate the RSM instruction and then resume normal execution.

In this code, the hypervisor sets up the smm_vmcb from scratch and assigns it the supplied address
space identifier (ASID).

This example code sets up a container VMCB for the SMM handler and copies appropriate state
information into the SMM save area. After calling emulate_smm(), the hypervisor should repeatedly
VMRUN the SMM handler VMCB until the hypervisor encounters a #VMEXIT(RSM). Finally, the
hypervisor should call emulate_rsm().

//emulate_smm():
// Inputs:
// smm_vmcb: the _virtual address_ of a VMCB that will be configured
// as an SMM container
// asid: the asid to use for the SMM handler; the hypervisor should
// ensure that no TLB entries for this ASID are present in the TLB
// smm_regs: an array of 64-bit values that will be filled with the
// GPRs (except RSP and RAX) for the SMM handler
// guest_vmcb: the _virtual address_ of the VMCB of the guest
// that was running when the intercepted SMI occurred
// guest_regs: an array of 64-bit values that contains the GPRs (except RSP
// and RAX) for the guest that was running when the intercepted
// SMI occurred

void
emulate_smm(VMCB *smm_vmcb, uint32 asid, uint64 smm_regs[16],

 VMCB *guest_vmcb, uint64 guest_regs[16])
{

setup_smm_container(*smm_vmcb, asid, smm_regs, *guest_vmcb, guest_regs)

[AMD Public Use]

688 SMM Containerization

AMD64 Technology 24593—Rev. 3.37—March 2021

//Enter SMM mode:
wrmsr(SMM_CTL_MSR, ENTER+DISMISS+SMI_CYCLE)
setup_smm_save_state(*guest_vmcb, guest_regs)

do { VMRUN(smm_vmcb) } until we see #VMEXIT(RSM).
 Shadow EFER reads and writes to protect the SVME bit.

 //Emulate RSM:

copy_smm_save_to_guest_vmcb(guest_vmcb, guest_regs)
//Leave SMM mode:
wrmsr(SMM_CTL_MSR, EXIT+RSM_CYCLE)

}

void
setup_smm_container(VMCB &smm_vmcb, uint32 asid, uint64 smm_regs[16],

 VMCB &g_vmcb, uint64 guest_regs[16])
{

clear smm_vmcb to all zeros
set intercepts in smm_vmcb:

RSM
VMRUN
MSR

smm_vmcb.msrpm = (physical address of msr protection map with
 efer read and efer write set)

// Note that the hypervisor should shadow the SVME bit of EFER and
 // return EFER.SVME=0 on reads of EFER.

//
// Note also that the IOPM (unused in this example code) and MSRPM for the SMM
// container can be statically set up and reused on subsequent SMM entries,
// and can be shared between multiple cores' SMM container VMCBs. Each core
// must have a separate VMCB for the SMM container, but those cores’ VMCBs may
// be statically or dynamically allocated.

smm_vmcb.asid = asid

smmbase = rdmsr(smmbase_msr) // Note: smmbase is a 32 bit value

Set up the smm handler's segment information: {Selector, Attrib, Limit, Base}

smm_vmcb.CS = {(smmbase & 0x00ffff00) >> 4, 0x089B, 0xffff_ffff, smmbase}
smm_vmcb.{ES, SS, DS, FS, GS} = {0x0000, 0x0893, 0xffff_ffff, 0x0000_0000}
smm_vmcb.GDTR = {unused, unused, g_vmcb.gdtr_limit, g_vmcb.gdtr_base}
smm_vmcb.LDTR = (copy all from g_vmcb.LDTR)
smm_vmcb.IDTR = {unused, unused, g_vmcb.idtr_limit, g_vmcb.idtr_base}
smm_vmcb.TR = (copy all from g_vmcb.TR)

smm_vmcb.CPL = 0
smm_vmcb.EFER = 0x1000 (SVME = 1)

[AMD Public Use]

SMM Containerization 689

24593—Rev. 3.37—March 2021 AMD64 Technology

smm_vmcb.CR4 = 0
smm_vmcb.DR7 = 0x0000_0400
smm_vmcb.RFLAGS = 0x0000_0002
smm_vmcb.RIP = 0x0000_8000

Copy the following values from g_vmcb to smm_vmcb
CR3
DR6
RSP
RAX
STAR
LSTAR
CSTAR
SFMASK
KERNELGSBASE
SYSENTER_CS
SYSENTER_ESP
SYSENTER_EIP
CR2
CR0: clear bits 0, 2, 3, 31

copy 14 guest GPRs from guest_regs (all except RAX, RSP) to smm_regs
}

void
setup_smm_save_state(struct VMCB &g_vmcb, uint64 guest_regs[16])
{

smmbase = rdmsr(smmbase_msr) // Note: smmbase is a 32 bit value
 smmsave_physical_addr = smmbase + 0xfe00

// smmsave is the physical address of the SMM save area;
 // the hypervisor will need to map this into its virtual memory space.

smmsave = virtual_to_physical_map(smmsave_physical_addr)

Copy the following values from g_vmcb to smmsave:
all defined portions of ES, CS, SS, DS, FS, GS, GDTR, LDTR, IDTR, TR

 (all bytes of each 16-byte segment save area)
CPL
EFER
CR4
CR3
CR0
DR7
DR6
RFLAGS
RIP
RSP
RAX

copy 14 guest GPRs (other than RAX and RSP) from guest_regs

[AMD Public Use]

690 SMM Containerization

AMD64 Technology 24593—Rev. 3.37—March 2021

 to GPR entries in smmsave

iorestart_dword[31:0] = g_vmcb.exitinfo1[63:32]
if ((iorestart_dword & IO_RESTART_VALID) != 0)
{

Copy iorestart_dword to smmsave.iorestart_dword,
 masking out address size bits

Copy g_vmcb.exitinfo2 to smmsave.iorestart_rip

uint64 *guest_indexreg // Point to the index register in the guest context
 // that is changed by the string instruction...

uint64 *smm_indexreg // ...similarly, for the smm save area
if (iorestart_dword & IO_RESTART_IN != 0) {

guest_indexreg = &guest_regs[RDI] // type=IN, indexreg=RDI
smm_indexreg = &smmsave.iorestart_rdi
smmsave.iorestart_rsi = guest_regs[RSI]

} else {
guest_indexreg = &guest_regs[RSI] // type=OUT, indexreg=RSI
smm_indexreg = &smmsave.iorestart_rsi
smmsave.iorestart_rdi = guest_regs[RDI]

}

// Reconstruct the IORestart values
if (iorstart_dword & IO_RESTART_STR != 0)
{
 uint64 mask
 uint64 ecxfix

 operand_size = (iorestart_dword >> 4) & 0x7)

 address_size = (iorestart_dword >> 7) & 0x7)
 if (address_size == 0) // Some SVM implementations do not provide

 // these bits; we must decode on those CPUs
 address_size = decode_io_size(guest_vmcb)

 mask = (1<<address_size) - 1
 if (g->RFLAGS D-bit is set)

 operand_size = -operand_size

 if (iorestart_dword & IO_RESTART_RIP != 0)
 ecxfix = 1

 else ecxfix = 0

 *smm_indexreg = *guest_indexreg & ~mask | (*guest_indexreg -
 operand_size) & mask

 smmsave.iorestart_rcx = mask & (guest_regs[RCX] + ecxfix)
} else { // not string
 *smm_indexreg = *guest_indexreg
 smmsave.iorestart_rcx = guest_regs[RCX]
}

} else { // iorestart isn't valid: Put the same values into the restart values.

[AMD Public Use]

SMM Containerization 691

24593—Rev. 3.37—March 2021 AMD64 Technology

smmsave.iorestart_dword = 0
smmsave.iorestart_rip = g.rip
smmsave.iorestart_rcx = guest_regs[RCX]
smmsave.iorestart_rsi = guest_regs[RSI]
smmsave.iorestart_rdi= guest_regs[RDI]

}

smmsave.iorestart = 0
smmsave.hltrestart = 0
smmsave.nmimask = 0
smmsave.smm_revision = 0x30064
smmsave.smm_base = smmbase

}

void
copy_smm_save_to_guest_vmcb(struct VMCB &g_vmcb, uint64 guest_regs[16])
{

smmbase = rdmsr(smmbase_msr) // Note: smmbase is a 32 bit value
 smmsave_physical_addr = smmbase + 0xfe00

// smmsave is the physical address of the SMM save area;
 // the hypervisor will need to map this into its virtual memory space.

smmsave = virtual_to_physical_map(smmsave_physical_addr)

Copy the following values from smmsave to g_vmcb
all defined portions of ES, CS, SS, DS, FS, GS, GDTR, LDTR, IDTR, TR
CPL
EFER
CR4
CR3
CR0
DR7
DR6
RFLAGS
RSP
RAX

Copy the other 14 GPRs from smmsave into guest_regs.

 If smmsave.iorestart is set, copy RDI,

RSI, RCX from the smmsave.iorestart_{RDI, RSI, RCX} fields
 instead of the regular {RDI, RSI, RCX} fields.

if (smmsave.iorestart is zero and smmsave.iorestart_dword is valid)
{

modify g_vmcb.DR6:
clear g_vmcb.DR6[3:0] and copy BRP bits from

 smmsave.iorestart_dword[15:12] into g_vmcb.DR6[3:0]
// this preserves AMD's behavior that dr6[3:0] is not sticky,

 // but the other bits are sticky
g_vmcb.DR6.BS |= smmsave.iorestart_dword.TF

if any bit of smmsave.iorestart_dword.{BRP[3:0], TF} is nonzero,

[AMD Public Use]

692 SMM Containerization

AMD64 Technology 24593—Rev. 3.37—March 2021

 we have a pending #DB exception,
 so set up a #DB event injection for the guest.

}

if (smmsave.iorestart is set) {
set g_vmcb.RIP = smmsave.iorestart_rip

} else if (smmsave.hltrestart is set) {
// (In the event that the guest is allowed to execute HLT and

 // the SMM code wants to use the auto-halt restart function,
 // we need to re-execute the HLT instruction in the guest context.
 // Even if the HLT has prefixes (all of which would be ignored),
 // we know that RIP-1 is the F4 opcode itself.)

Subtract 1 from the guest RIP under a mask that masks out bits
 above the current default address size:

mask = (1 << current_address_size) - 1
g_vmcb.RIP = mask & (g_vmcb.RIP-1)

} else {
set g_vmcb.RIP = smmsave.RIP

}
// Note that it is undefined to have both iorestart and hltrestart set at
// the same time.

// Perform the RSM consistency checks listed in volume 3 of the
// AMD64 Architecture Programmer's manual, except the check that
// disallows CR0.PG = 1 when CR0.PE = 0. Note that the expected
// value for the SMM revision field is 0x0003_0064. If any of the
// checks fail, the native RSM instruction would have caused a
// processor shutdown (which commonly results in a reboot
// triggered by the chipset). The hypervisor may wish to destroy
// the guest or cause its own shutdown.
}

D.1.1 Converting Simple Containerization into Secure Containerization

To convert this simple containerization example into secure containerization, the hypervisor must limit
the SMM handler's access to I/O ports, MSRs, and memory. Based on security policy decisions, the
hypervisor should set appropriate bits in the I/O Protection Map and the MSR Protection map and
emulate any accesses the SMM handler makes to those protected resources. The hypervisor should
run the SMM handler in paged real mode, with a page table that appropriately limits memory
accessible to SMM code. Additionally, the hypervisor may wish to conceal some or all of the contents
of a guest's general purpose and floating-point registers from the SMM handler.

[AMD Public Use]

OS-Visible Workarounds 693

24593—Rev. 3.37—March 2021 AMD64 Technology

Appendix E OS-Visible Workarounds

Operating system software may provide a workaround for a hardware erratum. These operating
system-visible workarounds are provisional and should be removed or disabled when the erratum is
corrected in a subsequent hardware release.

The OS-Visible Workaround (OSVW) architecture provides a means by which operating system
software may determining the status of a known erratum for the hardware on which the software is
running. Support for the OSVW mechanism is indicated by CPUID Fn8000_0001_ECX[OSVW] = 1.

See Section 3.3, "Processor Feature Identification," on page 70 for information on using the CPUID
instruction.

Each hardware erratum is assigned a unique OSVW ID number. OSVW ID numbers start at 0 and are
assigned sequentially up to the most recently identified erratum which is assigned the number m−1.
The OSVW mechanism encodes the status of each erratum for a given hardware system in a bit vector
of length m accessed through OSVM MSRs 1–N. The state of bit n of the vector indicates the status of
the erratum with the OSVW ID number n. The OSVW ID number for the erratum and the bit position
within the erratum status bit vector, once assigned, are global across all AMD processors; the OSVW
ID and bit position will not be re-used.

The OSVW MSRs are defined as follows:

• OSVW MSR0 contains the OSVW_ID_Length field, used to indicate the total number of valid
OSVW ID bits (m). The format of this MSR is shown in Figure E-1 below.

• OSVW MSR 1 and following contain the erratum status bit vector of length m. Each bit n of this
vector encodes the status of erratum n (OSVW ID = n). The format of these MSRs is shown in
Figure E-2 on page 694.

The bank of OSVW MSRs is located at address C001_0140h, starting with OSVW MSR0.

The OSVW MSRs should be treated as read-only registers for the OS. The OS should never write into
these registers. Hardware allows platform firmware writes to these registers.

Figure E-1. OSVW MSR0: OSVW_ID_Length

63 16 15 0

Reserved OSVW_ID_Length

Bits Mnemonic Description R/W1

63:16 Reserved
15:0 OSVW_ID_Length Total length of the status vector OSVW_E in bits. R/W
Note 1: MSR should be treated as read-only by operating system software.

[AMD Public Use]

694 OS-Visible Workarounds

AMD64 Technology 24593—Rev. 3.37—March 2021

OSVW_ID_Length—Bits [15:0]. The number of valid bits in the OSVW erratum status vector
OSVW_E. If a specific erratum has an OSVW ID that is greater than or equal to the
OSVW_ID_Length, the erratum is unknown to the latest release. Otherwise, the erratum status bit in
the appropriate OSVW MSR can be checked to see if a workaround is required.

The erratum status bit vector (OSVW_E) is accessed through OSVW MSR 1 and following. For MSR
N, the 64-bit MSR holds erratum status bits (N−1)*64+63:(N−1)*64. To access the erratum status for
OSVW ID number n (E[n] in the diagram), read MSR N, where N = n/64 + 1, and test bit i, where i = n
modulo 64.

Figure E-2 below gives the format of the OSVW MSRs 1–N.

Figure E-2. OSVW MSRs 1–N: OSVW Erratum Status Registers

OS-Visible Workaround Erratum Status (OSVW_E[n])—Bits 63:0. Each bit indicates whether
platform hardware is affected by OS-visible erratum n and whether the OS needs to apply a
workaround.

For the status bit:

1 = Hardware contains the erratum; an OS software workaround is required.

0 = Hardware has corrected the erratum; an OS software workaround is unnecessary. If one is
installed, it must be disabled.

The location of an OSVW ID status bit within a bank of OSVW MSRs is determined as follows:

• MSR address = OSVW_MSR0 + 1 + floor (OSVW_ID /64)
• Bit offset in MSR = OSVW_ID modulo 64

If a specific erratum has an OSVW_ID that is greater than or equal to the OSVW_ID_LENGTH,
hardware does not know about the erratum and the processor model must be used to determine
whether the workaround must be applied.

OSVW MSR bits beyond the end of the OSVW_E bit vector are reserved.

63 62 1 0

E[n] E[n] ... E[n] E[n]

Bit Mnemonic Description R/W1

i OSVW_E[n] OS-visible workaround status bit n R/W
Note 1: MSR should be treated as read-only by operating system software.

[AMD Public Use]

OS-Visible Workarounds 695

24593—Rev. 3.37—March 2021 AMD64 Technology

E.1 Erratum Process Overview
Following is an overview of the AMD erratum process:

1. When an OS-visible erratum is discovered, AMD assigns a unique OSVW ID to the erratum and
publishes to OS vendors the starting range of affected processor models and suggested
workarounds.

2. AMD works with platform firmware vendors and OEMs in parallel to develop a firmware update
to add the new erratum status bit to the OSVW_E erratum status bit vector for affected silicon
revisions to report the new OSVW ID as requiring a workaround. The OSVW_ID_Length field in
OSVW MSR0 is incremented by one.

3. OS vendors schedule the workaround into their release schedules and eventually release it.

4. The OS detection logic for the workaround first checks whether the processor OSVW MSRs 1–N
record the erratum by comparing the OSVW ID of the erratum with the OSVW_ID_Length field
in OSVW MSR0.

5. If the erratum OSVW ID is greater than or equal to the OSVW_ID_Length, the current firmware
does not know about this erratum. In this case, the OS software compares the processor model ID
with the starting model ID that AMD supplied with the erratum to determine if the workaround
should be applied.

6. If the erratum OSVW ID is less than the OSVW_ID_Length, the firmare is aware of the erratum.
In this case, the OS uses the state of the associated OSVW_E status bit to conditionally apply the
workaround. If the associated status bit is set, the workaround is applied.

7. Once AMD fixes the erratum in a future release, updated firmware ensures that the OSVW_E
status bit associated with the erratum is cleared. When OS workaround detection logic runs on the
new hardware, it will see that the bit corresponding to the OSVW ID is cleared and not apply the
OS workaround for that erratum.

[AMD Public Use]

696 OS-Visible Workarounds

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Index 697

24593—Rev. 3.37—March 2021 AMD64 Technology

Symbols
#AC.. 247
#BP .. 238
#BR.. 239
#D ... 246, 249
#DB.. 237
#DE.. 237
#DF .. 240
#GP .. 244
#I... 246, 249
#IA... 246
#IS.. 246
#MC ... 248
#MF ... 246
#NM... 240
#NP .. 243
#O ... 246, 249
#OF .. 239
#P.. 246, 249
#PF... 245
#SS... 243
#SX .. 535
#TS .. 242
#U ... 246, 249
#UD ... 239
#VMEXIT.. 477, 478
#XF ... 248, 249
#Z.. 246, 249

Numerics
16-bit mode... xlvi
1-Gbyte page... 147
32-bit mode... xlvi
64-bit media instructions

causing #MF exception 330
initializing... 460, 461
MMX registers ... 329
saving state .. 332

64-bit mode... xlvi, 13

A
A bit .. 91, 93, 151
A20 Masking... 528
abort ... 232
AC bit... 55
access checking ... 515
accessed (A)

code segment ... 91

data segment .. 93
page-translation tables... 151

address space identifier (ASID)............................... 503
address-breakpoint registers (DR0-DR3).................. 377
addressing

RIP-relative... li
address-size prefix ... 31
ADDRV bit ... 297
Advanced Programmable Interrupt Controller (APIC)......

591
alignment check (rFLAGS.AC)......................... 55, 247
alignment mask (CR0.AM)............................... 45, 247
alignment-check exception (#AC) 45, 55, 247
AM bit .. 45
AP startup sequence ... 535
APIC... 591

base address ... 594
enable .. 594
error interrupts.. 603
internal error .. 592
registers ... 594
timer interrupt .. 600
version register ... 596

APIC.TPR... 508
APIC.TPR virtualization... 475
Application Processors (APs).................................. 534
Arbitration... 610
architecture differences... 23
ARPL instruction ... 176
ASID .. 503
attributes ... 87
available to software (AVL)

descriptor ... 90
page-translation tables... 152

AVL bit ... 90, 152

B
base address........................... 84, 86, 89, 134, 142, 150
benign exception.. 240
BIST ... 455
bootstrap CPU core (BSC) 594
bootstrap processor (BSP)............................... 458, 534
BOUND instruction ... 239
bound-range exception (#BR) 239
BR_FROM.. 514
BR_TO ... 514
branches.. 32
breakpoint

determining cause ... 385

Index

[AMD Public Use]

698 Index

AMD64 Technology 24593—Rev. 3.37—March 2021

on address match ... 376, 386
on any instruction ... 376
on I/O.. 386
on instruction ... 385
on task switch ... 376, 388
setting address.. 383
specifying address-match length 383

breakpoint exception (#BP) 238
breakpoints.. 383
built-in self test (BIST) .. 455

C
C bit ... 91
cache

control mechanisms .. 200
control precedence.. 202
enabling... 459
index ... 199
invalidate ... 204
line.. 181
offset ... 199
organization ... 197
self-modifying code.. 199
set ... 198
tag... 199
way ... 198
writeback and invalidate...................................... 203

cache disable (CD) bit 45, 201
cache disable (CD), memory type............................ 190
cache-coherency protocol 187

losing coherency... 189
CALL

See call gate and control transfer.
call gate ... 95, 113

count field.. 97
count field, long mode .. 103
descriptor, long mode.. 32
jump through.. 115
parameters ... 117
privilege checks.. 114
stack switch ... 117
stack switch, long mode 33, 118

canonical address form....................................... 4, 141
CD bit.. 45, 201
CD memory type ... 190
CLFLUSH ... 203, 515
CLGI ... 490, 504
CLI instruction .. 173
clock multiplier ... 456
CLTS ... 173, 488
code segment.. 26, 79, 91

64-bit mode.. 80
accessed (A)... 91
conforming (C)... 91

default-operand size (D) .. 92
ignored fields in 64-bit mode 97
long bit (L)... 26, 98
long mode .. 97
readable (R) ... 91
type field.. 91

coherency, cache .. 181
Combining Memory Types and MTRRs................... 526
commit.. xlvi
commit, instruction results 182
compatibility mode .. xlvi, 13
config space accesses ... 516
conforming (C), code segment 91
consistency checks, long mode................................ 466
containerized SMM code .. 512
contributory exception.. 240
control registers ... 29, 41
control transfer .. 109

See also call gate and interrupt.
call gate ... 113
direct ... 109
far, conforming code segment 111
far, nonconforming code segment......................... 109
interrupt to higher privilege 262
interrupt to same privilege 261
parameters.. 117
stack switch.. 117

control-transfer recording MSRs 383
coprocessor-segment-overrun exception................... 241
count field ... 103
CPL .. 105, 478

definition ... 105
in call gate protection .. 114
in data segment protection 106, 302
in interrupt to higher privilege 263
in protecting conforming CS................................ 111
in protecting nonconforming CS 110
in stack segment protection.................................. 108
privileged instructions... 165
SYSCALL, SYSRET assumptions 169

CPU watchdog timer register 292
CPUID... 56, 70, 172, 489

nested paging ... 528
CR0 .. 42, 477

alignment mask (AM) 45, 247
cache disable (CD).. 45, 201
emulate coprocessor (EM)..................................... 44
emulate coprocessor (EM) bit 327
extension type (ET)... 44
monitor coprocessor (MP) 43
not write-through (NW)................................. 45, 201
numeric error (NE) 44, 247
paging enable (PG) 45, 131
protection enable (PE)............................... 43, 74, 82

[AMD Public Use]

Index 699

24593—Rev. 3.37—March 2021 AMD64 Technology

task switched (TS) ... 44, 173
write protect (WP) .. 44

CR1.. 51
CR2... 46, 245, 477
CR3............................. 25, 46, 134, 141, 359, 477, 521

non-PAE paging ... 134
PAE paging ... 46, 134
PAE paging, long mode....................................... 141
page-level cache disable (PCD) 134, 142
page-level write-through (PWT) 134, 142
table-base address.. 134, 142

CR4... 47, 477
debugging extensions (DE) 49
machine-check enable (MCE)......................... 49, 248
OS #XF support (OSXMMEXCPT)...... 248, 327, 328
OS FXSAVE/FXRSTOR support (OSFXSR)........ 327
page-global enable (PGE) 50, 155
page-size extensions (PSE)..................... 49, 132, 136
performance counter enable (PCE).......... 50, 173, 392
physical-address extensions (PAE) 49, 51, 132, 141
protected-mode virtual interrupts (PVI) 48
time-stamp disable (TSD) 49, 173, 398
virtual-8086 mode extensions (VME).............. 48, 277

CR5–CR7 ... 51
CR8... 52, 256
CR9–CR15.. 51
CS register ... 79, 477

selector .. 477
CSTAR register 170, 654, 657

D
D bit .. 92, 98, 151
D/B bit.. 90, 94
Data Limit Checks ... 123
Data limit checks ... 123
data prefetch, cache.. 203
data segment .. 26, 80, 92

64-bit mode.. 80
accessed (A)... 93
default operand size (D) .. 94
expand down (E) .. 93
FS and GS.. 27, 80
ignored fields in 64-bit mode................................. 98
long mode.. 98
privilege checks.. 106
type field ... 93
writable (W)... 93

DAZ bit .. 347
DBGCTL .. 514
DE bit ... 49
DE exception.. 246, 249
debug... 21, 534

See breakpoint and single-step.
debug exception (#DB) 237, 385

debug registers... 29, 376
address-breakpoint registers (DR0-DR3) 377
control-transfer recording MSRs 383
debug-control MSR (DebugCtl) 381
debug-control register (DR7) 379
reserved (DR4, DR5) .. 377

debug-control MSR (DebugCtl) 381
debug-control register (DR7) 379
DebugCtl register ... 652, 661
debugging extensions (CR4.DE) 49
DEC instruction ... 34
default operand size

B bit, stack segment .. 94
D bit, code segment .. 92
D bit, data segment 94, 121
D/B bit, descriptor .. 90
with expand down... 122

denormalized-operand exception (DE)............. 246, 249
denormals-are-zeros (DAZ) mode 347
descriptor .. 75, 88

available to software (AVL)................................... 90
code segment.. 26
data segment .. 26
default operand size (D/B)..................................... 90
DPL.. 90, 106, 364
gate ... 27
granularity (G).. 90
long mode .. 97
present (P).. 90, 364
S field .. 90, 364
segment base .. 89
segment limit.. 89
system segment .. 27
TSS ... 354
type field.. 90, 364

descriptor table .. 75, 82
global-descriptor table (GDT)................................ 77
interrupt-descriptor table (IDT).............................. 37
local-descriptor table (LDT) 77

descriptor-table registers..................................... 26, 76
64-bit mode.. 103
GDTR.. 83
IDTR ... 88
LDTR .. 85

DEV base address registers 519
DEV caching ... 515
DEV capability block ... 516
DEV register access ... 517
DEV_BASE_HI/LO registers 517
DEV_CAP register... 518
DEV_CR register ... 518
DEV_DATA .. 516
DEV_HDR.. 516
DEV_MAP Registers ... 520

[AMD Public Use]

700 Index

AMD64 Technology 24593—Rev. 3.37—March 2021

DEV_OP.. 516, 517
DEVBASE registers... 514
device exclusion vector (DEV) 514
device ID .. 514
device-not-available exception (#NM).......... 43, 44, 240
differences (architectural) ... 23
direct referencing... xlvi
dirty (D), page-translation tables 151
displacement ... 31
displacements ... xlvii
divide-by-zero-error exception (#DE)...................... 237
double quadword .. xlvii
double-fault exception (#DF) 240
doubleword .. xlvii
DP field .. 347
DPL.. 106

data segment, 64-bit mode..................................... 99
definition ... 106
in call gate protection.. 114
in data segment protection............................ 106, 302
in interrupt stack switch 262
in interrupt to higher privilege 263
in protecting conforming CS................................ 111
in protecting nonconforming CS 110
in stack segment protection 108
in stack switching ... 117

DPL field ... 90, 364
DR0-DR3 registers .. 377
DR4, DR5 registers.. 377
DR6 register ... 378, 478
DR7 register .. 478
DS field .. 347
DS register ... 80, 477
DS.SEL... 477

E
E bit.. 93
eAX–eSP register... liii
EFER register................... 29, 56, 67, 69, 477, 653, 657

fast FXSAVE/FXRSTOR (FFXSR)........................ 58
long mode active (LMA)................................ 58, 464
long mode enable (LME) 57, 464
no-execute enable (NXE) 58
system-call extension (SCE).................................. 57

EFER.SVME... 475
effective address .. 2, 25
effective address size... xlvii
effective memory type.. 214
effective operand size.. xlvii
EFLAGS

See rFLAGS.
eFLAGS register.. liii
EIP

See rIP.
eIP register ... liii
EIPV bit .. 291
EM bit... 44, 460
emulate coprocessor (CR0.EM)................................. 44
EN bit ... 297
enabling SVM ... 475
endian byte-ordering ... lv
End-of-Interrupt Register (EOI) 616
environment .. 333
error code

page fault ... 252
selector .. 251

ES register... 80, 477
ES.SEL ... 477
ESP

See rSP.
ET bit.. 44
event handler, definition ... 231
event injection ... 506
EVENTINJ.. 506
exception handler, definition 231
exception intercept

#AC... 496
#BP ... 495
#BR... 495
#DB... 494
#DE... 494
#DF ... 495
#GP ... 496
#MC .. 496, 497
#MF .. 496
#NM.. 495
#NP ... 496
#OF ... 495
#PF.. 496
#SS.. 496
#TS ... 496
#UD .. 495
#XF ... 497
vector 2.. 495
vector 9.. 495

Exception Intercepts... 494
exceptions .. xlvii

abort .. 232
benign.. 240
contributory.. 240
definition of ... 231
definition of vector ... 234
differences in long mode 36
error code, page fault .. 252
error code, selector.. 251
fault ... 232
floating-point priorities 254

[AMD Public Use]

Index 701

24593—Rev. 3.37—March 2021 AMD64 Technology

imprecise ... 232
maskable SSE floating point................................ 233
maskable x87 floating point................................. 233
masking during stack switches............................. 233
precise ... 231
priorities .. 253
trap.. 232
while in SMM .. 318

exclusive state, MOESI .. 187
EXITINFO1.. 492
expand down (E)

data segment .. 93
stack segment.. 93, 122

extended family field ... 459
Extended Interrupts.. 603
extended model field.. 459
extended save area ... 340
extended state management 339
extensible state management................................... 339
extension type (CR0.ET) .. 44

F
family field ... 459
far control transfer ... 109
far return .. 33, 120
fast FXSAVE/FXRSTOR ... 58
fault .. 232
FCW register .. 331, 333, 346
feature identification .. 70
FENCE ... 184
FFXSR bit... 58
fill, cache-line.. 181
first instruction .. 458
flat segmentation ... 6, 9, 75
FLDENV, FSTENV instructions 337
floating-point exception pending (#MF) 246

caused by 64-bit media instructions...................... 330
floating-point exception priorities 254
flush .. xlvii
FOP register .. 346
FPR registers .. 331, 333
FS and GS... 27, 80
FS register... 80
FS.Base register.. 654, 657
FSAVE, FRSTOR instructions 333
FSW register 329, 331, 333, 346
FTW register 330, 331, 333, 346
FXSAVE, FXRSTOR instructions................ 36, 50, 337

32-bit memory image.. 346
64-bit memory image.. 346
x87 tag word format ... 347

G
G bit ... 90, 152
gate descriptors .. 27

call gate ... 95
DPL... 106
ignored fields in long mode 101
illegal types in long mode.................................... 101
interrupt gate .. 95
long mode .. 101, 103
redefined types in long mode 101
target-segment offset ... 96
target-segment selector.. 96
task gate... 95
trap gate ... 95

GDT ... 82
GDTR.. 83, 477, 489
general detect fault ... 237, 387
general-protection exception (#GP) 244
general-purpose registers (GPRs) 28
GIF ... 504
global descriptor table (GDT) 77, 82

base address, 64-bit mode...................................... 84
first entry ... 82
limit check, long mode .. 84

global descriptor-table register (GDTR) 83
base address ... 84
limit... 84
loading... 174
storing ... 175

global interrupt flag (GIF)....................................... 504
global page (G), page-translation tables 152
global pages.. 50, 154, 155
granularity (G), descriptor................................. 90, 121
GS register .. 80
GS.Base register .. 654, 657
guest mode .. 474
Guest page tables (gPT).. 521

H
halt ... 176
Hardware errata ... 691
HLT .. 176, 490
host... 473
hypervisor ... 473

I
I/O interrupts ... 592
I/O Permissions Map.. 491
I/O privilege level field (rFLAGS.IOPL) 54
I/O space accesses.. 516
I/O, memory-mapped ... 220
I/O-permission bitmap

[AMD Public Use]

702 Index

AMD64 Technology 24593—Rev. 3.37—March 2021

in 32-bit TSS.. 359
in 64-bit TSS.. 362

I/O-permission bitmap (IOPB) 360
ICEBP .. 490
ID bit .. 56
IDT... 87
IDTR ... 88, 477, 489
IE exception ... 246, 249
IF bit.. 54, 281
IGN .. xlviii
illegal state .. 477
immediate operand... 31
imprecise exceptions and interrupts 232
IN/OUT .. 492
INC instruction.. 34
indirect ... xlviii
inexact-result exception................................... 246, 249
INIT ... 510
initialization .. 455
initialization (INIT)

processor state.. 456
In-Service Register .. 612
instructions (system-management) 165
INT3 instruction ... 238, 388
integer bit.. 348
intercept.. 475

Ferr_Freeze... 499, 500
shutdown ... 500
task switch ... 499

Intercept Exit Codes... 681
Interprocessor interrupt (IPI)............................ 534, 605

INIT .. 534
Startup... 534

Interrupt Control.. 593
interrupt descriptor table (IDT) 87

limit check, long mode.. 88
interrupt descriptor-table register (IDTR)................... 88

loading .. 174
storing ... 175

interrupt flag (rFLAGS.IF) 54, 173
interrupt gate .. 95, 270

IST field .. 102
interrupt handler, definition 231
interrupt intercept .. 497

INIT .. 499
INTR... 497
NMI .. 497
SMI... 497
virtual.. 499

interrupt redirection .. 268, 279
Interrupt Request Register 611
interrupt shadows... 509

INTERRUPT_SHADOW 477
interrupt-descriptor table (IDT)

index .. 231, 260, 270
protected mode ... 259
real-address mode ... 257

interrupt-redirection bitmap 360
interrupts

definition of external... 231
definition of software .. 231
definition of vector ... 234
differences in long mode 36
external.. 250
external maskable ... 233
external nonmaskable.. 233
external-interrupt priorities 256
imprecise ... 232
long mode summary.. 270
precise ... 231
priorities .. 253
returning from 64-bit mode.................................. 276
returns ... 266
software ... 250
stack alignment, long mode 273
stack pointer push, long mode.............................. 271
stack switch, long mode 37, 273
to higher privilege... 262
to same privilege .. 261
while in SMM .. 318

interrupt-stack table (IST).......................... 37, 102, 274
in 64-bit TSS .. 362

interrupt-vector table .. 257
INTn ... 489
INTn instruction .. 250, 388
INTO instruction.. 239
invalid arithmetic-operand exception 246
invalid state, MOESI .. 187
invalidate page... 504
invalid-opcode exception (#UD)........................ 34, 239
invalid-operation exception (IE) 246, 249
invalid-TSS exception (#TS)................................... 242
INVD... 177, 204, 489
INVLPG ... 490
INVLPG instruction 155, 177, 178
INVLPGA... 490, 504
IOPB... 359, 360
IOPL... 492
IOPL field ... 54, 267
IOPL-sensitive instruction 277
IOPM.. 491
IOPM_BASE_PA .. 491
IORRBasen registers 223, 654, 659
IORRMaskn registers 223, 659
IORRs, variable-range .. 222

[AMD Public Use]

Index 703

24593—Rev. 3.37—March 2021 AMD64 Technology

IOSPE .. 516
IRET .. 489

less privilege ... 266, 267
long mode... 37, 276
same privilege .. 266

IST field.. 102

J
J bit .. 349
jump

See call gate and control transfer.

K
KernelGSbase register............................. 172, 654, 657

L
L bit.. 98
L1 data cache .. 181
L1 instruction cache... 181
L2 cache ... 181
L2I_PerfEvtSel registers .. 396
LAR instruction... 175
last branch record virtualization 513
LastBranchFromIP... 513
LastBranchFromIP register 652, 661
LastBranchToIP... 513
LastBranchToIP register 652, 661
LASTEXCPFROM.. 514
LASTEXCPTO ... 514
LastIntFromIP ... 513
LastIntFromIP register 652, 661
LastIntToIP ... 513
LastIntToIP register... 652, 662
LDT ... 84

selector field .. 359
LDTR .. 85, 489
Legacy Interrupts... 592
legacy mode ... xlviii, 14, 23
legacy PAE mode... 528
legacy x86... xlviii
LFENCE... 184
LFENCE instruction .. 203
LGDT.. 174, 489
LIDT ... 174, 489
limit... 84, 87, 89, 354
linear address .. 3
Link field .. 359
LINT0 .. 602
LINT1 .. 602
LLDT .. 175, 489
LMA bit .. 58
LME bit .. 57

LMSLE... 58
LMSW... 172, 488, 489
load ordering ... 203
Local APIC.. 593

ID.. 595
interrupt masking.. 510, 616

local descriptor table (LDT)................................ 77, 84
base address, 64-bit mode...................................... 87
limit check, long mode .. 87

local descriptor-table register (LDTR) 85
attributes .. 87
base address ... 86
hidden portion .. 85
LDT selector .. 86
limit... 87
loading... 175
storing ... 175

Local Interrupts ... 598
locality .. 154
logging

unauthorized access .. 520
logical address ... 2
long attribute (L)

code segment.. 98
effect on D bit .. 98

long mode ... xlix, 12, 23
activating ... 465
consistency checks.. 466
differences from legacy mode 39
enabling ... 464
enabling versus activating.................................... 464
GDT requirements .. 463
IDT requirements.. 463
leaving... 467
page translation-table requirements 464
relocating descriptor tables 466
relocating page tables.. 467
TSS requirements ... 464
use of CS.L and CS.D ... 465

long mode active (EFER.LMA)......................... 58, 464
long mode enable (EFER.LME) 57, 464
LSB .. xlix
lsb... xlix
LSTAR register....................................... 170, 654, 657
LTR .. 175, 489

M
M bit ... 349
machine check

error codes ... 298
error-reporting address register (MCi_ADDR) 298
error-reporting control register (MCi_CTL) 295
error-reporting miscellaneous register (MCi_MISC)

 298

[AMD Public Use]

704 Index

AMD64 Technology 24593—Rev. 3.37—March 2021

error-reporting register banks............................... 293
error-reporting status register (MCi_STATUS)...... 295
global-capabilities register (MCG_CAP) 290
global-control register (MCG_CTL)..................... 292
global-status register (MCG_STATUS) 291
initialization... 301

machine check registers.. 289
machine-check enable (CR4.MCE) 49, 248
machine-check exception (#MC)............................. 248
mask... xlix
masking

definition of interrupt.. 231
MBZ... xlix
MCA error code field ... 296
MCE bit .. 49
MCG_CAP register................................. 290, 651, 660
MCG_CTL register 292, 651, 660
MCG_CTL Register Present bit 291
MCG_STATUS register........................... 291, 651, 660
MCi Bank Count field .. 291
MCi_ADDR registers.............................. 298, 653, 660
MCi_CTL registers 295, 652, 653, 660
MCi_MISC registers 653, 661
MCi_STATUS registers........................... 295, 653, 660
MCIP bit ... 291
Media Extension Control and Status Register (MXCSR)...

 328
memory .. 179
memory addressing

canonical address form.. 4
effective address... 2
linear address ... 3
logical address.. 2
near pointers .. 2
physical address ... 3
real address .. 10
RIP-relative address.. 31
segment offset .. 2
virtual address .. 3

memory consistency... 526
memory management ... 5
memory serialization.. 203
memory system ... 179
memory type ... 190

determining effective .. 214
uncacheable (UC) ... 190
write-combining (WC).. 191
write-combining plus (WC+)............................... 191
write-protect (WP).. 191

memory-access ordering
description ... 182
read ordering.. 182
write ordering... 183

memory-mapped I/O
directing reads and writes to 221, 224

memory-type range register (MTRR)......................... 29
combined with PAT... 219
effect of paging cache controls............................. 214
effects with large page sizes................................. 215
fixed range ... 208
identifying features ... 213
initial value .. 459
IORRBase.. 223
IORRMask... 223
MTRRcap .. 213
MTRRdefType ... 213
MTRRfix16K... 209
MTRRfix4K... 209
MTRRfix64K... 209
MTRRphysBase ... 210
MTRRphysMask .. 211
overlapping ranges.. 215
type field, default.. 206
type field, extended... 221
variable range... 210
variable range size and alignment......................... 212

MFENCE instruction.. 203
MISCV bit... 297
MMX registers .. 329
model field .. 459
model-specific error code field................................ 296
model-specific registers (MSRs)................... 29, 59, 173

control-transfer recording 383
debug extensions .. 63
debug-control MSR (DebugCtl) 381
initializing.. 461
machine check................................... 64, 65, 66, 289
memory typing ... 63, 207
PAT ... 216
performance monitoring 64, 391
SYSCFG.. 61
system linkage.. 62, 170
time-stamp counter 64, 397
TOP_MEM .. 224
TOP_MEM2 .. 224

modes ... 11
64-bit ... 13
compatibility .. xlvi, 13
legacy .. xlviii, 14
long ... xlix, 12
protected ... l, 14
real ... l, 4, 14
virtual-8086... lii, 14

modified state, MOESI ... 187
MOESI ... 187
moffset.. xlix
monitor coprocessor (CR0.MP)................................. 43
MOV CRn instruction .. 172

[AMD Public Use]

Index 705

24593—Rev. 3.37—March 2021 AMD64 Technology

MOV DRn instruction.. 173
MOV TO CR0... 489
MOV TO/FROM CR0.. 488
MOV TO/FROM CRn..................................... 488, 639
MOV TO/FROM DRn 488, 639
MOVSXD instruction .. 34
MP bit.. 43, 460
MSB... xlix
msb .. xlix
MSR... liv
MSR permissions map (MSRPM) 493
MSR_PROT.. 493
MSRs ... 59
MTRRcap register 213, 651, 658
MTRRdefType register............................ 213, 652, 659
MTRRfix16K_n registers 209
MTRRfix4K_n registers ... 209
MTRRfix64K_n registers 209, 652, 659
MtrrFixDramEn bit ... 61, 221
MtrrFixDramModEn bit 61, 221
MTRRphysBasen registers 210, 652, 658
MTRRphysMaskn registers 211, 658
MTRRs.. 207, 526
MtrrTom2En bit.. 62, 226
MtrrVarDramEn bit... 62, 226
multiprocessor issues ... 515
MXCSR register .. 329

field... 347
MXCSR_MASK field... 347

N
NB_PerfEvtSel registers... 395
NE bit .. 44, 460
near branch

operand size, 64-bit mode 32
near control transfer ... 109
near pointers.. 2
near return... 120
Nested page tables (hPT).. 521
nested paging .. 521
nested task (rFLAGS.NT).................................. 54, 372
nestedtable walk .. 524
NEXT_RIP ... 477
NMI ... 238
NMI support.. 511
no-execute (NX)

page-translation tables, bit in 152
nonmaskable interrupt exception (NMI) 238

while in SMM .. 318
non-PAE paging... 133

CR3 format .. 134
NOP instruction ... 34

not write-through (CR0.NW) 45, 201
NP_ENABLE .. 523
NT bit ... 54
null selector ... 78

64-bit mode far return ... 121
interrupt return from 64-bit mode......................... 276
long mode interrupts 273, 275
long mode stack switch 119

numeric error (CR0.NE) 44, 247
NW bit .. 45
NX bit... 152
NXE bit... 58

O
octword... xlix
OE exception ... 246, 249
offset... xlix, 96
operand-size prefix... 30
operating modes... 11
OS FXSAVE/FXRSTOR support (CR4.OSFXSR).... 327
OS unmasked exception support (CR4.OSXMMEXCPT)

 248, 327, 328
OSFXSR bit .. 50
OS-visible workarounds (OSVW) 691

OSVW ID .. 691
OSVW status.. 693
OSVW_ID_Length ... 693

OSXMMEXCPT bit ... 50
OVER bit .. 297
overflow.. l
overflow exception (#OF)....................................... 239
overflow exception (OE) 246, 249
owned state, MOESI .. 187

P
P bit ... 90, 151, 364
packed... l
PAE .. 478
PAE bit... 49, 51, 132
PAE paging ... 25, 133

CR3 format .. 46, 134
CR3 format, long mode 141
legacy mode ... 137
long mode .. 142

page directory .. 133
page size (PS)...................................... 133, 136, 138

page directory pointer..................................... 133, 138
page faults

guest level .. 524
page size (PS), page-translation tables 152
page splintering ... 528
page table .. 133

[AMD Public Use]

706 Index

AMD64 Technology 24593—Rev. 3.37—March 2021

page translation ... 127
page-attribute table (PAT) 216

combined with MTRR .. 219
effect on memory access 218
identifying support ... 218
indexing... 217
page-translation tables, bit in 152

Paged Real Mode... 505
page-fault exception (#PF)............................... 151, 245
page-fault virtual address.. 245
page-global enable (CR4.PGE) 50, 155
page-level cache disable (PCD)............................... 201

CR3, bit in ... 134
page-translation tables, bit in 151

page-level write-through (PWT) 202
CR3, bit in ... 134
page-translation tables, bit in 151

page-map level-4 ... 141
page-size extensions (CR4.PSE) 25, 26, 49, 132, 136

40-bit physical address support 132, 137
unsupported in long mode 132

page-translation cache .. 154
page-translation tables.. 25

accessed (A)... 151
available to software (AVL)................................. 152
dirty (D) .. 151
global page (G) .. 152
hierarchy.. 130
no-execute ... 152
page directory entry (PDE).................................. 133
page size (PS) .. 152
page table entry (PTE) .. 133
page-attribute table (PAT).................................... 152
page-directory pointer entry (PDPE) 25, 133, 138
page-level cache disable (PCD) 151
page-level write-through (PWT) 151
page-map level-4 entry (PML4E).................... 25, 141
physical-page base address 150
present (P) ... 151
read/write (R/W) .. 151
translation-table base address 150
user/supervisor (U/S) .. 151

paging.. 7, 25, 127
See also PAE paging and non-PAE paging.
effect of segment protection 164
protection across translation hierarchy.................. 163
protection checks.. 158
supported translations ... 131

paging enable (CR0.PG).................................... 45, 131
activating long mode.................................... 131, 466

parameter count field ... 97
PAT .. 527

See page-attribute table (PAT).
PAT bit.. 152

PAT register .. 216, 652, 659
PAUSE.. 490
PCC bit ... 297
PCD bit .. 134, 142, 151
PCE bit ... 50
PDE.. 133
PDPE... 133, 478, 528
PE bit.. 43
PE exception.. 246, 249
PerfCtr registers............................... 391, 654, 662, 663
PerfEvtSel registers.......................... 391, 654, 662, 663
performance counter... 173
performance counter enable (CR4.PCE)...... 50, 173, 392
Performance Monitor Counter Interrupts.................. 602
performance optimization 22, 390
performance-monitoring counters

L2I_PerfEvtSeln... 396
NB_PerfEvtSeln ... 395
overflow .. 397
PerfCtrn ... 391
PerfEvtSeln .. 392
starting and stopping ... 397

PG bit ... 45, 131
PGE bit ... 50
physical address... 3, 24

as index into cache.. 199
physical memory.. 4
physical-address extensions (CR4.PAE). 25, 49, 51, 132,

141
activating long mode................................... 132, 466
See also PAE paging.

POP instruction.. 173
POPF .. 489
precise exceptions and interrupts 231
precision exception (PE)................................. 246, 249
PREFETCH instruction .. 203
present (P)

descriptor ... 90, 364
page-translation tables... 151

principle of locality .. 154
priorities, interrupt ... 253
privilege level .. 105
probe, cache .. 181, 188

during cache disable.. 201
processor feature identification (rFLAGS.ID)............. 56
processor halt .. 176
processor modes

16-bit ... xlvi
32-bit ... xlvi
64-bit ... xlvi

processor state ... 456
processor states .. 339
protected mode ... l, 14, 476

[AMD Public Use]

Index 707

24593—Rev. 3.37—March 2021 AMD64 Technology

initial operating environment............................... 462
protected-mode virtual interrupts (CR4.PVI).............. 48
protection checks

adjusting RPL .. 176
call gate ... 114
checking access rights... 175
data segment .. 106
direct call, conforming .. 111
direct call, nonconforming................................... 109
enabling... 74
far return.. 120
interrupt return .. 266, 267
interrupt to higher privilege 263
limit check, 64-bit mode...................................... 121
long mode changes ... 27
long mode interrupt .. 273
long mode interrupt return................................... 276
stack segment... 107
type check.. 123
verifying read/write access 175

protection domains... 514
protection enable (CR0.PE) 43, 74, 82
PS bit... 133, 152
PSE bit.. 49
PSE paging ... 25
P-State ... 629, 637

control .. 629, 637
current limit register ... 630
status register ... 631

PTE .. 133
PUSH instruction... 173
PUSHF ... 489
PVI bit .. 48
PWT bit ... 134, 142, 151

Q
quadword ... l

R
R bit ... 91
R/W bit ... 151
r8–r15... liv
RAX... 477
rAX–rSP ... liv
RAZ .. l
RdMem, MTRR type field................................. 61, 221
RDMSR... 59, 173, 493
RDP field .. 347
RDPMC... 50, 489
RDPMC instruction ... 173
RDTSC....................................... 49, 64, 173, 398, 489
RDTSCP..................................... 49, 64, 174, 398, 490
read hit.. 181

read miss ... 181
read ordering ... 203
read/write (R/W)

page-translation tables, bit in 151
readable (R), code segment 91
real address.. 10
real address mode. See real mode
real mode ... l, 4, 14

initial operating environment 462
registers

See also entries for individual registers.
address-breakpoint registers (DR0-DR3) 377
control registers .. 29, 41
control-transfer recording MSRs 383
CR0... 42
CR2... 245
CR3.. 25, 46, 134, 141
CR4... 47
CSTAR .. 170
debug registers ... 29, 376
debug-control MSR (DebugCtl) 381
debug-control register (DR7) 379
debug-extension MSRs ... 63
descriptor-table registers.................................. 26, 76
eAX–eSP .. liii
EFER.. 29, 56, 67, 69
eFLAGS ... liii
eIP.. liii
FPR ... 331, 333
FS and GS.. 80
GDTR.. 83
GPRs ... 28
IDTR ... 88
IORRBase.. 223
IORRMask... 223
L2I_PerfEvtSeln... 396
last x87 data pointer 331, 333, 347
last x87 instruction pointer 331, 333, 346
LDTR .. 85
LSTAR .. 170
machine-check MSRs 64, 65, 66
MCG_CAP .. 290
MCG_CTL... 292
MCG_STATUS .. 291
MCi_ADDR... 298
MCi_CTL .. 295
MCi_MISC .. 298
MCi_STATUS .. 295
memory-type range register (MTRR) 29, 63, 207
MMX .. 329
model-specific registers (MSRs) 29
MTRR, fixed range ... 208
MTRR, variable range... 210
MTRRcap .. 213
MTRRdefType ... 213

[AMD Public Use]

708 Index

AMD64 Technology 24593—Rev. 3.37—March 2021

MTRRfix16K... 209
MTRRfix4K .. 209
MTRRfix64K... 209
MTRRphysBase ... 210
MTRRphysMask .. 211
MXCSR... 329
NB_PerfEvtSeln... 395
PAT ... 216
PerfCtrn... 391
PerfEvtSeln.. 392
performance-monitoring MSRs.............................. 64
r8–r15.. liv
rAX–rSP.. liv
rFLAGS.. liv, 28, 52
rIP... liv
rSP .. 28
segment registers .. 79
SSE registers.. 28
STAR .. 170
SYSCFG.. 61
SYSENTER_CS... 171
SYSENTER_EIP.. 171
SYSENTER_ESP... 171
system-linkage MSRs ... 62
task-priority register (CR8) 38, 52, 256
time-stamp counter .. 64, 397
TOP_MEM... 62, 224
TOP_MEM2 ... 62, 224
x87 FCW .. 331, 333, 346
x87 floating-point processor state 330
x87 FSW 329, 331, 333, 346
x87 FTW 330, 331, 333, 346
x87 opcode ... 331, 333, 347
XMM registers ... 328

relative... l
replacement, cache-line .. 181
replicated state... 522
reserved ... l
reset.. 455

processor state.. 456
RESET# signal .. 455
resume flag (rFLAGS.RF) 54, 237, 388
RET instruction ... 120

from 64-bit mode.. 121
long mode... 33, 120
popping null selector, 64-bit mode 121
stack switch ... 120

retire, instruction ... 182
revision history... xxxiii
REX prefix.. 29
RF bit ... 54
RFLAGS... 477
rFLAGS.. 28, 52

alignment check (AC) 55, 247

I/O privilege level field (IOPL).............................. 54
interrupt flag (IF) .. 54, 173
nested task (NT) ... 54, 372
processor feature identification (ID) 56
resume flag (RF).................................... 54, 237, 388
trap flag (TF).. 53
virtual interrupt (VIF) 55, 278
virtual interrupt pending (VIP)....................... 56, 278
virtual-8086 mode (VM) 55

rFLAGS register .. liv
RIP ... 477
rIP .. 28
rIP register... liv
RIP-relative address ... 31
RIP-relative addressing.. li
RIPV bit .. 291
RPL ... 78, 106, 354

adjusting .. 176
definition ... 106
in call gate protection .. 115
in data segment protection 106, 302
in far return .. 120
in IRET instruction ... 266
in protecting conforming CS................................ 112
in protecting nonconforming CS 110
in stack segment protection.................................. 108

RSM .. 307, 323, 489
RSP .. 477
rSP.. 28

call gate stack switch... 117
implicit reference.. 31

S
S bit .. 90, 364
SBZ ... li
SCE bit ... 57
secure initialization .. 520
secure loader (SL) .. 530
secure loader (SL) image .. 531
secure loader block... 531
secure MP initialization .. 534
security exception (#SX) 530, 535
segment base ... 89
segment limit ... 89
segment offset.. 2
segment registers ... 76, 79

64-bit mode.. 80
accessing.. 174
hidden portion .. 79
initializing unused registers 78

segmentation ... 5, 26
64-bit mode.. 75
combining with paging.. 8

[AMD Public Use]

Index 709

24593—Rev. 3.37—March 2021 AMD64 Technology

flat segmentation .. 6, 9, 75
multi-segmented model... 74

segment-not-present exception (#NP) 243
segment-override prefix ... 30
selector 76, 77, 78, 86, 96, 354
selector index .. 78
self-modifying code ... 199
SEOI Register .. 597, 617
serializing instructions.. 204
set... li
SF exception ... 246
SFENCE ... 184
SFENCE instruction... 203
SGDT .. 175, 489
shadow page tables (SPTs)...................................... 503
shared state, MOESI .. 187
shut down.. 241
SIDT ... 175, 489
SIMD floating-point exception (#XF).. 50, 248, 327, 328
single-step

all instructions... 376, 388
control-transfers .. 376, 389

SKINIT.. 490, 520, 530
SL abort .. 534
SLDT .. 175, 489
SMBASE register .. 309
SMI .. 307

external, synchronous ... 511
internal, synchronous .. 511
xternal, asynchronous ... 511

SMM .. 307
SMM interrupts ... 318
SMM revision identifier ... 314
SMM state-save area.. 310
SMM_CTL MSR... 557
SMRAM ... 308
SMRAM state-save area... 310
SMSW.. 488
SMSW instruction ... 172
specific EOI (SEOI) 617, 618, 620, 621, 623
speculative execution ... 182
Spurious Interrupts... 605
SS register.. 80, 477
SS.SEL ... 477
SSE Instructions

subset support .. 325
SSE instructions

enabling... 327
saving state .. 332
YMM/XMM registers 28, 328

SSM Containerization .. 685
stack exception (#SS)... 243

stack pointers
in 32-bit TSS .. 359
in 64-bit TSS .. 361

stack segment .. 80, 92
64-bit mode.. 80
default operand size (D) .. 94
expand down (E) .. 93
privilege checks.. 107

stack switch
call gate ... 117
call gate, long mode 33, 118
far return .. 120
interrupt ... 262
interrupt return ... 266, 267
interrupt, long mode.. 37

stack-fault exception (SF) 246
STAR register ... 170, 654, 657
state switch.. 475
status word .. 172
stepping ID field .. 459
STGI... 490, 504
STI instruction... 173
sticky bits ... li
store ordering .. 203
STR .. 489
STR instruction.. 175
SVM support ... 511
SWAPGS instruction .. 171
SYSCALL Flag Mask register................................. 170
SYSCALL, SYSRET instructions 57, 169
SYSCFG register 61, 654, 659

MtrrFixDramEn.. 61, 221
MtrrFixDramModEn..................................... 61, 221
MtrrTom2En .. 226
MtrrVarDramEn ... 62, 226

SYSENTER_CS register 171, 651, 658
SYSENTER_EIP register 171, 651, 658
SYSENTER_ESP register........................ 171, 651, 658
SYSENTER, SYSEXIT instructions........................ 171

illegal in long mode .. 171
system call and return... 168
system data structures... 17
system management interrupt (SMI) 307, 317, 511

while in SMM .. 318
system management mode (SMM) 15, 24, 511

leaving... 323
long mode differences ... 307
operating environment .. 317
revision identifier.. 314
saving processor state.. 319
SMBASE register ... 309
SMRAM .. 308
state-save area, AMD64 architecture 310

[AMD Public Use]

710 Index

AMD64 Technology 24593—Rev. 3.37—March 2021

state-save area, legacy... 313
system registers ... 15
system segment .. 27, 89, 94

ignored fields in 64-bit mode............................... 100
illegal types in long mode 99
long mode.. 99
type field ... 94

system-call extension (EFER.SCE) 57
system-linkage MSRs.. 62, 170

T
T bit.. 359
table indicator, selector... 78
tagged TLB ... 474
task gate.. 95

in task switching... 370
long mode.. 103

Task Register (TR)... 76
task register (TR) ... 355

loading .. 175
selector .. 354
storing ... 175

task switch ... 351, 365
disabled in long mode ... 38
lazy context switch .. 44, 349
nesting tasks... 372
preventing recursion ... 373

task switched (CR0.TS)..................................... 44, 173
task, execution space.. 351
task-priority register (CR8).......................... 38, 52, 256
task-state segment (TSS)

descriptor... 354
dynamic fields.. 359
I/O-permission bitmap 359, 362
interrupt-redirection bitmap................................. 360
interrupt-stack table .. 362
legacy 32-bit .. 357
link field .. 372
software-defined fields.. 359
stack pointers .. 359, 361
static fields... 359

TF bit.. 53
Thermal Sensor ... 592
Thermal Sensor Interrupts 603
TI bit ... 78, 354
time-stamp counter ... 173, 397
time-stamp disable (CR4.TSD) 49, 173, 398
TLB.. 152, 154, 476, 477

explicit invalidation 155, 177, 178
implicit invalidation.. 156

TLB Control.. 503
TLB entry upgrades ... 156
TLB flush.. 503

TLB_CONTROL... 504
top of memory ... 224
TOP_MEM register........................... 62, 224, 654, 659
TOP_MEM2 register......................... 62, 224, 654, 659
TPM ... 532
TPR register ... 38, 52, 256
TR register ... 352, 355, 489
translation lookaside buffer (TLB)........................... 154
trap ... 232
trap flag (rFLAGS.TF) ... 53
trap gate .. 95, 270
Trigger Mode Register.. 612
Trusted Platform Module (TPM) 530
trusted software ... 530
TS bit.. 44
TSC register ... 397, 651, 662
TSD bit ... 49
TSS.. lii, 352, 357
TSS descriptor ... 352
TSS selector .. 96, 352
type check ... 123
Type field ... 90, 355, 364

U
U/S bit .. 151
UC bit ... 297
UC memory type.. 190
UD2 instruction ... 239
UE exception ... 246, 249
uncacheable (UC-), memory type 217
underflow.. lii
underflow exception (UE)............................... 246, 249
user segment.. 88
user/supervisor (U/S)

page-translation tables, bit in 151

V
V_IGN_TPR ... 509
V_INTR_MASKING ... 507
V_INTR_PRIO.. 509
V_INTR_VECTOR.. 509
V_IRQ .. 478, 509
V_TPR... 478, 508, 509
VAL bit ... 298
Variable-range IORRs .. 222
vector.. lii
vector, interrupt.. 234
VERR instruction... 175
VERW instruction.. 175
VIF bit .. 55
VIP bit .. 56

[AMD Public Use]

Index 711

24593—Rev. 3.37—March 2021 AMD64 Technology

virtual #INTR.. 508
virtual address ... 3, 24
virtual interrupt (rFLAGS.VIF).......................... 55, 278
virtual interrupt pending (rFLAGS.VIP) 56, 278
virtual interrupts 54, 55, 56, 277, 278, 474
virtual interrupts, protected mode............................ 280
virtual machine control block (VMCB).................... 476
virtual machine monitor ... 473
virtual memory .. 3
virtual-8086 mode... lii, 14

interrupt to protected mode.................................. 268
interrupts ... 267

virtual-8086 mode (rFLAGS.VM)............................. 55
virtual-8086 mode extensions (CR4.VME) 48, 277
VM bit .. 55
VM_HSAVE_AREA ... 477
VM_SAVE_PA MSR ... 558
VMCB.. 476
VME .. 277
VME bit... 48, 267
VMLOAD... 490
VMM ... 473
VMMCALL... 490, 505
VMRUN .. 474, 476, 490
VMSAVE.. 490

W
W bit .. 93
WAIT/FWAIT instruction ... 43
WB memory type .. 191
WBINVD.. 176, 177, 203, 490
WC memory type .. 191
WC+... 527
world switch.. 473
WP bit .. 44
WP memory type ... 191
writable (W), data segment 93
write buffer .. 181, 195

emptying.. 195
write hit .. 181
write miss.. 181
write ordering... 183, 203
write protect (CR0.WP).. 44
write-back (WB), memory type............................... 191
writeback, cache line.. 181
write-combining buffer.................................... 181, 196

emptying.. 196
write-combining plus memory type 191
write-though (WT)

memory type .. 191
WrMem, MTRR type field 61, 221
WRMSR .. 59, 173, 493

WT memory type ... 191

X
x87 control word..................................... 331, 333, 346
x87 data pointer register 331, 333, 347
x87 environment .. 333
x87 floating-point instructions

initializing.. 459
processor state .. 330
saving state .. 332

x87 floating-point state, initialization....................... 457
x87 instruction pointer register 331, 333, 346
x87 opcode register 331, 333, 347
x87 status word................................ 329, 331, 333, 346
x87 tag word.................................... 330, 331, 333, 346

FXSAVE format ... 347
XMM registers .. 328

Y
YMM states... 341

Z
ZE exception ... 246, 249
zero extension.. 30, 31
zero-divide exception (ZE) 246, 249

[AMD Public Use]

712 Index

AMD64 Technology 24593—Rev. 3.37—March 2021

[AMD Public Use]

Advanced Micro Devices

Publication No. Revision Date

24594 3.32 March 2021

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 3:
General-Purpose and
System Instructions

Publication No. Revision Date

24594 3.32 March 2021

[AMD Public Use]

© 2013 – 2021 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale. Any unauthorized copying, alteration, distribution,

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and 3DNow! are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

[AMD Public Use]

Contents i

24594—Rev. 3.32—March 2021 AMD64 Technology

Contents

Contents . i

Figures. xi

Tables . xiii

Revision History . xvii

Preface. xxiii
About This Book. xxiii
Audience . xxiii
Organization . xxiii
Conventions and Definitions . xxiv
Related Documents . xxxvi

1 Instruction Encoding .1
1.1 Instruction Encoding Overview. 1

1.1.1 Encoding Syntax. 1
1.1.2 Representation in Memory . 4

1.2 Instruction Prefixes . 5
1.2.1 Summary of Legacy Prefixes . 6
1.2.2 Operand-Size Override Prefix . 7
1.2.3 Address-Size Override Prefix . 9
1.2.4 Segment-Override Prefixes. 10
1.2.5 Lock Prefix . 12
1.2.6 Repeat Prefixes . 12
1.2.7 REX Prefix . 14
1.2.8 VEX and XOP Prefixes . 16

1.3 Opcode. 16
1.4 ModRM and SIB Bytes . 17

1.4.1 ModRM Byte Format . 17
1.4.2 SIB Byte Format . 18
1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes 20
1.4.4 Operand Addressing in 64-bit Mode. 23

1.5 Displacement Bytes . 24
1.6 Immediate Bytes . 24
1.7 RIP-Relative Addressing . 24

1.7.1 Encoding . 25
1.7.2 REX Prefix and RIP-Relative Addressing . 25
1.7.3 Address-Size Prefix and RIP-Relative Addressing. 25

1.8 Encoding Considerations Using REX . 26
1.8.1 Byte-Register Addressing . 26
1.8.2 Special Encodings for Registers . 26

1.9 Encoding Using the VEX and XOP Prefixes . 29
1.9.1 Three-Byte Escape Sequences . 29
1.9.2 Two-Byte Escape Sequence . 32

[AMD Public Use]

ii Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

2 Instruction Overview. .35
2.1 Instruction Groups . 35
2.2 Reference-Page Format . 36
2.3 Summary of Registers and Data Types . 38

2.3.1 General-Purpose Instructions . 38
2.3.2 System Instructions. 41
2.3.3 SSE Instructions . 43
2.3.4 64-Bit Media Instructions . 48
2.3.5 x87 Floating-Point Instructions . 50

2.4 Summary of Exceptions. 51
2.5 Notation . 53

2.5.1 Mnemonic Syntax. 53
2.5.2 Opcode Syntax . 56
2.5.3 Pseudocode Definition . 57

3 General-Purpose Instruction Reference .73
AAA. 75
AAD. 76
AAM . 77
AAS . 78
ADC. 79
ADCX . 81
ADD. 83
ADOX . 85
AND. 87
ANDN . 90
BEXTR
(register form) . 92
BEXTR
(immediate form) . 94
BLCFILL . 96
BLCI . 98
BLCIC . 100
BLCMSK. 102
BLCS . 104
BLSFILL . 106
BLSI. 108
BLSIC . 110
BLSMSK . 112
BLSR . 114
BOUND . 116
BSF . 118
BSR . 119
BSWAP . 120
BT . 121
BTC . 123
BTR . 125
BTS . 127

[AMD Public Use]

Contents iii

24594—Rev. 3.32—March 2021 AMD64 Technology

BZHI . 129
CALL (Near) . 131
CALL (Far) . 134
CBW
CWDE
CDQE . 141
CWD
CDQ
CQO. 142
CLC . 143
CLD . 144
CLFLUSH . 145
CLFLUSHOPT . 147
CLZERO . 151
CMC . 152
CMOVcc . 153
CMP. 157
CMPS
CMPSB
CMPSW
CMPSD
CMPSQ . 160
CMPXCHG . 162
CMPXCHG8B
CMPXCHG16B. 164
CPUID . 166
CRC32 . 168
DAA. 170
DAS . 171
DEC . 172
DIV . 174
ENTER . 176
IDIV. 178
IMUL . 180
IN . 183
INC . 185
INS
INSB
INSW
INSD . 187
INT. 189
INTO . 197
Jcc . 198
JCXZ
JECXZ
JRCXZ . 202
JMP (Near). 203

[AMD Public Use]

iv Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

JMP (Far) . 205
LAHF. 210
LDS
LES
LFS
LGS
LSS . 211
LEA . 213
LEAVE. 215
LFENCE . 216
LLWPCB . 217
LODS
LODSB
LODSW
LODSD
LODSQ . 220
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ . 222
LWPINS. 224
LWPVAL . 226
LZCNT. 229
MCOMMIT . 231
MFENCE . 232
MONITORX . 233
MOV . 235
MOVBE. 238
MOVD . 240
MOVMSKPD . 244
MOVMSKPS. 246
MOVNTI . 248
MOVS
MOVSB
MOVSW
MOVSD
MOVSQ. 250
MOVSX. 252
MOVSXD . 253
MOVZX. 254
MUL. 255
MULX . 257
MWAITX. 259
NEG . 262
NOP . 264
NOT . 265

[AMD Public Use]

Contents v

24594—Rev. 3.32—March 2021 AMD64 Technology

OR . 266
OUT . 269
OUTS
OUTSB
OUTSW
OUTSD . 270
PAUSE . 272
PDEP . 273
PEXT . 275
POP . 277
POPA
POPAD. 280
POPCNT . 281
POPF
POPFD
POPFQ. 283
PREFETCH
PREFETCHW . 286
PREFETCHlevel . 288
PUSH . 290
PUSHA
PUSHAD . 292
PUSHF
PUSHFD
PUSHFQ . 293
RCL . 295
RCR . 297
RDFSBASE
RDGSBASE . 299
RDPID . 300
RDPRU . 301
RDRAND . 302
RDSEED . 303
RET (Near) . 304
RET (Far) . 306
ROL . 311
ROR . 313
RORX . 315
SAHF . 317
SAL
SHL . 318
SAR . 321
SARX. 323
SBB . 325
SCAS
SCASB
SCASW

[AMD Public Use]

vi Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

SCASD
SCASQ . 327
SETcc. 329
SFENCE . 331
SHL . 332
SHLD. 333
SHLX. 335
SHR . 337
SHRD. 339
SHRX. 341
SLWPCB . 343
STC . 345
STD . 346
STOS
STOSB
STOSW
STOSD
STOSQ. 347
SUB . 349
T1MSKC . 351
TEST . 353
TZCNT. 355
TZMSK . 357
UD0, UD1, UD2 . 359
WRFSBASE
WRGSBASE . 360
XADD . 361
XCHG . 363
XLAT . 365
XLATB . 365
XOR. 366

4 System Instruction Reference .369
ARPL . 371
CLAC. 373
CLGI . 374
CLI. 375
CLTS . 377
CLRSSBSY . 378
HLT . 380
INCSSP . 381
INT 3 . 383
INVD . 386
INVLPG. 387
INVLPGA . 388
INVLPGB . 389
INVPCID . 392
IRET

[AMD Public Use]

Contents vii

24594—Rev. 3.32—March 2021 AMD64 Technology

IRETD
IRETQ . 394
LAR . 402
LGDT. 404
LIDT . 406
LLDT . 408
LMSW . 410
LSL . 411
LTR . 413
MONITOR. 415
MOV CRn . 417
MOV DRn . 419
MWAIT . 421
PSMASH . 423
PVALIDATE . 426
RDMSR . 429
RDPKRU . 430
RDPMC . 431
RDSSP . 433
RDTSC . 434
RDTSCP . 436
RMPADJUST . 438
RMPUPDATE . 441
RSM. 445
RSTORSSP . 447
SAVEPREVSSP. 450
. 450
SETSSBSY . 452
SGDT. 454
SIDT. 455
SKINIT . 456
SLDT . 458
SMSW . 460
STAC . 461
STI . 462
STGI . 464
STR . 465
SWAPGS . 466
SYSCALL . 468
SYSENTER . 472
SYSEXIT. 474
SYSRET. 476
TLBSYNC . 480
VERR. 481
VERW . 483
VMLOAD . 485
VMMCALL. 487

[AMD Public Use]

viii Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

VMGEXIT. 487
VMRUN . 488
VMSAVE. 493
WBINVD. 495
WBNOINVD . 495
WRMSR . 497
WRPKRU . 499
WRSS . 500
WRUSS . 503

Appendix A Opcode and Operand Encodings .505
A.1 Opcode Maps . 508

Legacy Opcode Maps . 508
3DNow!™ Opcodes . 524
x87 Encodings . 527
rFLAGS Condition Codes for x87 Opcodes . 536
Extended Instruction Opcode Maps. 536

A.2 Operand Encodings . 547
ModRM Operand References . 547
SIB Operand References . 552

Appendix B General-Purpose Instructions in 64-Bit Mode .557
B.1 General Rules for 64-Bit Mode . 557
B.2 Operation and Operand Size in 64-Bit Mode . 558
B.3 Invalid and Reassigned Instructions in 64-Bit Mode . 585
B.4 Instructions with 64-Bit Default Operand Size . 586
B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode . 587
B.6 NOP in 64-Bit Mode . 588
B.7 Segment Override Prefixes in 64-Bit Mode . 588

Appendix C Differences Between Long Mode and Legacy Mode.589

Appendix D Instruction Subsets and CPUID Feature Flags. .591
D.1 Instruction Set Overview . 592
D.2 CPUID Feature Flags Related to Instruction Support . 594

Appendix E Obtaining Processor Information Via the CPUID Instruction597
E.1 Special Notational Conventions . 597
E.2 Standard and Extended Function Numbers . 598
E.3 Standard Feature Function Numbers . 598

Function 0h—Maximum Standard Function Number and Vendor String. 598
Function 1h—Processor and Processor Feature Identifiers. 599
Functions 2h–4h—Reserved . 602
Function 5h—Monitor and MWait Features . 603
Function 6h—Power Management Related Features . 603
Function 7h—Structured Extended Feature Identifiers . 604
Functions 8h–Ah—Reserved. 605
Function Bh — Extended Topology Enumeration . 606
Function Ch—Reserved. 607
Function Dh—Processor Extended State Enumeration . 607

[AMD Public Use]

Contents ix

24594—Rev. 3.32—March 2021 AMD64 Technology

Functions 4000_0000h–4000_FFh—Reserved for Hypervisor Use 612
E.4 Extended Feature Function Numbers . 612

Function 8000_0000h—Maximum Extended Function Number and Vendor String 612
Function 8000_0001h—Extended Processor and Processor Feature Identifiers. 613
Functions 8000_0002h–8000_0004h—Extended Processor Name String 616
Function 8000_0005h—L1 Cache and TLB Information . 616
Function 8000_0006h—L2 Cache and TLB and L3 Cache Information 618
Function 8000_0007h—Processor Power Management and RAS Capabilities 620
Function 8000_0008h—Processor Capacity Parameters and Extended Feature Identification .

622
Function 8000_0009h—Reserved . 624
Function 8000_000Ah—SVM Features . 624
Functions 8000_000Bh–8000_0018h—Reserved . 626
Function 8000_0019h—TLB Characteristics for 1GB pages . 626
Function 8000_001Ah—Instruction Optimizations . 627
Function 8000_001Bh—Instruction-Based Sampling Capabilities. 629
Function 8000_001Ch—Lightweight Profiling Capabilities. 629
Function 8000_001Dh—Cache Topology Information . 631
Function 8000_001Eh—Processor Topology Information . 633
Function 8000_001Fh—Encrypted Memory Capabilities. 634
Function 8000_0020—Reserved . 636
Function 8000_0021—Extended Feature Identification 2 . 636

E.5 Multiple Processor Calculation . 636
Legacy Method . 636
Extended Method (Recommended) . 637

Appendix F Instruction Effects on RFLAGS .639

Index . 643

[AMD Public Use]

x Contents

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

Figures xi

24594—Rev. 3.32—March 2021 AMD64 Technology

Figures

Figure 1-1. Instruction Encoding Syntax. 2

Figure 1-2. An Instruction as Stored in Memory. 5

Figure 1-3. REX Prefix Format . 15

Figure 1-4. ModRM-Byte Format . 17

Figure 1-5. SIB Byte Format . 19

Figure 1-6. Encoding Examples Using REX R, X, and B Bits . 28

Figure 1-7. VEX/XOP Three-byte Escape Sequence Format . 29

Figure 1-8. VEX Two-byte Escape Sequence Format. 33

Figure 2-1. Format of Instruction-Detail Pages . 37

Figure 2-2. General Registers in Legacy and Compatibility Modes . 38

Figure 2-3. General Registers in 64-Bit Mode . 39

Figure 2-4. Segment Registers. 40

Figure 2-5. General-Purpose Data Types . 41

Figure 2-6. System Registers . 42

Figure 2-7. System Data Structures . 43

Figure 2-8. SSE Registers . 44

Figure 2-9. 128-Bit SSE Data Types . 45

Figure 2-10. SSE 256-bit Data Types . 46

Figure 2-11. SSE 256-Bit Data Types (Continued). 47

Figure 2-12. 64-Bit Media Registers . 48

Figure 2-13. 64-Bit Media Data Types . 49

Figure 2-14. x87 Registers. 50

Figure 2-15. x87 Data Types . 51

Figure 2-16. Syntax for Typical Two-Operand Instruction. 53

Figure 3-1. MOVD Instruction Operation . 241

Figure A-1. ModRM-Byte Fields . 517

Figure A-2. ModRM-Byte Format . 547

Figure A-3. SIB Byte Format . 553

Figure D-1. AMD64 ISA Instruction Subsets . 593

[AMD Public Use]

xii Figures

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

Tables xiii

24594—Rev. 3.32—March 2021 AMD64 Technology

Tables

Table 1-1. Legacy Instruction Prefixes . 7

Table 1-2. Operand-Size Overrides . 8

Table 1-3. Address-Size Overrides. 9

Table 1-4. Pointer and Count Registers and the Address-Size Prefix . 10

Table 1-5. Segment-Override Prefixes . 11

Table 1-6. REP Prefix Opcodes . 12

Table 1-7. REPE and REPZ Prefix Opcodes . 13

Table 1-8. REPNE and REPNZ Prefix Opcodes . 14

Table 1-9. Instructions Not Requiring REX Prefix in 64-Bit Mode . 15

Table 1-10. ModRM.reg and .r/m Field Encodings . 18

Table 1-11. SIB.scale Field Encodings . 19

Table 1-12. SIB.index and .base Field Encodings . 20

Table 1-13. SIB.base encodings for ModRM.r/m = 100b . 20

Table 1-14. Operand Addressing Using ModRM and SIB Bytes . 21

Table 1-15. REX Prefix-Byte Fields . 23

Table 1-16. Encoding for RIP-Relative Addressing. 25

Table 1-17. Special REX Encodings for Registers . 27

Table 1-18. Three-byte Escape Sequence Field Definitions . 30

Table 1-19. VEX.map_select Encoding . 30

Table 1-20. XOP.map_select Encoding . 31

Table 1-21. VEX/XOP.vvvv Encoding . 32

Table 1-22. VEX/XOP.pp Encoding . 32

Table 1-23. VEX Two-byte Escape Sequence Field Definitions . 33

Table 1-24. Fixed Field Values for VEX 2-Byte Format. 33

Table 2-1. Interrupt-Vector Source and Cause. 52

Table 2-2. +rb, +rw, +rd, and +rq Register Value . 57

Table 3-1. Instruction Support Indicated by CPUID Feature Bits . 73

Table 3-2. Processor Vendor Return Values . 167

Table 3-3. Locality References for the Prefetch Instructions. 288

Table 4-1. System Instruction Support Indicated by CPUID Feature Bits. 369

Table A-1. Primary Opcode Map (One-byte Opcodes), Low Nibble 0–7h . 509

Table A-2. Primary Opcode Map (One-byte Opcodes), Low Nibble 8–Fh . 510

Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0–7h . 512

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh . 514

[AMD Public Use]

xiv Tables

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-5. rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc . 516

Table A-6. ModRM.reg Extensions for the Primary Opcode Map1 . 517

Table A-7. ModRM.reg Extensions for the Secondary Opcode Map . 519

Table A-8. Opcode 01h ModRM Extensions . 520

Table A-9. 0F_38h Opcode Map, Low Nibble = [0h:7h]
522

Table A-10. 0F_38h Opcode Map, Low Nibble = [8h:Fh] . 522

Table A-11. 0F_3Ah Opcode Map, Low Nibble = [0h:7h] . 523

Table A-12. 0F_3Ah Opcode Map, Low Nibble = [8h:Fh] . 523

Table A-13. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0–7h . 525

Table A-14. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8–Fh. 526

Table A-15. x87 Opcodes and ModRM Extensions . 528

Table A-16. rFLAGS Condition Codes for FCMOVcc . 536

Table A-17. VEX Opcode Map 1, Low Nibble = [0h:7h] . 537

Table A-18. VEX Opcode Map 1, Low Nibble = [0h:7h] Continued. 538

Table A-19. VEX Opcode Map 1, Low Nibble = [8h:Fh] . 539

Table A-20. VEX Opcode Map 2, Low Nibble = [0h:7h] . 540

Table A-21. VEX Opcode Map 2, Low Nibble = [8h:Fh] . 541

Table A-22. VEX Opcode Map 3, Low Nibble = [0h:7h] . 542

Table A-23. VEX Opcode Map 3, Low Nibble = [8h:Fh] . 543

Table A-24. VEX Opcode Groups . 544

Table A-25. XOP Opcode Map 8h, Low Nibble = [0h:7h]. 544

Table A-26. XOP Opcode Map 8h, Low Nibble = [8h:Fh] . 545

Table A-27. XOP Opcode Map 9h, Low Nibble = [0h:7h]. 545

Table A-28. XOP Opcode Map 9h, Low Nibble = [8h:Fh] . 546

Table A-29. XOP Opcode Map Ah, Low Nibble = [0h:7h] . 546

Table A-30. XOP Opcode Map Ah, Low Nibble = [8h:Fh] . 546

Table A-31. XOP Opcode Groups . 546

Table A-32. ModRM reg Field Encoding, 16-Bit Addressing . 548

Table A-33. ModRM Byte Encoding, 16-Bit Addressing. 548

Table A-34. ModRM reg Field Encoding, 32-Bit and 64-Bit Addressing . 550

Table A-35. ModRM Byte Encoding, 32-Bit and 64-Bit Addressing. 551

Table A-36. Addressing Modes: SIB base Field Encoding . 553

Table A-37. Addressing Modes: SIB Byte Encoding . 554

Table B-1. Operations and Operands in 64-Bit Mode . 558

Table B-2. Invalid Instructions in 64-Bit Mode . 585

Table B-3. Reassigned Instructions in 64-Bit Mode. 586

[AMD Public Use]

Tables xv

24594—Rev. 3.32—March 2021 AMD64 Technology

Table B-4. Invalid Instructions in Long Mode . 586

Table B-5. Instructions Defaulting to 64-Bit Operand Size . 587

Table C-1. Differences Between Long Mode and Legacy Mode . 589

Table D-1. Feature Flags for Instruction / Instruction Subset Support . 594

Table E-1. CPUID Fn0000_0000_E[D,C,B]X values . 601

Table E-2. CPUID Fn8000_0000_E[D,C,B]X values . 613

Table E-3. L1 Cache and TLB Associativity Field Encodings. 617

Table E-4. L2/L3 Cache and TLB Associativity Field Encoding. 620

Table E-5. LogicalProcessorCount, CmpLegacy, HTT, and NC . 636

Table F-1. Instruction Effects on RFLAGS . 637

[AMD Public Use]

xvi Tables

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

Revision History xvii

24594—Rev. 3.32—March 2021 AMD64 Technology

Revision History

Date Revision Description

March 2021 3.32

Chapter 1: Updated Instruction Encoding Syntax and An
Instruction as Stored in Memory figures.

Added content to Summary of Legacy Prefixes section.

Chapter 3: Added content Instruction Support Indicated by
CPUID Feature Bits table.

Added content to LFENCE

Updated note 1 in the Legacy Instruction Prefixes table.

Chapter 4: Added content to the System Instruction Support
Indicated by CPUID Feature Bits table.

Added VMGEXIT instruction.

Added content to WRMSR instruction.

Appendix D: Added content to the Feature Flags for Instruction /
Instruction Subset Support table.

Appendix E: Updated instructions and added instructions to
sections E.3 and E.4: See bold line items.

October 2020 3.31

Chapter 2: Added to pseudocode Definition section. Table 2-1:
Added content.

Chapter 3: Added pseudocode updates.

Chapter 4: Added pseudocode updates. Added 8 new
instructions. Added INVLPGB, TLBSYNC to System Instruction
Support Indicated by CPUID Feature Bits table. Updated
INVLPGB and TLBSYNC description.

Appendix A: Instructions encoding clarifications.

Appendix D: Added new instructions to Feature Flags for
Instruction / Instruction Subset Support table.

Appendix E: Added content to CPUID Fn0000_0007_ECX_x0
Structured Extended Feature Identifiers (ECX=0) table and to
Function Dh—Processor Extended State Enumeration section.
Added content to CPUID Fn8000_0008_EBX Extended Feature
Identifiers, CPUID Fn8000_000A_EDX SVM Feature
Identification, and CPUID Fn8000_001F_EAX tables.

April 2020 3.30

Chapter 4: Updated INVLPG, MOV CRn, and RSM sections.

Chapter 4: Added INVLPGB, INVPCID, RDPKRU, TLBSYNC,
and WRPKRU instructions.

Appendix D: Table D-1. Updated table.

Appendix E: Updated E.3.6, E.4.7, and E.4.9 sections.

[AMD Public Use]

xviii Revision History

AMD64 Technology 24594—Rev. 3.32—March 2021

April 2020 3.29

Table 2-1: Added content.

Chapter 4: Added PSMASH, PVALIDATE, RMPADJUST, and
RMPUPDATE instructions.

Appendix A: Table A-6, A-7, and A-8: Updated table.

Appendix D: Table D-1: Added content. Removed D.3 section.

Appendix E: Material for new features plus clarifications.

Appendix F: Table F-1: Added content.

September 2019 3.28
Added MCOMMIT instruction. Corrected CPUID function
8000_001Dh description.

July 2019 3.27

Added CLWB, RDPID, RDPRU, and WBNOINVD instructions.
Corrected functional details of BZHI instruction. Corrected SAHF
and LAHF #UD fault details. Corrected RSM reserved-bit
behavioral details.

May 2018 3.26

Modified description of CLFLUSH.

Added clarification that MOVD is referred to in some forms as
MOVQ.

Corrected the operands for VMOVNTDQA .

Updated L2/L3 Cache and Associativity tables with new
encodings over old reserved encodings

Updated CPUID with Nested Virtualization and Virtual GIF
indication bits.

December 2017 3.25 Updated Appendix E.

November 2017 3.24

Modified Mem16int in Section 2.5.1 Mnemonic Syntax

Corrected Opcode for ADCX and ADOX.

Clarified the explanation for Load Far Pointer

Modified the Description for CLAC and STAC

Added clarification to MWAITX.

Added clarifying footnote to Table A-6.

Added CPUID flags for new SVM features.

Added Bit descriptions for CPUID Fn8000_0008_EBX Reserved

Modified SAL1 and SAL count in Appendix F, Table F-1.

Date Revision Description

[AMD Public Use]

Revision History xix

24594—Rev. 3.32—March 2021 AMD64 Technology

March 2017 3.23

Added CR0.PE, CR0.PE=1, EFER.LME=0 to Conventions and
Definitions in the Preface.

Modified Note 4 in Table 1-10.

Chapter 3:

Added ADCX, ADOX, CLFLUSHOPT, CLZERO, RDSEED, UD0
and UD1.

Modified CALL (Far).

Moved UD2 and MONITORX, MWAITX, from Chapter 4.

Chapter 4:

Modified RDTSC and RDTSCP.

Added CLAC and STAC.

Appendix A:

Modified Table A-7, Group 11.

Appendix D:

Modified Table D-1 and Added new Feature Flags.

June 2015 3.22 Added MONITORX and MWAITX to Chapter 4.

October 2013 3.21

Added BMI2 instructions to Chapter 3.

Added BZHI to Table F-1 on page 639.

Changed CPUID Fn8000_0001_ECX[25] to reserved.

Changed CPUID Fn8000_0007_EAX and _EDX[11] to reserved.

Added CPUID Fn0000_0006_EDX[ARAT] (bit 2).

May 2013 3.20

Updated Appendix D "Instruction Subsets and CPUID Feature
Flags" on page 591 to make instruction list comprehensive.

Added a new Appendix E "Obtaining Processor Information Via
the CPUID Instruction" on page 597 which describes all defined
processor feature bits. Supersedes and replaces the CPUID
Specification (PID # 25481).

Previous Appendix E "Instruction Effects on RFLAGS"
renumbered as Appendix F.

September
2012

3.19
Corrected the value specified for the most significant nibble of
the encoding for the VPSHAx instructions in Table A-28 on
page 546.

Date Revision Description

[AMD Public Use]

xx Revision History

AMD64 Technology 24594—Rev. 3.32—March 2021

March 2012 3.18

Added MOVBE instruction reference page to Chapter 3
"General-Purpose Instruction Reference" on page 71.

Added instruction reference pages for the
RDFSBASE/RDGSBASE and WRFSBASE/WRGSBASE
instructions to Chapter 3.

Added opcodes for the instructions to the opcode maps in
Appendix A.

December 2011 3.17

Corrected second byte of VEX C5 escape sequence in
Figure 1-2 on page 5.

Made multiple corrections to the description of register-indirect
addressing in Section 1.4 on page 17.

Corrected mod field value in third row of Figure 1-16 on page 25.

Updated pseudocode definition (see Section 2.5.3 on page 57).

Corrected exception tables for LZCNT and TZCNT instructions.

Added discussion of UD opcodes to introduction of Appendix A.

Provided ommitted definition of “B” used in the specification of
operand types in opcode maps of Appendix A.

Provided numerous corrections to instruction entries in opcode
maps of Appendix A.

Added ymm register mnemonic to Table A-32 on page 548 and
Table A-34 on page 550.

Changed notational convention for indicating addressing modes
in Table A-33 on page 548, Table A-35 on page 551, Table A-36
on page 553, and Table A-37 on page 554; edited footnotes.

September 2011 3.16

Reworked “Instruction Byte Order” section of Chapter 1. See
“Instruction Encoding Overview” on page 1.

Added clarification: Execution of VMRUN is disallowed while in
System Management Mode.

Made wording for BMI and TBM feature flag indication
consistent with other instructions.

Moved BMI and TBM instructions to this volume from Volume 4.

Added instruction reference page for CRC32 Instruction.

Removed one cause of #GP fault from exception table for LAR
and LSL instructions.

Added three-byte, VEX, and XOP opcode maps to Appendix A.

Revised description of RDPMC instruction.

Corrected errors in description of CLFLUSH instruction.

Corrected footnote of Table A-35 on page 551.

Date Revision Description

[AMD Public Use]

Revision History xxi

24594—Rev. 3.32—March 2021 AMD64 Technology

November 2009 3.15

Clarified MFENCE serializing behavior.

Added multibyte variant to “NOP” on page 237.

Corrected descriptive text to “CMPXCHG8B CMPXCHG16B” on
page 151.

September 2007 3.14
Added minor clarifications and corrected typographical and
formatting errors.

July 2007 3.13

Added the following instructions: LZCNT, POPCNT, MONITOR,
and MWAIT.

Reformatted information on instruction support indicated by
CPUID feature bits into a table.

Added minor clarifications and corrected typographical and
formatting errors.

September 2006 3.12
Added minor clarifications and corrected typographical and
formatting errors.

December 2005 3.11
Added SVM instructions; added PAUSE instructions; made
factual changes.

January 2005 3.10
Clarified CPUID information in exception tables on instruction
pages. Added information under “CPUID” on page 153. Made
numerous small corrections.

September 2003 3.09
Corrected table of valid descriptor types for LAR and LSL
instructions and made several minor formatting, stylistic and
factual corrections. Clarified several technical definitions.

April 2003 3.08

Corrected description of the operation of flags for RCL, RCR,
ROL, and ROR instructions. Clarified description of the
MOVSXD and IMUL instructions. Corrected operand
specification for the STOS instruction. Corrected opcode of
SETcc, Jcc, instructions. Added thermal control and thermal
monitoring bits to CPUID instruction. Corrected exception tables
for POPF, SFENCE, SUB, XLAT, IRET, LSL, MOV(CRn),
SGDT/SIDT, SMSW, and STI instructions. Corrected many small
typos and incorporated branding terminology.

Date Revision Description

[AMD Public Use]

xxii Revision History

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

Preface xxiii

24594—Rev. 3.32—March 2021 AMD64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience

This volume (Volume 3) is intended for all programmers writing application or system software for a
processor that implements the AMD64 architecture. Descriptions of general-purpose instructions
assume an understanding of the application-level programming topics described in Volume 1.
Descriptions of system instructions assume an understanding of the system-level programming topics
described in Volume 2.

Organization

Volumes 3, 4, and 5 describe the AMD64 architecture’s instruction set in detail. Together, they cover
each instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

• General-purpose instructions

• System instructions

• Streaming SIMD Extensions–SSE (includes 128-bit and 256-bit media instructions)

• 64-bit media instructions (MMX™)

• x87 floating-point instructions

Several instructions belong to—and are described identically in—multiple instruction subsets.

This volume describes the general-purpose and system instructions. The index at the end cross-
references topics within this volume. For other topics relating to the AMD64 architecture, and for

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

[AMD Public Use]

xxiv Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Conventions and Definitions

The following section Notational Conventions describes notational conventions used in this volume
and in the remaining volumes of this AMD64 Architecture Programmer’s Manual. This is followed
by a Definitions section which lists a number of terms used in the manual along with their technical
definitions. Finally, the Registers section lists the registers which are a part of the application
programming model.

Notational Conventions

#GP(0)

An instruction exception—in this example, a general-protection exception with error code of 0.

1011b

A binary value—in this example, a 4-bit value.

F0EA_0B02h

A hexadecimal value. Underscore characters may be inserted to improve readability.

128

Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4

A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “_RRR” notation is followed by
“_xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CR0–CR4

A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0[PE], CR0.PE

Notation for referring to a field within a register—in this case, the PE field of the CR0 register.

[AMD Public Use]

Preface xxv

24594—Rev. 3.32—March 2021 AMD64 Technology

CR0[PE] = 1, CR0.PE = 1

Notation indicating that the PE bit of the CR0 register has a value of 1.

DS:rSI

The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER[LME] = 0, EFER.LME = 0

Notation indicating that the LME bit of the EFER register has a value of 0.

RFLAGS[13:12]

A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents” on page xxxiii for descriptions of the legacy x86 architecture.

128-bit media instructions

Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instructions

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX™ and 3DNow!™ instruction sets, with some additional instructions from the SSE1 and
SSE2 instruction sets.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

[AMD Public Use]

xxvi Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

absolute

Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte

Eight bits.

clear

To write a bit value of 0. Compare set.

compatibility mode

A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL

Current privilege level.

direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data

Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword

Two words, or four bytes, or 32 bits.

double quadword

Eight words, or 16 bytes, or 128 bits. Also called octword.

[AMD Public Use]

Preface xxvii

24594—Rev. 3.32—March 2021 AMD64 Technology

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element

See vector.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

flush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT

Global descriptor table.

IDT

Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB

The virtual-8086 mode interrupt-redirection bitmap.

IST

The long-mode interrupt-stack table.

[AMD Public Use]

xxviii Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

IVT

The real-address mode interrupt-vector table.

LDT

Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on page xxxiii for descriptions of the
legacy x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

LIP

Linear Instruction Pointer. LIP = (CS.base + rIP).

long mode

An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

lsb

Least-significant bit.

LSB

Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory

Unless otherwise specified, main memory.

[AMD Public Use]

Preface xxix

24594—Rev. 3.32—March 2021 AMD64 Technology

ModRM

A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset

A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb

Most-significant bit.

MSB

Most-significant byte.

multimedia instructions

A combination of 128-bit media instructions and 64-bit media instructions.

octword

Same as double quadword.

offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed

See vector.

PAE

Physical-address extensions.

physical memory

Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

procedure stack

A portion of a stack segment in memory that is used to link procedures. Also known as a program

[AMD Public Use]

xxx Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

stack.

program stack

See procedure stack.

protected mode

A submode of legacy mode.

quadword

Four words, or eight bytes, or 64 bits.

RAZ

Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. See reserved.

real-address mode

See real mode.

real mode

A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved

Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX

An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing

Addressing relative to the 64-bit RIP instruction pointer.

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior.

[AMD Public Use]

Preface xxxi

24594—Rev. 3.32—March 2021 AMD64 Technology

shadow stack

A shadow stack is a separate, protected stack that is conceptually parallel to the procedure stack
and used only by the shadow stack feature.

set

To write a bit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD

Single instruction, multiple data. See vector.

SSE

Streaming SIMD extensions instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE2

Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3

Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit

A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP

The x87 top-of-stack pointer.

TPR

Task-priority register (CR8).

TSS

Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SIMD (single-instruction multiple-data) operands.

[AMD Public Use]

xxxii Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode

A submode of legacy mode.

word

Two bytes, or 16 bits.

x86

See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH

The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL

The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP

Base pointer register.

CRn

Control register number n.

CS

Code segment register.

eAX–eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

EFER

Extended features enable register.

eFLAGS

16-bit or 32-bit flags register. Compare rFLAGS.

[AMD Public Use]

Preface xxxiii

24594—Rev. 3.32—March 2021 AMD64 Technology

EFLAGS

32-bit (extended) flags register.

eIP

16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP

32-bit (extended) instruction-pointer register.

FLAGS

16-bit flags register.

GDTR

Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR

Interrupt descriptor table register.

IP

16-bit instruction-pointer register.

LDTR

Local descriptor table register.

MSR

Model-specific register.

r8–r15

The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX

64-bit version of the EAX register.

[AMD Public Use]

xxxiv Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

RBP

64-bit version of the EBP register.

RBX

64-bit version of the EBX register.

RCX

64-bit version of the ECX register.

RDI

64-bit version of the EDI register.

RDX

64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS

64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP

64-bit instruction-pointer register.

RSI

64-bit version of the ESI register.

RSP

64-bit version of the ESP register.

SP

Stack pointer register.

SS

Stack segment register.

SSP

Shadow-stack pointer register.

TPR

Task priority register, a new register introduced in the AMD64 architecture to speed interrupt
management.

[AMD Public Use]

Preface xxxv

24594—Rev. 3.32—March 2021 AMD64 Technology

TR

Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

[AMD Public Use]

xxxvi Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.

• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

• AMD, Software Optimization Guide for AMD Family 15h Processors, order number 47414.

• AMD, BIOS and Kernel Developer's Guide (BKDG) for particular hardware implementations of
older families of the AMD64 architecture.

• AMD, Processor Programming Reference (PPR) for particular hardware implementations of
newer families of the AMD64 architecture.

• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.

• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

[AMD Public Use]

Preface xxxvii

24594—Rev. 3.32—March 2021 AMD64 Technology

• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.

• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium III,
www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.

• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.

• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

[AMD Public Use]

xxxviii Preface

AMD64 Technology 24594—Rev. 3.32—March 2021

• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.

• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.

[AMD Public Use]

Instruction Encoding 1

24594—Rev. 3.32—March 2021 AMD64 Technology

1 Instruction Encoding

AMD64 technology instructions are encoded as byte strings of variable length. The order and meaning
of each byte of an instruction’s encoding is specified by the architecture. Fields within the encoding
specify the instruction’s basic operation, the location of the one or more source operands, and the
destination of the result of the operation. Data to be used in the execution of the instruction or the
computation of addresses for memory-based operands may also be included. This section describes the
general format and parameters used by all instructions.

For information on the specific encoding(s) for each instruction, see:

• Chapter 3, “General-Purpose Instruction Reference.”

• Chapter 4, “System Instruction Reference.”

• “SSE Instruction Reference” in Volume 4.

• “64-Bit Media Instruction Reference” in Volume 5.

• “x87 Floating-Point Instruction Reference” in Volume 5.

For information on determining the instruction form and operands specified by a given binary
encoding, see Appendix A.

1.1 Instruction Encoding Overview

An instruction is encoded as a string between one and 15 bytes in length. The entire sequence of bytes
that represents an instruction, including the basic operation, the location of source and destination
operands, any operation modifiers, and any immediate and/or displacement values, is called the
instruction encoding.The following sections discuss instruction encoding syntax and representation in
memory.

1.1.1 Encoding Syntax

Figure 1-1 provides a schematic representation of the encoding syntax of an instruction.

[AMD Public Use]

2 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Figure 1-1. Instruction Encoding Syntax

Each square in this diagram represents an instruction byte of a particular type and function. To
understand the diagram, follow the connecting paths in the direction indicated by the arrows from
“Start” to “End.” The squares passed through as the graph is traversed indicate the order and number of

REX
prefix¹

Start legacy
prefix

Primary
opcode

map

0Fh
escape

0Fh
escape

38h
escape

3Ah
escape

Second.
opcode

map

VEX
opcode
map 1

VEX
prefix

R.vvvv
.L.pp

C5 2-byte sequence

C4 3-byte sequence

VEX
prefix

RXB.
map_sel

W.vvvv
.L.pp

map=01h
map=02h

map=03h

0F_38h
opcode

map

VEX
opcode
map 2

0F_3Ah
opcode

map

VEX
opcode
map 3

XOP
opcode
map 8

XOP
opcode
map 9

XOP
opcode
map A

XOP
prefix

RXB.
map_sel

W.vvvv
.L.pp

map=09h

map=0Ah

map=08h

≤ additional

3DNow!

VEX or XOP

NOTES:
1. REX prefix is not allowed in extended

instruction encodings that employ the
VEX or XOP prefixes

2. map = VEX/XOP.map_select field
3. The total number of bytes in an

instruction encoding must be less than
or equal to 15

4. Instructions that encode an 8-byte
immediate field do not use a displace-
ment field and vice versa.

End

ModRM SIB
1,2,4,8

byte
Disp

1,2,4,8
byte

immed

3DNow!
opcode

map

note 4

[AMD Public Use]

Instruction Encoding 3

24594—Rev. 3.32—March 2021 AMD64 Technology

bytes used to encode the instruction. Note that the path shown above the legacy prefix byte loops back
indicating that up to four additional prefix bytes may be used in the encoding of a single instruction.
Branches indicate points in the syntax where alternate semantics are employed based on the instruction
being encoded. The “VEX or XOP” gate across the path leading down to the VEX prefix and XOP
prefix blocks means that only extended instructions employing the VEX or XOP prefixes use this
particular branch of the syntax diagram. This diagram will be further explained in the sections that
follow.

1.1.1.1 Legacy Prefixes

As shown in the figure, an instruction optionally begins with up to five legacy prefixes. These prefixes
are described in “Summary of Legacy Prefixes” on page 6. The legacy prefixes modify an instruction’s
default address size, operand size, or segment, or they invoke a special function such as modification
of the opcode, atomic bus-locking, or repetition.

In the encoding of most SSE instructions, a legacy operand-size or repeat prefix is repurposed to
modify the opcode. For the extended encodings utilizing the XOP or VEX prefixes, these prefixes are
not allowed.

1.1.1.2 REX Prefix

Following the optional legacy prefix or prefixes, the REX prefix can be used in 64-bit mode to access
the AMD64 register number and size extensions. Refer to the diagram in “Application-Programming
Register Set” in Volume 1 for an illustration of these facilities. If a REX prefix is used, it must
immediately precede the opcode byte or the first byte of a legacy escape sequence. The REX prefix is
not allowed in extended instruction encodings using the VEX or XOP encoding escape prefixes.
Violating this restriction results in an #UD exception.

1.1.1.3 Opcode

The opcode is a single byte that specifies the basic operation of an instruction. Every instruction
requires an opcode. The correspondence between the binary value of an opcode and the operation it
represents is presented in a table called an opcode map. Because it is indexed by an 8-bit value, an
opcode map has 256 entries. Since there are more than 256 instructions defined by the architecture,
multiple different opcode maps must be defined and the selection of these alternate opcode maps must
be encoded in the instruction. Escape sequences provide this access to alternate opcode maps.

If there are no opcode escapes, the primary (“one-byte”) opcode map is used. In the figure this is the
path pointing from the REX Prefix block to the Primary opcode map block.

Section , “Primary Opcode Map” of Appendix A provides details concerning this opcode map.

1.1.1.4 Escape Sequences

Escape sequences allow access to alternate opcode maps that are distinct from the primary opcode
map. Escape sequences may be one, two, or three bytes in length and begin with a unique byte value
designated for this purpose in the primary opcode map. Escape sequences are of two distinct types:

[AMD Public Use]

4 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

legacy escape sequences and extended escape sequences. The legacy escape sequences will be covered
here. For more details on the extended escape sequences, see “VEX and XOP Prefixes” on page 16.

Legacy Escape Sequences

The legacy syntax allows one 1-byte escape sequence (0Fh), and three 2-byte escape sequences (0Fh,
0Fh; 0Fh, 38h; and 0Fh, 3Ah). The 1-byte legacy escape sequence 0Fh selects the secondary (“two-
byte”) opcode map. In legacy terminology, the sequence [0Fh, opcode] is called a two-byte opcode.
See Section , “Secondary Opcode Map” of Appendix A for details concerning this opcode map.

The 2-byte escape sequence 0F, 0Fh selects the 3DNow! opcode map which is indexed using an
immediate byte rather than an opcode byte. In this case, the byte following the escape sequence is the
ModRM byte instead of the opcode byte. In Figure 1-1 this is indicated by the path labeled “3DNow!”
leaving the second 0Fh escape block. Details concerning the 3DNow! opcode map are presented in
Section A.1.2, “3DNow!™ Opcodes” of Appendix A.

The 2-byte escape sequences [0Fh, 38h] and [0Fh, 3Ah] respectively select the 0F_38h opcode map
and the 0F_3Ah opcode map. These are used primarily to encode SSE instructions and are described in
Section , “0F_38h and 0F_3Ah Opcode Maps” of Appendix A.

1.1.1.5 ModRM and SIB Bytes

The opcode can be followed by a mode-register-memory (ModRM) byte, which further describes the
operation and/or operands. The ModRM byte may also be followed by a scale-index-base (SIB) byte,
which is used to specify indexed register-indirect forms of memory addressing. The ModRM and SIB
bytes are described in “ModRM and SIB Bytes” on page 17. Their legacy functions can be augmented
by the REX prefix (see “REX Prefix” on page 14) or the VEX and XOP escape sequences (See “VEX
and XOP Prefixes” on page 16).

1.1.1.6 Displacement and Immediate Fields

The instruction encoding may end with a 1-, 2-, or 4-byte displacement field and/or a 1-, 2-, or 4-byte
immediate field depending on the instruction and/or the addressing mode. Specific instructions also
allow either an 8-byte immediate field or an 8-byte displacement field.

1.1.2 Representation in Memory

Instructions are stored in memory in little-endian order. The first byte of an instruction is stored at the
lowest memory address, as shown in Figure 1-2 below. Since instructions are strings of bytes, they
may start at any memory address. The total instruction length must be less than or equal to 15. If this
limit is exceeded, a general-protection exception results.

[AMD Public Use]

Instruction Encoding 5

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 1-2. An Instruction as Stored in Memory

1.2 Instruction Prefixes

Instruction prefixes are of two types: instruction modifier prefixes and encoding escape prefixes.
Instruction modifier prefixes can change the operation of the instruction (including causing its
execution to repeat), change its operand types, specify an alternate operand size, augment register
specification, or even change the interpretation of the opcode byte.

The instruction modifier prefixes comprise the legacy prefixes and the REX prefix. The legacy
prefixes are discussed in the next section. The REX prefix is discussed in “REX Prefix” on page 14.

Encoding escape prefixes, on the other hand, signal that the two or three bytes that follow obey a
different encoding syntax. As a group, the encoding escape prefix and its subsequent bytes constitute a
multi-byte escape sequence. These multi-byte escape sequences perform functions similar to that of

‡ optional, with most instructions

≤ 15 Bytes

7 0

Immediate

Immediate

Immediate

Immediate
Displacement
Displacement

Displacement
Displacement

SIB†

ModRM*
Opcode
Escape*
Escape*

REX¹
Legacy Prefix

Legacy Prefix

Legacy Prefix

Legacy Prefix
7 0

Immediate

Immediate

Immediate

Immediate
Displacement
Displacement

Displacement
Displacement

SIB†

ModRM*
Opcode

W.vvvv.L.pp
RXB.map_select

VEX/XOP
Legacy Prefix³
Legacy Prefix³
Legacy Prefix³

≤ 4≤

†1,2,4, or 8†

1,2,4, or 8

Highest
Address

Lowest
Address

Legacy encoding including
optional REX Prefix

Extended encoding
using VEX/XOP²

not present for VEX C5
R.vvvv.L.pp for VEX C5

* optional, based on instruction
† optional, based addressing mode

Legacy Prefix³
‡

 see note 4

Notes:
¹ Available only in 64-Bit Mode
² Available only in Long or Protected Mode
³ F0, F2, F3, and 66 prefixes not allowed
 Instructions that specify an 8-byte immediate field do
not include a displacement field and vice versa.
4

[AMD Public Use]

6 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

the instruction modifier prefixes, but they also provide a means to directly specify alternate opcode
maps.

The currently defined encoding escape prefixes are the VEX and XOP prefixes. They are discussed
further in the section entitled “VEX and XOP Prefixes” on page 16.

1.2.1 Summary of Legacy Prefixes

Table 1-1 on page 7 shows the legacy prefixes. The legacy prefixes are organized into five groups, as
shown in the left-most column of Table 1-1. An instruction encoding may include a maximum of one
prefix from each of the five groups. The legacy prefixes can appear in any order within the position
shown in Figure 1-1 for legacy prefixes. The result of using multiple prefixes from a single group is
undefined.

Some of the restrictions on legacy prefixes are:

• Operand-Size Override—This prefix only affects the operand size for general-purpose instructions
or for other instructions whose source or destination is a general-pupose register. When used in the
encoding of SIMD and some other instructions, this prefix is repurposed to modify the opcode.

• Address-Size Override—This prefix only affects the address size of memory operands.

• Segment Override—In 64-bit mode, the CS, DS, ES, and SS segment override prefixes are
ignored.

• LOCK Prefix—This prefix is allowed only with certain instructions that modify memory.

• Repeat Prefixes—These prefixes affect only certain string instructions. When used in the encoding
of SIMD and some other instructions, these prefixes are repurposed to modify the opcode.

Note that Lock and Repeat prefixes are in effect mutually exclusive when used as instruction
modifiers, in that there are no instructions for which both are meaningful.

[AMD Public Use]

Instruction Encoding 7

24594—Rev. 3.32—March 2021 AMD64 Technology

1.2.2 Operand-Size Override Prefix

The default operand size for an instruction is determined by a combination of its opcode, the D
(default) bit in the current code-segment descriptor, and the current operating mode, as shown in
Table 1-2. The operand-size override prefix (66h) selects the non-default operand size. The prefix can

Table 1-1. Legacy Instruction Prefixes

Prefix Group1 Mnemonic
Prefix

Byte (Hex)
Description

Operand-Size
Override

none 662 Changes the default operand size of a memory or
register operand, as shown in Table 1-2 on page 8.

Address-Size Override none 673 Changes the default address size of a memory operand,
as shown in Table 1-3 on page 9.

Segment Override

CS 2E4 Forces use of the current CS segment for memory
operands.

DS 3E4 Forces use of the current DS segment for memory
operands.

ES 264 Forces use of the current ES segment for memory
operands.

FS 64
Forces use of the current FS segment for memory
operands.

GS 65
Forces use of the current GS segment for memory
operands.

SS 364 Forces use of the current SS segment for memory
operands.

Lock LOCK F05 Causes certain kinds of memory read-modify-write
instructions to occur atomically.

Repeat

REP

F36

Repeats a string operation (INS, MOVS, OUTS, LODS,
and STOS) until the rCX register equals 0.

REPE or
REPZ

Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is cleared to 0.

REPNE or
REPNZ F26

Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is set to 1.

Notes:
1. A single instruction should include no more than one prefix from each of the Override prefix groups plus either a

Lock or Repeat prefix, when used as instruction modifiers.
2. When used in the encoding of SIMD and some other instructions, this prefix is repurposed to extend the opcode.

The prefix is ignored by 64-bit media floating-point (3DNow!™) instructions. See “Instructions that Cannot Use the
Operand-Size Prefix” on page 8.

3. This prefix also changes the size of the RCX register when used as an implied count register.
4. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.
5. The LOCK prefix should not be used for instructions other than those listed in “Lock Prefix” on page 11.
6. This prefix should be used only with compare-string and scan-string instructions. When used in the encoding of

SIMD and some other instructions, the prefix is repurposed to extend the opcode.

[AMD Public Use]

8 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

be used with any general-purpose instruction that accesses non-fixed-size operands in memory or
general-purpose registers (GPRs), and it can also be used with the x87 FLDENV, FNSTENV,
FNSAVE, and FRSTOR instructions.

In 64-bit mode, the prefix allows mixing of 16-bit, 32-bit, and 64-bit data on an instruction-by-
instruction basis. In compatibility and legacy modes, the prefix allows mixing of 16-bit and 32-bit
operands on an instruction-by-instruction basis.

In 64-bit mode, most instructions default to a 32-bit operand size. For these instructions, a REX prefix
(page 14) can specify a 64-bit operand size, and a 66h prefix specifies a 16-bit operand size. The REX
prefix takes precedence over the 66h prefix. However, if an instruction defaults to a 64-bit operand
size, it does not need a REX prefix and it can only be overridden to a 16-bit operand size. It cannot be
overridden to a 32-bit operand size, because there is no 32-bit operand-size override prefix in 64-bit
mode. Two groups of instructions have a default 64-bit operand size in 64-bit mode:

• Near branches. For details, see “Near Branches in 64-Bit Mode” in Volume 1.

• All instructions, except far branches, that implicitly reference the RSP. For details, see “Stack
Operation” in Volume 1.

Instructions that Cannot Use the Operand-Size Prefix. The operand-size prefix should be used
only with general-purpose instructions and the x87 FLDENV, FNSTENV, FNSAVE, and FRSTOR

Table 1-2. Operand-Size Overrides

Operating Mode
Default

Operand
Size (Bits)

Effective
Operand

Size
(Bits)

Instruction Prefix1

66h REX.W3

Long
Mode

64-Bit
Mode

322

64 don’t care yes

32 no no

16 yes no

Compatibility
Mode

32
32 no

Not Appli-
cable

16 yes

16
32 yes

16 no

Legacy Mode
(Protected, Virtual-8086,
or Real Mode)

32
32 no

16 yes

16
32 yes

16 no

Notes:
1. A “no’ indicates that the default operand size is used.
2. This is the typical default, although some instructions default to other operand

sizes. See Appendix B, “General-Purpose Instructions in 64-Bit Mode,” for details.
3. See “REX Prefix” on page 14.

[AMD Public Use]

Instruction Encoding 9

24594—Rev. 3.32—March 2021 AMD64 Technology

instructions, in which the prefix selects between 16-bit and 32-bit operand size. The prefix is ignored
by all other x87 instructions and by 64-bit media floating-point (3DNow!™) instructions.

For other instructions (mostly SIMD instructions) the 66h, F2h, and F3h prefixes are used as opcode
extensions to extend the instruction encoding space in the 0Fh, 0F_38h, and 0F_3Ah opcode maps.

Operand-Size and REX Prefixes. The W bit field of the REX prefix takes precedence over the 66h
prefix. See “REX.W: Operand width (Bit 3)” on page 23 for details.

1.2.3 Address-Size Override Prefix

The default address size for instructions that access non-stack memory is determined by the current
operating mode, as shown in Table 1-3. The address-size override prefix (67h) selects the non-default
address size. Depending on the operating mode, this prefix allows mixing of 16-bit and 32-bit, or of
32-bit and 64-bit addresses, on an instruction-by-instruction basis. The prefix changes the address size
for memory operands. It also changes the size of the RCX register for instructions that use RCX
implicitly.

For instructions that implicitly access the stack segment (SS), the address size for stack accesses is
determined by the D (default) bit in the stack-segment descriptor. In 64-bit mode, the D bit is ignored,
and all stack references have a 64-bit address size. However, if an instruction accesses both stack and
non-stack memory, the address size of the non-stack access is determined as shown in Table 1-3.

As Table 1-3 shows, the default address size is 64 bits in 64-bit mode. The size can be overridden to 32
bits, but 16-bit addresses are not supported in 64-bit mode. In compatibility and legacy modes, the
default address size is 16 bits or 32 bits, depending on the operating mode (see “Processor

Table 1-3. Address-Size Overrides

Operating Mode
Default

Address
Size (Bits)

Effective
Address Size

(Bits)

Address-
Size Prefix

(67h)1

Required?

Long Mode

64-Bit
Mode

64
64 no

32 yes

Compatibility
Mode

32
32 no

16 yes

16
32 yes

16 no

Legacy Mode
(Protected, Virtual-8086, or Real
Mode)

32
32 no

16 yes

16
32 yes

16 no

Notes:
1. A “no” indicates that the default address size is used.

[AMD Public Use]

10 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Initialization and Long Mode Activation” in Volume 2 for details). In these modes, the address-size
prefix selects the non-default size, but the 64-bit address size is not available.

Certain instructions reference pointer registers or count registers implicitly, rather than explicitly. In
such instructions, the address-size prefix affects the size of such addressing and count registers, just as
it does when such registers are explicitly referenced. Table 1-4 lists all such instructions and the
registers referenced using the three possible address sizes.

1.2.4 Segment-Override Prefixes

Segment overrides can be used only with instructions that reference non-stack memory. Most
instructions that reference memory are encoded with a ModRM byte (page 17). The default segment

Table 1-4. Pointer and Count Registers and the Address-Size Prefix

Instruction

Pointer or Count Register

16-Bit
Address Size

32-Bit
Address Size

64-Bit
Address Size

CMPS, CMPSB, CMPSW,
CMPSD, CMPSQ—Compare
Strings

SI, DI, CX ESI, EDI, ECX RSI, RDI, RCX

INS, INSB, INSW, INSD—
Input String

DI, CX EDI, ECX RDI, RCX

JCXZ, JECXZ, JRCXZ—
Jump on CX/ECX/RCX Zero

CX ECX RCX

LODS, LODSB, LODSW,
LODSD, LODSQ—Load
String

SI, CX ESI, ECX RSI, RCX

LOOP, LOOPE, LOOPNZ,
LOOPNE, LOOPZ—Loop

CX ECX RCX

MOVS, MOVSB, MOVSW,
MOVSD, MOVSQ—Move
String

SI, DI, CX ESI, EDI, ECX RSI, RDI, RCX

OUTS, OUTSB, OUTSW,
OUTSD—Output String

SI, CX ESI, ECX RSI, RCX

REP, REPE, REPNE, REPNZ,
REPZ—Repeat Prefixes

CX ECX RCX

SCAS, SCASB, SCASW,
SCASD, SCASQ—Scan
String

DI, CX EDI, ECX RDI, RCX

STOS, STOSB, STOSW,
STOSD, STOSQ—Store
String

DI, CX EDI, ECX RDI, RCX

XLAT, XLATB—Table Look-up
Translation

BX EBX RBX

[AMD Public Use]

Instruction Encoding 11

24594—Rev. 3.32—March 2021 AMD64 Technology

for such memory-referencing instructions is implied by the base register indicated in its ModRM byte,
as follows:

• Instructions that Reference a Non-Stack Segment—If an instruction encoding references any base
register other than rBP or rSP, or if an instruction contains an immediate offset, the default segment
is the data segment (DS). These instructions can use the segment-override prefix to select one of
the non-default segments, as shown in Table 1-5.

• String Instructions—String instructions reference two memory operands. By default, they
reference both the DS and ES segments (DS:rSI and ES:rDI). These instructions can override their
DS-segment reference, as shown in Table 1-5, but they cannot override their ES-segment
reference.

• Instructions that Reference the Stack Segment—If an instruction’s encoding references the rBP or
rSP base register, the default segment is the stack segment (SS). All instructions that reference the
stack (push, pop, call, interrupt, return from interrupt) use SS by default. These instructions cannot
use the segment-override prefix.

Segment Overrides in 64-Bit Mode. In 64-bit mode, the CS, DS, ES, and SS segment-override
prefixes have no effect. These four prefixes are not treated as segment-override prefixes for the
purposes of multiple-prefix rules. Instead, they are treated as null prefixes.

The FS and GS segment-override prefixes are treated as true segment-override prefixes in 64-bit
mode. Use of the FS or GS prefix causes their respective segment bases to be added to the effective
address calculation. See “FS and GS Registers in 64-Bit Mode” in Volume 2 for details.

1.2.5 Lock Prefix

The LOCK prefix causes certain kinds of memory read-modify-write instructions to occur atomically.
The mechanism for doing so is implementation-dependent (for example, the mechanism may involve
bus signaling or packet messaging between the processor and a memory controller). The prefix is
intended to give the processor exclusive use of shared memory in a multiprocessor system.

Table 1-5. Segment-Override Prefixes

Mnemonic
Prefix Byte

(Hex)
Description

CS1 2E Forces use of current CS segment for memory operands.

DS1 3E Forces use of current DS segment for memory operands.

ES1 26 Forces use of current ES segment for memory operands.

FS 64 Forces use of current FS segment for memory operands.

GS 65 Forces use of current GS segment for memory operands.

SS1 36 Forces use of current SS segment for memory operands.

Notes:
1. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

[AMD Public Use]

12 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

The LOCK prefix can only be used with forms of the following instructions that write a memory
operand: ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, CMPXCHG16B, DEC,
INC, NEG, NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-opcode exception occurs if
the LOCK prefix is used with any other instruction.

1.2.6 Repeat Prefixes

The repeat prefixes cause repetition of certain instructions that load, store, move, input, or output
strings. The prefixes should only be used with such string instructions. Two pairs of repeat prefixes,
REPE/REPZ and REPNE/REPNZ, perform the same repeat functions for certain compare-string and
scan-string instructions. The repeat function uses rCX as a count register. The size of rCX is based on
address size, as shown in Table 1-4 on page 10.

REP. The REP prefix repeats its associated string instruction the number of times specified in the
counter register (rCX). It terminates the repetition when the value in rCX reaches 0. The prefix can be
used with the INS, LODS, MOVS, OUTS, and STOS instructions. Table 1-6 shows the valid REP
prefix opcodes.

Table 1-6. REP Prefix Opcodes

Mnemonic Opcode

REP INS reg/mem8, DX

REP INSB
F3 6C

REP INS reg/mem16/32, DX

REP INSW

REP INSD

F3 6D

REP LODS mem8

REP LODSB
F3 AC

REP LODS mem16/32/64

REP LODSW

REP LODSD

REP LODSQ

F3 AD

REP MOVS mem8, mem8

REP MOVSB
F3 A4

REP MOVS mem16/32/64, mem16/32/64

REP MOVSW

REP MOVSD

REP MOVSQ

F3 A5

REP OUTS DX, reg/mem8

REP OUTSB
F3 6E

[AMD Public Use]

Instruction Encoding 13

24594—Rev. 3.32—March 2021 AMD64 Technology

REPE and REPZ. REPE and REPZ are synonyms and have identical opcodes. These prefixes repeat
their associated string instruction the number of times specified in the counter register (rCX). The
repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is cleared to 0. The
REPE and REPZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS, SCASB,
SCASD, and SCASW instructions. Table 1-7 shows the valid REPE and REPZ prefix opcodes.

REPNE and REPNZ. REPNE and REPNZ are synonyms and have identical opcodes. These prefixes
repeat their associated string instruction the number of times specified in the counter register (rCX).
The repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is set to 1. The
REPNE and REPNZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS,
SCASB, SCASD, and SCASW instructions. Table 1-8 on page 14 shows the valid REPNE and
REPNZ prefix opcodes.

REP OUTS DX, reg/mem16/32

REP OUTSW

REP OUTSD

F3 6F

REP STOS mem8

REP STOSB
F3 AA

REP STOS mem16/32/64

REP STOSW

REP STOSD

REP STOSQ

F3 AB

Table 1-7. REPE and REPZ Prefix Opcodes

Mnemonic Opcode

REPx CMPS mem8, mem8

REPx CMPSB
F3 A6

REPx CMPS mem16/32/64, mem16/32/64

REPx CMPSW

REPx CMPSD

REPx CMPSQ

F3 A7

REPx SCAS mem8

REPx SCASB
F3 AE

REPx SCAS mem16/32/64

REPx SCASW

REPx SCASD

REPx SCASQ

F3 AF

Table 1-6. REP Prefix Opcodes (continued)

Mnemonic Opcode

[AMD Public Use]

14 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Instructions that Cannot Use Repeat Prefixes. In general, the repeat prefixes should only be used
in the string instructions listed in tables 1-6, 1-7, and 1-8 above. For other instructions (mostly SIMD
instructions) the 66h, F2h, and F3h prefixes are used as instruction modifiers to extend the instruction
encoding space in the 0Fh, 0F_38h, and 0F_3Ah opcode maps.

Optimization of Repeats. Depending on the hardware implementation, the repeat prefixes can have
a setup overhead. If the repeated count is variable, the overhead can sometimes be avoided by
substituting a simple loop to move or store the data. Repeated string instructions can be expanded into
equivalent sequences of inline loads and stores or a sequence of stores can be used to emulate a REP
STOS.

For repeated string moves, performance can be maximized by moving the largest possible operand
size. For example, use REP MOVSD rather than REP MOVSW and REP MOVSW rather than REP
MOVSB. Use REP STOSD rather than REP STOSW and REP STOSW rather than REP MOVSB.

Depending on the hardware implementation, string moves with the direction flag (DF) cleared to 0
(up) may be faster than string moves with DF set to 1 (down). DF = 1 is only needed for certain cases
of overlapping REP MOVS, such as when the source and the destination overlap.

1.2.7 REX Prefix

The REX prefix, available in 64-bit mode, enables use of the AMD64 register and operand size
extensions. Unlike the legacy instruction modification prefixes, REX is not a single unique value, but
occupies a range (40h to 4Fh). Figure 1-1 on page 2 shows how the REX prefix fits within the
encoding syntax of instructions.

The REX prefix enables the following features in 64-bit mode:

• Use of the extended GPR (Figure 2-3 on page 39) and YMM/XMM registers (Figure 2-8 on
page 44).

Table 1-8. REPNE and REPNZ Prefix Opcodes

Mnemonic Opcode

REPNx CMPS mem8, mem8

REPNx CMPSB
F2 A6

REPNx CMPS mem16/32/64, mem16/32/64

REPNx CMPSW

REPNx CMPSD

REPNx CMPSQ

F2 A7

REPNx SCAS mem8

REPNx SCASB
F2 AE

REPNx SCAS mem16/32/64

REPNx SCASW

REPNx SCASD

REPNx SCASQ

F2 AF

[AMD Public Use]

Instruction Encoding 15

24594—Rev. 3.32—March 2021 AMD64 Technology

• Use of the 64-bit operand size when accessing GPRs.

• Use of the extended control and debug registers, as described in Section 2.4 “Registers” in
Volume 2.

• Use of the uniform byte registers (AL–R15).

REX contains five fields. The upper nibble is unique to the REX prefix and identifies it is as such. The
lower nibble is divided into four 1-bit fields (W, R, X, and B). See below for a discussion of these
fields.Figure 1-3 below shows the format of the REX prefix. Since each bit of the lower nibble can be
a 1 or a 0, REX spans one full row of the primary opcode map occupying entries 40h through 4Fh.

Figure 1-3. REX Prefix Format

A REX prefix is normally required with an instruction that accesses a 64-bit GPR or one of the
extended GPR or YMM/XMM registers. A few instructions have an operand size that defaults to (or is
fixed at) 64 bits in 64-bit mode, and thus do not need a REX prefix. These instructions are listed in
Table 1-9 below.

An instruction may have only one REX prefix which must immediately precede the opcode or first
escape byte in the instruction encoding. The use of a REX prefix in an instruction that does not access
an extended register is ignored. The instruction-size limit of 15 bytes applies to instructions that
contain a REX prefix.

Table 1-9. Instructions Not Requiring REX Prefix in 64-Bit Mode

CALL (Near) POP reg/mem

ENTER POP reg

Jcc POP FS

JrCXZ POP GS

JMP (Near) POPF, POPFD, POPFQ

LEAVE PUSH imm8

LGDT PUSH imm32

LIDT PUSH reg/mem

LLDT PUSH reg

LOOP PUSH FS

LOOPcc PUSH GS

LTR PUSHF, PUSHFD, PUSHFQ

MOV CRn RET (Near)

MOV DRn

v3_REX_byte_format.eps

01234567
W R X B4

[AMD Public Use]

16 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Implications for INC and DEC Instructions

The REX prefix values are taken from the 16 single-byte INC and DEC instructions, one for each of
the eight legacy GPRs. Therefore, these single-byte opcodes for INC and DEC are not available in 64-
bit mode, although they are available in legacy and compatibility modes. The functionality of these
INC and DEC instructions is still available in 64-bit mode, however, using the ModRM forms of those
instructions (opcodes FF /0 and FF /1).

1.2.8 VEX and XOP Prefixes

The extended instruction encoding syntax, available in protected and long modes, provides one 2-byte
and three 3-byte escape sequences introduced by either the VEX or XOP prefixes. These multi-byte
sequences not only select opcode maps, they also provide instruction modifiers similar to, but in lieu
of, the REX prefix.

The 2-byte escape sequence initiated by the VEX C5h prefix implies a map_select encoding of 1. The
three-byte escape sequences, initiated by the VEX C4h prefix or the XOP (8Fh) prefix, select the target
opcode map explicitly via the VEX/XOP.map_select field. The five-bit VEX.map_select field allows
the selection of one of 31 different opcode maps (opcode map 00h is reserved). The XOP.map_select
field is restricted to the range 08h – 1Fh and thus can only select one of 24 different opcode maps.

The VEX and XOP escape sequences contain fields that extend register addressing to a total of 16,
increase the operand specification capability to four operands, and modify the instruction operation.

The extended SSE instruction subsets AVX, AES, CLMU, FMA, FMA4, and XOP and a few non-SSE
instructions utilize the extended encoding syntax. See “Encoding Using the VEX and XOP Prefixes”
on page 29 for details on the encoding of the two- and three-byte extended escape sequences.

1.3 Opcode

The opcode is a single byte that specifies the basic operation of an instruction. In some cases, it also
specifies the operands for the instruction. Every instruction requires an opcode. The correspondence
between the binary value of the opcode and the operation it represents is defined by a table called an
opcode map. As discussed in the previous sections, the legacy prefixes 66h, F2h, and F3h and other
fields within the instruction encoding may be used to modify the operation encoded by the opcode.

The affect of the presence of a 66h, F2h, or F3h prefix on the operation performed by the opcode is
represented in the opcode map by additional rows in the table indexed by the applicable prefix. The 3-
bit reg and r/m fields of the ModRM byte (“ModRM and SIB Bytes” on page 17) are used as well in
the encoding of certain instructions. This is represented in the opcode maps via instruction group
tables that detail the modifications represented via the extra encoding bits. See Section A.1, “Opcode
Maps” of Appendix A for examples.

Even though each instruction has a unique opcode map and opcode, assemblers often support multiple
alternate mnemonics for the same instruction to improve the readability of assembly language code.

[AMD Public Use]

Instruction Encoding 17

24594—Rev. 3.32—March 2021 AMD64 Technology

The 64-bit floating-point 3DNow! instructions utilize the two-byte escape sequence 0Fh, 0Fh to select
the 3DNow! opcode map. For these instructions the opcode is encoded in the immediate field at the
end of the instruction encoding.

For details on how the opcode byte encodes the basic operation for specifc instructions, see Section
A.1, “Opcode Maps” of Appendix A

1.4 ModRM and SIB Bytes

The ModRM byte is optional depending on the instruction. When present, it follows the opcode and is
used to specify:

• two register-based operands, or

• one register-based operand and a second memory-based operand and an addressing mode.

In the encoding of some instructions, fields within the ModRM byte are repurposed to provide
additional opcode bits used to define the instruction’s function.

The ModRM byte is partitioned into three fields—mod, reg, and r/m. Normally the reg field specifies a
register-based operand and the mod and r/m fields used together specify a second operand that is either
register-based or memory-based. The addressing mode is also specified when the operand is memory-
based.

In 64-bit mode, the REX.R and REX.B bits augment the reg and r/m fields respectively allowing the
specification of twice the number of registers.

1.4.1 ModRM Byte Format

Figure 1-4 below shows the format of a ModRM byte.

Figure 1-4. ModRM-Byte Format

Depending on the addressing mode, the SIB byte may appear after the ModRM byte. SIB is used in the
specification of various forms of indexed register-indirect addressing. See the following section for
details.

mod

REX.R, VEX.R or XOP.R
extend this field to 4 bits

REX.B, VEX.B, or XOP.B
extend this field to 4 bits

reg r/m ModRM
01234567

[AMD Public Use]

18 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

ModRM.mod (Bits[7:6]). The mod field is used with the r/m field to specify the addressing mode for
an operand. ModRM.mod = 11b specifies the register-direct addressing mode. In the register-direct
mode, the operand is held in the specified register. ModRM.mod values less than 11b specify register-
indirect addressing modes. In register-indirect addressing modes, values held in registers along with an
optional displacement specified in the instruction encoding are used to calculate the address of a
memory-based operand. Other encodings of the 5 bits {mod, r/m} are discussed below.

ModRM.reg (Bits[5:3]). The reg field is used to specify a register-based operand, although for some
instructions, this field is used to extend the operation encoding. The encodings for this field are shown
in Table 1-10 below.

ModRM.r/m (Bits[2:0]). As stated above, the r/m field is used in combination with the mod field to
encode 32 different operand specifications (See Table 1-14 on page 21). The encodings for this field
are shown in Table 1-10 below.

Similar to the reg field, r/m is used in some instructions to extend the operation encoding.

1.4.2 SIB Byte Format

The SIB byte has three fields—scale, index, and base—that define the scale factor, index-register
number, and base-register number for the 32-bit and 64-bit indexed register-indirect addressing
modes.

Table 1-10. ModRM.reg and .r/m Field Encodings

Encoded value
(binary) ModRM.reg1 ModRM.r/m (mod = 11b)1

ModRM.r/m

(mod ≠ 11b)2

000 rAX, MMX0, XMM0, YMM0 rAX, MMX0, XMM0, YMM0 [rAX]

001 rCX, MMX1, XMM1, YMM1 rCX, MMX1, XMM1, YMM1 [rCX]

010 rDX, MMX2, XMM2, YMM2 rDX, MMX2, XMM2, YMM2 [rDX]

011 rBX, MMX3, XMM3, YMM3 rBX, MMX3, XMM3, YMM3 [rBX]

100 AH, rSP, MMX4, XMM4, YMM4 AH, rSP, MMX4, XMM4, YMM4 SIB3

101 CH, rBP, MMX5, XMM5, YMM5 CH, rBP, MMX5, XMM5, YMM5 [rBP]4

110 DH, rSI, MMX6, XMM6, YMM6 DH, rSI, MMX6, XMM6, YMM6 [rSI]

111 BH, rDI, MMX7, XMM7, YMM7 BH, rDI, MMX7, XMM7, YMM7 [rDI]

Notes:
1. Specific register used is instruction-dependent.
2. mod = 01 and mod = 10 include an offset specified by the instruction displacement field.

The notation [*] signifies that the specified register holds the address of the operand.
3. Indexed register-indirect addressing. SIB byte follows ModRM byte. See following section for SIB encoding.
4. For mod = 00b , r/m = 101b signifies absolute (displacement-only) addressing in 32-bit mode or RIP-relative

addressing in 64-bit mode, where the rBP register is not used. For mod = [01b, 10b], r/m = 101b specifies
the base + offset addressing mode with [rBP] as the base.

[AMD Public Use]

Instruction Encoding 19

24594—Rev. 3.32—March 2021 AMD64 Technology

The basic formula for computing the effective address of a memory-based operand using the indexed
register-indirect address modes is:

effective_address = scale * index + base + offset

Specific variants of this addressing mode set one or more elements of the sum to zero.

Figure 1-5 below shows the format of the SIB byte.

Figure 1-5. SIB Byte Format

SIB.scale (Bits[7:6]). The scale field is used to specify the scale factor used in computing the
scale*index portion of the effective address. In normal usage scale represents the size of data elements
in an array expressed in number of bytes. SIB.scale is encoded as shown in Table 1-11 below.

SIB.index (Bits[5:3]). The index field is used to specify the register containing the index portion of
the indexed register-indirect effective address. SIB.index is encoded as shown in Table 1-12 below.

SIB.base (Bits[2:0]). The base field is used to specify the register containing the base address
portion of the indexed register-indirect effective address. SIB.base is encoded as shown in Table 1-12
below.

Table 1-11. SIB.scale Field Encodings

Encoded value
(binary)

scale
factor

00 1

01 2

10 4

11 8

Bits:

scale index base SIB
01234567

REX.X bit of REX prefix can
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

[AMD Public Use]

20 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

More discussion of operand addressing follows in the next two sections.

1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes

The mod and r/m fields of the ModRM byte provide a total of five bits used to encode 32 operand
specification and memory addressing modes. Table 1-14 below shows these encodings.

Table 1-12. SIB.index and .base Field Encodings

Encoded value
(binary)

SIB.index SIB.base

000 [rAX] [rAX]

001 [rCX] [rCX]

010 [rDX] [rDX]

011 [rBX] [rBX]

100 (none)1 [rSP]

101 [rBP] [rBP], (none)2

110 [rSI] DH, [rSI]

111 [rDI] BH, [rDI]

Notes:
1. Register specification is null. The scale*index portion of the indexed register-indirect effec-

tive address is set to 0.
2. If ModRM.mod = 00b, the register specification is null. The base portion of the indexed reg-

ister-indirect effective address is set to 0. Otherwise, base encodes the rBP register as
the source of the base address used in the effective address calculation.

Table 1-13. SIB.base encodings for ModRM.r/m = 100b

SIB base Field

mod 000 001 010 011 100 101 110 111

00

[rAX] [rCX] [rDX] [rBX] [rSP]

disp32

[rSI] [rDI]01 [rBP]+disp8

10 [rBP]+disp32

11 (not applicable)

[AMD Public Use]

Instruction Encoding 21

24594—Rev. 3.32—March 2021 AMD64 Technology

Table 1-14. Operand Addressing Using ModRM and SIB Bytes

ModRM.mod ModRM.r/m Register / Effective Address

00

000 [rAX]

001 [rCX]

010 [rDX]

011 [rBX]

100 SIB1

101 disp32

110 [rSI]

111 [rDI]

01

000 [rAX]+disp8

001 [rCX]+disp8

010 [rDX]+disp8

011 [rBX]+disp8

100 SIB+disp82

101 [rBP]+disp8

110 [rSI]+disp8

111 [rDI]+disp8

10

000 [rAX]+disp32

001 [rCX]+disp32

010 [rDX]+disp32

011 [rBX]+disp32

100 SIB+disp323

101 [rBP]+disp32

110 [rSI]+disp32

111 [rDI]+disp32

Notes:
0. In the following notes, scaled_index = SIB.index * (1 << SIB.scale).
1. SIB byte follows ModRM byte. Effective address is calculated using

scaled_index+base. When SIB.base = 101b, addressing mode depends on
ModRM.mod. See Table 1-13 above.

2. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+8-bit_offset. One-byte Displacement field provides the offset.

3. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+32-bit_offset. Four-byte Displacement field provides the offset.

[AMD Public Use]

22 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Note that the addressing mode mod = 11b is a register-direct mode, that is, the operand is contained in
the specified register, while the modes mod = [00b:10b] specify different addressing modes for a
memory-based operand.

For mod = 11b, the register containing the operand is specified by the r/m field. For the other modes
(mod = [00b:10b]), the mod and r/m fields are combined to specify the addressing mode for the
memory-based operand. Most are register-indirect addressing modes meaning that the address of the
memory-based operand is contained in the register specified by r/m. For these register-indirect modes,
mod = 01b and mod = 10b include an offset encoded in the displacement field of the instruction.

The encodings {mod ≠ 11b, r/m = 100b} specify the indexed register-indirect addressing mode in
which the target address is computed using a combination of values stored in registers and a scale
factor encoded directly in the SIB byte. For these addressing modes the effective address is given by
the formula:

effective_address = scale * index + base + offset

Scale is encoded in SIB.scale field. Index is contained in the register specified by SIB.index field and
base is contained in the register specified by SIB.base field. Offset is encoded in the displacement field
of the instruction using either one or four bytes.

If {mod, r/m} = 00100b, the offset portion of the formula is set to 0. For {mod, r/m} = 01100b and
{mod, r/m} =10100b, offset is encoded in the one- or 4-byte displacement field of the instruction.

Finally, the encoding {mod, r/m} = 00101b specifies an absolute addressing mode. In this mode, the
address is provided directly in the instruction encoding using a 4-byte displacement field. In 64-bit
mode this addressing mode is changed to RIP-relative (see “RIP-Relative Addressing” on page 24).

11

000 AL/rAX/MMX0/XMM0/YMM0

001 CL/rCX/MMX1/XMM1/YMM1

010 DL/rDX/MMX2/XMM2/YMM2

011 BL/rBX/MMX3/XMM3/YMM3

100 AH/SPL/rSP/MMX4/XMM4/YMM4

101 CH/BPL/rBP/MMX5/XMM5/YMM5

110 DH/SIL/rSI/MMX6/XMM6/YMM6

111 BH/DIL/rDI/MMX7/XMM7/YMM7

Table 1-14. Operand Addressing Using ModRM and SIB Bytes (continued)

ModRM.mod ModRM.r/m Register / Effective Address

Notes:
0. In the following notes, scaled_index = SIB.index * (1 << SIB.scale).
1. SIB byte follows ModRM byte. Effective address is calculated using

scaled_index+base. When SIB.base = 101b, addressing mode depends on
ModRM.mod. See Table 1-13 above.

2. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+8-bit_offset. One-byte Displacement field provides the offset.

3. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+32-bit_offset. Four-byte Displacement field provides the offset.

[AMD Public Use]

Instruction Encoding 23

24594—Rev. 3.32—March 2021 AMD64 Technology

1.4.4 Operand Addressing in 64-bit Mode

AMD64 architecture doubles the number of GPRs and increases their width to 64-bits. It also doubles
the number of YMM/XMM registers. In order to support the specification of register operands
contained in the eight additional GPRs or YMM/XMM registers and to make the additional GPRs
available to hold addresses to be used in the addressing modes, the REX prefix provides the R, X, and
B bit fields to extend the reg, r/m, index, and base fields of the ModRM and SIB bytes in the various
operand addressing modes to four bits. A fourth REX bit field (W) allows instruction encodings to
specify a 64-bit operand size.

Table 1-15 below and the sections that follow describe each of these bit fields.

REX.W: Operand width (Bit 3). Setting the REX.W bit to 1 specifies a 64-bit operand size. Like the
existing 66h operand-size override prefix, the REX 64-bit operand-size override has no effect on byte
operations. For non-byte operations, the REX operand-size override takes precedence over the 66h
prefix. If a 66h prefix is used together with a REX prefix that has the W bit set to 1, the 66h prefix is
ignored. However, if a 66h prefix is used together with a REX prefix that has the W bit cleared to 0,
the 66h prefix is not ignored and the operand size becomes 16 bits.

REX.R: Register field extension (Bit 2). The REX.R bit adds a 1-bit extension (in the most
significant bit position) to the ModRM.reg field when that field encodes a GPR, YMM/XMM, control,
or debug register. REX.R does not modify ModRM.reg when that field specifies other registers or is
used to extend the opcode. REX.R is ignored in such cases.

REX.X: Index field extension (Bit 1). The REX.X bit adds a 1-bit (msb) extension to the SIB.index
field. See “ModRM and SIB Bytes” on page 17.

Table 1-15. REX Prefix-Byte Fields

Mnemonic Bit Position(s) Definition

— 7:4 0100 (4h)

REX.W 3
0 = Default operand size
1 = 64-bit operand size

REX.R 2
1-bit (msb) extension of the ModRM reg

field1, permitting access to 16 registers.

REX.X 1 1-bit (msb) extension of the SIB index field1,
permitting access to 16 registers.

REX.B 0
1-bit (msb) extension of the ModRM r/m

field1, SIB base field1, or opcode reg field,
permitting access to 16 registers.

Notes:
1. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on

page 17.

[AMD Public Use]

24 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

REX.B: Base field extension (Bit 0). The REX.B bit adds a 1-bit (msb) extension to either the
ModRM.r/m field to specify a GPR or XMM register, or to the SIB.base field to specify a GPR. (See
Table 2-2 on page 56 for more about the B bit.)

1.5 Displacement Bytes

A displacement (also called an offset) is a signed value that is added to the base of a code segment
(absolute addressing) or to an instruction pointer (relative addressing), depending on the addressing
mode. The size of a displacement is 1, 2, or 4 bytes. If an addressing mode requires a displacement, the
bytes (1, 2, or 4) for the displacement follow the opcode, ModRM, or SIB byte (whichever comes last)
in the instruction encoding.

In 64-bit mode, the same ModRM and SIB encodings are used to specify displacement sizes as those
used in legacy and compatibility modes. However, the displacement is sign-extended to 64 bits during
effective-address calculations. Also, in 64-bit mode, support is provided for some 64-bit displacement
and immediate forms of the MOV instruction. See “Immediate Operand Size” in Volume 1 for more
information on this.

1.6 Immediate Bytes

An immediate is a value—typically an operand value—encoded directly into the instruction.
Depending on the opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8
bytes. 64-bit immediates are allowed in 64-bit mode on MOV instructions that load GPRs, otherwise
they are limited to 4 bytes. See “Immediate Operand Size” in Volume 1 for more information.

If an instruction takes an immediate operand, the bytes (1, 2, 4, or 8) for the immediate follow the
opcode, ModRM, SIB, or displacement bytes (whichever come last) in the instruction encoding. Some
128-bit media instructions use the immediate byte as a condition code.

1.7 RIP-Relative Addressing

In 64-bit mode, addressing relative to the contents of the 64-bit instruction pointer (program
counter)—called RIP-relative addressing or PC-relative addressing—is implemented for certain
instructions. In such cases, the effective address is formed by adding the displacement to the 64-bit
RIP of the next instruction.

In the legacy x86 architecture, addressing relative to the instruction pointer is available only in control-
transfer instructions. In the 64-bit mode, any instruction that uses ModRM addressing can use RIP-
relative addressing. This feature is particularly useful for addressing data in position-independent code
and for code that addresses global data.

Without RIP-relative addressing, ModRM instructions address memory relative to zero. With RIP-
relative addressing, ModRM instructions can address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of 2 Gbytes from the RIP.

[AMD Public Use]

Instruction Encoding 25

24594—Rev. 3.32—March 2021 AMD64 Technology

Programs usually have many references to data, especially global data, that are not register-based. To
load such a program, the loader typically selects a location for the program in memory and then adjusts
program references to global data based on the load location. RIP-relative addressing of data makes
this adjustment unnecessary.

1.7.1 Encoding

Table 1-16 shows the ModRM and SIB encodings for RIP-relative addressing. Redundant forms of
32-bit displacement-only addressing exist in the current ModRM and SIB encodings. There is one
ModRM encoding with several SIB encodings. RIP-relative addressing is encoded using one of the
redundant forms. In 64-bit mode, the ModRM disp32 (32-bit displacement) encoding ({mod,r/m} =
00101b) is redefined to be RIP + disp32 rather than displacement-only.

1.7.2 REX Prefix and RIP-Relative Addressing

ModRM encoding for RIP-relative addressing does not depend on a REX prefix. In particular, the r/m
encoding of 101, used to select RIP-relative addressing, is not affected by the REX prefix. For
example, selecting R13 (REX.B = 1, r/m = 101) with mod = 00 still results in RIP-relative addressing.

The four-bit r/m field of ModRM is not fully decoded. Therefore, in order to address R13 with no
displacement, software must encode it as R13 + 0 using a one-byte displacement of zero.

1.7.3 Address-Size Prefix and RIP-Relative Addressing

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. Conversely, use of the
address-size prefix (“Address-Size Override Prefix” on page 9) does not disable RIP-relative
addressing. The effect of the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits, like any other addressing mode.

Table 1-16. Encoding for RIP-Relative Addressing

ModRM SIB
Legacy and

Compatibility Modes
64-bit Mode

Additional 64-bit
Implications

• mod = 00

• r/m = 101
not present disp32 RIP + disp32

Zero-based (normal)
displacement addressing
must use SIB form (see
next row).

• mod = 00

• r/m = 1001

• base = 1012

• index = 1003

• scale = xx

disp32 Same as Legacy None

Notes:
1. Encodes the indexed register-indirect addressing mode with 32-bit offset.
2. Base register specification is null (base portion of effective address calculation is set to 0)
3. index register specification is null (scale*index portion of effective address calculation is set to 0)

[AMD Public Use]

26 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

1.8 Encoding Considerations Using REX

Figure 1-6 on page 28 shows four examples of how the R, X, and B bits of the REX prefix are
concatenated with fields from the ModRM byte, SIB byte, and opcode to specify register and memory
addressing.

1.8.1 Byte-Register Addressing

In the legacy architecture, the byte registers (AH, AL, BH, BL, CH, CL, DH, and DL, shown in
Figure 2-2 on page 38) are encoded in the ModRM reg or r/m field or in the opcode reg field as
registers 0 through 7. The REX prefix provides an additional byte-register addressing capability that
makes the least-significant byte of any GPR available for byte operations (Figure 2-3 on page 39).
This provides a uniform set of byte, word, doubleword, and quadword registers better suited for
register allocation by compilers.

1.8.2 Special Encodings for Registers

Readers who need to know the details of instruction encodings should be aware that certain
combinations of the ModRM and SIB fields have special meaning for register encodings. For some of
these combinations, the instruction fields expanded by the REX prefix are not decoded (treated as
don’t cares), thereby creating aliases of these encodings in the extended registers. Table 1-17 on
page 27 describes how each of these cases behaves.

[AMD Public Use]

Instruction Encoding 27

24594—Rev. 3.32—March 2021 AMD64 Technology

Table 1-17. Special REX Encodings for Registers

ModRM and SIB

Encodings2
Meaning in Legacy and

Compatibility Modes

Implications in Legacy
and Compatibility

Modes

Additional REX
Implications

ModRM Byte:

• mod ≠ 11

• r/m1 = 100 (ESP)

SIB byte is present.
SIB byte is required for
ESP-based addressing.

REX prefix adds a fourth
bit (b), which is decoded
and modifies the base
register in the SIB byte.
Therefore, the SIB byte is
also required for R12-
based addressing.

ModRM Byte:

• mod = 00

• r/m1 = x101 (EBP)

Base register is not used.

Using EBP without a
displacement must be
done by setting mod = 01
with a displacement of 0
(with or without an index
register).

REX prefix adds a fourth
bit (x), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0.

SIB Byte:

• index1 = x100 (ESP)
Index register is not used.

ESP cannot be used as
an index register.

REX prefix adds a fourth
bit (x), which is decoded.
Therefore, there are no
additional implications.
The expanded index field
is used to distinguish RSP
from R12, allowing R12 to
be used as an index.

SIB Byte:

• base = b101 (EBP)

• ModRM.mod = 00

Base register is not used
if ModRM.mod = 00.

Base register depends on
mod encoding. Using
EBP with a scaled index
and without a
displacement must be
done by setting mod = 01
with a displacement of 0.

REX prefix adds a fourth
bit (b), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0 (with or
without an index register).

Notes:
1. The REX-prefix bit is shown in the fourth (most-significant) bit position of the encodings for the ModRM r/m, SIB

index, and SIB base fields. The lower-case “x” for ModRM r/m (rather than the upper-case “B” shown in Figure 1-6
on page 28) indicates that the REX-prefix bit is not decoded (don’t care).

2. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 17.

[AMD Public Use]

28 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Examples of Operand Addressing Extension Using REX

Figure 1-6. Encoding Examples Using REX R, X, and B Bits

REX Prefix

Case 1: Register-Register Addressing (No Memory Operand)

REX.X is not used4WRXB
Opcode

ModRM Byte
mod reg r/m

rrr11 bbb

Rrrr Bbbb

4
4

mod reg r/mREX Prefix

Case 3: Memory Addressing With an SIB Byte

Rrrr

4WRXB
Opcode

ModRM Byte

rrr!11 100

SIB Byte
scale index base

xxxbb bbb

BbbbXxxx

44
4

REX.X is not used
mod reg r/mREX Prefix

Case 2: Memory Addressing Without an SIB Byte

Rrrr

4WRXB
Opcode

ModRM Byte

rrr!11 bbb

Bbbb

4
4

ModRM reg field != 100

REX.R is not used
REX.X is not used

REX Prefix

Case 4: Register Operand Coded in Opcode Byte

Bbbb

4WRXB bbb

4

op reg

[AMD Public Use]

Instruction Encoding 29

24594—Rev. 3.32—March 2021 AMD64 Technology

1.9 Encoding Using the VEX and XOP Prefixes

An extended escape sequence is introduced by an encoding escape prefix which establishes the context
and the format of the bytes that follow. The currently defined prefixes fall in two classes: the XOP and
the VEX prefixes (of which there are two). The XOP prefix and the VEX C4h prefix introduce a three
byte sequence with identical syntax, while the VEX C5h prefix introduces a two-byte escape sequence
with a different syntax.

These escape sequences supply fields used to extend operand specification as well as provide for the
selection of alternate opcode maps. Encodings support up to two additional operands and the
addressing of the extended (beyond 7) registers. The specification of two of the operands is
accomplished using the legacy ModRM and optional SIB bytes with the reg, r/m, index, and base
fields extended by one bit in a manner analogous to the REX prefix.

The encoding of the extended SSE instructions utilize extended escape sequences. XOP instructions
use three-byte escape sequences introduced by the XOP prefix. The AVX, FMA, FMA4, and CLMUL
instruction subsets use three-byte or two-byte escape sequences introduced by the VEX prefixes.

1.9.1 Three-Byte Escape Sequences

All the extended instructions can be encoded using a three-byte escape sequence, but certain VEX-
encoded instructions that comply with the constraints described below in Section 1.9.2, “Two-Byte
Escape Sequence” can also utilize a two-byte escape sequence. Figure 1-7 below shows the format of
the three-byte escape sequence which is common to the XOP and VEX-based encodings.

Figure 1-7. VEX/XOP Three-byte Escape Sequence Format

Byte 0 Byte 1 Byte 2

7 0 7 6 5 4 0 7 6 3 2 1 0

Encoding escape prefix R X B map_select W vvvv L pp

Byte Bit Mnemonic Description

0 [7:0] VEX, XOP Value specific to the extended instruction set

1 [7] R Inverted one-bit extension of ModRM reg field

[6] X Inverted one-bit extension of SIB index field

[5] B Inverted one-bit extension, r/m field or SIB base
field

[4:0] map_select Opcode map select

[AMD Public Use]

30 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Table 1-18. Three-byte Escape Sequence Field Definitions

Byte 0 (VEX/XOP Prefix)

Byte 0 is the encoding escape prefix byte which introduces the encoding escape sequence and
establishes the context for the bytes that follow. The VEX and XOP prefixes have the following
encodings:

• VEX prefix is encoded as C4h

• XOP prefix is encoded as 8Fh

Byte 1

VEX/XOP.R (Bit 7). The bit-inverted equivalent of the REX.R bit. A one-bit extension of the
ModRM.reg field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, the value must be 1.

VEX/XOP.X (Bit 6). The bit-inverted equivalent of the REX.X bit. A one-bit extension of the
SIB.index field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, this value must be 1.

VEX/XOP.B (Bit 5). The bit-inverted equivalent of the REX.B bit, available only in the 3-byte prefix
format. A one-bit extension of either the ModRM.r/m field, to specify a GPR or XMM register, or of
the SIB base field, to specify a GPR. This permits access to all 16 GPR and YMM/XMM registers. In
32-bit protected and compatibility modes, this bit is ignored.

VEX/XOP.map_select (Bits [4:0]). The five-bit map_select field is used to select an alternate
opcode map. The map_select encoding spaces for VEX and XOP are disjoint. Table 1-19 below lists
the encodings for VEX.map_select and Table 1-20 lists the encodings for XOP.map_select.

2 [7] W Default operand size override for a general
purpose register to 64-bit size in 64-bit mode;

operand configuration specifier for certain
YMM/XMM-based operations.

[6:3] vvvv Source or destination register selector, in ones’
complement format

[2] L Vector length specifier

[1:0] pp Implied 66, F2, or F3 opcode extension

Table 1-19. VEX.map_select Encoding

Binary Value Opcode Map Analogous Legacy Opcode Map

00000 Reserved –

00001 VEX opcode map 1 Secondary (“two-byte”) opcode map

Byte Bit Mnemonic Description

[AMD Public Use]

Instruction Encoding 31

24594—Rev. 3.32—March 2021 AMD64 Technology

AVX instructions are encoded using the VEX opcode maps 1–3. The AVX instruction set includes
instructions that provide operations similar to most legacy SSE instructions. For those AVX
instructions that have an analogous legacy SSE instruction, the VEX opcode maps use the same binary
opcode value and modifiers as the legacy version. The correspondence between the VEX opcode maps
and the legacy opcode maps are shown in Table 1-19 above.

VEX opcode maps 1–3 are also used to encode the FMA4 and FMA instructions. In addition, not all
legacy SSE instructions have AVX equivalents. Therefore, the VEX opcode maps are not the same as
the legacy opcode maps.

The XOP opcode maps are unique to the XOP instructions. The XOP.map_select value is restricted to
the range [08h:1Fh]. If the value of the XOP.map_select field is less than 8, the first two bytes of the
three-byte XOP escape sequence are interpreted as a form of the POP instruction.

Both legacy and extended opcode maps are covered in detail in Appendix A.

Byte 2

VEX/XOP.W (Bit 7). Function is instruction-specific. The bit is often used to configure source
operand order.

VEX/XOP.vvvv (Bits [6:3]). Used to specify an additional operand for three and four operand
instructions. Encodes an XMM or YMM register in inverted ones’ complement form, as shown in
Table 1-21.

00010 VEX opcode map 2 0F_38h (“three-byte”) opcode map

00011 VEX opcode map 3 0F_3Ah (“three-byte”) opcode map

00100 – 11111 Reserved –

Table 1-20. XOP.map_select Encoding

Binary Value Opcode Map

00000 – 00111 Reserved

01000 XOP opcode map 8

01001 XOP opcode map 9

01010 XOP opcode map 10 (Ah)

01011 – 11111 Reserved

Table 1-19. VEX.map_select Encoding

Binary Value Opcode Map Analogous Legacy Opcode Map

[AMD Public Use]

32 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

Values 0000h to 0111h are not valid in 32-bit modes. vvvv is typically used to encode the first source
operand, but for the VPSLLDQ, VPSRLDQ, VPSRLW, VPSRLD, VPSRLQ, VPSRAW, VPSRAD,
VPSLLW, VPSLLD, and VPSLLQ shift instructions, the field specifies the destination register.

VEX/XOP.L (Bit 2). L = 0 specifies 128-bit vector length (XMM registers/128-bit memory
locations). L=1 specifies 256-bit vector length (YMM registers/256-bit memory locations). For SSE or
XOP instructions with scalar operands, the L bit is ignored. Some vector SSE instructions support only
the 128 bit vector size. For these instructions, L is cleared to 0.

VEX/XOP.pp (Bits [1:0]). Specifies an implied 66h, F2h, or F3h opcode extension which is used in a
way analogous to the legacy instruction encodings to extend the opcode encoding space. The
correspondence between the encoding of the VEX/XOP.pp field and its function as an opcode modifier
is shown in Table 1-22. The legacy prefixes 66h, F2h, and F3h are not allowed in the encoding of
extended instructions.

1.9.2 Two-Byte Escape Sequence

All VEX-encoded instructions can be encoded using the three-byte escape sequence, but certain
instructions can also be encoded utilizing a more compact, two-byte VEX escape sequence. The
format of the two-byte escape sequence is shown in Figure 1-8 below.

Table 1-21. VEX/XOP.vvvv Encoding

Binary Value Register Binary Value Register

0000 XMM15/YMM15 1000 XMM07/YMM07

0001 XMM14/YMM14 1001 XMM06/YMM06

0010 XMM13/YMM13 1010 XMM05/YMM05

0011 XMM12/YMM12 1011 XMM04/YMM04

0100 XMM11/YMM11 1100 XMM03/YMM03

0101 XMM10/YMM10 1101 XMM02/YMM02

0110 XMM09/YMM09 1110 XMM01/YMM01

0111 XMM08/YMM08 1111 XMM00/YMM00

Table 1-22. VEX/XOP.pp Encoding

Binary Value Implied Prefix

00 None

01 66h

10 F3h

11 F2h

[AMD Public Use]

Instruction Encoding 33

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 1-8. VEX Two-byte Escape Sequence Format

Table 1-23. VEX Two-byte Escape Sequence Field Definitions

Byte 0 (VEX Prefix)

The VEX prefix for the two-byte escape sequence is encoded as C5h.

Byte 1

Note that the bit 7 of this byte is used to encode VEX.R instead of VEX.W as in the three-byte escape
sequence form. The R, vvvv, L, and pp fields are defined as in the three-byte escape sequence.

When the two-byte escape sequence is used, specific fields from the three-byte format take on fixed
values as shown in Table 1-24 below.

Although they may be encoded using the VEX three-byte escape sequence, all instructions that
conform with the constraints listed in Table 1-24 may be encoded using the two-byte escape sequence.
Note that the implied value of map_select is 00001b, which means that only instructions included in
the VEX opcode map 1 may be encoded using this format.

VEX-encoded instructions that use the other defined values of map_select (00010b and 00011b)
cannot be encoded using this a two-byte escape sequence format. Note that the VEX.pp field value is

Byte 0 Byte 1

7 0 7 6 3 2 1 0

VEX R vvvv L pp

Prefix Byte Bit Mnemonic Description

0 [7:0] VEX VEX 2-byte encoding escape prefix

1 [7] R Inverted one-bit extension of ModRM.reg field

[6:3] vvvv Source or destination register selector, in ones’
complement format.

[2] L Vector length specifier

[1:0] pp Implied 66, F2, or F3 opcode extension.

Table 1-24. Fixed Field Values for VEX 2-Byte Format

VEX Field Value

X 1

B 1

W 0

map_select 00001b

[AMD Public Use]

34 Instruction Encoding

AMD64 Technology 24594—Rev. 3.32—March 2021

explicitly encoded in this form and can be used to specify any of the implied legacy prefixes as defined
in Table 1-22.

[AMD Public Use]

Instruction Overview 35

24594—Rev. 3.32—March 2021 AMD64 Technology

2 Instruction Overview

2.1 Instruction Groups

For easier reference, the instruction descriptions are divided into five groups based on usage. The
following sections describe the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by all instructions in the AMD64 architecture:

• Chapter 3, “General-Purpose Instruction Reference”—The general-purpose instructions are used
in basic software execution. Most of these load, store, or operate on data in the general-purpose
registers (GPRs), in memory, or in both. Other instructions are used to alter sequential program
flow by branching to other locations within the program or to entirely different programs.

• Chapter 4, “System Instruction Reference”—The system instructions establish the processor
operating mode, access processor resources, handle program and system errors, and manage
memory.

• “SSE Instruction Reference” in Volume 4—The Streaming SIMD Extensions (SSE) instructions
load, store, or operate on data located in the YMM/XMM registers. These instructions define both
vector and scalar operations on floating-point and integer data types. They include the SSE and
SSE2 instructions that operate on the YMM/XMM registers. Some of these instructions convert
source operands in YMM/XMM registers to destination operands in GPR, MMX, or x87 registers
or otherwise affect YMM/XMM state.

• “64-Bit Media Instruction Reference” in Volume 5—The 64-bit media instructions load, store, or
operate on data located in the 64-bit MMX registers. These instructions define both vector and
scalar operations on integer and floating-point data types. They include the legacy MMX™
instructions, the 3DNow!™ instructions, and the AMD extensions to the MMX and 3DNow!
instruction sets. Some of these instructions convert source operands in MMX registers to
destination operands in GPR, YMM/XMM, or x87 registers or otherwise affect MMX state.

• “x87 Floating-Point Instruction Reference” in Volume 5—The x87 instructions are used in legacy
floating-point applications. Most of these instructions load, store, or operate on data located in the
x87 ST(0)–ST(7) stack registers (the FPR0–FPR7 physical registers). The remaining instructions
within this category are used to manage the x87 floating-point environment.

The description of each instruction covers its behavior in all operating modes, including legacy mode
(real, virtual-8086, and protected modes) and long mode (compatibility and 64-bit modes). Details of
certain kinds of complex behavior—such as control-flow changes in CALL, INT, or FXSAVE
instructions—have cross-references in the instruction-detail pages to detailed descriptions in volumes
1 and 2.

Two instructions—CMPSD and MOVSD—use the same mnemonic for different instructions.
Assemblers can distinguish them on the basis of the number and type of operands with which they are
used.

[AMD Public Use]

36 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

2.2 Reference-Page Format

Figure 2-1 on page 37 shows the format of an instruction-detail page. The instruction mnemonic is
shown in bold at the top-left, along with its name. In this example, POPFD is the mnemonic and POP
to EFLAGS Doubleword is the name. Next, there is a general description of the instruction’s operation.
Many descriptions have cross-references to more detail in other parts of the manual.

Beneath the general description, the mnemonic is shown again, together with the related opcode(s) and
a description summary. Related instructions are listed below this, followed by a table showing the
flags that the instruction can affect. Finally, each instruction has a summary of the possible exceptions
that can occur when executing the instruction. The columns labeled “Real” and “Virtual-8086” apply
only to execution in legacy mode. The column labeled “Protected” applies both to legacy mode and
long mode, because long mode is a superset of legacy protected mode.

The 128-bit and 64-bit media instructions also have diagrams illustrating the operation. A few
instructions have examples or pseudocode describing the action.

[AMD Public Use]

Instruction Overview 37

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-1. Format of Instruction-Detail Pages

24594 Rev. 3.07 September 2003 AMD64 Technology

AAM 63

Converts the value in the AL register from binary to two unpacked BCD digits in the
AH (most significant) and AL (least significant) registers using the following formula:

AH = (AL/10d)
AL = (AL mod 10d).

In most modern assemblers, the AAM instruction adjusts to base-10 values. However,
by coding the instruction directly in binary, it can adjust to any base specified by the
immediate byte value (ib) suffixed onto the D4h opcode. For example, code D408h for
octal, D40Ah for decimal, and D40Ch for duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAD, AAS

rFLAGS Affected

Exceptions

AAM ASCII Adjust After Multiply

Mnemonic Opcode Description

AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)

(None) D4 ib Create a pair of unpacked values to the immediate byte base.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M U M U

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Divide by zero, #DE X X X 8-bit immediate value was 0.

Invalid opcode, #UD X This instruction was executed in 64-bit mode.

Mnemonic and any operands Opcode Description of operation

“M” means the flag is either set or
cleared, depending on the result.

Possible exceptions
and causes, by mode of
operation

“Protected” column
covers both legacy

and long mode

Alphabetic mnemonic locator

[AMD Public Use]

38 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

2.3 Summary of Registers and Data Types

This section summarizes the registers available to software using the five instruction subsets described
in “Instruction Groups” on page 35. For details on the organization and use of these registers, see their
respective chapters in volumes 1 and 2.

2.3.1 General-Purpose Instructions

Registers. The size and number of general-purpose registers (GPRs) depends on the operating
mode, as do the size of the flags and instruction-pointer registers. Figure 2-2 shows the registers
available in legacy and compatibility modes.

Figure 2-2. General Registers in Legacy and Compatibility Modes

Figure 2-3 on page 39 shows the registers accessible in 64-bit mode. Compared with legacy mode,
registers become 64 bits wide, eight new data registers (R8–R15) are added and the low byte of all 16
GPRs is available for byte operations, and the four high-byte registers of legacy mode (AH, BH, CH,
and DH) are not available if the REX prefix is used. The high 32 bits of doubleword operands are zero-
extended to 64 bits, but the high bits of word and byte operands are not modified by operations in 64-

31 15 016

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

AX

16-bit
low
8-bit

high
8-bit 32-bit

BX

CX

DX

SI

DI

BP

SP

AH (4)

BH (7)

CH (5)

DH (6)

AL

BL

CL

DL

SI

DI

BP

SP

FLAGS

IP

31 0

FLAGS

IP

EFLAGS

EIP

0

3

1

2

6

7

5

4

register
encoding

[AMD Public Use]

Instruction Overview 39

24594—Rev. 3.32—March 2021 AMD64 Technology

bit mode. The RFLAGS register is 64 bits wide, but the high 32 bits are reserved. They can be written
with anything but they read as zeros (RAZ).

Figure 2-3. General Registers in 64-Bit Mode

For most instructions running in 64-bit mode, access to the extended GPRs requires a either a REX
instruction modification prefix or extended encoding encoding using the VEX or XOP sequences
(page 14).

R8D

R9D

R10D

R11D

R12D

R13D

R14D

R15D

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

32-bit

R8

R9

R10

R11

R12

R13

R14

R15

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

64-bit

R8W

R9W

R10W

R11W

R12W

R13W

R14W

R15W

AX

16-bit

BX

CX

DX

SI

DI

BP

SP

63 31 15 7 081632

8

9

10

11

12

13

14

15

0

3

1

2

6

7

5

4

zero-extended
for 32-bit operands

not modified for 8-bit operands
not modified for 16-bit operands low

8 bits

BPL**

AH*

BH*

CH*

DH*

AL

BL

CL

DL

R8B

R9B

R10B

R11B

R12B

R13B

R14B

R15B

SIL**

DIL**

SPL**

63 31 032

RFLAGS

RIP

0

* Not addressable in REX prefix instruction forms
** Only addressable in REX prefix instruction forms

Re
g

is
te

r E
n

co
d

in
g

[AMD Public Use]

40 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

Figure 2-4 shows the segment registers which, like the instruction pointer, are used by all instructions.
In legacy and compatibility modes, all segments are accessible. In 64-bit mode, which uses the flat
(non-segmented) memory model, only the CS, FS, and GS segments are recognized, whereas the
contents of the DS, ES, and SS segment registers are ignored (the base for each of these segments is
assumed to be zero, and neither their segment limit nor attributes are checked). For details, see
“Segmented Virtual Memory” in Volume 2.

Figure 2-4. Segment Registers

Data Types. Figure 2-5 on page 41 shows the general-purpose data types. They are all scalar, integer
data types. The 64-bit (quadword) data types are only available in 64-bit mode, and for most
instructions they require a REX instruction prefix.

15 0

ES

FS

GS

SS

CS

DS

15 0

FS
(Base only)

GS
(Base only)

CS
(Attributes only)

Legacy Mode and
Compatibility Mode

64-Bit
Mode

ignored

ignored

ignored

[AMD Public Use]

Instruction Overview 41

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-5. General-Purpose Data Types

2.3.2 System Instructions

Registers. The system instructions use several specialized registers shown in Figure 2-6 on page 42.
System software uses these registers to, among other things, manage the processor’s operating
environment, define system resource characteristics, and monitor software execution. With the
exception of the RFLAGS register, system registers can be read and written only from privileged
software.

All system registers are 64 bits wide, except for the descriptor-table registers and the task register,
which include 64-bit base-address fields and other fields.

127

63

63

31

15

7 0

Quadword

Double
Quadword

Doubleword

Word

Byte

0

s

s

s

s

Quadword

Unsigned Integer

Signed Integer

Doubleword

Word

Byte

Bit

8 bytes (64-bit mode only)

s 16 bytes (64-bit mode only)

127
Double
Quadword

0

16 bytes (64-bit mode only)

4 bytes

2 bytes

31

15

7 3

Packed BCD

BCD Digit

0

8 bytes (64-bit mode only)

4 bytes

2 bytes

[AMD Public Use]

42 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

Figure 2-6. System Registers

Data Structures. Figure 2-7 on page 43 shows the system data structures. These are created and
maintained by system software for use in protected mode. A processor running in protected mode uses
these data structures to manage memory and protection, and to store program-state information when
an interrupt or task switch occurs.

Control Registers
CR0
CR2
CR3
CR4
CR8

System-Flags Register
RFLAGS

Debug Registers
DR0
DR1
DR2
DR3
DR6
DR7

Memory-Typing Registers
MTRRcap

MTRRdefType
MTRRphysBasen
MTRRphysMaskn

MTRRfixn
PAT

TOP_MEM
TOP_MEM2

Machine-Check Registers
MCG_CAP
MCG_STAT
MCG_CTL
MCi_CTL

MCi_STATUS
MCi_ADDR
MCi_MISC

Model-Specific Registers

Descriptor-Table Registers
GDTR
IDTR
LDTR

Task Register
TR

Extended-Feature-Enable Register
EFER

Debug-Extension Registers
DebugCtl

LastBranchFromIP
LastBranchToIP
LastIntFromIP

LastIntToIP

System-Configuration Register
SYSCFG

System-Linkage Registers
STAR

LSTAR
CSTAR

FS.base
GS.base

KernelGSbase
SYSENTER_CS

SYSENTER_ESP
SYSENTER_EIP

SFMASK Performance-Monitoring Registers
TSC

PerfEvtSeln
PerfCtrn

[AMD Public Use]

Instruction Overview 43

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-7. System Data Structures

2.3.3 SSE Instructions

Registers. The SSE instructions operate primarily on 128-bit and 256-bit floating-point vector
operands located in the 256-bit YMM/XMM registers. Each 128-bit XMM register is defined as the
lower octword of the corresponding YMM register. The number of available YMM/XMM data
registers depends on the operating mode, as shown in Figure 2-8 below. In legacy and compatibility
modes, eight YMM/XMM registers (YMM/XMM0–7) are available. In 64-bit mode, eight additional
YMM/XMM data registers (YMM/XMM8–15) are available. These eight additional registers are
addressed via the encoding extensions provided by the REX, VEX, and XOP prefixes.

Segment Descriptors (Contained in Descriptor Tables)

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Task-State Segment

Page-Translation Tables

Page-Map Level-4 Page TablePage DirectoryPage-Directory Pointer

Global-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Interrupt-Descriptor Table

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

Local-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Descriptor Tables

[AMD Public Use]

44 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

The MXCSR register contains floating-point and other control and status flags used by the 128-bit
media instructions. Some 128-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and
the MMX registers (Figure 2-12 on page 48) or set or clear flags in the rFLAGS register (see
Figure 2-2 and Figure 2-3).

Figure 2-8. SSE Registers

Data Types. The SSE instruction set architecture provides support for 128-bit and 256-bit packed
floating-point and integer data types as well as integer and floating-point scalars. Figure 2-9 below
shows the 128-bit data types. Figure 2-10 on page 46 and Figure 2-11 on page 47 show the 256-bit
data types. The floating-point data types include IEEE-754 single precision and double precision
types.

255 127 0

YMM0

YMM1

YMM2

YMM3

YMM4

YMM5

YMM6

YMM7

YMM8

YMM9

YMM10

YMM11

YMM12

YMM13

YMM14

YMM15

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

XMM8

XMM9

XMM10

XMM11

XMM12

XMM13

XMM14

XMM15

Available in all modes

Available only in 64-bit mode

31 0

MXCSRMedia eXtension Control and Status Register

[AMD Public Use]

Instruction Overview 45

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-9. 128-Bit SSE Data Types

s

s

s

Scalar Floating-Point – Double Precision and Single Precision

significand

exp significand

63 51 exp

s

31 22 0

0

127 0

Scalar Unsigned Integers

127

double quadword (octword)

15

31

63

quadword

doubleword

word

7

byte

0

bit

sss

s

31 2263 5495 86127 118 0

Vector (Packed) Floating-Point – Double Precision and Single Precision

significand

exp significand

063 51127 115

exp significand

expsignificandexpsignificandexpsignificandexp

s

s

71523313947556371798795103111119127 0

quadwordquadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

Vector (Packed) Signed Integer – Quadword, Doubleword, Word, Byte

s s s s s sssss

s

s s

ss

s

s

s

s s

s

s

s s

s

s

s

s

byte byte byte byte byte byte byte byte byte byte byte byte byte bytebytebytes s

71523313947556371798795103111119127 0

Vector (Packed) Unsigned Integer – Quadword, Doubleword, Word, Byte

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

doubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

quadword

doubleword

Scalar Signed Integers

127

double quadword (octword)

15

31

63

quadword

doubleword

word

7

byte

ss

s

s

s

s

1

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

[AMD Public Use]

46 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

Figure 2-10. SSE 256-bit Data Types

Vector (Packed) Floating-Point – Double Precision and Single Precision

ssss

ss

ssss

ss

31 2263 5495 86127 118 0

significand

exp significand

063 51127 115

exp significand

expsignificandexpsignificandexpsignificandexp

ssss

ss

ssss

ss

159 150191 182223 214255 246 128

significand

exp significand

128191 179255 243

exp significand

expsignificandexpsignificandexpsignificandexp

Vector (Packed) Signed Integer – Double Quadword, Quadword, Doubleword, Word, Byte

ssssssss

ssss

ss

ssssssssssssssss

ssssssss

ssss

ss

s

ssssssssssssssss

135143151159167175183191199207215223231239247255 128

quadword

double quadword (octword)

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

ssssssss

ssss

s

ssssssssssssssss

ssssssss

ssss

ss

ssssssssssssssss

71523313947556371798795103111119127 0

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

s

quadword

[AMD Public Use]

Instruction Overview 47

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-11. SSE 256-Bit Data Types (Continued)

Vector (Packed) Unsigned Integer – Double Quadword, Quadword, Doubleword, Word, ByteVector (Packed) Unsigned Integer – Double Quadword, Quadword, Doubleword, Word, Byte

135143151159167175183191199207215223231239247255 128

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

71523313947556371798795103111119127 0

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

127 0

Scalar Unsigned Integers

127

double quadword

15

31

63

quadword

doubleword

word

7

0

byte

bit

Scalar Signed Integers

127

double quadword

15

31

63

quadword

doubleword

word

7 0

byte

ss

s

s

s

s

s

s

s

s

31 22 0

Scalar Floating-Point – Double Precision and Single Precision

significand

exp significand
63 51 exp

1

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

[AMD Public Use]

48 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

2.3.4 64-Bit Media Instructions

Registers. The 64-bit media instructions use the eight 64-bit MMX registers, as shown in
Figure 2-12. These registers are mapped onto the x87 floating-point registers, and 64-bit media
instructions write the x87 tag word in a way that prevents an x87 instruction from using MMX data.

Some 64-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and the XMM registers
(Figure 2-8).

Figure 2-12. 64-Bit Media Registers

Data Types. Figure 2-13 on page 49 shows the 64-bit media data types. They include floating-point
and integer vectors and integer scalars. The floating-point data type, used by 3DNow! instructions,
consists of a packed vector or two IEEE-754 32-bit single-precision data types. Unlike other kinds of
floating-point instructions, however, the 3DNow!™ instructions do not generate floating-point
exceptions. For this reason, there is no register for reporting or controlling the status of exceptions in
the 64-bit-media instruction subset.

MMX Data Registers
63 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

[AMD Public Use]

Instruction Overview 49

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-13. 64-Bit Media Data Types

ss ss

ssss

ss

ssssssss

ssss

ss

ssssssss

715233139475563 0

bytebytebytebytebytebytebytebyte

31 2263 54 0

Vector (Packed) Single-Precision Floating-Point

Vector (Packed) Unsigned Integers

715233139475563 0

doubleworddoubleword

wordwordwordword

doubleworddoubleword

wordwordwordword

bytebytebytebytebytebytebytebyte

Vector (Packed) Signed Integers

significandexpsignificandexp

63

31

15

7 0

s

s

s

s

Unsigned Integers

Signed Integers

quadword

doubleword

word

byte

63

31

15

7

0

quadword

doubleword

word

byte

[AMD Public Use]

50 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

2.3.5 x87 Floating-Point Instructions

Registers. The x87 floating-point instructions use the x87 registers shown in Figure 2-14. There are
eight 80-bit data registers, three 16-bit registers that hold the x87 control word, status word, and tag
word, and three registers (last instruction pointer, last opcode, last data pointer) that hold information
about the last x87 operation.

The physical data registers are named FPR0–FPR7, although x87 software references these registers
as a stack of registers, named ST(0)–ST(7). The x87 instructions store operands only in their own 80-
bit floating-point registers or in memory. They do not access the GPR or XMM registers.

Figure 2-14. x87 Registers

Data Types. Figure 2-15 on page 51 shows all x87 data types. They include three floating-point
formats (80-bit double-extended precision, 64-bit double precision, and 32-bit single precision), three
signed-integer formats (quadword, doubleword, and word), and an 80-bit packed binary-coded
decimal (BCD) format.

Tag Word

Status Word

Control Word

x87 Data Registers
79 0

fpr0

fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

015

63

010

Instruction Pointer (rIP)

Data Pointer (rDP)

Tag Word

Status Word

Control Word

Opcode

[AMD Public Use]

Instruction Overview 51

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 2-15. x87 Data Types

2.4 Summary of Exceptions

Table 2-1 on page 52 lists all possible exceptions. The table shows the interrupt-vector numbers,
names, mnemonics, source, and possible causes. Exceptions that apply to specific instructions are
documented with each instruction in the instruction-detail pages that follow.

s

63

31

31

22

15 0

0

0

Quadword

Doubleword

Words

s

s

Signed Integer

Binary-Coded Decimal (BCD)

Floating-Point

8 bytes

4 bytes

63

63

51

Double Precision

Single Precisions

s

2 bytes

79

79

079 71

Double-Extended
Precision

Packed Decimal

s i

significand

exp significand

exp significand

exp

s

[AMD Public Use]

52 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

Table 2-1. Interrupt-Vector Source and Cause

Vector Interrupt (Exception) Mnemonic Source Cause

0 Divide-By-Zero-Error #DE Software DIV, IDIV, AAM instructions

1 Debug #DB Internal Instruction accesses and data accesses

2 Non-Maskable-Interrupt #NMI External External NMI signal

3 Breakpoint #BP Software INT3 instruction

4 Overflow #OF Software INTO instruction

5 Bound-Range #BR Software BOUND instruction

6 Invalid-Opcode #UD Internal Invalid instructions

7 Device-Not-Available #NM Internal x87 instructions

8 Double-Fault #DF Internal Interrupt during an interrupt

9 Coprocessor-Segment-Overrun — External Unsupported (reserved)

10 Invalid-TSS #TS Internal
Task-state segment access and task
switch

11 Segment-Not-Present #NP Internal Segment access through a descriptor

12 Stack #SS Internal SS register loads and stack references

13 General-Protection #GP Internal
Memory accesses and protection
checks

14 Page-Fault #PF Internal
Memory accesses when paging
enabled

15 Reserved —

16
Floating-Point Exception-
Pending

#MF Software
x87 floating-point and 64-bit media
floating-point instructions

17 Alignment-Check #AC Internal Memory accesses

18 Machine-Check #MC
Internal
External

Model specific

19 SIMD Floating-Point #XF Internal 128-bit media floating-point instructions

20 Reserved —

21 Control-Protection #CP Internal Shadow Stack Protection checks

22—27 Reserved (Internal and External) —

28 Hypervisor Injection Exception #HV Software Event injection

29 VMM Communication Exception #VC Internal Virtualization event

30 SVM Security Exception #SX External Security-sensitive events

31 Reserved (Internal and External) —

0—255 External Interrupts (Maskable) #INTR External External interrupt signal

0—255 Software Interrupts — Software INTn instruction

[AMD Public Use]

Instruction Overview 53

24594—Rev. 3.32—March 2021 AMD64 Technology

2.5 Notation

2.5.1 Mnemonic Syntax

Each instruction has a syntax that includes the mnemonic and any operands that the instruction can
take. Figure 2-16 shows an example of a syntax in which the instruction takes two operands. In most
instructions that take two operands, the first (left-most) operand is both a source operand (the first
source operand) and the destination operand. The second (right-most) operand serves only as a source,
not a destination.

Figure 2-16. Syntax for Typical Two-Operand Instruction

The following notation is used to denote the size and type of source and destination operands:

• cReg—Control register.

• dReg—Debug register.

• imm8—Byte (8-bit) immediate.

• imm16—Word (16-bit) immediate.

• imm16/32—Word (16-bit) or doubleword (32-bit) immediate.

• imm32—Doubleword (32-bit) immediate.

• imm32/64—Doubleword (32-bit) or quadword (64-bit) immediate.

• imm64—Quadword (64-bit) immediate.

• mem—An operand of unspecified size in memory.

• mem8—Byte (8-bit) operand in memory.

• mem16—Word (16-bit) operand in memory.

• mem16/32—Word (16-bit) or doubleword (32-bit) operand in memory.

• mem32—Doubleword (32-bit) operand in memory.

• mem32/48—Doubleword (32-bit) or 48-bit operand in memory.

• mem48—48-bit operand in memory.

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

ADDPD xmm1, xmm2/mem128

[AMD Public Use]

54 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

• mem64—Quadword (64-bit) operand in memory.

• mem128—Double quadword (128-bit) operand in memory.

• mem16:16—Two sequential word (16-bit) operands in memory.

• mem16:32—A doubleword (32-bit) operand followed by a word (16-bit) operand in memory.

• mem32real—Single-precision (32-bit) floating-point operand in memory.

• mem16int—Word (16-bit) integer operand in memory.

• mem32int—Doubleword (32-bit) integer operand in memory.

• mem64real—Double-precision (64-bit) floating-point operand in memory.

• mem64int—Quadword (64-bit) integer operand in memory.

• mem80real—Double-extended-precision (80-bit) floating-point operand in memory.

• mem80dec—80-bit packed BCD operand in memory, containing 18 4-bit BCD digits.

• mem2env—16-bit x87 control word or x87 status word.

• mem14/28env—14-byte or 28-byte x87 environment. The x87 environment consists of the x87
control word, x87 status word, x87 tag word, last non-control instruction pointer, last data pointer,
and opcode of the last non-control instruction completed.

• mem94/108env—94-byte or 108-byte x87 environment and register stack.

• mem512env—512-byte environment for 128-bit media, 64-bit media, and x87 instructions.

• mmx—Quadword (64-bit) operand in an MMX register.

• mmx1—Quadword (64-bit) operand in an MMX register, specified as the left-most (first) operand
in the instruction syntax.

• mmx2—Quadword (64-bit) operand in an MMX register, specified as the right-most (second)
operand in the instruction syntax.

• mmx/mem32—Doubleword (32-bit) operand in an MMX register or memory.

• mmx/mem64—Quadword (64-bit) operand in an MMX register or memory.

• mmx1/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the left-
most (first) operand in the instruction syntax.

• mmx2/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the right-
most (second) operand in the instruction syntax.

• moffset—Direct memory offset that specifies an operand in memory.

• moffset8—Direct memory offset that specifies a byte (8-bit) operand in memory.

• moffset16—Direct memory offset that specifies a word (16-bit) operand in memory.

• moffset32—Direct memory offset that specifies a doubleword (32-bit) operand in memory.

• moffset64—Direct memory offset that specifies a quadword (64-bit) operand in memory.

• pntr16:16—Far pointer with 16-bit selector and 16-bit offset.

• pntr16:32—Far pointer with 16-bit selector and 32-bit offset.

• reg—Operand of unspecified size in a GPR register.

[AMD Public Use]

Instruction Overview 55

24594—Rev. 3.32—March 2021 AMD64 Technology

• reg8—Byte (8-bit) operand in a GPR register.

• reg16—Word (16-bit) operand in a GPR register.

• reg16/32—Word (16-bit) or doubleword (32-bit) operand in a GPR register.

• reg32—Doubleword (32-bit) operand in a GPR register.

• reg64—Quadword (64-bit) operand in a GPR register.

• reg/mem8—Byte (8-bit) operand in a GPR register or memory.

• reg/mem16—Word (16-bit) operand in a GPR register or memory.

• reg/mem32—Doubleword (32-bit) operand in a GPR register or memory.

• reg/mem64—Quadword (64-bit) operand in a GPR register or memory.

• rel8off—Signed 8-bit offset relative to the instruction pointer.

• rel16off—Signed 16-bit offset relative to the instruction pointer.

• rel32off—Signed 32-bit offset relative to the instruction pointer.

• segReg or sReg—Word (16-bit) operand in a segment register.

• ST(0)—x87 stack register 0.

• ST(i)—x87 stack register i, where i is between 0 and 7.

• xmm—Double quadword (128-bit) operand in an XMM register.

• xmm1—Double quadword (128-bit) operand in an XMM register, specified as the left-most (first)
operand in the instruction syntax.

• xmm2—Double quadword (128-bit) operand in an XMM register, specified as the right-most
(second) operand in the instruction syntax.

• xmm/mem64—Quadword (64-bit) operand in a 128-bit XMM register or memory.

• xmm/mem128—Double quadword (128-bit) operand in an XMM register or memory.

• xmm1/mem128—Double quadword (128-bit) operand in an XMM register or memory, specified as
the left-most (first) operand in the instruction syntax.

• xmm2/mem128—Double quadword (128-bit) operand in an XMM register or memory, specified as
the right-most (second) operand in the instruction syntax.

• ymm—Double octword (256-bit) operand in an YMM register.

• ymm1—Double octword (256-bit) operand in an YMM register, specified as the left-most (first)
operand in the instruction syntax.

• ymm2—Double octword (256-bit) operand in an YMM register, specified as the right-most
(second) operand in the instruction syntax.

• ymm/mem64—Quadword (64-bit) operand in a 256-bit YMM register or memory.

• ymm/mem128—Double quadword (128-bit) operand in an YMM register or memory.

• ymm1/mem256—Double octword (256-bit) operand in an YMM register or memory, specified as
the left-most (first) operand in the instruction syntax.

[AMD Public Use]

56 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

• ymm2/mem256—Double octword (256-bit) operand in an YMM register or memory, specified as
the right-most (second) operand in the instruction syntax.

2.5.2 Opcode Syntax

In addition to the notation shown above in “Mnemonic Syntax” on page 52, the following notation
indicates the size and type of operands in the syntax of an instruction opcode:

• /digit—Indicates that the ModRM byte specifies only one register or memory (r/m) operand. The
digit is specified by the ModRM reg field and is used as an instruction-opcode extension. Valid
digit values range from 0 to 7.

• /r—Indicates that the ModRM byte specifies both a register operand and a reg/mem (register or
memory) operand.

• cb, cw, cd, cp—Specifies a code-offset value and possibly a new code-segment register value. The
value following the opcode is either one byte (cb), two bytes (cw), four bytes (cd), or six bytes
(cp).

• ib, iw, id, iq—Specifies an immediate-operand value. The opcode determines whether the value is
signed or unsigned. The value following the opcode, ModRM, or SIB byte is either one byte (ib),
two bytes (iw), or four bytes (id). Word and doubleword values start with the low-order byte.

• +rb, +rw, +rd, +rq—Specifies a register value that is added to the hexadecimal byte on the left,
forming a one-byte opcode. The result is an instruction that operates on the register specified by
the register code. Valid register-code values are shown in Table 2-2.

• m64—Specifies a quadword (64-bit) operand in memory.

• +i—Specifies an x87 floating-point stack operand, ST(i). The value is used only with x87 floating-
point instructions. It is added to the hexadecimal byte on the left, forming a one-byte opcode. Valid
values range from 0 to 7.

Table 2-2. +rb, +rw, +rd, and +rq Register Value

REX.B

Bit1
Value

Specified Register

+rb +rw +rd +rq

0
or no REX

Prefix

0 AL AX EAX RAX

1 CL CX ECX RCX

2 DL DX EDX RDX

3 BL BX EBX RBX

4 AH, SPL1 SP ESP RSP

5 CH, BPL1 BP EBP RBP

6 DH, SIL1 SI ESI RSI

7 BH, DIL1 DI EDI RDI

1. See “REX Prefix” on page 14.

[AMD Public Use]

Instruction Overview 57

24594—Rev. 3.32—March 2021 AMD64 Technology

2.5.3 Pseudocode Definition

Pseudocode examples are given for the actions of several complex instructions (for example, see
“CALL (Near)” on page 126). The following definitions apply to all such pseudocode examples:

///
// Pseudo Code Definition
///
//
// Comments start with double slashes.
//
// '=' can mean "is", or assignment based on context
// '==' is the equals comparison operator
//
///
// Constants
///

0 // numbers are in base-10 (decimal), unless followed by a suffix
0000_0001b // a number in binary notation, underbars added for readability
FFE0_0000h // a number expressed in hexadecimal notation

// in the following, '&&' is the logical AND operator. See "Logical Operators"
// below.
// reg[fld] identifies a field (one or more bits) within architected register
// or within a sub-element of a larger data structure. A dot separates the
// higher-level data structure name from the sub-element name.
//
CS.desc = Code Segment descriptor // CS.desc has sub-elements: base, limit, attr
SS.desc = Stack Segment descriptor // SS.desc has the same sub-elements
CS.desc.base = base subfield of CS.desc
CS = Code Segment Register
SS = Stack Segment Register
CPL = Current Privilege Level (0 <= CPL <= 3)
REAL_MODE = (CR0[PE] == 0)

1

0 R8B R8W R8D R8

1 R9B R9W R9D R9

2 R10B R10W R10D R10

3 R11B R11W R11D R11

4 R12B R12W R12D R12

5 R13B R13W R13D R13

6 R14B R14W R14D R14

7 R15B R15W R15D R15

Table 2-2. +rb, +rw, +rd, and +rq Register Value (continued)

REX.B

Bit1
Value

Specified Register

+rb +rw +rd +rq

1. See “REX Prefix” on page 14.

[AMD Public Use]

58 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

PROTECTED_MODE = ((CR0[PE] == 1) && (RFLAGS[VM] == 0))
VIRTUAL_MODE = ((CR0[PE] == 1) && (RFLAGS[VM] == 1))
LEGACY_MODE = (EFER[LMA] == 0)
LONG_MODE = (EFER[LMA] == 1)
64BIT_MODE = ((EFER[LMA]==1) && (CS_desc.attr[L] == 1) && (CS_desc.attr[D] == 0))
COMPATIBILITY_MODE = (EFER[LMA] == 1) && (CS_desc.attr[L] == 0)
PAGING_ENABLED = (CR0[PG] == 1)
ALIGNMENT_CHECK_ENABLED = ((CR0[AM] == 1) && (RFLAGS[AC] == 1) && (CPL == 3))

OPERAND_SIZE = 16, 32, or 64 // size, in bits, of an operand
// OPERAND_SIZE depends on processor mode, the current code segment descriptor
// default operand size [D], presence of the operand size override prefix (66h)
// and, in 64-bit mode, the REX prefix.
// NOTE: Specific instructions take 8-bit operands, but for these instructions,
// operand size is fixed and the variable OPERAND_SIZE is not needed.

ADDRESS_SIZE = 16, 32, or 64 // size, in bits, of the effective address for
// memory reads. ADDRESS_SIZE depends processor mode, the current code segment
// descriptor default operand size [D], and the presence of the address size
// override prefix (67h)

STACK_SIZE = 16, 32, or 64 // size, in bits of stack operation operand
// STACK_SIZE depends on current code segment descriptor attribute D bit and
// the Stack Segment descriptor attribute B bit.

///
// Architected Registers
///
// Identified using abbreviated names assigned by the Architecture; can represent
// the register or its contents depending on context.
RAX = the 64-bit contents of the general-purpose register
EAX = 32-bit contents of GPR EAX
AX = 16-bit contents of GPR AX
AL = lower 8 bits of GPR AX
AH = upper 8 bits of GPR AX

index_of(reg) = value used to encode the register.
index_of(AX) = 0000b
index_of(RAX) = 0000b

// in legacy and compatibility modes the msb of the index is fixed as 0

///
// Defined Variables
///

old_RIP = RIP at the start of current instruction
old_RSP = RSP at the start of current instruction
old_RFLAGS = RFLAGS at the start of the instruction

[AMD Public Use]

Instruction Overview 59

24594—Rev. 3.32—March 2021 AMD64 Technology

old_CS = CS selector at the start of current instruction
old_DS = DS selector at the start of current instruction
old_ES = ES selector at the start of current instruction
old_FS = FS selector at the start of current instruction
old_GS = GS selector at the start of current instruction
old_SS = SS selector at the start of current instruction

RIP = the current RIP register
RSP = the current RSP register
RBP = the current RBP register
RFLAGS = the current RFLAGS register
next_RIP = RIP at start of next instruction

CS.desc = the current CS descriptor, including the subfields:
 base limit attr
SS.desc = the current SS descriptor, including the subfields:
 base limit attr

SRC = the instruction’s source operand
SRC1 = the instruction's first source operand
SRC2 = the instruction's second source operand
SRC3 = the instruction's third source operand
IMM8 = 8-bit immediate encoded in the instruction
IMM16 = 16-bit immediate encoded in the instruction
IMM32 = 32-bit immediate encoded in the instruction
IMM64 = 64-bit immediate encoded in the instruction
DEST = instruction’s destination register

temp_* // 64-bit temporary register
temp_*_desc // temporary descriptor, with sub-elements:
 // if it points to a block of memory: base limit attr
 // if it’s a gate descriptor: offet segment attr

NULL = 0000h // null selector is all zeros

///
// Exceptions
///
EXCEPTION [#GP(0)] // Signals an exception; error code in parenthesis
EXCEPTION [#UD] // if no error code

// possible exception types:
#DE // Divide-By-Zero-Error Exception (Vector 0)
#DB // Debug Exception (Vector 1)
#BP // INT3 Breakpoint Exception (Vector 3)
#OF // INTO Overflow Exception (Vector 4)
#BR // Bound-Range Exception (Vector 5)
#UD // Invalid-Opcode Exception (Vector 6)
#NM // Device-Not-Available Exception (Vector 7)
#DF // Double-Fault Exception (Vector 8)
#TS // Invalid-TSS Exception (Vector 10)

[AMD Public Use]

60 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

#NP // Segment-Not-Present Exception (Vector 11)
#SS // Stack Exception (Vector 12)
#GP // General-Protection Exception (Vector 13)
#PF // Page-Fault Exception (Vector 14)
#MF // x87 Floating-Point Exception-Pending (Vector 16)
#AC // Alignment-Check Exception (Vector 17)
#MC // Machine-Check Exception (Vector 18)
#XF // SIMD Floating-Point Exception (Vector 19)

///
// Implicit Assignments
///

// V,Z,A,S are integer variables, assigned a value when an instruction begins
// executing (they can be assigned a different value in the middle of an
// instruction, if needed)
IF (OPERAND_SIZE == 16) V = 2
IF (OPERAND_SIZE == 32) V = 4
IF (OPERAND_SIZE == 64) V = 8
IF (OPERAND_SIZE == 16) Z = 2
IF (OPERAND_SIZE == 32) Z = 4
IF (OPERAND_SIZE == 64) Z = 4
IF (ADDRESS_SIZE == 16) A = 2
IF (ADDRESS_SIZE == 32) A = 4
IF (ADDRESS_SIZE == 64) A = 8
IF (STACK_SIZE == 16) S = 2
IF (STACK_SIZE == 32) S = 4
IF (STACK_SIZE == 64) S = 8

///
// Bit Range Inside a Register
///

temp_data[x:y] // Bits x through y (inclusive) of temp_data

///
// Variables and data types
///
NxtValue = 5 //default data type is unsigned int.

int //abstract data type representing an integer
bool //abstract data type; either TRUE or FALSE
vector //An array of data elements. Individual elements are accessed via
 //an unsigned integer zero-based index. Elements have a data type.
bit //a single bit
byte //8-bit value
word //16-bit value
doubleword //32-bit value
quadword //64-bit value
octword //128-bit value
double octword //256-bit value

[AMD Public Use]

Instruction Overview 61

24594—Rev. 3.32—March 2021 AMD64 Technology

unsigned int aval //treat aval as an unsigned integer value
signed int valx //treat valx as a signed integer value
bit vector b_vect //b_vect is an array of data elements. Each element is a bit.
b_vect[5] //The sixth element (bit) in the array. Indices are 0-based.

///
// Elements Within a packed data type
///

// element i of size w occupies bits [wi-1:wi]

///
// Moving Data From One Register To Another
///
temp_dest.b = temp_src; // 1-byte move (copies lower 8 bits of temp_src to
 // temp_dest, preserving the upper 56 bits of temp_dest)
temp_dest.w = temp_src; // 2-byte move (copies lower 16 bits of temp_src to
 // temp_dest, preserving the upper 48 bits of temp_dest)
temp_dest.d = temp_src; // 4-byte move (copies lower 32 bits of temp_src to
 // temp_dest; zeros out the upper 32 bits of temp_dest)
temp_dest.q = temp_src; // 8-byte move (copies all 64 bits of temp_src to
 // temp_dest)
temp_dest.v = temp_src; // 2-byte move if V==2
 // 4-byte move if V==4
 // 8-byte move if V==8
temp_dest.z = temp_src; // 2-byte move if Z==2
 // 4-byte move if Z==4
temp_dest.a = temp_src; // 2-byte move if A==2
 // 4-byte move if A==4
 // 8-byte move if A==8
temp_dest.s = temp_src; // 2-byte move if S==2
 // 4-byte move if S==4
 // 8-byte move if S==8

///
// Arithmetic Operators
///
a + b // integer addition
a - b // integer subtraction
a * b // integer multiplication
a / b // integer division. Result is the quotient
a % b // modulo. Result is the remainder after a is divided by b
// multiplication has precedence over addition where precedence is not explicitly
// indicated by grouping terms with parentheses

///
// Bitwise Operators
///
// temp, a, and b are values or register contents of the same size
temp = a AND b; // Corresponding bits of a and b are logically ANDed together

[AMD Public Use]

62 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

temp = a OR b; // Corresponding bits of a and b are logically ORed together
temp = a XOR b; // Each bit of temp is the exclusive OR of the corresponding
 // bits of a and b
temp = NOT a; // Each bit of temp is the complement of the corresponding
 // bit of a

// Concatenation
value = {field1,field2,100b}; //pack values of field1, field2 and 100b
size_of(value) = (size_of(field1) + size_of(field2) + 3)

///
// Logical Shift Operators
///
temp = a << b; // Result is a shifted left by _b_ bit positions. Zeros are
 // shifted into vacant positions. Bits shifted out are lost.
temp = a >> b; // Result is a shifted right by _b_ bit positions. Zeros are
 // shifted into vacant positions. Bits shifted out are lost.

///
// Logical Operators
///
// a boolean variable can assume one of two values (TRUE or FALSE)
// In these examples, FOO, BAR, CONE, and HEAD have been defined to be boolean
// variables
FOO && BAR // Logical AND
FOO || BAR // Logical OR
!FOO // Logical complement (NOT)

///
// Comparison Operators
///
// a and b are integer values. The result is a boolean value.
a == b // if a and b are equal, the result is TRUE; otherwise it is FALSE.
a != b // if a and b are not equal, the result is TRUE; otherwise it is FALSE.
a > b // if a is greater than b, the result is TRUE; otherwise it is FALSE.
a < b // if a is less than b, the result is TRUE; otherwise it is FALSE.
a >= b // if a is greater than or equal to b, the result is TRUE; otherwise
 // it is FALSE.
a <= b // if a is less than or equal to b, the result is TRUE; otherwise
 // it is FALSE.
///
// Logical Expressions
///
// Logical binary (two operand) and unary (one operand) operators can be combined
// with comparison operators to form more complex expressions. Parentheses are
// used to enclose comparison terms and to show precedence. If precedence is not
// explicitly shown, logical AND has precedence over logical OR. Unary operators
// have precedence over binary operators.

FOO && (a < b) || !BAR // evaluate the comparison a < b first, then
 // AND this with FOO. Finally OR this intermediate result

[AMD Public Use]

Instruction Overview 63

24594—Rev. 3.32—March 2021 AMD64 Technology

 // with the complement of BAR.

// Logical expressions can be English phrases that can be evaluated to be TRUE
// or FALSE. Statements assume knowledge of the system architecture (Volumes 1 and
// 2).
///

IF (it is raining)
 close the window

///
// Assignment Operators
///
a = a + b // The value a is assigned the sum of the values a and b
 //
temp = R1 // The contents of the register temp is replaced by a copy of the
 // contents of register R1.
R0 += 2 // R0 is assigned the sum of the contents of R0 and the integer 2.
 //
R5 |= R6 // R5 is assigned the result of the bit-wise OR of the contents of R5
 // and R6. Contents of R6 is unchanged.
R4 &= R7 // R4 is assigned the result of the bit-wise AND of the contents of
 // R4 and R7. Contents of R7 is unchanged.
///
// IF-THEN-ELSE
///
IF (FOO) <expression> // evaluation of <expression> is dependent on FOO
 // being TRUE. If FOO is FALSE, <expression> is not
 // evaluated.

IF (FOO)
 <dependent expression1> // scope of IF is indicated by indentation
 ...
 <dependent expressionx>

IF (FOO) // If FOO is TRUE, <dependent expression> is
 // evaluated and the remaining ELSEIF and ELSE
 <dependent expression> // clauses are skipped.
 //
ELSIF (BAR) // IF FOO is FALSE and BAR is TRUE, <alt expression>
 <alt expression> // is evaluated and the subsequent ELSEIF or ELSE
 // clauses are skipped.
ELSE
 <default expressions> // evaluated if all the preceeding IF and ELSEIF
 // conditions are FALSE.

IF ((FOO && BAR) || (CONE && HEAD)) // The condition can be an expression.
 <dependent expressions>

///
// Loops

[AMD Public Use]

64 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

///
FOR i = <init_val> to <final_val>, BY <step>
 <expression> // scope of loop is indicated by indentation
 // if <step> = 1, may omit "BY" clause

// nested loop example
temp = 0 //initialize temp
FOR i = 0 to 7 // i takes on the values 0 through 7 in succession
 temp += 1 // In the outer loop. Evaluated a total of 8 times.
 For j = 0 to 7, BY 2 // j takes on the values 0, 2, 4, and 6; but not 7.
 <inner-most exp> // This will be evaluated a total of 8 * 4 times.
<next expression outside both loops>

// C Language form of loop syntax is also allowed

FOR (i = 0; i < MAX; i++)
{

<expressions> //evaluated MAX times
}

///
// Functions
///
// Syntax for function definition
<return data type> <function_name>(argument,..)
 <expressions>
RETURN <result>

///
// Built-in Functions
///
SignExtend(arg) // returns value of _arg_ sign extended to the width of the data
 // type of the function. Data type of function is inferred from
 // the context of the function's invocation.

ZeroExtend(arg) // returns value of _arg_ zero extended to the width of the data
 // type of the function. Data type of function is inferred from
 // the context of the function's invocation.

indexof(reg) //returns binary value used to encode reg specification

///
// READ_MEM
// General memory read. This zero-extends the data to 64 bits and returns it.
///

usage:
 temp = READ_MEM.x [seg:offset] // where x is one of {v, z, b, w, d, q}
 // and denotes the size of the memory read

[AMD Public Use]

Instruction Overview 65

24594—Rev. 3.32—March 2021 AMD64 Technology

definition:

IF ((seg AND 0xFFFC) == NULL)
 // GP fault for using a null segment to reference memory
 EXCEPTION [#GP(0)]

 IF ((seg==CS) || (seg==DS) || (seg==ES) || (seg==FS) || (seg==GS))
 // CS,DS,ES,FS,GS check for segment limit or canonical

 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 // #GP fault for segment limit violation in non-64-bit mode
 EXCEPTION [#GP(0)]

 IF ((64BIT_MODE) && (offset is non-canonical))
 // #GP fault for non-canonical address in 64-bit mode
 EXCEPTION [#GP(0)]

 ELSIF (seg==SS) // SS checks for segment limit or canonical

 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 // stack fault for segment limit violation in non-64-bit mode
 EXCEPTION [#SS(0)]

 IF ((64BIT_MODE) && (offset is non-canonical))
 // stack fault for non-canonical address in 64-bit mode
 EXCEPTION [#SS(0)]

 ELSE // ((seg==GDT) || (seg==LDT) || (seg==IDT) || (seg==TSS))
 // GDT,LDT,IDT,TSS check for segment limit and canonical

 IF (offset > seg.limit)
 // #GP fault for segment limit violation in all modes
 EXCEPTION [#GP(0)]

 IF ((LONG_MODE) && (offset is non-canonical))
 EXCEPTION [#GP(0)] // #GP fault for non-canonical address in long mode

 IF ((ALIGNMENT_CHECK_ENABLED) && (offset misaligned, considering its
 size and alignment))
 EXCEPTION [#AC(0)]

 IF ((64_bit_mode) && ((seg==CS) || (seg==DS) || (seg==ES) || (seg==SS))
 temp_linear = offset
 ELSE
 temp_linear = seg.base + offset

 IF ((PAGING_ENABLED) && (virtual-to-physical translation for temp_linear
 results in a page-protection violation))
 EXCEPTION [#PF(error_code)] // page fault for page-protection violation
 // (U/S violation, Reserved bit violation)

[AMD Public Use]

66 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

 IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
 EXCEPTION [#PF(error_code)] // page fault for not-present page

 temp_data = memory [temp_linear].x // zero-extends the data to 64
 // bits, and saves it in temp_data

 RETURN (temp_data) // return the zero-extended data

///
// WRITE_MEM // General memory write
///

usage:
 WRITE_MEM.x [seg:offset] = temp.x // where <X> is one of these:
 // {V, Z, B, W, D, Q} and denotes the
 // size of the memory write

definition:

 IF ((seg & 0xFFFC)== NULL) // GP fault for using a null segment
 // to reference memory
 EXCEPTION [#GP(0)]

IF ((seg==CS) || (seg==DS) || (seg==ES) || (seg==FS) || (seg==GS))
 // CS,DS,ES,FS,GS check for segment limit or canonical
 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 // #GP fault for segment limit violation in non-64-bit mode
 EXCEPTION [#GP(0)]
 IF ((64BIT_MODE) && (offset is non-canonical))
 // #GP fault for non-canonical address in 64-bit mode
 EXCEPTION [#GP(0)]

ELSEIF (seg==SS) // SS checks for segment limit or canonical
 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 // stack fault for segment limit violation in non-64-bit mode
 EXCEPTION [#SS(0)]
 IF ((64BIT_MODE) && (offset is non-canonical))
 // stack fault for non-canonical address in 64-bit mode
 EXCEPTION [#SS(0)]

ELSE // ((seg==GDT) || (seg==LDT) || (seg==IDT) || (seg==TSS))
 // GDT,LDT,IDT,TSS check for segment limit and canonical
 IF (offset > seg.limit)
 // #GP fault for segment limit violation in all modes
 EXCEPTION [#GP(0)]
 IF ((LONG_MODE) && (offset is non-canonical))
 // #GP fault for non-canonical address in long mode
 EXCEPTION [#GP(0)]

 IF ((ALIGNMENT_CHECK_ENABLED) && (offset is misaligned, considering
 its size and alignment))
 EXCEPTION [#AC(0)]

[AMD Public Use]

Instruction Overview 67

24594—Rev. 3.32—March 2021 AMD64 Technology

 IF ((64_bit_mode) && ((seg==CS) || (seg==DS) || (seg==ES) || (seg==SS))
 temp_linear = offset
 ELSE
 temp_linear = seg.base + offset

 IF ((PAGING_ENABLED) && (the virtual-to-physical translation for
 temp_linear results in a page-protection violation))
 {
 EXCEPTION [#PF(error_code)]
 // page fault for page-protection violation
 // (U/S violation, Reserved bit violation)
 }

 IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
 EXCEPTION [#PF(error_code)] // page fault for not-present page

 memory [temp_linear].x = temp.x // write the bytes to memory

///
// PUSH // Write data to the stack
///

usage:
 PUSH.x temp // where x is one of these: {v, z, b, w, d, q} and
 // denotes the size of the push

definition:

 WRITE_MEM.x [SS:RSP.s - X] = temp.x // write to the stack
 RSP.s = RSP - X // point RSP to the data just written

///
// POP // Read data from the stack, zero-extend it to 64 bits
///

usage:
 POP.x temp // where x is one of these: {v, z, b, w, d, q} and
 // denotes the size of the pop

definition:

 temp = READ_MEM.x [SS:RSP.s] // read from the stack
 RSP.s = RSP + X // point RSP above the data just read

///
// READ_DESCRIPTOR // Read 8-byte descriptor from GDT/LDT, return the descriptor
///

[AMD Public Use]

68 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

usage:
 temp_descriptor = READ_DESCRIPTOR (selector, chktype)
 // chktype field is one of the following:
 // cs_chk used for far call and far jump
 // clg_chk used when reading CS for far call or far jump through call gate
 // ss_chk used when reading SS
 // iret_chk used when reading CS for IRET or RETF
 // intcs_chk used when readin the CS for interrupts and exceptions

definition:

 temp_offset = selector AND 0xfff8 // upper 13 bits give an offset
 // in the descriptor table

 IF (selector.TI == 0) // read 8 bytes from the gdt, split it into
 // (base,limit,attr) if the type bits
 temp_desc = READ_MEM.q [gdt:temp_offset]
 // indicate a block of memory, or split
 // it into (segment,offset,attr)
 // if the type bits indicate
 // a gate, and save the result in temp_desc
 ELSE
 temp_desc = READ_MEM.q [ldt:temp_offset]
 // read 8 bytes from the LDT, split it into
 // (base,limit,attr) if the type bits

// indicate a block of memory, or split
 // it into (segment,offset,attr) if the type
 // bits indicate a gate, and save the result
 // in temp_desc

 IF (selector.rpl or temp_desc.attr.dpl is illegal for the current mode/cpl)
 EXCEPTION [#GP(selector)]

 IF (temp_desc.attr.type is illegal for the current mode/chktype)
 EXCEPTION [#GP(selector)]

 IF (temp_desc.attr.p==0)
 EXCEPTION [#NP(selector)]

 RETURN (temp_desc)

///
// READ_IDT // Read an 8-byte descriptor from the IDT, return the descriptor
///

usage:
 temp_idt_desc = READ_IDT (vector)
 // "vector" is the interrupt vector number

[AMD Public Use]

Instruction Overview 69

24594—Rev. 3.32—March 2021 AMD64 Technology

definition:

 IF (LONG_MODE) // long-mode idt descriptors are 16 bytes long
 temp_offset = vector*16
 ELSE // (LEGACY_MODE) legacy-protected-mode idt descriptors are 8 bytes long
 temp_offset = vector*8

// read 8 bytes from the idt, split it into
// (segment,offset,attr), and save it in temp_desc

 temp_desc = READ_MEM.q [idt:temp_offset]

 IF (temp_desc.attr.dpl is illegal for the current mode/cpl)
// exception, with error code that indicates this IDT gate

 EXCEPTION [#GP(vector*8+2)]

 IF (temp_desc.attr.type is illegal for the current mode)
// exception, with error code that indicates this IDT gate

 EXCEPTION [#GP(vector*8+2)]

 IF (temp_desc.attr.p==0)
// segment-not-present exception, with an error code that
// indicates this IDT gate

 EXCEPTION [#NP(vector*8+2)]

 RETURN (temp_desc)

///
// READ_INNER_LEVEL_SP
// Read a new stack pointer (RSP or SS:ESP) from the TSS
///

usage:
 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_SP (new_cpl, ist_index)

definition:

 IF (LONG_MODE)
 {
 IF (ist_index>0)
 temp_RSP = READ_MEM.q [tss:ist_index*8+28] // read ISTn stack

// pointer from the TSS
 ELSE // (ist_index==0)
 temp_RSP = READ_MEM.q [tss:new_cpl*8+4] // read RSPn stack

// pointer from the TSS

// in long mode, changing to lower cpl sets SS.sel to NULL+new_cpl
temp_SS_desc.sel = NULL + new_cpl

 ELSE // (LEGACY_MODE)
 {

[AMD Public Use]

70 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

 temp_RSP = READ_MEM.d [tss:new_cpl*8+4] // read ESPn from the TSS
 temp_sel = READ_MEM.d [tss:new_cpl*8+8] // read SSn from the TSS
 temp_SS_desc = READ_DESCRIPTOR (temp_sel, ss_chk)
 }

 return (temp_RSP:temp_SS_desc)

///
// READ_BIT_ARRAY // Read 1 bit from a bit array in memory
///

usage:
 temp_value = READ_BIT_ARRAY ([mem], bit_number)

definition:

 temp_BYTE = READ_MEM.b [mem + (bit_number SHR 3)]
 // read the byte containing the bit

 temp_BIT = temp_BYTE SHR (bit_number & 7)
 // shift the requested bit position into bit 0

 return (temp_BIT & 0x01) // return ’0’ or ’1’

///
// Shadow Stack Functions
///

define SSTK_ENABLED = (CR4.CET) && (CR0.PE) && (!EFLAGS.VM)
define SSTK_USER_ENABLED = SSTK_ENABLED && (CPL==3) && (U_CET.SH_STK_EN)
define SSTK_SUPV_ENABLED = SSTK_ENABLED && (CPL <3) && (S_CET.SH_STK_EN)

bool ShadowStacksEnabled (privLevel)
IF (SSTK_ENABLED &&
 ((privLevel == 3) && U_CET.SH_STK_EN) ||
 ((privLevel < 3) && S_CET.SH_STK_EN))
 RETURN (TRUE)
ELSE
 RETURN (FALSE)

///
// SSTK_READ_MEM // read shadow stack memory
// Usage: temp = SSTK_READ_MEM.x [linear_addr]
// where x is either d or q (4 or 8 bytes)
///

IF (PAGING_ENABLED) && (
 (the linear address maps to a not-present page)
 || (the linear address maps to a non-shadow stack page)
 || (the access is user-mode &&

[AMD Public Use]

Instruction Overview 71

24594—Rev. 3.32—March 2021 AMD64 Technology

 the linear address maps to a supervisor shadow stack page)
 || (the access is supervisor-mode &&
 the linear address maps to a user shadow stack page))
 EXCEPTION [PF(error_code)] // page fault, with the SS (shadow stack) bit
 // set in error_code and the present and
 // protection violation bits as appropriate
temp_data.x = memory [linear_addr].x
RETURN (temp_data)

///
// SSTK_WRITE_MEM // write shadow stack memory
// Usage: SSTK_WRITE_MEM.x [linear_addr] = temp.x
// where x is either d or q (4 or 8 bytes)
///

IF (PAGING_ENABLED) && (
 (the linear address maps to a not-present page)
 || (the linear address maps to a non-shadow stack page)
 || (the access is user-mode &&
 the linear address maps to a supervisor shadow stack page)
 || (the access is supervisor-mode &&
 the linear address maps to a user shadow stack page))
 EXCEPTION [PF(error_code)] // page fault, w/ the SS (shadow stack) bit
 // set in error_code and the present and
 // protection violation bits as appropriate
memory [linear_addr].x = temp.x

///
// SET_SSTK_TOKEN_BUSY (new_SSP)
// Checks shadow stack token and if valid set the token's busy bit
// Usage: SET_SSTK_TOKEN_BUSY (new_SSP)
///

 IF (new_SSP[2:0] != 0) // new SSP must be 8-byte aligned
 EXCEPTION [#GP(0)]
 // check shadow stack token and set busy
 bool FAULT = FALSE
 < start atomic section >
 temp_Token = SSTK_READ_MEM.q [new_SSP] // fetch token with locked read
 IF ((!64-bit mode) && (temp_token[63:32] != 0))
 FAULT = TRUE // address in token must be <4GB
 // in legacy/compatibility mode
 IF ((temp_Token AND 0x01) != 0)
 FAULT = TRUE // token busy bit must be 0
 IF ((temp_Token AND ~0x01) != new_SSP)
 FAULT = TRUE // address in token must match new SSP
 IF (!FAULT)
 temp_Token = temp_Token OR 0x01 // if no faults, set token busy bit
 SSTK_WRITE_MEM.q [new_SSP] = temp_Token // write token and unlock
 < end atomic section >
 IF (FAULT)

[AMD Public Use]

72 Instruction Overview

AMD64 Technology 24594—Rev. 3.32—March 2021

 EXCEPTION [#GP(0)]

[AMD Public Use]

General-Purpose 73
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

3 General-Purpose Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the general-purpose instructions. General-purpose instructions are used in
basic software execution. Most of these instructions load, store, or operate on data located in the
general-purpose registers (GPRs), in memory, or in both. The remaining instructions are used to alter
the sequential flow of the program by branching to other locations within the program, or to entirely
different programs. With the exception of the MOVD, MOVMSKPD and MOVMSKPS instructions,
which operate on MMX/XMM registers, the instructions within the category of general-purpose
instructions do not operate on any other register set.

Most general-purpose instructions are supported in all hardware implementations of the AMD64
architecture. However, some instructions in this group are optional and support must be determined by
testing processor feature flags using the CPUID instruction. These instructions are listed in Table 3-1,
along with the CPUID function, register and bit used to test for the presence of the instruction.

Table 3-1. Instruction Support Indicated by CPUID Feature Bits

Instruction CPUID Function(s) Register[Bit] Feature Flag

ADCX, ADOX 0000_0007h (ECX=0) EBX[19] ADX

Bit Manipulation Instructions -
group 1 0000_0007h (ECX=0) EBX[3] BMI1

Bit Manipulation Instructions -
group 2 0000_0007h (ECX=0) EBX[8] BMI2

CLFLOPT 0000_0007_0 EBX[23] CLFLOPT

CLWB 0000_0007h (ECX=0) EBX[24] CLWB

CLZERO 8000_0008h EBX[0] CLZERO

CMPXCHG8B 0000_0001h, 8000_0001h EDX[8] CMPXCHG8B

CMPXCHG16B 0000_0001h ECX[13] CMPXCHG16B

CMOVcc (Conditional Moves) 0000_0001h, 8000_0001h EDX[15] CMOV

CLFLUSH 0000_0001h EDX[19] CLFSH

CRC32 0000_0001h ECX[20] SSE42

LAHF, SAHF 8000_0001h ECX[0] LahfSahf

LZCNT 8000_0001h ECX[5] ABM

Long Mode and Long Mode
instructions 8000_0001h EDX[29] LM

MCOMMIT 8000_0008h EBX[8] MCOMMIT

MFENCE, LFENCE 0000_0001h EDX[26] SSE2

MONITORX, MWAITX 8000_0001h ECX[29] MONITORX

MOVBE 0000_0001h ECX[22] MOVBE

[AMD Public Use]

74 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

For more information on using the CPUID instruction, see the reference page for the CPUID
instruction on page 160. For a comprehensive list of all instruction support feature flags, see
Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

The general-purpose instructions can be used in legacy mode or 64-bit long mode. Compilation of
general-purpose programs for execution in 64-bit long mode offers three primary advantages: access
to the eight extended, 64-bit general-purpose registers (for a register set consisting of GPR0–GPR15),
access to the 64-bit virtual address space, and access to the RIP-relative addressing mode.

For further information about the general-purpose instructions and register resources, see:

• “General-Purpose Programming” in Volume 1.

• “Summary of Registers and Data Types” on page 38.

• “Notation” on page 52.

• “Instruction Prefixes” on page 5.

• Appendix B, “General-Purpose Instructions in 64-Bit Mode.” In particular, see “General Rules for
64-Bit Mode” on page 557.

MOVD1
0000_0001h, 8000_0001h EDX[23] MMX

0000_0001h EDX[26] SSE2

MOVNTI 0000_0001h EDX[26] SSE2

POPCNT 0000_0001h ECX[23] POPCNT

PREFETCH /
PREFETCHW2 8000_0001h

ECX[8] 3DNowPrefetch

EDX[29] LM

EDX[31] 3DNow

RDFSBASE, RDGSBASE
WRFSBASE, WRGSBASE 0000_0007h (ECX=0) EBX[0] FSGSBASE

RDPRU 8000_0008h EBX[4] RDPRU

RDRAND 0000_0001h ECX[30] RDRAND

RDSEED 0000_0007h (ECX=0) EBX[18] RDSEED

RDPID 0000_0007h (ECX=0) ECX[22] RDPID

SFENCE 0000_0001h EDX[25] SSE

Trailing Bit Manipulation
Instructions 8000_0001h ECX[21] TBM

Notes:
1. The MOVD variant that moves values to or from MMX registers is part of the MMX subset; the MOVD variant that

moves data to or from XMM registers is part of the SSE2 subset.
2. Instruction is supported if any one of the listed feature flags is set.

Table 3-1. Instruction Support Indicated by CPUID Feature Bits (continued)

Instruction CPUID Function(s) Register[Bit] Feature Flag

[AMD Public Use]

General-Purpose 75
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adjusts the value in the AL register to an unpacked BCD value. Use the AAA instruction after using
the ADD instruction to add two unpacked BCD numbers.

The instruction is coded without explicit operands:

AAA

If the value in the lower nibble of AL is greater than 9 or the AF flag is set to 1, the instruction
increments the AH register, adds 6 to the AL register, and sets the CF and AF flags to 1. Otherwise, it
does not change the AH register and clears the CF and AF flags to 0. In either case, AAA clears bits
7:4 of the AL register, leaving the correct decimal digit in bits 3:0.

This instruction also makes it possible to add ASCII numbers without having to mask off the upper
nibble ‘3’.

MXCSR Flags Affected

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAD, AAM, AAS

rFLAGS Affected

Exceptions

AAA ASCII Adjust After Addition

Mnemonic Opcode Description

AAA 37 Create an unpacked BCD number.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U M U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

[AMD Public Use]

76 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Converts two unpacked BCD digits in the AL (least significant) and AH (most significant) registers to
a single binary value in the AL register.

The instruction is coded without explicit operands:

AAD

The instruction performs the following operation on the contents of AL and AH using the formula:

AL = ((10d * AH) + (AL))

After the conversion, AH is cleared to 00h.

In most modern assemblers, the AAD instruction adjusts from base-10 values. However, by coding the
instruction directly in binary, it can adjust from any base specified by the immediate byte value (ib)
suffixed onto the D5h opcode. For example, code D508h for octal, D50Ah for decimal, and D50Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAM, AAS

rFLAGS Affected

Exceptions

AAD ASCII Adjust Before Division

Mnemonic Opcode Description

AAD D5 0A Adjust two BCD digits in AL and AH.
(Invalid in 64-bit mode.)

(None) D5 ib Adjust two BCD digits to the immediate byte base.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M U M U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

[AMD Public Use]

General-Purpose 77
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Converts the value in the AL register from binary to two unpacked BCD digits in the AH (most
significant) and AL (least significant) registers.

The instruction is coded without explicit operands:

AAM

The instruction performs the following operation on the contents of AL and AH using the formula:

AH = (AL/10d)
AL = (AL mod 10d)

In most modern assemblers, the AAM instruction adjusts to base-10 values. However, by coding the
instruction directly in binary, it can adjust to any base specified by the immediate byte value (ib)
suffixed onto the D4h opcode. For example, code D408h for octal, D40Ah for decimal, and D40Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAD, AAS

rFLAGS Affected

Exceptions

AAM ASCII Adjust After Multiply

Mnemonic Opcode Description

AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)

(None) D4 ib
Create a pair of unpacked values to the immediate byte
base.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M U M U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined
flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Divide by zero, #DE X X X 8-bit immediate value was 0.

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

[AMD Public Use]

78 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Adjusts the value in the AL register to an unpacked BCD value. Use the AAS instruction after using
the SUB instruction to subtract two unpacked BCD numbers.

The instruction is coded without explicit operands:

AAS

If the value in AL is greater than 9 or the AF flag is set to 1, the instruction decrements the value in
AH, subtracts 6 from the AL register, and sets the CF and AF flags to 1. Otherwise, it clears the CF and
AF flags and the AH register is unchanged. In either case, the instruction clears bits 7:4 of the AL
register, leaving the correct decimal digit in bits 3:0.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAD, AAM

rFLAGS Affected

Exceptions

AAS ASCII Adjust After Subtraction

Mnemonic Opcode Description

AAS 3F
Create an unpacked BCD number from the contents of
the AL register.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U M U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

[AMD Public Use]

General-Purpose 79
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds the carry flag (CF), the value in a register or memory location (first operand), and an immediate
value or the value in a register or memory location (second operand), and stores the result in the first
operand location.

The instruction has two operands:

ADC dest, src

The instruction cannot add two memory operands. The CF flag indicates a pending carry from a
previous addition operation. The instruction sign-extends an immediate value to the length of the
destination register or memory location.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

Use the ADC instruction after an ADD instruction as part of a multibyte or multiword addition.

The forms of the ADC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

ADC Add with Carry

Mnemonic Opcode Description

ADC AL, imm8 14 ib Add imm8 to AL + CF.

ADC AX, imm16 15 iw Add imm16 to AX + CF.

ADC EAX, imm32 15 id Add imm32 to EAX + CF.

ADC RAX, imm32 15 id Add sign-extended imm32 to RAX + CF.

ADC reg/mem8, imm8 80 /2 ib Add imm8 to reg/mem8 + CF.

ADC reg/mem16, imm16 81 /2 iw Add imm16 to reg/mem16 + CF.

ADC reg/mem32, imm32 81 /2 id Add imm32 to reg/mem32 + CF.

ADC reg/mem64, imm32 81 /2 id Add sign-extended imm32 to reg/mem64 + CF.

ADC reg/mem16, imm8 83 /2 ib Add sign-extended imm8 to reg/mem16 + CF.

ADC reg/mem32, imm8 83 /2 ib Add sign-extended imm8 to reg/mem32 + CF.

ADC reg/mem64, imm8 83 /2 ib Add sign-extended imm8 to reg/mem64 + CF.

ADC reg/mem8, reg8 10 /r Add reg8 to reg/mem8 + CF

ADC reg/mem16, reg16 11 /r Add reg16 to reg/mem16 + CF.

ADC reg/mem32, reg32 11 /r Add reg32 to reg/mem32 + CF.

ADC reg/mem64, reg64 11 /r Add reg64 to reg/mem64 + CF.

ADC reg8, reg/mem8 12 /r Add reg/mem8 to reg8 + CF.

ADC reg16, reg/mem16 13 /r Add reg/mem16 to reg16 + CF.

[AMD Public Use]

80 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ADD, SBB, SUB

rFLAGS Affected

Exceptions

ADC reg32, reg/mem32 13 /r Add reg/mem32 to reg32 + CF.

ADC reg64, reg/mem64 13 /r Add reg/mem64 to reg64 + CF.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 81
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds the value in a register (first operand) with a register or memory (second operand) and the carry
flag, and stores the result in the first operand location. This instruction sets the CF based on the
unsigned addition. This instruction is useful in multi-precision addition algorithms.

This i s an ADX ins t ruc t ions . Suppor t fo r th i s ins t ruc t ion i s ind ica ted by CPUID
Fn0000_0007_EBX[ADX]=1.

rFLAGS Affected

Exceptions

ADCX Unsigned ADD with Carry Flag

Mnemonic Opcode Description

ADCX reg32, reg/mem32 66 0F 38 F6 /r Unsigned add with carryflag

ADCX reg64, reg/mem64 66 0F 38 F6 /r Unsigned add with carry flag.

Related Instructions

ADOX

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

82 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalid opcode, #UD
X X X Instruction not supported by CPUID

Fn0000_0007_EBX[ADX] = 0.

X X Lock prefix (F0h) preceding opcode.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

General-Purpose 83
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds the value in a register or memory location (first operand) and an immediate value or the value in
a register or memory location (second operand), and stores the result in the first operand location.

The instruction has two operands:

ADD dest, src

The instruction cannot add two memory operands. The instruction sign-extends an immediate value to
the length of the destination register or memory operand.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

The forms of the ADD instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

ADD Signed or Unsigned Add

Mnemonic Opcode Description

ADD AL, imm8 04 ib Add imm8 to AL.

ADD AX, imm16 05 iw Add imm16 to AX.

ADD EAX, imm32 05 id Add imm32 to EAX.

ADD RAX, imm32 05 id Add sign-extended imm32 to RAX.

ADD reg/mem8, imm8 80 /0 ib Add imm8 to reg/mem8.

ADD reg/mem16, imm16 81 /0 iw Add imm16 to reg/mem16

ADD reg/mem32, imm32 81 /0 id Add imm32 to reg/mem32.

ADD reg/mem64, imm32 81 /0 id Add sign-extended imm32 to reg/mem64.

ADD reg/mem16, imm8 83 /0 ib Add sign-extended imm8 to reg/mem16

ADD reg/mem32, imm8 83 /0 ib Add sign-extended imm8 to reg/mem32.

ADD reg/mem64, imm8 83 /0 ib Add sign-extended imm8 to reg/mem64.

ADD reg/mem8, reg8 00 /r Add reg8 to reg/mem8.

ADD reg/mem16, reg16 01 /r Add reg16 to reg/mem16.

ADD reg/mem32, reg32 01 /r Add reg32 to reg/mem32.

ADD reg/mem64, reg64 01 /r Add reg64 to reg/mem64.

ADD reg8, reg/mem8 02 /r Add reg/mem8 to reg8.

ADD reg16, reg/mem16 03 /r Add reg/mem16 to reg16.

ADD reg32, reg/mem32 03 /r Add reg/mem32 to reg32.

ADD reg64, reg/mem64 03 /r Add reg/mem64 to reg64.

[AMD Public Use]

84 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ADC, SBB, SUB

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 85
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds the value in a register (first operand) with a register or memory (second operand) and the
overflow flag, and stores the result in the first operand location. This instruction sets the OF based on
the unsigned addition and whether there is a carry out. This instruction is useful in multi-precision
addition algorithms.

This i s an ADX ins t ruc t ions . Suppor t fo r th i s ins t ruc t ion i s ind ica ted by CPUID
Fn0000_0007_EBX[ADX]=1.

rFLAGS Affected

Exceptions

ADOX Unsigned ADD with Overflow Flag

Mnemonic Opcode Description

ADOX reg32, reg/mem32 F3 0F 38 F6 /r Unsigned add with overflow flag

ADOX reg64, reg/mem64 F3 0F 38 F6 /r Unsigned add with overflow flag.

Related Instructions

ADCX

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

86 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalid opcode, #UD
X X X Instruction not supported by CPUID

Fn0000_0007_EBX[ADX] = 0.

X X Lock prefix (F0h) preceding opcode.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

General-Purpose 87
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs a bit-wise logical and operation on the value in a register or memory location (first operand)
and an immediate value or the value in a register or memory location (second operand), and stores the
result in the first operand location. Both operands cannot be memory locations.

The instruction has two operands:

AND dest, src

The instruction sets each bit of the result to 1 if the corresponding bit of both operands is set;
otherwise, it clears the bit to 0. The following table shows the truth table for the logical and operation:

The forms of the AND instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

AND Logical AND

X Y X and Y

0 0 0

0 1 0

1 0 0

1 1 1

Mnemonic Opcode Description

AND AL, imm8 24 ib and the contents of AL with an immediate 8-bit value and store
the result in AL.

AND AX, imm16 25 iw and the contents of AX with an immediate 16-bit value and store
the result in AX.

AND EAX, imm32 25 id and the contents of EAX with an immediate 32-bit value and
store the result in EAX.

AND RAX, imm32 25 id and the contents of RAX with a sign-extended immediate 32-bit
value and store the result in RAX.

AND reg/mem8, imm8 80 /4 ib and the contents of reg/mem8 with imm8.

AND reg/mem16, imm16 81 /4 iw and the contents of reg/mem16 with imm16.

AND reg/mem32, imm32 81 /4 id and the contents of reg/mem32 with imm32.

AND reg/mem64, imm32 81 /4 id and the contents of reg/mem64 with sign-extended imm32.

AND reg/mem16, imm8 83 /4 ib and the contents of reg/mem16 with a sign-extended 8-bit value.

AND reg/mem32, imm8 83 /4 ib and the contents of reg/mem32 with a sign-extended 8-bit value.

AND reg/mem64, imm8 83 /4 ib and the contents of reg/mem64 with a sign-extended 8-bit value.

[AMD Public Use]

88 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

TEST, OR, NOT, NEG, XOR

rFLAGS Affected

Exceptions

AND reg/mem8, reg8 20 /r and the contents of an 8-bit register or memory location with the
contents of an 8-bit register.

AND reg/mem16, reg16 21 /r and the contents of a 16-bit register or memory location with the
contents of a 16-bit register.

AND reg/mem32, reg32 21 /r and the contents of a 32-bit register or memory location with the
contents of a 32-bit register.

AND reg/mem64, reg64 21 /r and the contents of a 64-bit register or memory location with the
contents of a 64-bit register.

AND reg8, reg/mem8 22 /r and the contents of an 8-bit register with the contents of an 8-bit
memory location or register.

AND reg16, reg/mem16 23 /r and the contents of a 16-bit register with the contents of a 16-bit
memory location or register.

AND reg32, reg/mem32 23 /r and the contents of a 32-bit register with the contents of a 32-bit
memory location or register.

AND reg64, reg/mem64 23 /r and the contents of a 64-bit register with the contents of a 64-bit
memory location or register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonix‘cal.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 89
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs a bit-wise logical and of the second source operand and the one's complement of the first
source operand and stores the result into the destination operand.

This instruction has three operands:

ANDN dest, src1, src2

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination operand (dest) is always a general purpose register.

The first source operand (src1) is a general purpose register and the second source operand (src2) is
either a general purpose register or a memory operand.

This instruction implements the following operation:

not tmp, src1
and dest, tmp, src2

The flags are set according to the result of the and pseudo-operation.

The ANDN instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

ANDN Logical And-Not

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

ANDN reg32, reg32, reg/mem32 C4 RXB.02 0.src1.0.00 F2 /r

ANDN reg64, reg64, reg/mem64 C4 RXB.02 1.src1.0.00 F2 /r

[AMD Public Use]

90 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
80806

Protected Cause of Exception

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 91
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:

BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is either a general purpose register or a memory operand.

The control (cntl) operand is a general purpose register that provides two fields describing the range of
bits to extract:

• lsb_index (in bits 7:0)—specifies the index of the least significant bit of the field

• length (in bits 15:8)—specifies the number of bits in the field.

The position of the extracted field can be expressed as:

[lsb_ index + length – 1] : [lsb_index]

For example, if the lsb_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a BMI1 instruction. Support for this instruction is indicated by
CPUID Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

BEXTR
(register form)

 Bit Field Extract

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, reg32 C4 RXB.02 0.cntl.0.00 F7 /r

BEXTR reg64, reg/mem64, reg64 C4 RXB.02 1.cntl.0.00 F7 /r

[AMD Public Use]

92 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 U M U U 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 93
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:

BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is either a general purpose register or a memory operand.

The control (cntl) operand is a 32-bit immediate value that provides two fields describing the range of
bits to extract:

• lsb_index (in immediate operand bits 7:0)—specifies the index of the least significant bit of the
field

• length (in immediate operand bits 15:8)—specifies the number of bits in the field.

The position of the extracted field can be expressed as:

[lsb_ index + length – 1] : [lsb_index]

For example, if the lsb_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a TBM instruction. Support for this instruction is indicated by
CPUID Fn8000_0001_ECX[TBM] =1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

BEXTR
(immediate form)

 Bit Field Extract

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, imm32 8F RXB.0A 0.1111.0.00 10 /r /id

BEXTR reg64, reg/mem64, imm32 8F RXB.0A 1.1111.0.00 10 /r /id

[AMD Public Use]

94 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 U M U U 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 95
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, clears all bits below that bit to 0 and writes
the result to the destination. If there is no zero bit in the source operand, the destination is written with
all zeros.

This instruction has two operands:

BLCFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCFILL instruction effectively performs a bit-wise logical and of the source operand and the
result of incrementing the source operand by 1 and stores the result to the destination register:

add tmp, src, 1
and dest,tmp, src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCFILL Fill From Lowest Clear Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /1

BLCFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /1

[AMD Public Use]

96 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 97
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, sets all other bits to 1 and writes the result to
the destination. If there is no zero bit in the source operand, the destination is written with all ones.

This instruction has two operands:

BLCI dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCI instruction effectively performs a bit-wise logical or of the source operand and the inverse
of the result of incrementing the source operand by 1, and stores the result to the destination register:

add tmp, src, 1
not tmp, tmp
or dest, tmp, src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the or pseudo-instruction.

The BLCI instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCI Isolate Lowest Clear Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCI reg32, reg/mem32 8F RXB.09 0.dest.0.00 02 /6

BLCI reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /6

[AMD Public Use]

98 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 99
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all other bits to 0 and
writes the result to the destination. If there is no zero bit in the source operand, the destination is
written with all zeros.

This instruction has two operands:

BLCIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCIC instruction effectively performs a bit-wise logical and of the negation of the source
operand and the result of incrementing the source operand by 1, and stores the result to the destination
register:

add tmp1, src, 1
not tmp2, src
and dest, tmp1,tmp2

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCIC instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCIC Isolate Lowest Clear Bit and Complement

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /5

BLCIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /5

[AMD Public Use]

100 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 101
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all bits above that bit
to 0 and writes the result to the destination. If there is no zero bit in the source operand, the destination
is written with all ones.

This instruction has two operands:

BLCMSK dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCMSK instruction effectively performs a bit-wise logical xor of the source operand and the
result of incrementing the source operand by 1 and stores the result to the destination register:

add tmp1, src, 1
xor dest, tmp1,src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the xor pseudo-instruction.

If the input is all ones, the output is a value with all bits set to 1.

The BLCMSK instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCMSK Mask From Lowest Clear Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCMSK reg32, reg/mem32 8F RXB.09 0.dest.0.00 02 /1

BLCMSK reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /1

[AMD Public Use]

102 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 103
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant zero bit in the source operand, sets that bit to 1 and writes the result to the
destination. If there is no zero bit in the source operand, the source is copied to the destination (and CF
in rFLAGS is set to 1).

This instruction has two operands:

BLCS dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCS instruction effectively performs a bit-wise logical or of the source operand and the result
of incrementing the source operand by 1, and stores the result to the destination register:

add tmp, src, 1
or dest, tmp, src

The value of the carry flag of rFLAGS is generated by the add pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLCS instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCS Set Lowest Clear Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLCS reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /3

BLCS reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /3

[AMD Public Use]

104 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 105
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant one bit in the source operand, sets all bits below that bit to 1 and writes the
result to the destination. If there is no one bit in the source operand, the destination is written with all
ones.

This instruction has two operands:

BLSFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLSFILL instruction effectively performs a bit-wise logical or of the source operand and the
result of subtracting 1 from the source operand, and stores the result to the destination register:

sub tmp, src, 1
or dest, tmp, src

The value of the carry flag of rFLAGs is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSFILL Fill From Lowest Set Bit

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLSFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /2

BLSFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /2

[AMD Public Use]

106 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 107
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears all bits in the source operand except for the least significant bit that is set to 1 and writes the
result to the destination. If the source is all zeros, the destination is written with all zeros.

This instruction has two operands:

BLSI dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is either a general purpose register or a bit memory operand.

This instruction implements the following operation:

neg tmp, src1
and dst, tmp, src1

The value of the carry flag is generated by the neg pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSI instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSI Isolate Lowest Set Bit

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BLSI reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3 /3

BLSI reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3 /3

[AMD Public Use]

108 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 109
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Finds the least significant bit that is set to 1 in the source operand, clears that bit to 0, sets all other bits
to 1 and writes the result to the destination. If there is no one bit in the source operand, the destination
is written with all ones.

This instruction has two operands:

BLSIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLSIC instruction effectively performs a bit-wise logical or of the inverse of the source operand
and the result of subtracting 1 from the source operand, and stores the result to the destination register:

sub tmp1, src, 1
not tmp2, src
or dest, tmp1, tmp2

The value of the carry flag of rFLAGS is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSR instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSIC Isolate Lowest Set Bit and Complement

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BLSIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /6

BLSIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /6

[AMD Public Use]

110 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 111
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Forms a mask with bits set to 1 from bit 0 up to and including the least significant bit position that is set
to 1 in the source operand and writes the mask to the destination. If the value of the source operand is
zero, the destination is written with all ones.

This instruction has two operands:

BLSMSK dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.

The source operand (src) is either a general purpose register or a memory operand and the destination
operand (dest) is a general purpose register.

This instruction implements the operation:

sub tmp, src1, 1
xor dst, tmp, src1

The value of the carry flag is generated by the sub pseudo-instruction and the remaining status flags
are generated by the xor pseudo-instruction.

If the input is zero, the output is a value with all bits set to 1. If this is considered a corner case input,
software may test the carry flag to detect the zero input value.

The BLSMSK instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSMSK Mask From Lowest Set Bit

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BLSMSK reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3 /2

BLSMSK reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3 /2

[AMD Public Use]

112 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 113
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears the least-significant bit that is set to 1 in the input operand and writes the modified operand to
the destination.

This instruction has two operands:

BLSR dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.

The source operand (src) is either a general purpose register or a memory operand.

This instruction implements the operation:

sub tmp, src1, 1
and dst, tmp, src1

The value of the carry flag is generated by the sub pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSR instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI1] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSR Reset Lowest Set Bit

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BLSR reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3 /1

BLSR reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3 /1

[AMD Public Use]

114 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 115
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Checks whether an array index (first operand) is within the bounds of an array (second operand). The
array index is a signed integer in the specified register. If the operand-size attribute is 16, the array
operand is a memory location containing a pair of signed word-integers; if the operand-size attribute is
32, the array operand is a pair of signed doubleword-integers. The first word or doubleword specifies
the lower bound of the array and the second word or doubleword specifies the upper bound.

The array index must be greater than or equal to the lower bound and less than or equal to the upper
bound. If the index is not within the specified bounds, the processor generates a BOUND range-
exceeded exception (#BR).

The bounds of an array, consisting of two words or doublewords containing the lower and upper limits
of the array, usually reside in a data structure just before the array itself, making the limits addressable
through a constant offset from the beginning of the array. With the address of the array in a register,
this practice reduces the number of bus cycles required to determine the effective address of the array
bounds.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

INT, INT3, INTO

rFLAGS Affected

None

Exceptions

BOUND Check Array Bound

Mnemonic Opcode Description

BOUND reg16, mem16&mem16 62 /r
Test whether a 16-bit array index is within the bounds
specified by the two 16-bit values in mem16&mem16.
(Invalid in 64-bit mode.)

BOUND reg32, mem32&mem32 62 /r
Test whether a 32-bit array index is within the bounds
specified by the two 32-bit values in mem32&mem32.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086 Protected Cause of Exception

Bound range, #BR X X X The bound range was exceeded.

Invalid opcode,
#UD

X X X The source operand was a register.

X Instruction was executed in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit

General protection,
#GP

X X X A memory address exceeded a data segment limit.

X A null data segment was used to reference memory.

[AMD Public Use]

116 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

General-Purpose 117
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Searches the value in a register or a memory location (second operand) for the least-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the least-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Related Instructions

BSR

rFLAGS Affected

Exceptions

BSF Bit Scan Forward

Mnemonic Opcode Description

BSF reg16, reg/mem16 0F BC /r Bit scan forward on the contents of reg/mem16.

BSF reg32, reg/mem32 0F BC /r Bit scan forward on the contents of reg/mem32.

BSF reg64, reg/mem64 0F BC /r Bit scan forward on the contents of reg/mem64

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

118 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Searches the value in a register or a memory location (second operand) for the most-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the most-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Related Instructions

BSF

rFLAGS Affected

Exceptions

BSR Bit Scan Reverse

Mnemonic Opcode Description

BSR reg16, reg/mem16 0F BD /r Bit scan reverse on the contents of reg/mem16.

BSR reg32, reg/mem32 0F BD /r Bit scan reverse on the contents of reg/mem32.

BSR reg64, reg/mem64 0F BD /r Bit scan reverse on the contents of reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded the data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 119
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Reverses the byte order of the specified register. This action converts the contents of the register from
little endian to big endian or vice versa. In a doubleword, bits 7:0 are exchanged with bits 31:24, and
bits 15:8 are exchanged with bits 23:16. In a quadword, bits 7:0 are exchanged with bits 63:56, bits
15:8 with bits 55:48, bits 23:16 with bits 47:40, and bits 31:24 with bits 39:32. A subsequent use of the
BSWAP instruction with the same operand restores the original value of the operand.

The result of applying the BSWAP instruction to a 16-bit register is undefined. To swap the bytes of a
16-bit register, use the XCHG instruction and specify the respective byte halves of the 16-bit register
as the two operands. For example, to swap the bytes of AX, use XCHG AL, AH.

Related Instructions

XCHG

rFLAGS Affected

None

Exceptions

None

BSWAP Byte Swap

Mnemonic Opcode Description

BSWAP reg32 0F C8 +rd Reverse the byte order of reg32.

BSWAP reg64 0F C8 +rq Reverse the byte order of reg64.

[AMD Public Use]

120 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on operand size.

When the instruction attempts to copy a bit from memory, it accesses 2, 4, or 8 bytes starting from the
specified memory address for 16-bit, 32-bit, or 64-bit operand sizes, respectively, using the following
formula:

Effective Address + (NumBytesi * (BitOffset DIV NumBitsi*8))

When using this bit addressing mechanism, avoid referencing areas of memory close to address space
holes, such as references to memory-mapped I/O registers. Instead, use a MOV instruction to load a
register from such an address and use a register form of the BT instruction to manipulate the data.

Related Instructions

BTC, BTR, BTS

BT Bit Test

Mnemonic Opcode Description

BT reg/mem16, reg16 0F A3 /r Copy the value of the selected bit to the carry flag.

BT reg/mem32, reg32 0F A3 /r Copy the value of the selected bit to the carry flag.

BT reg/mem64, reg64 0F A3 /r Copy the value of the selected bit to the carry flag.

BT reg/mem16, imm8 0F BA /4 ib Copy the value of the selected bit to the carry flag.

BT reg/mem32, imm8 0F BA /4 ib Copy the value of the selected bit to the carry flag.

BT reg/mem64, imm8 0F BA /4 ib Copy the value of the selected bit to the carry flag.

[AMD Public Use]

General-Purpose 121
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

122 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
complements (toggles) the bit in the bit string.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such an
application should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Related Instructions

BT, BTR, BTS

BTC Bit Test and Complement

Mnemonic Opcode Description

BTC reg/mem16, reg16 0F BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem32, reg32 0F BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem64, reg64 0F BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem16, imm8 0F BA /7 ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem32, imm8 0F BA /7 ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem64, imm8 0F BA /7 ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

[AMD Public Use]

General-Purpose 123
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

124 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
clears the bit in the bit string to 0.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Related Instructions

BT, BTC, BTS

BTR Bit Test and Reset

Mnemonic Opcode Description

BTR reg/mem16, reg16 0F B3 /r Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem32, reg32 0F B3 /r Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem64, reg64 0F B3 /r Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem16, imm8 0F BA /6 ib Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem32, imm8 0F BA /6 ib Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem64, imm8 0F BA /6 ib Copy the value of the selected bit to the carry flag, then
clear the selected bit.

[AMD Public Use]

General-Purpose 125
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

126 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a bit, specified by bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
sets the bit in the bit string to 1.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Related Instructions

BT, BTC, BTR

BTS Bit Test and Set

Mnemonic Opcode Description

BTS reg/mem16, reg16 0F AB /r Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem32, reg32 0F AB /r Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem64, reg64 0F AB /r Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem16, imm8 0F BA /5 ib Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem32, imm8 0F BA /5 ib Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem64, imm8 0F BA /5 ib Copy the value of the selected bit to the carry flag, then
set the selected bit.

[AMD Public Use]

General-Purpose 127
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

128 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies bits, left to right, from the first source operand starting with the bit position specified by the
second source operand (index), writes these bits to the destination, and clears all the bits in positions
greater than or equal to index.

This instruction has three operands:

BZHI dest, src, index

In 64-bit mode, the operand size (op_size) is determined by the value of VEX.W. If VEX.W is 1, the
operand size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored.
16-bit operands are not supported.

The destination (dest) is a general purpose register. The first source operand (src) is either a general
purpose register or a memory operand. The second source operand is a general purpose register. Bits
[7:0] of this register, treated as an unsigned 8-bit integer, specify the index of the most-significant bit
of the first source operand to be copied to the corresponding bit of the destination. Bits [op_size-
1:index] of the destination are cleared.

If the value of index is greater than or equal to the operand size, index is set to (op_size-1). In this case,
the CF flag is set.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

BZHI Zero High Bits

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BZHI reg32, reg/mem32, reg32 C4 RXB.02 0.index.0.00 F5 /r

BZHI reg64, reg/mem64, reg64 C4 RXB.02 1.index.0.00 F5 /r

[AMD Public Use]

General-Purpose 129
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

130 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Pushes the offset of the next instruction onto the stack and branches to the target address, which
contains the first instruction of the called procedure. The target operand can specify a register, a
memory location, or a label. A procedure accessed by a near CALL is located in the same code
segment as the CALL instruction.

If the CALL target is specified by a register or memory location, then a 16-, 32-, or 64-bit rIP is read
from the operand, depending on the operand size. A 16- or 32-bit rIP is zero-extended to 64 bits.

If the CALL target is specified by a displacement, the signed displacement is added to the rIP (of the
following instruction), and the result is truncated to 16, 32, or 64 bits, depending on the operand size.
The signed displacement is 16 or 32 bits, depending on the operand size.

In all cases, the rIP of the instruction after the CALL is pushed on the stack, and the size of the stack
push (16, 32, or 64 bits) depends on the operand size of the CALL instruction.

For near calls in 64-bit mode, the operand size defaults to 64 bits. The E8 opcode results in
RIP = RIP + 32-bit signed displacement and the FF /2 opcode results in RIP = 64-bit offset from
register or memory. No prefix is available to encode a 32-bit operand size in 64-bit mode.

At the end of the called procedure, RET is used to return control to the instruction following the
original CALL. When RET is executed, the rIP is popped off the stack, which returns control to the
instruction after the CALL.

See CALL (Far) for information on far calls—calls to procedures located outside of the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

CALL (Near) Near Procedure Call

Mnemonic Opcode Description

CALL rel16off E8 iw Near call with the target specified by a 16-bit relative
displacement.

CALL rel32off E8 id Near call with the target specified by a 32-bit relative
displacement.

CALL reg/mem16 FF /2 Near call with the target specified by reg/mem16.

CALL reg/mem32 FF /2 Near call with the target specified by reg/mem32. (There
is no prefix for encoding this in 64-bit mode.)

CALL reg/mem64 FF /2 Near call with the target specified by reg/mem64.

[AMD Public Use]

General-Purpose 131
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Action

// For function ShadowStacksEnabled()
// see "Pseudocode Definition" on page 57

CALLN_START:

IF (OPCODE == calln abs [mem]) // CALLN, abs indirect
 temp_RIP = READ_MEM.z [mem]
ELSE // CALLN, rel/abs direct
 temp_RIP = z-sized instruction offset field, zero-extended to 64 bits

IF (OPCODE == calln rel) // if relative, add offset to rIP
 temp_RIP = temp_RIP + RIP.v

IF (stack is not large enough for a v-sized push)
 EXCEPTION[#SS(0)]

PUSH.v next_RIP

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION[#GP(0)]

IF ((ShadowStacksEnabled(current CPL)) && (OPCODE != calln +0))
 {
 IF (v == 2) // operand size = 16
 {
 SSTK_WRITE_MEM.d [SSP-4] = IP
 SSP = SSP - 4
 }
 ELSEIF (v == 4) // operand size = 32
 {
 SSTK_WRITE_MEM.d [SSP-4] = EIP
 SSP = SSP - 4
 }
 ELSE // (v == 8) // operand size = 64
 {
 SSTK_WRITE_MEM.q [SSP-8] = RIP
 SSP = SSP - 8
 }
 } // end shadow stacks enabled

RIP = temp_RIP

EXIT

Related Instructions

CALL(Far), RET(Near), RET(Far)

[AMD Public Use]

132 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

None.

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Alignment Check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Page Fault, #PF X X A page fault resulted from the execution of the instruction.

[AMD Public Use]

General-Purpose 133
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Pushes procedure linking information onto the stack and branches to the target address, which contains
the first instruction of the called procedure. The operand specifies a target selector and offset.

The instruction can specify the target directly, by including the far pointer in the immediate and
displacement fields of the instruction, or indirectly, by referencing a far pointer in memory. In 64-bit
mode, only indirect far calls are allowed; executing a direct far call (opcode 9A) generates an
undefined opcode exception. For both direct and indirect far calls, if the CALL (Far) operand-size is
16 bits, the instruction's operand is a 16-bit offset followed by a 16-bit selector. If the operand-size is
32 or 64 bits, the operand is a 32-bit offset followed by a 16-bit selector.

The target selector used by the instruction can be a code selector in all modes. Additionally, the target
selector can reference a call gate in protected mode, or a task gate or TSS selector in legacy protected
mode.

• Target is a code selector—The CS:rIP of the next instruction is pushed to the stack, using operand-
size stack pushes. Then code is executed from the target CS:rIP. In this case, the target offset can
only be a 16- or 32-bit value, depending on operand-size, and is zero-extended to 64 bits. No CPL
change is allowed.

• Target is a call gate—The call gate specifies the actual target code segment and offset. Call gates
allow calls to the same or more privileged code. If the target segment is at the same CPL as the
current code segment, the CS:rIP of the next instruction is pushed to the stack.

If the CALL (Far) changes privilege level, then a stack-switch occurs, using an inner-level stack
pointer from the TSS. The CS:rIP of the next instruction is pushed to the new stack. If the mode is
legacy mode and the param-count field in the call gate is non-zero, then up to 31 operands are
copied from the caller's stack to the new stack. Finally, the caller's SS:rSP is pushed to the new
stack.

When calling through a call gate, the stack pushes are 16-, 32-, or 64-bits, depending on the size of
the call gate. The size of the target rIP is also 16, 32, or 64 bits, depending on the size of the call
gate. If the target rIP is less than 64 bits, it is zero-extended to 64 bits. Long mode only allows 64-
bit call gates that must point to 64-bit code segments.

• Target is a task gate or a TSS—If the mode is legacy protected mode, then a task switch occurs.
See “Hardware Task-Management in Legacy Mode” in volume 2 for details about task switches.
Hardware task switches are not supported in long mode.

See CALL (Near) for information on near calls—calls to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

CALL (Far) Far Procedure Call

[AMD Public Use]

134 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Action
// For functions READ_DESCRIPTOR, READ_INNER_LEVEL_SP,
// ShadowStacksEnabled and SET_TOKEN_BUSY see "Pseudocode Definition"
// on page 57

CALLF_START:

IF (REAL_MODE)
 CALLF_REAL_OR_VIRTUAL // CALLF real mode
ELSEIF (PROTECTED_MODE)
 CALLF_PROTECTED // CALLF protected mode
ELSE // virtual mode
 CALLF_REAL_OR_VIRTUAL // CALLF virtual mode

CALLF_REAL_OR_VIRTUAL:

IF (OPCODE == callf [mem]) // CALLF real mode, indirect
 {
 temp_RIP = READ_MEM.z [mem]
 temp_CS = READ_MEM.w [mem+Z]
 }
ELSE // CALLF real mode, direct
 {
 temp_RIP = z-sized instruction offset field, zero-extended to 64 bits
 temp_CS = selector specified in the instruction
 }
PUSH.v old_CS
PUSH.v next_RIP

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4
RIP = temp_RIP

EXIT // end CALLF real or virtual

Mnemonic Opcode Description

CALL FAR pntr16:16 9A cd Far call direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

CALL FAR pntr16:32 9A cp Far call direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

CALL FAR mem16:16 FF /3 Far call indirect, with the target specified by a far pointer
in memory.

CALL FAR mem16:32 FF /3 Far call indirect, with the target specified by a far pointer
in memory.

[AMD Public Use]

General-Purpose 135
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

CALLF_PROTECTED:

IF (OPCODE == callf [mem]) // CALLF protected mode, indirect
 {
 temp_offset = READ_MEM.z [mem]
 temp_sel = READ_MEM.w [mem+Z]
 }
ELSE // CALLF protected mode, direct
 {
 IF (64BIT_MODE)
 EXCEPTION [#UD] // CALLF direct is illegal in 64-bit mode.
 temp_offset = z-sized instruction offset field, zero-extended to 64 bits
 temp_sel = selector specified in the instruction
 }

temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)

IF (temp_desc.attr.type == ’available_tss’)
 TASK_SWITCH // Using temp_sel as the target TSS
ELSEIF (temp_desc.attr.type == ’taskgate’)
 TASK_SWITCH // Using the TSS selector in the task gate as the target TSS
ELSEIF (temp_desc.attr.type == ’callgate’)
 CALLF_CALLGATE // CALLF through callgate
ELSE // (temp_desc.attr.type == ’code’)
 { // the selector refers to a code descriptor
 temp_RIP = temp_offset // the target RIP is the instruction offset field
 CS = temp_desc
 PUSH.v old_CS
 PUSH.v next_RIP

 IF ((!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)] // temp_RIP can't be non-canonical because its' a
 // 16- or 32-bit offset, zero-extended to 64 bits
 RIP = temp_RIP

 IF ShadowStacksEnabled at current CPL
 {
 IF (v == 2)
 temp_LIP = CS.base + IP // operand size = 16
 ELSEIF (v == 4)
 temp_LIP = CS.base + EIP // operand size = 32
 ELSE // (v == 8)
 temp_LIP = RIP // operand size = 64

 IF EFER.LMA && (temp_desc.attr.L == 0) && (SSP[63:32] != 0)
 EXCEPTION [#GP(0)] // SSP must be <4 GB

 Align SSP to 8B boundary, storing 4B of 0 if needed
 old_SSP = SSP
 SSTK_WRITE_MEM.q [SSP-16] = old_CS // push CS, LIP, SSP

[AMD Public Use]

136 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 SSTK_WRITE_MEM.q [SSP-8] = temp_LIP // onto the shadow stack
 SSTK_WRITE_MEM.q [SSP] = old_SSP
 SSP = SSP - 24
 }

 EXIT
 } // end CALLF selector=code segment

CALLF_CALLGATE:

IF (LONG_MODE) // the gate size controls the size of the stack pushes
 v=8-byte // Long mode only uses 64-bit call gates, force 8-byte opsize
ELSEIF (temp_desc.attr.type == 'callgate32')
 v=4-byte // Legacy mode, using a 32-bit call-gate, force 4-byte
ELSE // (temp_desc.attr.type == 'callgate16')
 v=2-byte // Legacy mode, using a 16-bit call-gate, force 2-byte opsize

// the target CS and RIP both come from the call gate.
temp_RIP = temp_desc.offset

IF (LONG_MODE)
 { // read 2nd half of 16-byte call-gate
 temp_upper = READ_MEM.q [temp_sel+8] // to get upper 32 bits of target RIP
 IF (temp_upper's extended attribute bits != 0)
 EXCEPTION [#GP(temp_sel)]
 temp_RIP = tempRIP + (temp_upper SHL 32) // Concatenate both halves of RIP
 }

CS = READ_DESCRIPTOR (temp_desc.segment, callgate_check)

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION[#GP(0)]

IF (CS.attr.conforming == 1)
 temp_CPL = CPL
ELSE
 temp_CPL = CS.attr.dpl

IF (CPL == temp_CPL) // CALLF through gate, to same privilege
 {
 PUSH.v old_CS
 PUSH.v next_RIP
 RIP = temp_RIP

 IF (ShadowStacksEnabled at current CPL)
 {
 IF (v == 2)
 temp_LIP = CS.base + IP // operand size = 16
 ELSEIF (v == 4)

[AMD Public Use]

General-Purpose 137
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 temp_LIP = CS.base + EIP // operand size = 32
 ELSE // (v == 8)
 temp_LIP = RIP // operand size = 64

 IF ((EFER.LMA && (temp_desc.attr.L == 0)) && (SSP[63:32] != 0))
 EXCEPTION [#GP(0)] // SSP must be <4 GB
 Align SSP to next 8B boundary, storing 4B of 0 if needed
 old_SSP = SSP
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS, LIP, SSP
 SSTK_WRITE_MEM.q [SSP-16] = temp_LIP // onto the shadow stack
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP
 SSP = SSP - 24
 } // end shadow stacks enabled
 EXIT // end CALLF through gate, to same privilege
 }
ELSE // CALLF through gate, to more privilege
 {
 old_CPL = CPL
 CPL = temp_CPL
 temp_ist = 0 // CALLF doesn't use IST pointers.
 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_SP(CPL,temp_ist)
 RSP.q = temp_RSP
 SS = temp_SS_desc

 PUSH.v old_SS // #SS on this or next pushes use SS.sel as error code
 PUSH.v old_RSP

 IF (LEGACY_MODE) // Legacy-mode call gates have a param_count field
 temp_PARAM_COUNT = temp_desc.attr.param_count
 FOR (I=temp_PARAM_COUNT; I>0; I--)
 {
 temp_DATA = READ_MEM.v [old_SS:(old_RSP+I*V)]
 PUSH.v temp_DATA
 }

 PUSH.v old_CS
 PUSH.v next_RIP
 RIP = temp_RIP

 IF ((ShadowStacksEnabled at CPL=3) && (old_CPL == 3))
 PL3_SSP = SSP

 IF (ShadowStacksEnabled at new CPL)
 {
 old_SSP = SSP
 SSP = PLn_SSP // where n=new CPL

 SET_SSTK_TOKEN_BUSY(SSP) // check for valid token and set busy bit

 IF old_CPL != 3
 {

[AMD Public Use]

138 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 // push CS,LIP,SSP onto sstk
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS
 SSTK_WRITE_MEM.q [SSP-16] = temp_LIP // LIP and
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP // SSP to the shadow stack
 SSP = SSP - 24
 }
 } // end shadow stacks enabled at new CPL
 EXIT
 } // end CALLF to more priv

Related Instructions

CALL (Near), RET (Near), RET (Far)

rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The far CALL indirect opcode (FF /3) had a register operand.

X The far CALL direct opcode (9A) was executed in 64-bit mode.

Invalid TSS, #TS
(selector)

X As part of a stack switch, the target stack segment selector or
rSP in the TSS was beyond the TSS limit.

X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.

X As part of a stack switch, the target stack selector’s TI bit was
set, but LDT selector was a null selector.

X
As part of a stack switch, the target stack segment selector in
the TSS was beyond the limit of the GDT or LDT descriptor
table.

X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.

X
As part of a stack switch, the target stack segment selector in
the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

Segment not
present, #NP
(selector)

X The accessed code segment, call gate, task gate, or TSS was
not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical, and no stack switch occurred.

[AMD Public Use]

General-Purpose 139
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Stack, #SS
(selector)

X After a stack switch, a memory access exceeded the stack
segment limit or was non-canonical.

X
As part of a stack switch, the SS register was loaded with a
non-null segment selector and the segment was marked not
present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X The target code segment selector was a null selector.

X A code, call gate, task gate, or TSS descriptor exceeded the
descriptor table limit.

X A segment selector’s TI bit was set but the LDT selector was a
null selector.

X

The segment descriptor specified by the instruction was not a
code segment, task gate, call gate or available TSS in legacy
mode, or not a 64-bit code segment or a 64-bit call gate in long
mode.

X
The RPL of the non-conforming code segment selector
specified by the instruction was greater than the CPL, or its
DPL was not equal to the CPL.

X The DPL of the conforming code segment descriptor specified
by the instruction was greater than the CPL.

X
The DPL of the callgate, taskgate, or TSS descriptor specified
by the instruction was less than the CPL, or less than its own
RPL.

X The segment selector specified by the call gate or task gate
was a null selector.

X
The segment descriptor specified by the call gate was not a
code segment in legacy mode, or not a 64-bit code segment in
long mode.

X The DPL of the segment descriptor specified by the call gate
was greater than the CPL.

X The 64-bit call gate’s extended attribute bits were not zero.

X The TSS descriptor was found in the LDT.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

140 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the sign bit in the AL or eAX register to the upper bits of the rAX register. The effect of this
instruction is to convert a signed byte, word, or doubleword in the AL or eAX register into a signed
word, doubleword, or quadword in the rAX register. This action helps avoid overflow problems in
signed number arithmetic.

The CDQE mnemonic is meaningful only in 64-bit mode.

Related Instructions

CWD, CDQ, CQO

rFLAGS Affected

None

Exceptions

None

CBW
CWDE
CDQE

Convert to Sign-Extended

Mnemonic Opcode Description

CBW 98 Sign-extend AL into AX.

CWDE 98 Sign-extend AX into EAX.

CDQE 98 Sign-extend EAX into RAX.

[AMD Public Use]

General-Purpose 141
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies the sign bit in the rAX register to all bits of the rDX register. The effect of this instruction is to
convert a signed word, doubleword, or quadword in the rAX register into a signed doubleword,
quadword, or double-quadword in the rDX:rAX registers. This action helps avoid overflow problems
in signed number arithmetic.

The CQO mnemonic is meaningful only in 64-bit mode.

Related Instructions

CBW, CWDE, CDQE

rFLAGS Affected

None

Exceptions

None

CWD
CDQ
CQO

Convert to Sign-Extended

Mnemonic Opcode Description

CWD 99 Sign-extend AX into DX:AX.

CDQ 99 Sign-extend EAX into EDX:EAX.

CQO 99 Sign-extend RAX into RDX:RAX.

[AMD Public Use]

142 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Clears the carry flag (CF) in the rFLAGS register to zero.

Related Instructions

STC, CMC

rFLAGS Affected

Exceptions

None

CLC Clear Carry Flag

Mnemonic Opcode Description

CLC F8 Clear the carry flag (CF) to zero.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

General-Purpose 143
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears the direction flag (DF) in the rFLAGS register to zero. If the DF flag is 0, each iteration of a
string instruction increments the data pointer (index registers rSI or rDI). If the DF flag is 1, the string
instruction decrements the pointer. Use the CLD instruction before a string instruction to make the
data pointer increment.

Related Instructions

CMPSx, INSx, LODSx, MOVSx, OUTSx, SCASx, STD, STOSx

rFLAGS Affected

Exceptions

None

CLD Clear Direction Flag

Mnemonic Opcode Description

CLD FC Clear the direction flag (DF) to zero.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

144 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Flushes the cache line specified by the mem8 linear-address. The instruction checks all levels of the
cache hierarchy—internal caches and external caches—and invalidates the cache line in every cache
in which it is found. If a cache contains a dirty copy of the cache line (that is, the cache line is in the
modified or owned MOESI state), the line is written back to memory before it is invalidated. The
instruction sets the cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address operand against
the processor’s write-combining buffers. If the write-combining buffer holds data intended for that
physical address, the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the instruction checks
the write-combining buffers only on the processor that executed the CLFLUSH instruction.

On p roces so r s t ha t do no t suppo r t t h e CLFLUSHOPT in s t ruc t i on , (CPUID Fn
0000_0007_EBX_x0[CLFLOPT]=0), the CLFLUSH instruction is weakly ordered with respect to
other instructions that operate on memory. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around a CLFLUSH instruction. Such
reordering can invalidate a speculatively prefetched cache line, unintentionally defeating the prefetch
operation. The only way to avoid this situation is to use the MFENCE instruction after the CLFLUSH
instruction to force strong-ordering of the CLFLUSH instruction with respect to subsequent memory
operations. The CLFLUSH instruction may also take effect on a cache line while stores from previous
store instructions are still pending in the store buffer. To ensure that such stores are included in the
cache line that is flushed, use an MFENCE instruction ahead of the CLFLUSH instruction. Such stores
would otherwise cause the line to be re-cached and modified after the CLFLUSH completed. The
LFENCE, SFENCE, and serializing instructions are not ordered with respect to CLFLUSH.

On processors that support CLFLUSHOPT, (CPUID Fn 0000_0007_EBX_x0[CLFLOPT]=1),
CLFLUSH is ordered with respect to locked operations, fence instructions, and CLFLUSHOPT,
CLFLUSH and write instructions that touch the same cache line. CLFLUSH is not ordered with
CLFLUSHOPT, CLFLUSH and write instructions to other cache lines.

The CLFLUSH instruction behaves like a load instruction with respect to setting the page-table
accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but does not set the page-table
dirty bit.

The CLFLUSH instruction executes at any privilege level. CLFLUSH performs all the segmentation
and paging checks that a 1-byte read would perform, except that it also allows references to execute-
only segments.

The CLFLUSH instruction is supported if the feature flag CPUID Fn0000_0001_EDX[CLFSH] is set.
The 8-bit field CPUID Fn 0000_0001_EBX[CLFlush] returns the size of the cacheline in quadwords.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

CLFLUSH Cache Line Flush

[AMD Public Use]

General-Purpose 145
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

INVD, WBINVD, CLFLUSHOPT, CLZERO

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

CLFLUSH mem8 0F AE /7 flush cache line containing mem8.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X CLFLUSH instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[CLFSH] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

146 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Flushes the cache line specified by the mem8 linear-address. The instruction checks all levels of the
cache hierarchy-internal caches and external caches-and invalidates the cache line in every cache in
which it is found. If a cache contains a dirty copy of the cache line (that is, the cache line is in the
modified or owned MOESI state), the line is written back to memory before it is invalidated. The
instruction sets the cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address operand against
the processor's write-combining buffers. If the write-combining buffer holds data intended for that
physical address, the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the instruction checks
the write-combining buffers only on the processor that executed the CLFLUSHOPT instruction.

The CLFLUSHOPT instruction is ordered with respect to fence instructions and locked operations.
CLFLUSHOPT is also ordered with writes, CLFLUSH, and CLFLUSHOPT instructions that
reference the same cache line as the CLFLUSHOPT. CLFLUSHOPT is not ordered with writes,
CLFLUSH, and CLFLUSHOPT to other cache lines. To enforce ordering in that situation, a SFENCE
instruction or stronger should be used.

Speculative loads initiated by the processor, or specified explicitly using cache-prefetch instructions,
can be reordered around a CLFLUSHOPT instruction. Such reordering can invalidate a speculatively
prefetched cache line, unintentionally defeating the prefetch operation.

The only way to avoid this situation is to use the MFENCE instruction after the CLFLUSHOPT
instruction to force strong ordering of the CLFLUSHOPT instruction with respect to subsequent
memory operations.

The CLFLUSHOPT instruction behaves like a load instruction with respect to setting the page-table
accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but does not set the page-table
dirty bit.

The CLFLUSHOPT instruction executes at any privilege level. CLFLUSHOPT performs all the
segmentation and paging checks that a 1-byte read would perform, except that it also allows references
to execute-only segments.

The CLFLUSHOPT in s t ruc t i on i s su p p o r t e d i f t h e f e a t u r e f l a g C P U I D
Fn0000_0007_EBX_x0[CLFLOPT]is set. The 8-bit field CPUID Fn 0000_0001_EBX[CLFlush]
returns the size of the cacheline in quadwords.

CLFLUSHOPT Optimized Cache Line Flush

Mnemonic Opcode Description

CLFLUSHOPT mem8 66 0F AE /7 Flush cache line containing mem8

[AMD Public Use]

General-Purpose 147
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

None

Exceptions

Related Instructions

CLFLUSH

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X CLFLUSH instruction is not supported, as indicated by

CPUID Fn0000_0001_EDX[CLFSH] = 0.

X X X Instruction not supported by CPUID
Fn0000_0007_EBX_x0[CLFLUSHOPT] = 0

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

148 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Flushes the cache line specified by the mem8 linear address. The instruction checks all levels of the
cache hierarchy—internal caches and external caches—and causes the cache line, if dirty, to be written
to memory. The cache line may be retained in the cache where found in a non-dirty state.

The CLWB instruction is weakly ordered with respect to other instructions that operate on memory.
Speculative loads initiated by the processor, or specified explicitly using cache prefetch instructions,
can be reordered around a CLWB instruction. CLWB is ordered naturally with older stores to the same
address on the same logical processor. To create strict ordering of CLWB use a store-ordering
instruction such as SFENCE.

The CLWB instruction behaves like a load instruction with respect to setting the page table accessed
and dirty bits. That is, it sets the page table accessed bit to 1, but does not set the page table dirty bit.

The CLWB instruction executes at any privilege level. CLWB performs all the segmentation and
paging checks that a 1-byte read would perform, except that it also allows references to execute only
segments.

The CLWB instruction is supported if the feature flag CPUID Fn0000_0007-EBX[24]=1.

The 8-bit field CPUID Fn 0000_0001_EBX[CLFlush] returns the size of the cacheline in quadwords.

Related Instructions

CLFLUSH, CLFLUSHOPT, WBINVD, WBNOINVD

CLWB Cache Line Write Back and Retain

Mnemonic Opcode Description

CLWB 66 0F AE /6 Cache line write-back.

[AMD Public Use]

General-Purpose 149
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
Fn0000_0007_EBX[24] = 0

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

150 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Clears the cache line specified by the logical address in rAX by writing a zero to every byte in the line.
The instruction uses an implied non temporal memory type, similar to a streaming store, and uses the
write combining protocol to minimize cache pollution.

CLZERO is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or stronger to enforce memory ordering of CLZERO with respect to other
store instructions.

The CLZERO instruction executes at any privilege level. CLZERO performs all the segmentation and
paging checks that a store of the specified cache line would perform.

The CLZERO instruction is supported if the feature flag CPUID Fn8000_0008_EBX[CLZERO] is
set. The 8-bit field CPUID Fn 0000_0001_EBX[CLFlush] returns the size of the cacheline in
quadwords.

rFLAGS Affected

None

Exceptions

CLZERO Zero Cache Line

Mnemonic Opcode Description

CLZERO rAX 0F 01 FC Clears cache line containing rAX

Related Instructions

CLFLUSH

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
Fn8000_0008_EBX[CLZERO] = 0

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

General-Purpose 151
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Complements (toggles) the carry flag (CF) bit of the rFLAGS register.

Related Instructions

CLC, STC

rFLAGS Affected

Exceptions

None

CMC Complement Carry Flag

Mnemonic Opcode Description

CMC F5 Complement the carry flag (CF).

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

152 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Conditionally moves a 16-bit, 32-bit, or 64-bit value in memory or a general-purpose register (second
operand) into a register (first operand), depending upon the settings of condition flags in the rFLAGS
register. If the condition is not satisfied, the destination register is not modified. For the memory-based
forms of CMOVcc, memory-related exceptions may be reported even if the condition is false. In 64-bit
mode, CMOVcc with a 32-bit operand size will clear the upper 32 bits of the destination register even
if the condition is false.

The mnemonics of CMOVcc instructions denote the condition that must be satisfied. Most assemblers
provide instruction mnemonics with A (above) and B (below) tags to supply the semantics for
manipulating unsigned integers. Those with G (greater than) and L (less than) tags deal with signed
integers. Many opcodes may be represented by synonymous mnemonics. For example, the CMOVL
instruction is synonymous with the CMOVNGE instruction and denote the instruction with the opcode
0F 4C.

The feature flag CPUID Fn0000_0001_EDX[CMOV] or CPUID Fn8000_0001_EDX[CMOV] =1
indicates support for CMOVcc instructions on a particular processor implementation.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

CMOVcc Conditional Move

Mnemonic Opcode Description

CMOVO reg16, reg/mem16
CMOVO reg32, reg/mem32
CMOVO reg64, reg/mem64

0F 40 /r Move if overflow (OF = 1).

CMOVNO reg16, reg/mem16
CMOVNO reg32, reg/mem32
CMOVNO reg64, reg/mem64

0F 41 /r Move if not overflow (OF = 0).

CMOVB reg16, reg/mem16
CMOVB reg32, reg/mem32
CMOVB reg64, reg/mem64

0F 42 /r Move if below (CF = 1).

CMOVC reg16, reg/mem16
CMOVC reg32, reg/mem32
CMOVC reg64, reg/mem64

0F 42 /r Move if carry (CF = 1).

CMOVNAE reg16, reg/mem16
CMOVNAE reg32, reg/mem32
CMOVNAE reg64, reg/mem64

0F 42 /r Move if not above or equal (CF = 1).

CMOVNB reg16,reg/mem16
CMOVNB reg32,reg/mem32
CMOVNB reg64,reg/mem64

0F 43 /r Move if not below (CF = 0).

CMOVNC reg16,reg/mem16
CMOVNC reg32,reg/mem32
CMOVNC reg64,reg/mem64

0F 43 /r Move if not carry (CF = 0).

[AMD Public Use]

General-Purpose 153
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

CMOVAE reg16, reg/mem16
CMOVAE reg32, reg/mem32
CMOVAE reg64, reg/mem64

0F 43 /r Move if above or equal (CF = 0).

CMOVZ reg16, reg/mem16
CMOVZ reg32, reg/mem32
CMOVZ reg64, reg/mem64

0F 44 /r Move if zero (ZF = 1).

CMOVE reg16, reg/mem16
CMOVE reg32, reg/mem32
CMOVE reg64, reg/mem64

0F 44 /r Move if equal (ZF =1).

CMOVNZ reg16, reg/mem16
CMOVNZ reg32, reg/mem32
CMOVNZ reg64, reg/mem64

0F 45 /r Move if not zero (ZF = 0).

CMOVNE reg16, reg/mem16
CMOVNE reg32, reg/mem32
CMOVNE reg64, reg/mem64

0F 45 /r Move if not equal (ZF = 0).

CMOVBE reg16, reg/mem16
CMOVBE reg32, reg/mem32
CMOVBE reg64, reg/mem64

0F 46 /r Move if below or equal (CF = 1 or ZF = 1).

CMOVNA reg16, reg/mem16
CMOVNA reg32, reg/mem32
CMOVNA reg64, reg/mem64

0F 46 /r Move if not above (CF = 1 or ZF = 1).

CMOVNBE reg16, reg/mem16
CMOVNBE reg32,reg/mem32
CMOVNBE reg64,reg/mem64

0F 47 /r Move if not below or equal (CF = 0 and ZF = 0).

CMOVA reg16, reg/mem16
CMOVA reg32, reg/mem32
CMOVA reg64, reg/mem64

0F 47 /r Move if above (CF = 0 and ZF = 0).

CMOVS reg16, reg/mem16
CMOVS reg32, reg/mem32
CMOVS reg64, reg/mem64

0F 48 /r Move if sign (SF =1).

CMOVNS reg16, reg/mem16
CMOVNS reg32, reg/mem32
CMOVNS reg64, reg/mem64

0F 49 /r Move if not sign (SF = 0).

CMOVP reg16, reg/mem16
CMOVP reg32, reg/mem32
CMOVP reg64, reg/mem64

0F 4A /r Move if parity (PF = 1).

CMOVPE reg16, reg/mem16
CMOVPE reg32, reg/mem32
CMOVPE reg64, reg/mem64

0F 4A /r Move if parity even (PF = 1).

CMOVNP reg16, reg/mem16
CMOVNP reg32, reg/mem32
CMOVNP reg64, reg/mem64

0F 4B /r Move if not parity (PF = 0).

CMOVPO reg16, reg/mem16
CMOVPO reg32, reg/mem32
CMOVPO reg64, reg/mem64

0F 4B /r Move if parity odd (PF = 0).

Mnemonic Opcode Description

[AMD Public Use]

154 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

MOV

rFLAGS Affected

None

Exceptions

CMOVL reg16, reg/mem16
CMOVL reg32, reg/mem32
CMOVL reg64, reg/mem64

0F 4C /r Move if less (SF <> OF).

CMOVNGE reg16, reg/mem16
CMOVNGE reg32, reg/mem32
CMOVNGE reg64, reg/mem64

0F 4C /r Move if not greater or equal (SF <> OF).

CMOVNL reg16, reg/mem16
CMOVNL reg32, reg/mem32
CMOVNL reg64, reg/mem64

0F 4D /r Move if not less (SF = OF).

CMOVGE reg16, reg/mem16
CMOVGE reg32, reg/mem32
CMOVGE reg64, reg/mem64

0F 4D /r Move if greater or equal (SF = OF).

CMOVLE reg16, reg/mem16
CMOVLE reg32, reg/mem32
CMOVLE reg64, reg/mem64

0F 4E /r Move if less or equal (ZF = 1 or SF <> OF).

CMOVNG reg16, reg/mem16
CMOVNG reg32, reg/mem32
CMOVNG reg64, reg/mem64

0F 4E /r Move if not greater (ZF = 1 or SF <> OF).

CMOVNLE reg16, reg/mem16
CMOVNLE reg32, reg/mem32
CMOVNLE reg64, reg/mem64

0F 4F /r Move if not less or equal (ZF = 0 and SF = OF).

CMOVG reg16, reg/mem16
CMOVG reg32, reg/mem32
CMOVG reg64, reg/mem64

0F 4F /r Move if greater (ZF = 0 and SF = OF).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X

CMOVcc instruction is not supported, as indicated by CPUID
Fn0000_0001_EDX[CMOV] or Fn8000_0001_EDX[CMOV] =
0.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 155
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

156 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Compares the contents of a register or memory location (first operand) with an immediate value or the
contents of a register or memory location (second operand), and sets or clears the status flags in the
rFLAGS register to reflect the results. To perform the comparison, the instruction subtracts the second
operand from the first operand and sets the status flags in the same manner as the SUB instruction, but
does not alter the first operand. If the second operand is an immediate value, the instruction sign-
extends the value to the length of the first operand.

Use the CMP instruction to set the condition codes for a subsequent conditional jump (Jcc),
conditional move (CMOVcc), or conditional SETcc instruction. Appendix F, “Instruction Effects on
RFLAGS” shows how instructions affect the rFLAGS status flags.
.

CMP Compare

Mnemonic Opcode Description

CMP AL, imm8 3C ib Compare an 8-bit immediate value with the contents of
the AL register.

CMP AX, imm16 3D iw Compare a 16-bit immediate value with the contents of
the AX register.

CMP EAX, imm32 3D id Compare a 32-bit immediate value with the contents of
the EAX register.

CMP RAX, imm32 3D id Compare a 32-bit immediate value with the contents of
the RAX register.

CMP reg/mem8, imm8 80 /7 ib Compare an 8-bit immediate value with the contents of
an 8-bit register or memory operand.

CMP reg/mem16, imm16 81 /7 iw Compare a 16-bit immediate value with the contents of a
16-bit register or memory operand.

CMP reg/mem32, imm32 81 /7 id Compare a 32-bit immediate value with the contents of a
32-bit register or memory operand.

CMP reg/mem64, imm32 81 /7 id Compare a 32-bit signed immediate value with the
contents of a 64-bit register or memory operand.

CMP reg/mem16, imm8 83 /7 ib Compare an 8-bit signed immediate value with the
contents of a 16-bit register or memory operand.

CMP reg/mem32, imm8 83 /7 ib Compare an 8-bit signed immediate value with the
contents of a 32-bit register or memory operand.

CMP reg/mem64, imm8 83 /7 ib Compare an 8-bit signed immediate value with the
contents of a 64-bit register or memory operand.

CMP reg/mem8, reg8 38 /r Compare the contents of an 8-bit register or memory
operand with the contents of an 8-bit register.

CMP reg/mem16, reg16 39 /r Compare the contents of a 16-bit register or memory
operand with the contents of a 16-bit register.

CMP reg/mem32, reg32 39 /r Compare the contents of a 32-bit register or memory
operand with the contents of a 32-bit register.

CMP reg/mem64, reg64 39 /r Compare the contents of a 64-bit register or memory
operand with the contents of a 64-bit register.

[AMD Public Use]

General-Purpose 157
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

When interpreting operands as unsigned, flag settings are as follows:

When interpreting operands as signed, flag settings are as follows:

Related Instructions

SUB, CMPSx, SCASx

CMP reg8, reg/mem8 3A /r Compare the contents of an 8-bit register with the
contents of an 8-bit register or memory operand.

CMP reg16, reg/mem16 3B /r Compare the contents of a 16-bit register with the
contents of a 16-bit register or memory operand.

CMP reg32, reg/mem32 3B /r Compare the contents of a 32-bit register with the
contents of a 32-bit register or memory operand.

CMP reg64, reg/mem64 3B /r Compare the contents of a 64-bit register with the
contents of a 64-bit register or memory operand.

Operands CF ZF

dest > source 0 0

dest = source 0 1

dest < source 1 0

Operands OF ZF

dest > source SF 0

dest = source 0 1

dest < source NOT SF 0

Mnemonic Opcode Description

[AMD Public Use]

158 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 159
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Compares the bytes, words, doublewords, or quadwords pointed to by the rSI and rDI registers, sets or
clears the status flags of the rFLAGS register to reflect the results, and then increments or decrements
the rSI and rDI registers according to the state of the DF flag in the rFLAGS register. To perform the
comparison, the instruction subtracts the second operand from the first operand and sets the status
flags in the same manner as the SUB instruction, but does not alter the first operand. The two operands
must be the same size.

If the DF flag is 0, the instruction increments rSI and rDI; otherwise, it decrements the pointers. It
increments or decrements the pointers by 1, 2, 4, or 8, depending on the size of the operands.

The forms of the CMPSx instruction with explicit operands address the first operand at seg:[rSI]. The
value of seg defaults to the DS segment, but may be overridden by a segment prefix. These instructions
always address the second operand at ES:[rDI]. ES may not be overridden. The explicit operands serve
only to specify the type (size) of the values being compared and the segment used by the first operand.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to point to the values
to be compared. The mnemonic determines the size of the operands.

Do not confuse this CMPSD instruction with the same-mnemonic CMPSD (compare scalar double-
precision floating-point) instruction in the 128-bit media instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

For block comparisons, the CMPS instruction supports the REPE or REPZ prefixes (they are
synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For details about the REP
prefixes, see “Repeat Prefixes” on page 12. If a conditional jump instruction like JL follows a CMPSx
instruction, the jump occurs if the value of the seg:[rSI] operand is less than the ES:[rDI] operand. This
action allows lexicographical comparisons of string or array elements. A CMPSx instruction can also
operate inside a loop controlled by the LOOPcc instruction.

CMPS
CMPSB
CMPSW
CMPSD
CMPSQ

Compare Strings

Mnemonic Opcode Description

CMPS mem8, mem8 A6 Compare the byte at DS:rSI with the byte at ES:rDI and
then increment or decrement rSI and rDI.

CMPS mem16, mem16 A7 Compare the word at DS:rSI with the word at ES:rDI and
then increment or decrement rSI and rDI.

CMPS mem32, mem32 A7 Compare the doubleword at DS:rSI with the doubleword
at ES:rDI and then increment or decrement rSI and rDI.

CMPS mem64, mem64 A7 Compare the quadword at DS:rSI with the quadword at
ES:rDI and then increment or decrement rSI and rDI.

[AMD Public Use]

160 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

CMP, SCASx

rFLAGS Affected

Exceptions

CMPSB A6 Compare the byte at DS:rSI with the byte at ES:rDI and
then increment or decrement rSI and rDI.

CMPSW A7 Compare the word at DS:rSI with the word at ES:rDI and
then increment or decrement rSI and rDI.

CMPSD A7 Compare the doubleword at DS:rSI with the doubleword
at ES:rDI and then increment or decrement rSI and rDI.

CMPSQ A7 Compare the quadword at DS:rSI with the quadword at
ES:rDI and then increment or decrement rSI and rDI.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 161
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Compares the value in the AL, AX, EAX, or RAX register with the value in a register or a memory
location (first operand). If the two values are equal, the instruction copies the value in the second
operand to the first operand and sets the ZF flag in the rFLAGS register to 1. Otherwise, it copies the
value in the first operand to the AL, AX, EAX, or RAX register and clears the ZF flag to 0.

The OF, SF, AF, PF, and CF flags are set to reflect the results of the compare.

When the first operand is a memory operand, CMPXCHG always does a read-modify-write on the
memory operand. If the compared operands were unequal, CMPXCHG writes the same value to the
memory operand that was read.

The forms of the CMPXCHG instruction that write to memory support the LOCK prefix. For details
about the LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

CMPXCHG8B, CMPXCHG16B

CMPXCHG Compare and Exchange

Mnemonic Opcode Description

CMPXCHG reg/mem8, reg8 0F B0 /r
Compare AL register with an 8-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AL.

CMPXCHG reg/mem16, reg16 0F B1 /r
Compare AX register with a 16-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AX.

CMPXCHG reg/mem32, reg32 0F B1 /r
Compare EAX register with a 32-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to EAX.

CMPXCHG reg/mem64, reg64 0F B1 /r
Compare RAX register with a 64-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to RAX.

[AMD Public Use]

162 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 163
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Compares the value in the rDX:rAX registers with a 64-bit or 128-bit value in the specified memory
location. If the values are equal, the instruction copies the value in the rCX:rBX registers to the
memory location and sets the zero flag (ZF) of the rFLAGS register to 1. Otherwise, it copies the value
in memory to the rDX:rAX registers and clears ZF to 0.

If the effective operand size is 16-bit or 32-bit, the CMPXCHG8B instruction is used. This instruction
uses the EDX:EAX and ECX:EBX register operands and a 64-bit memory operand. If the effective
operand size is 64-bit, the CMPXCHG16B instruction is used; this instruction uses RDX:RAX register
operands and a 128-bit memory operand.

The CMPXCHG8B and CMPXCHG16B instructions always do a read-modify-write on the memory
operand. If the compared operands were unequal, the instructions write the same value to the memory
operand that was read.

The CMPXCHG8B and CMPXCHG16B instructions support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Support for the CMPXCHG8B and CMPXCHG16B instructions is implementation dependent.
Suppo r t f o r t he CMPXCHG8B in s t ruc t i o n i s i n d i c a t e d b y C P U I D
Fn0000_0001_EDX[CMPXCHG8B] or Fn8000_0001_EDX[CMPXCHG8B] = 1. Support for the
CMPXCHG16B instruction is indicated by CPUID Fn0000_0001_ECX[CMPXCHG16B] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

The memory operand used by CMPXCHG16B must be 16-byte aligned or else a general-protection
exception is generated.

Related Instructions

CMPXCHG

CMPXCHG8B
CMPXCHG16B

Compare and Exchange Eight Bytes
Compare and Exchange Sixteen Bytes

Mnemonic Opcode Description

CMPXCHG8B mem64 0F C7 /1 m64

Compare EDX:EAX register to 64-bit memory location.
If equal, set the zero flag (ZF) to 1 and copy the
ECX:EBX register to the memory location. Otherwise,
copy the memory location to EDX:EAX and clear the
zero flag.

CMPXCHG16B mem128 0F C7 /1
m128

Compare RDX:RAX register to 128-bit memory location.
If equal, set the zero flag (ZF) to 1 and copy the
RCX:RBX register to the memory location. Otherwise,
copy the memory location to RDX:RAX and clear the
zero flag.

[AMD Public Use]

164 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X
CMPXCHG8B instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[CMPXCHG8B] or
Fn8000_0001_EDX[CMPXCHG8B] = 0.

X CMPXCHG16B instruction is not supported, as indicated by
CPUID Fn0000_0001_ECX[CMPXCHG16B] = 0.

X X X The operand was a register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

X The memory operand for CMPXCHG16B was not aligned on a
16-byte boundary.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 165
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Provides information about the processor and its capabilities through a number of different functions.
Software should load the number of the CPUID function to execute into the EAX register before
executing the CPUID instruction. The processor returns information in the EAX, EBX, ECX, and
EDX registers; the contents and format of these registers depend on the function.

The architecture supports CPUID information about standard functions and extended functions. The
standard functions have numbers in the 0000_xxxxh series (for example, standard function 1). To
determine the largest standard function number that a processor supports, execute CPUID function 0.

The extended functions have numbers in the 8000_xxxxh series (for example, extended
function 8000_0001h). To determine the largest extended function number that a processor supports,
execute CPUID extended function 8000_0000h. If the value returned in EAX is greater than
8000_0000h, the processor supports extended functions.

Software operating at any privilege level can execute the CPUID instruction to collect this
information. In 64-bit mode, this instruction works the same as in legacy mode except that it zero-
extends 32-bit register results to 64 bits.

CPUID is a serializing instruction.

Testing for the CPUID Instruction

To avoid an invalid-opcode exception (#UD) on those processor implementations that do not support
the CPUID instruction, software must first test to determine if the CPUID instruction is supported.
Support for the CPUID instruction is indicated by the ability to write the ID bit in the rFLAGS register.
Normally, 32-bit software uses the PUSHFD and POPFD instructions in an attempt to write
rFLAGS.ID. After reading the updated rFLAGS.ID bit, a comparison determines if the operation
changed its value. If the value changed, the processor executing the code supports the CPUID
instruction. If the value did not change, rFLAGS.ID is not writable, and the processor does not support
the CPUID instruction.

The following code sample shows how to test for the presence of the CPUID instruction using 32-bit
code.

pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for later testing
xor eax, 00200000h ; toggle bit 21
push eax ; push to stack
popfd ; save changed EAX to EFLAGS

CPUID Processor Identification

Mnemonic Opcode Description

CPUID 0F A2
Returns information about the processor and its
capabilities. EAX specifies the function number, and the
data is returned in EAX, EBX, ECX, EDX.

[AMD Public Use]

166 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

pushfd ; push EFLAGS to TOS
pop eax ; store EFLAGS in EAX
cmp eax, ebx ; see if bit 21 has changed
jz NO_CPUID ; if no change, no CPUID

Standard Function 0 and Extended Function 8000_0000h

CPUID standard function 0 loads the EAX register with the largest CPUID standard function number
supported by the processor implementation; similarly, CPUID extended function 8000_0000h loads
the EAX register with the largest extended function number supported.

Standard function 0 and extended function 8000_0000h both load a 12-character string into the EBX,
EDX, and ECX registers identifying the processor vendor. For AMD processors, the string is
AuthenticAMD. This string informs software that it should follow the AMD CPUID definition for
subsequent CPUID function calls. If the function returns another vendor’s string, software must use
that vendor’s CPUID definition when interpreting the results of subsequent CPUID function calls.
Table 3-2 shows the contents of the EBX, EDX, and ECX registers after executing function 0 on an
AMD processor.

For a description of all feature flags related to instruction subset support, see Appendix D, “Instruction
Subsets and CPUID Feature Flags,” on page 591. For a description of all defined feature numbers and
return values, see Appendix E, “Obtaining Processor Information Via the CPUID Instruction,” on
page 597.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

Table 3-2. Processor Vendor Return Values

Register Return Value ASCII Characters

EBX 6874_7541h “h t u A”

EDX 6974_6E65h “i t n e”

ECX 444D_4163h “D M A c”

[AMD Public Use]

General-Purpose 167
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs one step of a 32-bit cyclic redundancy check.

The first source, which is also the destination, is a doubleword value in either a 32-bit or 64-bit GPR
depending on the presence of a REX prefix and the value of the REX.W bit. The second source is a
GPR or memory location of width 8, 16, or 32 bits. A vector of width 40, 48, or 64 bits is derived from
the two operands as follows:

1. The low-order 32 bits of the first operand is bit-wise inverted and shifted left by the width of the
second operand.

2. The second operand is bit-wise inverted and shifted left by 32 bits

3. The results of steps 1 and 2 are xored.

This vector is interpreted as a polynomial of degree 40, 48, or 64 over the field of two elements (i.e., bit
i is interpreted as the coefficient of Xi). This polynomial is divided by the polynomial of degree 32 that
is similarly represented by the vector 11EDC6F41h. (The division admits an efficient iterative
implementation based on the xor operation.) The remainder is encoded as a 32-bit vector, which is
bit-wise inverted and written to the destination. In the case of a 64-bit destination, the upper 32 bits are
cleared.

In an application of the CRC algorithm, a data block is partitioned into byte, word, or doubleword
segments and CRC32 is executed iteratively, once for each segment.

CRC32 is a SSE4.2 instruction. Support for SSE4.2 instructions is indicated by CPUID
Fn0000_0001_ECX[SSE42] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

CRC32 CRC32 Cyclical Redundancy Check

Mnemonic Encoding Notes

CRC32 reg32, reg/mem8 F2 0F 38 F0 /r Perform CRC32 operation on 8-bit values

CRC32 reg32, reg/mem8 F2 REX 0F 38 F0 /r Encoding using REX prefix allows access to
GPR8–15

CRC32 reg32, reg/mem16 F2 0F 38 F1 /r Effective operand size determines size of second
operand.CRC32 reg32, reg/mem32 F2 0F 38 F1 /r

CRC32 reg64, reg/mem8 F2 REX.W 0F 38 F0 /r REX.W = 1.

CRC32 reg64, reg/mem64 F2 REX.W 0F 38 F1 /r REX.W = 1.

[AMD Public Use]

168 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

None

Exceptions

Exception

Mode

Cause of Exception

Real
Virtual
8086 Protected

Invalid opcode,
#UD

X X X Lock prefix used

X X X SSE42 instructions are not supported as indicated by CPUID
Fn0000_0001_ECX[SSE42] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 169
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal carry out of either nibble of AL.

Use this instruction to adjust the result of a byte ADD instruction that performed the binary addition of
one 2-digit packed BCD values to another.

The instruction performs the adjustment by adding 06h to AL if the lower nibble is greater than 9 or if
AF = 1. Then 60h is added to AL if the original AL was greater than 99h or if CF = 1.

If the lower nibble of AL was adjusted, the AF flag is set to 1. Otherwise AF is not modified. If the
upper nibble of AL was adjusted, the CF flag is set to 1. Otherwise, CF is not modified. SF, ZF, and PF
are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

rFLAGS Affected

Exceptions

DAA Decimal Adjust after Addition

Mnemonic Opcode Description

DAA 27 Decimal adjust AL.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

[AMD Public Use]

170 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal borrow.

Use this instruction to adjust the result of a byte SUB instruction that performed a binary subtraction of
one 2-digit, packed BCD value from another.

This instruction performs the adjustment by subtracting 06h from AL if the lower nibble is greater than
9 or if AF = 1. Then 60h is subtracted from AL if the original AL was greater than 99h or if CF = 1.

If the adjustment changes the lower nibble of AL, the AF flag is set to 1; otherwise AF is not modified.
If the adjustment results in a borrow for either nibble of AL, the CF flag is set to 1; otherwise CF is not
modified. The SF, ZF, and PF flags are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Related Instructions

DAA

rFLAGS Affected

Exceptions

DAS Decimal Adjust after Subtraction

Mnemonic Opcode Description

DAS 2F Decimal adjusts AL after subtraction.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

[AMD Public Use]

General-Purpose 171
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Subtracts 1 from the specified register or memory location. The CF flag is not affected.

The one-byte forms of this instruction (opcodes 48 through 4F) are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.

The forms of the DEC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

To perform a decrement operation that updates the CF flag, use a SUB instruction with an immediate
operand of 1.

Related Instructions

INC, SUB

rFLAGS Affected

DEC Decrement by 1

Mnemonic Opcode Description

DEC reg/mem8 FE /1 Decrement the contents of an 8-bit register or memory
location by 1.

DEC reg/mem16 FF /1 Decrement the contents of a 16-bit register or memory
location by 1.

DEC reg/mem32 FF /1 Decrement the contents of a 32-bit register or memory
location by 1.

DEC reg/mem64 FF /1 Decrement the contents of a 64-bit register or memory
location by 1.

DEC reg16 48 +rw
Decrement the contents of a 16-bit register by 1.
(See “REX Prefix” on page 14.)

DEC reg32 48 +rd
Decrement the contents of a 32-bit register by 1.
(See “REX Prefix” on page 14.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

172 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded the data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 173
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Divides the unsigned value in a register by the unsigned value in the specified register or memory
location. The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the quotient in the AL
register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant word of the
dividend is in the rDX register and the least-significant word is in the rAX register. After the division,
the instruction stores the quotient in the rAX register and the remainder in the rDX register.

The following table summarizes the action of this instruction:

The instruction truncates non-integral results towards 0 and the remainder is always less than the
divisor. An overflow generates a #DE (divide error) exception, rather than setting the CF flag.

Division by zero generates a divide-by-zero exception.

Related Instructions

MUL

DIV Unsigned Divide

Division Size Dividend Divisor Quotient Remainder Maximum Quotient

Word/byte AX reg/mem8 AL AH 255

Doubleword/word DX:AX reg/mem16 AX DX 65,535

Quadword/doubleword EDX:EAX reg/mem32 EAX EDX 2 32 – 1

Double quadword/
quadword RDX:RAX reg/mem64 RAX RDX 264 – 1

Mnemonic Opcode Description

DIV reg/mem8 F6 /6
Perform unsigned division of AX by the contents of an 8-
bit register or memory location and store the quotient in
AL and the remainder in AH.

DIV reg/mem16 F7 /6
Perform unsigned division of DX:AX by the contents of a
16-bit register or memory operand store the quotient in
AX and the remainder in DX.

DIV reg/mem32 F7 /6
Perform unsigned division of EDX:EAX by the contents
of a 32-bit register or memory location and store the
quotient in EAX and the remainder in EDX.

DIV reg/mem64 F7 /6
Perform unsigned division of RDX:RAX by the contents
of a 64-bit register or memory location and store the
quotient in RAX and the remainder in RDX.

[AMD Public Use]

174 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Divide by zero, #DE
X X X The divisor operand was 0.

X X X The quotient was too large for the designated register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 175
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Creates a stack frame for a procedure.

The first operand specifies the size of the stack frame allocated by the instruction.

The second operand specifies the nesting level (0 to 31—the value is automatically masked to 5 bits).
For nesting levels of 1 or greater, the processor copies earlier stack frame pointers before adjusting the
stack pointer. This action provides a called procedure with access points to other nested stack frames.

The 32-bit enter N, 0 (a nesting level of 0) instruction is equivalent to the following 32-bit
instruction sequence:

push ebp ; save current EBP
mov ebp, esp ; set stack frame pointer value
sub esp, N ; allocate space for local variables

The ENTER and LEAVE instructions provide support for block structured languages. The LEAVE
instruction releases the stack frame on returning from a procedure.

In 64-bit mode, the operand size of ENTER defaults to 64 bits, and there is no prefix available for
encoding a 32-bit operand size.

Action
// See “Pseudocode Definition” on page 57.

ENTER_START:

 temp_ALLOC_SPACE = word-sized immediate specified in the instruction
 (first operand), zero-extended to 64 bits
 temp_LEVEL = byte-sized immediate specified in the instruction
 (second operand), zero-extended to 64 bits

 temp_LEVEL = temp_LEVEL AND 0x1f
 // only keep 5 bits of level count

 PUSH.v old_RBP

 temp_RBP = RSP // This value of RSP will eventually be loaded
 // into RBP.
 IF (temp_LEVEL>0) // Push "temp_LEVEL" parameters to the stack.
 {
 FOR (I=1; I<temp_LEVEL; I++)

ENTER Create Procedure Stack Frame

Mnemonic Opcode Description

ENTER imm16, 0 C8 iw 00 Create a procedure stack frame.

ENTER imm16, 1 C8 iw 01 Create a nested stack frame for a procedure.

ENTER imm16, imm8 C8 iw ib Create a nested stack frame for a procedure.

[AMD Public Use]

176 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 // All but one of the parameters are copied
 // from higher up on the stack.
 {
 temp_DATA = READ_MEM.v [SS:old_RBP-I*V]
 PUSH.v temp_DATA
 }
 PUSH.v temp_RBP // The last parameter is the offset of the old
 // value of RSP on the stack.
 }
 RSP.s = RSP - temp_ALLOC_SPACE // Leave "temp_ALLOC_SPACE" free bytes on
 // the stack

 WRITE_MEM.v [SS:RSP.s] = temp_unused // ENTER finishes with a memory
write

 // check on the final stack pointer,
 // but no write actually occurs.

 RBP.v = temp_RBP
 EXIT

Related Instructions

LEAVE

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack-segment limit or was
non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 177
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Divides the signed value in a register by the signed value in the specified register or memory location.
The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the quotient in the AL
register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant word of the
dividend is in the rDX register and the least-significant word is in the rAX register. After the division,
the instruction stores the quotient in the rAX register and the remainder in the rDX register.

The following table summarizes the action of this instruction:

The instruction truncates non-integral results towards 0. The sign of the remainder is always the same
as the sign of the dividend, and the absolute value of the remainder is less than the absolute value of the
divisor. An overflow generates a #DE (divide error) exception, rather than setting the OF flag.

To avoid overflow problems, precede this instruction with a CBW, CWD, CDQ, or CQO instruction to
sign-extend the dividend.

IDIV Signed Divide

Division Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX reg/mem8 AL AH –128 to +127

Doubleword/word DX:AX reg/mem16 AX DX –32,768 to +32,767

Quadword/doubleword EDX:EAX reg/mem32 EAX EDX –2 31 to 2 31– 1

Double quadword/
quadword RDX:RAX reg/mem64 RAX RDX –2 63 to 263– 1

Mnemonic Opcode Description

IDIV reg/mem8 F6 /7
Perform signed division of AX by the contents of an 8-bit
register or memory location and store the quotient in AL
and the remainder in AH.

IDIV reg/mem16 F7 /7
Perform signed division of DX:AX by the contents of a
16-bit register or memory location and store the quotient
in AX and the remainder in DX.

IDIV reg/mem32 F7 /7
Perform signed division of EDX:EAX by the contents of
a 32-bit register or memory location and store the
quotient in EAX and the remainder in EDX.

IDIV reg/mem64 F7 /7
Perform signed division of RDX:RAX by the contents of
a 64-bit register or memory location and store the
quotient in RAX and the remainder in RDX.

[AMD Public Use]

178 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

IMUL

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U U

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Divide by zero, #DE
X X X The divisor operand was 0.

X X X The quotient was too large for the designated register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 179
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Multiplies two signed operands. The number of operands determines the form of the instruction.

If a single operand is specified, the instruction multiplies the value in the specified general-purpose
register or memory location by the value in the AL, AX, EAX, or RAX register (depending on the
operand size) and stores the product in AX, DX:AX, EDX:EAX, or RDX:RAX, respectively.

If two operands are specified, the instruction multiplies the value in a general-purpose register (first
operand) by an immediate value or the value in a general-purpose register or memory location (second
operand) and stores the product in the first operand location.

If three operands are specified, the instruction multiplies the value in a general-purpose register or
memory location (second operand), by an immediate value (third operand) and stores the product in a
register (first operand).

The IMUL instruction sign-extends an immediate operand to the length of the other register/memory
operand.

The CF and OF flags are set if, due to integer overflow, the double-width multiplication result cannot
be represented in the half-width destination register. Otherwise the CF and OF flags are cleared.

IMUL Signed Multiply

Mnemonic Opcode Description

IMUL reg/mem8 F6 /5
Multiply the contents of AL by the contents of an 8-bit
memory or register operand and put the signed result in
AX.

IMUL reg/mem16 F7 /5
Multiply the contents of AX by the contents of a 16-bit
memory or register operand and put the signed result in
DX:AX.

IMUL reg/mem32 F7 /5
Multiply the contents of EAX by the contents of a 32-bit
memory or register operand and put the signed result in
EDX:EAX.

IMUL reg/mem64 F7 /5
Multiply the contents of RAX by the contents of a 64-bit
memory or register operand and put the signed result in
RDX:RAX.

IMUL reg16, reg/mem16 0F AF /r
Multiply the contents of a 16-bit destination register by
the contents of a 16-bit register or memory operand and
put the signed result in the 16-bit destination register.

IMUL reg32, reg/mem32 0F AF /r
Multiply the contents of a 32-bit destination register by
the contents of a 32-bit register or memory operand and
put the signed result in the 32-bit destination register.

IMUL reg64, reg/mem64 0F AF /r
Multiply the contents of a 64-bit destination register by
the contents of a 64-bit register or memory operand and
put the signed result in the 64-bit destination register.

IMUL reg16, reg/mem16, imm8 6B /r ib
Multiply the contents of a 16-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 16-bit destination register.

[AMD Public Use]

180 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

IDIV

rFLAGS Affected

Exceptions

IMUL reg32, reg/mem32, imm8 6B /r ib
Multiply the contents of a 32-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 32-bit destination register.

IMUL reg64, reg/mem64, imm8 6B /r ib
Multiply the contents of a 64-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 64-bit destination register.

IMUL reg16, reg/mem16,
imm16 69 /r iw

Multiply the contents of a 16-bit register or memory
operand by a sign-extended immediate word and put
the signed result in the 16-bit destination register.

IMUL reg32, reg/mem32,
imm32 69 /r id

Multiply the contents of a 32-bit register or memory
operand by a sign-extended immediate double and put
the signed result in the 32-bit destination register.

IMUL reg64, reg/mem64,
imm32 69 /r id

Multiply the contents of a 64-bit register or memory
operand by a sign-extended immediate double and put
the signed result in the 64-bit destination register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 181
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Transfers a byte, word, or doubleword from an I/O port to the AL, AX, or EAX register. The port
address is specified either by an 8-bit immediate value (00h to FFh) encoded in the instruction or a 16-
bit value contained in the DX register (0000h to FFFFh). The processor’s I/O address space is distinct
from system memory addressing.

For two opcodes (E4h and ECh), the data size of the port is fixed at 8 bits. For the other opcodes (E5h
and EDh), the effective operand-size determines the port size. If the effective operand size is 64 bits,
IN reads only 32 bits from the I/O port.

If the CPL is higher than IOPL, or the mode is virtual mode, IN checks the I/O permission bitmap in
the TSS before allowing access to the I/O port. (See Volume 2 for details on the TSS I/O permission
bitmap.)

Related Instructions

INSx, OUT, OUTSx

rFLAGS Affected

None

IN Input from Port

Mnemonic Opcode Description

IN AL, imm8 E4 ib Input a byte from the port at the address specified by
imm8 and put it into the AL register.

IN AX, imm8 E5 ib Input a word from the port at the address specified by
imm8 and put it into the AX register.

IN EAX, imm8 E5 ib Input a doubleword from the port at the address
specified by imm8 and put it into the EAX register.

IN AL, DX EC Input a byte from the port at the address specified by the
DX register and put it into the AL register.

IN AX, DX ED Input a word from the port at the address specified by
the DX register and put it into the AX register.

IN EAX, DX ED
Input a doubleword from the port at the address
specified by the DX register and put it into the EAX
register.

[AMD Public Use]

182 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

[AMD Public Use]

General-Purpose 183
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Adds 1 to the specified register or memory location. The CF flag is not affected, even if the operand is
incremented to 0000.

The one-byte forms of this instruction (opcodes 40 through 47) are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.

The forms of the INC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

To perform an increment operation that updates the CF flag, use an ADD instruction with an
immediate operand of 1.

Related Instructions

ADD, DEC

INC Increment by 1

Mnemonic Opcode Description

INC reg/mem8 FE /0 Increment the contents of an 8-bit register or memory
location by 1.

INC reg/mem16 FF /0 Increment the contents of a 16-bit register or memory
location by 1.

INC reg/mem32 FF /0 Increment the contents of a 32-bit register or memory
location by 1.

INC reg/mem64 FF /0 Increment the contents of a 64-bit register or memory
location by 1.

INC reg16 40 +rw
Increment the contents of a 16-bit register by 1.
(These opcodes are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.)

INC reg32 40 +rd
Increment the contents of a 32-bit register by 1.
(These opcodes are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.)

[AMD Public Use]

184 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 185
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Transfers data from the I/O port specified in the DX register to an input buffer specified in the rDI
register and increments or decrements the rDI register according to the setting of the DF flag in the
rFLAGS register.

If the DF flag is 0, the instruction increments rDI by 1, 2, or 4, depending on the number of bytes read.
If the DF flag is 1, it decrements the pointer by 1, 2, or 4.

In 16-bit and 32-bit mode, the INS instruction always uses ES as the data segment. The ES segment
cannot be overridden with a segment override prefix. In 64-bit mode, INS always uses the
unsegmented memory space.

The INS instructions use the explicit memory operand (first operand) to determine the size of the I/O
port, but always use ES:[rDI] for the location of the input buffer. The explicit register operand (second
operand) specifies the I/O port address and must always be DX.

The INSB, INSW, and INSD instructions copy byte, word, and doubleword data, respectively, from
the I/O port (0000h to FFFFh) specified in the DX register to the input buffer specified in the ES:rDI
registers.

If the operand size is 64-bits, the instruction behaves as if the operand size were 32-bits.

If the CPL is higher than the IOPL or the mode is virtual mode, INSx checks the I/O permission bitmap
in the TSS before allowing access to the I/O port. (See volume 2 for details on the TSS I/O permission
bitmap.)

The INSx instructions support the REP prefix for block input of rCX bytes, words, or doublewords.
For details about the REP prefix, see “Repeat Prefixes” on page 12.

INS
INSB
INSW
INSD

Input String

Mnemonic Opcode Description

INS mem8, DX 6C
Input a byte from the port specified by DX, put it into the
memory location specified in ES:rDI, and then
increment or decrement rDI.

INS mem16, DX 6D
Input a word from the port specified by DX register, put it
into the memory location specified in ES:rDI, and then
increment or decrement rDI.

INS mem32, DX 6D
Input a doubleword from the port specified by DX, put it
into the memory location specified in ES:rDI, and then
increment or decrement rDI.

INSB 6C
Input a byte from the port specified by DX, put it into the
memory location specified in ES:rDI, and then
increment or decrement rDI.

[AMD Public Use]

186 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

IN, OUT, OUTSx

rFLAGS Affected

None

Exceptions

INSW 6D
Input a word from the port specified by DX, put it into the
memory location specified in ES:rDI, and then
increment or decrement rDI.

INSD 6D
Input a doubleword from the port specified by DX, put it
into the memory location specified in ES:rDI, and then
increment or decrement rDI.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 187
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Transfers execution to the interrupt handler specified by an 8-bit unsigned immediate value. This value
is an interrupt vector number (00h to FFh), which the processor uses as an index into the interrupt-
descriptor table (IDT).

For detailed descriptions of the steps performed by INTn instructions, see the following:

• Legacy-Mode Interrupts: “Virtual-8086 Mode Interrupt Control Transfers” in Volume 2.

• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

See also the descriptions of the INT3 instruction on page 367 and the INTO instruction on page 189.

Action
// For functions READ_IDT, READ_DESCRIPTOR, READ_INNER_LEVEL_SP,
// ShadowStacksEnabled and SET_TOKEN_BUSY see "Pseudocode Definition"
// on page 57

INT_N_START:

IF (REAL_MODE)
 INT_N_REAL // INTn real mode
ELSEIF (PROTECTED_MODE)
 INT_N_PROTECTED // INTn protected mode
ELSE // (VIRTUAL_MODE)
 INT_N_VIRTUAL // INTn virtual mode

INT_N_REAL:

temp_int_n_vector = byte-sized interrupt vector specified in
 the instruction, zero-extended to 64 bits

// read target CS:RIP from the real-mode IDT
temp_RIP = READ_MEM.w [idt:temp_int_n_vector*4]
temp_CS = READ_MEM.w [idt:temp_int_n_vector*4+2]

PUSH.w old_RFLAGS
PUSH.w old_CS
PUSH.w next_RIP

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4

INT Interrupt to Vector

Mnemonic Opcode Description

INT imm8 CD ib Call interrupt service routine specified by interrupt
vector imm8.

[AMD Public Use]

188 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

RFLAGS.AC,TF,IF,RF cleared
RIP = temp_RIP

EXIT

INT_N_PROTECTED:

temp_int_n_vector = byte-sized interrupt vector specified in
 the instruction, zero-extended to 64 bits
temp_idt_desc = READ_IDT (temp_int_n_vector)

IF (temp_idt_desc.attr.type == ’taskgate’)
 TASK_SWITCH // using TSS selector in the task gate as the target TSS

// The size of the gate controls the size of the stack pushes
IF (LONG_MODE)
 v = 8-byte // Long mode only uses 64-bit gates
ELSEIF ((temp_idt_desc.attr.type == ’intgate32’) ||
 (temp_idt_desc.attr.type == ’trapgate32’))
 v = 4-byte // Legacy mode, using a 32-bit gate
ELSE
 v = 2-byte // Legacy mode, using a 16-bit gate

temp_RIP = temp_idt_desc.offset

IF (LONG_MODE) // In long mode, read 2nd half of 16-byte interrupt-gate
 { // from the IDT to get the upper 32 bits of target RIP
 temp_upper = READ_MEM.q [idt:temp_int_n_vector*16+8]
 temp_RIP = temp_RIP + (temp_upper SHL 32) // form 64-bit target RIP
 }

CS = READ_DESCRIPTOR (temp_idt_desc.segment, intcs_chk)

IF (CS.attr.conforming == 1)
 temp_CPL = CPL
ELSE
 temp_CPL = CS.attr.dpl

IF (CPL == temp_CPL) // no privilege-level change
 {
 temp_CheckToken = FALSE
 IF (LONG_MODE)
 {
 IF (temp_idt_desc.ist != 0)
 {
 // IDT gate IST is non-zero, do stack switch
 RSP = READ_MEM.q [tss:ist_index*8+28] // fetch new RSP
 RSP = RSP AND 0xFFFFFFFFFFFFFFF0 // ensure 16-byte alignment

 // fetch SSP from ISST if sstk enabled at current privilege

[AMD Public Use]

General-Purpose 189
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 IF (ShadowStacksEnabled(current CPL))
 {
 temp_isst_addr = INTERRUPT_SSP_TABLE_ADDR + (temp_idt_desc.ist*8)
 SSP = READ_MEM.q [tss:temp_isst_addr]
 IF (SSP[2:0] != 0)
 EXCEPTION [#GP(0)] // new SSP must be 8-byte aligned
 temp_CheckToken = TRUE
 }
 }
 PUSH.q old_SS // in long mode, save old SS:RSP to stack
 PUSH.q old_RSP
 } // end long mode

 PUSH.v old_RFLAGS
 PUSH.v old_CS
 PUSH.v next_RIP

 IF (ShadowStacksEnabled(current CPL))
 {
 IF (temp_CheckToken == TRUE)
 SET_SSTK_TOKEN_BUSY(SSP) // vaidate token, set busy
 Align SSP to next 8B boundary, storing 4B of 0 if needed
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS,LIP,SSP to shadow stack
 SSTK_WRITE_MEM.q [SSP-16] = (CS.base + old_RIP)
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP
 SSP = SSP - 24
 } // end shadow stacks enabled @ CPL

 IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]
 RFLAGS.VM,NT,TF,RF cleared
 RFLAGS.IF cleared if interrupt gate
 RIP = temp_RIP
 EXIT
 } // end of INTn to same privilege level

ELSE // INTn to more privileged level
 {
 // (CPL > temp_CPL), changing privilege so get inner level SS:RSP
 CPL = temp_CPL
 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_SP(CPL, temp_idt_desc.ist)

 IF (LONG_MODE)
 temp_RSP = temp_RSP AND 0xFFFFFFFFFFFFFFF0 // force 16-byte alignment
 RSP = temp_RSP
 SS = temp_SS_desc

 IF (ShadowStacksEnabled(new CPL))
 {
 old_SSP = SSP

[AMD Public Use]

190 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 IF ((temp_idt_desc.ist == 0) || (!LONG_MODE))
 SSP = PLn_SSP // where n=new CPL
 ELSEIF ((temp_idt_desc.ist = 0) && (LONG_MODE))
 {
 temp_isst_addr = INTERRUPT_SSP_TABLE_ADDR + (temp_idt_desc.ist*8)
 SSP = READ_MEM.q [tss:temp_isst_addr]
 }
 IF (SSP[2:0] != 0) // new SSP must be 8-byte aligned
 EXCEPTION [#GP(0)]
 }

 // Any #SS from the following pushes uses SS.sel as error code
 PUSH.v old_SS
 PUSH.v old_RSP
 PUSH.v old_RFLAGS
 PUSH.v old_CS
 PUSH.v next_RIP

 IF ((ShadowStacksEnabled(CPL 3) && (old_CPL == 3))
 PL3_SSP = SSP

 IF (ShadowStacksEnabled(new CPL))
 {
 old_SSP = SSP
 SSP = PLn_SSP // where n=new CPL
 SET_SSTK_TOKEN_BUSY(SSP) // validate token, set busy
 IF (old_CPL != 3)
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS, LIP, SSP
 SSTK_WRITE_MEM.q [SSP-16] = LIP // onto the shadow stack
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP
 SSP = SSP - 24
 } // end shadow stacks enabled at new CPL

 IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

 RFLAGS.VM,NT,TF,RF cleared
 RFLAGS.IF cleared if interrupt gate
 RIP = temp_RIP
 EXIT
 } end INTn to more privileged level

INT_N_VIRTUAL:

temp_int_n_vector = byte-sized interrupt vector specified in
 the instruction, zero-extended to 64 bits

IF (CR4.VME == 0) // VME isn’t enabled
 IF (RFLAGS.IOPL == 3)

[AMD Public Use]

General-Purpose 191
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 INT_N_VIRTUAL_TO_PROTECTED
 ELSE
 EXCEPTION [#GP(0)]

temp_IRB_BASE = READ_MEM.w [tss:102] - 32

// Check the VME Interrupt Redirection Bitmap (IRB) to
// see if we should redirect to a virtual-mode handler
temp_VME_REDIRECTION = READ_BIT_ARRAY ([tss:temp_IRB_BASE], temp_int_n_vector)
IF (temp_VME_REDIRECTION == 1)
 { // continue with transition to protected mode
 IF (RFLAGS.IOPL==3)
 INT_N_VIRTUAL_TO_PROTECTED
 ELSE
 EXCEPTION [#GP(0)]
 }
ELSE
 { // INTn stays in virtual mode
 // redirect interrupt through virtual-mode IDT
 temp_RIP = READ_MEM.w [0:temp_int_n_vector*4]
 // read target CS:RIP from the virtual-mode IDT at linear address 0
 temp_CS = READ_MEM.w [0:temp_int_n_vector*4+2]
 IF (RFLAGS.IOPL < 3)
 old_RFLAGS = old_RFLAGS with VIF bit shifted into IF bit, and IOPL = 3
 PUSH.w old_RFLAGS
 PUSH.w old_CS
 PUSH.w next_RIP
 CS.sel = temp_CS
 CS.base = temp_CS SHL 4
 RFLAGS.TF,RF = 0
 IF (RFLAGS.IOPL == 3)
 RFLAGS.IF = 0
 ELSE
 RFLAGS.VIF = 0
 RIP = temp_RIP
 EXIT
 }

INT_N_VIRTUAL_TO_PROTECTED:

temp_idt_desc = READ_IDT (temp_int_n_vector)
IF (temp_idt_desc.attr.type == ’taskgate’)
 TASK_SWITCH // using tss selector in the task gate as the target tss

// The size of the gate controls the size of the stack pushes
IF ((temp_idt_desc.attr.type == ’intgate32’) ||
 (temp_idt_desc.attr.type == ’trapgate32’))
 v = 4-byte // legacy mode, using a 32-bit gate
ELSE // gate is intgate16 or trapgate16
 v = 2-byte // legacy mode, using a 16-bit gate

[AMD Public Use]

192 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

temp_RIP = temp_idt_desc.offset
old_CPL = CPL
CS = READ_DESCRIPTOR(temp_idt_desc.segment, intcs_chk)

IF (CS.attr.dpl !=0) // Handler must run at CPL 0.
 EXCEPTION [#GP(CS.sel)]

CPL = 0
temp_ist = 0 // Legacy mode doesn’t use IST pointers
temp_SS_desc:temp_RSP = READ_INNER_LEVEL_SP(CPL, temp_ist)
RSP = temp_RSP
SS = temp_SS_desc

// Any #SS from the following pushes uses SS.sel as error code
PUSH.v old_GS
PUSH.v old_FS
PUSH.v old_DS
PUSH.v old_ES
PUSH.v old_SS
PUSH.v old_RSP
PUSH.v old_RFLAGS // Pushed with RF = 0
PUSH.v old_CS
PUSH.v next_RIP

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

DS = NULL // can’t use virtual-mode selectors in protected mode
ES = NULL // can’t use virtual-mode selectors in protected mode
FS = NULL // can’t use virtual-mode selectors in protected mode
GS = NULL // can’t use virtual-mode selectors in protected mode
RFLAGS.VM,NT,TF,RF cleared
RFLAGS.IF cleared if interrupt gate
RIP = temp_RIP

IF (ShadowStacksEnabled(CPL 0))
 {
 old_SSP = SSP
 SSP = PL0_SSP // fetch new SSP
 SET_SSTK_TOKEN_BUSY(SSP) // vaidate token, set busy
 IF (old_CPL) != 3
 {
 SSTK_WRITE_MEM.q [SSP-24] = old_CS // push CS, LIP, SSP
 SSTK_WRITE_MEM.q [SSP-16] = LIP // onto the shadow stack
 SSTK_WRITE_MEM.q [SSP-8] = old_SSP
 SSP = SSP - 24
 }
 }

EXIT // end INTn VIRTUAL_TO_PROTECTED

[AMD Public Use]

General-Purpose 193
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

INT 3, INTO, BOUND

rFLAGS Affected

If a task switch occurs, all flags are modified. Otherwise settings are as follows:

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 M M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid TSS, #TS
(selector)

X X As part of a stack switch, the target stack segment selector or
rSP in the TSS was beyond the TSS limit.

X X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.

X X As part of a stack switch, the target stack segment selector’s
TI bit was set, but the LDT selector was a null selector.

X X
As part of a stack switch, the target stack segment selector in
the TSS was beyond the limit of the GDT or LDT descriptor
table.

X X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.

X X
As part of a stack switch, the target stack segment selector in
the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

Segment not
present, #NP
(selector)

X X The accessed code segment, interrupt gate, trap gate, task
gate, or TSS was not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical, and no stack switch occurred.

Stack, #SS
(selector)

X X After a stack switch, a memory address exceeded the stack
segment limit or was non-canonical.

X X
As part of a stack switch, the SS register was loaded with a
non-null segment selector and the segment was marked not
present.

[AMD Public Use]

194 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X The IOPL was less than 3 and CR4.VME was 0.

X
IOPL was less than 3, CR4.VME was 1, and the
corresponding bit in the VME interrupt redirection bitmap was
1.

General protection,
#GP
(selector)

X X X The interrupt vector was beyond the limit of IDT.

X X
The descriptor in the IDT was not an interrupt, trap, or task
gate in legacy mode or not a 64-bit interrupt or trap gate in
long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less
than the CPL.

X X The segment selector specified by the interrupt or trap gate
had its TI bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X
The segment descriptor specified by the interrupt or trap gate
was not a code segment in legacy mode, or not a 64-bit code
segment in long mode.

X The DPL of the segment specified by the interrupt or trap gate
was greater than the CPL.

X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

General-Purpose 195
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Checks the overflow flag (OF) in the rFLAGS register and calls the overflow exception (#OF) handler
if the OF flag is set to 1. This instruction has no effect if the OF flag is cleared to 0. The INTO
instruction detects overflow in signed number addition. See AMD64 Architecture Programmer’s
Manual Volume 1: Application Programming for more information on the OF flag.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

For detailed descriptions of the steps performed by INT instructions, see the following:

• Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.

• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action
IF (64BIT_MODE)
 EXCEPTION[#UD]
IF (RFLAGS.OF == 1) // #OF is a trap, and pushes the rIP of the instruction
 EXCEPTION [#OF] // following INTO.
EXIT

Related Instructions

INT, INT 3, BOUND

rFLAGS Affected

None.

Exceptions

INTO Interrupt to Overflow Vector

Mnemonic Opcode Description

INTO CE Call overflow exception if the overflow flag is set.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086 Protected Cause of Exception

Overflow, #OF X X X The INTO instruction was executed with 0F set to 1.

Invalid opcode,
#UD X Instruction was executed in 64-bit mode.

[AMD Public Use]

196 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Checks the status flags in the rFLAGS register and, if the flags meet the condition specified by the
condition code in the mnemonic (cc), jumps to the target instruction located at the specified relative
offset. Otherwise, execution continues with the instruction following the Jcc instruction.

Unlike the unconditional jump (JMP), conditional jump instructions have only two forms—short and
near conditional jumps. Different opcodes correspond to different forms of one instruction. For
example, the JO instruction (jump if overflow) has opcode 0Fh 80h for its near form and 70h for its
short form, but the mnemonic is the same for both forms. The only difference is that the near form has
a 16- or 32-bit relative displacement, while the short form always has an 8-bit relative displacement.

Mnemonics are provided to deal with the programming semantics of both signed and unsigned
numbers. Instructions tagged A (above) and B (below) are intended for use in unsigned integer code;
those tagged G (greater) and L (less) are intended for use in signed integer code.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-bit or 32-bit
displacement value to 64 bits before adding it to the RIP.

These instructions cannot perform far jumps (to other code segments). To create a far-conditional-
jump code sequence corresponding to a high-level language statement like:

IF A == B THEN GOTO FarLabel

where FarLabel is located in another code segment, use the opposite condition in a conditional short
jump before an unconditional far jump. Such a code sequence might look like:

cmp A,B ; compare operands
jne NextInstr ; continue program if not equal
jmp far FarLabel ; far jump if operands are equal

NextInstr: ; continue program

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Jcc Jump on Condition

Mnemonic Opcode Description

JO rel8off
JO rel16off
JO rel32off

70 cb
0F 80 cw
0F 80 cd

Jump if overflow (OF = 1).

JNO rel8off
JNO rel16off
JNO rel32off

71 cb
0F 81 cw
0F 81 cd

Jump if not overflow (OF = 0).

JB rel8off
JB rel16off
JB rel32off

72 cb
0F 82 cw
0F 82 cd

Jump if below (CF = 1).

[AMD Public Use]

General-Purpose 197
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

JC rel8off
JC rel16off
JC rel32off

72 cb
0F 82 cw
0F 82 cd

Jump if carry (CF = 1).

JNAE rel8off
JNAE rel16off
JNAE rel32off

72 cb
0F 82 cw
0F 82 cd

Jump if not above or equal (CF = 1).

JNB rel8off
JNB rel16off
JNB rel32off

73 cb
0F 83 cw
0F 83 cd

Jump if not below (CF = 0).

JNC rel8off
JNC rel16off
JNC rel32off

73 cb
0F 83 cw
0F 83 cd

Jump if not carry (CF = 0).

JAE rel8off
JAE rel16off
JAE rel32off

73 cb
0F 83 cw
0F 83 cd

Jump if above or equal (CF = 0).

JZ rel8off
JZ rel16off
JZ rel32off

74 cb
0F 84 cw
0F 84 cd

Jump if zero (ZF = 1).

JE rel8off
JE rel16off
JE rel32off

74 cb
0F 84 cw
0F 84 cd

Jump if equal (ZF = 1).

JNZ rel8off
JNZ rel16off
JNZ rel32off

75 cb
0F 85 cw
0F 85 cd

Jump if not zero (ZF = 0).

JNE rel8off
JNE rel16off
JNE rel32off

75 cb
0F 85 cw
0F 85 cd

Jump if not equal (ZF = 0).

JBE rel8off
JBE rel16off
JBE rel32off

76 cb
0F 86 cw
0F 86 cd

Jump if below or equal (CF = 1 or ZF = 1).

JNA rel8off
JNA rel16off
JNA rel32off

76 cb
0F 86 cw
0F 86 cd

Jump if not above (CF = 1 or ZF = 1).

JNBE rel8off
JNBE rel16off
JNBE rel32off

77 cb
0F 87 cw
0F 87 cd

Jump if not below or equal (CF = 0 and ZF = 0).

JA rel8off
JA rel16off
JA rel32off

77 cb
0F 87 cw
0F 87 cd

Jump if above (CF = 0 and ZF = 0).

JS rel8off
JS rel16off
JS rel32off

78 cb
0F 88 cw
0F 88 cd

Jump if sign (SF = 1).

JNS rel8off
JNS rel16off
JNS rel32off

79 cb
0F 89 cw
0F 89 cd

Jump if not sign (SF = 0).

Mnemonic Opcode Description

[AMD Public Use]

198 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

JMP (Near), JMP (Far), JrCXZ

rFLAGS Affected

None

JP rel8off
JP rel16off
JP rel32off

7A cb
0F 8A cw
0F 8A cd

Jump if parity (PF = 1).

JPE rel8off
JPE rel16off
JPE rel32off

7A cb
0F 8A cw
0F 8A cd

Jump if parity even (PF = 1).

JNP rel8off
JNP rel16off
JNP rel32off

7B cb
0F 8B cw
0F 8B cd

Jump if not parity (PF = 0).

JPO rel8off
JPO rel16off
JPO rel32off

7B cb
0F 8B cw
0F 8B cd

Jump if parity odd (PF = 0).

JL rel8off
JL rel16off
JL rel32off

7C cb
0F 8C cw
0F 8C cd

Jump if less (SF <> OF).

JNGE rel8off
JNGE rel16off
JNGE rel32off

7C cb
0F 8C cw
0F 8C cd

Jump if not greater or equal (SF <> OF).

JNL rel8off
JNL rel16off
JNL rel32off

7D cb
0F 8D cw
0F 8D cd

Jump if not less (SF = OF).

JGE rel8off
JGE rel16off
JGE rel32off

7D cb
0F 8D cw
0F 8D cd

Jump if greater or equal (SF = OF).

JLE rel8off
JLE rel16off
JLE rel32off

7E cb
0F 8E cw
0F 8E cd

Jump if less or equal (ZF = 1 or SF <> OF).

JNG rel8off
JNG rel16off
JNG rel32off

7E cb
0F 8E cw
0F 8E cd

Jump if not greater (ZF = 1 or SF <> OF).

JNLE rel8off
JNLE rel16off
JNLE rel32off

7F cb
0F 8F cw
0F 8F cd

Jump if not less or equal (ZF = 0 and SF = OF).

JG rel8off
JG rel16off
JG rel32off

7F cb
0F 8F cw
0F 8F cd

Jump if greater (ZF = 0 and SF = OF).

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 199
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

[AMD Public Use]

200 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Checks the contents of the count register (rCX) and, if 0, jumps to the target instruction located at the
specified 8-bit relative offset. Otherwise, execution continues with the instruction following the
JrCXZ instruction.

The size of the count register (CX, ECX, or RCX) depends on the address-size attribute of the JrCXZ
instruction. Therefore, JRCXZ can only be executed in 64-bit mode and JCXZ cannot be executed in
64-bit mode.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-bit displacement
value to 64 bits before adding it to the RIP.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Related Instructions

Jcc, JMP (Near), JMP (Far)

rFLAGS Affected

None

Exceptions

JCXZ
JECXZ
JRCXZ

Jump if rCX Zero

Mnemonic Opcode Description

JCXZ rel8off E3 cb Jump short if the 16-bit count register (CX) is zero.

JECXZ rel8off E3 cb Jump short if the 32-bit count register (ECX) is zero.

JRCXZ rel8off E3 cb Jump short if the 64-bit count register (RCX) is zero.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical

[AMD Public Use]

General-Purpose 201
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Unconditionally transfers control to a new address without saving the current rIP value. This form of
the instruction jumps to an address in the current code segment and is called a near jump. The target
operand can specify a register, a memory location, or a label.

If the JMP target is specified in a register or memory location, then a 16-, 32-, or 64-bit rIP is read from
the operand, depending on operand size. This rIP is zero-extended to 64 bits.

If the JMP target is specified by a displacement in the instruction, the signed displacement is added to
the rIP (of the following instruction), and the result is truncated to 16, 32, or 64 bits depending on
operand size. The signed displacement can be 8 bits, 16 bits, or 32 bits, depending on the opcode and
the operand size.

For near jumps in 64-bit mode, the operand size defaults to 64 bits. The E9 opcode results in RIP = RIP
+ 32-bit signed displacement, and the FF /4 opcode results in RIP = 64-bit offset from register or
memory. No prefix is available to encode a 32-bit operand size in 64-bit mode.

See JMP (Far) for information on far jumps—jumps to procedures located outside of the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Related Instructions

JMP (Far), Jcc, JrCX

rFLAGS Affected

None.

JMP (Near) Near Jump

Mnemonic Opcode Description

JMP rel8off EB cb Short jump with the target specified by an 8-bit signed
displacement.

JMP rel16off E9 cw Near jump with the target specified by a 16-bit signed
displacement.

JMP rel32off E9 cd Near jump with the target specified by a 32-bit signed
displacement.

JMP reg/mem16 FF /4 Near jump with the target specified reg/mem16.

JMP reg/mem32 FF /4
Near jump with the target specified reg/mem32.
(No prefix for encoding in 64-bit mode.)

JMP reg/mem64 FF /4 Near jump with the target specified reg/mem64.

[AMD Public Use]

202 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 203
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Unconditionally transfers control to a new address without saving the current CS:rIP values. This form
of the instruction jumps to an address outside the current code segment and is called a far jump. The
operand specifies a target selector and offset.

The target operand can be specified by the instruction directly, by containing the far pointer in the jmp
far opcode itself, or indirectly, by referencing a far pointer in memory. In 64-bit mode, only indirect far
jumps are allowed, executing a direct far jmp (opcode EA) will generate an undefined opcode
exception. For both direct and indirect far jumps, if the JMP (Far) operand-size is 16 bits, the
instruction's operand is a 16-bit selector followed by a 16-bit offset. If the operand-size is 32 or 64 bits,
the operand is a 16-bit selector followed by a 32-bit offset.

In all modes, the target selector used by the instruction can be a code selector. Additionally, the target
selector can also be a call gate in protected mode, or a task gate or TSS selector in legacy protected
mode.

• Target is a code segment—Control is transferred to the target CS:rIP. In this case, the target offset
can only be a 16 or 32 bit value, depending on operand-size, and is zero-extended to 64 bits; 64-bit
offsets are only available via call gates. No CPL change is allowed.

• Target is a call gate—The call gate specifies the actual target code segment and offset, and control
is transferred to the target CS:rIP. When jumping through a call gate, the size of the target rIP is 16,
32, or 64 bits, depending on the size of the call gate. If the target rIP is less than 64 bits, it's zero-
extended to 64 bits. In long mode, only 64-bit call gates are allowed, and they must point to 64-bit
code segments. No CPL change is allowed.

• Target is a task gate or a TSS—If the mode is legacy protected mode, then a task switch occurs. See
“Hardware Task-Management in Legacy Mode” in volume 2 for details about task switches.
Hardware task switches are not supported in long mode.

See JMP (Near) for information on near jumps—jumps to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

JMP (Far) Far Jump

Mnemonic Opcode Description

JMP FAR pntr16:16 EA cd Far jump direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

JMP FAR pntr16:32 EA cp Far jump direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

JMP FAR mem16:16 FF /5 Far jump indirect, with the target specified by a far
pointer in memory (16-bit operand size).

JMP FAR mem16:32 FF /5 Far jump indirect, with the target specified by a far
pointer in memory (32- and 64-bit operand size).

[AMD Public Use]

204 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Action
// Far jumps (JMPF)
// See “Pseudocode Definition” on page 57.

JMPF_START:

IF (REAL_MODE)
 JMPF_REAL_OR_VIRTUAL
ELSIF (PROTECTED_MODE)
 JMPF_PROTECTED
ELSE // (VIRTUAL_MODE)
 JMPF_REAL_OR_VIRTUAL

JMPF_REAL_OR_VIRTUAL:

 IF (OPCODE == jmpf [mem]) //JMPF Indirect
 {
 temp_RIP = READ_MEM.z [mem]
 temp_CS = READ_MEM.w [mem+Z]
 }
 ELSE // (OPCODE == jmpf direct)
 {
 temp_RIP = z-sized offset specified in the instruction,
 zero-extended to 64 bits
 temp_CS = selector specified in the instruction
 }

 IF (temp_RIP>CS.limit)
 EXCEPTION [#GP(0)]

 CS.sel = temp_CS
 CS.base = temp_CS SHL 4
 RIP = temp_RIP
 EXIT

JMPF_PROTECTED:
 IF (OPCODE == jmpf [mem]) // JMPF Indirect
 {
 temp_offset = READ_MEM.z [mem]
 temp_sel = READ_MEM.w [mem+Z]
 }
 ELSE // (OPCODE == jmpf direct)
 {
 IF (64BIT_MODE)
 EXCEPTION [#UD] // ’jmpf direct’ is illegal in 64-bit mode

 temp_offset = z-sized offset specified in the instruction,
 zero-extended to 64 bits
 temp_sel = selector specified in the instruction
 }

[AMD Public Use]

General-Purpose 205
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)
 // read descriptor, perform protection and type checks

 IF (temp_desc.attr.type == ’available_tss’)
 TASK_SWITCH // using temp_sel as the target tss selector
 ELSIF (temp_desc.attr.type == ’taskgate’)
 TASK_SWITCH // using the tss selector in the task gate as the
 // target tss
 ELSIF (temp_desc.attr.type == ’code’)
 // if the selector refers to a code descriptor, then
 // the offset we read is the target RIP
 {
 temp_RIP = temp_offset
 CS = temp_desc
 IF ((!64BIT_MODE) && (temp_RIP > CS.limit))
 // temp_RIP can’t be non-canonical because
 // it’s a 16- or 32-bit offset, zero-extended to 64 bits
 {
 EXCEPTION [#GP(0)]
 }
 RIP = temp_RIP
 EXIT
 }
 ELSE
 {
 // (temp_desc.attr.type == ’callgate’)
 // if the selector refers to a call gate, then
 // the target CS and RIP both come from the call gate
 temp_RIP = temp_desc.offset

 IF (LONG_MODE)
 {
 // in long mode, we need to read the 2nd half of a 16-byte call-gate
 // from the gdt/ldt to get the upper 32 bits of the target RIP
 temp_upper = READ_MEM.q [temp_sel+8]
 IF (temp_upper’s extended attribute bits != 0)
 EXCEPTION [#GP(temp_sel)] // Make sure the extended
 // attribute bits are all zero.

 temp_RIP = tempRIP + (temp_upper SHL 32)
 // concatenate both halves of RIP
 }
 CS = READ_DESCRIPTOR (temp_desc.segment, clg_chk)
 // set up new CS base, attr, limits
 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]
 RIP = temp_RIP
 EXIT
 }

[AMD Public Use]

206 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

JMP (Near), Jcc, JrCX

rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The far JUMP indirect opcode (FF /5) had a register operand.

X The far JUMP direct opcode (EA) was executed in 64-bit
mode.

Segment not
present, #NP
(selector)

X The accessed code segment, call gate, task gate, or TSS was
not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

[AMD Public Use]

General-Purpose 207
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X The target code segment selector was a null selector.

X A code, call gate, task gate, or TSS descriptor exceeded the
descriptor table limit.

X A segment selector’s TI bit was set, but the LDT selector was
a null selector.

X

The segment descriptor specified by the instruction was not a
code segment, task gate, call gate or available TSS in legacy
mode, or not a 64-bit code segment or a 64-bit call gate in long
mode.

X
The RPL of the non-conforming code segment selector
specified by the instruction was greater than the CPL, or its
DPL was not equal to the CPL.

X The DPL of the conforming code segment descriptor specified
by the instruction was greater than the CPL.

X
The DPL of the callgate, taskgate, or TSS descriptor specified
by the instruction was less than the CPL or less than its own
RPL.

X The segment selector specified by the call gate or task gate
was a null selector.

X
The segment descriptor specified by the call gate was not a
code segment in legacy mode or not a 64-bit code segment in
long mode.

X The DPL of the segment descriptor specified the call gate was
greater than the CPL and it is a conforming segment.

X The DPL of the segment descriptor specified by the callgate
was not equal to the CPL and it is a non-conforming segment.

X The 64-bit call gate’s extended attribute bits were not zero.

X The TSS descriptor was found in the LDT.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

208 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the lower 8 bits of the rFLAGS register, including sign flag (SF), zero flag (ZF), auxiliary carry
flag (AF), parity flag (PF), and carry flag (CF), into the AH register.

The instruction sets the reserved bits 1, 3, and 5 of the rFLAGS register to 1, 0, and 0, respectively, in
the AH register.

The LAHF instruction is available in 64-bit mode if CPUID Fn8000_0001_ECX[LahfSahf] = 1. It is
always available in the other operating modes (including compatibility mode)

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

SAHF

rFLAGS Affected

None.

Exceptions

LAHF Load Status Flags into AH Register

Mnemonic Opcode Description

LAHF 9F Load the SF, ZF, AF, PF, and CF flags into the AH
register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X The LAHF instruction is not supported in 64-bit mode, as

indicated by CPUID Fn8000_0001_ECX[LahfSahf] = 0.

[AMD Public Use]

General-Purpose 209
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads a far pointer from a memory location (second operand) into a segment register (mnemonic) and
general-purpose register (first operand). The instruction stores the 16-bit segment selector of the
pointer into the segment register and the 16-bit or 32-bit offset portion into the general-purpose
register. The operand-size attribute determines whether the pointer loaded is 32 or 48 bits in length. A
64-bit operand is not supported.

These instructions load associated segment-descriptor information into the hidden portion of the
specified segment register.

Related Instructions

None

rFLAGS Affected

None

LDS
LES
LFS
LGS
LSS

Load Far Pointer

Mnemonic Opcode Description

LDS reg16, mem16:16 C5 /r Load DS:reg16 with a far pointer from memory.
[Redefined as VEX (2-byte prefix) in 64-bit mode.]

LDS reg32, mem16:32 C5 /r Load DS:reg32 with a far pointer from memory.
[Redefined as VEX (2-byte prefix) in 64-bit mode.]

LES reg16, mem16:16 C4 /r Load ES:reg16 with a far pointer from memory.
[Redefined as VEX (3-byte prefix) in 64-bit mode.]

LES reg32, mem16:32 C4 /r Load ES:reg32 with a far pointer from memory.
[Redefined as VEX (3-byte prefix) in 64-bit mode.]

LFS reg16, mem16:16 0F B4 /r Load FS:reg16 with a 32-bit far pointer from memory.

LFS reg32, mem16:32 0F B4 /r Load FS:reg32 with a 48-bit far pointer from memory.

LGS reg16, mem16:16 0F B5 /r Load GS:reg16 with a 32-bit far pointer from memory.

LGS reg32, mem16:32 0F B5 /r Load GS:reg32 with a 48-bit far pointer from memory.

LSS reg16, mem16:16 0F B2 /r Load SS:reg16 with a 32-bit far pointer from memory.

LSS reg32, mem16:32 0F B2 /r Load SS:reg32 with a 48-bit far pointer from memory.

[AMD Public Use]

210 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The source operand was a register.

X LDS or LES was executed in 64-bit mode and not subject to
interpretation as a VEX prefix.

Segment not
present, #NP
(selector)

X The DS, ES, FS, or GS register was loaded with a non-null
segment selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector

and the segment was marked not present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X A segment register was loaded, but the segment descriptor
exceeded the descriptor table limit.

X A segment register was loaded and the segment selector’s TI
bit was set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL
and the segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was
not a writable data segment.

X
The DS, ES, FS, or GS register was loaded and the segment
pointed to was a data or non-conforming code segment, but
the RPL or CPL was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 211
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Computes the effective address of a memory location (second operand) and stores it in a general-
purpose register (first operand).

The address size of the memory location and the size of the register determine the specific action taken
by the instruction, as follows:

• If the address size and the register size are the same, the instruction stores the effective address as
computed.

• If the address size is longer than the register size, the instruction truncates the effective address to
the size of the register.

• If the address size is shorter than the register size, the instruction zero-extends the effective address
to the size of the register.

If the second operand is a register, an undefined-opcode exception occurs.

The LEA instruction is related to the MOV instruction, which copies data from a memory location to a
register, but LEA takes the address of the source operand, whereas MOV takes the contents of the
memory location specified by the source operand. In the simplest cases, LEA can be replaced with
MOV. For example:

lea eax, [ebx]

has the same effect as:

mov eax, ebx

However, LEA allows software to use any valid ModRM and SIB addressing mode for the source
operand. For example:

lea eax, [ebx+edi]

loads the sum of the EBX and EDI registers into the EAX register. This could not be accomplished by
a single MOV instruction.

The LEA instruction has a limited capability to perform multiplication of operands in general-purpose
registers using scaled-index addressing. For example:

lea eax, [ebx+ebx*8]

loads the value of the EBX register, multiplied by 9, into the EAX register. Possible values of
multipliers are 2, 4, 8, 3, 5, and 9.

The LEA instruction is widely used in string-processing and array-processing to initialize an index
register (rSI or rDI) before performing string instructions such as MOVSx. It is also used to initialize
the rBX register before performing the XLAT instruction in programs that perform character
translations. In data structures, the LEA instruction can calculate addresses of operands stored in
memory, and in particular, addresses of array or string elements.

LEA Load Effective Address

[AMD Public Use]

212 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

MOV

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

LEA reg16, mem 8D /r Store effective address in a 16-bit register.

LEA reg32, mem 8D /r Store effective address in a 32-bit register.

LEA reg64, mem 8D /r Store effective address in a 64-bit register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The source operand was a register.

[AMD Public Use]

General-Purpose 213
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Releases a stack frame created by a previous ENTER instruction. To release the frame, it copies the
frame pointer (in the rBP register) to the stack pointer register (rSP), and then pops the old frame
pointer from the stack into the rBP register, thus restoring the stack frame of the calling procedure.

The 32-bit LEAVE instruction is equivalent to the following 32-bit operation:

MOV ESP,EBP
POP EBP

To return program control to the calling procedure, execute a RET instruction after the LEAVE
instruction.

In 64-bit mode, the LEAVE operand size defaults to 64 bits, and there is no prefix available for
encoding a 32-bit operand size.

Related Instructions

ENTER

rFLAGS Affected

None

Exceptions

LEAVE Delete Procedure Stack Frame

Mnemonic Opcode Description

LEAVE C9 Set the stack pointer register SP to the value in the BP
register and pop BP.

LEAVE C9
Set the stack pointer register ESP to the value in the
EBP register and pop EBP.
(No prefix for encoding this in 64-bit mode.)

LEAVE C9 Set the stack pointer register RSP to the value in the
RBP register and pop RBP.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

214 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Acts as a barrier to force strong memory ordering (serialization) between load instructions preceding
the LFENCE and load instructions that follow the LFENCE. Loads from differing memory types may
be performed out of order, in particular between WC/WC+ and other memory types. The LFENCE
instruction assures that the system completes all previous loads before executing subsequent loads.

The LFENCE instruction is weakly-ordered with respect to store instructions, data and instruction
prefetches, and the SFENCE instruction. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around an LFENCE.

In addition to load instructions, the LFENCE instruction is strongly ordered with respect to other
LFENCE instructions, as well as MFENCE and other serializing instructions. Further details on the
use of MFENCE to order accesses among differing memory types may be found in AMD64
Architecture Programmer’s Manual Volume 2: System Programming, section 7.4 “Memory Types” on
page 172.

LFENCE is an SSE2 instruction. Support for SSE2 instructions is indicated by CPUID
Fn0000_0001_EDX[SSE2] = 1.

In some systems, LFENCE may be configured to be dispatch serializing. In systems where CPUID
Fn8000_0021_EAX[LFenceAlwaysSerializing](bit 2) = 1, LFENCE is always dispatch serializing.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

MFENCE, SFENCE, MCOMMIT

rFLAGS Affected

None

Exceptions

LFENCE Load Fence

Mnemonic Opcode Description

LFENCE 0F AE E8 Force strong ordering of (serialize) load operations.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X SSE2 instructions are not supported, as indicated by CPUID

Fn0000_0001_EDX[SSE2] = 0.

[AMD Public Use]

General-Purpose 215
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Parses the Lightweight Profiling Control Block at the address contained in the specified register. If the
LWPCB is valid, writes the address into the LWP_CBADDR MSR and enables Lightweight Profiling.

See Volume 2, Chapter 13, for an overview of the lightweight profiling facility.

The LWPCB must be in memory that is readable and writable in user mode. For better performance, it
should be aligned on a 64-byte boundary in memory and placed so that it does not cross a page
boundary, though neither of these suggestions is required.

The LWPCB address in the register is truncated to 32 bits if the operand size is 32.

Action

1. If LWP is not available or if the machine is not in protected mode, LLWPCB immediately causes
a #UD exception.

2. If LWP is already enabled, the processor flushes the LWP state to memory in the old LWPCB. See
description of the SLWPCB instruction on page 332 for details on saving the active LWP state.

If the flush causes a #PF exception, LWP remains enabled with the old LWPCB still active. Note
that the flush is done before LWP attempts to access the new LWPCB.

3. If the specified LWPCB address is 0, LWP is disabled and the execution of LLWPCB is complete.

4. The LWPCB address is non-zero. LLWPCB validates it as follows:

- If any part of the LWPCB or the ring buffer is beyond the data segment limit, LLWPCB causes
a #GP exception.

- If the ring buffer size is below the implementation’s minimum ring buffer size, LLWPCB
causes a #GP exception.

- While doing these checks, LWP reads and writes the LWPCB, which may cause a #PF
exception.

If any of these exceptions occurs, LLWPCB aborts and LWP is left disabled. Usually, the operating
system will handle a #PF exception by making the memory available and returning to retry the
LLWPCB instruction. The #GP exceptions indicate application programming errors.

5. LWP converts the LWPCB address and the ring buffer address to linear address form by adding
the DS base address and stores the addresses internally.

6. LWP examines the LWPCB.Flags field to determine which events should be enabled and whether
threshold interrupts should be taken. It clears the bits for any features that are not available and
stores the result back to LWPCB.Flags to inform the application of the actual LWP state.

7. For each event being enabled, LWP examines the EventIntervaln value and, if necessary, sets it to
an implementation-defined minimum. (The minimum event interval for LWPVAL is zero.) It
loads its internal counter for the event from the value in EventCountern. A zero or negative value

LLWPCB Load Lightweight Profiling Control Block
Address

[AMD Public Use]

216 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

in EventCountern means that the next event of that type will cause an event record to be stored. To
count every jth event, a program should set EventIntervaln to j-1 and EventCountern to some
starting value (where j-1 is a good initial count). If the counter value is larger than the interval, the
first event record will be stored after a larger number of events than subsequent records.

8. LWP is started. The execution of LLWPCB is complete.

Notes

If none of the bits in the LWPCB.Flags specifies an available event, LLWPCB still enables LWP to
allow the use of the LWPINS instruction. However, no other event records will be stored.

A program can temporarily disable LWP by executing SLWPCB to obtain the current LWPCB
address, saving that value, and then executing LLWPCB with a register containing 0. It can later re-
enable LWP by executing LLWPCB with a register containing the saved address.

When LWP is enabled, it is typically an error to execute LLWPCB with the address of the active
LWPCB. When the hardware flushes the existing LWP state into the LWPCB, it may overwrite fields
that the application may have set to new LWP parameter values. The flushed values will then be loaded
as LWP is restarted. To reuse an LWPCB, an application should stop LWP by passing a zero to
LLWPCB, then prepare the LWPCB with new parameters and execute LLWPCB again to restart LWP.

Internally, LWP keeps the linear address of the LWPCB and the ring buffer. If the application changes
the value of DS, LWP will continue to collect samples even if the new DS value would no longer allow
access the LWPCB or the ring buffer. However, a #GP fault will occur if the application uses XRSTOR
to restore LWP state saved by XSAVE. Programs should avoid using XSAVE/XRSTOR on LWP state
if DS has changed. This only applies when the CPL != 0; kernel mode operation of XRSTOR is
unaffected by changes to DS. See instruction listing for XSAVE in Volume 4 for details.

Operating system and hypervisor code that runs when CPL ≠ 3 should use XSAVE and XRSTOR to
control LWP rather than using LLWPCB. Use WRMSR to write 0 to the LWP_CBADDR MSR to
immediately stop LWP without saving its current state.

It is possible to execute LLWPCB when the CPL != 3 or when SMM is active, but the system software
must ensure that the LWPCB and the entire ring buffer are properly mapped into writable memory in
order to avoid a #PF or #GP fault. Furthermore, if LWP is enabled when a kernel executes LLWPCB,
both the old and new control blocks and ring buffers must be accessible. Using LLWPCB in these
situations is not recommended.

LLWPCB is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000_0001_ECX[LWP] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

[AMD Public Use]

General-Purpose 217
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 0. ModRM.r/m (augmented by XOP.R)
specifies the register containing the effective address of the LWPCB. ModRM.mod is 11b.

Related Instructions

SLWPCB, LWPVAL, LWPINS

rFLAGS Affected

None

Exceptions

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

LLWPCB reg32 8F RXB.09 0.1111.0.00 12 /0

LLWPCB reg64 8F RXB.09 1.1111.0.00 12 /0

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode,
#UD

X X X
LWP instructions are not supported, as indicated by CPUID
Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.

X LWP is not available, or mod != 11b, or vvvv != 1111b.

General protection,
#GP

X
Any part of the LWPCB or the event ring buffer is beyond the
DS segment limit.

X Any restrictions on the contents of the LWPCB are violated

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X
LWP was already enabled and a page fault resulted from
reading or writing the old LWPCB.

X
LWP was already enabled and a page fault resulted from
flushing an event to the old ring buffer.

[AMD Public Use]

218 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the byte, word, doubleword, or quadword in the memory location pointed to by the DS:rSI
registers to the AL, AX, EAX, or RAX register, depending on the size of the operand, and then
increments or decrements the rSI register according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It increments or
decrements rSI by 1, 2, 4, or 8, depending on the number of bytes being loaded.

The forms of the LODS instruction with an explicit operand address the operand at seg:[rSI]. The
value of seg defaults to the DS segment, but may be overridden by a segment prefix. The explicit
operand serves only to specify the type (size) of the value being copied and the specific registers used.

The no-operands forms of the instruction always use the DS:[rSI] registers to point to the value to be
copied (they do not allow a segment prefix). The mnemonic determines the size of the operand and the
specific registers used.

The LODSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12. More often, software uses the LODSx instruction inside a loop controlled by a
LOOPcc instruction as a more efficient replacement for instructions like:

mov eax, dword ptr ds:[esi]
add esi, 4

The LODSQ instruction can only be used in 64-bit mode.

LODS
LODSB
LODSW
LODSD
LODSQ

Load String

Mnemonic Opcode Description

LODS mem8 AC Load byte at DS:rSI into AL and then increment or
decrement rSI.

LODS mem16 AD Load word at DS:rSI into AX and then increment or
decrement rSI.

LODS mem32 AD Load doubleword at DS:rSI into EAX and then
increment or decrement rSI.

LODS mem64 AD Load quadword at DS:rSI into RAX and then increment
or decrement rSI.

LODSB AC Load byte at DS:rSI into AL and then increment or
decrement rSI.

LODSW AD Load the word at DS:rSI into AX and then increment or
decrement rSI.

[AMD Public Use]

General-Purpose 219
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

MOVSx, STOSx

rFLAGS Affected

None

Exceptions

LODSD AD Load doubleword at DS:rSI into EAX and then
increment or decrement rSI.

LODSQ AD Load quadword at DS:rSI into RAX and then increment
or decrement rSI.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

220 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Decrements the count register (rCX) by 1, then, if rCX is not 0 and the ZF flag meets the condition
specified by the mnemonic, it jumps to the target instruction specified by the signed 8-bit relative
offset. Otherwise, it continues with the next instruction after the LOOPcc instruction.

The size of the count register used (CX, ECX, or RCX) depends on the address-size attribute of the
LOOPcc instruction.

The LOOP instruction ignores the state of the ZF flag.

The LOOPE and LOOPZ instructions jump if rCX is not 0 and the ZF flag is set to 1. In other words,
the instruction exits the loop (falls through to the next instruction) if rCX becomes 0 or ZF = 0.

The LOOPNE and LOOPNZ instructions jump if rCX is not 0 and ZF flag is cleared to 0. In other
words, the instruction exits the loop if rCX becomes 0 or ZF = 1.

The LOOPcc instruction does not change the state of the ZF flag. Typically, the loop contains a
compare instruction to set or clear the ZF flag.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits without the need for a REX prefix, and the
processor sign-extends the 8-bit offset before adding it to the RIP.

Related Instructions

None

LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ

Loop

Mnemonic Opcode Description

LOOP rel8off E2 cb Decrement rCX, then jump short if rCX is not 0.

LOOPE rel8off E1 cb Decrement rCX, then jump short if rCX is not 0 and ZF is
1.

LOOPNE rel8off E0 cb Decrement rCX, then Jump short if rCX is not 0 and ZF
is 0.

LOOPNZ rel8off E0 cb Decrement rCX, then Jump short if rCX is not 0 and ZF
is 0.

LOOPZ rel8off E1 cb Decrement rCX, then Jump short if rCX is not 0 and ZF
is 1.

[AMD Public Use]

General-Purpose 221
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

[AMD Public Use]

222 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Inserts programmed event record into the LWP event ring buffer in memory and advances the ring
buffer pointer.

Refer to the description of the programmed event record in Volume 2, Chapter 13. The record has an
EventId of 255. The value in the register specified by vvvv (first operand) is stored in the Data2 field at
bytes 23–16 (zero extended if the operand size is 32). The value in a register or memory location
(second operand) is stored in the Data1 field at bytes 7–4. The immediate value (third operand) is
truncated to 16 bits and stored in the Flags field at bytes 3–2.

If the ring buffer is not full, or if LWP is running in Continuous Mode, the head pointer is advanced
and the CF flag is cleared. If the ring buffer threshold is exceeded and threshold interrupts are enabled,
an interrupt is signaled. If LWP is in Continuous Mode and the new head pointer equals the tail pointer,
the MissedEvents counter is incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in Synchronized Mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, the head pointer is not
advanced, and the CF flag is set.

LWPINS generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPINS simply clears CF if LWP is not enabled. This allows LWPINS instructions to be harmlessly
ignored if profiling is turned off.

It is possible to execute LWPINS when the CPL ≠ 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPINS in these situations
is not recommended.

LWPINS can be used by a program to mark significant events in the ring buffer as they occur. For
instance, a program might capture information on changes in the process’ address space such as library
loads and unloads, or changes in the execution environment such as a change in the state of a user-
mode thread of control.

Note that when the LWPINS instruction finishes writing a event record in the event ring buffer, it
counts as an instruction retired. If the Instructions Retired event is active, this might cause that counter
to become negative and immediately store another event record with the same instruction address (but
different EventId values).

LWPINS is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000_0001_ECX[LWP] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

LWPINS Lightweight Profiling Insert Record

[AMD Public Use]

General-Purpose 223
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 0. The {mod, r/m} field of the ModRM
byte (augmented by XOP.R) encodes the second operand. A 4-byte immediate field follows ModRM.

Related Instructions

LLWPCB, SLWPCB, LWPVAL

rFLAGS Affected

Exceptions

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

LWPINS reg32.vvvv, reg/mem32, imm32 8F RXB.0A 0.src1.0.00 12 /0 /imm32

LWPINS reg64.vvvv, reg/mem32, imm32 8F RXB.0A 1.src1.0.00 12 /0 /imm32

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode,
#UD

X X X
LWP instructions are not supported, as indicated by CPUID
Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.

X LWP is not available.

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X A page fault resulted from writing the event to the ring buffer.

X
A page fault resulted from reading a modrm operand from
memory.

General protection,
#GP

X A modrm operand in memory exceeded the segment limit.

[AMD Public Use]

224 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Decrements the event counter associated with the programmed value sample event (see “Programmed
Value Sample” in Volume 2, Chapter 13). If the resulting counter value is negative, inserts an event
record into the LWP event ring buffer in memory and advances the ring buffer pointer.

Refer to the description of the programmed value sample record in Volume 2, Chapter 13. The event
record has an EventId of 1. The value in the register specified by vvvv (first operand) is stored in the
Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register or memory
location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value (third
operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2.

If the programmed value sample record is not written to the event ring buffer, the memory location of
the second operand (assuming it is memory-based) is not accessed.

If the ring buffer is not full or if LWP is running in continuous mode, the head pointer is advanced and
the event counter is reset to the interval for the event (subject to randomization). If the ring buffer
threshold is exceeded and threshold interrupts are enabled, an interrupt is signaled. If LWP is in
Continuous Mode and the new head pointer equals the tail pointer, the MissedEvents counter is
incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in Synchronized Mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, and the head pointer is
not advanced.

LWPVAL generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPVAL does nothing if LWP is not enabled or if the Programmed Value Sample event is not enabled
in LWPCB.Flags. This allows LWPVAL instructions to be harmlessly ignored if profiling is turned off.

It is possible to execute LWPVAL when the CPL != 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPVAL in these situations
is not recommended.

LWPVAL can be used by a program to perform value profiling. This is the technique of sampling the
value of some program variable at a predetermined frequency. For example, a managed runtime might
use LWPVAL to sample the value of the divisor for a frequently executed divide instruction in order to
determine whether to generate specialized code for a common division. It might sample the target
location of an indirect branch or call to see if one destination is more frequent than others. Since
LWPVAL does not modify any registers or condition codes, it can be inserted harmlessly between any
instructions.

LWPVAL Lightweight Profiling Insert Value

[AMD Public Use]

General-Purpose 225
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Note

When LWPVAL completes (whether or not it stored an event record in the event ring buffer), it counts
as an instruction retired. If the Instructions Retired event is active, this might cause that counter to
become negative and immediately store an event record. If LWPVAL also stored an event record, the
buffer will contain two records with the same instruction address (but different EventId values).

LWPVAL is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000_0001_ECX[LWP] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 001b. The {mod, r/m} field of the
ModRM byte (augmented by XOP.R) encodes the second operand. A four-byte immediate field
follows ModRM.

Related Instructions

LLWPCB, SLWPCB, LWPINS

rFLAGS Affected

None

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

LWPVAL reg32.vvvv, reg/mem32, imm32 8F RXB.0A 0.src1.0.00 12 /1 /imm32

LWPVAL reg64.vvvv, reg/mem32, imm32 8F RXB.0A 1.src1.0.00 12 /1 /imm32

[AMD Public Use]

226 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode,
#UD

X X X
LWP instructions are not supported, as indicated by CPUID
Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.

X LWP is not available.

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X A page fault resulted from writing the event to the ring buffer.

X
A page fault resulted from reading a modrm operand from
memory.

General protection,
#GP

X A modrm operand in memory exceeded the segment limit.

[AMD Public Use]

General-Purpose 227
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Counts the number of leading zero bits in the 16-, 32-, or 64-bit general purpose register or memory
source operand. Counting starts downward from the most significant bit and stops when the highest bit
having a value of 1 is encountered or when the least significant bit is encountered. The count is written
to the destination register.

This instruction has two operands:

LZCNT dest, src

If the input operand is zero, CF is set to 1 and the size (in bits) of the input operand is written to the
destination register. Otherwise, CF is cleared.

If the most significant bit is a one, the ZF flag is set to 1, zero is written to the destination register.
Otherwise, ZF is cleared.

LZCNT is an Advanced Bit Manipulation (ABM) instruction. Support for the LZCNT instruction is
indicated by CPUID Fn8000_0001_ECX[ABM] = 1. If the LZCNT instruction is not available, the
encoding is interpreted as the BSR instruction. Software MUST check the CPUID bit once per
program or library initialization before using the LZCNT instruction, or inconsistent behavior may
result.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, POPCNT, T1MSKC, TZCNT, TZMSK

LZCNT Count Leading Zeros

Mnemonic Opcode Description

LZCNT reg16, reg/mem16 F3 0F BD /r Count the number of leading zeros in reg/mem16.

LZCNT reg32, reg/mem32 F3 0F BD /r Count the number of leading zeros in reg/mem32.

LZCNT reg64, reg/mem64 F3 0F BD /r Count the number of leading zeros in reg/mem64.

[AMD Public Use]

228 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 229
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

MCOMMIT provides a fencing and error detection capability for stores to system memory
components that have delayed error reporting. Execution of MCOMMIT ensures that any preceding
stores in the thread to such memory components have completed (target locations written, unless
inhibited by an error condition) and that any errors encountered by those stores have been signaled to
associated error logging resources. If any such errors are present, MCOMMIT will clear rFLAGS.CF
to zero, otherwise it will set rFLAGS.CF to one.

These errors are specific to the design of the platform and are reported only via MCOMMIT and in
associated error logging registers on the platform; they are not visible to the Machine Check
Architecture. Execution of MCOMMIT does not change any state in the error logging resources. Any
error indications will need to be cleared by privileged software before MCOMMIT can return an error-
free indication. Details on the error logging mechanisms may be found in the Processor Programming
Reference manual for any product that supports this technology and the MCOMMIT instruction.

The MCOMMIT instruction is supported if the feature flag CPUID Fn8000_0008_EBX[MCOMMIT]
=1 (bit 8). The MCOMMIT instruction must be explicitly enabled by the OS by setting
EFER.MCOMMIT=1 (EFER bit 17), otherwise attempted execution of MCOMMIT will result in a
#UD exception.

MCOMMIT uses the same ordering rules as the SFENCE instruction. It may be executed at any
privilege level.

Instruction Encoding

Related Instructions

LFENCE, SFENCE, MFENCE

rFLAGS Affected

MCOMMIT Commit Stores to Memory

Mnemonic Opcode Description

MCOMMIT F3 0F 01 FA Commit stores to memory

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

230 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Acts as a barrier to force strong memory ordering (serialization) between load and store instructions
preceding the MFENCE, and load and store instructions that follow the MFENCE. The processor may
perform loads out of program order with respect to non-conflicting stores for certain memory types.
The MFENCE instruction ensures that the system completes all previous memory accesses before
executing subsequent accesses.

The MFENCE instruction is weakly-ordered with respect to data and instruction prefetches.
Speculative loads initiated by the processor, or specified explicitly using cache-prefetch instructions,
can be reordered around an MFENCE.

In addition to load and store instructions, the MFENCE instruction is strongly ordered with respect to
other MFENCE instructions, LFENCE instructions, SFENCE instructions, serializing instructions,
and CLFLUSH instructions. Further details on the use of MFENCE to order accesses among differing
memory types may be found in AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, section 7.4 “Memory Types” on page 172.

The MFENCE instruction is a serializing instruction.

MFENCE is an SSE2 instruction. Support for SSE2 instructions is indicated by CPUID
Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Related Instructions

LFENCE, SFENCE, MCOMMIT

rFLAGS Affected

None

Exceptions

MFENCE Memory Fence

Mnemonic Opcode Description

MFENCE 0F AE F0 Force strong ordering of (serialized) load and store
operations.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X SSE2 instructions are not supported, as indicated by CPUID

Fn0000_0001_EDX[SSE2] = 0.

[AMD Public Use]

General-Purpose 231
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Establishes a linear address range of memory for hardware to monitor and puts the processor in the
monitor event pending state. When in the monitor event pending state, the monitoring hardware
detects stores to the specified linear address range and causes the processor to exit the monitor event
pending state. The MWAIT and MWAITX instructions use the state of the monitor hardware.

The address range should be a write-back memory type. Executing MONITORX on an address range
for a non-write-back memory type is not guaranteed to cause the processor to enter the monitor event
pending state. The size of the linear address range that is established by the MONITORX instruction
can be determined by CPUID function 0000_0005h.

The rAX register provides the effective address. The DS segment is the default segment used to create
the linear address. Segment overrides may be used with the MONITORX instruction.

The ECX register specifies optional extensions for the MONITORX instruction. There are currently
no extensions defined and setting any bits in ECX will result in a #GP exception. The ECX register
operand is implicitly 32-bits.

The EDX register specifies optional hints for the MONITORX instruction. There are currently no
hints defined and EDX is ignored by the processor. The EDX register operand is implicitly 32-bits.

The MONITORX in s t ruc t i on can be execu t ed a t any p r i v i l ege l eve l and MSR
C001_0015h[MonMwaitUserEn] has no effect on MONITORX.

MONITORX performs the same segmentation and paging checks as a 1-byte read.

Support for the MONITORX instruction is indicated by CPUID Fn8000_0001_ECX[MONITORX]
(bit 29) = 1.

Software must check the CPUID bit once per program or library initialization before using the
MONITORX instruction, or inconsistent behavior may result.

The following pseudo-code shows typical usage of a MONITORX/MWAITX pair:

EAX = Linear_Address_to_Monitor;
ECX = 0; // Extensions
EDX = 0; // Hints
while (!matching_store_done){
 MONITORX EAX, ECX, EDX
IF (!matching_store_done) {
 MWAITX EAX, ECX
 }
}

MONITORX Setup Monitor Address

[AMD Public Use]

232 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

MWAITX, MONITOR, MWAIT

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MONITORX 0F 01 FA Establishes a range to be monitored

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X MONITORX/MWAITX instructions are not supported, as

indicated by CPUID Fn8000_0001_ECX[MONITORX] =0

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical

X X X ECX was non-zero

X A null data segment was used to reference memory

Page Fault, #PF X X A page fault resulted from the execution of the instruction

[AMD Public Use]

General-Purpose 233
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies an immediate value or the value in a general-purpose register, segment register, or memory
location (second operand) to a general-purpose register, segment register, or memory location. The
source and destination must be the same size (byte, word, doubleword, or quadword) and cannot both
be memory locations.

In opcodes A0 through A3, the memory offsets (called moffsets) are address sized. In 64-bit mode,
memory offsets default to 64 bits. Opcodes A0–A3, in 64-bit mode, are the only cases that support a
64-bit offset value. (In all other cases, offsets and displacements are a maximum of 32 bits.) The B8
through BF (B8 +rq) opcodes, in 64-bit mode, are the only cases that support a 64-bit immediate value
(in all other cases, immediate values are a maximum of 32 bits).

When reading segment-registers with a 32-bit operand size, the processor zero-extends the 16-bit
selector results to 32 bits. When reading segment-registers with a 64-bit operand size, the processor
zero-extends the 16-bit selector to 64 bits. If the destination operand specifies a segment register (DS,
ES, FS, GS, or SS), the source operand must be a valid segment selector.

It is possible to move a null segment selector value (0000–0003h) into the DS, ES, FS, or GS register.
This action does not cause a general protection fault, but a subsequent reference to such a segment
does cause a #GP exception. For more information about segment selectors, see “Segment Selectors
and Registers” in Volume 2.

When the MOV instruction is used to load the SS register, the processor blocks external interrupts until
after the execution of the following instruction. This action allows the following instruction to be a
MOV instruction to load a stack pointer into the ESP register (MOV ESP,val) before an interrupt
occurs. However, the LSS instruction provides a more efficient method of loading SS and ESP.

Attempting to use the MOV instruction to load the CS register generates an invalid opcode exception
(#UD). Use the far JMP, CALL, or RET instructions to load the CS register.

To initialize a register to 0, rather than using a MOV instruction, it may be more efficient to use the
XOR instruction with identical destination and source operands.

MOV Move

Mnemonic Opcode Description

MOV reg/mem8, reg8 88 /r Move the contents of an 8-bit register to an 8-bit
destination register or memory operand.

MOV reg/mem16, reg16 89 /r Move the contents of a 16-bit register to a 16-bit
destination register or memory operand.

MOV reg/mem32, reg32 89 /r Move the contents of a 32-bit register to a 32-bit
destination register or memory operand.

MOV reg/mem64, reg64 89 /r Move the contents of a 64-bit register to a 64-bit
destination register or memory operand.

MOV reg8, reg/mem8 8A /r Move the contents of an 8-bit register or memory
operand to an 8-bit destination register.

[AMD Public Use]

234 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

MOV reg16, reg/mem16 8B /r Move the contents of a 16-bit register or memory
operand to a 16-bit destination register.

MOV reg32, reg/mem32 8B /r Move the contents of a 32-bit register or memory
operand to a 32-bit destination register.

MOV reg64, reg/mem64 8B /r Move the contents of a 64-bit register or memory
operand to a 64-bit destination register.

MOV reg16/32/64/mem16,
segReg 8C /r

Move the contents of a segment register to a 16-bit, 32-
bit, or 64-bit destination register or to a 16-bit memory
operand.

MOV segReg, reg/mem16 8E /r Move the contents of a 16-bit register or memory
operand to a segment register.

MOV AL, moffset8 A0 Move 8-bit data at a specified memory offset to the AL
register.

MOV AX, moffset16 A1 Move 16-bit data at a specified memory offset to the AX
register.

MOV EAX, moffset32 A1 Move 32-bit data at a specified memory offset to the
EAX register.

MOV RAX, moffset64 A1 Move 64-bit data at a specified memory offset to the
RAX register.

MOV moffset8, AL A2 Move the contents of the AL register to an 8-bit memory
offset.

MOV moffset16, AX A3 Move the contents of the AX register to a 16-bit memory
offset.

MOV moffset32, EAX A3 Move the contents of the EAX register to a 32-bit
memory offset.

MOV moffset64, RAX A3 Move the contents of the RAX register to a 64-bit
memory offset.

MOV reg8, imm8 B0 +rb ib Move an 8-bit immediate value into an 8-bit register.

MOV reg16, imm16 B8 +rw iw Move a 16-bit immediate value into a 16-bit register.

MOV reg32, imm32 B8 +rd id Move an 32-bit immediate value into a 32-bit register.

MOV reg64, imm64 B8 +rq iq Move an 64-bit immediate value into a 64-bit register.

MOV reg/mem8, imm8 C6 /0 ib Move an 8-bit immediate value to an 8-bit register or
memory operand.

MOV reg/mem16, imm16 C7 /0 iw Move a 16-bit immediate value to a 16-bit register or
memory operand.

MOV reg/mem32, imm32 C7 /0 id Move a 32-bit immediate value to a 32-bit register or
memory operand.

MOV reg/mem64, imm32 C7 /0 id Move a 32-bit signed immediate value to a 64-bit
register or memory operand.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 235
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

MOV CRn, MOV DRn, MOVD, MOVSX, MOVZX, MOVSXD, MOVSx

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X An attempt was made to load the CS register.

Segment not
present, #NP
(selector)

X The DS, ES, FS, or GS register was loaded with a non-null
segment selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector,

and the segment was marked not present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X A segment register was loaded, but the segment descriptor
exceeded the descriptor table limit.

X A segment register was loaded and the segment selector’s TI
bit was set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL
and the segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was
not a writable data segment.

X
The DS, ES, FS, or GS register was loaded and the segment
pointed to was a data or non-conforming code segment, but
the RPL or CPL was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

236 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads or stores a general purpose register while swapping the byte order. Operates on 16-bit, 32-bit, or
64-bit values. Converts big-endian formatted memory data to little-endian format when loading a
register and reverses the conversion when storing a GPR to memory.

The load form reads a 16-, 32-, or 64-bit value from memory, swaps the byte order, and places the
reordered value in a general-purpose register. When the operand size is 16 bits, the upper word of the
destination register remains unchanged. In 64-bit mode, when the operand size is 32 bits, the upper
doubleword of the destination register is cleared.

The store form takes a 16-, 32-, or 64-bit value from a general-purpose register, swaps the byte order,
and stores the reordered value in the specified memory location. The contents of the source GPR
remains unchanged.

In the 16-bit swap, the upper and lower bytes are exchanged. In the doubleword swap operation, bits
7:0 are exchanged with bits 31:24 and bits 15:8 are exchanged with bits 23:16. In the quadword swap
operation, bits 7:0 are exchanged with bits 63:56, bits 15:8 with bits 55:48, bits 23:16 with bits 47:40,
and bits 31:24 with bits 39:32.

Support for the MOVBE instruction is indicated by CPUID Fn0000_0001_ECX[MOVBE] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Related Instruction

BSWAP

MOVBE Move Big Endian

Mnemonic Opcode Description

MOVBE reg16, mem16 0F 38 F0 /r Load the low word of a general-purpose register from a
16-bit memory location while swapping the bytes.

MOVBE reg32, mem32 0F 38 F0 /r Load the low doubleword of a general-purpose register
from a 32-bit memory location while swapping the bytes.

MOVBE reg64, mem64 0F 38 F0 /r Load a 64-bit register from a 64-bit memory location
while swapping the bytes.

MOVBE mem16, reg16 0F 38 F1 /r Store the low word of a general-purpose register to a
16-bit memory location while swapping the bytes.

MOVBE mem32, reg32 0F 38 F1 /r Store the low doubleword of a general-purpose register
to a 32-bit memory location while swapping the bytes.

MOVBE mem64, reg64 0F 38 F1 /r Store the contents of a 64-bit general-purpose register
to a 64-bit memory location while swapping the bytes.

[AMD Public Use]

General-Purpose 237
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X Instruction not supported as indicated by CPUID

Fn0000_0001_ECX[MOVBE] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while alignment

checking was enabled.

[AMD Public Use]

238 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Moves a 32-bit or 64-bit value in one of the following ways:

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 or 64 bits
of an XMM register, with zero-extension to 128 bits

• from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose register or
memory location

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 bits (with
zero-extension to 64 bits) or the full 64 bits of an MMX register

• from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit general-purpose
register or memory location

Figure 3-1 on page 233 illustrates the operation of the MOVD instruction.

The MOVD instruction form that moves data to or from MMX registers is part of the MMX instruction
subset. Support for MMX instructions is indicated by CPUID Fn0000_0001_EDX[MMX] or
Fn0000_0001_EDX[MMX] = 1.

The MOVD instruction form that moves data to or from XMM registers is part of the SSE2 instruction
subset. Support for SSE2 instructions is indicated by CPUID Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

MOVD Move Doubleword or Quadword

[AMD Public Use]

General-Purpose 239
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure 3-1. MOVD Instruction Operation

with REX prefix

All operations
are "copy"

with REX prefix

reg/mem64xmm

63 0

63 0

127 63 064

127 63 064

reg/mem64 xmm

0

031

reg/mem32xmm

reg/mem32 xmm

127 0313231 0

127 31 032

0

0

reg/mem64mmx

reg/mem64 mmx

0

with REX prefix

with REX prefix

63 063 0

63 063 0

0310

reg/mem32mmx

reg/mem32 mmx

31 0

313263 0

313263 0

0

[AMD Public Use]

240 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Instruction Encoding

Related Instructions

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Mnemonic Opcode Description

MOVD xmm, reg/mem32 66 0F 6E /r Move 32-bit value from a general-purpose register or
32-bit memory location to an XMM register.

MOVD1 xmm, reg/mem64 66 0F 6E /r Move 64-bit value from a general-purpose register or
64-bit memory location to an XMM register.

MOVD reg/mem32, xmm 66 0F 7E /r Move 32-bit value from an XMM register to a 32-bit
general-purpose register or memory location.

MOVD1 reg/mem64, xmm 66 0F 7E /r Move 64-bit value from an XMM register to a 64-bit
general-purpose register or memory location.

MOVD mmx, reg/mem32 0F 6E /r Move 32-bit value from a general-purpose register or
32-bit memory location to an MMX register.

MOVD mmx, reg/mem64 0F 6E /r Move 64-bit value from a general-purpose register or
64-bit memory location to an MMX register.

MOVD reg/mem32, mmx 0F 7E /r Move 32-bit value from an MMX register to a 32-bit
general-purpose register or memory location.

MOVD reg/mem64, mmx 0F 7E /r Move 64-bit value from an MMX register to a 64-bit
general-purpose register or memory location.

Note: 1. Also known as MOVQ in some developer tools.

Exception Real
Virtual
8086 Protected Description

Invalid opcode, #UD

X X X
MMX instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[MMX] or
Fn0000_0001_EDX[MMX] = 0.

X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The instruction used XMM registers while
CR4.OSFXSR = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

[AMD Public Use]

General-Purpose 241
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP X X X A memory address exceeded a data segment limit or

was non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An x87 floating-point exception was pending and the
instruction referenced an MMX register.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Description

[AMD Public Use]

242 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Moves the sign bits of two packed double-precision floating-point values in an XMM register (second
operand) to the two low-order bits of a general-purpose register (first operand) with zero-extension.

The function of the MOVMSKPD instruction is illustrated by the diagram below:

The MOVMSKPD instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Related Instructions

MOVMSKPS, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPD Extract Packed Double-Precision
Floating-Point Sign Mask

Mnemonic Opcode Description

MOVMSKPD reg32, xmm 66 0F 50 /r Move sign bits 127 and 63 in an XMM register to a 32-bit
general-purpose register.

movmskpd.eps

reg32 xmm

copy sign
copy sign

127 63 00

0

131

[AMD Public Use]

General-Purpose 243
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

[AMD Public Use]

244 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Moves the sign bits of four packed single-precision floating-point values in an XMM register (second
operand) to the four low-order bits of a general-purpose register (first operand) with zero-extension.

The MOVMSKPD instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

MOVMSKPD, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPS Extract Packed Single-Precision
Floating-Point Sign Mask

Mnemonic Opcode Description

MOVMSKPS reg32, xmm 0F 50 /r Move sign bits 127, 95, 63, 31 in an XMM register to a
32-bit general-purpose register.

movmskps.eps

03 127 63 095 31

reg32 xmm

copy signcopy signcopy signcopy sign

0

31

[AMD Public Use]

General-Purpose 245
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

[AMD Public Use]

246 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores a value in a 32-bit or 64-bit general-purpose register (second operand) in a memory location
(first operand). This instruction indicates to the processor that the data is non-temporal and is unlikely
to be used again soon. The processor treats the store as a write-combining (WC) memory write, which
minimizes cache pollution. The exact method by which cache pollution is minimized depends on the
hardware implementation of the instruction. For further information, see “Memory Optimization” in
Volume 1.

The MOVNTI instruction is weakly-ordered with respect to other instructions that operate on memory.
Software should use an SFENCE instruction to force strong memory ordering of MOVNTI with
respect to other stores.

The MOVNTI instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

MOVNTDQ, MOVNTPD, MOVNTPS, MOVNTQ

rFLAGS Affected

None

Exceptions

MOVNTI Move Non-Temporal Doubleword or
Quadword

Mnemonic Opcode Description

MOVNTI mem32, reg32 0F C3 /r Stores a 32-bit general-purpose register value into a 32-
bit memory location, minimizing cache pollution.

MOVNTI mem64, reg64 0F C3 /r Stores a 64-bit general-purpose register value into a 64-
bit memory location, minimizing cache pollution.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

[AMD Public Use]

General-Purpose 247
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

248 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Moves a byte, word, doubleword, or quadword from the memory location pointed to by DS:rSI to the
memory location pointed to by ES:rDI, and then increments or decrements the rSI and rDI registers
according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments both pointers; otherwise, it decrements them. It
increments or decrements the pointers by 1, 2, 4, or 8, depending on the size of the operands.

The forms of the MOVSx instruction with explicit operands address the first operand at seg:[rSI]. The
value of seg defaults to the DS segment, but can be overridden by a segment prefix. These instructions
always address the second operand at ES:[rDI] (ES may not be overridden). The explicit operands
serve only to specify the type (size) of the value being moved.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to point to the value
to be moved (they do not allow a segment prefix). The mnemonic determines the size of the operands.

Do not confuse this MOVSD instruction with the same-mnemonic MOVSD (move scalar double-
precision floating-point) instruction in the 128-bit media instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

The MOVSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12.

MOVS
MOVSB
MOVSW
MOVSD
MOVSQ

Move String

Mnemonic Opcode Description

MOVS mem8, mem8 A4 Move byte at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

MOVS mem16, mem16 A5 Move word at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

MOVS mem32, mem32 A5 Move doubleword at DS:rSI to ES:rDI, and then
increment or decrement rSI and rDI.

MOVS mem64, mem64 A5 Move quadword at DS:rSI to ES:rDI, and then increment
or decrement rSI and rDI.

MOVSB A4 Move byte at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

MOVSW A5 Move word at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

[AMD Public Use]

General-Purpose 249
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

MOV, LODSx, STOSx

rFLAGS Affected

None

Exceptions

MOVSD A5 Move doubleword at DS:rSI to ES:rDI, and then
increment or decrement rSI and rDI.

MOVSQ A5 Move quadword at DS:rSI to ES:rDI, and then increment
or decrement rSI and rDI.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

250 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the value in a register or memory location (second operand) into a register (first operand),
extending the most significant bit of an 8-bit or 16-bit value into all higher bits in a 16-bit, 32-bit, or
64-bit register.

Related Instructions

MOVSXD, MOVZX

rFLAGS Affected

None

Exceptions

MOVSX Move with Sign-Extension

Mnemonic Opcode Description

MOVSX reg16, reg/mem8 0F BE /r Move the contents of an 8-bit register or memory
location to a 16-bit register with sign extension.

MOVSX reg32, reg/mem8 0F BE /r Move the contents of an 8-bit register or memory
location to a 32-bit register with sign extension.

MOVSX reg64, reg/mem8 0F BE /r Move the contents of an 8-bit register or memory
location to a 64-bit register with sign extension.

MOVSX reg32, reg/mem16 0F BF /r Move the contents of an 16-bit register or memory
location to a 32-bit register with sign extension.

MOVSX reg64, reg/mem16 0F BF /r Move the contents of an 16-bit register or memory
location to a 64-bit register with sign extension.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 251
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies the 32-bit value in a register or memory location (second operand) into a 64-bit register (first
operand), extending the most significant bit of the 32-bit value into all higher bits of the 64-bit register.

This instruction requires the REX prefix 64-bit operand size bit (REX.W) to be set to 1 to sign-extend
a 32-bit source operand to a 64-bit result. Without the REX operand-size prefix, the operand size will
be 32 bits, the default for 64-bit mode, and the source is zero-extended into a 64-bit register. With a 16-
bit operand size, only 16 bits are copied, without modifying the upper 48 bits in the destination.

This instruction is available only in 64-bit mode. In legacy or compatibility mode this opcode is
interpreted as ARPL.

Related Instructions

MOVSX, MOVZX

rFLAGS Affected

None

Exceptions

MOVSXD Move with Sign-Extend Doubleword

Mnemonic Opcode Description

MOVSXD reg64, reg/mem32 63 /r Move the contents of a 32-bit register or memory
operand to a 64-bit register with sign extension.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X A memory address was non-canonical.

General protection,
#GP X A memory address was non-canonical.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

252 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the value in a register or memory location (second operand) into a register (first operand), zero-
extending the value to fit in the destination register. The operand-size attribute determines the size of
the zero-extended value.

Related Instructions

MOVSXD, MOVSX

rFLAGS Affected

None

Exceptions

MOVZX Move with Zero-Extension

Mnemonic Opcode Description

MOVZX reg16, reg/mem8 0F B6 /r Move the contents of an 8-bit register or memory
operand to a 16-bit register with zero-extension.

MOVZX reg32, reg/mem8 0F B6 /r Move the contents of an 8-bit register or memory
operand to a 32-bit register with zero-extension.

MOVZX reg64, reg/mem8 0F B6 /r Move the contents of an 8-bit register or memory
operand to a 64-bit register with zero-extension.

MOVZX reg32, reg/mem16 0F B7 /r Move the contents of a 16-bit register or memory
operand to a 32-bit register with zero-extension.

MOVZX reg64, reg/mem16 0F B7 /r Move the contents of a 16-bit register or memory
operand to a 64-bit register with zero-extension.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 253
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Multiplies the unsigned byte, word, doubleword, or quadword value in the specified register or
memory location by the value in AL, AX, EAX, or RAX and stores the result in AX, DX:AX,
EDX:EAX, or RDX:RAX (depending on the operand size). It puts the high-order bits of the product in
AH, DX, EDX, or RDX.

If the upper half of the product is non-zero, the instruction sets the carry flag (CF) and overflow flag
(OF) both to 1. Otherwise, it clears CF and OF to 0. The other arithmetic flags (SF, ZF, AF, PF) are
undefined.

Related Instructions

DIV

rFLAGS Affected

MUL Unsigned Multiply

Mnemonic Opcode Description

MUL reg/mem8 F6 /4
Multiplies an 8-bit register or memory operand by the
contents of the AL register and stores the result in the
AX register.

MUL reg/mem16 F7 /4
Multiplies a 16-bit register or memory operand by the
contents of the AX register and stores the result in the
DX:AX register.

MUL reg/mem32 F7 /4
Multiplies a 32-bit register or memory operand by the
contents of the EAX register and stores the result in the
EDX:EAX register.

MUL reg/mem64 F7 /4
Multiplies a 64-bit register or memory operand by the
contents of the RAX register and stores the result in the
RDX:RAX register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M U U U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

254 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference is performed while alignment

checking was enabled.

[AMD Public Use]

General-Purpose 255
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Computes the unsigned product of the specified source operand and the implicit source operand rDX.
Writes the upper half of the product to the first destination and the lower half to the second. Does not
affect the arithmetic flags.

This instruction has three operands:

MULX dest1, dest2, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The first and second operands (dest1 and dest2) are general purpose registers. The specified source
operand (src) is either a general purpose register or a memory operand. If the first and second operands
specify the same register, the register receives the upper half of the product.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

rFLAGS Affected

None.

Exceptions

MULX Multiply Unsigned

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

MULX reg32, reg32, reg/mem32 C4 RXB.02 0.dest2.0.11 F6 /r

MULX reg64, reg64, reg/mem64 C4 RXB.02 1.dest2.0.11 F6 /r

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

[AMD Public Use]

256 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Exception
Real

Virtual
8086 Protected

Cause of Exception

[AMD Public Use]

General-Purpose 257
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Used in conjunction with the MONITORX instruction to cause a processor to wait until a store occurs
to a specific linear address range from another processor or the timer expires. The previously executed
MONITORX instruction causes the processor to enter the monitor event pending state. The MWAITX
instruction may enter an implementation dependent power state until the monitor event pending state
is exited. The MWAITX instruction has the same effect on architectural state as the NOP instruction.

Events that cause an exit from the monitor event pending state include:

• A store from another processor matches the address range established by the MONITORX
instruction.

• The timer expires.

• Any unmasked interrupt, including INTR, NMI, SMI, INIT.

• RESET.

• Any far control transfer that occurs between the MONITORX and the MWAITX.

EAX specifies optional hints for the MWAITX instruction. Optimized C-state request is
communicated through EAX[7:4]. The processor C-state is EAX[7:4]+1, so to request C0 is to place
the value F in EAX[7:4] and to request C1 is to place the value 0 in EAX[7:4]. All other components of
EAX should be zero when making the C1 request. Setting a reserved bit in EAX is ignored by the
processor. This is implicitly a 32-bit operand.

ECX specifies optional extensions for the MWAITX instruction. The extensions currently defined for
ECX are:

• Bit 0: When set, allows interrupts to wake MWAITX, even when eFLAGS.IF = 0. Support for this
extension is indicated by a feature flag returned by the CPUID instruction.

• Bit 1: When set, EBX contains the maximum wait time expressed in Software P0 clocks, the same
clocks counted by the TSC. Setting bit 1 but passing in a value of zero on EBX is equivalent to
setting bit 1 to a zero. The timer will not be an exit condition.

• Bit 31-2: When non-zero, results in a #GP(0) exception.

This is implicitly a 32-bit operand.

CPUID Function 0000_0005h indicates support for extended features of MONITORX/MWAITX as
well as MONITOR/MWAIT:

• CPUID Fn0000_0005_ECX[EMX] = 1 indicates support for enumeration of
MONITOR/MWAIT/MONITORX/MWAITX extensions.

• CPUID Fn0000_0005_ECX[IBE] = 1 indicates that MWAIT/MWAITX can set ECX[0] to allow
interrupts to cause an exit from the monitor event pending state even when eFLAGS.IF = 0.

The MWAITX in s t ruc t i on can be execu te d a t a n y p r i v i l e g e l e v e l a n d M S R
C001_0015h[MonMwaitUserEn] has no effect on MWAITX.

MWAITX Monitor Wait with Timeout

[AMD Public Use]

258 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Support for the MWAITX instruction is indicated by CPUID Fn8000_0001_ECX[MONITORX] (bit
29)= 1.

Software must check the CPUID bit once per program or library initialization before using the
MWAITX instruction, or inconsistent behavior may result.

The use of the MWAITX instruction is contingent upon the satisfaction of the following coding
requirements:

• MONITORX must precede the MWAITX and occur in the same loop.

• MWAITX must be conditionally executed only if the awaited store has not already occurred. (This
prevents a race condition between the MONITORX instruction arming the monitoring hardware
and the store intended to trigger the monitoring hardware.)

There is no indication after exiting MWAITX of why the processor exited or if the timer expired. It is
up to software to check whether the awaiting store has occurred, and if not, determining how much
time has elapsed if it wants to re-establish the MONITORX with a new timer value.

Related Instructions

MONITORX, MONITOR, MWAIT

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MWAITX 0F 01 FB

Causes the processor to stop
instruction execution and enter
an implementation-dependent
optimized state until occurrence
of a class of events

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X MONITORX/MWAITX instructions are not supported, as

indicated by CPUID Fn8000_0001_ECX[MONITORX] =0

General protection,
#GP X X X Unsupported extension bits in ECX

[AMD Public Use]

General-Purpose 259
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

[AMD Public Use]

260 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Performs the two’s complement negation of the value in the specified register or memory location by
subtracting the value from 0. Use this instruction only on signed integer numbers.

If the value is 0, the instruction clears the CF flag to 0; otherwise, it sets CF to 1. The OF, SF, ZF, AF,
and PF flag settings depend on the result of the operation.

The forms of the NEG instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

AND, NOT, OR, XOR

rFLAGS Affected

NEG Two’s Complement Negation

Mnemonic Opcode Description

NEG reg/mem8 F6 /3 Performs a two’s complement negation on an 8-bit
register or memory operand.

NEG reg/mem16 F7 /3 Performs a two’s complement negation on a 16-bit
register or memory operand.

NEG reg/mem32 F7 /3 Performs a two’s complement negation on a 32-bit
register or memory operand.

NEG reg/mem64 F7 /3 Performs a two’s complement negation on a 64-bit
register or memory operand.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

General-Purpose 261
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand is in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

262 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Does nothing. This instruction increments the rIP to point to next instruction, but does not affect the
machine state in any other way.

The single-byte variant is an alias for XCHG rAX,rAX.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

NOP No Operation

Mnemonic Opcode Description

NOP 90 Performs no operation.

NOP reg/mem16 0F 1F /0 Performs no operation on a 16-bit register or memory
operand.

NOP reg/mem32 0F 1F /0 Performs no operation on a 32-bit register or memory
operand.

NOP reg/mem64 0F 1F /0 Performs no operation on a 64-bit register or memory
operand.

[AMD Public Use]

General-Purpose 263
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs the one’s complement negation of the value in the specified register or memory location by
inverting each bit of the value.

The memory-operand forms of the NOT instruction support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

AND, NEG, OR, XOR

rFLAGS Affected

None

Exceptions

NOT One’s Complement Negation

Mnemonic Opcode Description

NOT reg/mem8 F6 /2 Complements the bits in an 8-bit register or memory
operand.

NOT reg/mem16 F7 /2 Complements the bits in a 16-bit register or memory
operand.

NOT reg/mem32 F7 /2 Complements the bits in a 32-bit register or memory
operand.

NOT reg/mem64 F7 /2 Compliments the bits in a 64-bit register or memory
operand.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference is performed while alignment

checking was enabled.

[AMD Public Use]

264 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Performs a logical or on the bits in a register, memory location, or immediate value (second operand)
and a register or memory location (first operand) and stores the result in the first operand location. The
two operands cannot both be memory locations.

If both corresponding bits are 0, the corresponding bit of the result is 0; otherwise, the corresponding
result bit is 1.

The forms of the OR instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

OR Logical OR

Mnemonic Opcode Description

OR AL, imm8 0C ib or the contents of AL with an immediate 8-bit value.

OR AX, imm16 0D iw or the contents of AX with an immediate 16-bit value.

OR EAX, imm32 0D id or the contents of EAX with an immediate 32-bit value.

OR RAX, imm32 0D id or the contents of RAX with a sign-extended immediate
32-bit value.

OR reg/mem8, imm8 80 /1 ib or the contents of an 8-bit register or memory operand
and an immediate 8-bit value.

OR reg/mem16, imm16 81 /1 iw or the contents of a 16-bit register or memory operand
and an immediate 16-bit value.

OR reg/mem32, imm32 81 /1 id or the contents of a 32-bit register or memory operand
and an immediate 32-bit value.

OR reg/mem64, imm32 81 /1 id or the contents of a 64-bit register or memory operand
and sign-extended immediate 32-bit value.

OR reg/mem16, imm8 83 /1 ib or the contents of a 16-bit register or memory operand
and a sign-extended immediate 8-bit value.

OR reg/mem32, imm8 83 /1 ib or the contents of a 32-bit register or memory operand
and a sign-extended immediate 8-bit value.

OR reg/mem64, imm8 83 /1 ib or the contents of a 64-bit register or memory operand
and a sign-extended immediate 8-bit value.

OR reg/mem8, reg8 08 /r or the contents of an 8-bit register or memory operand
with the contents of an 8-bit register.

OR reg/mem16, reg16 09 /r or the contents of a 16-bit register or memory operand
with the contents of a 16-bit register.

OR reg/mem32, reg32 09 /r or the contents of a 32-bit register or memory operand
with the contents of a 32-bit register.

OR reg/mem64, reg64 09 /r or the contents of a 64-bit register or memory operand
with the contents of a 64-bit register.

[AMD Public Use]

General-Purpose 265
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

The following chart summarizes the effect of this instruction:

Related Instructions

AND, NEG, NOT, XOR

rFLAGS Affected

Exceptions

OR reg8, reg/mem8 0A /r or the contents of an 8-bit register with the contents of
an 8-bit register or memory operand.

OR reg16, reg/mem16 0B /r or the contents of a 16-bit register with the contents of
a 16-bit register or memory operand.

OR reg32, reg/mem32 0B /r or the contents of a 32-bit register with the contents of
a 32-bit register or memory operand.

OR reg64, reg/mem64 0B /r or the contents of a 64-bit register with the contents of
a 64-bit register or memory operand.

X Y X or Y

0 0 0

0 1 1

1 0 1

1 1 1

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Mnemonic Opcode Description

[AMD Public Use]

266 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

General-Purpose 267
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies the value from the AL, AX, or EAX register (second operand) to an I/O port (first operand).
The port address can be a byte-immediate value (00h to FFh) or the value in the DX register (0000h to
FFFFh). The source register used determines the size of the port (8, 16, or 32 bits).

If the operand size is 64 bits, OUT only writes to a 32-bit I/O port.

If the CPL is higher than the IOPL or the mode is virtual mode, OUT checks the I/O permission bitmap
in the TSS before allowing access to the I/O port. See Volume 2 for details on the TSS I/O permission
bitmap.

Related Instructions

IN, INSx, OUTSx

rFLAGS Affected

None

Exceptions

OUT Output to Port

Mnemonic Opcode Description

OUT imm8, AL E6 ib Output the byte in the AL register to the port specified by
an 8-bit immediate value.

OUT imm8, AX E7 ib Output the word in the AX register to the port specified
by an 8-bit immediate value.

OUT imm8, EAX E7 ib Output the doubleword in the EAX register to the port
specified by an 8-bit immediate value.

OUT DX, AL EE Output byte in AL to the output port specified in DX.

OUT DX, AX EF Output word in AX to the output port specified in DX.

OUT DX, EAX EF Output doubleword in EAX to the output port specified in
DX.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

Page fault (#PF) X X A page fault resulted from the execution of the instruction.

[AMD Public Use]

268 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies data from the memory location pointed to by DS:rSI to the I/O port address (0000h to FFFFh)
specified in the DX register, and then increments or decrements the rSI register according to the setting
of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It increments or
decrements the pointer by 1, 2, or 4, depending on the size of the value being copied.

The OUTS DX mnemonic uses an explicit memory operand (second operand) to determine the type
(size) of the value being copied, but always uses DS:rSI for the location of the value to copy. The
explicit register operand (first operand) specifies the I/O port address and must always be DX.

The no-operands forms of the mnemonic use the DS:rSI register pair to point to the memory data to be
copied and the contents of the DX register as the destination I/O port address. The mnemonic specifies
the size of the I/O port and the type (size) of the value being copied.

The OUTSx instruction supports the REP prefix. For details about the REP prefix, see “Repeat
Prefixes” on page 12.

If the effective operand size is 64-bits, the instruction behaves as if the operand size were 32 bits.

If the CPL is higher than the IOPL or the mode is virtual mode, OUTSx checks the I/O permission
bitmap in the TSS before allowing access to the I/O port. See Volume 2 for details on the TSS I/O
permission bitmap.

OUTS
OUTSB
OUTSW
OUTSD

Output String

Mnemonic Opcode Description

OUTS DX, mem8 6E Output the byte in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTS DX, mem16 6F Output the word in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTS DX, mem32 6F Output the doubleword in DS:rSI to the port specified in
DX, then increment or decrement rSI.

OUTSB 6E Output the byte in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTSW 6F Output the word in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTSD 6F Output the doubleword in DS:rSI to the port specified in
DX, then increment or decrement rSI.

[AMD Public Use]

General-Purpose 269
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

IN, INSx, OUT

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference is performed while alignment

checking was enabled.

[AMD Public Use]

270 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Improves the performance of spin loops, by providing a hint to the processor that the current code is in
a spin loop. The processor may use this to optimize power consumption while in the spin loop.

Architecturally, this instruction behaves like a NOP instruction.

Processors that do not support PAUSE treat this opcode as a NOP instruction.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

PAUSE Pause

Mnemonic Opcode Description

PAUSE F3 90 Provides a hint to processor that a spin loop is being
executed.

[AMD Public Use]

General-Purpose 271
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Scatters consecutive bits of the first source operand, starting at the least significant bit, to bit positions
in the destination as specified by 1 bits in the second source operand (mask). Bit positions in the
destination corresponding to 0 bits in the mask are cleared.

This instruction has three operands:

PDEP dest, src, mask

The following diagram illustrates the operation of this instruction.

If the mask is all ones, the execution of this instruction effectively copies the source to the destination.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) and the source (src) are general-purpose registers. The second source operand
(mask) is either a general-purpose register or a memory operand.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

PDEP Parallel Deposit Bits

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

PDEP reg32, reg32, reg/mem32 C4 RXB.02 0.src.0.11 F5 /r

PDEP reg64, reg64, reg/mem64 C4 RXB.02 1.src.0.11 F5 /r

src

dest

b
n-1

b
n-2 b0b1b2b3b4b5b6b7b8b9b10

b0b1b2b3b4b5b6 000000000

1111111 000000000 mask

d
n-1

m
n-1

v3_PDEP_instruct.eps

[AMD Public Use]

272 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

rFLAGS Affected

None.

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 273
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies bits from the source operand, based on a mask, and packs them into the low-order bits of the
destination. Clears all bits in the destination to the left of the most-significant bit copied.

This instruction has three operands:

PEXT dest, src, mask

The following diagram illustrates the operation of this instruction.

If the mask is all ones, the execution of this instruction effectively copies the source to the destination.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) and the source (src) are general-purpose registers. The second source operand
(mask) is either a general-purpose register or a memory operand.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

PEXT Parallel Extract Bits

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

PEXT reg32, reg32, reg/mem32 C4 RXB.02 0.src.0.10 F5 /r

PEXT reg64, reg64, reg/mem64 C4 RXB.02 1.src.0.10 F5 /r

src

dest

b
n-1 b0b1b2b3b4b5b6

b6

b7b8

b8

b9

b9

b10b11b12

b12

b13

b13

b14

b14

b15

0000

1111111 000000000 maskm
n-1

v3_PEXT_instruct.eps

0 b200000
0123456789101112131415n-1

[AMD Public Use]

274 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

rFLAGS Affected

None.

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

General-Purpose 275
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Copies the value pointed to by the stack pointer (SS:rSP) to the specified register or memory location
and then increments the rSP by 2 for a 16-bit pop, 4 for a 32-bit pop, or 8 for a 64-bit pop.

The operand-size attribute determines the amount by which the stack pointer is incremented (2, 4 or 8
bytes). The stack-size attribute determines whether SP, ESP, or RSP is incremented.

For forms of the instruction that load a segment register (POP DS, POP ES, POP FS, POP GS, POP
SS), the source operand must be a valid segment selector. When a segment selector is popped into a
segment register, the processor also loads all associated descriptor information into the hidden part of
the register and validates it.

It is possible to pop a null segment selector value (0000–0003h) into the DS, ES, FS, or GS register.
This action does not cause a general protection fault, but a subsequent reference to such a segment
does cause a #GP exception. For more information about segment selectors, see "Segment Selectors
and Registers" in Volume 2: System Programming.

In 64-bit mode, the POP operand size defaults to 64 bits and there is no prefix available to encode a 32-
bit operand size. Using POP DS, POP ES, or POP SS instruction in 64-bit mode generates an invalid-
opcode exception.

This instruction cannot pop a value into the CS register. The RET (Far) instruction performs this
function.

POP Pop Stack

Mnemonic Opcode Description

POP reg/mem16 8F /0 Pop the top of the stack into a 16-bit register or memory
location.

POP reg/mem32 8F /0
Pop the top of the stack into a 32-bit register or memory
location.
(No prefix for encoding this in 64-bit mode.)

POP reg/mem64 8F /0 Pop the top of the stack into a 64-bit register or memory
location.

POP reg16 58 +rw Pop the top of the stack into a 16-bit register.

POP reg32 58 +rd Pop the top of the stack into a 32-bit register.
(No prefix for encoding this in 64-bit mode.)

POP reg64 58 +rq Pop the top of the stack into a 64-bit register.

POP DS 1F Pop the top of the stack into the DS register.
(Invalid in 64-bit mode.)

POP ES 07 Pop the top of the stack into the ES register.
(Invalid in 64-bit mode.)

POP SS 17 Pop the top of the stack into the SS register.
(Invalid in 64-bit mode.)

[AMD Public Use]

276 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

PUSH

rFLAGS Affected

None

Exceptions

POP FS 0F A1 Pop the top of the stack into the FS register.

POP GS 0F A9 Pop the top of the stack into the GS register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X POP DS, POP ES, or POP SS was executed in 64-bit mode.

Segment not
present, #NP
(selector)

X The DS, ES, FS, or GS register was loaded with a non-null
segment selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector

and the segment was marked not present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X A segment register was loaded and the segment descriptor
exceeded the descriptor table limit.

X A segment register was loaded and the segment selector’s TI
bit was set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL
and the segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was
not a writable data segment.

X
The DS, ES, FS, or GS register was loaded and the segment
pointed to was a data or non-conforming code segment, but
the RPL or the CPL was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 277
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Pops words or doublewords from the stack into the general-purpose registers in the following order:
eDI, eSI, eBP, eSP (image is popped and discarded), eBX, eDX, eCX, and eAX. The instruction
increments the stack pointer by 16 or 32, depending on the operand size.

Using the POPA or POPAD instructions in 64-bit mode generates an invalid-opcode exception.

Related Instructions

PUSHA, PUSHAD

rFLAGS Affected

None

Exceptions

POPA
POPAD

 POP All GPRs

Mnemonic Opcode Description

POPA 61 Pop the DI, SI, BP, SP, BX, DX, CX, and AX registers.
(Invalid in 64-bit mode.)

POPAD 61
Pop the EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX
registers.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode
(#UD) X This instruction was executed in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

278 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Counts the number of bits having a value of 1 in the source operand and places the result in the
destination register. The source operand is a 16-, 32-, or 64-bit general purpose register or memory
operand; the destination operand is a general purpose register of the same size as the source operand
register.

If the input operand is zero, the ZF flag is set to 1 and zero is written to the destination register.
Otherwise, the ZF flag is cleared. The other flags are cleared.

Support for the POPCNT instruction is indicated by CPUID Fn0000_0001_ECX[POPCNT] = 1.
Software MUST check the CPUID bit once per program or library initialization before using the
POPCNT instruction, or inconsistent behavior may result.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

BSF, BSR, LZCNT

rFLAGS Affected

POPCNT Bit Population Count

Mnemonic Opcode Description

POPCNT reg16, reg/mem16 F3 0F B8 /r Count the 1s in reg/mem16.

POPCNT reg32, reg/mem32 F3 0F B8 /r Count the 1s in reg/mem32.

POPCNT reg64, reg/mem64 F3 0F B8 /r Count the 1s in reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 0 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

General-Purpose 279
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The POPCNT instruction is not supported, as indicated by

CPUID Fn0000_0001_ECX[POPCNT].

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

280 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Pops a word, doubleword, or quadword from the stack into the rFLAGS register and then increments
the stack pointer by 2, 4, or 8, depending on the operand size.

In protected or real mode, all the non-reserved flags in the rFLAGS register can be modified, except
the VIP, VIF, and VM flags, which are unchanged. In protected mode, at a privilege level greater than
0 the IOPL is also unchanged. The instruction alters the interrupt flag (IF) only when the CPL is less
than or equal to the IOPL.

In virtual-8086 mode, if IOPL field is less than 3, attempting to execute a POPFx or PUSHFx
instruction while VME is not enabled, or the operand size is not 16-bit, generates a #GP exception.

In 64-bit mode, this instruction defaults to a 64-bit operand size; there is no prefix available to encode
a 32-bit operand size.

Action
// See “Pseudocode Definition” on page 57.

POPF_START:

IF (REAL_MODE)
 POPF_REAL
ELSIF (PROTECTED_MODE)
 POPF_PROTECTED
ELSE // (VIRTUAL_MODE)
 POPF_VIRTUAL

POPF_REAL:

 POP.v temp_RFLAGS
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
 // RF cleared
 EXIT

POPF
POPFD
POPFQ

 POP to rFLAGS

Mnemonic Opcode Description

POPF 9D Pop a word from the stack into the FLAGS register.

POPFD 9D Pop a double word from the stack into the EFLAGS
register. (No prefix for encoding this in 64-bit mode.)

POPFQ 9D Pop a quadword from the stack to the RFLAGS register.

[AMD Public Use]

General-Purpose 281
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

POPF_PROTECTED:

 POP.v temp_RFLAGS
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
 // IOPL changed only if (CPL==0)
 // IF changed only if (CPL<=old_RFLAGS.IOPL)
 // RF cleared
 EXIT

POPF_VIRTUAL:

 IF (RFLAGS.IOPL==3)
 {
 POP.v temp_RFLAGS
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,IOPL unchanged
 // RF cleared
 EXIT
 }
 ELSIF ((CR4.VME==1) && (OPERAND_SIZE==16))
 {
 POP.w temp_RFLAGS
 IF (((temp_RFLAGS.IF==1) && (RFLAGS.VIP==1)) || (temp_RFLAGS.TF==1))
 EXCEPTION [#GP(0)]
 // notify the virtual-mode-manager to

deliver
 // the task’s pending interrupts
 RFLAGS.w = temp_RFLAGS // IF,IOPL unchanged
 // RFLAGS.VIF=temp_RFLAGS.IF
 // RF cleared
 EXIT
 }
 ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME==0) || (OPERAND_SIZE!=16)))
 EXCEPTION [#GP(0)]

Related Instructions

PUSHF, PUSHFD, PUSHFQ

rFLAGS Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

282 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP X

The I/O privilege level was less than 3 and one of the following
conditions was true:
• CR4.VME was 0.

• The effective operand size was 32-bit.

• Both the original EFLAGS.VIP and the new EFLAGS.IF bits
were set.

• The new EFLAGS.TF bit was set.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

General-Purpose 283
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the entire 64-byte aligned memory sequence containing the specified memory address into the
L1 data cache. The position of the specified memory address within the 64-byte cache line is
irrelevant. If a cache hit occurs, or if a memory fault is detected, no bus cycle is initiated and the
instruction is treated as a NOP.

The PREFETCHW instruction loads the prefetched line and sets the cache-line state to Modified, in
anticipation of subsequent data writes to the line. The PREFETCH instruction, by contrast, typically
sets the cache-line state to Exclusive (depending on the hardware implementation).

The opcodes for the PREFETCH/PREFETCHW instructions include the ModRM byte; however, only
the memory form of ModRM is valid. The register form of ModRM causes an invalid-opcode
exception. Because there is no destination register, the three destination register field bits of the
ModRM byte define the type of prefetch to be performed. The bit patterns 000b and 001b define the
PREFETCH and PREFETCHW instructions, respectively. All other bit patterns are reserved for future
use.

The reserved PREFETCH types do not result in an invalid-opcode exception if executed. Instead, for
forward compatibility with future processors that may implement additional forms of the PREFETCH
instruction, all reserved PREFETCH types are implemented as synonyms of the basic PREFETCH
type (the PREFETCH instruction with type 000b).

The operation of these instructions is implementation-dependent. The processor implementation can
ignore or change these instructions. The size of the cache line also depends on the implementation,
with a minimum size of 32 bytes. For details on the use of this instruction, see the processor data sheets
or other software-optimization documentation relating to particular hardware implementations.

When paging is enabled and PREFETCHW performs a prefetch from a writable page, it may set the
PTE Dirty bit to 1.

Support for the PREFETCH and PREFETCHW instruct ions is indicated by CPUID
Fn8000_0001_ECX[3DNowPre fe t ch] O R F n 8 0 0 0 _ 0 0 0 1 _ E D X [L M] O R
Fn8000_0001_EDX[3DNow] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

PREFETCH
PREFETCHW

 Prefetch L1 Data-Cache Line

Mnemonic Opcode Description

PREFETCH mem8 0F 0D /0 Prefetch processor cache line into L1 data cache.

PREFETCHW mem8 0F 0D /1 Prefetch processor cache line into L1 data cache and
mark it modified.

[AMD Public Use]

284 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

PREFETCHlevel

rFLAGS Affected

None

Exceptions

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

PREFETCH and PREFETCHW instructions are not
supported, as indicated by CPUID
Fn8000_0001_ECX[3DNowPrefetch] AND
Fn8000_0001_EDX[LM] AND
Fn8000_0001_EDX[3DNow] = 0.

X X X The operand was a register.

[AMD Public Use]

General-Purpose 285
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads a cache line from the specified memory address into the data-cache level specified by the
locality reference bits 5:3 of the ModRM byte. Table 3-3 on page 279 lists the locality reference
options for the instruction.

This instruction loads a cache line even if the mem8 address is not aligned with the start of the line. If
the cache line is already contained in a cache level that is lower than the specified locality reference, or
if a memory fault is detected, a bus cycle is not initiated and the instruction is treated as a NOP.

The operation of this instruction is implementation-dependent. The processor implementation can
ignore or change this instruction. The size of the cache line also depends on the implementation, with a
minimum size of 32 bytes. AMD processors alias PREFETCH1 and PREFETCH2 to PREFETCH0.
For details on the use of this instruction, see the software-optimization documentation relating to
particular hardware implementations.

Related Instructions

PREFETCH, PREFETCHW

PREFETCHlevel Prefetch Data to Cache Level level

Mnemonic Opcode Description

PREFETCHNTA mem8 0F 18 /0 Move data closer to the processor using the NTA
reference.

PREFETCHT0 mem8 0F 18 /1 Move data closer to the processor using the T0
reference.

PREFETCHT1 mem8 0F 18 /2 Move data closer to the processor using the T1
reference.

PREFETCHT2 mem8 0F 18 /3 Move data closer to the processor using the T2
reference.

Table 3-3. Locality References for the Prefetch Instructions

Locality
Reference Description

NTA

Non-Temporal Access—Move the specified data into the processor with
minimum cache pollution. This is intended for data that will be used only
once, rather than repeatedly. The specific technique for minimizing cache
pollution is implementation-dependent and may include such techniques
as allocating space in a software-invisible buffer, allocating a cache line in
only a single way, etc. For details, see the software-optimization
documentation for a particular hardware implementation.

T0 All Cache Levels—Move the specified data into all cache levels.

T1 Level 2 and Higher—Move the specified data into all cache levels except
0th level (L1) cache.

T2 Level 3 and Higher—Move the specified data into all cache levels except
0th level (L1) and 1st level (L2) caches.

[AMD Public Use]

286 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

None

Exceptions

None

[AMD Public Use]

General-Purpose 287
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Decrements the stack pointer and then copies the specified immediate value or the value in the
specified register or memory location to the top of the stack (the memory location pointed to by
SS:rSP).

The operand-size attribute determines the number of bytes pushed to the stack. The stack-size attribute
determines whether SP, ESP, or RSP is the stack pointer. The address-size attribute is used only to
locate the memory operand when pushing a memory operand to the stack.

If the instruction pushes the stack pointer (rSP), the resulting value on the stack is that of rSP before
execution of the instruction.

There is a PUSH CS instruction but no corresponding POP CS. The RET (Far) instruction pops a value
from the top of stack into the CS register as part of its operation.

In 64-bit mode, the operand size of all PUSH instructions defaults to 64 bits, and there is no prefix
available to encode a 32-bit operand size. Using the PUSH CS, PUSH DS, PUSH ES, or PUSH SS
instructions in 64-bit mode generates an invalid-opcode exception.

Pushing an odd number of 16-bit operands when the stack address-size attribute is 32 results in a
misaligned stack pointer.

PUSH Push onto Stack

Mnemonic Opcode Description

PUSH reg/mem16 FF /6 Push the contents of a 16-bit register or memory
operand onto the stack.

PUSH reg/mem32 FF /6
Push the contents of a 32-bit register or memory
operand onto the stack. (No prefix for encoding this in
64-bit mode.)

PUSH reg/mem64 FF /6 Push the contents of a 64-bit register or memory
operand onto the stack.

PUSH reg16 50 +rw Push the contents of a 16-bit register onto the stack.

PUSH reg32 50 +rd Push the contents of a 32-bit register onto the stack. (No
prefix for encoding this in 64-bit mode.)

PUSH reg64 50 +rq Push the contents of a 64-bit register onto the stack.

PUSH imm8 6A ib Push an 8-bit immediate value (sign-extended to 16, 32,
or 64 bits) onto the stack.

PUSH imm16 68 iw Push a 16-bit immediate value onto the stack.

PUSH imm32 68 id Push a 32-bit immediate value onto the stack. (No prefix
for encoding this in 64-bit mode.)

PUSH imm64 68 id Push a sign-extended 32-bit immediate value onto the
stack.

PUSH CS 0E Push the CS selector onto the stack. (Invalid in 64-bit
mode.)

[AMD Public Use]

288 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

POP

rFLAGS Affected

None

Exceptions

PUSH SS 16 Push the SS selector onto the stack. (Invalid in 64-bit
mode.)

PUSH DS 1E Push the DS selector onto the stack. (Invalid in 64-bit
mode.)

PUSH ES 06 Push the ES selector onto the stack. (Invalid in 64-bit
mode.)

PUSH FS 0F A0 Push the FS selector onto the stack.

PUSH GS 0F A8 Push the GS selector onto the stack.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X PUSH CS, PUSH DS, PUSH ES, or PUSH SS was executed

in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 289
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Pushes the contents of the eAX, eCX, eDX, eBX, eSP (original value), eBP, eSI, and eDI general-
purpose registers onto the stack in that order. This instruction decrements the stack pointer by 16 or 32
depending on operand size.

Using the PUSHA or PUSHAD instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

POPA, POPAD

rFLAGS Affected

None

Exceptions

PUSHA
PUSHAD

 Push All GPRs onto Stack

Mnemonic Opcode Description

PUSHA 60
Push the contents of the AX, CX, DX, BX, original SP,
BP, SI, and DI registers onto the stack.
(Invalid in 64-bit mode.)

PUSHAD 60
Push the contents of the EAX, ECX, EDX, EBX, original
ESP, EBP, ESI, and EDI registers onto the stack.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

290 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Decrements the rSP register and copies the rFLAGS register (except for the VM and RF flags) onto the
stack. The instruction clears the VM and RF flags in the rFLAGS image before putting it on the stack.

The instruction pushes 2, 4, or 8 bytes, depending on the operand size.

In 64-bit mode, this instruction defaults to a 64-bit operand size and there is no prefix available to
encode a 32-bit operand size.

In virtual-8086 mode, if system software has set the IOPL field to a value less than 3, a general-
protection exception occurs if application software attempts to execute PUSHFx or POPFx while
VME is not enabled or the operand size is not 16-bit.

Action
// See “Pseudocode Definition” on page 57.

PUSHF_START:
IF (REAL_MODE)
 PUSHF_REAL
ELSIF (PROTECTED_MODE)
 PUSHF_PROTECTED
ELSE // (VIRTUAL_MODE)
 PUSHF_VIRTUAL

PUSHF_REAL:
 PUSH.v old_RFLAGS // Pushed with RF and VM cleared.

 EXIT

PUSHF_PROTECTED:
 PUSH.v old_RFLAGS // Pushed with RF cleared.
 EXIT

PUSHF_VIRTUAL:
 IF (RFLAGS.IOPL==3)
 {
 PUSH.v old_RFLAGS // Pushed with RF,VM cleared.
 EXIT
 }

PUSHF
PUSHFD
PUSHFQ

 Push rFLAGS onto Stack

Mnemonic Opcode Description

PUSHF 9C Push the FLAGS word onto the stack.

PUSHFD 9C Push the EFLAGS doubleword onto stack. (No prefix
encoding this in 64-bit mode.)

PUSHFQ 9C Push the RFLAGS quadword onto stack.

[AMD Public Use]

General-Purpose 291
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 ELSIF ((CR4.VME==1) && (OPERAND_SIZE==16))
 {
 PUSH.v old_RFLAGS // Pushed with VIF in the IF position.
 // Pushed with IOPL=3.
 EXIT
 }
 ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME==0) || (OPERAND_SIZE!=16)))
 EXCEPTION [#GP(0)]

Related Instructions

POPF, POPFD, POPFQ

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP X The I/O privilege level was less than 3 and either VME was not

enabled or the operand size was not 16-bit.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

292 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of a register or memory location (first operand) to the left (more significant bit
positions) and through the carry flag by the number of bit positions in an unsigned immediate value or
the CL register (second operand). The bits rotated through the carry flag are rotated back in at the right
end (lsb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit rotates, the instruction sets the OF flag to the logical xor of the CF bit (after the rotate) and
the most significant bit of the result. When the rotate count is greater than 1, the OF flag is undefined.
When the rotate count is 0, no flags are affected.

RCL Rotate Through Carry Left

Mnemonic Opcode Description

RCL reg/mem8,1 D0 /2 Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location left 1 bit.

RCL reg/mem8, CL D2 /2
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location left the number of bits
specified in the CL register.

RCL reg/mem8, imm8 C0 /2 ib
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location left the number of bits
specified by an 8-bit immediate value.

RCL reg/mem16, 1 D1 /2 Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location left 1 bit.

RCL reg/mem16, CL D3 /2
Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location left the number of bits
specified in the CL register.

RCL reg/mem16, imm8 C1 /2 ib
Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location left the number of bits
specified by an 8-bit immediate value.

RCL reg/mem32, 1 D1 /2 Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location left 1 bit.

RCL reg/mem32, CL D3 /2
Rotate 33 bits consisting of the carry flag and a 32-bit
register or memory location left the number of bits
specified in the CL register.

RCL reg/mem32, imm8 C1 /2 ib
Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location left the number of bits
specified by an 8-bit immediate value.

RCL reg/mem64, 1 D1 /2 Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location left 1 bit.

[AMD Public Use]

General-Purpose 293
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

RCR, ROL, ROR

rFLAGS Affected

Exceptions

RCL reg/mem64, CL D3 /2
Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location left the number of bits
specified in the CL register.

RCL reg/mem64, imm8 C1 /2 ib
Rotates the 65 bits consisting of the carry flag and a 64-
bit register or memory location left the number of bits
specified by an 8-bit immediate value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

294 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of a register or memory location (first operand) to the right (toward the less significant
bit positions) and through the carry flag by the number of bit positions in an unsigned immediate value
or the CL register (second operand). The bits rotated through the carry flag are rotated back in at the
left end (msb) of the first operand location.

The processor masks the upper three bits in the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit rotates, the instruction sets the OF flag to the logical xor of the two most significant bits of
the result. When the rotate count is greater than 1, the OF flag is undefined. When the rotate count is 0,
no flags are affected.

RCR Rotate Through Carry Right

Mnemonic Opcode Description

RCR reg/mem8, 1 D0 /3 Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location right 1 bit.

RCR reg/mem8,CL D2 /3
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem8,imm8 C0 /3 ib
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location right the number of bits
specified by an 8-bit immediate value.

RCR reg/mem16,1 D1 /3 Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location right 1 bit.

RCR reg/mem16,CL D3 /3
Rotate the17 bits consisting of the carry flag and a 16-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem16, imm8 C1 /3 ib
Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location right the number of bits
specified by an 8-bit immediate value.

RCR reg/mem32,1 D1 /3 Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location right 1 bit.

RCR reg/mem32,CL D3 /3
Rotate 33 bits consisting of the carry flag and a 32-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem32, imm8 C1 /3 ib
Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location right the number of bits
specified by an 8-bit immediate value.

RCR reg/mem64,1 D1 /3 Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location right 1 bit.

[AMD Public Use]

General-Purpose 295
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

RCL, ROR, ROL

rFLAGS Affected

Exceptions

RCR reg/mem64,CL D3 /3
Rotate 65 bits consisting of the carry flag and a 64-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem64, imm8 C1 /3 ib
Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location right the number of bits
specified by an 8-bit immediate value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

296 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies the base field of the FS or GS segment descriptor to the specified register. When supported and
enabled, these instructions can be executed at any processor privilege level. The RDFSBASE and
RDGSBASE instructions are only defined in 64-bit mode.

System software must set the FSGSBASE bit (bit 16) of CR4 to enable the RDFSBASE and
RDGSBASE instructions.

Support for this instruction is indicated by CPUID Fn0000_0007_EBX_x0[FSGSBASE] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

WRFSBASE, WRGSBASE

rFLAGS Affected

None.

Exceptions

RDFSBASE
RDGSBASE

Read FS.base
Read GS.base

Mnemonic Opcode Description

RDFSBASE reg32 F3 0F AE /0 Copy the lower 32 bits of FS.base to the specified
general-purpose register.

RDFSBASE reg64 F3 0F AE /0 Copy the entire 64-bit contents of FS.base to the
specified general-purpose register.

RDGSBASE reg32 F3 0F AE /1 Copy the lower 32 bits of GS.base to the specified
general-purpose register.

RDGSBASE reg64 F3 0F AE /1 Copy the entire 64-bit contents of GS.base to the
specified general-purpose register.

Exception Legacy
Compat-

ibility 64-bit Cause of Exception

#UD

X X Instruction is not valid in compatibility or legacy
modes.

X
Instruction not supported as indicated by CPUID
Fn0000_0007_EBX_x0[FSGSBASE] = 0 or, if
supported, not enabled in CR4.

[AMD Public Use]

General-Purpose 297
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

RDPID reads the value of TSC_AUX MSR used by the RDTSCP instruction into the specified
destination register. Normal operand size prefixes do not apply and the update is either 32 bit or 64 bit
based on the current mode.

The RDPID instruction can be used to access the TSC_AUX value at CPL > 0 in cases where the
operating system has disabled unprivileged execution of the RDTSCP instruction.

The content of the TSC_AUX MSR, including how and even whether it actually indicates a processor
ID, is a matter of operating system convention.

The RDPID instruction is supported if the feature flag CPUID Fn0000_0007_X0_ECX[22]=1.

Related Instructions

RDTSCP

rFLAGS Affected

rNone

Exceptions

RDPID Read Processor ID

Mnemonic Opcode Description

RDPID F3 0F C7/7 Read TSC_AUX

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X Instruction not supported by CPUID Fn0000_0007_ECX[22] =

0.

[AMD Public Use]

298 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

RDPRU instruction is used to give access to some processor registers that are typically only accessible
when the privilege level is zero. ECX is used as the implicit register to specify which register to read.
RDPRU places the specified register’s value into EDX:EAX.

The RDPRU instruction normally can be executed at any privilege level. When CR4.TSD=1, RDPRU
can only be used when the privilege level is zero. When the CPL>0 with CR4.TSD=1, the RDPRU
instruction will generate a #UD fault.

The RDPRU instruction is supported if the feature flag CPUID Fn8000_0008 EBX[4]=1. The 16-bit
field in CPUID Fn8000_0008-EDX[31:16] returns the largest ECX value that returns a valid register.
Any unsupported ECX values return zero. Registers currently supported by ECX values are:

• ECX Value 0 = Register MPERF

• ECX Value 1 = Register APERF

rFLAGS Affected

Exceptions

RDPRU Read Processor Register

Mnemonic Opcode Description

RDPRU 0F 01 FD Copy register specified by ECX into EDX:EAX

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X

Instruction not supported by
CPUID Fn8000_0008_EBX[RDPRU] = 0 or CPL>0 and
CR4.TSD=1.

[AMD Public Use]

General-Purpose 299
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the destination register with a hardware-generated random value.

The size of the returned value in bits is determined by the size of the destination register.

Hardware modifies the CF flag to indicate whether the value returned in the destination register is
valid. If CF = 1, the value is valid. If CF = 0, the value is invalid. Software must test the state of the CF
flag prior to using the value returned in the destination register to determine if the value is valid. If the
returned value is invalid, software must execute the instruction again. Software should implement a
retry limit to ensure forward progress of code.

The execution of RDRAND clears the OF, SF, ZF, AF, and PF flags.

Support for the RDRAND instruction is optional. On processors that support the instruction, CPUID
Fn0000_0001_ECX[RDRAND] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

rFLAGS Affected

Exceptions

RDRAND Read Random

Mnemonic Opcode Description

RDRAND reg16 0F C7 /6 Load the destination register with a 16-bit random
number.

RDRAND reg32 0F C7 /6 Load the destination register with a 32-bit random
number.

RDRAND reg64 0F C7 /6 Load the destination register with a 64-bit random
number.

Related Instructions

RDSEED

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X Instruction not supported as indicated by

CPUID Fn0000_0001_ECX[RDRAND] = 0.

[AMD Public Use]

300 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the destination register with a hardware-generated random “seed” value.

The size of the returned value in bits is determined by the size of the destination register.

Hardware modifies the CF flag to indicate whether the value returned in the destination register is
valid. If CF = 1, the value is valid. If CF = 0, the value is invalid and will be returned as zero. Software
must test the state of the CF flag prior to using the value returned in the destination register to
determine if the value is valid. If the returned value is invalid, software must execute the instruction
again. Software should implement a retry limit to ensure forward progress of code.

The execution of RDSEED clears the OF, SF, ZF, AF, and PF flags.

rFLAGS Affected

Exceptions

RDSEED Read Random Seed

Mnemonic Opcode Description

RDSEED reg16 0F C7 /7 Read 16-bit random seed

RDSEED reg32 0F C7 /7 Read 32-bit random seed

RDSEED reg64 0F C7 /7 Read 64-bit random seed

Related Instructions

RDRAND

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported as indicated by CPUID
Fn0000_0007_EBX_x0[RDSEED] = 0

[AMD Public Use]

General-Purpose 301
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Returns from a procedure previously entered by a CALL near instruction. This form of the RET
instruction returns to a calling procedure within the current code segment.

This instruction pops the rIP from the stack, with the size of the pop determined by the operand size.
The new rIP is then zero-extended to 64 bits. The RET instruction can accept an immediate value
operand that it adds to the rSP after it pops the target rIP. This action skips over any parameters
previously passed back to the subroutine that are no longer needed.

In 64-bit mode, the operand size defaults to 64 bits (eight bytes) without the need for a REX prefix. No
prefix is available to encode a 32-bit operand size in 64-bit mode.

See RET (Far) for information on far returns—returns to procedures located outside of the current
code segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Action

RETN_START:

IF (OPCODE == retn imm16)
 temp_IMM = 16 bit immediate from the instruction, zero-extended to 64 bits
ELSE // (OPCODE == retn)
 temp_IMM = 0

IF (stack is not large enough for a v-sized pop)
 EXCEPTION[#SS(0)]

POP.v temp_RIP

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

IF (ShadowStacksEnabled at current CPL)
 {
 IF (v == 2) // operand size = 16
 {
 temp_sstk_RIP = SSTK_READ_MEM.d [SSP]
 SSP = SSP + 4

RET (Near) Near Return from Called Procedure

Mnemonic Opcode Description

RET C3 Near return to the calling procedure.

RET imm16 C2 iw Near return to the calling procedure then pop the
specified number of bytes from the stack.

[AMD Public Use]

302 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 }
 ELSEIF (v == 4) // operand size = 32
 {
 temp_sstk_RIP = SSTK_READ_MEM.d [SSP]
 SSP = SSP + 4
 }
 ELSE // (v == 8) // operand size = 64
 {
 temp_sstk_RIP = SSTK_READ_MEM.q [SSP]
 SSP = SSP + 8
 }
 IF (temp_RIP != temp_sstk_RIP)
 EXCEPTION [#CP(RETN)]
 } end shadow stacks enabled

RSP.s = RSP + temp_IMM
RIP = temp_RIP
EXIT // end RETN

Related Instructions

CALL (Near), CALL (Far), RET (Far)

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Control-protection,
#CP X The return address on the program stack did not match the

address on the shadow stack.

[AMD Public Use]

General-Purpose 303
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Returns from a procedure previously entered by a CALL Far instruction. This form of the RET
instruction returns to a calling procedure in a different segment than the current code segment. It can
return to the same CPL or to a less privileged CPL.

RET Far pops a target CS and rIP from the stack. If the new code segment is less privileged than the
current code segment, the stack pointer is incremented by the number of bytes indicated by the
immediate operand, if present; then a new SS and rSP are also popped from the stack.

The final value of rSP is incremented by the number of bytes indicated by the immediate operand, if
present. This action skips over the parameters (previously passed to the subroutine) that are no longer
needed.

All stack pops are determined by the operand size. If necessary, the target rIP is zero-extended to 64
bits before assuming program control.

If the CPL changes, the data segment selectors are set to NULL for any of the data segments (DS, ES,
FS, GS) not accessible at the new CPL.

See RET (Near) for information on near returns—returns to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Action
// For functions READ_DESCRIPTOR, ShadowStacksEnabled
// see "Pseudocode Definition" on page 57

RETF_START:

IF (PROTECTED_MODE)
 RETF_PROTECTED
ELSE // (REAL_MODE or VIRTUAL_MODE)
 RETF_REAL_OR_VIRTUAL

RETF_REAL_OR_VIRTUAL:

IF (OPCODE == retf imm16)
 temp_IMM = 16 bit immediate operand, zero-extended to 64 bits
ELSE // (OPCODE == retf)
 temp_IMM = 0

RET (Far) Far Return from Called Procedure

Mnemonic Opcode Description

RETF CB Far return to the calling procedure.

RETF imm16 CA iw Far return to the calling procedure, then pop the
specified number of bytes from the stack.

[AMD Public Use]

304 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

POP.v temp_RIP
POP.v temp_CS

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4

RSP.s = RSP + temp_IMM
RIP = temp_RIP
EXIT // end RETF real or virtual modes

RETF_PROTECTED:

IF (OPCODE == retf imm16)
 temp_IMM = 16 bit immediate operand, zero-extended to 64 bits
ELSE // (OPCODE == retf)
 temp_IMM = 0

POP.v temp_RIP
POP.v temp_CS
temp_CPL = temp_CS.rpl

IF (CPL == temp_CPL) // not changing privilege level
 RETF_PROTECTED_TO_SAME_PRIV
ELSE
 RETF_PROTECTED_TO_OUTER_PRIV

RETF_PROTECTED_TO_SAME_PRIV:
 // CPL = temp_CS.rpl (RETF to same privilege level)
CS = READ_DESCRIPTOR (temp_CS, iret_chk)

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

RIP = temp_RIP
RSP.s = RSP + temp_IMM

IF (ShadowStacksEnabled(current CPL))
 {
 IF (SSP[2:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // SSP must be 8-byte aligned
 temp_sstk_CS = SSTK_READ_MEM.q [SSP + 16] // read CS from sstk
 temp_sstk_LIP = SSTK_READ_MEM.q [SSP + 8] // read LIP
 temp_sstk_prevSSP = SSTK_READ_MEM.q [SSP] // read previous SSP
 SSP = SSP + 24

[AMD Public Use]

General-Purpose 305
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

 IF (temp_CS != temp_sstk_CS)
 EXCEPTION [#CP(RETF/IRET)] // CS mismatch
 IF ((CS.base + RIP) != temp_sstk_LIP)
 EXCEPTION [#CP(RETF/IRET)] // LIP mismatch
 IF (temp_sstk_prevSSP[1:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // prevSSP must be 4-byte aligned
 IF ((COMPATIBILITY_MODE) && (tmp_sstk_prevSSP[63:32] != 0))
 EXCEPTION [#GP(0)] // prevSSP must be <4GB in compat mode
 SSP = temp_sstk_prevSSP
 } // end shadow stacks enabled at current CPL

EXIT // end RETF to same privilege level

RETF_PROTECTED_TO_OUTER_PRIV:
 // CPL != temp_CS.rpl (RETF changing privilege level)
POP.v temp_RSP
POP.v temp_SS

CS = READ_DESCRIPTOR (temp_CS, iret_chk)
temp_oldCPL = CPL

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

CPL = temp_CPL
SS = READ_DESCRIPTOR (temp_SS, ss_chk)

RIP = temp_RIP
RSP.s = temp_RSP + temp_IMM

IF (ShadowStacksEnabled(old CPL))
 {
 IF (SSP[2:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // SSP must be 8-byte aligned
 temp_sstk_CS = SSTK_READ_MEM.q [SSP + 16] // read CS from sstk
 temp_sstk_LIP = SSTK_READ_MEM.q [SSP + 8] // read LIP
 temp_SSP = SSTK_READ_MEM.q [SSP] // read previous SSP
 SSP = SSP +24
 IF (temp_CS != temp_sstk_CS)
 EXCEPTION [#CP(RETF/IRET)] // CS mismatch
 IF ((CS.base + RIP) != temp_sstk_LIP)
 EXCEPTION [#CP(RETF/IRET)] // LIP mismatch
 IF (temp_SSP[1:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // prevSSP must be 4-byte aligned
 IF ((COMPATIBILITY_MODE) && (tmp_sstk_prevSSP[63:32] != 0))
 EXCEPTION [#GP(0)] // prevSSP must be <4GB in compat mode
 }
temp_oldSSP = SSP
IF (ShadowStacksEnabled(new CPL))
 {

[AMD Public Use]

306 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 IF ((ShadowStacksEnabled(CPL 3) && (old_CPL == 3))
 temp_SSP = PL3_SSP
 IF ((COMPATIBILITY_MODE) && (temp_SSP[63:32] != 0))
 EXCEPTION [#GP(0)] // SSP must be <4GB in compat mode
 SSP = temp_SSP
 }

IF (ShadowStacksEnabled(old CPL))
 { // check shadow stack token and clear busy
 bool invalid_token = FALSE
 < start atomic section >
 temp_Token= SSTK_READ_MEM.q [temp_oldSSP] // read supervisor sstk token
 IF ((temp_Token AND 0x01) != 1)
 invalid_Token = TRUE // token busy bit must be 1
 IF ((temp_Token AND ~0x01) != temp_oldSSP)
 invalid_Token = TRUE // address in token must = old SSP
 IF (!invalid_Token)
 temp_Token = temp_Token AND ~0x01 // if valid clear token busy bit
 SSTK_WRITE_MEM.q [temp_oldSSP] = temp_Token // writeback token
 < end atomic section >
 } // end shadow stacks enabled

FOR (seg = ES, DS, FS, GS)
 IF ((seg.sel == NULL) || ((seg.attr.dpl < CPL) &&
 ((seg.attr.type == ’data’) ||
 (seg.attr.type == ’non-conforming-code’))))
 seg = NULL // can’t use lower DPL data segment at higher CPL
 // also clears RPL of any null selectors

Related Instructions

CALL (Near), CALL (Far), RET (Near)

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Segment not
present, #NP
(selector)

X The return code segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The return stack segment was marked not present.

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

[AMD Public Use]

General-Purpose 307
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X The return code selector was a null selector.

X The return stack selector was a null selector and the return
mode was non-64-bit mode or CPL was 3.

X The return code or stack descriptor exceeded the descriptor
table limit.

X The return code or stack selector’s TI bit was set but the LDT
selector was a null selector.

X The segment descriptor for the return code was not a code
segment.

X The RPL of the return code segment selector was less than
the CPL.

X
The return code segment was non-conforming and the
segment selector’s DPL was not equal to the RPL of the code
segment’s segment selector.

X
The return code segment was conforming and the segment
selector’s DPL was greater than the RPL of the code
segment’s segment selector.

X The segment descriptor for the return stack was not a writable
data segment.

X The stack segment descriptor DPL was not equal to the RPL
of the return code segment selector.

X The stack segment selector RPL was not equal to the RPL of
the return code segment selector.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned-memory reference was performed while

alignment checking was enabled.

Control-protection,
#CP X

The return address on the program stack did not match the
address on the shadow stack, or the previous SSP is not 4
byte aligned.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

308 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of a register or memory location (first operand) to the left (toward the more significant
bit positions) by the number of bit positions in an unsigned immediate value or the CL register (second
operand). The bits rotated out left are rotated back in at the right end (lsb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, it masks the upper two bits of the count,
providing a count in the range of 0 to 63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated out (the lsb of the
result). For 1-bit rotates, the instruction sets the OF flag to the logical xor of the CF bit (after the
rotate) and the most significant bit of the result. When the rotate count is greater than 1, the OF flag is
undefined. When the rotate count is 0, no flags are affected.

Related Instructions

RCL, RCR, ROR

ROL Rotate Left

Mnemonic Opcode Description

ROL reg/mem8, 1 D0 /0 Rotate an 8-bit register or memory operand left 1 bit.

ROL reg/mem8, CL D2 /0 Rotate an 8-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem8, imm8 C0 /0 ib Rotate an 8-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

ROL reg/mem16, 1 D1 /0 Rotate a 16-bit register or memory operand left 1 bit.

ROL reg/mem16, CL D3 /0 Rotate a 16-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem16, imm8 C1 /0 ib Rotate a 16-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

ROL reg/mem32, 1 D1 /0 Rotate a 32-bit register or memory operand left 1 bit.

ROL reg/mem32, CL D3 /0 Rotate a 32-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem32, imm8 C1 /0 ib Rotate a 32-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

ROL reg/mem64, 1 D1 /0 Rotate a 64-bit register or memory operand left 1 bit.

ROL reg/mem64, CL D3 /0 Rotate a 64-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem64, imm8 C1 /0 ib Rotate a 64-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

[AMD Public Use]

General-Purpose 309
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

310 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of a register or memory location (first operand) to the right (toward the less significant
bit positions) by the number of bit positions in an unsigned immediate value or the CL register (second
operand). The bits rotated out right are rotated back in at the left end (the most significant bit) of the
first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated out (the most
significant bit of the result). For 1-bit rotates, the instruction sets the OF flag to the logical xor of the
two most significant bits of the result. When the rotate count is greater than 1, the OF flag is undefined.
When the rotate count is 0, no flags are affected.

Related Instructions

RCL, RCR, ROL

ROR Rotate Right

Mnemonic Opcode Description

ROR reg/mem8, 1 D0 /1 Rotate an 8-bit register or memory location right 1 bit.

ROR reg/mem8, CL D2 /1 Rotate an 8-bit register or memory location right the
number of bits specified in the CL register.

ROR reg/mem8, imm8 C0 /1 ib Rotate an 8-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

ROR reg/mem16, 1 D1 /1 Rotate a 16-bit register or memory location right 1 bit.

ROR reg/mem16, CL D3 /1 Rotate a 16-bit register or memory location right the
number of bits specified in the CL register.

ROR reg/mem16, imm8 C1 /1 ib Rotate a 16-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

ROR reg/mem32, 1 D1 /1 Rotate a 32-bit register or memory location right 1 bit.

ROR reg/mem32, CL D3 /1 Rotate a 32-bit register or memory location right the
number of bits specified in the CL register.

ROR reg/mem32, imm8 C1 /1 ib Rotate a 32-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

ROR reg/mem64, 1 D1 /1 Rotate a 64-bit register or memory location right 1 bit.

ROR reg/mem64, CL D3 /1 Rotate a 64-bit register or memory operand right the
number of bits specified in the CL register.

ROR reg/mem64, imm8 C1 /1 ib Rotate a 64-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

[AMD Public Use]

General-Purpose 311
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

312 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Rotates the bits of the source operand right (toward the least-significant bit) by the number of bit
positions specified in an immediate operand and writes the result to the destination. Does not affect the
arithmetic flags.

This instruction has three operands:

RORX dest, src, rot_cnt

On each right-shift, the bit shifted out of the least-significant bit position is copied to the most-
significant bit. This instruction performs a non-destructive operation; that is, the contents of the source
operand are unaffected by the operation, unless the destination and source are the same general-
purpose register.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general-purpose register and the source (src) is either a general-purpose
register or a memory operand. The rotate count rot_cnt is encoded in an immediate byte. When the
operand size is 32, bits [7:5] of the immediate byte are ignored; when the operand size is 64, bits [7:6]
of the immediate byte are ignored.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

SARX, SHLX, SHRX

rFLAGS Affected

None.

RORX Rotate Right Extended

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

RORX reg32, reg/mem32, imm8 C4 RXB.03 0.1111.0.11 F0 /r ib

RORX reg64, reg/mem64, imm8 C4 RXB.03 1.1111.0.11 F0 /r ib

[AMD Public Use]

General-Purpose 313
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

314 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corresponding
bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). The instruction ignores bits 1, 3, and 5 of
register AH; it sets those bits in the EFLAGS register to 1, 0, and 0, respectively.

The SAHF instruction is available in 64-bit mode if CPUID Fn8000_0001_ECX[LahfSahf] = 1. It is
always available in the other operating modes (including compatibility mode)

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

LAHF

rFLAGS Affected

Exceptions

SAHF Store AH into Flags

Mnemonic Opcode Description

SAHF 9E
Loads the sign flag, the zero flag, the auxiliary flag, the
parity flag, and the carry flag from the AH register into
the lower 8 bits of the EFLAGS register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X The SAHF instruction is not supported in 64-bit mode, as

indicated by CPUID Fn8000_0001_ECX[LahfSahf] = 0.

[AMD Public Use]

General-Purpose 315
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Shifts the bits of a register or memory location (first operand) to the left through the CF bit by the
number of bit positions in an unsigned immediate value or the CL register (second operand). The
instruction discards bits shifted out of the CF flag. For each bit shift, the SAL instruction clears the
least-significant bit to 0. At the end of the shift operation, the CF flag contains the last bit shifted out of
the first operand.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

The effect of this instruction is multiplication by powers of two.

For 1-bit shifts, the instruction sets the OF flag to the logical xor of the CF bit (after the shift) and the
most significant bit of the result. When the shift count is greater than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

SHL is an alias to the SAL instruction.

SAL
SHL

Shift Left

Mnemonic Opcode Description

SAL reg/mem8, 1 D0 /4 Shift an 8-bit register or memory location left 1 bit.

SAL reg/mem8, CL D2 /4 Shift an 8-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem8, imm8 C0 /4 ib Shift an 8-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SAL reg/mem16, 1 D1 /4 Shift a 16-bit register or memory location left 1 bit.

SAL reg/mem16, CL D3 /4 Shift a 16-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem16, imm8 C1 /4 ib Shift a 16-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SAL reg/mem32, 1 D1 /4 Shift a 32-bit register or memory location left 1 bit.

SAL reg/mem32, CL D3 /4 Shift a 32-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem32, imm8 C1 /4 ib Shift a 32-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SAL reg/mem64, 1 D1 /4 Shift a 64-bit register or memory location left 1 bit.

SAL reg/mem64, CL D3 /4 Shift a 64-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem64, imm8 C1 /4 ib Shift a 64-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

[AMD Public Use]

316 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

SAR, SHR, SHLD, SHRD

rFLAGS Affected

SHL reg/mem8, 1 D0 /4 Shift an 8-bit register or memory location by 1 bit.

SHL reg/mem8, CL D2 /4 Shift an 8-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem8, imm8 C0 /4 ib Shift an 8-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SHL reg/mem16, 1 D1 /4 Shift a 16-bit register or memory location left 1 bit.

SHL reg/mem16, CL D3 /4 Shift a 16-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem16, imm8 C1 /4 ib Shift a 16-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SHL reg/mem32, 1 D1 /4 Shift a 32-bit register or memory location left 1 bit.

SHL reg/mem32, CL D3 /4 Shift a 32-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem32, imm8 C1 /4 ib Shift a 32-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SHL reg/mem64, 1 D1 /4 Shift a 64-bit register or memory location left 1 bit.

SHL reg/mem64, CL D3 /4 Shift a 64-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem64, imm8 C1 /4 ib Shift a 64-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose 317
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

318 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of a register or memory location (first operand) to the right through the CF bit by the
number of bit positions in an unsigned immediate value or the CL register (second operand). The
instruction discards bits shifted out of the CF flag. At the end of the shift operation, the CF flag
contains the last bit shifted out of the first operand.

The SAR instruction does not change the sign bit of the target operand. For each bit shift, it copies the
sign bit to the next bit, preserving the sign of the result.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit shifts, the instruction clears the OF flag to 0. When the shift count is greater than 1, the OF
flag is undefined.

If the shift count is 0, no flags are modified.

Although the SAR instruction effectively divides the operand by a power of 2, the behavior is different
from the IDIV instruction. For example, shifting –11 (FFFFFFF5h) by two bits to the right (that is,
divide –11 by 4), gives a result of FFFFFFFDh, or –3, whereas the IDIV instruction for dividing –11
by 4 gives a result of –2. This is because the IDIV instruction rounds off the quotient to zero, whereas
the SAR instruction rounds off the remainder to zero for positive dividends and to negative infinity for
negative dividends. So, for positive operands, SAR behaves like the corresponding IDIV instruction.
For negative operands, it gives the same result if and only if all the shifted-out bits are zeroes;
otherwise, the result is smaller by 1.

SAR Shift Arithmetic Right

Mnemonic Opcode Description

SAR reg/mem8, 1 D0 /7 Shift a signed 8-bit register or memory operand right 1
bit.

SAR reg/mem8, CL D2 /7 Shift a signed 8-bit register or memory operand right the
number of bits specified in the CL register.

SAR reg/mem8, imm8 C0 /7 ib Shift a signed 8-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SAR reg/mem16, 1 D1 /7 Shift a signed 16-bit register or memory operand right 1
bit.

SAR reg/mem16, CL D3 /7 Shift a signed 16-bit register or memory operand right
the number of bits specified in the CL register.

SAR reg/mem16, imm8 C1 /7 ib
Shift a signed 16-bit register or memory operand right
the number of bits specified by an 8-bit immediate
value.

SAR reg/mem32, 1 D1 /7 Shift a signed 32-bit register or memory location 1 bit.

SAR reg/mem32, CL D3 /7 Shift a signed 32-bit register or memory location right
the number of bits specified in the CL register.

[AMD Public Use]

General-Purpose 319
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

SAL, SHL, SHR, SHLD, SHRD

rFLAGS Affected

Exceptions

SAR reg/mem32, imm8 C1 /7 ib
Shift a signed 32-bit register or memory location right
the number of bits specified by an 8-bit immediate
value.

SAR reg/mem64, 1 D1 /7 Shift a signed 64-bit register or memory location right 1
bit.

SAR reg/mem64, CL D3 /7 Shift a signed 64-bit register or memory location right
the number of bits specified in the CL register.

SAR reg/mem64, imm8 C1 /7 ib
Shift a signed 64-bit register or memory location right
the number of bits specified by an 8-bit immediate
value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

320 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of the first source operand right (toward the least-significant bit) arithmetically by the
number of bit positions specified in the second source operand and writes the result to the destination.
Does not affect the arithmetic flags.

This instruction has three operands:

SARX dest, src, shft_cnt

On each right-shift, the most-significant bit (the sign bit) is replicated. This instruction performs a non-
destructive operation; that is, the contents of the source operand are unaffected by the operation, unless
the destination and source are the same general-purpose register.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general-purpose register and the first source (src) is either a general-purpose
register or a memory operand. The second source operand shft_cnt is a general-purpose register. When
the operand size is 32, bits [31:5] of shft_cnt are ignored; when the operand size is 64, bits [63:6] of
shft_cnt are ignored.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

RORX, SHLX, SHRX

rFLAGS Affected

None.

SARX Shift Right Arithmetic Extended

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

SARX reg32, reg/mem32, reg32 C4 RXB.02 0.src2.0.10 F7 /r

SARX reg64, reg/mem64, reg64 C4 RXB.02 1.src2.0.10 F7 /r

[AMD Public Use]

General-Purpose 321
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

322 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Subtracts an immediate value or the value in a register or a memory location (second operand) from a
register or a memory location (first operand), and stores the result in the first operand location. If the
carry flag (CF) is 1, the instruction subtracts 1 from the result. Otherwise, it operates like SUB.

The SBB instruction sign-extends immediate value operands to the length of the first operand size.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a borrow in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

This instruction is useful for multibyte (multiword) numbers because it takes into account the borrow
from a previous SUB instruction.

The forms of the SBB instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

SBB Subtract with Borrow

Mnemonic Opcode Description

SBB AL, imm8 1C ib Subtract an immediate 8-bit value from the AL register
with borrow.

SBB AX, imm16 1D iw Subtract an immediate 16-bit value from the AX register
with borrow.

SBB EAX, imm32 1D id Subtract an immediate 32-bit value from the EAX
register with borrow.

SBB RAX, imm32 1D id Subtract a sign-extended immediate 32-bit value from
the RAX register with borrow.

SBB reg/mem8, imm8 80 /3 ib Subtract an immediate 8-bit value from an 8-bit register
or memory location with borrow.

SBB reg/mem16, imm16 81 /3 iw Subtract an immediate 16-bit value from a 16-bit register
or memory location with borrow.

SBB reg/mem32, imm32 81 /3 id Subtract an immediate 32-bit value from a 32-bit register
or memory location with borrow.

SBB reg/mem64, imm32 81 /3 id Subtract a sign-extended immediate 32-bit value from a
64-bit register or memory location with borrow.

SBB reg/mem16, imm8 83 /3 ib Subtract a sign-extended 8-bit immediate value from a
16-bit register or memory location with borrow.

SBB reg/mem32, imm8 83 /3 ib Subtract a sign-extended 8-bit immediate value from a
32-bit register or memory location with borrow.

SBB reg/mem64, imm8 83 /3 ib Subtract a sign-extended 8-bit immediate value from a
64-bit register or memory location with borrow.

SBB reg/mem8, reg8 18 /r Subtract the contents of an 8-bit register from an 8-bit
register or memory location with borrow.

SBB reg/mem16, reg16 19 /r Subtract the contents of a 16-bit register from a 16-bit
register or memory location with borrow.

[AMD Public Use]

General-Purpose 323
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

SUB, ADD, ADC

rFLAGS Affected

Exceptions

SBB reg/mem32, reg32 19 /r Subtract the contents of a 32-bit register from a 32-bit
register or memory location with borrow.

SBB reg/mem64, reg64 19 /r Subtract the contents of a 64-bit register from a 64-bit
register or memory location with borrow.

SBB reg8, reg/mem8 1A /r
Subtract the contents of an 8-bit register or memory
location from the contents of an 8-bit register with
borrow.

SBB reg16, reg/mem16 1B /r
Subtract the contents of a 16-bit register or memory
location from the contents of a 16-bit register with
borrow.

SBB reg32, reg/mem32 1B /r
Subtract the contents of a 32-bit register or memory
location from the contents of a 32-bit register with
borrow.

SBB reg64, reg/mem64 1B /r
Subtract the contents of a 64-bit register or memory
location from the contents of a 64-bit register with
borrow.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

324 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Compares the AL, AX, EAX, or RAX register with the byte, word, doubleword, or quadword pointed
to by ES:rDI, sets the status flags in the rFLAGS register according to the results, and then increments
or decrements the rDI register according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the rDI register; otherwise, it decrements it. The
instruction increments or decrements the rDI register by 1, 2, 4, or 8, depending on the size of the
operands.

The forms of the SCASx instruction with an explicit operand address the operand at ES:rDI. The
explicit operand serves only to specify the size of the values being compared.

The no-operands forms of the instruction use the ES:rDI registers to point to the value to be compared.
The mnemonic determines the size of the operands and the specific register containing the other
comparison value.

For block comparisons, the SCASx instructions support the REPE or REPZ prefixes (they are
synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For details about the REP
prefixes, see “Repeat Prefixes” on page 12. A SCASx instruction can also operate inside a loop
controlled by the LOOPcc instruction.

SCAS
SCASB
SCASW
SCASD
SCASQ

Scan String

Mnemonic Opcode Description

SCAS mem8 AE Compare the contents of the AL register with the byte at
ES:rDI, and then increment or decrement rDI.

SCAS mem16 AF Compare the contents of the AX register with the word
at ES:rDI, and then increment or decrement rDI.

SCAS mem32 AF
Compare the contents of the EAX register with the
doubleword at ES:rDI, and then increment or decrement
rDI.

SCAS mem64 AF
Compare the contents of the RAX register with the
quadword at ES:rDI, and then increment or decrement
rDI.

SCASB AE Compare the contents of the AL register with the byte at
ES:rDI, and then increment or decrement rDI.

SCASW AF Compare the contents of the AX register with the word
at ES:rDI, and then increment or decrement rDI.

[AMD Public Use]

General-Purpose 325
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

CMP, CMPSx

rFLAGS Affected

Exceptions

SCASD AF
Compare the contents of the EAX register with the
doubleword at ES:rDI, and then increment or decrement
rDI.

SCASQ AF
Compare the contents of the RAX register with the
quadword at ES:rDI, and then increment or decrement
rDI.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X A null ES segment was used to reference memory.

X X X A memory address exceeded the ES segment limit or was
non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

326 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Checks the status flags in the rFLAGS register and, if the flags meet the condition specified in the
mnemonic (cc), sets the value in the specified 8-bit memory location or register to 1. If the flags do not
meet the specified condition, SETcc clears the memory location or register to 0.

Mnemonics with the A (above) and B (below) tags are intended for use when performing unsigned
integer comparisons; those with G (greater) and L (less) tags are intended for use with signed integer
comparisons.

Software typically uses the SETcc instructions to set logical indicators. Like the CMOVcc instructions
(page 147), the SETcc instructions can replace two instructions—a conditional jump and a move.
Replacing conditional jumps with conditional sets can help avoid branch-prediction penalties that may
result from conditional jumps.

If the logical value “true” (logical one) is represented in a high-level language as an integer with all
bits set to 1, software can accomplish such representation by first executing the opposite SETcc
instruction—for example, the opposite of SETZ is SETNZ—and then decrementing the result.

A ModR/M byte is used to identify the operand. The reg field in the ModR/M byte is unused.

SETcc Set Byte on Condition

Mnemonic Opcode Description

SETO reg/mem8 0F 90 /0 Set byte if overflow (OF = 1).

SETNO reg/mem8 0F 91 /0 Set byte if not overflow (OF = 0).

SETB reg/mem8
SETC reg/mem8
SETNAE reg/mem8

0F 92 /0
Set byte if below (CF = 1).
Set byte if carry (CF = 1).
Set byte if not above or equal (CF = 1).

SETNB reg/mem8
SETNC reg/mem8
SETAE reg/mem8

0F 93 /0
Set byte if not below (CF = 0).
Set byte if not carry (CF = 0).
Set byte if above or equal (CF = 0).

SETZ reg/mem8
SETE reg/mem8 0F 94 /0 Set byte if zero (ZF = 1).

Set byte if equal (ZF = 1).

SETNZ reg/mem8
SETNE reg/mem8 0F 95 /0 Set byte if not zero (ZF = 0).

Set byte if not equal (ZF = 0).

SETBE reg/mem8
SETNA reg/mem8 0F 96 /0 Set byte if below or equal (CF = 1 or ZF = 1).

Set byte if not above (CF = 1 or ZF = 1).

SETNBE reg/mem8
SETA reg/mem8 0F 97 /0 Set byte if not below or equal (CF = 0 and ZF = 0).

Set byte if above (CF = 0 and ZF = 0).

SETS reg/mem8 0F 98 /0 Set byte if sign (SF = 1).

SETNS reg/mem8 0F 99 /0 Set byte if not sign (SF = 0).

SETP reg/mem8
SETPE reg/mem8 0F 9A /0 Set byte if parity (PF = 1).

Set byte if parity even (PF = 1).

SETNP reg/mem8
SETPO reg/mem8 0F 9B /0 Set byte if not parity (PF = 0).

Set byte if parity odd (PF = 0).

[AMD Public Use]

General-Purpose 327
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

None

rFLAGS Affected

None

Exceptions

SETL reg/mem8
SETNGE reg/mem8 0F 9C /0 Set byte if less (SF <> OF).

Set byte if not greater or equal (SF <> OF).

SETNL reg/mem8
SETGE reg/mem8 0F 9D /0 Set byte if not less (SF = OF).

Set byte if greater or equal (SF = OF).

SETLE reg/mem8
SETNG reg/mem8 0F 9E /0 Set byte if less or equal (ZF = 1 or SF <> OF).

Set byte if not greater (ZF = 1 or SF <> OF).

SETNLE reg/mem8
SETG reg/mem8 0F 9F /0 Set byte if not less or equal (ZF = 0 and SF = OF).

Set byte if greater (ZF = 0 and SF = OF).

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Mnemonic Opcode Description

[AMD Public Use]

328 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Acts as a barrier to force strong memory ordering (serialization) between store instructions preceding
the SFENCE and store instructions that follow the SFENCE. Stores to differing memory types, or
within the WC memory type, may become visible out of program order; the SFENCE instruction
ensures that the system completes all previous stores in such a way that they are globally visible before
executing subsequent stores. This includes emptying the store buffer and all write-combining buffers.

The SFENCE instruction is weakly-ordered with respect to load instructions, data and instruction
prefetches, and the LFENCE instruction. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around an SFENCE.

In addition to store instructions, SFENCE is strongly ordered with respect to other SFENCE
instructions, MFENCE instructions, and serializing instructions. Further details on the use of
MFENCE to order accesses among differing memory types may be found in AMD64 Architecture
Programmer’s Manual Volume 2: System Programming, section 7.4 “Memory Types” on page 172.

The SFENCE instruction is an SSE1 instruction. Support for SSE1 instructions is indicated by CPUID
Fn0000_0001_EDX[SSE] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

LFENCE, MFENCE, MCOMMIT

rFLAGS Affected

None

Exceptions

SFENCE Store Fence

Mnemonic Opcode Description

SFENCE 0F AE F8 Force strong ordering of (serialized) store operations.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid Opcode,
#UD X X X

The SSE instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[25]=0; and the AMD extensions to
MMX are not supported, as indicated by CPUID
Fn8000_0001_EDX[22]=0.

[AMD Public Use]

General-Purpose 329
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

This instruction is synonymous with the SAL instruction. For information, see “SAL SHL” on
page 307.

SHL Shift Left

[AMD Public Use]

330 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of a register or memory location (first operand) to the left by the number of bit positions
in an unsigned immediate value or the CL register (third operand), and shifts in a bit pattern (second
operand) from the right. At the end of the shift operation, the CF flag contains the last bit shifted out of
the first operand.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63. If the masked count is greater than the operand size,
the result in the destination register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the operand being shifted changes, the instruction sets the OF flag to 1.
If the count is greater than 1, OF is undefined.

Related Instructions

SHRD, SAL, SAR, SHR, SHL

SHLD Shift Left Double

Mnemonic Opcode Description

SHLD reg/mem16, reg16, imm8 0F A4 /r ib

Shift bits of a 16-bit destination register or memory
operand to the left the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHLD reg/mem16, reg16, CL 0F A5 /r
Shift bits of a 16-bit destination register or memory
operand to the left the number of bits specified in the CL
register, while shifting in bits from the second operand.

SHLD reg/mem32, reg32, imm8 0F A4 /r ib

Shift bits of a 32-bit destination register or memory
operand to the left the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHLD reg/mem32, reg32, CL 0F A5 /r
Shift bits of a 32-bit destination register or memory
operand to the left the number of bits specified in the CL
register, while shifting in bits from the second operand.

SHLD reg/mem64, reg64, imm8 0F A4 /r ib

Shift bits of a 64-bit destination register or memory
operand to the left the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHLD reg/mem64, reg64, CL 0F A5 /r
Shift bits of a 64-bit destination register or memory
operand to the left the number of bits specified in the CL
register, while shifting in bits from the second operand.

[AMD Public Use]

General-Purpose 331
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

332 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of the first source operand left (toward the most-significant bit) by the number of bit
positions specified in the second source operand and writes the result to the destination. Does not
affect the arithmetic flags.

This instruction has three operands:

SHLX dest, src, shft_cnt

On each left-shift, a zero is shifted into the least-significant bit position. This instruction performs a
non-destructive operation; that is, the contents of the source operand are unaffected by the operation,
unless the destination and source are the same general-purpose register.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general-purpose register and the first source (src) is either a general-purpose
register or a memory operand. The second source operand shft_cnt is a general-purpose register. When
the operand size is 32, bits [31:5] of shft_cnt are ignored; when the operand size is 64, bits [63:6] of
shft_cnt are ignored.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

RORX, SARX, SHRX

rFLAGS Affected

None.

SHLX Shift Left Logical Extended

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

SHLX reg32, reg/mem32, reg32 C4 RXB.02 0.src2.0.01 F7 /r

SHLX reg64, reg/mem64, reg64 C4 RXB.02 1.src2.0.01 F7 /r

[AMD Public Use]

General-Purpose 333
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

334 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of a register or memory location (first operand) to the right through the CF bit by the
number of bit positions in an unsigned immediate value or the CL register (second operand). The
instruction discards bits shifted out of the CF flag. At the end of the shift operation, the CF flag
contains the last bit shifted out of the first operand.

For each bit shift, the instruction clears the most-significant bit to 0.

The effect of this instruction is unsigned division by powers of two.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit shifts, the instruction sets the OF flag to the most-significant bit of the original value. If the
count is greater than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

SHR Shift Right

Mnemonic Opcode Description

SHR reg/mem8, 1 D0 /5 Shift an 8-bit register or memory operand right 1 bit.

SHR reg/mem8, CL D2 /5 Shift an 8-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem8, imm8 C0 /5 ib Shift an 8-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SHR reg/mem16, 1 D1 /5 Shift a 16-bit register or memory operand right 1 bit.

SHR reg/mem16, CL D3 /5 Shift a 16-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem16, imm8 C1 /5 ib Shift a 16-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SHR reg/mem32, 1 D1 /5 Shift a 32-bit register or memory operand right 1 bit.

SHR reg/mem32, CL D3 /5 Shift a 32-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem32, imm8 C1 /5 ib Shift a 32-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SHR reg/mem64, 1 D1 /5 Shift a 64-bit register or memory operand right 1 bit.

SHR reg/mem64, CL D3 /5 Shift a 64-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem64, imm8 C1 /5 ib Shift a 64-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

[AMD Public Use]

General-Purpose 335
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

SHL, SAL, SAR, SHLD, SHRD

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

336 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of a register or memory location (first operand) to the right by the number of bit
positions in an unsigned immediate value or the CL register (third operand), and shifts in a bit pattern
(second operand) from the left. At the end of the shift operation, the CF flag contains the last bit shifted
out of the first operand.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63. If the masked count is greater than the operand size,
the result in the destination register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the value being shifted changes, the instruction sets the OF flag to 1. If
the count is greater than 1, the OF flag is undefined.

Related Instructions

SHLD, SHR, SHL, SAR, SAL

SHRD Shift Right Double

Mnemonic Opcode Description

SHRD reg/mem16, reg16, imm8 0F AC /r ib

Shift bits of a 16-bit destination register or memory
operand to the right the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHRD reg/mem16, reg16, CL 0F AD /r

Shift bits of a 16-bit destination register or memory
operand to the right the number of bits specified in the
CL register, while shifting in bits from the second
operand.

SHRD reg/mem32, reg32, imm8 0F AC /r ib

Shift bits of a 32-bit destination register or memory
operand to the right the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHRD reg/mem32, reg32, CL 0F AD /r

Shift bits of a 32-bit destination register or memory
operand to the right the number of bits specified in the
CL register, while shifting in bits from the second
operand.

SHRD reg/mem64, reg64, imm8 0F AC /r ib

Shift bits of a 64-bit destination register or memory
operand to the right the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHRD reg/mem64, reg64, CL 0F AD /r

Shift bits of a 64-bit destination register or memory
operand to the right the number of bits specified in the
CL register, while shifting in bits from the second
operand.

[AMD Public Use]

General-Purpose 337
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

338 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Shifts the bits of the first source operand right (toward the least-significant bit) by the number of bit
positions specified in the second source operand and writes the result to the destination. Does not
affect the arithmetic flags.

This instruction has three operands:

SHRX dest, src, shft_cnt

On each right-shift, a zero is shifted into the most-significant bit position. This instruction performs a
non-destructive operation; that is, the contents of the source operand are unaffected by the operation,
unless the destination and source are the same general-purpose register.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general-purpose register and the first source (src) is either a general-purpose
register or a memory operand. The second source operand shft_cnt is a general-purpose register. When
the operand size is 32, bits [31:5] of shft_cnt are ignored; when the operand size is 64, bits [63:6] of
shft_cnt are ignored.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI2] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

RORX, SARX, SHLX

rFLAGS Affected

None.

SHRX Shift Right Logical Extended

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

SHRX reg32, reg/mem32, reg32 C4 RXB.02 0.src2.0.11 F7 /r

SHRX reg64, reg/mem64, reg64 C4 RXB.02 1.src2.0.11 F7 /r

[AMD Public Use]

General-Purpose 339
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X BMI2 instructions are only recognized in protected mode.

X BMI2 instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI2] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

340 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Flushes Lightweight Profiling (LWP) state to memory and returns the current effective address of the
Lightweight Profiling Control Block (LWPCB) in the specified register. The LWPCB address returned
is truncated to 32 bits if the operand size is 32.

If LWP is not currently enabled, SLWPCB sets the specified register to zero.

The flush operation stores the internal event counters for active events and the current ring buffer head
pointer into the LWPCB. If there is an unwritten event record pending, it is written to the event ring
buffer.

The LWP_CBADDR MSR holds the linear address of the current LWPCB. If the contents of
LWP_CBADDR is not zero, the value returned in the specified register is an effective address that is
calculated by subtracting the current DS.Base address from the linear address kept in LWP_CBADDR.
Note that if DS has changed between the time LLWPCB was executed and the time SLWPCB is
executed, this might result in an address that is not currently accessible by the application.

SLWPCB generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

It is possible to execute SLWPCB when the CPL != 3 or when SMM is active, but if the LWPCB
pointer is not zero, system software must ensure that the LWPCB and the entire ring buffer are
properly mapped into writable memory in order to avoid a #PF fault. Using SLWPCB in these
situations is not recommended.

See the discussion of lightweight profiling in Volume 2, Chapter 13 for more information on the use of
the LLWPCB, SLWPCB, LWPINS, and LWPVAL instructions.

The SLWPCB instruction is implemented if LWP is supported on a processor. Support for LWP is
indicated by CPUID Fn8000_0001_ECX[LWP] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 001b. ModRM.r/m (augmented by
XOP.R) specifies the register in which to put the LWPCB address. ModRM.mod must be 11b.

SLWPCB Store Lightweight Profiling Control Block
Address

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

SLWPCB reg32 8F RXB.09 0.1111.0.00 12 /1

SLWPCB reg64 8F RXB.09 1.1111.0.00 12 /1

[AMD Public Use]

General-Purpose 341
Instruction Reference

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

LLWPCB, LWPINS, LWPVAL

rFLAGS Affected

None

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode,
#UD

X X X
The SLWPCB instruction is not supported, as indicated by
CPUID Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.

X LWP is not available, or mod != 11b, or vvvv != 1111b.

Page fault, #PF
X A page fault resulted from reading or writing the LWPCB.

X A page fault resulted from flushing an event to the ring buffer.

[AMD Public Use]

342 General-Purpose
Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Sets the carry flag (CF) in the rFLAGS register to one.

Related Instructions

CLC, CMC

rFLAGS Affected

Exceptions

None

STC Set Carry Flag

Mnemonic Opcode Description

STC F9 Set the carry flag (CF) to one.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

1

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

General-Purpose Instruction Reference 343

24594—Rev. 3.32—March 2021 AMD64 Technology

Set the direction flag (DF) in the rFLAGS register to 1. If the DF flag is 0, each iteration of a string
instruction increments the data pointer (index registers rSI or rDI). If the DF flag is 1, the string
instruction decrements the pointer. Use the CLD instruction before a string instruction to make the
data pointer increment.

Related Instructions

CLD, INSx, LODSx, MOVSx, OUTSx, SCASx, STOSx, CMPSx

rFLAGS Affected

Exceptions

None

STD Set Direction Flag

Mnemonic Opcode Description

STD FD Set the direction flag (DF) to one.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

1

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

344 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Copies a byte, word, doubleword, or quadword from the AL, AX, EAX, or RAX registers to the
memory location pointed to by ES:rDI and increments or decrements the rDI register according to the
state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the pointer; otherwise, it decrements the pointer. It
increments or decrements the pointer by 1, 2, 4, or 8, depending on the size of the value being copied.

The forms of the STOSx instruction with an explicit operand use the operand only to specify the type
(size) of the value being copied.

The no-operands forms specify the type (size) of the value being copied with the mnemonic.

The STOSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12. The STOSx instructions can also operate inside a LOOPcc instruction.

Related Instructions

LODSx, MOVSx

STOS
STOSB
STOSW
STOSD
STOSQ

Store String

Mnemonic Opcode Description

STOS mem8 AA Store the contents of the AL register to ES:rDI, and then
increment or decrement rDI.

STOS mem16 AB Store the contents of the AX register to ES:rDI, and then
increment or decrement rDI.

STOS mem32 AB Store the contents of the EAX register to ES:rDI, and
then increment or decrement rDI.

STOS mem64 AB Store the contents of the RAX register to ES:rDI, and
then increment or decrement rDI.

STOSB AA Store the contents of the AL register to ES:rDI, and then
increment or decrement rDI.

STOSW AB Store the contents of the AX register to ES:rDI, and then
increment or decrement rDI.

STOSD AB Store the contents of the EAX register to ES:rDI, and
then increment or decrement rDI.

STOSQ AB Store the contents of the RAX register to ES:rDI, and
then increment or decrement rDI.

[AMD Public Use]

General-Purpose Instruction Reference 345

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X X X A memory address exceeded the ES segment limit or was
non-canonical.

X The ES segment was a non-writable segment.

X A null ES segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

346 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Subtracts an immediate value or the value in a register or memory location (second operand) from a
register or a memory location (first operand) and stores the result in the first operand location. An
immediate value is sign-extended to the length of the first operand.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a borrow in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

The forms of the SUB instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

SUB Subtract

Mnemonic Opcode Description

SUB AL, imm8 2C ib Subtract an immediate 8-bit value from the AL register
and store the result in AL.

SUB AX, imm16 2D iw Subtract an immediate 16-bit value from the AX register
and store the result in AX.

SUB EAX, imm32 2D id Subtract an immediate 32-bit value from the EAX
register and store the result in EAX.

SUB RAX, imm32 2D id Subtract a sign-extended immediate 32-bit value from
the RAX register and store the result in RAX.

SUB reg/mem8, imm8 80 /5 ib Subtract an immediate 8-bit value from an 8-bit
destination register or memory location.

SUB reg/mem16, imm16 81 /5 iw Subtract an immediate 16-bit value from a 16-bit
destination register or memory location.

SUB reg/mem32, imm32 81 /5 id Subtract an immediate 32-bit value from a 32-bit
destination register or memory location.

SUB reg/mem64, imm32 81 /5 id Subtract a sign-extended immediate 32-bit value from a
64-bit destination register or memory location.

SUB reg/mem16, imm8 83 /5 ib Subtract a sign-extended immediate 8-bit value from a
16-bit register or memory location.

SUB reg/mem32, imm8 83 /5 ib Subtract a sign-extended immediate 8-bit value from a
32-bit register or memory location.

SUB reg/mem64, imm8 83 /5 ib Subtract a sign-extended immediate 8-bit value from a
64-bit register or memory location.

SUB reg/mem8, reg8 28 /r Subtract the contents of an 8-bit register from an 8-bit
destination register or memory location.

SUB reg/mem16, reg16 29 /r Subtract the contents of a 16-bit register from a 16-bit
destination register or memory location.

SUB reg/mem32, reg32 29 /r Subtract the contents of a 32-bit register from a 32-bit
destination register or memory location.

SUB reg/mem64, reg64 29 /r Subtract the contents of a 64-bit register from a 64-bit
destination register or memory location.

[AMD Public Use]

General-Purpose Instruction Reference 347

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

ADC, ADD, SBB

rFLAGS Affected

Exceptions

SUB reg8, reg/mem8 2A /r Subtract the contents of an 8-bit register or memory
operand from an 8-bit destination register.

SUB reg16, reg/mem16 2B /r Subtract the contents of a 16-bit register or memory
operand from a 16-bit destination register.

SUB reg32, reg/mem32 2B /r Subtract the contents of a 32-bit register or memory
operand from a 32-bit destination register.

SUB reg64, reg/mem64 2B /r Subtract the contents of a 64-bit register or memory
operand from a 64-bit destination register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

[AMD Public Use]

348 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Finds the least significant zero bit in the source operand, clears all bits below that bit to 0, sets all other
bits to 1 (including the found bit) and writes the result to the destination. If the least significant bit of
the source operand is 0, the destination is written with all ones.

This instruction has two operands:

T1MSKC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The T1MSKC instruction effectively performs a bit-wise logical or of the inverse of the source
operand and the result of incrementing the source operand by 1 and stores the result to the destination
register:

add tmp1, src, 1
not tmp2, src
or dest, tmp1, tmp2

The value of the carry flag of rFLAGs is generated by the add pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The T1MSKC instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, TZMSK, TZCNT

T1MSKC Inverse Mask From Trailing Ones

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

T1MSKC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /7

T1MSKC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /7

[AMD Public Use]

General-Purpose Instruction Reference 349

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

350 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Performs a bit-wise logical and on the value in a register or memory location (first operand) with an
immediate value or the value in a register (second operand) and sets the flags in the rFLAGS register
based on the result.

This instruction has two operands:

TEST dest, src

While the AND instruction changes the contents of the destination and the flag bits, the TEST
instruction changes only the flag bits.

Related Instructions

AND, CMP

TEST Test Bits

Mnemonic Opcode Description

TEST AL, imm8 A8 ib and an immediate 8-bit value with the contents of the AL
register and set rFLAGS to reflect the result.

TEST AX, imm16 A9 iw and an immediate 16-bit value with the contents of the AX
register and set rFLAGS to reflect the result.

TEST EAX, imm32 A9 id and an immediate 32-bit value with the contents of the EAX
register and set rFLAGS to reflect the result.

TEST RAX, imm32 A9 id and a sign-extended immediate 32-bit value with the contents
of the RAX register and set rFLAGS to reflect the result.

TEST reg/mem8, imm8 F6 /0 ib and an immediate 8-bit value with the contents of an 8-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem16, imm16 F7 /0 iw and an immediate 16-bit value with the contents of a 16-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem32, imm32 F7 /0 id and an immediate 32-bit value with the contents of a 32-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem64, imm32 F7 /0 id
and a sign-extended immediate32-bit value with the contents of
a 64-bit register or memory operand and set rFLAGS to reflect
the result.

TEST reg/mem8, reg8 84 /r and the contents of an 8-bit register with the contents of an 8-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem16, reg16 85 /r and the contents of a 16-bit register with the contents of a 16-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem32, reg32 85 /r and the contents of a 32-bit register with the contents of a 32-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem64, reg64 85 /r and the contents of a 64-bit register with the contents of a 64-bit
register or memory operand and set rFLAGS to reflect the result.

[AMD Public Use]

General-Purpose Instruction Reference 351

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

352 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Counts the number of trailing zero bits in the 16-, 32-, or 64-bit general purpose register or memory
source operand. Counting starts upward from the least significant bit and stops when the lowest bit
having a value of 1 is encountered or when the most significant bit is encountered. The count is written
to the destination register.

If the input operand is zero, CF is set to 1 and the size (in bits) of the input operand is written to the
destination register. Otherwise, CF is cleared.

If the least significant bit is a one, the ZF flag is set to 1 and zero is written to the destination register.
Otherwise, ZF is cleared.

TZCNT is a BMI instruct ion. Support for BMI inst ruct ions is indicated by CPUID
Fn0000_0007_EBX_x0[BMI] = 1. If the TZCNT instruction is not available, the encoding is treated
as the BSF instruction. Software must check the CPUID bit once per program or library initialization
before using the TZCNT instruction or inconsistent behavior may result.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, T1MSKC, TZMSK

rFLAGS Affected

TZCNT Count Trailing Zeros

Mnemonic Opcode Description

TZCNT reg16, reg/mem16 F3 0F BC /r Count the number of trailing zeros in reg/mem16.

TZCNT reg32, reg/mem32 F3 0F BC /r Count the number of trailing zeros in reg/mem32.

TZCNT reg64, reg/mem64 F3 0F BC /r Count the number of trailing zeros in reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

General-Purpose Instruction Reference 353

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

354 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Finds the least significant one bit in the source operand, sets all bits below that bit to 1, clears all other
bits to 0 (including the found bit) and writes the result to the destination. If the least significant bit of
the source operand is 1, the destination is written with all zeros.

This instruction has two operands:

TZMSK dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The TZMSK instruction effectively performs a bit-wise logical and of the negation of the source
operand and the result of subtracting 1 from the source operand, and stores the result to the destination
register:

sub tmp1, src, 1
not tmp2, src
and dest, tmp1, tmp2

The value of the carry flag of rFLAGs is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the and pseudo-instruction.

The TZMSK instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT

TZMSK Mask From Trailing Zeros

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

TZMSK reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /4

TZMSK reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /4

[AMD Public Use]

General-Purpose Instruction Reference 355

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

356 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

These opcodes generate an invalid opcode exception. Unlike other undefined opcodes that may be
defined as legal instructions in the future, these opcodes are intended to stay undefined. On some
AMD64 processor implementations, UD1 may report an invalid opcode exception regardless of
whether fetching the ModRM byte could trigger a paging or segmentation exception.

Related Instructions

None

rFLAGS Affected

None

Exceptions

UD0, UD1, UD2 Undefined Operation

Mnemonic Opcode Description

UD0 0F FF Raise an invalid opcode exception

UD1 0F B9 /r Raise an invalid opcode exception

UD2 0F 0B Raise an invalid opcode exception.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X This instruction is not recognized.

[AMD Public Use]

General-Purpose Instruction Reference 357

24594—Rev. 3.32—March 2021 AMD64 Technology

Writes the base field of the FS or GS segment descriptor with the value contained in the register
operand. When supported and enabled, these instructions can be executed at any processor privilege
level. Instructions are only defined in 64-bit mode. The address written to the base field must be in
canonical form or a #GP fault will occur.

System software must set the FSGSBASE bit (bit 16) of CR4 to enable the WRFSBASE and
WRGSBASE instructions.

Support for this instruction is indicated by CPUID Fn0000_0007_EBX_x0[FSGSBASE] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Related Instructions

RDFSBASE, RDGSBASE

rFLAGS Affected

None.

Exceptions

WRFSBASE
WRGSBASE

Write FS.base
Write GS.base

Mnemonic Opcode Description

WRFSBASE reg32 F3 0F AE /2 Copy the contents of the specified 32-bit general-
purpose register to the lower 32 bits of FS.base.

WRFSBASE reg64 F3 0F AE /2 Copy the contents of the specified 64-bit general-
purpose register to FS.base.

WRGSBASE reg32 F3 0F AE /3 Copy the contents of the specified 32-bit general-
purpose register to the lower 32 bits of GS.base.

WRGSBASE reg64 F3 0F AE /3 Copy the contents of the specified 64-bit general-
purpose register to GS.base.

Exception Legacy Compatibility 64-bit Cause of Exception

#UD

X X Instruction is not valid in compatibility or legacy modes.

X
Instruction not supported as indicated by CPUID
Fn0000_0007_EBX_x0[FSGSBASE] = 0 or, if supported,
not enabled in CR4.

#GP X Attempt to write non-canonical address to segment base
address.

[AMD Public Use]

358 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exchanges the contents of a register (second operand) with the contents of a register or memory
location (first operand), computes the sum of the two values, and stores the result in the first operand
location.

The forms of the XADD instruction that write to memory support the LOCK prefix. For details about
the LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

None

rFLAGS Affected

XADD Exchange and Add

Mnemonic Opcode Description

XADD reg/mem8, reg8 0F C0 /r
Exchange the contents of an 8-bit register with the
contents of an 8-bit destination register or memory
operand and load their sum into the destination.

XADD reg/mem16, reg16 0F C1 /r
Exchange the contents of a 16-bit register with the
contents of a 16-bit destination register or memory
operand and load their sum into the destination.

XADD reg/mem32, reg32 0F C1 /r
Exchange the contents of a 32-bit register with the
contents of a 32-bit destination register or memory
operand and load their sum into the destination.

XADD reg/mem64, reg64 0F C1 /r
Exchange the contents of a 64-bit register with the
contents of a 64-bit destination register or memory
operand and load their sum into the destination.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

[AMD Public Use]

General-Purpose Instruction Reference 359

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

360 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exchanges the contents of the two operands. The operands can be two general-purpose registers or a
register and a memory location. If either operand references memory, the processor locks
automatically, whether or not the LOCK prefix is used and independently of the value of IOPL. For
details about the LOCK prefix, see “Lock Prefix” on page 11.

The x86 architecture commonly uses the XCHG EAX, EAX instruction (opcode 90h) as a one-byte
NOP. In 64-bit mode, the processor treats opcode 90h as a true NOP only if it would exchange rAX
with itself. Without this special handling, the instruction would zero-extend the upper 32 bits of RAX,
and thus it would not be a true no-operation. Opcode 90h can still be used to exchange rAX and r8 if
the appropriate REX prefix is used.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction.

XCHG Exchange

Mnemonic Opcode Description

XCHG AX, reg16 90 +rw Exchange the contents of the AX register with the
contents of a 16-bit register.

XCHG reg16, AX 90 +rw Exchange the contents of a 16-bit register with the
contents of the AX register.

XCHG EAX, reg32 90 +rd Exchange the contents of the EAX register with the
contents of a 32-bit register.

XCHG reg32, EAX 90 +rd Exchange the contents of a 32-bit register with the
contents of the EAX register.

XCHG RAX, reg64 90 +rq Exchange the contents of the RAX register with the
contents of a 64-bit register.

XCHG reg64, RAX 90 +rq Exchange the contents of a 64-bit register with the
contents of the RAX register.

XCHG reg/mem8, reg8 86 /r Exchange the contents of an 8-bit register with the
contents of an 8-bit register or memory operand.

XCHG reg8, reg/mem8 86 /r Exchange the contents of an 8-bit register or memory
operand with the contents of an 8-bit register.

XCHG reg/mem16, reg16 87 /r Exchange the contents of a 16-bit register with the
contents of a 16-bit register or memory operand.

XCHG reg16, reg/mem16 87 /r Exchange the contents of a 16-bit register or memory
operand with the contents of a 16-bit register.

XCHG reg/mem32, reg32 87 /r Exchange the contents of a 32-bit register with the
contents of a 32-bit register or memory operand.

XCHG reg32, reg/mem32 87 /r Exchange the contents of a 32-bit register or memory
operand with the contents of a 32-bit register.

XCHG reg/mem64, reg64 87 /r Exchange the contents of a 64-bit register with the
contents of a 64-bit register or memory operand.

XCHG reg64, reg/mem64 87 /r Exchange the contents of a 64-bit register or memory
operand with the contents of a 64-bit register.

[AMD Public Use]

General-Purpose Instruction Reference 361

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

BSWAP, XADD

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The source or destination operand was in a non-writable
segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

362 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Uses the unsigned integer in the AL register as an offset into a table and copies the contents of the table
entry at that location to the AL register.

The instruction uses seg:[rBX] as the base address of the table. The value of seg defaults to the DS
segment, but may be overridden by a segment prefix.

This instruction writes AL without changing RAX[63:8]. This instruction ignores operand size.

The single-operand form of the XLAT instruction uses the operand to document the segment and
address size attribute, but it uses the base address specified by the rBX register.

This instruction is often used to translate data from one format (such as ASCII) to another (such as
EBCDIC).

Related Instructions

None

rFLAGS Affected

None

Exceptions

XLAT
XLATB

Translate Table Index

Mnemonic Opcode Description

XLAT mem8 D7 Set AL to the contents of DS:[rBX + unsigned AL].

XLATB D7 Set AL to the contents of DS:[rBX + unsigned AL].

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

[AMD Public Use]

General-Purpose Instruction Reference 363

24594—Rev. 3.32—March 2021 AMD64 Technology

Performs a bit-wise logical xor operation on both operands and stores the result in the first operand
location. The first operand can be a register or memory location. The second operand can be an
immediate value, a register, or a memory location. XOR-ing a register with itself clears the register.

The forms of the XOR instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

The instruction performs the following operation for each bit:

XOR Logical Exclusive OR

X Y X xor Y

0 0 0

0 1 1

1 0 1

1 1 0

Mnemonic Opcode Description

XOR AL, imm8 34 ib xor the contents of AL with an immediate 8-bit
operand and store the result in AL.

XOR AX, imm16 35 iw xor the contents of AX with an immediate 16-bit
operand and store the result in AX.

XOR EAX, imm32 35 id xor the contents of EAX with an immediate 32-bit
operand and store the result in EAX.

XOR RAX, imm32 35 id xor the contents of RAX with a sign-extended
immediate 32-bit operand and store the result in RAX.

XOR reg/mem8, imm8 80 /6 ib
xor the contents of an 8-bit destination register or
memory operand with an 8-bit immediate value and
store the result in the destination.

XOR reg/mem16, imm16 81 /6 iw
xor the contents of a 16-bit destination register or
memory operand with a 16-bit immediate value and
store the result in the destination.

XOR reg/mem32, imm32 81 /6 id
xor the contents of a 32-bit destination register or
memory operand with a 32-bit immediate value and
store the result in the destination.

XOR reg/mem64, imm32 81 /6 id
xor the contents of a 64-bit destination register or
memory operand with a sign-extended 32-bit immediate
value and store the result in the destination.

XOR reg/mem16, imm8 83 /6 ib
xor the contents of a 16-bit destination register or
memory operand with a sign-extended 8-bit immediate
value and store the result in the destination.

[AMD Public Use]

364 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

OR, AND, NOT, NEG

rFLAGS Affected

XOR reg/mem32, imm8 83 /6 ib
xor the contents of a 32-bit destination register or
memory operand with a sign-extended 8-bit immediate
value and store the result in the destination.

XOR reg/mem64, imm8 83 /6 ib
xor the contents of a 64-bit destination register or
memory operand with a sign-extended 8-bit immediate
value and store the result in the destination.

XOR reg/mem8, reg8 30 /r
xor the contents of an 8-bit destination register or
memory operand with the contents of an 8-bit register
and store the result in the destination.

XOR reg/mem16, reg16 31 /r
xor the contents of a 16-bit destination register or
memory operand with the contents of a 16-bit register
and store the result in the destination.

XOR reg/mem32, reg32 31 /r
xor the contents of a 32-bit destination register or
memory operand with the contents of a 32-bit register
and store the result in the destination.

XOR reg/mem64, reg64 31 /r
xor the contents of a 64-bit destination register or
memory operand with the contents of a 64-bit register
and store the result in the destination.

XOR reg8, reg/mem8 32 /r
xor the contents of an 8-bit destination register with
the contents of an 8-bit register or memory operand and
store the results in the destination.

XOR reg16, reg/mem16 33 /r
xor the contents of a 16-bit destination register with
the contents of a 16-bit register or memory operand and
store the results in the destination.

XOR reg32, reg/mem32 33 /r
xor the contents of a 32-bit destination register with
the contents of a 32-bit register or memory operand and
store the results in the destination.

XOR reg64, reg/mem64 33 /r
xor the contents of a 64-bit destination register with
the contents of a 64-bit register or memory operand and
store the results in the destination.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Mnemonic Opcode Description

[AMD Public Use]

General-Purpose Instruction Reference 365

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

366 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

General-Purpose Instruction Reference 367

24594—Rev. 3.32—March 2021 AMD64 Technology

[AMD Public Use]

368 General-Purpose Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

System Instruction Reference 369

24594—Rev. 3.32—March 2021 AMD64 Technology

4 System Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the system instructions. System instructions are used to establish the
processor operating mode, access processor resources, handle program and system errors, manage
memory, and instantiate a virtual machine. Most of these instructions can only be executed by
privileged software, such as the operating system or a Virtual Machine Monitor (VMM), also known
as a hypervisor. Only system instructions can access certain processor resources, such as the control
registers, model-specific registers, and debug registers.

Most system instructions are supported in all hardware implementations of the AMD64 architecture.
The table below lists instructions that may not be supported on a given processor implementation.
System software must execute the CPUID instruction using the function number listed to determine
support prior to using these instructions.

There are also several other CPUID feature bits that indicate support for certain paging functions,
virtual-mode extensions, machine-check exceptions, advanced programmable interrupt control
(APIC), memory-type range registers (MTRRs), etc.

Table 4-1. System Instruction Support Indicated by CPUID Feature Bits

Instruction CPUID Feature Bit Register[Bit]

CET_SS 0000_0007_0 ECX[7]

CLAC, STAC 0000_0007_0 EBX[20]

Long Mode and Long Mode
instructions

8000_0001_EDX[LM] EDX[29]

INVPCID 0000_0007_0 EBX[10]

INVLPGB, TLBSYNC 8000_0008_EBX[INVLPGB] EBX[3]

MONITOR, MWAIT 0000_0001_ECX[MONITOR] ECX[3]

RDPKRU, WRPKRU 0000_0007_0 ECX[4]

PSMASH, PVALIDATE,
RMPADJUST, RMPUPDATE

8000_001F_EAX[SNP] EAX[4]

RDMSR, WRMSR 0000_0001_EDX[MSR] EDX[5]

RDTSCP 8000_0001_EDX[RDTSCP] EDX[27]

SKINIT, STGI 8000_0001_ECX[SKINIT] ECX[12]

SVM Architecture and
instructions

8000_0001_ECX[SVM] ECX[2]

SYSCALL, SYSRET 8000_0001_EDX[SysCallSysRet] EDX[11]

SYSENTER, SYSEXIT 0000_0001_EDX[SysEnterSysExit] EDX[11]

VMGEXIT 8000_001F[SEV-ES] EAX[3]

WBNOINVD 8000_0008_EBX[WBNOINVD] EBX[9]

[AMD Public Use]

370 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

For more information on using the CPUID instruction, see the reference page for the CPUID
instruction on page 160. For a comprehensive list of all instruction support feature flags, see
Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591. For a comprehensive list
of all defined CPUID feature numbers and return values, see Appendix E, “Obtaining Processor
Information Via the CPUID Instruction,” on page 597.

For further information about the system instructions and register resources, see:

• “System Instructions” in Volume 2.

• “Summary of Registers and Data Types” on page 38.

• “Notation” on page 52.

• “Instruction Prefixes” on page 5.

[AMD Public Use]

System Instruction Reference 371

24594—Rev. 3.32—March 2021 AMD64 Technology

Compares the requestor privilege level (RPL) fields of two segment selectors in the source and
destination operands of the instruction. If the RPL field of the destination operand is less than the RPL
field of the segment selector in the source register, then the zero flag is set and the RPL field of the
destination operand is increased to match that of the source operand. Otherwise, the destination
operand remains unchanged and the zero flag is cleared.

The destination operand can be either a 16-bit register or memory location; the source operand must be
a 16-bit register.

The ARPL instruction is intended for use by operating-system procedures to adjust the RPL of a
segment selector that has been passed to the operating system by an application program to match the
privilege level of the application program. The segment selector passed to the operating system is
placed in the destination operand and the segment selector for the code segment of the application
program is placed in the source operand. The RPL field in the source operand represents the privilege
level of the application program. The ARPL instruction then insures that the RPL of the segment
selector received by the operating system is no lower than the privilege level of the application
program.

See “Adjusting Access Rights” in Volume 2, for more information on access rights.

In 64-bit mode, this opcode (63H) is used for the MOVSXD instruction.

Related Instructions

LAR, LSL, VERR, VERW

rFLAGS Affected

ARPL Adjust Requestor Privilege Level

Mnemonic Opcode Description

ARPL reg/mem16, reg16 63 /r

Adjust the RPL of a destination segment selector to
a level not less than the RPL of the segment
selector specified in the 16-bit source register.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

[AMD Public Use]

372 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected legacy and
compatibility mode.

Stack, #SS X A memory address exceeded the stack segment limit.

General protection,
#GP

X A memory address exceeded a data segment limit.

X The destination operand was in a non-writable segment.

X A null segment selector was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

System Instruction Reference 373

24594—Rev. 3.32—March 2021 AMD64 Technology

Sets the Alignment Check flag in the rFLAGS register to zero. Support for the CLAC instruction is
indicated by CPUID Fn07_EBX[20] = 1. For more information on using the CPUID instruction, see
the description of the CPUID instruction on page 160.

rFLAGS Affected

Exceptions

CLAC Clear Alignment Check Flag

Mnemonic Opcode Description

CLAC 0F 01 CA Clear AC Flag

Related Instructions

STAC

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X Instruction not supported by CPUID

X X Instruction is not supported in virtual mode

X X Lock prefix (F0h) preceding opcode.

X CPL was not 0

[AMD Public Use]

374 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Clears the global interrupt flag (GIF). While GIF is zero, all external interrupts are disabled.

This is a Secure Virtual Machine instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume-2: System Instructions, order# 24593.

Related Instructions

STGI

rFLAGS Affected

None.

Exceptions

CLGI Clear Global Interrupt Flag

Mnemonic Opcode Description

CLGI 0F 01 DD Clears the global interrupt flag (GIF).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

[AMD Public Use]

System Instruction Reference 375

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears the interrupt flag (IF) in the rFLAGS register to zero, thereby masking external interrupts
received on the INTR input. Interrupts received on the non-maskable interrupt (NMI) input are not
affected by this instruction.

In real mode, this instruction clears IF to 0.

In protected mode and virtual-8086-mode, this instruction is IOPL-sensitive. If the CPL is less than or
equal to the rFLAGS.IOPL field, the instruction clears IF to 0.

In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are enabled (CR4.PVI
= 1), then the instruction instead clears rFLAGS.VIF to 0. If none of these conditions apply, the
processor raises a general-purpose exception (#GP). For more information, see “Protected Mode
Virtual Interrupts” in Volume 2.

In virtual-8086 mode, if IOPL < 3 and the virtual-8086-mode extensions are enabled (CR4.VME = 1),
the CLI instruction clears the virtual interrupt flag (rFLAGS.VIF) to 0 instead.

See “Virtual-8086 Mode Extensions” in Volume 2 for more information about IOPL-sensitive
instructions.

Action
IF (CPL <= IOPL)

RFLAGS.IF = 0

ELSEIF (((VIRTUAL_MODE) && (CR4.VME == 1))
 || ((PROTECTED_MODE) && (CR4.PVI == 1) && (CPL == 3)))

RFLAGS.VIF = 0;

ELSE
EXCEPTION[#GP(0)]

Related Instructions

STI

CLI Clear Interrupt Flag

Mnemonic Opcode Description

CLI FA Clear the interrupt flag (IF) to zero.

[AMD Public Use]

376 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X The CPL was greater than the IOPL and virtual mode
extensions are not enabled (CR4.VME = 0).

X
The CPL was greater than the IOPL and either the CPL was
not 3 or protected mode virtual interrupts were not enabled
(CR4.PVI = 0).

[AMD Public Use]

System Instruction Reference 377

24594—Rev. 3.32—March 2021 AMD64 Technology

Clears the task-switched (TS) flag in the CR0 register to 0. The processor sets the TS flag on each task
switch. The CLTS instruction is intended to facilitate the synchronization of FPU context saves during
multitasking operations.

This instruction can only be used if the current privilege level is 0.

See “System-Control Registers” in Volume 2 for more information on FPU synchronization and the
TS flag.

Related Instructions

LMSW, MOV CRn

rFLAGS Affected

None

Exceptions

CLTS Clear Task-Switched Flag in CR0

Mnemonic Opcode Description

CLTS 0F 06 Clear the task-switched (TS) flag in CR0 to 0.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

[AMD Public Use]

378 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Validates the busy (in use) shadow stack token pointed to by the memory operand and clears the tokens
busy bit. If the token validation checks pass, CF is cleared to 0 and SSP is cleared to 0. If the token
validation checks fail, CF is set to 1 and the token and SSP are not modified.

CLRSSBY is a privileged instruction and must be executed with CPL=0, otherwise a #GP exception is
generated. If shadow stacks are not enabled at the supervisor level, a #UD exception is generated.

Actions

// see "Pseudocode Definition" on page 57

IF (CR4.CET == 0)
 EXCEPTION [#UD]
IF (S_CET.SH_STK_EN == 0)
 EXCEPTION [#UD]
IF (CPL != 0)
 EXCEPTION [#GP(0)]

temp_linAdr = Linear_Address(mem64)

IF (temp_linAdr is not 8-byte aligned)
 EXCEPTION [#GP(0)]

bool INVALID_TOKEN = FALSE

< start atomic section >
temp_Token = SSTK_READ_MEM.q [temp_linAdr] // fetch token with locked read

IF ((temp_Token AND 0x01) != 1)
 INVALID_TOKEN = TRUE // token busy bit must be set

IF ((temp_Token AND ~0x01) != temp_linAdr)
 INVALID_TOKEN = TRUE // address in token must equal
 // linear address of mem64
IF (!INVALID_TOKEN)
 temp_Token = temp_Token AND ~0x01 // valid token, clear busy bit

SSTK_WRITE_MEM.q[temp_linAdr] = temp_Token // write back token and unlock
< end atomic section >

RFLAGS.ZF,PF,AF,OF,SF = 0

IF (INVALID_TOKEN)
 RFLAGS.CF = 1 // set CF if token not valid
ELSE

CLRSSBSY Clear Shadow Stack Busy

Mnemonic Opcode Description

CLRSSBSY mem64 F3 0F AE /6 Validate shadow stack token and clear busy bit.

[AMD Public Use]

System Instruction Reference 379

24594—Rev. 3.32—March 2021 AMD64 Technology

 {
 RFLAGS.CF = 0 // else clear CF
 SSP = 0 // and set SSP = 0
 }
EXIT

Related Instructions

SETSSBSY

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X Instruction is only recognized in protected mode.

X CR4.CET = 0

X Shadow stacks not enabled at supervisor level

General protection,
#GP

X CPL ! = 0

X The linear address is not 8-byte aligned.

X A memory address exceeded a data segment limit.

X In long mode, the address of the memory operand was
non-canonical.

X A null data segment was used to reference memory.

X A non-writable data segment was used.

X An execute-only code segment was used to reference
memory.

Page fault, #PF
X The linear address is not a supervisor shadow stack

page in the OS page tables.

X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

380 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Causes the microprocessor to halt instruction execution and enter the HALT state. Entering the HALT
state puts the processor in low-power mode. Execution resumes when an unmasked hardware interrupt
(INTR), non-maskable interrupt (NMI), system management interrupt (SMI), RESET, or INIT occurs.

If an INTR, NMI, or SMI is used to resume execution after a HLT instruction, the saved instruction
pointer points to the instruction following the HLT instruction.

Before executing a HLT instruction, hardware interrupts should be enabled. If rFLAGS.IF = 0, the
system will remain in a HALT state until an NMI, SMI, RESET, or INIT occurs.

If an SMI brings the processor out of the HALT state, the SMI handler can decide whether to return to
the HALT state or not. See Volume 2: System Programming, for information on SMIs.

Current privilege level must be 0 to execute this instruction.

Related Instructions

STI, CLI

rFLAGS Affected

None

Exceptions

HLT Halt

Mnemonic Opcode Description

HLT F4 Halt instruction execution.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

[AMD Public Use]

System Instruction Reference 381

24594—Rev. 3.32—March 2021 AMD64 Technology

Increments SSP by the operand size of the instruction multiplied by the unsigned 8-bit value in bits
[7:0] of the register operand. The operand size is 8 bytes in 64-bit mode (when REX.W = 1) and is 4
bytes in all other cases.

Before incrementing SSP, the first and last elements of the shadow stack in the range specified by the
register operand are read and discarded.

Action

IF ((CPL == 3) && (!SSTK_USER_ENABLED))
EXCEPTION [#UD]

ELSEIF ((CPL < 3) && (!SSTK_SUPV_ENABLED))
EXCEPTION [#UD]

IF (OPERAND_SIZE == 64)
{
temp_numItems = (reg64[7:0] == 0) ? 1 : reg64[7:0]
temp = SSTK_READ_MEM.q [SSP] // touch TOS and last
temp = SSTK_READ_MEM.q [SSP + temp_numItems*8 - 8] // element in range
SSP = SSP + reg64[7:0]*8 // increment SSP
}

ELSE
{
temp_numItems = (reg32[7:0] == 0) ? 1 : reg32[7:0]
temp = SSTK_READ_MEM.d [SSP] // touch TOS and last
temp = SSTK_READ_MEM.d [SSP + temp_numItems*4 - 4] // element in range
SSP = SSP + reg32[7:0]*4 // increment SSP
}

EXIT

Related Instructions

RDSSP, RSTORSSP

rFLAGS Affected

None

INCSSP Increment Shadow Stack Pointer

Mnemonic Opcode Description

INCSSPD reg32 F3 0F AE /05 Increment SSP by 4*(reg32[7:0]).

INCSSPQ reg64 F3 0F AE /05 Increment SSP by 8*(reg64[7:0]).

[AMD Public Use]

382 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X Instruction is only recognized in protected mode.

X CR4.CET = 0

X Shadow stacks are not enabled at the current privilege level.

Page fault, #PF
X A page fault occurred when touching the first or last element of

the shadow stack in the range specified.

X The first or last element in the range specified is not in a
shadow stack page.

[AMD Public Use]

System Instruction Reference 383

24594—Rev. 3.32—March 2021 AMD64 Technology

Calls the debug exception handler. This instruction maps to a 1-byte opcode (CC) that raises a #BP
exception. The INT 3 instruction is normally used by debug software to set instruction breakpoints by
replacing the first byte of the instruction opcode bytes with the INT 3 opcode.

This one-byte INT 3 instruction behaves differently from the two-byte INT 3 instruction (opcode CD
03) (see “INT” in Chapter 3 “General Purpose Instructions” for further information) in two ways:

The #BP exception is handled without any IOPL checking in virtual x86 mode. (IOPL mismatches
will not trigger an exception.)

• In VME mode, the #BP exception is not redirected via the interrupt redirection table. (Instead, it is
handled by a protected mode handler.)

For complete descriptions of the steps performed by INT instructions, see the following:

• Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.

• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action

// Refer to INT instruction’s Action section for the details on INT_N_REAL,
// INT_N_PROTECTED, and INT_N_VIRTUAL_TO_PROTECTED.
INT3_START:

If (REAL_MODE)
 INT_N_REAL //N = 3

ELSEIF (PROTECTED_MODE)
 INT_N_PROTECTED //N = 3

ELSE // VIRTUAL_MODE
 INT_N_VIRTUAL_TO_PROTECTED //N = 3

Related Instructions

INT, INTO, IRET

INT 3 Interrupt to Debug Vector

Mnemonic Opcode Description

INT 3 CC Trap to debugger at Interrupt 3.

[AMD Public Use]

384 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

If a task switch occurs, all flags are modified; otherwise, setting are as follows:

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M 0 0 M M 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Breakpoint, #BP X X X INT 3 instruction was executed.

Invalid TSS, #TS
(selector)

X X As part of a stack switch, the target stack segment selector or
rSP in the TSS that was beyond the TSS limit.

X X
As part of a stack switch, the target stack segment selector in
the TSS was beyond the limit of the GDT or LDT descriptor
table.

X X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.

X X As part of a stack switch, the target stack segment selector’s
TI bit was set, but the LDT selector was a null selector.

X X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.

X X
As part of a stack switch, the target stack segment selector in
the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

Segment not
present, #NP
(selector)

X X The accessed code segment, interrupt gate, trap gate, task
gate, or TSS was not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector)

X X
After a stack switch, a memory address exceeded the stack
segment limit or was non-canonical and a stack switch
occurred.

X X
As part of a stack switch, the SS register was loaded with a
non-null segment selector and the segment was marked not
present.

General protection,
#GP

X X X A memory address exceeded the data segment limit or was
non-canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

[AMD Public Use]

System Instruction Reference 385

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X X X The interrupt vector was beyond the limit of IDT.

X X
The descriptor in the IDT was not an interrupt, trap, or task
gate in legacy mode or not a 64-bit interrupt or trap gate in
long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less
than the CPL.

X X The segment selector specified by the interrupt or trap gate
had its TI bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X
The segment descriptor specified by the interrupt or trap gate
was not a code segment in legacy mode, or not a 64-bit code
segment in long mode.

X The DPL of the segment specified by the interrupt or trap gate
was greater than the CPL.

X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

386 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalidates all levels of cache associated with this processor. This may or may not include lower level
caches associated with another processor that shares any level of this processor's cache hierarchy.

No data is written back to main memory from invalidating the caches.

CPUID Fn8000_001D_EDX[WBINVD]_xN indicates the behavior of the processor at various levels
of the cache hierarchy. If the feature bit is 0, the instruction causes the invalidation of all lower level
caches of other processors sharing the designated level of cache. If the feature bit is 1, the instruction
does not necessarily cause the invalidation of all lower level caches of other processors sharing the
designated level of cache. See Appendix E, “Obtaining Processor Information Via the CPUID
Instruction,” on page 597 for more information on using the CPUID function.

This is a privileged instruction. The current privilege level (CPL) of a procedure invalidating the
processor’s internal caches must be 0.

To insure that data is written back to memory prior to invalidating caches, use the WBINVD
instruction.

This instruction does not invalidate TLB caches.

INVD is a serializing instruction.

Related Instructions

WBINVD, WBNOINVD, CLWB, CLFLUSH

rFLAGS Affected

None

Exceptions

INVD Invalidate Caches

Mnemonic Opcode Description

INVD 0F 08 Invalidate internal caches and trigger external cache
invalidations.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

[AMD Public Use]

System Instruction Reference 387

24594—Rev. 3.32—March 2021 AMD64 Technology

Invalidates the TLB entry that would be used for the 1-byte memory operand.

This instruction invalidates the TLB entry, regardless of the G (Global) bit setting in the associated
PDE or PTE entry and regardless of the page size (4 Kbytes, 2 Mbytes, 4 Mbytes, or 1 Gbyte). It may
invalidate any number of additional TLB entries, in addition to the targeted entry. INVLPG only
invalidates TLB entries tagged with the current PCID and also global pages regardless of PCIDs. If
PCIDs are disabled (CR4.PCID=0) then the current PCID is zero.

INVLPG is a serializing instruction and a privileged instruction. The current privilege level must be 0
to execute this instruction.

See “Page Translation and Protection” in Volume 2 for more information on page translation.

Related Instructions

INVLPGA, INVLPGB, INVPCID, MOV CRn (CR3 and CR4)

rFLAGS Affected

None

Exceptions

INVLPG Invalidate TLB Entry

Mnemonic Opcode Description

INVLPG mem8 0F 01 /7 Invalidate the TLB entry for the page containing a specified
memory location.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

[AMD Public Use]

388 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalidates the TLB mapping for a given virtual page and a given ASID. The virtual (linear) address is
specified in the implicit register operand rAX. The portion of rAX used to form the address is
determined by the effective address size (current execution mode and optional address size prefix).
The ASID is taken from ECX.

The INVLPGA instruction may invalidate any number of additional TLB entries, in addition to the
targeted entry.

The INVLPGA instruction is a serializing instruction and a privileged instruction. The current
privilege level must be 0 to execute this instruction.

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume-2: System Instructions, order# 24593.

Related Instructions

INVLPG, INVLPGB, INVPCID

rFLAGS Affected

None.

Exceptions

INVLPGA Invalidate TLB Entry in a Specified ASID

Mnemonic Opcode Description

INVLPGA rAX, ECX 0F 01 DF Invalidates the TLB mapping for the virtual page
specified in rAX and the ASID specified in ECX.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

[AMD Public Use]

System Instruction Reference 389

24594—Rev. 3.32—March 2021 AMD64 Technology

Invalidates the TLB entry or entries specified by the descriptor in the rAX:EDX register pair.
Invalidations are done both in the local TLB and broadcast to all processors to perform the same
invalidations. The virtual (linear) address is specified in the implicit register operand rAX. The portion
of rAX used to form the address is determined by the effective address size.

The TLB control field is specified in rAX[5:0]. It determines which components of the address (VA,
PCID, ASID) are valid for comparison in the TLB and whether to include global entries in the
invalidation process. If rAX[4] is set, only the final translation is invalidated and not the cached upper
level TLB entries that lead to the final page. This ability may not be possible with all processors in
which case the bit is ignored. If rAX[5] is set, all nested translations that could be used for guest
translation selected in rAX[4:0] are flushed. rAX[5] can only be set if CPUID Fn8000_0008_EBX[21
=1. ECX provides a count of the number of pages to include in invalidation with the specified address
and the page size at which to increment the specified address.

The descriptor in rAX has the following format:

rAX[3:0] provides for various types of invalidations, including these example encodings:

INVLPGB Invalidate TLB Entry(s) with Broadcast

rAX Attributes

0 Valid VA

1 Valid PCID

2 Valid ASID

3 Include Global

4 Final Translation Only

5 Include Nested Translations

11:6 Reserved, MBZ

63:12 or 31:12 VA

rAX [3:0] Action

0xF Invalidate all TLB entries that match {ASID, PCID, VA}
including Global

0xC Invalidate all TLB entries that match {ASID} including
Global

0x4 Invalidate all TLB entries that match {ASID} excluding
Global

0xE Invalidate all TLB entries that match {ASID, PCID}
including Global

0x6 Invalidate all TLB entries that match {ASID, PCID}
excluding Global

[AMD Public Use]

390 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

The descriptor in EDX has the following format:

ECX[15:0] contains a count of the number of sequential pages to invalidate in addition to the original
virtual address, starting from the virtual address specified in rAX. A count of 0 invalidates a single
page. ECX[31]=0 indicates to increment the virtual address at the 4K boundary. ECX[31]=1 indicates
to increment the virtual address at the 2M boundary. The maximum count supported is reported in
CPUID function 8000_0008h, EDX[15:0].

This instruction invalidates the TLB entry or entries, regardless of the page size (4 Kbytes, 2 Mbytes, 4
Mbytes, or 1 Gbyte). It may invalidate any number of additional TLB entries in addition to the targeted
entry or entries to accomplish the specified function. INVLPGB follows the same rules for cached
upper TLB entries as INVLPG which is controlled by EFER.TCE. However, since this is a broadcast,
the invalidation is controlled by the EFER.TCE value on the processor executing the INVLPGB
instruction. (See Section 3, “Translation Cache Extension” in AMD64 Architecture Programmer’s
Manual Volume 2 for more information on EFER.TCE.)

Under the following circumstances, execution of INVLPGB will result in a General Protection fault
(#GP):

• If SVM is disabled, requesting the ASID field with any value but zero, even if the ASID is not
necessary for the flush.

• If PCID is disabled, requesting the PCID field with any value but zero, even if the PCID is not
necessary for the flush.

• If the request exceeds the number of valid ASIDs for the processor, even if the ASID is not valid.

• Attempts to request a count larger than the maximum count supported, even if the VA is not valid

• Attempts to execute an INVLPGB while in 4M paging mode.

Guest Usage of INVLPGB. Guest usage of INVLPGB is supported only when the instruction has
been explicitly enabled by the hypervisor in the VMCB (see APM Volume 2 Appendix B, Table B-1:
VMCB Layout, Control Area). Support for INVLPGB/TLBSYNC hypervisor enable in VMCB is
indicated by CPUID Fn8000_000A_EDX[24] = 1.

A guest that executes a legal INVLPGB that is not intercepted will have the requested ASID field
replaced by the current ASID and the valid ASID bit set before doing the broadcast invalidation.
Because of its broadcast nature, the ASID field must be global and all processors must allocate the
same ASID to the same Guest for proper operation. Hypervisors that do not support a global ASID
must intercept the Guest usage of INVLPGB, if enabled, for proper behavior.

EDX Attributes

15:0 ASID

27:16 PCID

31:28 Reserved, MBZ

[AMD Public Use]

System Instruction Reference 391

24594—Rev. 3.32—March 2021 AMD64 Technology

Two forms of INVLPGB intercepts, conditional and unconditional, are available to the hypervisor.
The unconditional intercept traps all guest usage of INVLPGB. The conditional intercept traps only
illegally-specified INVLPGB instructions. An illegally specified INVLPGB is one that would, if not
intercepted, cause a #GP for any reason other than not being executed at CPL 0.

INVLPGB is a privileged instruction but not a serializing instruction. It must be executed at CPL 0, but
will broadcast the invalidate to the rest of the processors which may be running at any privilege level.

INVLPGB is weakly ordered as it broadcasts the invalidation types throughout the system to all
processors, so that a batch of invalidations can be done in a parallel fashion. For software to guarantee
that all processors have seen and done the TLB invalidations, a TLBSYNC must be executed on the
initiating processor.

Related Instructions

TLBSYNC, INVLPG, INVLPGA, INVPCID

rFLAGS Affected

None.

Exceptions

Mnemonic Opcode Description

INVLPGB 0F 01 FE Invalidates TLB entry(s) with Broadcast.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X This instruction is only recognized in protected mode.

X X X This instruction is not supported as indicated by CPUID
Fn8000_0008_EBX[INVLPGB] = 0.

X The hypervisor has not enabled Guest usage of this
instruction.

General protection,
#GP

X CPL was not zero.

X EAX[11:6] is not zero or EAX[5] not zero if not supported.

EDX[31:28] is not zero.

X CR4.PCID =0 and EDX[PCID] is not zero.

X EFER.SVME =0 and EDX[ASID] is not zero.

X EDX[ASID] > number of supported ASIDs.

X ECX[15:0] > maximum page count supported.

X 4M paging is active.

[AMD Public Use]

392 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Invalidates the TLB entry or entries on the logical processor for a given PCID in the local TLB based
on the operation type specified in the register operand and the PCID and virtual (linear) address
specified by the descriptor in the memory operand. (See Section 5, “Process Context Identifiers” in
AMD64 Architecture Programmer’s Manual Volume 2 for more information on PCIDs.)

The register operand is always 64 bits in 64-bit mode and 32 bits outside 64-bit mode regardless of
value of CS.D.

The operation type is specified in the register operand bits [1:0]. The operation type determines which
components of the address (VA, PCID) are valid for comparison in the TLB and whether to include
global valid bits in the invalidation process.

The operation types are:

The descriptor in the memory operand is formatted as follows:

This instruction invalidates the TLB entry or entries, regardless of the page size (4 Kbytes, 2 Mbytes, 4
Mbytes, or 1 Gbyte). It may invalidate any number of additional TLB entries, in addition to the
targeted entry or entries to accomplish the specified function. INVPCID follows the same rules for
cached upper TLB entries as INVLPG which is controlled by EFER.TCE. (See Section 3, “Translation
Cache Extension” in AMD64 Architecture Programmer’s Manual Volume 2 for more information on
EFER.TCE.)

If PCID is disabled (CR4.PCID = 0), all TLB entries are being cached with PCID = 0. When
CR4.PCID = 0, executing INVPCID with type 0 and 1 is only allowed if the PCID specified in the
descriptor is zero. Furthermore, when CR4.PCID = 0, executing INVPCID with type 2 or 3 invalidate
mappings only for PCID = 0.

INVPCID is a serializing instruction and a privileged instruction. The current privilege level must be 0
to execute this instruction.

INVPCID Invalidate TLB Entry(s) in a Specified PCID

reg32/64 [1:0] Action

0 Invalidate TLB entries that match {PCID, VA} excluding
Global

1 Invalidate all TLB entries that match {PCID} excluding
Global

2 Invalidate all TLB entries including Global

3 Invalidate all TLB entries excluding Global

127:64 63:12 11:0

VA Reserved, MBZ PCID

[AMD Public Use]

System Instruction Reference 393

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

INVLPG, INVLPGA, INVLPGB, TLBSYNC

rFLAGS Affected

None.

Exceptions

Mnemonic Opcode Description

INVPCID reg32, mem128 66 0F 38 82 /r Invalidates the TLB entry(s) by PCID in r32 and
descriptor in mem28.

INVPCID reg64, mem128 66 0F 38 82 /r Invalidates the TLB entry(s) by PCID in r64 and
descriptor in mem28.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X This instruction is only recognized in protected mode.

X This instruction not supported as indicated by CPUID
Fn0000_0007_EBX_x0[INVPCID] = 0.

X If mod=11 (register is specified instead of memory for desc).

 X If the LOCK prefix is used.

General protection,
#GP

 X CPL was not 0.

 X An invalid type (>3) was specified in register operand.

 X Bits 63:12 of descriptor in memory operand are not all zero.

 X Invalidation type 0 was specified and the virtual address in
bits 127:64 of descriptor is not canonical.

 X Invalidation type 0 or 1 and bits 11:0 of descriptor are not
zero when CR4.PCIDE = 0.

 X An execute-only code segment was used to reference
memory.

 X A memory address exceeded a data segment limit.

 X In long mode, the address of the memory operand was non-
canonical.

 X A null data segment was used to reference memory.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

Page Fault, #PF X A page fault resulted from the execution of the instruction.

[AMD Public Use]

394 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Returns program control from an exception or interrupt handler to a program or procedure previously
interrupted by an exception, an external interrupt, or a software-generated interrupt. These instructions
also perform a return from a nested task. All flags, CS, and rIP are restored to the values they had
before the interrupt so that execution may continue at the next instruction following the interrupt or
exception. In 64-bit mode or if the CPL changes, SS and RSP are also restored.

IRET, IRETD, and IRETQ are synonyms mapping to the same opcode. They are intended to provide
semantically distinct forms for various opcode sizes. The IRET instruction is used for 16-bit operand
size; IRETD is used for 32-bit operand sizes; IRETQ is used for 64-bit operands. The latter form is
only meaningful in 64-bit mode.

IRET, IRETD, or IRETQ must be used to terminate the exception or interrupt handler associated with
the exception, external interrupt, or software-generated interrupt.

IRETx is a serializing instruction.

For detailed descriptions of the steps performed by IRETx instructions, see the following:

• Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.

• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action
// For functions READ_DESCRIPTOR, ShadowStacksEnabled
// see "Pseudocode Definition" on page 57

IRET_START:

IF (REAL_MODE)
 IRET_REAL

ELSIF (PROTECTED_MODE)
 IRET_PROTECTED

ELSE // (VIRTUAL_MODE)
 IRET_VIRTUAL

IRET
IRETD
IRETQ

Return from Interrupt

Mnemonic Opcode Description

IRET CF Return from interrupt (16-bit operand size).

IRETD CF Return from interrupt (32-bit operand size).

IRETQ CF Return from interrupt (64-bit operand size).

[AMD Public Use]

System Instruction Reference 395

24594—Rev. 3.32—March 2021 AMD64 Technology

IRET_REAL:

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4
RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
RIP = temp_RIP
EXIT

IRET_PROTECTED:

IF (RFLAGS.NT == 1)
 IF (LEGACY_MODE) // IRET does a task-switch to a previous task
 TASK_SWITCH // using the ’back link’ field in the TSS
 ELSE // (LONG_MODE)
 EXCEPTION [#GP(0)] // task switches aren’t supported in long mode

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF ((temp_RFLAGS.VM==1) && (CPL==0) && (LEGACY_MODE))
 IRET_FROM_PROTECTED_TO_VIRTUAL

IF (temp_CS.rpl = CPL)
 changing_CPL = FALSE
ELSEIF (temp_CS.rpl > CPL)
 changing_CPL = TRUE
ELSE // (temp_CS.rpl < CPL)
 EXCEPTION [#GP(temp_CS)] // IRET to greater priv not allowed

IF ((64BIT_MODE) || (changing_CPL))
 POP.v temp_RSP // in 64-bit mode or changing CPL, IRET always pops SS:RSP
 POP.v temp_SS

CS = READ_DESCRIPTOR (temp_CS, iret_chk)

IF ((64BIT_MODE) && (temp_RIP is non-canonical) ||
 (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

IF (changing_CPL)
 IRET_PROTECTED_TO_OUTER_PRIV
ELSE

[AMD Public Use]

396 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 IRET_PROTECTED_TO_SAME_PRIV

IRET_PROTECTED_TO_OUTER_PRIV:

CPL = CS.rpl

// SS:RSP were popped, so load them into the registers
SS = READ_DESCRIPTOR (temp_SS, ss_chk)
RSP.s = temp_RSP

// pop shadow stack and compare with program stack
IF (ShadowStacksEnabled(old CPL))
 {
 IF (SSP[2:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // SSP must be 8-byte aligned
 IF (temp_newCPL != 3)
 {
 temp_sstk_CS = SSTK_READ_MEM.q [SSP + 16] // read CS from sstk
 temp_sstk_LIP = SSTK_READ_MEM.q [SSP + 8] // read LIP
 temp_SSP = SSTK_READ_MEM.q [SSP] // read previous SSP
 SSP = SSP +24
 IF (temp_CS != temp_sstk_CS)
 EXCEPTION [#CP(RETF/IRET)] // CS mismatch
 IF ((CS.base + RIP) != temp_sstk_LIP)
 EXCEPTION [#CP(RETF/IRET)] // LIP mismatch
 IF (temp_SSP[1:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // prevSSP must be 4-byte aligned
 }
 }

temp_oldSSP = SSP

IF (ShadowStacksEnabled(new CPL))
 IF (new CPL == 3)
 temp_SSP = PL3_SSP
 IF ((COMPATIBILITY_MODE) && (temp_SSP[63:32] != 0))
 EXCEPTION [#GP(0)] // SSP must be <4GB in compat mode
 SSP = temp_SSP

IF (ShadowStacksEnabled(old CPL)) // check shadow stack token, clear busy
 {
 bool invalid_token = FALSE
 < start atomic section >
 temp_Token= SSTK_READ_MEM.q [temp_oldSSP] // read supervisor sstk token
 IF ((temp_Token AND 0x01) != 1)
 invalid_Token = TRUE // token busy bit must be 1
 IF ((temp_Token AND ~0x01) != temp_oldSSP)
 invalid_Token = TRUE // address in token must=oldSSP
 IF (!invalid_Token)
 temp_Token = temp_Token AND ~0x01 // clear token busy, if valid

[AMD Public Use]

System Instruction Reference 397

24594—Rev. 3.32—March 2021 AMD64 Technology

 SSTK_WRITE_MEM.q [temp_oldSSP] = temp_Token // writeback token
 < end atomic section >
 } // end shadow stacks enabled at old CPL

FOR (seg = ES, DS, FS, GS)
 IF ((seg.sel == NULL) || ((seg.attr.dpl < CPL) &&
 ((seg.attr.type == ’data’) ||
 (seg.attr.type == ’non-conforming-code’))))
 seg = NULL // can’t use lower DPL data segment at higher CPL
 // also clears RPL of any null selectors

RFLAGS.v = temp_RFLAGS // VIF,VIP,IOPL only changed if old_CPL == 0
 // IF only changed if old_CPL <= old_RFLAGS.IOPL
 // VM unchanged
 // RF cleared
RIP = temp_RIP
EXIT // end IRET_PROTECTED_TO_OUTER_PRIV

IRET_PROTECTED_TO_SAME_PRIV:

IF (started in 64-bit mode)
 { // in Long Mode SS:RSP were popped, so load them into the registers
 SS = READ_DESCRIPTOR (temp_SS, ss_chk)
 RSP.s = temp_RSP
 }

IF (ShadowStacksEnabled(current CPL)) // pop the shadow stack
 { // and compare with program stack
 IF (SSP[2:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // SSP must be 8-byte aligned
 temp_sstk_CS = SSTK_READ_MEM.q [SSP + 16] // read CS from sstk
 temp_sstk_LIP = SSTK_READ_MEM.q [SSP + 8] // read LIP
 temp_SSP = SSTK_READ_MEM.q [SSP] // read previous SSP
 SSP = SSP +24
 IF (temp_CS != temp_sstk_CS)
 EXCEPTION [#CP(RETF/IRET)] // CS mismatch
 IF ((CS.base + RIP) != temp_sstk_LIP)
 EXCEPTION [#CP(RETF/IRET)] // LIP mismatch
 IF (temp_SSP[1:0] != 0)
 EXCEPTION [#CP(RETF/IRET)] // prevSSP must be 4-byte aligned
 IF ((COMPATIBILITY_MODE) && (tmp_sstk_prevSSP[63:32] != 0))
 EXCEPTION [#GP(0)] // prevSSP must be <4GB in compat mode
 } // end shadow stack enabled at current CPL

// check shadow stack token, clear busy
IF ((ShadowStacksEnabled(currentCPL)) && (LONG_MODE))
 {
 bool invalid_token = FALSE
 < start atomic section >
 temp_Token= SSTK_READ_MEM.q [temp_oldSSP] // read supervisor sstk token

[AMD Public Use]

398 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 IF ((temp_Token AND 0x01) != 1)
 invalid_Token = TRUE // token busy bit must be 1
 IF ((temp_Token AND ~x01) != temp_oldSSP)
 invalid_Token = TRUE // address in token must=oldSSP
 IF temp_SSP = SSP
 to_same_sstk = TRUE // switch was to same sstk
 IF ((!invalid_Token) AND (!to_same_sstk))
 temp_Token = temp_Token AND ~0x01 // clear token busy, if valid
 SSTK_WRITE_MEM.q [temp_oldSSP] = temp_Token // writeback token
 < end atomic section >
 } // end shadow stacks enabled at CPL and in Long Mode

RFLAGS.v = temp_RFLAGS // VIF,VIP,IOPL only changed if old_CPL == 0
 // IF only changed if old_CPL <= old_RFLAGS.IOPL
 // VM unchanged
 // RF cleared
RIP = temp_RIP
EXIT // end IRET_PROTECTED_TO_SAME_PRIV

IRET_VIRTUAL:

IF ((RFLAGS.IOPL < 3) && (CR4.VME == 0))
 EXCEPTION [#GP(0)]

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

IF (RFLAGS.IOPL == 3)
 {
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,IOPL unchanged, RF cleared
 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

 RIP = temp_RIP
 EXIT
 }

// (IOPL < 3) && (CR4.VME == 1)
ELSEIF ((OPERAND_SIZE == 16) &&
 ((temp_RFLAGS.IF == 0) || (RFLAGS.VIP == 0)) &&
 (temp_RFLAGS.TF == 0))
 {
 RFLAGS.w = temp_RFLAGS // RFLAGS.VIF = temp_RFLAGS.IF
 // IF unchanged, RF cleared
 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

[AMD Public Use]

System Instruction Reference 399

24594—Rev. 3.32—March 2021 AMD64 Technology

 RIP = temp_RIP
 EXIT
 }

ELSE
 // ((RFLAGS.IOPL < 3) && (CR4.VME == 1) && ((OPERAND_SIZE == 32) ||
 // ((temp_RFLAGS.IF == 1) && (RFLAGS.VIP == 1)) ||
 // (temp_RFLAGS.TF == 1)))
 EXCEPTION [#GP(0)]

IRET_FROM_PROTECTED_TO_VIRTUAL:

// temp_RIP already popped
// temp_CS already popped
// temp_RFLAGS already popped, temp_RFLAGS.VM = 1
// and CPL = 0

POP.d temp_RSP
POP.d temp_SS
POP.d temp_ES
POP.d temp_DS
POP.d temp_FS
POP.d temp_GS

// force the segments to have virtual-mode values
FOR (seg = CS, SS, ES, DS, FS, GS)
 {
 seg.sel = temp_seg
 seg.base = temp_seg SHL 4
 seg.limit = 0x0000FFFF
 IF (seg == CS)
 CS.attr = 16-bit dpl3 code
 ELSEIF (seg == SS)
 SS.attr = 16-bit dpl3 stack
 ELSE
 seg.attr = 16-bit dpl3 data
 }

RSP.d = temp_RSP
RFLAGS.d = temp_RFLAGS
CPL = 3

temp_oldSSP = SSP

IF (ShadowStacksEnabled(old CPL)) // old CPL is 0 at this point
 { // check shadow stack token, clear busy
 bool invalid_token = FALSE
 < start atomic section >
 temp_Token= SSTK_READ_MEM.q [temp_oldSSP] // read supervisor sstk token
 IF ((temp_Token AND 0x01) != 1)

[AMD Public Use]

400 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 invalid_Token = TRUE // token busy bit must be 1
 IF ((temp_Token AND ~0x01) != temp_oldSSP)
 invalid_Token = TRUE // address in token must = oldSSP
 IF (!invalid_Token)
 temp_Token = temp_Token AND ~0x01 // clear token busy, if valid
 SSTK_WRITE_MEM.q [temp_oldSSP] = temp_Token // writeback token
 < end atomic section >
 } // end shadow stacks enabled at old CPL

RIP = temp_RIP AND 0x0000FFFF
EXIT // end IRET FROM PROTECTED TO VIRTUAL

Related Instructions

INT, INTO, INT3

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Segment not
present, #NP
(selector)

X The return code segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector

and the segment was marked not present.

General protection,
#GP

X X X The target offset exceeded the code segment limit or was non-
canonical.

X

IOPL was less than 3 and one of the following conditions was
true:
• CR4.VME was 0.

• The effective operand size was 32-bit.

• Both the original EFLAGS.VIP and the new EFLAGS.IF
were set.

• The new EFLAGS.TF was set.

X IRETx was executed in long mode while EFLAGS.NT=1.

[AMD Public Use]

System Instruction Reference 401

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X The return code selector was a null selector.

X The return stack selector was a null selector and the return
mode was non-64-bit mode or CPL was 3.

X The return code or stack descriptor exceeded the descriptor
table limit.

X The return code or stack selector’s TI bit was set but the LDT
selector was a null selector.

X The segment descriptor for the return code was not a code
segment.

X The RPL of the return code segment selector was less than
the CPL.

X
The return code segment was non-conforming and the
segment selector’s DPL was not equal to the RPL of the code
segment’s segment selector.

X
The return code segment was conforming and the segment
selector’s DPL was greater than the RPL of the code
segment’s segment selector.

X The segment descriptor for the return stack was not a writable
data segment.

X The stack segment descriptor DPL was not equal to the RPL
of the return code segment selector.

X The stack segment selector RPL was not equal to the RPL of
the return code segment selector.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Control-protection,
#CP X

The return address on the program stack did not match the
address on the shadow stack, or the previous SSP is not 4
byte aligned, or the previous SSP was not <4GB when
returning to 32-bit mode or compatibility mode.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

402 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the access rights from the segment descriptor specified by a 16-bit source register or memory
operand into a specified 16-bit, 32-bit, or 64-bit general-purpose register and sets the zero (ZF) flag in
the rFLAGS register if successful. LAR clears the zero flag if the descriptor is invalid for any reason.

The LAR instruction checks that:

• the segment selector is not a null selector.

• the descriptor is within the GDT or LDT limit.

• the descriptor DPL is greater than or equal to both the CPL and RPL, or the segment is a
conforming code segment.

• the descriptor type is valid for the LAR instruction. Valid descriptor types are shown in the
following table. LDT and TSS descriptors in 64-bit mode, and call-gate descriptors in long mode,
are only valid if bits 12:8 of doubleword +12 are zero.

See Volume 2, Section 6.4 for more information on checking access rights using LAR.

If the segment descriptor passes these checks, the attributes are loaded into the destination general-
purpose register. If it does not, then the zero flag is cleared and the destination register is not modified.

When the operand size is 16 bits, access rights include the DPL and Type fields located in bytes 4 and
5 of the descriptor table entry. Before loading the access rights into the destination operand, the low
order word is masked with FF00H.

When the operand size is 32 or 64 bits, access rights include the DPL and type as well as the descriptor
type (S field), segment present (P flag), available to system (AVL flag), default operation size (D/B

LAR Load Access Rights Byte

Valid Descriptor Type Description

Legacy Mode Long Mode

All All All code and data descriptors

1 — Available 16-bit TSS

2 2 LDT

3 — Busy 16-bit TSS

4 — 16-bit call gate

5 — Task gate

9 9 Available 32-bit or 64-bit TSS

B B Busy 32-bit or 64-bit TSS

C C 32-bit or 64-bit call gate

[AMD Public Use]

System Instruction Reference 403

24594—Rev. 3.32—March 2021 AMD64 Technology

flag), and granularity flags located in bytes 4–7 of the descriptor. Before being loaded into the
destination operand, the doubleword is masked with 00FF_FF00H.

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-extended to 64
bits.

This instruction can only be executed in protected mode.

Related Instructions

ARPL, LSL, VERR, VERW

rFLAGS Affected

Exceptions

Mnemonic Opcode Description

LAR reg16, reg/mem16 0F 02 /r
Reads the GDT/LDT descriptor referenced by the 16-bit
source operand, masks the attributes with FF00h and saves
the result in the 16-bit destination register.

LAR reg32, reg/mem16 0F 02 /r
Reads the GDT/LDT descriptor referenced by the 16-bit
source operand, masks the attributes with 00FFFF00h and
saves the result in the 32-bit destination register.

LAR reg64, reg/mem16 0F 02 /r
Reads the GDT/LDT descriptor referenced by the 16-bit
source operand, masks the attributes with 00FFFF00h and
saves the result in the 64-bit destination register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded the data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

404 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the pseudo-descriptor specified by the source operand into the global descriptor table register
(GDTR). The pseudo-descriptor is a memory location containing the GDTR base and limit. In legacy
and compatibility mode, the pseudo-descriptor is 6 bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not used. The lower
two bytes specify the 16-bit limit and the third, fourth, and fifth bytes specify the 24-bit base address.
The high-order byte of the GDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper four bytes
specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit and the upper eight bytes specify a 64-bit
base address. In 64-bit mode, operand-size prefixes are ignored and the operand size is forced to 64-
bits; therefore, the pseudo-descriptor is always 10 bytes.

This instruction is only used in operating system software and must be executed at CPL 0. It is
typically executed once in real mode to initialize the processor before switching to protected mode.

LGDT is a serializing instruction.

Related Instructions

LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

Exceptions

LGDT Load Global Descriptor Table Register

Mnemonic Opcode Description

LGDT mem16:32 0F 01 /2 Loads mem16:32 into the global descriptor table register.

LGDT mem16:64 0F 01 /2 Loads mem16:64 into the global descriptor table register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X
X

The operand was a register.

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

[AMD Public Use]

System Instruction Reference 405

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP

X X A memory address exceeded the data segment limit or was
non-canonical.

X X CPL was not 0.

X The new GDT base address was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

406 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the pseudo-descriptor specified by the source operand into the interrupt descriptor table register
(IDTR). The pseudo-descriptor is a memory location containing the IDTR base and limit. In legacy
and compatibility mode, the pseudo-descriptor is six bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not used. The lower
two bytes specify the 16-bit limit and the third, fourth, and fifth bytes specify the 24-bit base address.
The high-order byte of the IDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper four bytes
specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit, and the upper eight bytes specify a 64-bit
base address. In 64-bit mode, operand-size prefixes are ignored and the operand size is forced to 64-
bits; therefore, the pseudo-descriptor is always 10 bytes.

This instruction is only used in operating system software and must be executed at CPL 0. It is
normally executed once in real mode to initialize the processor before switching to protected mode.

LIDT is a serializing instruction.

Related Instructions

LGDT, LLDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

Exceptions

LIDT Load Interrupt Descriptor Table Register

Mnemonic Opcode Description

LIDT mem16:32 0F 01 /3 Loads mem16:32 into the interrupt descriptor table register.

LIDT mem16:64 0F 01 /3 Loads mem16:64 into the interrupt descriptor table register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X The operand was a register.

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

[AMD Public Use]

System Instruction Reference 407

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP

X X A memory address exceeded the data segment limit or was
non-canonical.

X X CPL was not 0.

X The new IDT base address was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

408 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the specified segment selector into the visible portion of the local descriptor table (LDT). The
processor uses the selector to locate the descriptor for the LDT in the global descriptor table. It then
loads this descriptor into the hidden portion of the LDTR.

If the source operand is a null selector, the LDTR is marked invalid and all references to descriptors in
the LDT will generate a general protection exception (#GP), except for the LAR, VERR, VERW or
LSL instructions.

In legacy and compatibility modes, the LDT descriptor is 8 bytes long and contains a 32-bit base
address.

In 64-bit mode, the LDT descriptor is 16-bytes long and contains a 64-bit base address. The LDT
descriptor type (02h) is redefined in 64-bit mode for use as the 16-byte LDT descriptor.

This instruction must be executed in protected mode. It is only provided for use by operating system
software at CPL 0.

LLDT is a serializing instruction.

Related Instructions

LGDT, LIDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

Exceptions

LLDT Load Local Descriptor Table Register

Mnemonic Opcode Description

LLDT
reg/mem16 0F 00 /2 Load the 16-bit segment selector into the local descriptor

table register and load the LDT descriptor from the GDT.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Segment not present,
#NP (selector) X The LDT descriptor was marked not present.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X CPL was not 0.

X A null data segment was used to reference memory.

[AMD Public Use]

System Instruction Reference 409

24594—Rev. 3.32—March 2021 AMD64 Technology

General protection,
#GP
(selector)

X The source selector did not point into the GDT.

X The descriptor was beyond the GDT limit.

X The descriptor was not an LDT descriptor.

X The descriptor's extended attribute bits were not zero in 64-
bit mode.

X The new LDT base address was non-canonical.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

410 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the lower four bits of the 16-bit register or memory operand into bits 3:0 of the machine status
word in register CR0. Only the protection enabled (PE), monitor coprocessor (MP), emulation (EM),
and task switched (TS) bits of CR0 are modified. Additionally, LMSW can set CR0.PE, but cannot
clear it.

The LMSW instruction can be used only when the current privilege level is 0. It is only provided for
compatibility with early processors.

Use the MOV CR0 instruction to load all 32 or 64 bits of CR0.

Related Instructions

MOV CRn, SMSW

rFLAGS Affected

None

Exceptions

LMSW Load Machine Status Word

Mnemonic Opcode Description

LMSW reg/mem16 0F 01 /6 Load the lower 4 bits of the source into the lower 4 bits of
CR0.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X A memory address exceeded a data segment limit or was non-
canonical.

X X CPL was not 0.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

[AMD Public Use]

System Instruction Reference 411

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the segment limit from the segment descriptor specified by a 16-bit source register or memory
operand into a specified 16-bit, 32-bit, or 64-bit general-purpose register and sets the zero (ZF) flag in
the rFLAGS register if successful. LSL clears the zero flag if the descriptor is invalid for any reason.

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-extended to 64
bits.

The LSL instruction checks that:

• the segment selector is not a null selector.

• the descriptor is within the GDT or LDT limit.

• the descriptor DPL is greater than or equal to both the CPL and RPL, or the segment is a
conforming code segment.

• the descriptor type is valid for the LAR instruction. Valid descriptor types are shown in the
following table. LDT and TSS descriptors in 64-bit mode are only valid if bits 12:8 of doubleword
+12 are zero, as described in “System Descriptors” in Volume 2.

If the segment selector passes these checks and the segment limit is loaded into the destination
general-purpose register, the instruction sets the zero flag of the rFLAGS register to 1. If the selector
does not pass the checks, then LSL clears the zero flag to 0 and does not modify the destination.

The instruction calculates the segment limit to 32 bits, taking the 20-bit limit and the granularity bit
into account. When the operand size is 16 bits, it truncates the upper 16 bits of the 32-bit adjusted
segment limit and loads the lower 16-bits into the target register.

LSL Load Segment Limit

Valid Descriptor Type Description

Legacy Mode Long Mode

— — All code and data descriptors

1 — Available 16-bit TSS

2 2 LDT

3 — Busy 16-bit TSS

9 9 Available 32-bit or 64-bit TSS

B B Busy 32-bit or 64-bit TSS

Mnemonic Opcode Description

LSL reg16, reg/mem16 0F 03 /r
Loads a 16-bit general-purpose register with the segment
limit for a selector specified in a 16-bit memory or register
operand.

[AMD Public Use]

412 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

ARPL, LAR, VERR, VERW

rFLAGS Affected

Exceptions

LSL reg32, reg/mem16 0F 03 /r
Loads a 32-bit general-purpose register with the segment
limit for a selector specified in a 16-bit memory or register
operand.

LSL reg64, reg/mem16 0F 03 /r
Loads a 64-bit general-purpose register with the segment
limit for a selector specified in a 16-bit memory or register
operand.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

System Instruction Reference 413

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the specified segment selector into the visible portion of the task register (TR). The processor
uses the selector to locate the descriptor for the TSS in the global descriptor table. It then loads this
descriptor into the hidden portion of TR. The TSS descriptor in the GDT is marked busy, but no task
switch is made.

If the source operand is null, a general protection exception (#GP) is generated.

In legacy and compatibility modes, the TSS descriptor is 8 bytes long and contains a 32-bit base
address.

In 64-bit mode, the instruction references a 64-bit descriptor to load a 64-bit base address. The TSS
type (09H) is redefined in 64-bit mode for use as the 16-byte TSS descriptor.

This instruction must be executed in protected mode when the current privilege level is 0. It is only
provided for use by operating system software.

The operand size attribute has no effect on this instruction.

LTR is a serializing instruction.

Related Instructions

LGDT, LIDT, LLDT, STR, SGDT, SIDT, SLDT

rFLAGS Affected

None

Exceptions

LTR Load Task Register

Mnemonic Opcode Description

LTR reg/mem16 0F 00 /3 Load the 16-bit segment selector into the task register and
load the TSS descriptor from the GDT.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Segment not present,
#NP (selector) X The TSS descriptor was marked not present.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

[AMD Public Use]

414 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X CPL was not 0.

X A null data segment was used to reference memory.

X The new TSS selector was a null selector.

General protection,
#GP
(selector)

X The source selector did not point into the GDT.

X The descriptor was beyond the GDT limit.

X The descriptor was not an available TSS descriptor.

X The descriptor's extended attribute bits were not zero in 64-
bit mode.

X The new TSS base address was non-canonical.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

System Instruction Reference 415

24594—Rev. 3.32—March 2021 AMD64 Technology

Establishes a linear address range of memory for hardware to monitor and puts the processor in the
monitor event pending state. When in the monitor event pending state, the monitoring hardware
detects stores to the specified linear address range and causes the processor to exit the monitor event
pending state. The MWAIT instruction uses the state of the monitor hardware.

The address range should be a write-back memory type. Executing MONITOR on an address range for
a non-write-back memory type is not guaranteed to cause the processor to enter the monitor event
pending state. The size of the linear address range that is established by the MONITOR instruction can
be determined by CPUID function 0000_0005h.

The [rAX] register provides the effective address. The DS segment is the default segment used to
create the linear address. Segment overrides may be used with the MONITOR instruction.

The ECX register specifies optional extensions for the MONITOR instruction. There are currently no
extensions defined and setting any bits in ECX will result in a #GP exception. The ECX register
operand is implicitly 32-bits.

The EDX register specifies optional hints for the MONITOR instruction. There are currently no hints
defined and EDX is ignored by the processor. The EDX register operand is implicitly 32-bits.

The MONITOR instruction can be executed at CPL 0 and is allowed at CPL > 0
only if MSR C001_0015h[MonMwaitUserEn] = 1. When MSR C001_0015h[MonMwaitUserEn] = 0,
MONITOR generates #UD at CPL > 0. (See the BIOS and Kernel Developer’s Guide applicable to
your product for specific details on MSR C001_0015h.)

MONITOR performs the same segmentation and paging checks as a 1-byte read.

Support for the MONITOR instruction is indicated by CPUID Fn0000_0001_ECX[MONITOR] = 1.
Software must check the CPUID bit once per program or library initialization before using the
MONITOR instruction, or inconsistent behavior may result. Software designed to run at CPL greater
than 0 must also check for availability by testing whether executing MONITOR causes a #UD
exception.

The following pseudo-code shows typical usage of a MONITOR/MWAIT pair:

EAX = Linear_Address_to_Monitor;
ECX = 0; // Extensions
EDX = 0; // Hints

while (!matching_store_done){
 MONITOR EAX, ECX, EDX
 IF (!matching_store_done) {
 MWAIT EAX, ECX
 }
}

MONITOR Setup Monitor Address

[AMD Public Use]

416 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

MWAIT, MONITORX, MWAITX

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MONITOR 0F 01 C8 Establishes a linear address range to be monitored
by hardware and activates the monitor hardware.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The MONITOR/MWAIT instructions are not
supported, as indicated by
CPUID Fn0000_0001_ECX[MONITOR] = 0.

X X CPL was not zero and
MSR C001_0015[MonMwaitUserEn] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X X X ECX was non-zero.

X A null data segment was used to reference memory.

Page Fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

System Instruction Reference 417

24594—Rev. 3.32—March 2021 AMD64 Technology

Moves the contents of a 32-bit or 64-bit general-purpose register to a control register or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix. In non-64-bit
mode, the operand size is fixed at 32 bits and the upper 32 bits of the destination are forced to 0.

CR0 maintains the state of various control bits. CR2 and CR3 are used for page translation. CR4 holds
various feature enable bits. CR8 is used to prioritize external interrupts. CR1, CR5, CR6, CR7, and
CR9 through CR15 are all reserved and raise an undefined opcode exception (#UD) if referenced.

CR8 can be read and written in 64-bit mode, using a REX prefix. CR8 can be read and written in all
modes using a LOCK prefix instead of a REX prefix to specify the additional opcode bit. To verify
whether the LOCK prefix can be used in this way, check for support of this feature. CPUID
Fn8000_0001_ECX[AltMovCr8] = 1, indicates that this feature is supported.

For more information on using the CPUID instruction, see the description of the CPUID instruction on
page 160.

CR8 can also be read and modified using the task priority register described in “System-Control
Registers” in Volume 2.

This instruction is always treated as a register-to-register (MOD = 11) instruction, regardless of the
encoding of the MOD field in the MODR/M byte.

MOV CRn is a privileged instruction and must always be executed at CPL = 0.

MOV CRn is a serializing instruction.

Related Instructions

CLTS, LMSW, SMSW

MOV CRn Move to/from Control Registers

Mnemonic Opcode Description

MOV CRn, reg32 0F 22 /r Move the contents of a 32-bit register to CRn

MOV CRn, reg64 0F 22 /r Move the contents of a 64-bit register to CRn

MOV reg32, CRn 0F 20 /r Move the contents of CRn to a 32-bit register.

MOV reg64, CRn 0F 20 /r Move the contents of CRn to a 64-bit register.

MOV CR8, reg32 F0 0F 22/r Move the contents of a 32-bit register to CR8.

MOV CR8, reg64 F0 0F 22/r Move the contents of a 64-bit register to CR8.

MOV reg32, CR8 F0 0F 20/r Move the contents of CR8 into a 32-bit register.

MOV reg64, CR8 F0 0F 20/r Move the contents of CR8 into a 64-bit register.

[AMD Public Use]

418 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid Instruction,
#UD

X X X An illegal control register was referenced (CR1, CR5–CR7,
CR9–CR15).

X X X The use of the LOCK prefix to read CR8 is not supported, as
indicated by CPUID Fn8000_0001_ECX[AltMovCr8] = 0.

General protection,
#GP

X X CPL was not 0.

X X An attempt was made to set CR0.PG = 1 and CR0.PE = 0.

X X An attempt was made to set CR0.CD = 0 and CR0.NW = 1.

X X
Reserved bits were set in the page-directory pointers table
(used in the legacy extended physical addressing mode) and
the instruction modified CR0, CR3, or CR4.

X X An attempt was made to write 1 to any reserved bit in CR0,
CR3, CR4 or CR8.

X X
An attempt was made to set CR0.PG while long mode was
enabled (EFER.LME = 1), but paging address extensions
were disabled (CR4.PAE = 0).

X An attempt was made to clear CR4.PAE while long mode was
active (EFER.LMA = 1).

X An attempt was made to set CR4.PCIDE=1 when long mode
was disabled (EFER.LMA=0).

X An attempt was made to set CR4.PCIDE=1 when CR3[11:0]
<>0.

X An attempt was made to set CR0.PG=0 when CR4.PCIDE=1.

[AMD Public Use]

System Instruction Reference 419

24594—Rev. 3.32—March 2021 AMD64 Technology

Moves the contents of a debug register into a 32-bit or 64-bit general-purpose register or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix. In non-64-bit
mode, the operand size is fixed at 32-bits and the upper 32 bits of the destination are forced to 0.

DR0 through DR3 are linear breakpoint address registers. DR6 is the debug status register and DR7 is
the debug control register. DR4 and DR5 are aliased to DR6 and DR7 if CR4.DE = 0, and are reserved
if CR4.DE = 1.

DR8 through DR15 are reserved and generate an undefined opcode exception if referenced.

These instructions are privileged and must be executed at CPL 0.

The MOV DRn,reg32 and MOV DRn,reg64 instructions are serializing instructions.

The MOV(DR) instruction is always treated as a register-to-register (MOD = 11) instruction,
regardless of the encoding of the MOD field in the MODR/M byte.

See “Debug and Performance Resources” in Volume 2 for details.

Related Instructions

None

rFLAGS Affected

None

MOV DRn Move to/from Debug Registers

Mnemonic Opcode Description

MOV reg32, DRn 0F 21 /r Move the contents of DRn to a 32-bit register.

MOV reg64, DRn 0F 21 /r Move the contents of DRn to a 64-bit register.

MOV DRn, reg32 0F 23 /r Move the contents of a 32-bit register to DRn.

MOV DRn, reg64 0F 23 /r Move the contents of a 64-bit register to DRn.

[AMD Public Use]

420 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Debug, #DB X X A debug register was referenced while the general detect
(GD) bit in DR7 was set.

Invalid opcode, #UD
X X DR4 or DR5 was referenced while the debug extensions

(DE) bit in CR4 was set.

X An illegal debug register (DR8–DR15) was referenced.

General protection,
#GP

X X CPL was not 0.

X A 1 was written to any of the upper 32 bits of DR6 or DR7 in
64-bit mode.

[AMD Public Use]

System Instruction Reference 421

24594—Rev. 3.32—March 2021 AMD64 Technology

Used in conjunction with the MONITOR instruction to cause a processor to wait until a store occurs to
a specific linear address range from another processor. The previously executed MONITOR
instruction causes the processor to enter the monitor event pending state. The MWAIT instruction may
enter an implementation dependent power state until the monitor event pending state is exited. The
MWAIT instruction has the same effect on architectural state as the NOP instruction.

Events that cause an exit from the monitor event pending state include:

• A store from another processor matches the address range established by the MONITOR
instruction.

• Any unmasked interrupt, including INTR, NMI, SMI, INIT.

• RESET.

• Any far control transfer that occurs between the MONITOR and the MWAIT.

EAX specifies optional hints for the MWAIT instruction. Optimized C-state request is communicated
through EAX[7:4]. The processor C-state is EAX[7:4]+1, so to request C0 is to place the value F in
EAX[7:4] and to request C1 is to place the value 0 in EAX[7:4]. All other components of EAX should
be zero when making the C1 request. Setting a reserved bit in EAX is ignored by the processor. This is
implicitly a 32-bit operand.

ECX specifies optional extensions for the MWAIT instruction. The only extension currently defined is
ECX bit 0, which allows interrupts to wake MWAIT, even when eFLAGS.IF = 0. Support for this
extension is indicated by a feature flage returned by the CPUID instruction. Setting any unsupported
bit in ECX results in a #GP exception. This is implicitly a 32-bit operand.

CPUID Function 0000_0005h indicates support for extended features of MONITOR/MWAIT:

• CPUID Fn0000_0005_ECX[EMX] = 1 indicates support for enumeration of MONITOR/MWAIT
extensions.

• CPUID Fn0000_0005_ECX[IBE] = 1 indicates that MWAIT can set ECX[0] to allow interrupts to
cause an exit from the monitor event pending state even when eFLAGS.IF = 0.

The MWAIT instruction can be executed at CPL 0 and is allowed at CPL > 0 only if MSR
C001_0015h[MonMwaitUserEn] =1. When MSR C001_0015h[MonMwaitUserEn] is 0, MWAIT
generates #UD at CPL > 0. (See the BIOS and Kernel Developer’s Guide applicable to your product
for specific details on MSR C001_0015h.)

Support for the MWAIT instruction is indicated by CPUID Fn0000_0001_ECX[MONITOR] = 1.
Software MUST check the CPUID bit once per program or library initialization before using the
MWAIT instruction, or inconsistent behavior may result. Software designed to run at CPL greater than
0 must also check for availability by testing whether executing MWAIT causes a #UD exception.

The use of the MWAIT instruction is contingent upon the satisfaction of the following coding
requirements:

MWAIT Monitor Wait

[AMD Public Use]

422 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

• MONITOR must precede the MWAIT and occur in the same loop.

• MWAIT must be conditionally executed only if the awaited store has not already occurred. (This
prevents a race condition between the MONITOR instruction arming the monitoring hardware and
the store intended to trigger the monitoring hardware.)

The following pseudo-code shows typical usage of a MONITOR/MWAIT pair:

EAX = Linear_Address_to_Monitor;
ECX = 0; // Extensions
EDX = 0; // Hints

WHILE (!matching_store_done){
 MONITOR EAX, ECX, EDX
 IF (!matching_store_done) {
 MWAIT EAX, ECX
 }
}

Related Instructions

MONITOR

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MWAIT 0F 01 C9
Causes the processor to stop instruction execution
and enter an implementation-dependent optimized
state until occurrence of a class of events.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The MONITOR/MWAIT instructions are not supported,
as indicated by
CPUID Fn0000_0001_ECX[MONITOR] = 0.

X X CPL was not zero and
MSRC001_0015[MonMwaitUserEn] = 0.

General protection,
#GP X X X Unsupported extension bits were set in ECX

[AMD Public Use]

System Instruction Reference 423

24594—Rev. 3.32—March 2021 AMD64 Technology

Expands a 2MB-page RMP entry into a corresponding set of contiguous 4KB-page RMP entries. The
2MB page’s system physical address is specified in the RAX register.

The new entries inherit the attributes of the original entry. Upon completion, a return code is stored in
EAX. rFLAGS bits OF, ZF, AF, PF and SF are set based on this return code.

The PSMASH instruction invalidates all TLB entries in the system that translate to the 2MB page
being expanded.

This instruction is intended for hypervisor use. Attempted execution at an ASID other than 0 will
result in a FAIL_PERMISSION return code.

This is a privileged instruction. Attempted execution at a privilege level other than CPL0 will result in
a #GP(0) exception. In addition, this instruction is only valid in 64-bit mode with SNP enabled; in all
other modes a #UD exception will be generated.

Support for this instruction is indicated by CPUID Fn8000_001F_EAX[SNP]=1.

Action
SYSTEM_PA = RAX & ~0x1FFFFF

IF (!64BIT_MODE) // Instruction only valid in 64-bit mode

EXCEPTION [#UD]

IF (!SYSCFG.SNP_EN) // Instruction only valid when SNP is enabled
 EXCEPTION [#UD]

IF (CPL != 0) // Instruction only allowed at CPL 0
 EXCEPTION [#GP(0)]

IF (CURRENT_ASID != 0) // Instruction only allowed at ASID 0
 EAX = FAIL_PERMISSION
 EXIT

RMP_ENTRY_PA = RMP_BASE + 0x4000 + (SYSTEM_PA / 0x1000) * 16

IF (RMP_ENTRY_PA > RMP_END) // System address must have an RMP entry

EAX = FAIL_INPUT
EXIT

temp_RMP = READ_MEM_PA.o [RMP_ENTRY_PA]

IF (temp_RMP.IMMUTABLE || !temp_RMP.ASSIGNED || (temp_RMP.PAGE_SIZE != 2MB))

PSMASH Page Smash

Mnemonic Opcode Description

PSMASH F3 0F 01 FF Creates 512 4KB RMP entries from a 2MB RMP entry

[AMD Public Use]

424 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

EAX = FAIL_BADADDR
EXIT

temp_RMP.PAGE_ SIZE = 4KB
WRITE_MEM_PA.o [RMP_ENTRY_PA] = temp_RMP

FOR (I = 1; I < 512, I++)
{

temp_RMP.GUEST_PA = temp_RMP.GUEST_PA + 0x1000;
WRITE_MEM_PA.o [RMP_ENTRY_PA + I * 16] = temp_RMP;

}

EAX = SUCCESS
EXIT

Return Codes

Related Instructions

RMPUPDATE, PVALIDATE, RMPADJUST

Value Name Description

0 SUCCESS Successful completion

1 FAIL_INPUT Illegal input parameters

2 FAIL_PERMISSION Current ASID not 0

3 FAIL_INUSE Another processor is modifying the same RMP entry

4 FAIL_BADADDR The page did not meet smashing criteria

[AMD Public Use]

System Instruction Reference 425

24594—Rev. 3.32—March 2021 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The SNP instructions are not supported as indicated by
CPUID Fn8000_001F_EAX[SNP] = 0

X X X This instruction is only recognized in 64-bit mode

X SYSCFG[SNP_EN] was not set to 1

General Protection,
#GP X X A null data segment was used to reference memory.

[AMD Public Use]

426 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Validates or rescinds validation of a guest page’s RMP entry. The guest virtual address is specified in
the register operand rAX. The portion of RAX used to form the address is determined by the effective
address size (current execution mode and optional address size prefix). The page size is specified in
ECX[0]. The new RMP Validated bit is specified in EDX[0].

The PVALIDATE instruction is used by an SNP-active guest to modify the validation status of a page.
The PVALIDATE instruction will attempt to access the provided page and will take a
#VMEXIT(NPF) if a nested translation error occurs or the translated address is outside the range of
memory covered by the RMP. Assuming no error is detected, the PVALIDATE instruction will store
EDX[0] to the Validated bit in the page’s RMP entry.

Upon completion, a return code is stored in EAX. rFLAGS bits OF, ZF, AF, PF and SF are set based on
this return code. If the instruction completed successfully, the rFLAGS bit CF indicates if the contents
of the RMP entry were changed or not.

While this instruction is intended for use in SNP-active guest system software, it is recognized in any
operating mode at CPL0. If the PVALIDATE instruction is executed by an SNP-active guest and
changes the Validated bit in the RMP entry, upon completion it sets rFLAGS.CF to 0. If the
PVALIDATE instruction is executed in a non-SNP-active environment or does not change the
Validated bit in the RMP entry, it sets rFLAGS.CF to 1 and otherwise behaves as a NOP instruction.

This is a privileged instruction. Attempted execution at a privilege level other than CPL0 will result in
a #GP(0) exception.

PVALIDATE performs the same segmentation and paging checks as a 1-byte read. PVALIDATE does
not invalidate TLB caches.

Support for this instruction is indicated by CPUID Fn8000_001F_EAX[SNP]=1.

Action
GUEST_VA = rAX & ~0xFFF
PAGE_SIZE = ECX[0]
VALIDATE_PAGE = EDX[0]

IF (CPL != 0) // This instruction is only allowed at CPL 0

 EXCEPTION [#GP(0)]

IF (!SNP_ACTIVE)

rFLAGS.CF = 1 // Set CF to indicate that the RMP was not changed
EAX = SUCCESS

 EXIT

PVALIDATE Page Validate

Mnemonic Opcode Description

PVALIDATE F2 0F 01 FF Performs guest page validation

[AMD Public Use]

System Instruction Reference 427

24594—Rev. 3.32—March 2021 AMD64 Technology

IF (CURRENT_VMPL != 0)
EXCEPTION [#GP(0)] // This instruction is only allowed at VMPL 0

IF ((PAGE_SIZE == 2MB) && (GUEST_VA[20:12] != 0))

EAX = FAIL_INPUT // Page size is 2MB and page is not 2MB aligned
EXIT

(SYSTEM_PA, GUEST_PA) = TRANSLATE(GUEST_VA)
RMP_ENTRY_PA = RMP_BASE + 0x4000 + (SYSTEM_PA / 0x1000) * 16

IF (RMP_ENTRY_PA > RMP_END)
#VMEXIT(NPF) //Translated system address must have an RMP entry

temp_RMP = READ_MEM_PA.o [RMP_ENTRY_PA]

IF (temp_RMP.IMMUTABLE || !temp_RMP.ASSIGNED ||
 (temp_RMP.GUEST_PA != GUEST_PA) || (temp_RMP.ASID != ASID) ||

(temp_RMP.PAGE_SIZE != nPT page size) ||
((temp_RMP.PAGE_SIZE == 2MB) && (PAGE_SIZE == 4KB)))
#VMEXIT(NPF)

IF ((RMP_DATA.PAGE_SIZE == 4KB) && (PAGE_SIZE == 2MB))
EAX = FAIL_SIZEMISMATCH // 2MB validation backed by 4KB pages
EXIT

IF (temp_RMP.VALIDATED == VALIDATE_PAGE)
rFLAGS.CF = 1

ELSE
rFLAGS.CF = 0

temp_RMP.VALIDATED = VALIDATE_PAGE
WRITE_MEM_PA.o [RMP_ENTRY_PA] = temp_RMP
EAX = SUCCESS
EXIT

Return Codes

Related Instructions

RMPUPDATE, PSMASH, RMPADJUST

Value Name Description

0 SUCCESS Successful completion (regardless of whether Validated bit
changed state)

1 FAIL_INPUT Illegal input parameters

6 FAIL_SIZEMISMATCH Page size mismatch between guest (2M) and RMP entry (4K)

[AMD Public Use]

428 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The SNP instructions are not supported as indicated by

CPUID Fn8000_001F_EAX[SNP] = 0

General Protection,
#GP

X X CPL was not zero

X X X Current VMPL was not zero

Page Fault, #PF
X X A page fault resulted from the execution of the instruction

X The effective C-bit was a 0 during the guest page table walk

[AMD Public Use]

System Instruction Reference 429

24594—Rev. 3.32—March 2021 AMD64 Technology

Loads the contents of a 64-bit model-specific register (MSR) specified in the ECX register into
registers EDX:EAX. The EDX register receives the high-order 32 bits and the EAX register receives
the low order bits. The RDMSR instruction ignores operand size; ECX always holds the MSR number,
and EDX:EAX holds the data. If a model-specific register has fewer than 64 bits, the unimplemented
bit positions loaded into the destination registers are undefined.

This instruction must be executed at a privilege level of 0 or a general protection exception (#GP) will
be raised. This exception is also generated if a reserved or unimplemented model-specific register is
specified in ECX.

Support for the RDMSR instruction is indicated by CPUID Fn0000_0001_EDX[MSR] = 1 OR
CPUID Fn8000_0001_EDX[MSR] = 1. For more information on using the CPUID instruction, see the
description of the CPUID instruction on page 160.

For more information about model-specific registers, see the documentation for various hardware
implementations and “Model-Specific Registers (MSRs)” in Volume 2: System Programming.

Related Instructions

WRMSR, RDTSC, RDPMC

rFLAGS Affected

None

Exceptions

RDMSR Read Model-Specific Register

Mnemonic Opcode Description

RDMSR 0F 32 Copy MSR specified by ECX into EDX:EAX.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X

The RDMSR instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[MSR] = 0 or CPUID
Fn8000_0001_EDX[MSR] = 0.

General protection,
#GP

X X CPL was not 0.

X X The value in ECX specifies a reserved or unimplemented
MSR address.

[AMD Public Use]

430 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the contents of the 32-bit Protection Key Rights (PKRU) register into RAX[31:0] and clears the
upper 32 bits of RAX. RDX is also cleared to 0. The RDPKRU instruction ignores operand size.

This instruction must be executed with ECX=0, otherwise a general protection fault (#GP) is
generated. The upper 32 bits of RCX are ignored. Memory protection keys must be enabled
(CR4.PKE=1), otherwise executing this instruction generates an invalid opcode fault (#UD).

Software can check that the operating system has enabled memory protection keys (CR4.PKE=1) by
testing CPUID Function 0000_0007h_ECX[OSPKE]. (See Section 5, “Protection Key Rights for
User Pages” in AMD64 Architecture Programmer’s Manual Volume 2 for more information on
memory protection keys.)

RDPKRU can be executed at any privilege level.

Related Instructions

WRPKRU

rFLAGS Affected

None

Exceptions

RDPKRU Read Protection Key Rights

Mnemonic Opcode Description

RDPKRU 0F 01 EE Read the PKRU MSR into EAX and clear RDX

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X CR4.PKE=0

General protection,
#GP X ECX was not zero

[AMD Public Use]

System Instruction Reference 431

24594—Rev. 3.32—March 2021 AMD64 Technology

Reads the contents of a 64-bit performance counter and returns it in the registers EDX:EAX. The ECX
register is used to specify the index of the performance counter to be read. The EDX register receives
the high-order 32 bits and the EAX register receives the low order 32 bits of the counter. The RDPMC
instruction ignores operand size; the index and the return values are all 32 bits.

The base architecture supports four core performance counters: PerfCtr0–3. An extension to the
architecture increases the number of core performance counters to 6 (PerfCtr0–5). Other extensions
add four northbridge performance counters NB_PerfCtr0–3 and four L2 cache performance counters
L2I_PerfCtr0–3.

To select the core performance counter to be read, specify the counter index, rather than the
performance counter MSR address. To access the northbridge performance counters, specify the index
of the counter plus 6. To access the L2 cache performance counters, specify the index of the counter
plus 10.

Programs running at any privilege level can read performance monitor counters if the PCE flag in CR4
is set to 1; otherwise this instruction must be executed at a privilege level of 0.

This instruction is not serializing. Therefore, there is no guarantee that all instructions have completed
at the time the performance counter is read.

For more information about performance-counter registers, see the documentation for various
hardware implementations and “Performance Counters” in Volume 2.

Suppo r t f o r t he co r e pe r fo rmance coun t e r s Pe r fC t r4–5 i s i nd i ca t ed by CPUID
Fn8000_0001_ECX[PerfCtrExtCore] = 1. CPUID Fn8000_0001_ECX[PerfCtrExtNB] = 1 indicates
support for the four architecturally defined northbridge performance counters and CPUID
Fn8000_0001_ECX[PerfCtrExtL2I] = 1 indicates support for the L2 cache performance counters.

For more information on using the CPUID instruction, see the description of the CPUID instruction on
page 160.

Instruction Encoding

Related Instructions

RDMSR, WRMSR

rFLAGS Affected

None

RDPMC Read Performance-Monitoring Counter

Mnemonic Opcode Description

RDPMC 0F 33 Copy the performance monitor counter specified
by ECX into EDX:EAX.

[AMD Public Use]

432 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General Protection,
#GP

X X X The value in ECX specified an unimplemented performance
counter number.

X X CPL was not 0 and CR4.PCE = 0.

[AMD Public Use]

System Instruction Reference 433

24594—Rev. 3.32—March 2021 AMD64 Technology

Reads the current Shadow Stack Pointer (SSP) to the specified GPR. The operand size is 64 bits in 64-
bit mode when REX.W=1 and is 32 bits in all other cases. RDSSP is treated as a NOP if CR4.CET = 0,
or if shadow stacks are not enabled at the current privilege level.

Action

IF (((CPL==3) && SSTK_USER_ENABLED) || ((CPL!=3) && SSTK_SUPV_ENABLED))

 IF (OPERAND_SIZE == 64)
 reg64 = SSP
 ELSE
 reg32 = SSP[31:0]
EXIT

Related Instructions

RDSSP, RSTORSSP

rFLAGS Affected

None

Exceptions

None.

RDSSP Read Shawdow Stack Pointer

Mnemonic Opcode Description

RDSSPD reg32 F3 0F 1E /1 Read SSP[31:0] to reg32

RDSSPQ reg64 F3 0F 1E /1 Read SSP[63:0] to reg64

[AMD Public Use]

434 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX.

The time-stamp counter (TSC) is contained in a 64-bit model-specific register (MSR). The processor
sets the counter to 0 upon reset and increments the counter every clock cycle. INIT does not modify the
TSC.

The high-order 32 bits are loaded into EDX, and the low-order 32 bits are loaded into the EAX
register. This instruction ignores operand size.

When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSC instruction can only be used at
privilege level 0. If the TSD flag is 0, this instruction can be used at any privilege level.

This instruction is not serializing. Therefore, there is no guarantee that all instructions have completed
at the time the time-stamp counter is read.

The behavior of the RDTSC instruction is implementation dependent. The TSC counts at a constant
rate, but may be affected by power management events (such as frequency changes), depending on the
processor implementation. If CPUID Fn8000_0007_EDX[TscInvariant] = 1, then the TSC rate is
ensured to be invariant across all P-States, C-States, and stop-grant transitions (such as STPCLK
Throttling); therefore, the TSC is suitable for use as a source of time. Consult the BIOS and Kernel
Developer’s Guide applicable to your product for information concerning the effect of power
management on the TSC.

Support for the RDTSC instruction is indicated by CPUID Fn0000_0001_EDX[TSC] = 1 OR CPUID
Fn8000_0001_EDX[TSC] = 1. For more information on using the CPUID instruction, see the
description of the CPUID instruction on page 160.

Instruction Encoding

Related Instructions

RDTSCP, RDMSR, WRMSR

rFLAGS Affected

None

RDTSC Read Time-Stamp Counter

Mnemonic Opcode Description

RDTSC 0F 31 Copy the time-stamp counter into EDX:EAX.

[AMD Public Use]

System Instruction Reference 435

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X
The RDTSC instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[TSC] = 0 OR
CPUID Fn8000_0001_EDX[TSC] = 0.

General protection,
#GP X X CPL was not 0 and CR4.TSD = 1.

[AMD Public Use]

436 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX, and loads the
value of TSC_AUX into ECX. This instruction ignores operand size.

The time-stamp counter is contained in a 64-bit model-specific register (MSR). The processor sets the
counter to 0 upon reset and increments the counter every clock cycle. INIT does not modify the TSC.

The high-order 32 bits are loaded into EDX, and the low-order 32 bits are loaded into the EAX
register.

The TSC_AUX value is contained in the low-order 32 bits of the TSC_AUX register (MSR address
C000_0103h). This MSR is initialized by privileged software to any meaningful value, such as a
processor ID, that software wants to associate with the returned TSC value.

When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSCP instruction can only be used
at privilege level 0. If the TSD flag is 0, this instruction can be used at any privilege level.

Unlike the RDTSC instruction, RDTSCP forces all older instructions to retire before reading the time-
stamp counter.

The behavior of the RDTSCP instruction is implementation dependent. The TSC counts at a constant
rate, but may be affected by power management events (such as frequency changes), depending on the
processor implementation. If CPUID Fn8000_0007_EDX[TscInvariant] = 1, then the TSC rate is
ensured to be invariant across all P-States, C-States, and stop-grant transitions (such as STPCLK
Throttling); therefore, the TSC is suitable for use as a source of time. Consult the BIOS and Kernel
Developer’s Guide applicable to your product for information concerning the effect of power
management on the TSC.

Support for the RDTSCP instruction is indicated by CPUID Fn8000_0001_EDX[RDTSCP] = 1. For
more information on using the CPUID instruction, see the description of the CPUID instruction on
page 160.

Instruction Encoding

Related Instructions

RDTSC

rFLAGS Affected

None

RDTSCP Read Time-Stamp Counter
and Processor ID

Mnemonic Opcode Description

RDTSCP 0F 01 F9 Copy the time-stamp counter into EDX:EAX and
the TSC_AUX register into ECX.

[AMD Public Use]

System Instruction Reference 437

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X The RDTSCP instruction is not supported, as indicated by
CPUID Fn8000_0001_EDX[RDTSCP] = 0.

General protection,
#GP X X CPL was not 0 and CR4.TSD = 1.

[AMD Public Use]

438 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Modifies RMP permissions for a guest page. The guest virtual address is specified in the RAX register.
The page size is specified in RCX[0]. The target VMPL and its permissions are specified in the RDX
register as follows:

The RMPADJUST instruction is used by an SNP-active guest to modify RMP permissions of a lesser-
privileged VMPL. The RMPADJUST instruction will attempt to access the specified page and will
take a #VMEXIT(NPF) if a nested translation error occurs or the translated address is outside the
range of memory covered by the RMP. Assuming no such error is detected, the target VMPL is
numerically higher than the current VMPL, and the specified permissions for the target VMPL are not
greater than the permissions of the current VMPL, the RMPADJUST instruction will modify the target
permission mask in the RMP entry.

Upon completion, a return code is stored in EAX. rFLAGS bits OF, ZF, AF, PF and SF are set based on
this return code.

RMPADJUST performs the same segmentation and paging checks as a 1-byte read. RMPADJUST
does not invalidate TLB caches.

This is a privileged instruction. Attempted execution at a privilege level other than CPL0 will result in
a #GP(0) exception. In addition, this instruction is only valid in 64-bit mode in an SNP-active guest; in
all other modes a #UD exception will be generated.

Support for this instruction is indicated by CPUID Fn8000_001F_EAX[SNP]=1.

Action
GUEST_VA = RAX & ~0xFFF
PAGE_SIZE = RCX[0]
TARGET_VMPL = RDX[7:0]
TARGET_PERM_MASK = RDX[15:8]
VMSA = RDX[16]

IF (!64BIT_MODE) // Instruction only valid in 64-bit mode
EXCEPTION [#UD]

IF (!SNP_ACTIVE)

RMPADJUST Adjust RMP Permissions

RDX bits Field Description

[63:17] RESERVED

[16] VMSA Indicates if the page may be used as a VM Save Area page.
This bit is ignored whenever the current VMPL is not 0

[15:8] TARGET_PERM_MASK Desired permission mask settings

[7:0] TARGET_VMPL Target VMPL

Mnemonic Opcode Description

RMPADJUST F3 0F 01 FE Modifies RMP permissions

[AMD Public Use]

System Instruction Reference 439

24594—Rev. 3.32—March 2021 AMD64 Technology

EXCEPTION [#UD]

IF (CPL != 0) // Instruction only allowed at CPL 0
EXCEPTION [#GP(0)]

IF ((PAGE_SIZE == 2MB) && (GUEST_VA[20:12] != 0))
EAX = FAIL_INPUT // Page size is 2MB and not 2MB aligned
EXIT

IF (TARGET_VMPL <= CURRENT_VMPL) // Only permissions for numerically-
EAX = FAIL_PERMISSION // higher VMPL can be modified
EXIT

(SYSTEM_PA, GUEST_PA) = TRANSLATE(GUEST_VA)
RMP_ENTRY_PA = RMP_BASE + 0x4000 + (SYSTEM_PA / 0x1000) * 16

IF (RMP_ENTRY_PA > RMP_END) // Translated system address
#VMEXIT(NPF) // must have an RMP entry

temp_RMP = READ_MEM_PA.o [RMP_ENTRY_PA]

IF (temp_RMP.IMMUTABLE || !temp_RMP.ASSIGNED ||
(temp_RMP.GUEST_PA != GUEST_PA) || (temp_RMP.ASID != ASID) ||
(temp_RMP.PAGE_SIZE != nPT page size) ||
((temp_RMP.PAGE_SIZE == 2MB) && (PAGE_SIZE == 4KB)))
#VMEXIT(NPF)

IF (!temp_RMP.VALIDATED)
#VC(PAGE_NOT_VALIDATED)

IF ((RMP_DATA.PAGE_SIZE == 4KB) && (PAGE_SIZE == 2MB))
EAX = FAIL_SIZEMISMATCH
EXIT

IF (TARGET_PERM_MASK & ~temp_RMP.PERMISSIONS[CURRENT_VMPL])
EAX = FAIL_PERMISSION
EXIT

IF (CURRENT_VMPL == 0)
temp_RMP.VMSA = VMSA

temp_RMP.PERMISSIONS[TARGET_VMPL] = TARGET_PERM_MASK

WRITE_MEM_PA.o [RMP_ENTRY_PA] = temp_RMP
EAX = SUCCESS
EXIT

[AMD Public Use]

440 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Return Codes

Related Instructions

PVALIDATE, RMPUPDATE, PSMASH

rFLAGS Affected

Exceptions

Value Name Description

0 SUCCESS Successful completion

1 FAIL_INPUT Illegal input parameters

2 FAIL_PERMISSION Insufficient permissions

6 FAIL_SIZEMISMATCH Page size mismatch between guest and RMP

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The SNP instructions are not supported as indicated by
CPUID Fn8000_001F_EAX[SNP] = 0

X X X This instruction is only recognized in 64-bit mode

X Guest is not SNP-Active

General Protection,
#GP X X CPL was not zero

Page Fault, #PF
X X A page fault resulted from the execution of the instruction

X The effective C-bit was a 0 during the guest page table walk

VMM
Communication,
#VC

X RMP.VALIDATED was not set to 1

[AMD Public Use]

System Instruction Reference 441

24594—Rev. 3.32—March 2021 AMD64 Technology

Writes a new RMP entry. The system physical address of a page whose RMP entry is modified is
specified in the RAX register. The RCX register provides the effective address of a 16-byte data
structure which contains the new RMP state. The DS segment is the default segment used to create the
linear address, but may be overridden by a segment prefix. The layout of the data structure with the
new RMP state is as follows:

The RMPUPDATE instruction checks that new RMP state is legal before it updates the RMP table.

Upon completion, a return code is stored in EAX. rFLAGS bits OF, ZF, AF, PF and SF are set based on
this return code.

The RMPUPDATE instruction invalidates all TLB entries in the system that translate to the page being
modified.

This instruction is intended for hypervisor use. Attempted execution at an ASID other than 0 will
result in a FAIL_PERMISSION return code.

This is a privileged instruction. Attempted execution at a privilege level other than CPL0 will result in
a #GP(0) exception. In addition, this instruction is only valid in 64-bit mode with SNP enabled; in all
other modes a #UD exception will be generated.

Support for this instruction is indicated by the feature flag CPUID Fn8000_001F_EAX[SNP]=1.

Action
SYSTEM_PA = RAX & ~0xFFF
NEW_RMP_PTR = RCX

IF (!64BIT_MODE) // Instruction only valid in 64-bit mode
EXCEPTION [#UD]

IF (!SYSCFG.SNP_EN) // Instruction only valid when SNP enabled
EXCEPTION [#UD]

RMPUPDATE Write RMP Entry

Byte
Offset

Length
(bytes) Name Description

00h 8 GUEST_PA Guest physical address

08h 1 ASSIGNED Assigned flag (bit 0)

09h 1 PAGE_SIZE Page size (0 = 4KB, 1 = 2MB) (bit 0)

0Ah 1 IMMUTABLE Immutable flag (bit 0)

0Bh 1 - Reserved (SBZ)

0Ch 4 ASID ASID of intended page owner

Mnemonic Opcode Description

RMPUPDATE F2 0F 01 FE Writes a new RMP entry

[AMD Public Use]

442 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

IF (CPL != 0) // Instruction only allowed at CPL 0
EXCEPTION [#GP(0)]

IF (CURRENT_ASID != 0) // Instruction only allowed at ASID 0
EAX = FAIL_PERMISSION
EXIT

NEW_RMP = READ_MEM.o [NEW_RMP_PTR]

IF ((NEW_RMP.PAGE_SIZE == 2MB) && (SYSTEM_PA[20:12] != 0))
EAX = FAIL_INPUT
EXIT

IF (!NEW_RMP.ASSIGNED && (NEW_RMP.IMMUTABLE || (NEW_RMP.ASID != 0))
EAX = FAIL_INPUT
EXIT

RMP_ENTRY_PA = RMP_BASE + 0x4000 + (SYSTEM_PA / 0x1000) * 16

IF (RMP_ENTRY_PA > RMP_END) // System address must have an RMP entry
EAX = FAIL_INPUT
EXIT

OLD_RMP = READ_MEM_PA.o [RMP_ENTRY_PA]

IF (OLD_RMP.IMMUTABLE)
EAX = FAIL_PERMISSION
EXIT

IF (NEW_RMP.PAGE_SIZE == 4KB)
IF ((SYSTEM_PA[20:12] == 0) && (OLD_RMP.PAGE_SIZE == 2MB))

EAX = FAIL_OVERLAP
EXIT

ELSE
IF (Any 4KB RMP entry with (RMP.ASSIGNED == 1) exists in 2MB region)

EAX = FAIL_OVERLAP
EXIT

ELSE
 FOR (I = 1; I < 512, I++)

{
temp_RMP = 0
temp_RMP.ASSIGNED = NEW_RMP.ASSIGNED
WRITE_MEM.o [RMP_ENTRY_PA + I * 16] = temp_RMP;

}

IF (!NEW_RMP.ASSIGNED)
temp_RMP = 0

ELSE
temp_RMP.ASID = NEW_RMP.ASID
temp_RMP.GUEST_PA = NEW_RMP.GUEST_PA
temp_RMP.PAGE_SIZE = NEW_RMP.PAGE_SIZE

[AMD Public Use]

System Instruction Reference 443

24594—Rev. 3.32—March 2021 AMD64 Technology

temp_RMP.ASSIGNED = NEW_RMP.ASSIGNED
temp_RMP.IMMUTABLE = NEW_RMP.IMMUTABLE

temp_RMP.VALIDATED = OLD_RMP.VALIDATED
temp_RMP.PERMISSIONS = OLD_RMP.PERMISSIONS
temp_RMP.VMSA = OLD_RMP.VMSA

IF (NEW_RMP.ASID == 0)
temp_RMP.GUEST_PA = 0

IF ((OLD_RMP.ASID ^ NEW_RMP.ASID) ||
 (OLD_RMP.GUEST_PA ^ NEW_RMP.GUEST_PA) ||
(OLD_RMP.PAGE_SIZE ^ NEW_RMP.PAGE_SIZE) ||
(OLD_RMP.ASSIGNED ^ NEW_RMP.ASSIGNED))
N = CPUID Fn8000001F_EBX[15:12]
temp_RMP.VALIDATED = 0
temp_RMP.VMSA = 0
temp_RMP.PERMISSIONS[0] = 0xF
temp_RMP.PERMISSIONS[1:(N-1)] = 0

WRITE_MEM_PA.o [RMP_ENTRY_PA] = temp_RMP
EAX = SUCCESS
EXIT

Return Codes

Related Instructions

PVALIDATE, PSMASH, RMPADJUST

Value Name Description

0 SUCCESS Successful completion

1 FAIL_INPUT Illegal input parameters

2 FAIL_PERMISSION Current ASID not 0 or RMP entry is Immutable

3 FAIL_INUSE Another processor is modifying the same RMP entry

4 FAIL_OVERLAP 4KB page and 2MB page RMP overlap detected

[AMD Public Use]

444 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The SNP instructions are not supported as indicated by
CPUID Fn8000_001F_EAX[SNP] = 0

X X X This instruction is only recognized in 64-bit mode

X SYSCFG[SNP_EN] was not set to 1

General Protection,
#GP X X CPL was not zero

[AMD Public Use]

System Instruction Reference 445

24594—Rev. 3.32—March 2021 AMD64 Technology

Resumes an operating system or application procedure previously interrupted by a system
management interrupt (SMI). The processor state is restored from the information saved when the SMI
was taken. The processor goes into a shutdown state if it detects invalid state information in the system
management mode (SMM) save area during RSM.

RSM will shut down if any of the following conditions are found in the save map (SSM):

• An illegal combination of flags in CR0 (CR0.PG = 1 and CR0.PE = 0, or CR0.NW = 1 and
CR0.CD = 0).

• A reserved bit in CR3, CR4, or the extended feature enable register (EFER) is set to 1.

• A reserved bit in the range 63:32 of CR0, DR6, or DR7 is set to 1.

• The following bit combination occurs: EFER.LME = 1, CR0.PG = 1, CR4.PAE = 0.

• The following bit combination occurs: EFER.LME = 1, CR0.PG = 1, CR4.PAE = 1, CS.D = 1,
CS.L = 1.

• SMM revision field has been modified.

• The following bit combination occurs: CR4.PCIDE=1 and EFER.LMA=0.

RSM cannot modify EFER.SVME. Attempts to do so are ignored.

When EFER.SVME is 1, RSM reloads the four PDPEs (through the incoming CR3) when returning to
a mode that has legacy PAE mode paging enabled.

When EFER.SVME is 1, the RSM instruction is permitted to return to paged real mode (i.e.,
CR0.PE=0 and CR0.PG=1).

The AMD64 architecture uses a new 64-bit SMM state-save memory image. This 64-bit save-state
map is used in all modes, regardless of mode. See “System-Management Mode” in Volume 2 for
details.

Related Instructions

None

RSM Resume from System Management Mode

Mnemonic Opcode Description

RSM 0F AA Resume operation of an interrupted program.

[AMD Public Use]

446 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

All flags are restored from the state-save map (SSM).

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The processor was not in System Management Mode (SMM).

[AMD Public Use]

System Instruction Reference 447

24594—Rev. 3.32—March 2021 AMD64 Technology

Restores SSP using the shadow stack restore token pointed to by the memory operand. If the token
validation checks pass, SSP is set to the linear address of the memory operand and the restore token is
replaced with a previous SSP token.

If a return to the previous shadow stack is required, the SAVEPREVSSP instruction can be used to
save the previous SSP token to the previous stack. Otherwise, the INCSSP instruction can be used to
pop the unneeded previous SSP token from the shadow stack.

If the restored SSP is 4-byte aligned and not 8-byte aligned, CF is set to 1 indicating an alignment hole.
The INCSSP instruction can be used to increment SSP past the alignment hole.

Action
// see "Pseudocode Definition" on page 57

IF ((CPL == 3) && (!SSTK_USER_ENABLED))
 EXCEPTION [#UD]

IF ((CPL < 3) && (!SSTK_SUPV_ENABLED))
 EXCEPTION [#UD]

temp_linAdr = Linear_Address(mem64)
IF (temp_linAdr is not 8-byte aligned)
 EXCEPTION [#GP(0)]

bool INVALID_TOKEN = FALSE

< start atomic section >

temp_rstorToken = SSTK_READ_MEM.q [mem64] // fetch token, with locked read

IF ((temp_rstorToken AND 0x02) != 0)
 INVALID_TOKEN = TRUE // token bit 1 must be clear

IF (64BIT_MODE != (temp_rstorToken AND 0x01))
 INVALID_TOKEN = TRUE // token bit 0 must match current mode

IF (!64-bit mode) && (temp_rstorToken[63:32] != 0))
 INVALID_TOKEN = TRUE // previous SSP must be <4Gb in
 // legacy and compat modes

temp_prevSSP = (temp_rstorToken AND ~0x01) – 8
temp_prevSSP = temp_prevSSP AND ~0x07

RSTORSSP Restore Saved Shadow Stack Pointer

Mnemonic Opcode Description

RSTORSSP mem64 F3 0F 01 /5 Restore SSP and create previous SSP token.

[AMD Public Use]

448 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

IF (temp_prevSSP != temp_linAdr)
 INVALID_TOKEN = TRUE // prev SSP from token must match lin addr

temp_prevSSPtoken = SSP OR 64BIT_MODE OR 0x02 //create the previousSSP token
SSTK_WRITE_MEM.q [mem64] = INVALID_TOKEN ? temp_rstorToken : temp_prevSSPtoken
 // write token and unlock
< end atomic section >

IF (INVALID_TOKEN)
 EXCEPTION [#CP(RSTORSSP)]
ELSE
 {
 SSP = temp_linAdr // SSP = linear address of memory operand
 RFLAGS.ZF,PF,AF,OF,SF = 0
 RFLAGS.CF = (temp_rstorToken AND 0x04) ? 1 : 0; // set CF if SSP in token
 // was 4-byte aligned
 }

EXIT

Related Instructions

SAVEPREVSSP

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X CR4.CET = 0

X Shadow stacks not enabled at current privilege level.

General protection,
#GP

X The linear address was not 8-byte aligned.

X A memory address exceeded a data segment limit.

X In long mode, the address of the memory operand was non-
canonical.

X A null data segment was used to reference memory.

X A non-writeable data segment was used.

X An execute-only code segment was used to reference
memory.

[AMD Public Use]

System Instruction Reference 449

24594—Rev. 3.32—March 2021 AMD64 Technology

Control Protection,
#CP

X The mode bit (bit 0) in the token did not match the current
mode.

X The type bit (bit 1) in the token was not 0.

X The SSP address in the token did not match the linear
address of the memory operand.

Page fault, #PF
X The linear address was not a shadow stack page.

X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

450 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Saves a restore shadow stack token to previous shadow stack. The previous SSP pointer is taken from
the previous SSP token found at the top of the current shadow stack. The previous SSP token is then
popped from the current shadow stack.

Action

// see "Pseudocode Definition" on page 57

IF ((CPL == 3) && (!SSTK_USER_ENABLED))
 EXCEPTION [#UD]

IF ((CPL < 3) && (!SSTK_SUPV_ENABLED))
 EXCEPTION [#UD]

IF (SSP is not 8-byte aligned)
 EXCEPTION [#GP(0)]

temp_prevSSPtoken = SSTK_READ_MEM.q [SSP] // pop prev SSP token
 // from current stack
temp_SSP = SSP
temp_SSP = temp_SSP + 8

IF (RFLAGS.CF) // CF indicates a 4-byte alignment hole exists
 IF (64BIT_MODE)
 EXCEPTION [#GP(0)] // alignment hole allowed only in legacy/compat mode
 ELSE
 {
 hole = SSTK_READ_MEM.d [temp_SSP] // pop the 4-byte alignment hole
 temp_SSP = temp_SSP + 4
 IF (hole != 0)
 EXCEPTION [#GP(0)] // the alignment hole must be all 0’s
 }
IF ((temp_prevSSPtoken AND 0x02) != 1)
 EXCEPTION [#GP(0)] // prev SSP token must have bit 1 set

IF (64BIT_MODE != (temp_prevSSPtoken AND 0x01))
 EXCEPTION [#GP(0)] // token bit 0 must match current mode

IF (!64-bit mode) && (temp_prevSSPtoken[63:32] != 0))
 EXCEPTION [#GP(0)] // previous SSP must be <4Gb in
 // legacy and compat modes

SAVEPREVSSP Save Previous Shadow Stack Pointer

Mnemonic Opcode Description

SAVEPREVSSP F3 0F 01 EA Push restore shadow stack token to the previous shadow
stack

[AMD Public Use]

System Instruction Reference 451

24594—Rev. 3.32—March 2021 AMD64 Technology

temp_oldSSP = temp_prevSSPtoken AND ~0x03
temp_rstorSSPtoken = temp_oldSSP OR (64BIT_MODE) //create the restore

SSP token
SSTK_WRITE_MEM.d [temp_oldSSP - 4] = 0x0 // zero out hole (in case aligning
 // oldSSP creates a hole)
temp_oldSSP = temp_oldSSP AND ~0x07 // align oldSSP to next 8b boundary
SSTK_WRITE_MEM.q [temp_oldSSP-8]= temp_rstorSSPtoken // write restore token to
 // old stack
SSP = temp_SSP // no faults, update SSP

Related Instructions

RSTORSSP

rFLAGS Affected

None.

Exceptions

Exception
Real

Virtual
8086 Protected

Cause of Exception

Invalid opcode, #UD

X X Instruction is only recognized in protected mode.

X CR4.CET = 0

X Shadow stacks not enabled at current privilege level.

General protection, #GP

X The SSP was not 8-byte aligned.

X The type bit (bit 1) in the token was not 1.

X CF was set in 64-bit mode.

X The previous SSP was >4Gb when not in 64-bit mode.

X A non-zero alignment hole was found in legacy or
compatibility mode.

Page fault, #PF
X A page fault resulted from the execution of the instruction.

X A shadow stack reference was made to a non-shadow
stack page.

[AMD Public Use]

452 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Validates a non-busy (not in-use) shadow stack token pointed to by the PL0_SSP MSR and sets the
token’s busy bit. If the validation checks pass, SSP is set to the address in PL0_SSP.

SETSSBY is a privileged instruction and must be executed with CPL=0, otherwise a #GP exception is
generated. If shadow stacks are not enabled at the supervisor level, a #UD exception is generated.

Action

// see "Pseudocode Definition" on page 57

IF (CR4.CET == 0)
 EXCEPTION [#UD]
IF (S_CET.SH_STK_EN == 0)
 EXCEPTION [#UD]
IF (CPL != 0)
 EXCEPTION [#GP(0)]

temp_newSSP = PL0_SSP

IF (temp_newSSP is not 8-byte aligned)
 EXCEPTION [#GP(0)]

bool FAULT = FALSE

< start atomic section >

temp_Token = SSTK_READ_MEM.q [temp_newSSP] // fetch token with locked read

IF ((!64-bit mode) && (temp_token[63:32] != 0))
 FAULT=TRUE // address in token must be < 4GB
 // in legacy/compatibility mode
IF ((temp_Token AND 0x01) != 0)
 FAULT = TRUE // token busy bit must be 0
IF ((temp_Token AND ~x01) != temp_newSSP)
 FAULT = TRUE // address in token must match new SSP
IF (!FAULT)
 temp_Token = temp_Token OR 0x01 // if no faults, set token busy bit

SSTK_WRITE_MEM.q [temp_newSSP] = temp_Token // write token and unlock

< end atomic section >

IF (FAULT)
 EXCEPTION [#CP(SETSSBSY)]

SETSSBSY Set Shadow Stack Busy

Mnemonic Opcode Description

SETSSBSY F3 0F 01 E8 Validate token and set shadow stack busy bit

[AMD Public Use]

System Instruction Reference 453

24594—Rev. 3.32—March 2021 AMD64 Technology

ELSE
 SSP = temp_newSSP // if no faults, SSP = PL0_SSP

EXIT

Related Instructions

CLRSSBSY

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid Opcode,
#UD

X X X Instruction is only recognized in protected mode.

X CR4.CET = 0.

X Shadow stacks not enabled at supervisor level.

General Protection,
#GP

X CPL ! = 0

X PL0_SSP MSR is not 8-byte aligned.

Control, #CP

X The shadow stack token is busy.

X The shadow stack token reserved bits are not 0.

X PL0_SSP MSR >4Gb when not in 64-bit mode.

X The new SSP in the token != PL0_SSP.

Page Fault, #PF
X PL0_SSP MSR is not a supervisor shadow stack page.

X A page fault resulted from the execution of the instruction.

[AMD Public Use]

454 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores the global descriptor table register (GDTR) into the destination operand. In legacy and
compatibility mode, the destination operand is 6 bytes; in 64-bit mode, it is 10 bytes. In all modes,
operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 4 bytes
specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 8 bytes
specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at any privilege
level.

Related Instructions

SIDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected

None

Exceptions

SGDT Store Global Descriptor Table Register

Mnemonic Opcode Description

SGDT mem16:32 0F 01 /0 Store global descriptor table register to memory.

SGDT mem16:64 0F 01 /0 Store global descriptor table register to memory.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The operand was a register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

System Instruction Reference 455

24594—Rev. 3.32—March 2021 AMD64 Technology

Stores the interrupt descriptor table register (IDTR) in the destination operand. In legacy and
compatibility mode, the destination operand is 6 bytes; in 64-bit mode it is 10 bytes. In all modes,
operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 4 bytes
specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 8 bytes
specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at any privilege
level.

Related Instructions

SGDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected

None

Exceptions

SIDT Store Interrupt Descriptor Table Register

Mnemonic Opcode Description

SIDT mem16:32 0F 01 /1 Store interrupt descriptor table register to memory.

SIDT mem16:64 0F 01 /1 Store interrupt descriptor table register to memory.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The operand was a register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

456 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Securely reinitializes the cpu, allowing for the startup of trusted software (such as a VMM). The code
to be executed after reinitialization can be verified based on a secure hash comparison. SKINIT takes
the physical base address of the SLB as its only input operand, in EAX. The SLB must be structured as
described in “Secure Loader Block” on page 499 of the AMD64 Architecture Programmer’s Manual
Volume 2: System Programming, order# 24593, and is assumed to contain the code for a Secure Loader
(SL).

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

Action
IF ((EFER.SVME == 0) && !(CPUID 8000_0001.ECX[SKINIT]) || (!PROTECTED_MODE))

 EXCEPTION [#UD] // This instruction can only be executed
 // in protected mode with SVM enabled.

IF (CPL != 0) // This instruction is only allowed at CPL 0.
 EXCEPTION [#GP]

Initialize processor state as for an INIT signal
CR0.PE = 1

CS.sel = 0x0008
CS.attr = 32-bit code, read/execute
CS.base = 0
CS.limit = 0xFFFFFFFF

SS.sel = 0x0010
SS.attr = 32-bit stack, read/write, expand up
SS.base = 0
SS.limit = 0xFFFFFFFF

EAX = EAX & 0xFFFF0000 // Form SLB base address.
EDX = family/model/stepping
ESP = EAX + 0x00010000 // Initial SL stack.
Clear GPRs other than EAX, EDX, ESP

EFER = 0
VM_CR.DPD = 1

SKINIT Secure Init and Jump with Attestation

Mnemonic Opcode Description

SKINIT EAX 0F 01 DE Secure initialization and jump, with attestation.

[AMD Public Use]

System Instruction Reference 457

24594—Rev. 3.32—March 2021 AMD64 Technology

VM_CR.R_INIT = 1
VM_CR.DIS_A20M = 1

Enable SL_DEV, to protect 64Kbyte of physical memory starting at
the physical address in EAX

GIF = 0

Read the SL length from offset 0x0002 in the SLB
Copy the SL image to the TPM for attestation

Read the SL entrypoint offset from offset 0x0000 in the SLB
Jump to the SL entrypoint, at EIP = EAX+entrypoint offset

Related Instructions

None.

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X

Secure Virtual Machine was not enabled (EFER.SVME=0)
and both of the following conditions were true:
• SVM-Lock is not available, as indicated by

CPUID Fn8000_000A_EDX[SVML] = 0.

• DEV is not available, as indicated by CPUID
Fn8000_0001_ECX[SKINIT] = 0.

X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

[AMD Public Use]

458 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores the local descriptor table (LDT) selector to a register or memory destination operand.

If the destination is a register, the selector is zero-extended into a 16-, 32-, or 64-bit general purpose
register, depending on operand size.

If the destination operand is a memory location, the segment selector is written to memory as a 16-bit
value, regardless of operand size.

This SLDT instruction can only be used in protected mode, but it can be executed at any privilege
level.

Related Instructions

SIDT, SGDT, STR, LIDT, LGDT, LLDT, LTR

rFLAGS Affected

None

Exceptions

SLDT Store Local Descriptor Table Register

Mnemonic Opcode Description

SLDT reg16 0F 00 /0 Store the segment selector from the local
descriptor table register to a 16-bit register.

SLDT reg32 0F 00 /0 Store the segment selector from the local
descriptor table register to a 32-bit register.

SLDT reg64 0F 00 /0 Store the segment selector from the local
descriptor table register to a 64-bit register.

SLDT mem16 0F 00 /0
Store the segment selector from the local
descriptor table register to a 16-bit memory
location.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

[AMD Public Use]

System Instruction Reference 459

24594—Rev. 3.32—March 2021 AMD64 Technology

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

460 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores the lower bits of the machine status word (CR0). The target can be a 16-, 32-, or 64-bit register
or a 16-bit memory operand.

This instruction is provided for compatibility with early processors.

This instruction can be used at any privilege level (CPL).

Related Instructions

LMSW, MOV CRn

rFLAGS Affected

None

Exceptions

SMSW Store Machine Status Word

Mnemonic Opcode Description

SMSW reg16 0F 01 /4 Store the low 16 bits of CR0 to a 16-bit register.

SMSW reg32 0F 01 /4 Store the low 32 bits of CR0 to a 32-bit register.

SMSW reg64 0F 01 /4 Store the entire 64-bit CR0 to a 64-bit register.

SMSW mem16 0F 01 /4 Store the low 16 bits of CR0 to memory.

Exception Real
Virtual
8086 Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

System Instruction Reference 461

24594—Rev. 3.32—March 2021 AMD64 Technology

Sets the Alignment Check flag in the rFLAGS register to one. Support for the STAC instruction is
indicated by CPUID Fn07_EBX[20] =1. For more information on using the CPUID instruction, see
the description of the CPUID instruction on page 160.

rFLAGS Affected

Exceptions

STAC Set Alignment Check Flag

Mnemonic Opcode Description

STAC 0F 01 CB Sets the AC flag

Related Instructions

CLAC

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

1

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID

X Instruction is not supported in virtual mode

X Lock prefix (F0h) preceding opcode.

X CPL was not 0

[AMD Public Use]

462 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Sets the interrupt flag (IF) in the rFLAGS register to 1, thereby allowing external interrupts received
on the INTR input. Interrupts received on the non-maskable interrupt (NMI) input are not affected by
this instruction.

In real mode, this instruction sets IF to 1.

In protected mode and virtual-8086-mode, this instruction is IOPL-sensitive. If the CPL is less than or
equal to the rFLAGS.IOPL field, the instruction sets IF to 1.

In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are enabled
(CR4.PVI = 1), then the instruction instead sets rFLAGS.VIF to 1. If none of these conditions apply,
the processor raises a general protection exception (#GP). For more information, see “Protected Mode
Virtual Interrupts” in Volume 2.

In virtual-8086 mode, if IOPL < 3 and the virtual-8086-mode extensions are enabled (CR4.VME = 1),
the STI instruction instead sets the virtual interrupt flag (rFLAGS.VIF) to 1.

If STI sets the IF flag and IF was initially clear, then interrupts are not enabled until after the
instruction following STI. Thus, if IF is 0, this code will not allow an INTR to happen:

STI
CLI

In the following sequence, INTR will be allowed to happen only after the NOP.

STI
NOP
CLI

If STI sets the VIF flag and VIP is already set, a #GP fault will be generated.

See “Virtual-8086 Mode Extensions” in Volume 2 for more information about IOPL-sensitive
instructions.

STI Set Interrupt Flag

Mnemonic Opcode Description

STI FB Set interrupt flag (IF) to 1.

[AMD Public Use]

System Instruction Reference 463

24594—Rev. 3.32—March 2021 AMD64 Technology

Action

IF (CPL <= IOPL)
 RFLAGS.IF = 1

ELSIF (((VIRTUAL_MODE) && (CR4.VME == 1))
 || ((PROTECTED_MODE) && (CR4.PVI == 1) && (CPL == 3)))
 {
 IF (RFLAGS.VIP == 1)
 EXCEPTION[#GP(0)]
 RFLAGS.VIF = 1
 }
ELSE
 EXCEPTION[#GP(0)]

Related Instructions

CLI

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. M (modified) is either set to one or cleared to zero. Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP

X The CPL was greater than the IOPL and virtual-mode
extensions were not enabled (CR4.VME = 0).

X
The CPL was greater than the IOPL and either the CPL was
not 3 or protected-mode virtual interrupts were not enabled
(CR4.PVI = 0).

X X This instruction would set RFLAGS.VIF to 1 and
RFLAGS.VIP was already 1.

[AMD Public Use]

464 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Sets the global interrupt flag (GIF) to 1. While GIF is zero, all external interrupts are disabled.

This is a Secure Virtual Machine (SVM) instruction.

Attempted execution of this instruction causes a #UD exception if SVM is not enabled and neither
SVM Lock nor the device exclusion vector (DEV) are supported. Support for SVM Lock is indicated
by CPUID Fn8000_000A_EDX[SVML] = 1. Support for DEV is part of the SKINIT architecture and
is indicated by CPUID Fn8000_0001_ECX[SKINIT] = 1. For more information on using the CPUID
instruction, see the description of the CPUID instruction on page 160.

For information on enabling SVM, see “Enabling SVM” in AMD64 Architecture Programmer’s
Manual Volume-2: System Instructions, order# 24593.

Related Instructions

CLGI

rFLAGS Affected

None.

Exceptions

STGI Set Global Interrupt Flag

Mnemonic Opcode Description

STGI 0F 01 DC Sets the global interrupt flag (GIF).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X

Secure Virtual Machine was not enabled (EFER.SVME=0)
and both of the following conditions were true:
• SVM Lock is not available, as indicated by

CPUID Fn8000_000A_EDX[SVML] = 0.

• DEV is not available, as indicated by
CPUID Fn8000_0001_ECX[SKINIT] = 0.

X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

[AMD Public Use]

System Instruction Reference 465

24594—Rev. 3.32—March 2021 AMD64 Technology

Stores the task register (TR) selector to a register or memory destination operand.

If the destination is a register, the selector is zero-extended into a 16-, 32-, or 64-bit general purpose
register, depending on the operand size.

If the destination is a memory location, the segment selector is written to memory as a 16-bit value,
regardless of operand size.

The STR instruction can only be used in protected mode, but it can be used at any privilege level.

Related Instructions

LGDT, LIDT, LLDT, LTR, SIDT, SGDT, SLDT

rFLAGS Affected

None

Exceptions

STR Store Task Register

Mnemonic Opcode Description

STR reg16 0F 00 /1 Store the segment selector from the task register to a 16-bit
general-purpose register.

STR reg32 0F 00 /1 Store the segment selector from the task register to a 32-bit
general-purpose register.

STR reg64 0F 00 /1 Store the segment selector from the task register to a 64-bit
general-purpose register.

STR mem16 0F 00 /1 Store the segment selector from the task register to a 16-bit
memory location.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

466 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Provides a fast method for system software to load a pointer to system data structures. SWAPGS can
be used upon entering system-software routines as a result of a SYSCALL instruction, an interrupt or
an exception. Prior to returning to application software, SWAPGS can be used to restore the
application data pointer that was replaced by the system data-structure pointer.

This instruction can only be executed in 64-bit mode. Executing SWAPGS in any other mode
generates an undefined opcode exception.

The SWAPGS instruction only exchanges the base-address value located in the KernelGSbase model-
specific register (MSR address C000_0102h) with the base-address value located in the hidden-
portion of the GS selector register (GS.base). This allows the system-kernel software to access kernel
data structures by using the GS segment-override prefix during memory references.

The address stored in the KernelGSbase MSR must be in canonical form. The WRMSR instruction
used to load the KernelGSbase MSR causes a general-protection exception if the address loaded is not
in canonical form. The SWAPGS instruction itself does not perform a canonical check.

This instruction is only valid in 64-bit mode at CPL 0. A general protection exception (#GP) is
generated if this instruction is executed at any other privilege level.

For additional information about this instruction, refer to “System Instructions” in Volume 2.

Examples

At a kernel entry point, the OS uses SwapGS to obtain a pointer to kernel data structures and
simultaneously save the user's GS base. Upon exit, it uses SwapGS to restore the user's GS base:

SystemCallEntryPoint:
SwapGS ; get kernel pointer, save user GSbase
mov gs:[SavedUserRSP], rsp ; save user's stack pointer
mov rsp, gs:[KernelStackPtr] ; set up kernel stack
push rax ; now save user GPRs on kernel stack
 . ; perform system service
 .
SwapGS ; restore user GS, save kernel pointer

Related Instructions

None

rFLAGS Affected

None

SWAPGS Swap GS Register with KernelGSbase MSR

Mnemonic Opcode Description

SWAPGS 0F 01 F8 Exchange GS base with KernelGSBase MSR.
(Invalid in legacy and compatibility modes.)

[AMD Public Use]

System Instruction Reference 467

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X This instruction was executed in legacy or
compatibility mode.

General protection, #GP X CPL was not 0.

[AMD Public Use]

468 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Transfers control to a fixed entry point in an operating system. It is designed for use by system and
application software implementing a flat-segment memory model.

The SYSCALL and SYSRET instructions are low-latency system call and return control-transfer
instructions, which assume that the operating system implements a flat-segment memory model. By
eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions), calls to and returns from the operating system are greatly
simplified. These instructions can be used in protected mode and are particularly well-suited for use in
64-bit mode, which requires implementation of a paged, flat-segment memory model.

This instruction has been optimized by reducing the number of checks and memory references that are
normally made so that a call or return takes considerably fewer clock cycles than the CALL FAR /RET
FAR instruction method.

It is assumed that the base, limit, and attributes of the Code Segment will remain flat for all processes
and for the operating system, and that only the current privilege level for the selector of the calling
process should be changed from a current privilege level of 3 to a new privilege level of 0. It is also
assumed (but not checked) that the RPL of the SYSCALL and SYSRET target selectors are set to 0
and 3, respectively.

SYSCALL sets the CPL to 0, regardless of the values of bits 33:32 of the STAR register. There are no
permission checks based on the CPL, real mode, or virtual-8086 mode. SYSCALL and SYSRET must
be enabled by setting EFER.SCE to 1.

It is the responsibility of the operating system to keep the descriptors in memory that correspond to the
CS and SS selectors loaded by the SYSCALL and SYSRET instructions consistent with the segment
base, limit, and attribute values forced by these instructions.

Legacy x86 Mode. In legacy x86 mode, when SYSCALL is executed, the EIP of the instruction
following the SYSCALL is copied into the ECX register. Bits 31:0 of the SYSCALL/SYSRET target
address register (STAR) are copied into the EIP register. (The STAR register is model-specific register
C000_0081h.)

New selectors are loaded, without permission checking (see above), as follows:

• Bits 47:32 of the STAR register specify the selector that is copied into the CS register.

• Bits 47:32 of the STAR register + 8 specify the selector that is copied into the SS register.

• The CS_base and the SS_base are both forced to zero.

• The CS_limit and the SS_limit are both forced to 4 Gbyte.

• The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.

• The SS segment attributes are set to read/write and expand-up with a 32-bit stack referenced by
ESP.

SYSCALL Fast System Call

[AMD Public Use]

System Instruction Reference 469

24594—Rev. 3.32—March 2021 AMD64 Technology

Long Mode. When long mode is activated, the behavior of the SYSCALL instruction depends on
whether the calling software is in 64-bit mode or compatibility mode. In 64-bit mode, SYSCALL
saves the RIP of the instruction following the SYSCALL into RCX and loads the new RIP from
LSTAR bits 63:0. (The LSTAR register is model-specific register C000_0082h.) In compatibility
mode, SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads the
new RIP from CSTAR bits 63:0. (The CSTAR register is model-specific register C000_0083h.)

New selectors are loaded, without permission checking (see above), as follows:

• Bits 47:32 of the STAR register specify the selector that is copied into the CS register.

• Bits 47:32 of the STAR register + 8 specify the selector that is copied into the SS register.

• The CS_base and the SS_base are both forced to zero.

• The CS_limit and the SS_limit are both forced to 4 Gbyte.

• The CS segment attributes are set to execute/read 64-bit code with a CPL of zero.

• The SS segment attributes are set to read/write and expand-up with a 64-bit stack referenced by
RSP.

The WRMSR instruction loads the target RIP into the LSTAR and CSTAR registers. If an RIP written
by WRMSR is not in canonical form, a general-protection exception (#GP) occurs.

How SYSCALL and SYSRET handle rFLAGS, depends on the processor’s operating mode.

In legacy mode, SYSCALL treats EFLAGS as follows:

• EFLAGS.IF is cleared to 0.

• EFLAGS.RF is cleared to 0.

• EFLAGS.VM is cleared to 0.

In long mode, SYSCALL treats RFLAGS as follows:

• The current value of RFLAGS is saved in R11.

• RFLAGS is masked using the value stored in SYSCALL_FLAG_MASK.

• RFLAGS.RF is cleared to 0.

For further details on the SYSCALL and SYSRET instructions and their associated MSR registers
(STAR, LSTAR, CSTAR, and SYSCALL_FLAG_MASK), see “Fast System Call and Return” in
Volume 2.

Support for the SYSCALL instruction is indicated by CPUID Fn8000_0001_EDX[SysCallSysRet] =
1. For more information on using the CPUID instruction, see the description of the CPUID instruction
on page 160.

[AMD Public Use]

470 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Instruction Encoding

Action
// See “Pseudocode Definition” on page 57.

SYSCALL_START:

 IF (MSR_EFER.SCE == 0) // Check if syscall/sysret are enabled.
 EXCEPTION [#UD]

 IF (LONG_MODE)
 SYSCALL_LONG_MODE
 ELSE // (LEGACY_MODE)
 SYSCALL_LEGACY_MODE

SYSCALL_LONG_MODE:

 RCX.q = next_RIP
 R11.q = RFLAGS // with rf cleared

 IF (64BIT_MODE)
 temp_RIP.q = MSR_LSTAR
 ELSE // (COMPATIBILITY_MODE)
 temp_RIP.q = MSR_CSTAR

 CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
 CS.attr = 64-bit code,dpl0 // Always switch to 64-bit mode in long mode.
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF

 SS.sel = MSR_STAR.SYSCALL_CS + 8
 SS.attr = 64-bit stack,dpl0
 SS.base = 0x00000000
 SS.limit = 0xFFFFFFFF

 RFLAGS = RFLAGS AND ~MSR_SFMASK
 RFLAGS.RF = 0

 IF (ShadowStacksEnabled at current CPL)
PL3_SSP = SSP

 CPL = 0

 IF (ShadowStacksEnabled at current CPL)
SSP = 0

Mnemonic Opcode Description

SYSCALL 0F 05 Call operating system.

[AMD Public Use]

System Instruction Reference 471

24594—Rev. 3.32—March 2021 AMD64 Technology

 RIP = temp_RIP
 EXIT

SYSCALL_LEGACY_MODE:

 RCX.d = next_RIP

 temp_RIP.d = MSR_STAR.EIP

 CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
 CS.attr = 32-bit code,dpl0 // Always switch to 32-bit mode in legacy mode.
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF

 SS.sel = MSR_STAR.SYSCALL_CS + 8
 SS.attr = 32-bit stack,dpl0
 SS.base = 0x00000000
 SS.limit = 0xFFFFFFFF

 RFLAGS.VM,IF,RF=0

 CPL = 0

 RIP = temp_RIP
 EXIT

Related Instructions

SYSRET, SYSENTER, SYSEXIT

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M 0 0 M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SYSCALL and SYSRET instructions are not
supported, as indicated by CPUID
Fn8000_0001_EDX[SysCallSysRet] = 0.

X X X
The system call extension bit (SCE) of the extended
feature enable register (EFER) is set to 0. (The
EFER register is MSR C000_0080h.)

[AMD Public Use]

472 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Transfers control to a fixed entry point in an operating system. It is designed for use by system and
application software implementing a flat-segment memory model. This instruction is valid only in
legacy mode.

Three model-specific registers (MSRs) are used to specify the target address and stack pointers for the
SYSENTER instruction, as well as the CS and SS selectors of the called and returned procedures:

• MSR_SYSENTER_CS: Contains the CS selector of the called procedure. The SS selector is set to
MSR_SYSENTER_CS + 8.

• MSR_SYSENTER_ESP: Contains the called procedure’s stack pointer.

• MSR_SYSENTER_EIP: Contains the offset into the CS of the called procedure.

The hidden portions of the CS and SS segment registers are not loaded from the descriptor table as
they would be using a legacy x86 CALL instruction. Instead, the hidden portions are forced by the
processor to the following values:

• The CS and SS base values are forced to 0.

• The CS and SS limit values are forced to 4 Gbytes.

• The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.

• The SS segment attributes are set to read/write and expand-up with a 32-bit stack referenced by
ESP.

System software must create corresponding descriptor-table entries referenced by the new CS and SS
selectors that match the values described above.

The return EIP and application stack are not saved by this instruction. System software must explicitly
save that information.

An invalid-opcode exception occurs if this instruction is used in long mode. Software should use the
SYSCALL (and SYSRET) instructions in long mode. If SYSENTER is used in real mode, a #GP is
raised.

For additional information on this instruction, see “SYSENTER and SYSEXIT (Legacy Mode Only)”
in Volume 2.

Support for the SYSENTER instruction is indicated by CPUID Fn0000_0001_EDX[SysEnterSysExit]
= 1. For more information on using the CPUID instruction, see the description of the CPUID
instruction on page 160.

Instruction Encoding

SYSENTER System Call

Mnemonic Opcode Description

SYSENTER 0F 34 Call operating system.

[AMD Public Use]

System Instruction Reference 473

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

SYSCALL, SYSEXIT, SYSRET

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The SYSENTER and SYSEXIT instructions are not
supported, as indicated by
CPUID Fn0000_0001_EDX[SysEnterSysExit] = 0.

X This instruction is not recognized in long mode.

General protection, #GP
X This instruction is not recognized in real mode.

X X MSR_SYSENTER_CS was a null selector.

[AMD Public Use]

474 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Returns from the operating system to an application. It is a low-latency system return instruction
designed for use by system and application software implementing a flat-segment memory model.

This is a privileged instruction. The current privilege level must be zero to execute this instruction. An
invalid-opcode exception occurs if this instruction is used in long mode. Software should use the
SYSRET (and SYSCALL) instructions when running in long mode.

When a system procedure performs a SYSEXIT back to application software, the CS selector is
updated to point to the second descriptor entry after the SYSENTER CS value (MSR
SYSENTER_CS+16). The SS selector is updated to point to the third descriptor entry after the
SYSENTER CS value (MSR SYSENTER_CS+24). The CPL is forced to 3, as are the descriptor
privilege levels.

The hidden portions of the CS and SS segment registers are not loaded from the descriptor table as
they would be using a legacy x86 RET instruction. Instead, the hidden portions are forced by the
processor to the following values:

• The CS and SS base values are forced to 0.

• The CS and SS limit values are forced to 4 Gbytes.

• The CS segment attributes are set to 32-bit read/execute at CPL 3.

• The SS segment attributes are set to read/write and expand-up with a 32-bit stack referenced by
ESP.

System software must create corresponding descriptor-table entries referenced by the new CS and SS
selectors that match the values described above.

The following additional actions result from executing SYSEXIT:

• EIP is loaded from EDX.

• ESP is loaded from ECX.

System software must explicitly load the return address and application software-stack pointer into the
EDX and ECX registers prior to executing SYSEXIT.

For additional information on this instruction, see “SYSENTER and SYSEXIT (Legacy Mode Only)”
in Volume 2.

Support for the SYSEXIT instruction is indicated by CPUID Fn0000_0001_EDX[SysEnterSysExit] =
1. For more information on using the CPUID instruction, see the description of the CPUID instruction
on page 160.

SYSEXIT System Return

[AMD Public Use]

System Instruction Reference 475

24594—Rev. 3.32—March 2021 AMD64 Technology

Instruction Encoding

Related Instructions

SYSCALL, SYSENTER, SYSRET

rFLAGS Affected

Exceptions

Mnemonic Opcode Description

SYSEXIT 0F 35 Return from operating system to application.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are
blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The SYSENTER and SYSEXIT instructions are not
supported, as indicated by
CPUID Fn0000_0001_EDX[SysEnterSysExit] = 0.

X This instruction is not recognized in long mode.

General protection, #GP

X X This instruction is only recognized in protected
mode.

X CPL was not 0.

X MSR_SYSENTER_CS was a null selector.

[AMD Public Use]

476 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Returns from the operating system to an application. It is a low-latency system return instruction
designed for use by system and application software implementing a flat segmentation memory model.

The SYSCALL and SYSRET instructions are low-latency system call and return control-transfer
instructions that assume that the operating system implements a flat-segment memory model. By
eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions), calls to and returns from the operating system are greatly
simplified. These instructions can be used in protected mode and are particularly well-suited for use in
64-bit mode, which requires implementation of a paged, flat-segment memory model.

This instruction has been optimized by reducing the number of checks and memory references that are
normally made so that a call or return takes substantially fewer internal clock cycles when compared to
the CALL/RET instruction method.

It is assumed that the base, limit, and attributes of the Code Segment will remain flat for all processes
and for the operating system, and that only the current privilege level for the selector of the calling
process should be changed from a current privilege level of 0 to a new privilege level of 3. It is also
assumed (but not checked) that the RPL of the SYSCALL and SYSRET target selectors are set to 0
and 3, respectively.

SYSRET sets the CPL to 3, regardless of the values of bits 49:48 of the star register. SYSRET can only
be executed in protected mode at CPL 0. SYSCALL and SYSRET must be enabled by setting
EFER.SCE to 1.

It is the responsibility of the operating system to keep the descriptors in memory that correspond to the
CS and SS selectors loaded by the SYSCALL and SYSRET instructions consistent with the segment
base, limit, and attribute values forced by these instructions.

When a system procedure performs a SYSRET back to application software, the CS selector is
updated from bits 63:50 of the STAR register (STAR.SYSRET_CS) as follows:

• If the return is to 32-bit mode (legacy or compatibility), CS is updated with the value of
STAR.SYSRET_CS.

• If the return is to 64-bit mode, CS is updated with the value of STAR.SYSRET_CS + 16.

In both cases, the CPL is forced to 3, effectively ignoring STAR bits 49:48. The SS selector is updated
to point to the next descriptor-table entry after the CS descriptor (STAR.SYSRET_CS + 8), and its
RPL is not forced to 3.

The hidden portions of the CS and SS segment registers are not loaded from the descriptor table as
they would be using a legacy x86 RET instruction. Instead, the hidden portions are forced by the
processor to the following values:

• The CS base value is forced to 0.

• The CS limit value is forced to 4 Gbytes.

SYSRET Fast System Return

[AMD Public Use]

System Instruction Reference 477

24594—Rev. 3.32—March 2021 AMD64 Technology

• The CS segment attributes are set to execute-read 32 bits or 64 bits (see below).

• The SS segment base, limit, and attributes are not modified.

When SYSCALLed system software is running in 64-bit mode, it has been entered from either 64-bit
mode or compatibility mode. The corresponding SYSRET needs to know the mode to which it must
return. Executing SYSRET in non-64-bit mode or with a 16- or 32-bit operand size returns to 32-bit
mode with a 32-bit stack pointer. Executing SYSRET in 64-bit mode with a 64-bit operand size returns
to 64-bit mode with a 64-bit stack pointer.

The instruction pointer is updated with the return address based on the operating mode in which
SYSRET is executed:

• If returning to 64-bit mode, SYSRET loads RIP with the value of RCX.

• If returning to 32-bit mode, SYSRET loads EIP with the value of ECX.

How SYSRET handles RFLAGS depends on the processor’s operating mode:

• If executed in 64-bit mode, SYSRET loads the lower-32 RFLAGS bits from R11[31:0] and clears
the upper 32 RFLAGS bits.

• If executed in legacy mode or compatibility mode, SYSRET sets EFLAGS.IF.

For further details on the SYSCALL and SYSRET instructions and their associated MSR registers
(STAR, LSTAR, and CSTAR), see “Fast System Call and Return” in Volume 2.

Support for the SYSRET instruction is indicated by CPUID Fn8000_0001_EDX[SysCallSysRet] = 1.
For more information on using the CPUID instruction, see the description of the CPUID instruction on
page 160.

Instruction Encoding

Action
// See “Pseudocode Definition” on page 57.

SYSRET_START:

 IF (MSR_EFER.SCE == 0) // Check if syscall/sysret are enabled.
 EXCEPTION [#UD]

 IF ((!PROTECTED_MODE) || (CPL != 0))
 EXCEPTION [#GP(0)] // SYSRET requires protected mode, cpl0

 IF (64BIT_MODE)
 SYSRET_64BIT_MODE
 ELSE // (!64BIT_MODE)

Mnemonic Opcode Description

SYSRET 0F 07 Return from operating system.

[AMD Public Use]

478 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

 SYSRET_NON_64BIT_MODE

SYSRET_64BIT_MODE:

 IF (OPERAND_SIZE == 64) // Return to 64-bit mode.
 {
 CS.sel = (MSR_STAR.SYSRET_CS + 16) OR 3
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF
 CS.attr = 64-bit code,dpl3

 temp_RIP.q = RCX
 }
 ELSE // Return to 32-bit compatibility mode.
 {
 CS.sel = MSR_STAR.SYSRET_CS OR 3
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF
 CS.attr = 32-bit code,dpl3

 temp_RIP.d = RCX
 }

 SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed,
 // SS base, limit, attributes unchanged.

 RFLAGS.q = R11 // RF=0,VM=0
 CPL = 3

 IF (ShadowStacksEnabled at current CPL)
 SSP = PL3_SSP

 RIP = temp_RIP
 EXIT

SYSRET_NON_64BIT_MODE:

CS.sel = MSR_STAR.SYSRET_CS OR 3 // Return to 32-bit legacy protected mode.
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
CS.attr = 32-bit code,dpl3

temp_RIP.d = RCX

SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed.
 // SS base, limit, attributes unchanged.

RFLAGS.IF = 1
CPL = 3

 IF (ShadowStacksEnabled at current CPL)
 SSP = PL3_SSP

[AMD Public Use]

System Instruction Reference 479

24594—Rev. 3.32—March 2021 AMD64 Technology

 RIP = temp_RIP
 EXIT

Related Instructions

SYSCALL, SYSENTER, SYSEXIT

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M 0 M M M M M M M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SYSCALL and SYSRET instructions are not
supported, as indicated by CPUID
Fn8000_0001_EDX[SysCallSysRet] = 0.

X X X
The system call extension bit (SCE) of the extended
feature enable register (EFER) is set to 0. (The
EFER register is MSR C000_0080h.)

General protection, #GP
X X This instruction is only recognized in protected

mode.

X CPL was not 0.

[AMD Public Use]

480 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

TLBSYNC acts as a synchronizing instruction to guarantee that all logical processors in a system have
responded to an INVLPGB previously executed by the current logical processor. Upon execution of an
INVLPGB, the processor does not wait for confirmation that the other processors have performed the
specified TLB invalidation. A TLBSYNC is therefore required before software can move forward
with the knowledge that all requested invalidations have been completed in the system.

The TLBSYNC instruction is weakly ordered with respect to data and instruction prefetches.

The TLBSYNC instruction is strongly ordered with respect to surrounding loads and stores.

TLBSYNC is a serializing instruction and is privileged. It can only be executed at CPL 0. TLBSYNC
is only supported in guests if enabled by hypervisor in the VMCB.

Related Instructions

INVLPGB

rFLAGS Affected

None

Exceptions

TLBSYNC Synchronize TLB Invalidations

Mnemonic Opcode Description

TLBSYNC 0F 01 FF Synchronize broadcasted TLB Invalidations

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X Instruction not supported as indicated by CPUID
Fn8000_0008_EBX[INVLPGB] = 0

X X Instruction is only recognized in protected mode

X The hypervisor has not enabled Guest usage of this
instruction.

General protection,
#GP X CPL was not zero

[AMD Public Use]

System Instruction Reference 481

24594—Rev. 3.32—March 2021 AMD64 Technology

Verifies whether a code or data segment specified by the segment selector in the 16-bit register or
memory operand is readable from the current privilege level. The zero flag (ZF) is set to 1 if the
specified segment is readable. Otherwise, ZF is cleared.

A segment is readable if all of the following apply:

• the selector is not a null selector.

• the descriptor is within the GDT or LDT limit.

• the segment is a data segment or readable code segment.

• the descriptor DPL is greater than or equal to both the CPL and RPL, or the segment is a
conforming code segment.

The processor does not recognize the VERR instruction in real or virtual-8086 mode.

Related Instructions

ARPL, LAR, LSL, VERW

rFLAGS Affected

Exceptions

VERR Verify Segment for Reads

Mnemonic Opcode Description

VERR reg/mem16 0F 00 /4 Set the zero flag (ZF) to 1 if the segment
selected can be read.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or is
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

[AMD Public Use]

482 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

System Instruction Reference 483

24594—Rev. 3.32—March 2021 AMD64 Technology

Verifies whether a data segment specified by the segment selector in the 16-bit register or memory
operand is writable from the current privilege level. The zero flag (ZF) is set to 1 if the specified
segment is writable. Otherwise, ZF is cleared.

A segment is writable if all of the following apply:

• the selector is not a null selector.

• the descriptor is within the GDT or LDT limit.

• the segment is a writable data segment.

• the descriptor DPL is greater than or equal to both the CPL and RPL.

The processor does not recognize the VERW instruction in real or virtual-8086 mode.

Related Instructions

ARPL, LAR, LSL, VERR

rFLAGS Affected

Exceptions

VERW Verify Segment for Write

Mnemonic Opcode Description

VERW reg/mem16 0F 00 /5 Set the zero flag (ZF) to 1 if the segment
selected can be written.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to access memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

484 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Loads a subset of processor state from the VMCB specified by the system-physical address in the rAX
register. The portion of RAX used to form the address is determined by the effective address size.

The VMSAVE and VMLOAD instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to access, plus some
additional commonly-used state.

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

Action
IF ((MSR_EFER.SVME == 0) || (!PROTECTED_MODE))
 EXCEPTION [#UD] // This instruction can only be executed in protected
 // mode with SVM enabled

IF (CPL != 0) // This instruction is only allowed at CPL 0
 EXCEPTION [#GP]

IF (rAX contains an unsupported system-physical address)
 EXCEPTION [#GP]

Load from a VMCB at system-physical address rAX:
FS, GS, TR, LDTR (including all hidden state)
KernelGsBase
STAR, LSTAR, CSTAR, SFMASK
SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

Related Instructions

VMSAVE

rFLAGS Affected

None.

VMLOAD Load State from VMCB

Mnemonic Opcode Description

VMLOAD rAX 0F 01 DA Load additional state from VMCB.

[AMD Public Use]

System Instruction Reference 485

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X The instruction is only recognized in protected mode.

General protection,
#GP

X CPL was not zero.

X rAX referenced a physical address above the maximum
supported physical address.

X The address in rAX was not aligned on a 4Kbyte boundary.

[AMD Public Use]

486 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

VMMCALL and VMGEXIT provide a mechanism for a non-SEV-ES and an SEV-ES guest,
respectively, to explicitly communicate with the VMM by generating a #VMEXIT.

A non-intercepted VMMCALL unconditionally raises a #UD exception. VMGEXIT is always
intercepted and unconditionally causes a #VMEXIT.

VMMCALL and VMGEXIT instructions are allowed in all modes and at all privilege levels. These
instructions generate a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

VMMCALL and VMGEXIT are Secure Virtual Machine (SVM) instructions. Support for the SVM
architecture and the SVM instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. Support
for VMGEXIT instruction is indicated by CPUID Fn8000_001F_EAX[SEV-ES] = 1. The VMGEXIT
encoding is interpreted as VMMCALL on processors that do not explicitly support VMGEXIT,
including legacy processors, or if VMGEXIT instruction is not executed by an SEV-ES guest. For
more information on using the CPUID instruction, see the reference page for the CPUID instruction on
page 160.

Related Instructions

None.

rFLAGS Affected

None.

Exceptions

VMMCALL Call VMM
VMGEXIT SEV-ES Exit to VMM

Mnemonic Opcode Description

VMMCALL 0F 01 D9 Explicit communication with the VMM.

VMGEXIT F2/F3 0F 01 D9 Explicit communication with the VMM for SEV-ES
VMs.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X X X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X X VMMCALL was not intercepted.

[AMD Public Use]

System Instruction Reference 487

24594—Rev. 3.32—March 2021 AMD64 Technology

Starts execution of a guest instruction stream. The physical address of the virtual machine control
block (VMCB) describing the guest is taken from the rAX register (the portion of RAX used to form
the address is determined by the effective address size). The physical address of the VMCB must be
aligned on a 4KB boundary.

VMRUN saves a subset of host processor state to the host state-save area specified by the physical
address in the VM_HSAVE_PA MSR. VMRUN then loads guest processor state (and control
information) from the VMCB at the physical address specified in rAX. The processor then executes
guest instructions until one of several intercept events (specified in the VMCB) is triggered. When an
intercept event occurs, the processor stores a snapshot of the guest state back into the VMCB, reloads
the host state, and continues execution of host code at the instruction following the VMRUN
instruction.

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

The VMRUN instruction is not supported in System Management Mode. Processor behavior resulting
from an attempt to execute this instruction from within the SMM handler is undefined.

Instruction Encoding

Action
IF ((MSR_EFER.SVME == 0) || (!PROTECTED_MODE))
 EXCEPTION [#UD] // This instruction can only be executed in protected
 // mode with SVM enabled

IF (CPL != 0) // This instruction is only allowed at CPL 0
 EXCEPTION [#GP]

IF (rAX contains an unsupported physical address)
 EXCEPTION [#GP]

IF (intercepted(VMRUN))
 #VMEXIT (VMRUN)
remember VMCB address (delivered in rAX) for next #VMEXIT
save host state to physical memory indicated in the VM_HSAVE_PA MSR:

ES.sel
CS.sel
SS.sel

VMRUN Run Virtual Machine

Mnemonic Opcode Description

VMRUN rAX 0F 01 D8 Performs a world-switch to guest.

[AMD Public Use]

488 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

DS.sel
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR0
CR4
CR3
// host CR2 is not saved
RFLAGS
RIP
RSP
RAX

from the VMCB at physical address rAX, load control information:
 intercept vector
 TSC_OFFSET
 interrupt control (v_irq, v_intr_*, v_tpr)
 EVENTINJ field
 ASID

IF(nested paging supported)
 NP_ENABLE
 IF (NP_ENABLE == 1)

 nCR3

from the VMCB at physical address rAX, load guest state:
 ES.{base,limit,attr,sel}
 CS.{base,limit,attr,sel}
 SS.{base,limit,attr,sel}
 DS.{base,limit,attr,sel}
 GDTR.{base,limit}
 IDTR.{base,limit}
 EFER
 CR0
 CR4
 CR3
 CR2

IF (NP_ENABLE == 1)
 gPAT // Leaves host hPAT register unchanged.

 RFLAGS
 RIP
 RSP
 RAX
 DR7
 DR6
 CPL // 0 for real mode, 3 for v86 mode, else as loaded.

INTERRUPT_SHADOW

IF (LBR virtualization supported)
 LBR_VIRTUALIZATION_ENABLE
 IF (LBR_VIRTUALIZATION_ENABLE == 1)

[AMD Public Use]

System Instruction Reference 489

24594—Rev. 3.32—March 2021 AMD64 Technology

 save LBR state to the host save area
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO
 load LBR state from the VMCB
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO

IF (guest state consistency checks fail)
 #VMEXIT(INVALID)

Execute command stored in TLB_CONTROL.

GIF = 1 // allow interrupts in the guest
IF (EVENTINJ.V)

cause exception/interrupt in guest
else

jump to first guest instruction

Upon #VMEXIT, the processor performs the following actions in order to return to the host execution
context:

GIF = 0
save guest state to VMCB:

ES.{base,limit,attr,sel}
CS.{base,limit,attr,sel}
SS.{base,limit,attr,sel}
DS.{base,limit,attr,sel}
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR4
CR3
CR2
CR0
if (nested paging enabled)
 gPAT
RFLAGS
RIP
RSP
RAX
DR7
DR6
CPL
INTERRUPT_SHADOW

save additional state and intercept information:
V_IRQ, V_TPR

[AMD Public Use]

490 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

EXITCODE
EXITINFO1
EXITINFO2
EXITINTINFO

clear EVENTINJ field in VMCB

prepare for host mode by clearing internal processor state bits:
clear intercepts
clear v_irq
clear v_intr_masking
clear tsc_offset
disable nested paging
clear ASID to zero

reload host state
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR0
CR0.PE = 1 // saved copy of CR0.PE is ignored
CR4
CR3
if (host is in PAE paging mode)

 reloaded host PDPEs
// Do not reload host CR2 or PAT
RFLAGS
RIP
RSP
RAX
DR7 = “all disabled”
CPL = 0
ES.sel; reload segment descriptor from GDT
CS.sel; reload segment descriptor from GDT
SS.sel; reload segment descriptor from GDT
DS.sel; reload segment descriptor from GDT

if (LBR virtualization supported)
 LBR_VIRTUALIZATION_ENABLE
 if (LBR_VIRTUALIZATION_ENABLE == 1)
 save LBR state to the VMCB:
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO
 load LBR state from the host save area:
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO

[AMD Public Use]

System Instruction Reference 491

24594—Rev. 3.32—March 2021 AMD64 Technology

if (illegal host state loaded, or exception while loading host state)
shutdown

else
execute first host instruction following the VMRUN

Related Instructions

VMLOAD, VMSAVE.

rFLAGS Affected

None.

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X The instruction is only recognized in protected mode.

General protection,
#GP

X CPL was not zero.

X rAX referenced a physical address above the maximum
supported physical address.

X The address in rAX was not aligned on a 4Kbyte boundary.

[AMD Public Use]

492 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Stores a subset of the processor state into the VMCB specified by the system-physical address in the
rAX register (the portion of RAX used to form the address is determined by the effective address size).

The VMSAVE and VMLOAD instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to access, plus some
additional commonly-used state.

This is a Secure Virtual Machine (SVM) instruction. Support for the SVM architecture and the SVM
instructions is indicated by CPUID Fn8000_0001_ECX[SVM] = 1. For more information on using the
CPUID instruction, see the reference page for the CPUID instruction on page 160.

This instruction generates a #UD exception if SVM is not enabled. See “Enabling SVM” in AMD64
Architecture Programmer’s Manual Volume 2: System Instructions, order# 24593.

Instruction Encoding

Action
IF ((MSR_EFER.SVME == 0) || (!PROTECTED_MODE))
 EXCEPTION [#UD] // This instruction can only be executed in protected
 // mode with SVM enabled

IF (CPL != 0) // This instruction is only allowed at CPL 0
 EXCEPTION [#GP]

IF (rAX contains an unsupported system-physical address)
 EXCEPTION [#GP]

Store to a VMCB at system-physical address rAX:
FS, GS, TR, LDTR (including all hidden state)
KernelGsBase
STAR, LSTAR, CSTAR, SFMASK
SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

Related Instructions

VMLOAD

rFLAGS Affected

None.

VMSAVE Save State to VMCB

Mnemonic Opcode Description

VMSAVE rAX 0F 01 DB Save additional guest state to VMCB.

[AMD Public Use]

System Instruction Reference 493

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SVM instructions are not supported as indicated by
CPUID Fn8000_0001_ECX[SVM] = 0.

X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X The instruction is only recognized in protected mode.

General protection,
#GP

X CPL was not zero.

X rAX referenced a physical address above the maximum
supported physical address.

X The address in rAX was not aligned on a 4Kbyte boundary.

[AMD Public Use]

494 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

WBINVD writes all modified lines in all levels of cache associated with this processor to main
memory and invalidates the caches. This may or may not include lower level caches associated with
another processor that shares any level of this processor's cache hierarchy. WBNOINVD does not
invalidate the caches, instead leaving all (or most) cache lines in the cache hierarchy in non-modified
state, but in all other respects it behaves the same as WBINVD.

CPUID Fn8000_001D_EDX[WBINVD]_xN indicates the behavior of the operation at various levels
of the cache hierarchy, for both WBINVD and WBNOINVD, with respect to lower branches in the
cache hierarchy. If the feature bit is 0, the instruction causes the write back and (for WBINVD)
invalidation of all lower level caches of other processors sharing the designated level of cache. If the
feature bit is 1, the instruction does not necessarily cause the write back and invalidation of all lower
level caches of other processors sharing the designated level of cache. See Appendix E, “Obtaining
Processor Information Via the CPUID Instruction,” on page 597 for more information on using the
CPUID function.

The INVD instruction can be used when cache coherence with memory is not important.

These instructions do not invalidate TLB caches.

These are privileged instructions. The current privilege level of a procedure invalidating the
processor’s internal caches must be zero.

WBINVD and WBNOINVD are serializing instructions

Support for WBNOINVD is indicated by CPUID Fn8000_0008_EBX[WBNOINVD] = 1. However,
the encoding of WBNOINVD results in it being interpreted as WBINVD on processors that do not
explicitly support WBNOINVD, including legacy processors. For more information on using the
CPUID instruction, see the description of the CPUID instruction on page 160.

On some processor implementations, WBINVD and WBNOINVD can be made interruptible by
setting EFER.INTWB to 1. When this bit is set, the processor periodically checks for all types of
interrupts (SMI, INTR, NMI, etc.) while flushing the caches. If an interrupt is observed, the processor
stops flushing the caches, saves the instruction pointer and transfers control to the interrupt handler.
Upon returning (via an IRET), the processor restarts the flush process from the beginning as lines will
have been modified and cached while executing the interrupt handler. Support for setting
EFER.INTWB is indicated by CPUID Fn8008_0008_EBX[INT_WBINVD] (bit 13) = 1.

WBINVD Writeback and Invalidate Caches
WBNOINVD Writeback With No Invalidate

Mnemonic Opcode Description

WBINVD 0F 09 Write modified cache lines to main memory, invalidate
internal caches, and trigger external cache flushes.

WBNOINVD F3 0F 09 Write modified cache lines to main memory and trigger
external cache flushes.

[AMD Public Use]

System Instruction Reference 495

24594—Rev. 3.32—March 2021 AMD64 Technology

Related Instructions

CLFLUSH, CLWB, INVD

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

General protection,
#GP X X CPL was not 0.

[AMD Public Use]

496 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Writes data to 64-bit model-specific registers (MSRs). These registers are widely used in
performance-monitoring and debugging applications, as well as testability and program execution
tracing.

This instruction writes the contents of the EDX:EAX register pair into a 64-bit model-specific register
specified in the ECX register. The 32 bits in the EDX register are mapped into the high-order bits of
the model-specific register and the 32 bits in EAX form the low-order 32 bits.

This instruction must be executed at a privilege level of 0 or a general protection fault #GP(0) will be
raised. This exception is also generated if an attempt is made to specify a reserved or unimplemented
model-specific register in ECX.

WRMSR is a serializing instruction for most MSRs, however some x2APIC and AVIC MSRs may
have relaxed serialization semantics. See the APIC and AVIC sections in volume 2 for details.

Support for the WRMSR instruction is indicated by CPUID Fn0000_0001_EDX[MSR] = 1 OR
CPUID Fn8000_0001_EDX[MSR] = 1. For more information on using the CPUID instruction, see the
description of the CPUID instruction on page 160.

The CPUID instruction can provide model information useful in determining the existence of a
particular MSR.

See “Model-Specific Registers (MSRs)” in Volume 2: System Programming, for more information
about model-specific registers, machine check architecture, performance monitoring and debug
registers.

Related Instructions

RDMSR

rFLAGS Affected

None

WRMSR Write to Model-Specific Register

Mnemonic Opcode Description

WRMSR 0F 30 Write EDX:EAX to the MSR specified by ECX.

[AMD Public Use]

System Instruction Reference 497

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X

The WRMSR instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[MSR] = 0 OR CPUID
Fn8000_0001_EDX[MSR] = 0.

General protection,
#GP

X X CPL was not 0.

X X The value in ECX specifies a reserved or unimplemented
MSR address.

X X Writing 1 to any bit that must be zero (MBZ) in the MSR.

X X Writing a non-canonical value to a MSR that can only be
written with canonical values.

[AMD Public Use]

498 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Writes the contents of the 32-bit Protection Key Rights (PKRU) register with the value in EAX. This
instruction forces strong memory ordering between load and store instructions preceding the
WRPKRU, and load and store instructions that follow the WRPKRU.

This instruction must be executed with ECX=0 and EDX=0, otherwise a general protection fault
(#GP) is generated. The upper 32 bits of RCX and RDX are ignored. The WRPKRU instruction
ignores operand size overrides.

Memory protection keys must be enabled (CR4.PKE=1), otherwise executing this instruction
generates an invalid opcode fault (#UD).

Software can check that system software has enabled memory protection keys (CR4.PKE=1) by
testing CPUID Function 0000_0007h_ECX[OSPKE]. (See Section 5, “Protection Key Rights for
User Pages” in AMD64 Architecture Programmer’s Manual Volume 2 for more information on
memory protection keys.)

WRPKRU can be executed at any privilege level.

Related Instructions

RDPKRU

rFLAGS Affected

None

Exceptions

WRPKRU Write Protection Key Rights

Mnemonic Opcode Description

WRPKRU 0F 01 EF Write the value in EAX to the PKRU MSR

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X CR4.PKE=0

General protection,
#GP X ECX was not zero or EDX was not zero

[AMD Public Use]

System Instruction Reference 499

24594—Rev. 3.32—March 2021 AMD64 Technology

Writes 4 or 8 bytes from the source register operand to the specified address in a shadow stack page.
The operand size is 8 bytes in 64-bit mode (when REX.W set to 1) and 4 bytes in all other cases.

If shadow stacks are not enabled at the current privilege level, or if WRSS is not enabled at the current
privilege level a #UD exception is generated.

Action

// see "Pseudocode Definition" on page 57

IF (CPL == 3)
 {
 IF ((CR4.CET && U_CET.SH_STK_EN) == 0)
 EXCEPTION [#UD]
 IF (U_CET.WR_SSTK_EN == 0)
 EXCEPTION [#UD] // WRSS not enabled in U_CET
 }
ELSE // CPL <3
 {
 IF ((CR4.CET && S_CET.SH_STK_EN) == 0)
 EXCEPTION [#UD]
 IF (S_CET.WR_SSTK_EN == 0)
 EXCEPTION [#UD] // WRSS not enabled in S_CET
 }

IF (OPERAND_SIZE == 64)
 {
 temp_LinAdr = Linear_Address(mem64)
 IF (temp_LinAdr is 8-byte aligned)
 SSTK_WRITE_MEM.q[temp_LinAdr] = reg64[63:0] // write reg64

// to shadow stack
 ELSE
 EXCEPTION [#GP(0)]
 }
ELSE
 {
 temp_LinAdr = Linear_Address(mem32)
 IF (tmp_LinAdr is 4-byte aligned)
 SSTK_WRITE_MEM.d[temp_LinAdr] = reg32[31:0] // write reg32

// to shadow stack
 ELSE
 EXCEPTION [#GP(0)]
 }

WRSS Write to Shadow Stack

Mnemonic Opcode Description

WRSS mem32, reg32 66 0F 38 F6 Write 4 bytes to shadow stack at mem32

WRSSQ mem64, reg64 66 0F 38 F6 Write 8 bytes to shadow stack at mem64

[AMD Public Use]

500 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

EXIT

Related Instructions

WRUSS

rFLAGS Affected

None

[AMD Public Use]

System Instruction Reference 501

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X Instruction is only recognized in protected mode.

X CR4.CET = 0.

X Shadow stacks are not enabled at the current privilege
level.

X If CPL == 3 and U_CET.WR_SHSTK_EN = 0.

X If CPL !=3 and S_CET.WR_SHSTK_EN = 0.

X If mod=11b (register destination was specified).

General protection,
#GP

X Address not 8-byte aligned for 64-bit operand size.

X Address not 4-byte aligned for 32-bit operand size.

X A memory address exceeded a data segment limit.

X In long mode, the address of the memory operand was non-
canonical.

X A null data segment was used to reference memory.

X A non-writeable data segment was used.

X An execute-only code segment was used to reference
memory.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

Page fault, #PF
X A page fault resulted from the execution of the instruction.

X The destination was not a shadow stack page.

[AMD Public Use]

502 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

Writes 4 or 8 bytes from the source register operand to the specified address in a user shadow stack
page. The write is performed with user-mode shadow stack semantics. The operand size is 8 bytes in
64-bit mode (when REX.W set to 1) and 4 bytes in all other cases.

The destination must be a user shadow stack page, otherwise a #PF exception is generated. WRUSS is
a privileged instruction and must be executed with CPL=0, otherwise a #GP exception is generated.

Action

// see "Pseudocode Definition" on page 57

IF (CR4.CET == 0)
 EXCEPTION [#UD]
IF (CPL != 0)
 EXCEPTION [#GP(0)]

IF (OPERAND_SIZE == 64)
 {
 temp_LinAdr = Linear_Address(mem64)
 IF (temp_LinAdr is 8-byte aligned)
 SSTK_WRITE_MEM.q[tmp_LinAdr] = reg64[63:0] // write as user access
 ELSE
 EXCEPTION [#GP(0)]
 }
ELSE
 {
 temp_LinAdr = Linear_Address(mem32)
 IF (tmp_LinAdr is 4-byte aligned)
 SSTK_WRITE_MEM.d[temp_LinAdr] = reg32[31:0] // write as user access
 ELSE
 EXCEPTION [#GP(0)]
 }

EXIT

Related Instructions

WRSS

rFLAGS Affected

None

WRUSS Write to User Shadow Stack

Mnemonic Opcode Description

WRUSSD mem32, reg32 66 0F 38 F5 Write 4 bytes to user shadow stack

WRUSSQ mem64, reg64 66 0F 38 F5 Write 8 bytes to user shadow stack

[AMD Public Use]

System Instruction Reference 503

24594—Rev. 3.32—March 2021 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X Instruction is only recognized in protected mode.

X CR4.CET = 0.

X If mod=11b (register destination was specified).

General protection,
#GP

X If CPL ! = 0.

X Address not 8-byte aligned for 64-bit operand size.

X Address not 4-byte aligned for 32-bit operand size.

X A memory address exceeded a data segment limit .

X In long mode, the address of the memory operand was non-
canonical.

X A null data segment was used to reference memory.

X A non-writeable data segment was used.

X An execute-only code segment was used to reference
memory.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

Page fault, #PF
X The linear address is not a user shadow stack page.

X A page fault resulted from the execution of the instruction.

[AMD Public Use]

504 System Instruction Reference

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

Opcode and Operand Encodings 505

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix A Opcode and Operand Encodings

This appendix specifies the opcode and operand encodings for each instruction in the AMD64
instruction set. As discussed in Chapter 1, “Instruction Encoding,” the basic operation and implied
operand type(s) of an instruction are encoded by the binary value of the opcode byte. The
correspondence between an opcode binary value and its meaning is provided by the opcode map.

Each opcode map has 256 entries and can encode up to 256 different operations. Since the AMD64
instruction set comprises more than 256 instructions, multiple opcode maps are utilized to encode the
instruction set. A particular opcode map is selected using the instruction encoding syntax diagrammed
in Figure 1-1 on page 2. For each opcode map, values may be reserved or utilized for purposes other
than encoding an instruction operation.

To preserve compatibility with future instruction architectural extensions, reserved opcodes should not
be used. If a means to reliably cause an invalid-opcode exception (#UD) is required, software should
use one of the UDx opcodes. These opcodes are set aside for this purpose and will not be used for
future instructions. The UD opcodes are located on the secondary opcode map at code points B9h,
0Bh, and FFh.

The following section provides a key to the notation used in the opcode maps to specify the implied
operand types.

Opcode-Syntax Notation

In the opcode maps which follow, each table entry represents a specific form of an instruction,
identifying the instruction by its mnemonic and listing the operand or operands peculiar to that
opcode. If a register-based operand is specified by the opcode itself, the operand is represented directly
using the register mnemonic as defined in “Summary of Registers and Data Types” on page 38. If the
operand is encoded in one or more bytes following the opcode byte, the following special notation is
used to represent the operand and its encoding in more generic terms.

This special notation, used exclusively in the opcode maps, is composed of three parts:

• an initial capital letter that represents the operand source / destination (register-based, memory-
based, or immediate) and how it is encoded in the instruction (either as an immediate, or via the
ModRM.reg, ModRM.{mod,r/m}, or VEX/XOP.vvvv fields). For register-based operands, the
inital letter also specifies the register type (General-purpose, MMX, YMM/XMM, debug, or
control register).

• one, two, or three letter modifier (in lowercase) that represents the data type (for example, byte,
word, quadword, packed single-precision floating-point vector).

• x, which indicates for an SSE instruction that the instruction supports both vector sizes (128 bits
and 256 bits). The specific vector size is encoded in the VEX/XOP.L field. L=0 indicates 128 bits
and L=1 indicates 256 bits.

[AMD Public Use]

506 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

The following list describes the meaning of each letter that is used in the first position of the operand
notation:

A A far pointer encoded in the instruction. No ModRM byte in the instruction encoding.

B General-purpose register specified by the VEX or XOP vvvv field.

C Control register specified by the ModRM.reg field.

D Debug register specified by the ModRM.reg field.

E General purpose register or memory operand specified by the r/m field of the ModRM byte. For
memory operands, the ModRM byte may be followed by a SIB byte to specify one of the indexed
register-indirect addressing forms.

F rFLAGS register.

G General purpose register specified by the ModRM.reg field.

H YMM or XMM register specified by the VEX/XOP.vvvv field.

I Immediate value encoded in the instruction immediate field.

J The instruction encoding includes a relative offset that is added to the rIP.

L YMM or XMM register specified using the most-significant 4 bits of an 8-bit immediate value.
In legacy or compatibility mode the most significant bit is ignored.

M A memory operand specified by the {mod, r/m} field of the ModRM byte. ModRM.mod ≠ 11b.

M* A sparse array of memory operands addressed using the VSIB addressing mode. See “VSIB
Addressing” in Volume 4.

N 64-bit MMX register specified by the ModRM.r/m field. The ModRM.mod field must be 11b.

O The offset of an operand is encoded in the instruction. There is no ModRM byte in the instruction
encoding. Indexed register-indirect addressing using the SIB byte is not supported.

P 64-bit MMX register specified by the ModRM.reg field.

Q 64-bit MMX-register or memory operand specified by the {mod, r/m} field of the ModRM byte.
For memory operands, the ModRM byte may be followed by a SIB byte to specify one of the
indexed register-indirect addressing forms.

R General purpose register specified by the ModRM.r/m field. The ModRM.mod field must be
11b.

S Segment register specified by the ModRM.reg field.

U YMM/XMM register specified by the ModRM.r/m field. The ModRM.mod field must be 11b.

V YMM/XMM register specified by the ModRM.reg field.

W YMM/XMM register or memory operand specified by the {mod, r/m} field of the ModRM byte.
For memory operands, the ModRM byte may be followed by a SIB byte to specify one of the
indexed register-indirect addressing forms.

[AMD Public Use]

Opcode and Operand Encodings 507

24594—Rev. 3.32—March 2021 AMD64 Technology

X A memory operand addressed by the DS.rSI registers. Used in string instructions.

Y A memory operand addressed by the ES.rDI registers. Used in string instructions.

The following list provides the key for the second part of the operand notation:

a Two 16-bit or 32-bit memory operands, depending on the effective operand size. Used in the
BOUND instruction.

b A byte, irrespective of the effective operand size.

c A byte or a word, depending on the effective operand size.

d A doubleword (32 bits), irrespective of the effective operand size.

do A double octword (256 bits), irrespective of the effective operand size.

i A 16-bit integer.

j A 32-bit integer.

m A bit mask of size equal to the source operand.

mn Where n = 2,4,8, or 16. A bit mask of size n.

o An octword (128 bits), irrespective of the effective operand size.

o.q Operand is either the upper or lower half of a 128-bit value.

p A 32- or 48-bit far pointer, depending on 16- or 32-bit effective operand size.

pb Vector with byte-wide (8-bit) elements (packed byte).

pd A double-precision (64-bit) floating-point vector operand (packed double-precision).

pdw Vector composed of 32-bit doublewords.

ph A half-precision (16-bit) floating-point vector operand (packed half-precision)

pi Vector composed of 16-bit integers (packed integer).

pj Vector composed of 32-bit integers (packed double integer).

pk Vector composed of 8-bit integers (packed half-word integer).

pq Vector composed of 64-bit integers (packed quadword integer).

pqw Vector composed of 64-bit quadwords (packed quadword).

ps A single-precision floating-point vector operand (packed single-precision).

pw Vector composed of 16-bit words (packed word).

q A quadword (64 bits), irrespective of the effective operand size.

s A 6-byte or 10-byte pseudo-descriptor.

sd A scalar double-precision floating-point operand (scalar double).

sj A scalar doubleword (32-bit) integer operand (scalar double integer).

[AMD Public Use]

508 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

ss A scalar single-precision floating-point operand (scalar single).

v A word, doubleword, or quadword (in 64-bit mode), depending on the effective operand size.

w A word, irrespective of the effective operand size.

x Instruction supports both vector sizes (128 bits or 256 bits). Size is encoded using the
VEX/XOP.L field. (L=0: 128 bits; L=1: 256 bits). This symbol may be appended to ps or pd to
represent a packed single- or double-precision floating-point vector of either size; or to pk, pi, pj,
or pq, to represent a packed 8-bit, 16-bit, 32-bit, or 64-bit packed integer vector of either size.

y A doubleword or quadword depending on effective operand size.

z A word if the effective operand size is 16 bits, or a doubleword if the effective operand size is 32
or 64 bits.

For some instructions, fields in the ModRM or SIB byte are used as encoding extensions. This is
indicated using the following notation:

/n A ModRM-byte reg field or SIB-byte base field, where n is a value between zero (000b) and 7
(111b).

For SSE instructions that take scalar operands, VEX/XOP.L field is ignored.

For immediates and memory-based operands, only the size and not the datatype is indicated. Operand
widths and datatypes are specified based on the source operands. For instructions where the result
overwrites one of the source registers, the data width and datatype of the result may not match that of
the source register. See individual instruction descriptions for more details.

A.1 Opcode Maps

In all of the following opcode maps, cells shaded grey represent reserved opcodes.

A.1.1 Legacy Opcode Maps

Primary Opcode Map. Tables A-1 and A-2 below show the primary opcode map (known in legacy
terminology as one-byte opcodes).

Table A-1 below shows those instructions for which the low nibble is in the range 0–7h. Table A-2 on
page 510 shows those instructions for which the low nibble is in the range 8–Fh. In both tables, the
rows show the full range (0–Fh) of the high nibble, and the columns show the specified range of the
low nibble.

[AMD Public Use]

Opcode and Operand Encodings 509

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-1. Primary Opcode Map (One-byte Opcodes), Low Nibble 0–7h

Nibble1 0 1 2 3 4 5 6 7

0
ADD

PUSH ES3 POP ES3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1
ADC

PUSH SS3 POP SS3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2
AND

seg ES6 DAA3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3
XOR

seg SS6 AAA3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4
INC / REX prefix5

eAX eCX eDX eBX eSP eBP eSI eDI

5
PUSH

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6
PUSHA3

PUSHD3
POPA3

POPD3
BOUND 3

Gv, Ma

ARPL3

Ew, Gw

MOVSXD4

Gv, Ez

seg FS
prefix

seg GS
prefix

operand size
override

prefix

address
size override

prefix

7 JO Jb JNO Jb JB Jb JNB Jb JZ Jb JNZ Jb JBE Jb JNBE Jb

8
Group 12 TEST XCHG

Eb, Ib Ev, Iz Eb, Ib3 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9
XCHG

r8, rAX
NOP,PAUSE

rCX/r9, rAX rDX/r10, rAX rBX/r11, rAX rSP/r12, rAX rBP/r13, rAX rSI/r14, rAX rDI/r15, rAX

A
MOV MOVSB

Yb, Xb
MOVSW/D/Q

Yv, Xv
CMPSB
Xb, Yb

CMPSW/D/Q
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX

B
MOV

AL, Ib
r8b, Ib

CL, Ib
r9b, Ib

DL, Ib
r10b, Ib

BL, Ib
r11b, Ib

AH, Ib
r12b, Ib

CH, Ib
r13b, Ib

DH, Ib
r14b, Ib

BH, Ib
r15b, Ib

C
Group 22 RET near LES3 Gz, Mp LDS3 Gz, Mp Group 112

Eb, Ib Ev, Ib Iw
VEX escape

prefix
VEX escape

prefix
Eb, Ib Ev, Iz

D
Group 22

AAM Ib3 AAD Ib3 invalid
XLAT

XLATBEb, 1 Ev, 1 Eb, CL Ev, CL

E
LOO-

PNE/NZJb
LOOPE/Z

Jb
LOOP Jb JrCXZ Jb

IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK Prefix INT1
REPNE
Prefix

REP / REPE
Prefix

HLT CMC
Group 32

Eb Ev

Notes:
1. Rows in this table show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal).
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-6 on page 517 for details.
3. Invalid in 64-bit mode.
4. Valid only in 64-bit mode.
5. Used as REX prefixes in 64-bit mode.
6. This is a null prefix in 64-bit mode.

[AMD Public Use]

510 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Secondary Opcode Map. As described in “Encoding Syntax” on page 1, the escape code 0Fh
indicates the switch from the primary to the secondary opcode map. In legacy terminology, the
secondary opcode map is presented as a listing of “two-byte” opcodes where the first byte is 0Fh.
Tables A-3 and A-4 show the secondary opcode map.

Table A-2. Primary Opcode Map (One-byte Opcodes), Low Nibble 8–Fh

Nibble1 8 9 A B C D E F

0 OR PUSH
CS3

escape to
secondary

opcode mapEb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1
SBB PUSH

DS3
POP
DS3Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2
SUB

seg CS6 DAS3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3
CMP

seg DS6 AAS3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4
DEC3 / REX prefix5

eAX eCX eDX eBX eSP eBP eSI eDI

5
POP

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6
PUSH

Iz
IMUL

Gv, Ev, Iz
PUSH

Ib
IMUL

Gv, Ev, Ib
INSB

Yb, DX
INSW/D
Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS
OUTSW/D

DX, Xz

7 JS Jb JNS Jb JP Jb JNP Jb JL Jb JNL Jb JLE Jb JNLE Jb

8
MOV

LEA
Gv, M

MOV
Sw, Ew

Group 1a2

Eb, Gb Ev, Gv Gb, Eb Gv, Ev Mw/Rv, Sw
XOP escape

prefix

9
CBW, CWDE

CDQE
CWD, CDQ,

CQO
CALL3

Ap
WAIT

FWAIT
PUSHF/D/Q

Fv
POPF/D/Q

Fv
SAHF LAHF

A
TEST STOSB

Yb, AL
STOSW/D/Q

Yv, rAX
LODSB
AL, Xb

LODSW/D/Q
rAX, Xv

SCASB
AL, Yb

SCASW/D/Q
rAX, YvAL, Ib rAX, Iz

B
MOV

rAX, Iv
r8, Iv

rCX, Iv
r9, Iv

rDX, Iv
r10, Iv

rBX, Iv
r11, Iv

rSP, Iv
r12, Iv

rBP, Iv
r13, Iv

rSI, Iv
r14, Iv

rDI, Iv
r15, Iv

C
ENTER
Iw, Ib

LEAVE
RET far

INT3 INT Ib INTO3 IRET, IRETD,

Iw IRETQ

D
x87 instructions

see Table A-15 on page 528

E CALL Jz
JMP IN OUT

Jz Ap3 Jb AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD
Group 42 Group 52

Eb

Notes:
1. Rows in this table show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal).
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-6 on page 517 for details.
3. Invalid in 64-bit mode.
4. Valid only in 64-bit mode.
5. Used as REX prefixes in 64-bit mode.
6. This is a null prefix in 64-bit mode.

[AMD Public Use]

Opcode and Operand Encodings 511

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-3 below shows those instructions for which the low nibble is in the range 0–7h. Table A-4 on
page 514 shows those instructions for which the low nibble is in the range 8–Fh. In both tables, the
rows show the full range (0–Fh) of the high nibble, and the columns show the specified range of the
low nibble. Note the added column labeled “prefix.”

For the secondary opcode map shown below, the legacy prefixes 66h, F2h, and F3 are repurposed to
provide additional opcode encoding space. For those rows that utilize them, the presence of a 66h,
F2h, or F3h prefix changes the operation or the operand types specified by the corresponding opcode
value.

As discussed in “Encoding Extensions Using the ModRM Byte” on page 517, some opcode values
represent a group of instructions. This is denoted in the map entry by “Group n”, where n = [1:17,P].
Instructions within a group are encoded by the reg field of the ModRM byte. These encodings are
specified in Table A-7 on page 519. For some opcodes, both the reg and the r/m field of the ModRM
byte are used to extend the encoding. See Table A-8 on page 520.

[AMD Public Use]

512 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0–7h

Prefix Nibble1 0 1 2 3 4 5 6 7

n/a 0 Group 62 Group 72 LAR
Gv, Ew

LSL
Gv, Ew

SYSCALL CLTS SYSRET

none

1

MOVUPS
MOVLPS
Vq, Mq

MOVHLPS
Vo.q, Uo.q

MOVLPS
Mq, Vq

UNPCKLPS
Vps,Wps

UNPCKHPS
Vps,Wps

MOVHPS
Vo.q, Mq

MOVLHPS
Vo.q, Uo.q

MOVHPS
Mq, Vo.q

Vps, Wps Wps, Vps

F3
MOVSS MOVSLDUP

Vps, Wps
MOVSHDUP

Vps, WpsVss, Wss Wss, Vss

66
MOVUPD MOVLPD UNPCKLPD

Vo.q, Wo.q
UNPCKHPD
Vo.q, Wo.q

MOVHPD

Vpd, Wpd Wpd, Vpd Vo.q, Mq Mq, Vo.q Vo.q, Mq Mq, Vo.q

F2
MOVSD MOVDDUP

Vo, WsdVsd, Wsd Wsd, Vsd

n/a 2
MOV4

Rd/q, Cd/q Rd/q, Dd/q Cd/q, Rd/q Dd/q, Rd/q

n/a 3 WRMSR RDTSC RDMSR RDPMC SYSENTER3 SYSEXIT3

n/a 4 CMOVO
Gv, Ev

CMOVNO
Gv, Ev

CMOVB
Gv, Ev

CMOVNB
Gv, Ev

CMOVZ
Gv, Ev

CMOVNZ
Gv, Ev

CMOVBE
Gv, Ev

CMOVNBE
Gv, Ev

none

5

MOVMSKPS
Gd, Ups

SQRTPS
Vps, Wps

RSQRTPS
Vps, Wps

RCPPS
Vps, Wps

ANDPS
Vps, Wps

ANDNPS
Vps, Wps

ORPS
Vps, Wps

XORPS
Vps, Wps

F3
SQRTSS
Vss, Wss

RSQRTSS
Vss, Wss

RCPSS
Vss, Wss

66
MOVMSKPD

Gd, Upd
SQRTPD
Vpd, Wpd

ANDPD
Vpd, Wpd

ANDNPD
Vpd, Wpd

ORPD
Vpd, Wpd

XORPD
Vpd, Wpd

F2
SQRTSD
Vsd, Wsd

none

6

PUNPCK-
LBW

Pq, Qd

PUNPCK-
LWD

Pq, Qd

PUNPCK-
LDQ

Pq, Qd

PACKSSWB
Ppi, Qpi

PCMPGTB
Ppk, Qpk

PCMPGTW
Ppi, Qpi

PCMPGTD
Ppj, Qpj

PACKUSWB
Ppi, Qpi

F3

66
PUNPCK-

LBW
Vo.q, Wo.q

PUNPCK-
LWD

Vo.q, Wo.q

PUNPCK-
LDQ

Vo.q, Wo.q

PACKSSWB
Vpi, Wpi

PCMPGTB
Vpk, Wpk

PCMPGTW
Vpi, Wpi

PCMPGTD
Vpj, Wpj

PACKUSWB
Vpi, Wpi

F2

none

7

PSHUFW
Pq, Qq, Ib

Group 122 Group 132 Group 142

PCMPEQB
Ppk, Qpk

PCMPEQW
Ppi, Qpi

PCMPEQD
Ppj, Qpj

EMMS

F3 PSHUFHW
Vq, Wq, Ib

66 PSHUFD
Vo, Wo, Ib

PCMPEQB
Vpk, Wpk

PCMPEQW
Vpi, Wpi

PCMPEQD
Vpj, Wpj

F2
PSHUFLW

Vq, Wq, Ib

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. Invalid in long mode.
4. Operand size is based on processor mode.

[AMD Public Use]

Opcode and Operand Encodings 513

24594—Rev. 3.32—March 2021 AMD64 Technology

n/a 8 JO Jz JNO Jz JB Jz JNB Jz JZ Jz JNZ Jz JBE Jz JNBE Jz

n/a 9 SETO Eb SETNO Eb SETB Eb SETNB Eb SETZ Eb SETNZ Eb SETBE Eb SETNBE Eb

n/a A PUSH FS POP FS CPUID BT Ev, Gv
SHLD

Ev, Gv, Ib Ev, Gv, CL

n/a B
CMPXCHG

LSS Gz, Mp BTR Ev, Gv LFS Gz, Mp LGS Gz, Mp
MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

none

C

XADD
CMPPS

Vps, Wps, Ib
MOVNTI
My, Gy

PINSRW
Pq, Ry/Mw,

Ib

PEXTRW
Gd, Nq, Ib

SHUFPS
Vps, Wps, Ib

Group 92

Mq

F3

Eb, Gb Ev, Gv

CMPSS
Vss, Wss, Ib

66
CMPPD

Vpd, Wpd, Ib

PINSRW

Vo, Ry/Mw,
Ib

PEXTRW

Gd, Uo, Ib

SHUFPD

Vpd, Wpd, Ib

F2
CMPSD

Vsd, Wsd, Ib

none

D

PSRLW
Pq, Qq

PSRLD
Pq, Qq

PSRLQ
Pq, Qq

PADDQ
Pq, Qq

PMULLW
Pq, Qq

PMOVMSKB
Gd, Nq

F3 MOVQ2DQ
Vo, Nq

66 ADDSUBPD
Vpd, Wpd

PSRLW
Vo, Wo

PSRLD
Vo, Wo

PSRLQ
Vo, Wo

PADDQ
Vo, Wo

PMULLW
Vo, Wo

MOVQ
Wq, Vq

PMOVMSKB
Gd, Uo

F2 ADDSUBPS
Vps, Wps

MOVDQ2Q
Pq, Uq

none

E

PAVGB
Pq, Qq

PSRAW
Pq, Qq

PSRAD
Pq, Qq

PAVGW
Pq, Qq

PMULHUW
Pq, Qq

PMULHW
Pq, Qq

MOVNTQ
Mq, Pq

F3 CVTDQ2PD
Vpd, Wpj

66 PAVGB
Vo, Wo

PSRAW
Vo, Wo

PSRAD
Vo, Wo

PAVGW
Vo, Wo

PMULHUW
Vo, Wo

PMULHW
Vo, Wo

CVTTPD2DQ
Vpj, Wpd

MOVNTDQ
Mo, Vo

F2 CVTPD2DQ
Vpj, Wpd

none

F

PSLLW
Pq, Qq

PSLLD
Pq, Qq

PSLLQ
Pq, Qq

PMULUDQ
Pq, Qq

PMADDWD
Pq, Qq

PSADBW
Pq, Qq

MASKMOVQ
Pq, Nq

F3

66 PSLLW
Vpw, Wo.q

PSLLD
Vpwd, Wo.q

PSLLQ
Vpqw, Wo.q

PMULUDQ
Vpj, Wpj

PMADDWD
Vpi, Wpi

PSADBW
Vpk, Wpk

MASKMOVDQU
Vpb, Upb

F2
LDDQU

Vo, Mo

Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0–7h (continued)

Prefix Nibble1 0 1 2 3 4 5 6 7

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. Invalid in long mode.
4. Operand size is based on processor mode.

[AMD Public Use]

514 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh

Prefix Nibble1 8 9 A B C D E F

n/a 0 INVD
WBINVD

(F3)
WBNOINVD

UD2

Group P2

FEMMS

3DNow!

PREFETCH

See
“3DNow!™
Opcodes”

on page 524

n/a 1
Group 162 NOP3 NOP3 NOP3 NOP3

NOP3

(F3) RDSSP

reg=1,
mod=11

NOP3 NOP3

none

2

MOVAPS CVTPI2PS MOVNTPS CVTTPS2PI CVTPS2PI UCOMISS COMISS

Vps, Wps Wps, Vps Vps, Qpj Mo, Vps Ppj, Wps Ppj, Wps Vss, Wss Vss, Wss

F3
CVTSI2SS MOVNTSS CVTTSS2SI CVTSS2SI

Vss, Ey Md, Vss Gy, Wss Gy, Wss

66
MOVAPD CVTPI2PD MOVNTPD CVTTPD2PI CVTPD2PI UCOMISD COMISD

Vpd, Wpd Wpd, Vpd Vpd, Qpj Mo, Vpd Ppj, Wpd Ppj, Wpd Vsd, Wsd Vsd, Wsd

F2
CVTSI2SD MOVNTSD CVTTSD2SI CVTSD2SI

Vsd, Ey Mq, Vsd Gy, Wsd Gy, Wsd

n/a 3
Escape to

0F_38h
opcode map

Escape to
0F_3Ah

opcode map

n/a 4
CMOVS CMOVNS CMOVP CMOVNP CMOVL CMOVNL CMOVLE CMOVNLE

Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev

none

5

ADDPS MULPS CVTPS2PD CVTDQ2PS SUBPS MINPS DIVPS MAXPS

Vps, Wps Vps, Wps Vpd, Wps Vps, Wo Vps, Wps Vps, Wps Vps, Wps Vps, Wps

F3
ADDSS MULSS CVTSS2SD CVTTPS2DQ SUBSS MINSS DIVSS MAXSS

Vss, Wss Vss, Wss Vsd, Wss Vo, Wps Vss, Wss Vss, Wss Vss, Wss Vss, Wss

66
ADDPD MULPD CVTPD2PS CVTPS2DQ SUBPD MINPD DIVPD MAXPD

Vpd, Wpd Vpd, Wpd Vps, Wpd Vo, Wps Vpd, Wpd Vpd, Wpd Vpd, Wpd Vpd, Wpd

F2
ADDSD MULSD CVTSD2SS SUBSD MINSD DIVSD MAXSD

Vsd, Wsd Vsd, Wsd Vss, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd

none

6

PUNPCK-
HBW

PUNPCK-
HWD

PUNPCK-
HDQ

PACKSSDW MOVD MOVQ

Pq, Qd Pq, Qd Pq, Qd Pq, Qq Py, Ey Pq, Qq

F3
MOVDQU

Vo, Wo

66
PUNPCK-

HBW
PUNPCK-

HWD
PUNPCK-

HDQ
PACKSSDW

PUNPCK-
LQDQ

PUNPCKH-
QDQ

MOVD MOVDQA

Vo, Wq Vo, Wq Vo, Wq Vo, Wo Vo, Wq Vo, Wq Vy, Ey Vo, Wo

F2

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. This instruction takes a ModRM byte.

[AMD Public Use]

Opcode and Operand Encodings 515

24594—Rev. 3.32—March 2021 AMD64 Technology

none

7

MOVD MOVQ

Ey, Py Qq, Pq

F3
MOVQ MOVDQU

Vq, Wq Wo, Vo

66
Group 172 EXTRQ HADDPD HSUBPD MOVD MOVDQA

Vo.q, Uo Vpd, Wpd Vpd, Wpd Ey, Vy Wo, Vo

F2
INSERTQ INSERTQ HADDPS HSUBPS

Vo.q, Uo.q,
Ib, Ib

Vo.q, Uo Vps, Wps Vps, Wps

n/a 8
JS JNS JP JNP JL JNL JLE JNLE

Jz Jz Jz Jz Jz Jz Jz Jz

n/a 9
SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE

Eb Eb Eb Eb Eb Eb Eb Eb

n/a A
PUSH POP RSM BTS SHRD Group 152 IMUL

GS GS Ev, Gv Ev, Gv, Ib Ev, Gv, CL Gv, Ev

none

B

Group 102 Group 82 BTC BSF BSR MOVSX

Ev, Ib Ev, Gv Gv, Ev Gv, Ev Gv, Eb Gv, Ew

F3
POPCNT TZCNT LZCNT

Gv, Ev Gv, Ev Gv, Ev

F2

n/a C
BSWAP

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

none

D

PSUBUSB PSUBUSW PMINUB PAND PADDUSB PADDUSW PMAXUB PANDN

Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq

F3

66
PSUBUSB PSUBUSW PMINUB PAND PADDUSB PADDUSW PMAXUB PANDN

Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo

F2

none

E

PSUBSB PSUBSW PMINSW POR PADDSB PADDSW PMAXSW PXOR

Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq

F3

66
PSUBSB PSUBSW PMINSW POR PADDSB PADDSW PMAXSW PXOR

Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo

F2

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh

Prefix Nibble1 8 9 A B C D E F

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. This instruction takes a ModRM byte.

[AMD Public Use]

516 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc Instructions. Table A-5 shows
the rFLAGS condition codes specified by the low nibble in the opcode of the CMOVcc, Jcc, and
SETcc instructions.

none

F

PSUBB PSUBW PSUBD PSUBQ PADDB PADDW PADDD

UD0

Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq

F3

66
PSUBB PSUBW PSUBD PSUBQ PADDB PADDW PADDD

Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo

F2

Table A-5. rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc

Low Nibble of
Opcode (hex)

rFLAGS Value cc Mnemonic
Arithmetic

Type
Condition(s)

0 OF = 1 O
Signed

Overflow

1 OF = 0 NO No Overflow

2 CF = 1 B, C, NAE

Unsigned

Below, Carry, Not Above or Equal

3 CF = 0 NB, NC, AE Not Below, No Carry, Above or Equal

4 ZF = 1 Z, E Zero, Equal

5 ZF = 0 NZ, NE Not Zero, Not Equal

6 CF = 1 or ZF = 1 BE, NA Below or Equal, Not Above

7 CF = 0 and ZF = 0 NBE, A Not Below or Equal, Above

8 SF = 1 S
Signed

Sign

9 SF = 0 NS Not Sign

A PF = 1 P, PE
n/a

Parity, Parity Even

B PF = 0 NP, PO Not Parity, Parity Odd

C (SF xor OF) = 1 L, NGE

Signed

Less than, Not Greater than or Equal to

D (SF xor OF) = 0 NL, GE Not Less than, Greater than or Equal to

E
(SF xor OF) = 1

or ZF = 1
LE, NG Less than or Equal to, Not Greater than

F
(SF xor OF) = 0

and ZF = 0
NLE, G Not Less than or Equal to, Greater than

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh

Prefix Nibble1 8 9 A B C D E F

Notes:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 519 for details.
3. This instruction takes a ModRM byte.

[AMD Public Use]

Opcode and Operand Encodings 517

24594—Rev. 3.32—March 2021 AMD64 Technology

Encoding Extensions Using the ModRM Byte. The ModRM byte, which immediately
follows the opcode byte, is used in certain instruction encodings to provide additional opcode bits with
which to define the function of the instruction. ModRM bytes have three fields—mod, reg, and r/m, as
shown in Figure A-1.

Figure A-1. ModRM-Byte Fields

In most cases, the reg field (bits [5:3]), and in some cases, the r/m field (bits [2:0]) provide the
additional bits used to extend the encodings of the opcode byte. In the case of the x87 floating-point
instructions, the entire ModRM byte is used to extend the opcode encodings.

Table A-6 shows how the ModRM.reg field is used to extend the range of opcodes in the primary
opcode map. The opcode ranges are organized into groups of opcode extensions. The group number is
shown in the left-most column. These groups are referenced in the primary opcode map shown in
Table A-1 on page 509 and Table A-2 on page 510. An entry of “n.a.” in the Prefix column means that
prefixes are not applicable to the opcodes in that row. Prefixes only apply to certain 64-bit media and
SSE instructions.

Table A-7 on page 519 shows how the ModRM.reg field is used to extend the range of the opcodes in
the secondary opcode map.

The /0 through /7 notation for the ModRM reg field (bits [5:3]) in the tables below means that the
three-bit field contains a value from zero (000b) to 7 (111b).

Table A-6. ModRM.reg Extensions for the Primary Opcode Map1

Group
Number

Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Group 1 n/a

80
ADD OR ADC SBB AND SUB XOR CMP

Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib

81
ADD OR ADC SBB AND SUB XOR CMP

Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz

82
ADD OR ADC SBB AND SUB XOR CMP

Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2

83
ADD OR ADC SBB AND SUB XOR CMP

Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib

Notes:
1. See Table A-7 on page 519 for ModRM extensions for the secondary (two-byte) ocode map.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. Redundant encoding generally unsupported by tools..

mod reg r/m ModRM
01234567Bits:

[AMD Public Use]

518 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Group 1a n/a 8F
POP

XOP
Ev

Group 2 n/a

C0
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib

C1
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib

D0
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1

D1
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1

D2
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL

D3
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL5 SAR

Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL

Group 3 n/a

F6
TEST

Eb,Ib

NOT NEG MUL IMUL DIV IDIV

Eb Eb Eb Eb Eb Eb

F7
TEST

Ev,Iz

NOT NEG MUL IMUL DIV IDIV

Ev Ev Ev Ev Ev Ev

Group 4 n/a FE
INC DEC

Eb Eb

Group 5 n/a FF
INC DEC CALL CALL JMP JMP PUSH

Ev Ev Ev Mp Ev Mp Ev

Group 11
n/a C6

MOV

Eb, Ib

n/a C7
MOV

Ev, Iz

Table A-6. ModRM.reg Extensions for the Primary Opcode Map1 (continued)

Group
Number

Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Notes:
1. See Table A-7 on page 519 for ModRM extensions for the secondary (two-byte) ocode map.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. Redundant encoding generally unsupported by tools..

[AMD Public Use]

Opcode and Operand Encodings 519

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-7. ModRM.reg Extensions for the Secondary Opcode Map

Group
Number

Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Group 6 n/a 0F 00
SLDT

Mw/Rv
STR Mw/Rv LLDT Ew LTR Ew VERR Ew VERW Ew

Group 7 n/a 0F 01
SGDT

Ms

SIDT
Ms

LGDT Ms LIDT Ms
SMSW Mw

/ Rv
RSTORSSP1

(mod!=11)
LMSW Ew

INVLPG
Mb

MONITOR1

MWAIT
XGETBV1

XSETBV
SVM1 SWAPGS1

RDTSCP

Group 8 n/a 0F BA BT Ev, Ib BTS Ev, Ib BTR Ev, Ib BTC Ev, Ib

Group 9

none

0F C7

CMPX-

CHG8B Mq RDRAND
Rv

RDSEED
Rv

66
CMPX-

CHG16B Mo

F2

F3
RDPID

Rd/q

Group
10

n/a 0F B9 UD1

Group
12

none

0F 71

PSRLW PSRAW PSLLW

Nq, Ib Nq, Ib Nq, Ib

66
PSRLW PSRAW PSLLW

Uo, Ib Uo, Ib Uo, Ib

F2, F3

Group
13

none

0F 72

PSRLD PSRAD PSLLD

Nq, Ib Nq, Ib Nq, Ib

66
PSRLD PSRAD PSLLD

Uo, Ib Uo, Ib Uo, Ib

F2, F3

Group
14

none

0F 73

PSRLQ PSLLQ

Nq, Ib Nq, Ib

66
PSRLQ PSRLDQ PSLLQ PSLLDQ

Uo, Ib Uo, Ib Uo, Ib Uo, Ib

F2, F3

Notes:
1. Opcode is extended further using the r/m field of the ModRM byte in conjunction with the reg field. See Table A-8

on page 520 for ModRM.r/m extensions of this opcode.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. ModRM.mod = 11b.
6. ModRM.mod ≠ 11b.
7. ModRM.mod ≠ 11b, ModRM.mod = 11b is an invalid encoding.

[AMD Public Use]

520 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Secondary Opcode Map, ModRM Extensions for Opcode 01h . Table A-8 below shows
the ModRM byte encodings for the 01h opcode. In the table the full ModRM byte is listed below the
instruction in hexadecimal, with ellipses representing the [0Fh, 01h] opcode bytes.

Group
15

none

0F AE

FXSAVE
M

FXRSTOR
M

LDMXCSR
Md

STMXCS
R

Md
XSAVE M6 LFENCE5

XRSTOR M6

MFENCE5

XSAVE-
OPT M6

SFENCE5

CLFLUSH
Mb6

F3
RDFSBASE

Rv
RDGSBASE Rv

WRFSBASE
Rv

WRGS-
BASE Rv

INCSSP CLRSSBSY

F2

66 CLWB Mb6

Group
16

n/a. 0F 18
PREFETCH PREFETCH PREFETCH PREFETCH NOP4 NOP4 NOP4 NOP4

NTA T0 T1 T2

Group
17

66

0F 78

EXTRQ

Vo.q, Ib, Ib

none,
F2, F3

Group P n/a. 0F 0D
PREFETCH PREFETCH

PREFETCH
PREFETCH

PREFETCH PREFETCH PREFETCH PREFETCH
Exclusive Modified Modified

Table A-8. Opcode 01h ModRM Extensions

reg Field Prefix
ModRM.r/m Field

0 1 2 3 4 5 6 7

/1 none
MONITOR

(...C8)
MWAIT
(...C9)

CLAC

(...CA)

STAC

(...CB)

/2 none
XGETBV

(...D0)
XSETBV

(...D1)

/3

none
VMRUN
(...D8)

VMMCALL
(...D9)

VMLOAD
(...DA)

VMSAVE
(...DB)

STGI
(...DC)

CLGI
(...DD)

SKINIT
(...DE)

INVLPGA
(...DF)

F3 VMGEXIT
(...D9)F2

/5
none RDPKRU WRPKRU

F3 SETSSBSY
SAVE-

PREVSSP

Table A-7. ModRM.reg Extensions for the Secondary Opcode Map

Group
Number

Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Notes:
1. Opcode is extended further using the r/m field of the ModRM byte in conjunction with the reg field. See Table A-8

on page 520 for ModRM.r/m extensions of this opcode.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. ModRM.mod = 11b.
6. ModRM.mod ≠ 11b.
7. ModRM.mod ≠ 11b, ModRM.mod = 11b is an invalid encoding.

[AMD Public Use]

Opcode and Operand Encodings 521

24594—Rev. 3.32—March 2021 AMD64 Technology

0F_38h and 0F_3Ah Opcode Maps. The 0F_38h and 0F_3Ah opcode maps are used primarily
to encode the legacy SSE instructions. In legacy terminology, these maps are presented as three-byte
opcodes where the first two bytes are {0Fh, 38h} and {0Fh, 3Ah} respectively.

In these maps the legacy prefixes F2h and F3h are repurposed to provide additional opcode encoding
space. In rows [0:E] the legacy prefix 66h is also used to modify the opcode. However, in row F, 66h is
used as an operand-size override. See the CRC32 instruction as an example.

The 0F_38h opcode map is presented below in Tables A-9 and A-10. The 0F_3Ah opcode map is
presented in Tables A-11 and A-12.

/7

none
SWAPGS

(...F8)
RDTSCP

(...F9)
MON...ITORX

(FA)
MWAITX

(...FB)
RDPRU
(...FD)

F3
MCOMMIT
(F3...FA)

RMPADJUST

(F3...FE)
PSMASH
(F3...FF)

F2
RMPUPDATE

(F2...FE)
PVALIDATE

(F2...FF)

ModRM.mod = 11b

Table A-8. Opcode 01h ModRM Extensions (continued)

reg Field Prefix
ModRM.r/m Field

0 1 2 3 4 5 6 7

[AMD Public Use]

522 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-9. 0F_38h Opcode Map, Low Nibble = [0h:7h]

Table A-10. 0F_38h Opcode Map, Low Nibble = [8h:Fh]

Prefix Opcode x0 x1 x2 x3 x4 x5 x6 x7

none

0x

PSHUFB
Ppb, Qpb

PHADDW
Ppi, Qpi

PHADDD
Ppj, Qpj

PHADDSW
Ppi, Qpi

PMADDUBSW
Ppk, Qpk

PHSUBW
Ppi, Qpi

PHSUBD
Ppj, Qpj

PHSUBSW
Ppi, Qpi

66
PSHUFB
PVb, Wpb

PHADDW
Vpi, Wpi

PHADDD
Vpj, Vpj

PHADDSW
Vpi, Wpi

PMADDUBSW
Vpk, Wpk

PHSUBW
Vpi, Wpi

PHSUBD
Vpj, Wpj

PHSUBSW
Vpi, Wpi

none

1x
66

PBLENDVB
Vpb, Wpb

BLENDVPS
Vps, Wps

PBLENDVB
Vpb, Wpb

PTEST
 Vo, Wo

none

2x
66

PMOVSXBW
Vpi, Wpk

PMOVSXBD
 Vpj, Wpk

PMOVSXBQ
Vpq, Wpk

PMOVSXWD
Vpj, Wpi

PMOVSXWQ
Vpq, Wpi

PMOVSXDQ
Vpq, Wpj

none

3x
66

PMOVZXBW
Vpi, Wpk

PMOVZXBD
 Vpj, Wpk

PMOVZXBQ
Vpq, Wpk

PMOVZXWD
Vpj, Wpi

PMOVZXWQ
Vpq, Wpi

PMOVZXDQ
Vpq, Wpj

PCMPGTQ
Vpq, Wpq

none

4x
66

PMULLD
Vpj, Wpj

PHMINPOSUW
 Vpi, Wpi

. . . 5x-Ex . . .

none

Fx

MOVBE
 Gv, Mv

MOVBE
 Mv, Gv

WRSS
 My, Gy

F2
CRC32

 Gy, Eb
CRC32

 Gy, Ev

66
MOVBE

 Gv, Mv
MOVBE

 Gv, Mv
WRUSS

 My, Gy

66
and
F2

CRC32
 Gy, Eb

CRC32
 Gy, Ev

Prefix Opcode x8 x9 xA xB xC xD xE xF
PSIGNB PSIGNW PSIGND PMULHRSW

Ppk, Qpk Ppi, Qpi Ppj, Qpj Ppi, Qpi

PSIGNB PSIGNW PSIGND PMULHRSW
Vpk, Wpk Vpi, Wpi Vpj, Wpj Vpi, Wpi

PABSB PABSW PABSD
Ppk, Qpk Ppi, Qpi Ppj, Qpj

PABSB PABSW PABSD
Vpk, Wpk Vpi, Wpi Vpj, Wpj

PMULDQ PCMPEQQ MOVNTDQA PACKUSDW
Vpq, Wpj Vpq, Wpq Vo, Mo Vpi, Wpj

PMINSB PMINSD PMINUW PMINUD PMAXSB PMAXSD PMAXUW PMAXUD
Vpk, pk Vpj, Wpj Vpi, Wpi Vpj, Wpj Vpk, Wpk Vpj, Wpj Vpi, Wpi Vpj, Wpj

4xh-Cxh . . .
AESIMC AESENC AESENCLAST AESDEC AESDECLAST
Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo

. . . Exh-Fxh . . .

0x

3x

Dx

none

66

none

66

none

none

2x

66

1x

66

66

[AMD Public Use]

Opcode and Operand Encodings 523

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-11. 0F_3Ah Opcode Map, Low Nibble = [0h:7h]

Table A-12. 0F_3Ah Opcode Map, Low Nibble = [8h:Fh]

Prefix Opcode x0 x1 x2 x3 x4 x5 x6 x7

PEXTRB PEXTRW PEXTRD EXTRACTPS
Mb, Vpk, Ib Mw, Vpw, Ib Ed, Vpj, Ib Md, Vps, Ib

PEXTRB PEXTRW PEXTRQ1 EXTRACTPS
Ry, Vpk, Ib Ry, Vpw, Ib Eq, Vpq, Ib Ry, Vps, Ib

PINSRB INSERTPS PINSRD
Vpk, Mb, Ib Vps, Md, Ib Vpj, Ed, Ib

PINSRB INSERTPS PINSRQ1

Vpk, R , Ib Vps, Uo, Ib Vpq, Eq, Ib

. . . 3x . . .

DPPS DPPD MPSADBW PCLMULQDQ
Vps, Wps, Ib Vpd, Wpd, Ib Vpk, Wpk, Ib Vpq, Wpq, Ib

PCMPESTRM PCMPESTRI PCMPISTRM PCMPISTRI
Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib

. . . 7x-Ex . . .

Note 1: When REX prefix is present

66

n/a

none

66

n/a

0x

5x

2x

1x

Fx

6x

4x

none

n/a

none

66

none

66

PINSRB INSERTPS PINSRD
Vpk, Mb, Ib Vps, Md, Ib Vpj, Ed, Ib

PINSRB INSERTPS PINSRQ1

Vpk, R , Ib Vps, Uo, Ib Vpq, Eq, Ib

. . . 3x . . .

DPPS DPPD MPSADBW PCLMULQDQ
Vps, Wps, Ib Vpd, Wpd, Ib Vpk, Wpk, Ib Vpq, Wpq, Ib66

/

2x

4x

none

66

[AMD Public Use]

524 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

A.1.2 3DNow!™ Opcodes

The 64-bit media instructions include the MMX™ instructions and the AMD 3DNow!™ instructions.
The MMX instructions are encoded using two opcode bytes, as described in “Secondary Opcode Map”
on page 510.

The 3DNow! instructions are encoded using two 0Fh opcode bytes and an immediate byte that is
located at the last byte position of the instruction encoding. Thus, the format for 3DNow! instructions
is:

0Fh 0Fh [ModRM] [SIB] [displacement] imm8_opcode

Table A-13 and Table A-14 on page 526 show the immediate byte following the opcode bytes for
3DNow! instructions. In these tables, rows show the high nibble of the immediate byte, and columns
show the low nibble of the immediate byte. Table A-13 shows the immediate bytes whose low nibble
is in the range 0–7h. Table A-14 shows the same for immediate bytes whose low nibble is in the range
8–Fh.

Byte values shown as reserved in these tables have implementation-specific functions, which can
include an invalid-opcode exception.

[AMD Public Use]

Opcode and Operand Encodings 525

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-13. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0–7h

Nibble1 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9
PFCMPGE PFMIN PFRCP PFRSQRT

Pq, Qq Pq, Qq Pq, Qq Pq, Qq

A
PFCMPGT PFMAX PFRCPIT1 PFRSQIT1

Pq, Qq Pq, Qq Pq, Qq Pq, Qq

B
PFCMPEQ PFMUL PFRCPIT2 PMULHRW

Pq, Qq Pq, Qq Pq, Qq Pq, Qq

C

D

E

F

Notes:
1. All 3DNow!™ opcodes consist of two 0Fh bytes. This table shows the immediate byte for 3DNow! opcodes. Rows

show the high nibble of the immediate byte. Columns show the low nibble of the immediate byte.

[AMD Public Use]

526 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-14. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8–Fh

Nibble1 8 9 A B C D E F

0
PI2FW PI2FD

Pq, Qq Pq, Qq

1
PF2IW PF2ID

Pq, Qq Pq, Qq

2

3

4

5

6

7

8
PFNACC PFPNACC

Pq, Qq Pq, Qq

9
PFSUB PFADD

Pq, Qq Pq, Qq

A
PFSUBR PFACC

Pq, Qq Pq, Qq

B
PSWAPD PAVGUSB

Pq, Qq Pq, Qq

C

D

E

F

Notes:
1. All 3DNow!™ opcodes consist of two 0Fh bytes. This table shows the immediate byte for 3DNow! opcodes. Rows

show the high nibble of the immediate byte. Columns show the low nibble of the immediate byte.

[AMD Public Use]

Opcode and Operand Encodings 527

24594—Rev. 3.32—March 2021 AMD64 Technology

A.1.3 x87 Encodings

All x87 instructions begin with an opcode byte in the range D8h to DFh, as shown in Table A-2 on
page 510. These opcodes are followed by a ModRM byte that further defines the opcode. Table A-15
shows both the opcode byte and the ModRM byte for each x87 instruction.

There are two significant ranges for the ModRM byte for x87 opcodes: 00–BFh and C0–FFh. When
the value of the ModRM byte falls within the first range, 00–BFh, the opcode uses only the reg field to
further define the opcode. When the value of the ModRM byte falls within the second range, C0–FFh,
the opcode uses the entire ModRM byte to further define the opcode.

Byte values shown as reserved or invalid in Table A-15 have implementation-specific functions,
which can include an invalid-opcode exception.

The basic instructions FNSTENV, FNSTCW, FNCLEX, FNINIT, FNSAVE, FNSTSW, and FNSTSW
do not check for possible floating point exceptions before operating. Utility versions of these
mnemonics are provided that insert an FWAIT (opcode 9B) before the corresponding non-waiting
instruction. These are FSTENV, FSTCW, FCLEX, FINIT, FSAVE, and FSTSW. For further
information on wait and non-waiting versions of these instructions, see their corresponding pages in
Volume 5.

[AMD Public Use]

528 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-15. x87 Opcodes and ModRM Extensions

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

D8

!11

00–BF

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

mem32-
real

mem32real mem32real mem32real mem32real
mem32-

real
mem32real mem32real

11

C0 C8 D0 D8 E0 E8 F0 F8

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0) ST(0), ST(0) ST(0), ST(0)
ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(1)

ST(0), ST(1) ST(0), ST(1) ST(0), ST(1) ST(0), ST(1)
ST(0),
ST(1)

ST(0), ST(1) ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(2)

ST(0), ST(2) ST(0), ST(2) ST(0), ST(2) ST(0), ST(2)
ST(0),
ST(2)

ST(0), ST(2) ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(3)

ST(0), ST(3) ST(0), ST(3) ST(0), ST(3) ST(0), ST(3)
ST(0),
ST(3)

ST(0), ST(3) ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(4)

ST(0), ST(4) ST(0), ST(4) ST(0), ST(4) ST(0), ST(4)
ST(0),
ST(4)

ST(0), ST(4) ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(5)

ST(0), ST(5) ST(0), ST(5) ST(0), ST(5) ST(0), ST(5)
ST(0),
ST(5)

ST(0), ST(5) ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(6)

ST(0), ST(6) ST(0), ST(6) ST(0), ST(6) ST(0), ST(6)
ST(0),
ST(6)

ST(0), ST(6) ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

ST(0),
ST(7)

ST(0), ST(7) ST(0), ST(7) ST(0), ST(7) ST(0), ST(7)
ST(0),
ST(7)

ST(0), ST(7) ST(0), ST(7)

[AMD Public Use]

Opcode and Operand Encodings 529

24594—Rev. 3.32—March 2021 AMD64 Technology

D9

!11

00–BF

FLD FST FSTP FLDENV FLDCW FNSTENV FNSTCW

mem32-
real

mem32real mem32real
mem14/28en

v
mem16

mem14/28en
v

mem16

11

C0 C8 D0 D8 E0 E8 F0 F8

FLD FXCH FNOP reserved FCHS FLD1 F2XM1 FPREM

ST(0),
ST(0)

ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FLD FXCH invalid reserved FABS FLDL2T FYL2X FYL2XP1

ST(0),
ST(1)

ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

FLD FXCH invalid reserved invalid FLDL2E FPTAN FSQRT

ST(0),
ST(2)

ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

FLD FXCH invalid reserved invalid FLDPI FPATAN FSINCOS

ST(0),
ST(3)

ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

FLD FXCH invalid reserved FTST FLDLG2 FXTRACT FRNDINT

ST(0),
ST(4)

ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

FLD FXCH invalid reserved FXAM FLDLN2 FPREM1 FSCALE

ST(0),
ST(5)

ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

FLD FXCH invalid reserved invalid FLDZ FDECSTP FSIN

ST(0),
ST(6)

ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

FLD FXCH invalid reserved invalid invalid FINCSTP FCOS

ST(0),
ST(7)

ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

[AMD Public Use]

530 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

DA

!11

00–BF

FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR

mem32int mem32int mem32int mem32int mem32int mem32int mem32int mem32int

11

C0 C8 D0 D8 E0 E8 F0 F8

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FCMOVB FCMOVE FCMOVBE FCMOVU invalid FUCOMPP invalid invalid

ST(0),
ST(1)

ST(0), ST(1) ST(0), ST(1) ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(2)

ST(0), ST(2) ST(0), ST(2) ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(3)

ST(0), ST(3) ST(0), ST(3) ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(4)

ST(0), ST(4) ST(0), ST(4) ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(5)

ST(0), ST(5) ST(0), ST(5) ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(6)

ST(0), ST(6) ST(0), ST(6) ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(7)

ST(0), ST(7) ST(0), ST(7) ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

[AMD Public Use]

Opcode and Operand Encodings 531

24594—Rev. 3.32—March 2021 AMD64 Technology

DB

!11

00–BF

FILD FISTTP FIST FISTP invalid FLD invalid FSTP

mem32int mem32int mem32int mem32int
mem80-

real
mem80real

11

C0 C8 D0 D8 E0 E8 F0 F8

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU reserved FUCOMI FCOMI invalid

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0) ST(0), ST(0)
ST(0),
ST(0)

ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU reserved FUCOMI FCOMI invalid

ST(0),
ST(1)

ST(0), ST(1) ST(0), ST(1) ST(0), ST(1)
ST(0),
ST(1)

ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU FNCLEX FUCOMI FCOMI invalid

ST(0),
ST(2)

ST(0), ST(2) ST(0), ST(2) ST(0), ST(2)
ST(0),
ST(2)

ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU FNINIT FUCOMI FCOMI invalid

ST(0),
ST(3)

ST(0), ST(3) ST(0), ST(3) ST(0), ST(3)
ST(0),
ST(3)

ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU reserved FUCOMI FCOMI invalid

ST(0),
ST(4)

ST(0), ST(4) ST(0), ST(4) ST(0), ST(4)
ST(0),
ST(4)

ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU invalid FUCOMI FCOMI invalid

ST(0),
ST(5)

ST(0), ST(5) ST(0), ST(5) ST(0), ST(5)
ST(0),
ST(5)

ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU invalid FUCOMI FCOMI invalid

ST(0),
ST(6)

ST(0), ST(6) ST(0), ST(6) ST(0), ST(6)
ST(0),
ST(6)

ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

FCMOVNB FCMOVNE
FCMOVNB

E
FCMOVNU invalid FUCOMI FCOMI invalid

ST(0),
ST(7)

ST(0), ST(7) ST(0), ST(7) ST(0), ST(7)
ST(0),
ST(7)

ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

[AMD Public Use]

532 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

DC

!11

00–BF

FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

mem64-
real

mem64real mem64real mem64real mem64real
mem64-

real
mem64real mem64real

11

C0 C8 D0 D8 E0 E8 F0 F8

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)
ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(1),
ST(0)

ST(1), ST(0) ST(1), ST(0)
ST(1),
ST(0)

ST(1), ST(0) ST(1), ST(0)

C2 CA D2 DA E2 EA F2 FA

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(2),
ST(0)

ST(2), ST(0) ST(2), ST(0)
ST(2),
ST(0)

ST(2), ST(0) ST(2), ST(0)

C3 CB D3 DB E3 EB F3 FB

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(3),
ST(0)

ST(3), ST(0) ST(3), ST(0)
ST(3),
ST(0)

ST(3), ST(0) ST(3), ST(0)

C4 CC D4 DC E4 EC F4 FC

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(4),
ST(0)

ST(4), ST(0) ST(4), ST(0)
ST(4),
ST(0)

ST(4), ST(0) ST(4), ST(0)

C5 CD D5 DD E5 ED F5 FD

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(5),
ST(0)

ST(5), ST(0) ST(5), ST(0)
ST(5),
ST(0)

ST(5), ST(0) ST(5), ST(0)

C6 CE D6 DE E6 EE F6 FE

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(6),
ST(0)

ST(6), ST(0) ST(6), ST(0)
ST(6),
ST(0)

ST(6), ST(0) ST(6), ST(0)

C7 CF D7 DF E7 EF F7 FF

FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV

ST(7),
ST(0)

ST(7), ST(0) ST(7), ST(0)
ST(7),
ST(0)

ST(7), ST(0) ST(7), ST(0)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

[AMD Public Use]

Opcode and Operand Encodings 533

24594—Rev. 3.32—March 2021 AMD64 Technology

DD

!11

00–BF

FLD FISTTP FST FSTP FRSTOR invalid FNSAVE FNSTSW

mem64-
real

mem64int mem64real mem64real
mem98/108e

nv
mem98/108e

nv
mem16

11

C0 C8 D0 D8 E0 E8 F0 F8

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(0) ST(0) ST(0) ST(0), ST(0) ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(1) ST(1) ST(1) ST(1), ST(0) ST(1)

C2 CA D2 DA E2 EA F2 FA

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(2) ST(2) ST(2) ST(2), ST(0) ST(2)

C3 CB D3 DB E3 EB F3 FB

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(3) ST(3) ST(3) ST(3), ST(0) ST(3)

C4 CC D4 DC E4 EC F4 FC

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(4) ST(4) ST(4) ST(4), ST(0) ST(4)

C5 CD D5 DD E5 ED F5 FD

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(5) ST(5) ST(5) ST(5), ST(0) ST(5)

C6 CE D6 DE E6 EE F6 FE

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(6) ST(6) ST(6) ST(6), ST(0) ST(6)

C7 CF D7 DF E7 EF F7 FF

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid

ST(7) ST(7) ST(7) ST(7), ST(0) ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

[AMD Public Use]

534 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

DE

!11

00–BF

FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR

mem16int mem16int mem16int mem16int mem16int mem16int mem16int mem16int

11

C0 C8 D0 D8 E0 E8 F0 F8

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)
ST(0),
ST(0)

ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FADDP FMULP reserved FCOMPP FSUBRP FSUBP FDIVRP FDIVP

ST(1),
ST(0)

ST(1), ST(0) ST(1), ST(0)
ST(1),
ST(0)

ST(1), ST(0) ST(1), ST(0)

C2 CA D2 DA E2 EA F2 FA

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(2),
ST(0)

ST(2), ST(0) ST(2), ST(0)
ST(2),
ST(0)

ST(2), ST(0) ST(2), ST(0)

C3 CB D3 DB E3 EB F3 FB

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(3),
ST(0)

ST(3), ST(0) ST(3), ST(0)
ST(3),
ST(0)

ST(3), ST(0) ST(3), ST(0)

C4 CC D4 DC E4 EC F4 FC

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(4),
ST(0)

ST(4), ST(0) ST(4), ST(0)
ST(4),
ST(0)

ST(4), ST(0) ST(4), ST(0)

C5 CD D5 DD E5 ED F5 FD

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(5),
ST(0)

ST(5), ST(0) ST(5), ST(0)
ST(5),
ST(0)

ST(5), ST(0) ST(5), ST(0)

C6 CE D6 DE E6 EE F6 FE

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(6),
ST(0)

ST(6), ST(0) ST(6), ST(0)
ST(6),
ST(0)

ST(6), ST(0) ST(6), ST(0)

C7 CF D7 DF E7 EF F7 FF

FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP

ST(7),
ST(0)

ST(7), ST(0) ST(7), ST(0)
ST(7),
ST(0)

ST(7), ST(0) ST(7), ST(0)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

[AMD Public Use]

Opcode and Operand Encodings 535

24594—Rev. 3.32—March 2021 AMD64 Technology

DF

!11

00–BF

FILD FISTTP FIST FISTP FBLD FILD FBSTP FISTP

mem16int mem16int mem16int mem16int mem80dec mem64int mem80dec mem64int

11

C0 C8 D0 D8 E0 E8 F0 F8

reserved reserved reserved reserved FNSTSW FUCOMIP FCOMIP invalid

AX
ST(0),
ST(0)

ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(1)

ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(2)

ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(3)

ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(4)

ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(5)

ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(6)

ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(7)

ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

[AMD Public Use]

536 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

A.1.4 rFLAGS Condition Codes for x87 Opcodes

Table A-16 shows the rFLAGS condition codes specified by the opcode and ModRM bytes of the
FCMOVcc instructions.

A.1.5 Extended Instruction Opcode Maps

The following sections present the VEX and the XOP extended instruction opcode maps. The
VEX.map_select field of the three-byte VEX encoding escape sequence selects VEX opcode maps:
01h, 02h, or 03h. The two-byte VEX encoding escape sequence implicitly selects the VEX map 01h.

The XOP.map_select field selects between the three XOP maps: 08h, 09h or 0Ah.

VEX Opcode Maps. Tables A-17 – A-23 below present the VEX opcode maps and Table A-24 on
page 544 presents the VEX opcode groups.

Table A-16. rFLAGS Condition Codes for FCMOVcc

Opcode
(hex)

ModRM
mod
Field

ModRM
reg

Field
rFLAGS Value cc Mnemonic Condition

DA

11

000 CF = 1 B Below

001 ZF = 1 E Equal

010 CF = 1 or ZF = 1 BE Below or Equal

011 PF = 1 U Unordered

DB

000 CF = 0 NB Not Below

001 ZF = 0 NE Not Equal

010 CF = 0 and ZF = 0 NBE Not Below or Equal

011 PF = 0 NU Not Unordered

[AMD Public Use]

Opcode and Operand Encodings 537

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-17. VEX Opcode Map 1, Low Nibble = [0h:7h]

Opcode x0 x1 x2 x3 x4 x5 x6 x7
00 . . .

VMOVUPS2 VMOVUPS2 VMOVLPS VMOVLPS VUNPCKLPS2 VUNPCKHPS2 VMOVHPS VMOVHPS
Vpsx, Wpsx Wpsx, Vpsx Vps, Hps, Mq Mq, Vps Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vps, Hps, Mq Mq, Vps

VMOVHLPS VMOVLHPS
Vps, Hps, Ups Vps, Hps, Ups

VMOVUPD2 VMOVUPD2 VMOVLPD VMOVLPD VUNPCKLPD2 VUNPCKHPD2 VMOVHPD VMOVHPD
Vpdx, Wpdx Wpdx, Vpdx Vo, Ho, Mq Mq, Vo Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpd, Hpd, Mq Mq, Vpd

VMOVSS3 VMOVSS3 VMOVSLDUP2 VMOVSHDUP2

Vss, Md Md, Vss Vpsx, Wpsx Vpsx, Wpsx
VMOVSS VMOVSS

Vss, Hss, Uss Uss, Hss, Vss
VMOVSD3 VMOVSD3 VMOVDDUP
Vsd, Mq Mq, Vsd Vo, Wq (L=0)
VMOVSD VMOVSD Vdo, Wdo (L=1)

Vsd, Hsd, Usd Usd, Hsd, Vsd

2x–4x . . .
VMOVMSKPS2 VSQRTPS2 VRSQRTPS2 VRCPPS2 VANDPS2 VANDNPS2 VORPS2 VXORPS2

Gy, Upsx Vpsx, Wpsx Vpsx, Wpsx Vpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx

VMOVMSKPD2 VSQRTPD2 VANDPD2 VANDNPD2 VORPD2 VXORPD2

Gy, Updx Vpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx

VSQRTSS3 VRSQRTSS3 VRCPSS3

Vo, Ho, Wss Vo, Ho, Wss Vo, Ho, Wss

VSQRTSD3

Vo, Ho, Wsd

VPUNPCKLBW2 VPUNPCKLWD2 VPUNPCKLDQ2 VPACKSSWB2 VPCMPGTB2 VPCMPGTW2 VPCMPGTD2 VPACKUSWB2

Vpbx, Hpbx, Wpbx Vpwx, Hpwx, Wpwx Vpdwx, Hpdwx, Vpkx, Hpix, Wpix Vpbx, Hpkx, Wpkx Vpwx, Hpix, Wpix Vpdwx, Hpjx, Wpjx Vpkx, Hpix, Wpix
Wpdwx

VZEROUPPER (L=0)
VZEROALL (L=1)

VPSHUFD2 VEX group #12 VEX group #13 VEX group #14 VPCMPEQB2 VPCMPEQW2 VPCMPEQD2

Vpdwx, Wpdwx, Ib Vpbx, Hpkx, Wpkx Vpwx, Hpix, Wpix Vpdwx, Hpjx, Wpjx

VPSHUFHW2

Vpwx, Wpwx, Ib

VPSHUFLW2

Vpwx, Wpwx, Ib

8x–Bx . . .
VCMPccPS1 VSHUFPS2

Vpdw, Hps, Wps, Vpsx, Hpsx, Wpsx,
Ib Ib

VCMPccPD1 VPINSRW VPEXTRW VSHUFPD2

Vpqw, Hpd, Wpd, Vpw, Hpw, Mw, Ib Gw, Upw, Ib Vpdx, Hpdx, Wpdx,
Ib Vpw, Hpw, Rd, Ib Ib

VCMPccSS1

Vd, Hss, Wss, Ib

VCMPccSD1

Vq, Hsd, Wsd, Ib

Note 1: The condition codes are: EQ, LT, LE, UNORD, NEQ, NLT, NLE, and ORD; encoded as [00:07h] using Ib.
VEX encoding adds: EQ_UQ, NGE, NGT, FALSE, NEQ_OQ, GE, GT, TRUE [08:0Fh];
EQ_OS, LT_OQ, LE_OQ, UNORD_S, NEQ_US, NLT_UQ, NLE_UQ, ORD_S [10h:17h]; and
EQ_US, NGE_UQ, NGT_UQ, FALSE_OS, NEQ_OS, GE_OQ, GT_OQ, TRUE_US [18:1Fh].

Note 2: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.
Note 3: Operands are scalars. VEX.L bit is ignored.

1x

Cx

7x

6x

5x

[AMD Public Use]

538 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-18. VEX Opcode Map 1, Low Nibble = [0h:7h] Continued
VEX.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7

VADDSUBPD2 VPSRLW2 VPSRLD2 VPSRLQ2 VPADDQ2 VPMULLW2 VMOVQ VPMOVMSKB2

Vpdx, Hpdx, Wpdx Vpwx, Hpwx, Wx Vpdwx, Hpdwx, Wx Vpqwx, Hpqwx, Wx Vpq, Hpq, Wpq Vpix, Hpix, Wpix Wq, Vq Gy, Upbx
(VEX.L=1)

VADDSUBPS2

Vpsx, Hpsx, Wpsx

VPAVGB2 VPSRAW2 VPSRAD2 VPAVGW2 VPMULHUW2 VPMULHW VCVTTPD2DQ2 VMOVNTDQ
Vpkx, Hpkx, Wpkx Vpwx, Hpwx, Wx Vpdwx, Hpdwx, Wx Vpix, Hpix, Wpix Vpi, Hpi, Wpi Vpi, Hpi, Wpi Vpjx, Wpdx Mo, Vo (L=0)

Mdo, Vdo (L=1)
VCVTDQ2PD2

Vpdx, Wpjx

VCVTPD2DQ2

Vpjx, Wpdx

VPSLLW2 VPSLLD2 VPSLLQ2 VPMULUDQ2 VPMADDWD2 VPSADBW2 VMASKMOVDQU
Vpwx, Hpwx, Wo.qx Vpdwx, Hpdwx, Vpqwx, Hpqwx, Vpqx, Hpjx, Wpjx Vpjx, Hpix, Wpix Vpix, Hpkx, Wpkx Vpb, Upb

Wo.qx Wo.qx

VLDDQU
Vo, Mo (L=0)

Vdo, Mdo (L=1)
Note 1: The condition codes are: EQ, LT, LE, UNORD, NEQ, NLT, NLE, and ORD; encoded as [00:07h] using Ib.

VEX encoding adds: EQ_UQ, NGE, NGT, FALSE, NEQ_OQ, GE, GT, TRUE [08:0Fh];
EQ_OS, LT_OQ, LE_OQ, UNORD_S, NEQ_US, NLT_UQ, NLE_UQ, ORD_S [10h:17h]; and
EQ_US, NGE_UQ, NGT_UQ, FALSE_OS, NEQ_OS, GE_OQ, GT_OQ, TRUE_US [18:1Fh].

Note 2: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.
Note 3: Operands are scalars. VEX.L bit is ignored.

00

Dx

01

10

11

00

Fx

01

10

11

00

Ex

01

10

11

[AMD Public Use]

Opcode and Operand Encodings 539

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-19. VEX Opcode Map 1, Low Nibble = [8h:Fh]
VEX.pp Opcode x8 x9 xA xB xC xD xE xF

. . . 0x-1x . . .
VMOVAPS1 VMOVAPS1 VMOVNTPS1 VUCOMISS2 VCOMISS2

Vpsx, Wpsx Wpsx, Vpsx Mpsx, Vpsx Vss, Wss Vss, Wss

VMOVAPD1 VMOVAPD1 VMOVNTPD1 VUCOMISD2 VCOMISD2

Vpdx, Wpdx Wpdx, Vpdx Mpdx, Vpdx Vsd, Wsd Vsd, Wsd

VCVTSI2SS2 VCVTTSS2SI2 VCVTSS2SI2

Vo, Ho, Ey Gy, Wss Gy, Wss

VCVTSI2SD2 VCVTTSD2SI2 VCVTSD2SI2

Vo, Ho, Ey Gy, Wsd Gy, Wsd

. . . 3x-4x . . .
VADDPS1 VMULPS1 VCVTPS2PD1 VCVTDQ2PS1 VSUBPS1 VMINPS1 VDIVPS1 VMAXPS1

Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpdx, Wpsx Vpsx, Wpjx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx

VADDPD1 VMULPD1 VCVTPD2PS1 VCVTPS2DQ1 VSUBPD1 VMINPD1 VDIVPD1 VMAXPD1

Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpsx, Wpdx Vpjx, Wpsx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx

VADDSS2 VMULSS2 VCVTSS2SD2 VCVTTPS2DQ1 VSUBSS2 VMINSS2 VDIVSS2 VMAXSS2

Vss, Hss, Wss Vss, Hss, Wss Vo, Ho, Wss Vpjx, Wpsx Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss

VADDSD2 VMULSD2 VCVTSD2SS2 VSUBSD2 VMINSD2 VDIVSD2 VMAXSD2

Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vo, Ho, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd

VPUNPCKHBW1 VPUNPCKHWD1 VPUNPCKHDQ1 VPACKSSDW1 VPUNPCKLQDQ1 VPUNPCKHQDQ1 VMOVD VMOVQ VMOVDQA1

Vpbx, Hpbx, Wpbx Vpwx, Hpwx, Wpwx Vpdwx, Hpdwx, Vpix, Hpjx, Wpjx Vpqwx, Hpqwx, Vpqwx, Hpqwx, Vo, Ey Vpqwx, Wpqwx
Wpdwx Wpqwx Wpqwx (VEX.L=0)

VMOVDQU1

Vpqwx, Wpqwx

VHADDPD1 VHSUBPD1 VMOVD VMOVQ VMOVDQA1

Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Ey, Vo Wpqwx, Vpqwx
(VEX.L=1)
VMOVQ VMOVDQU1

Vq, Wq Wpqwx, Vpqwx
(VEX.L=0)

VHADDPS1 VHSUBPS1

Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx

. . . 8x-9x . . .
VEX group #15

. . . Bx-Cx . . .

VPSUBUSB1 VPSUBUSW1 VPMINUB1 VPAND1 VPADDUSB1 VPADDUSW1 VPMAXUB1 VPANDN1

Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpkx, Hpkx, Wpkx Vx, Hx, Wx Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpkx, Hpkx, Wpkx Vx, Hx, Wx

VPSUBSB1 VPSUBSW1 VPMINSW1 VPOR1 VPADDSB1 VPADDSW1 VPMAXSW1 VPXOR1

Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpix, Hpix, Wpix Vx, Hx, Wx Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpix, Hpix, Wpix Vx, Hx, Wx

VPSUBB1 VPSUBW1 VPSUBD1 VPSUBQ1 VPADDB1 VPADDW1 VPADDD1

Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpxj, Hpjx, Wpjx Vpqx, Hpqx, Wpqx Vpkx, Hpkx, Wpkx Vpix, Hpix, Wpix Vpjx, Hpjx, Wpjx

Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.
Note 2: Operands are scalars. VEX.L bit is ignored.

2x

5x

Dx

Ex

6x

7x

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

n/a

00

01

00

01

00

01
Fx

Ax

[AMD Public Use]

540 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-20. VEX Opcode Map 2, Low Nibble = [0h:7h]

VEX.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7
VPSHUFB1 VPHADDW1 VPHADDD1 VPHADDSW1 VPMADDUBSW1 VPHSUBW1 VPHSUBD1 VPHSUBSW1

01 Vpbx, Hpbx, Wpbx Vpix, Hpix, Wpix Vpjx, Hpjx, Wpjx Vpix, Hpix, Wpix Vpix, Hpkx, Wpkx Vpix, Hpix, Wpix Vpjx, Hpjx, Wpjx Vpix, Hpix, Wpix

VCVTPH2PS1 VPERMPS VPTEST1,4

01 Vpsx, Wphx Vps, Hd, Wps Vx, Wx

VPMOVSXBW1 VPMOVSXBD1 VPMOVSXBQ1 VPMOVSXWD1 VPMOVSXWQ1 VPMOVSXDQ1

01 Vpix, Wpkx Vpjx, Wpkx Vpqx, Wpkx Vpjx, Wpix Vpqx, Wpix Vpqx, Wpjx

VPMOVZXBW1 VPMOVZXBD1 VPMOVZXBQ1 VPMOVZXWD1 VPMOVZXWQ1 VPMOVZXDQ1 VPERMD VPCMPGTQ1

01 Vpix, Wpkx Vpjx, Wpkx Vpqx, Wpkx Vpjx, Wpix Vpqx, Wpix Vpqx, Wpjx Vd, Hd, Wd Vpqx, Hpqx, Wpqx

VPMULLD1 VPHMINPOSUW VPSRLV- VPSRAVD1 VPSLLV-
01 Vpjx, Hpjx, Wpxj Vo, Wpi D1 Vx, Hx, Wx (W=0) Vpdwx, Hpdwx, D1 Vx, Hx, Wx (W=0)

Q1 Vx, Hx, Wx (W=1) Wpdwx Q1 Vx, Hx, Wx (W=1)
... 5x-8x ...

5VPGATHERD- 5VPGATHERQ- 5VGATHERD- 5VGATHERQ- 2VFMADDSUB132- 3VFMSUBADD132-
D1 Vx, M*d, Hpdw (W=0) D1 Vx, M*d, Hpdw (W=0) PS1 Vx,M*ps,Hpsx (W=0) PS1 Vx,M*ps,Hps (W=0) PS1 Vx,Hx,Wx (W=0) PS1 Vx,Hx,Wx (W=0)

Q1 Vx, M*q, Hpqwx (W=1) Q1 Vx, M*q, Hpqw (W=1) PD1 Vx,M*pd,Hpdx (W=1) PD1 Vx,M*pd,Hpdx (W=1) PD1 Vx,Hx,Wx (W=1) PD1 Vx,Hx,Wx (W=1)
VFMADDSUB213- VFMSUBADD213-

PS1 Vx,Hx,Wx (W=0) PS1 Vx,Hx,Wx (W=0)
PD1 Vx,Hx,Wx (W=1) PD1 Vx,Hx,Wx (W=1)

VFMADDSUB231- VFMSUBADD231-
PS1 Vx,Hx,Wx (W=0) PS1 Vx,Hx,Wx (W=0)
PD1 Vx,Hx,Wx (W=1) PD1 Vx,Hx,Wx (W=1)

... Cx-Ex ...

ANDN BZHI BEXTR
Gy, By, Ey Gy, Ey, By Gy, Ey, By

PEXT SHLX
01 Gy, By, Ey Gy, Ey, By

SARX
10 Gy, Ey, By

PDEP MULX SHRX
11 Gy, By, Ey Gy, By, Ey Gy, Ey, By

Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.
Note 2: For all VFMADDSUBnnnPS instructions, the data type is packed single-precision floating point.

For all VFMADDSUBnnnPD instructions, the data type is packed double-precision floating point.
Note 3: For all VFMSUBADDnnnPS instructions, the data type is packed single-precision floating point.

For all VFMSUBADDnnnPD instructions, the data type is packed double-precision floating point.
Note 4: Operands are treated a bit vectors.
Note 5: Uses VSIB addressing mode.

4x

0x

2x

1x

3x

00

Fx VEX group #17

01 9x

01 Ax

01 Bx

[AMD Public Use]

Opcode and Operand Encodings 541

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-21. VEX Opcode Map 2, Low Nibble = [8h:Fh]

[AMD Public Use]

542 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-22. VEX Opcode Map 3, Low Nibble = [0h:7h]

VEX.pp Nibble x0 x1 x2 x3 x4 x5 x6 x7

VPERMQ VPERMPD VPBLENDD1 VPERMILPS1 VPERMILPD1 VPERM2F128
Vq, Wq, Ib Vpd, Wpd, Ib Vpdwx, Hpdwx, Vpsx, Wpsx, Ib Vpdx, Wpdx, Ib Vdo, Ho, Wo, Ib

Wpdwx, Ib (VEX.L=1)

VPEXTRB VPEXTRW VPEXTRD VEXTRACTPS
Mb, Vpb, Ib Mw, Vpw, Ib Ed, Vpdw, Ib Mss, Vps, Ib

VPEXTRB VPEXTRW VPEXTRQ VEXTRACTPS
Ry, Vpb, Ib Ry, Vpw, Ib Eq, Vpqw, Ib Rss, Vps, Ib

VPINSRD
Vpdw, Hpdw, Ed, Ib

VPINSRB VINSERTPS (W=0)
Vpb, Hpb, Wb, Ib Vps, Hps, Ups/Md, VPINSRQ

Vpdw, Hpqw, Eq, Ib
 (W=1)

. . . 3x . . .

VDPPS1 VDPPD VMPSADBW1 VPCLMULQDQ VPERM2I128
Vpsx, Hpsx, Wpsx, Vpd, Hpd, Wpd, Ib Vpix, Hpkx, Wpkx, Vo, Hpq, Wpq, Ib Vo, Ho, Wo, ib

 Ib Ib

. . . 5x . . .

VPCMPESTRM VPCMPESTRI VPCMPISTRM VPCMPISTRI
Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib

. . . 7x-Ex . . .

10

RORX
11 Gy, Ey, ib

Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.

0x

1x

4x

2x
01

00

01

00

01

00

Fx

00

01

00

01

6x

[AMD Public Use]

Opcode and Operand Encodings 543

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-23. VEX Opcode Map 3, Low Nibble = [8h:Fh]

VEX.pp Opcode x8 x9 xA xB xC xD xE xF
VROUNDPS1 VROUNDPD1 VROUNDSS VROUNDSD VBLENDPS1 VBLENDPD1 VPBLENDW1 VPALIGNR1

Vpsx, Wpsx, Ib Vpdx, Wpdx, Ib Vss, Hss, Wss, Ib Vsd, Hsd, Wsd, Ib Vpsx, Hpsx, Wpsx, Vpdx, Hpdx, Wpdx, Vpwx, Hpwx, Wpwx, Vpbx, Hpbx, Wpbx,
Ib Ib Ib Ib

VINSERTF128 VEXTRACTF128 VCVTPS2PH1

Vdo, Hdo, Wo, Ib Wo, Vdo, Ib Wph, Vps, Ib

. . . 2x . . .
VINSERTI128 VEXTRACTI128

Vdo, Hdo, Wo, Ib Wo, Vdo, Ib

VPERMILzz2PS1,2 VPERMILzz2PD1,2 VBLENDVPS1 VBLENDVPD1 VPBLENDVB1

Vpsx, Hpsx, Wpsx, Vpdx, Hpdx, Wpdx Vpsx, Hpsx, Wpsx, Vpdx, Hpdx, Wpdx, Vpbx, Hpbx, Wpbx,
Lpsx, Ib (W=0) Lpdx, Ib (W=0) Lpdx Lpdx Lx

Vpsx, Hpsx, Lpsx, Vpdx, Hpdx, Lpdx,
Wpsx, Ib (W=1) Wpdx, Ib (W=1)

VFMADDSUBPS1 VFMADDSUBPD1 VFMSUBADDPS1 VFMSUBADDPD1

Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx,
Hpsx (W=0) Hpdx (W=0) Hpsx (W=0) Hpdx (W=0)

Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx,
Wpsx (W=1) Wpdx (W=1) Wpsx (W=1) Wpdx (W=1)

VFMADDPS1 VFMADDPD1 VFMADDSS VFMADDSD VFMSUBPS1 VFMSUBPD1 VFMSUBSS VFMSUBSD
Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vss, Lss, Wss, Hss Vsd, Lsd, Wsd, Hsd Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vss, Lss, Wss, Hss Vsd, Lsd, Wsd, Hsd

Hpsx (W=0) Hpdx (W=0) (W=0) (W=0) Hpsx (W=0) Hpdx (W=0) (W=0) (W=0)
Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vss, Lss, Hss, Wss Vsd, Lsd, Hsd, Wsd Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vss, Lss, Hss, Wss Vsd, Lsd, Hsd, Wsd

Wpsx (W=1) Wpdx (W=1) (W=1) (W=1) Wpsx (W=1) Wpdx (W=1) (W=1) (W=1)
VFNMADDPS1 VFNMADDPD1 VFNMADDSS VFNMADDSD VFNMSUBPS1 VFNMSUBPD1 VFNMSUBSS VFNMSUBSD

Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vss, Lss, Wss, Hss Vsd, Lsd, Wsd, Hsd Vpsx, Lpsx, Wpsx, Vpdx, Lpdx, Wpdx, Vss, Lss, Wss, Hss Vsd, Lsd, Wsd, Hsd
Hpsx (W=0) Hpdx (W=0) (W=0) (W=0) Hpsx (W=0) Hpdx (W=0) (W=0) (W=0)

Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vss, Lss, Hss, Wss Vsd, Lsd, Hsd, Wsd Vpsx, Lpsx, Hpsx, Vpdx, Lpdx, Hpdx, Vss, Lss, Hss, Wss Vsd, Lsd, Hsd, Wsd
Wpsx (W=1) Wpdx (W=1) (W=1) (W=1) Wpsx (W=1) Wpdx (W=1) (W=1) (W=1)

. . . 8x-Cx . . .
VAESKEYGEN-

ASSIST
Vo, Wo, Ib

. . . Ex-Fx . . .
Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.
Note 2: The zero match codes are TD, TD (alias), MO, and MZ. They are encoded as the zzzz field of the Ib, using 0...3h. ~

Dx

01

01

01

01

01

01

01

01

6x

7x

0x

1x

3x

4x

5x

[AMD Public Use]

544 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-24. VEX Opcode Groups

XOP Opcode Maps. Tables A-25 – A-30 below present the XOP opcode maps and Table A-31 on
page 546 presents the VEX opcode groups.

Table A-25. XOP Opcode Map 8h, Low Nibble = [0h:7h]

Number
VEX Map,
Opcode VEX.pp xx000xxx xx001xxx xx010xxx xx011xxx xx100xxx xx101xxx xx110xxx xx111xxx

1 VPSRLW1 VPSRAW1 VPSLLW1

71 Hpwx, Upwx, Ib Hpwx, Upwx, Ib Hpwx, Upwx, Ib

1 VPSRLD1 VPSRAD1 VPSLLD1

72 Hpdwx, Updwx, Ib Hpdwx, Updwx, Ib Hpdwx, Updwx, Ib

1 VPSRLQ1 VPSRLDQ1 VPSLLQ1 VPSLLDQ1

73 Hpqwx, Upqwx, Ib Hpbx, Upbx, Ib Hpqwx, Upqwx, Ib Hpbx, Upbx, Ib

1
AE VLDMXCSR Md VSTMXCSR Md

2 BLSR BLSMSK BLSI
F3 By, Ey By, Ey By, Ey

Note: 1. Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L = 0, size is 128 bits; when L = 1, size is 256 bits.

ModRM ByteGroup

12

13

14

15

17

01

01

01

00

00

XOP.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7

. . . 0x-7x . . .
VPMACSSWW VPMACSSWD VPMACSSDQL
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

VPMACSWW VPMACSWD VPMACSDQL
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

VPCMOV VPPERM VPMADCSSWD
Vx,Hx,Wx,Lx (W=0) Vo,Ho,Wo,Lo (W=0) Vo,Ho,Wo,Lo
Vx,Hx,Lx,Wx (W=1) Vo,Ho,Lo,Wo (W=1)

VPMADCSWD
Vo,Ho,Wo,Lo

VPROTB VPROTW VPROTD VPROTQ
Vo,Wo,Ib Vo,Wo,Ib Vo,Wo,Ib Vo,Wo,Ib

. . . Dx-Fx . . .

Ax

8x

9x

Bx

Cx00

00

00

00

00

[AMD Public Use]

Opcode and Operand Encodings 545

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-26. XOP Opcode Map 8h, Low Nibble = [8h:Fh]

Table A-27. XOP Opcode Map 9h, Low Nibble = [0h:7h]

XOP.pp Opcode x8 x9 xA xB xC xD xE xF

. . . 0x-07x . . .
VPMACSSDD VPMACSSDQH
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

VPMACSDD VPMACSDQH
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

. . . Ax-Bx . . .
VPCOMccB1 VPCOMccW1 VPCOMccD1 VPCOMccQ1

Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib

VPCOMccUB1 VPCOMccUW1 VPCOMccUD1 VPCOMccUQ1

Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib

00

Note 1: The condition codes are LT, LE, GT, GE, EQ, NEQ, FALSE, and TRUE. They are encoded via Ib, using 00...07h.

Fx

00

00

00

00

00

8x

9x

Cx

Dx

Ex

XOP.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7

. . . 2x-7x . . .
VFRCZPS VFRCZPD VFRCZSS VFRCZSD

Vx,Wx Vx,Wx Vq,Wss Vq,Wsd

VPROTB VPROTW VPROTD VPROTQ VPSHLB VPSHLW VPSHLD VPSHLQ
Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0)
Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1)

. . . Ax-Bx . . .
VPHADDBW VPHADDBD VPHADDBQ VPHADDWD VPHADDWQ

Vo,Wo Vo,Wo Vo,Wo Vo,Wo Vo,Wo

VPHADDUBWD VPHADDUBD VPHADDUBQ VPHADDUWD VPHADDUWQ
Vo,Wo Vo,Wo Vo,Wo Vo,Wo Vo,Wo

VPHSUBBW VPHSUBWD VPHSUBDQ
Vo,Wo Vo,Wo Vo,Wo

. . . Fx . . .

00

00

00

00

00

XOP group #1 XOP group #2

XOP group #3

00

00

Cx

Dx

Ex

0x

1x

8x

9x

[AMD Public Use]

546 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-28. XOP Opcode Map 9h, Low Nibble = [8h:Fh]

Table A-29. XOP Opcode Map Ah, Low Nibble = [0h:7h]

Table A-30. XOP Opcode Map Ah, Low Nibble = [8h:Fh]

Table A-31. XOP Opcode Groups

XOP.pp Opcode x8 x9 xA xB xC xD xE xF

. . . 0x-8x . . .
VPSHAB VPSHAW VPSHAD VPSHAQ

Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0)
Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1)

. . . Ax-Bx . . .
VPHADDDQ

Vo,Wo

VPHADDUDQ
Vo,Wo

. . . Ex-Fx . . .

00

00

00

9x

Cx

Dx

XOP.pp Opcode x0 x1 x2 x3 x4 x5 x6 x7

. . . 0x . . .
BEXTR XOP group #4

Gy,Ey,Id

. . . 2x-Fx . . .

1x00

XOP.pp Opcode x8 x9 xA xB xC xD xE xF

0x-Fxn/a

Opcodes Reserved

/0 /1 /2 /3 /4 /5 /6 /7
XOP BLCFILL BLSFILL BLCS TZMSK BLCIC BLSIC T1MSKC

9 By,Ey By,Ey By,Ey By,Ey By,Ey By,Ey By,Ey
01

XOP BLCMSK BLCI
9 By,Ey By,Ey
02

XOP LLWPCB SLWPCB
9 Ry Ry
12

XOP LWPINS LWPVAL
A By,Ed,Id By,Ed,Id
12

ModRM.reg

#1

#2

#3

#4

Group

[AMD Public Use]

Opcode and Operand Encodings 547

24594—Rev. 3.32—March 2021 AMD64 Technology

A.2 Operand Encodings

An operand is data that affects or is affected by the execution of an instruction. Operands may be
located in registers, memory, or I/O ports. For some instructions, the location of one or more operands
is implicitly specified based on the opcode alone. However, for most instructions, operands are
specified using bytes that immediately follow the opcode byte. These bytes are designated the mode-
register-memory (ModRM) byte, the scale-index-base (SIB) byte, the displacement byte(s), and the
immediate byte(s). The presence of the SIB, displacement, and immediate bytes are optional
depending on the instruction, and, for instructions that reference memory, the memory addressing
mode.

The following sections describe the encoding of the ModRM and SIB bytes in various processor
modes.

A.2.1 ModRM Operand References

Figure A-2 below shows the format of the ModRM byte. There are three fields—mod, reg, and r/m.
The reg field is normally used to specify a register-based operand. The mod and r/m fields together
provide a 5-bit field, augmented in 64-bit mode by the R and B bits of a REX, VEX, or XOP prefix,
normally used to specify the location of a second memory- or register-based operand and, for a
memory-based operand, the addressing mode.

As described in “Encoding Extensions Using the ModRM Byte” on page 517, certain instructions use
either the reg field, the r/m field, or the entire ModRM byte to extend the opcode byte in the encoding
of the instruction operation.

Figure A-2. ModRM-Byte Format

The two sections below describe the ModRM operand encodings, first for 16-bit references and then
for 32-bit and 64-bit references.

16-Bit Register and Memory References. Table A-32 shows the notation and encoding
conventions for register references using the ModRM reg field. This table is comparable to Table A-34
on page 550 but applies only when the address-size is 16-bit. Table A-33 on page 548 shows the

mod

REX.R, VEX.R or XOP.R
extend this field to 4 bits

REX.B, VEX.B, or XOP.B
extend this field to 4 bits

reg r/m ModRM
01234567

[AMD Public Use]

548 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

notation and encoding conventions for 16-bit memory references using the ModRM byte. This table is
comparable to Table A-35 on page 551.

Table A-32. ModRM reg Field Encoding, 16-Bit Addressing

Mnemonic
Notation

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

reg8 AL CL DL BL AH CH DH BH

reg16 AX CX DX BX SP BP SI DI

reg32 EAX ECX EDX EBX ESP EBP ESI EDI

mmx MMX0 MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7

xmm XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7

ymm YMM0 YMM1 YMM2 YMM3 YMM4 YMM5 YMM6 YMM7

sReg ES CS SS DS FS GS invalid invalid

cReg CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

dReg DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7

Table A-33. ModRM Byte Encoding, 16-Bit Addressing

Effective Address

ModRM
mod
Field

(binary)

ModRM reg Field1 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

Complete ModRM Byte (hex)

[BX] + [SI]

00

00 08 10 18 20 28 30 38 000

[BX] + [DI] 01 09 11 19 21 29 31 39 001

[BP] + [SI] 02 0A 12 1A 22 2A 32 3A 010

[BP] + [DI] 03 0B 13 1B 23 2B 33 3B 011

[SI] 04 0C 14 1C 24 2C 34 3C 100

[DI] 05 0D 15 1D 25 2D 35 3D 101

disp16 06 0E 16 1E 26 2E 36 3E 110

[BX] 07 0F 17 1F 27 2F 37 3F 111

Notes:
1. See Table A-32 for complete specification of ModRM “reg” field.

[AMD Public Use]

Opcode and Operand Encodings 549

24594—Rev. 3.32—March 2021 AMD64 Technology

Register and Memory References for 32-Bit and 64-Bit Addressing. Table A-34 on
page 550 shows the encoding for register references using the ModRM reg field. The first ten rows of
Table A-34 show references when the REX.R bit is cleared to 0, and the last ten rows show references
when the REX.R bit is set to 1. In this table, entries under the Mnemonic Notation heading correspond

[BX] + [SI] + disp8

01

40 48 50 58 60 68 70 78 000

[BX] + [DI] + disp8 41 49 51 59 61 69 71 79 001

[BP] + [SI] + disp8 42 4A 52 5A 62 6A 72 7A 010

[BP] + [DI] + disp8 43 4B 53 5B 63 6B 73 7B 011

[SI] + disp8 44 4C 54 5C 64 6C 74 7C 100

[DI] + disp8 45 4D 55 5D 65 6D 75 7D 101

[BP] + disp8 46 4E 56 5E 66 6E 76 7E 110

[BX] + disp8 47 4F 57 5F 67 6F 77 7F 111

[BX] + [SI] + disp16

10

80 88 90 98 A0 A8 B0 B8 000

[BX] + [DI] + disp16 81 89 91 99 A1 A9 B1 B9 001

[BP] + [SI] + disp16 82 8A 92 9A A2 AA B2 BA 010

[BP] + [DI] + disp16 83 8B 93 9B A3 AB B3 BB 011

[SI] + disp16 84 8C 94 9C A4 AC B4 BC 100

[DI] + disp16 85 8D 95 9D A5 AD B5 BD 101

[BP] + disp16 86 8E 96 9E A6 AE B6 BE 110

[BX] + disp16 87 8F 97 9F A7 AF B7 BF 111

AL/ AX/ EAX/ MMX0/ XMM0/ YMM0

11

C0 C8 D0 D8 E0 E8 F0 F8 000

CL/ CX/ ECX/ MMX1/ XMM1/ YMM1 C1 C9 D1 D9 E1 E9 F1 F9 001

DL/ DX/ EDX/ MMX2/ XMM2/ YMM2 C2 CA D2 DA E2 EA F2 FA 010

BL/ BX/ EBX/ MMX3/ XMM3/ YMM3 C3 CB D3 DB E3 EB F3 FB 011

AH/ SP/ ESP/ MMX4/ XMM4/ YMM4 C4 CC D4 DC E4 EC F4 FC 100

CH/ BP/ EBP/ MMX5/ XMM5/ YMM5 C5 CD D5 DD E5 ED F5 FD 101

DH/ SI/ ESI/ MMX6/ XMM6/ YMM6 C6 CE D6 DE E6 EE F6 FE 110

BH/ DI/ EDI/ MMX7/ XMM7/ YMM7 C7 CF D7 DF E7 EF F7 FF 111

Table A-33. ModRM Byte Encoding, 16-Bit Addressing (continued)

Effective Address

ModRM
mod
Field

(binary)

ModRM reg Field1 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

Complete ModRM Byte (hex)

Notes:
1. See Table A-32 for complete specification of ModRM “reg” field.

[AMD Public Use]

550 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

to register notation described in “Mnemonic Syntax” on page 52, and the /r notation under the ModRM
reg Field heading corresponds to that described in “Opcode Syntax” on page 55.

Table A-35 on page 551 shows the encoding for 32-bit and 64-bit memory references using the
ModRM byte. This table describes 32-bit and 64-bit addressing, with the REX.B bit set or cleared. The
Effective Address is shown in the two left-most columns, followed by the binary encoding of the
ModRM-byte mod field, followed by the eight possible hex values of the complete ModRM byte (one
value for each binary encoding of the ModRM-byte reg field), followed by the binary encoding of the
ModRM r/m field.

The /0 through /7 notation for the ModRM reg field (bits [5:3]) means that the three-bit field contains a
value from zero (binary 000) to 7 (binary 111).

Table A-34. ModRM reg Field Encoding, 32-Bit and 64-Bit Addressing

Mnemonic
Notation

REX.R Bit
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

reg8

0

AL CL DL BL AH/SPL CH/BPL DH/SIL BH/DIL

reg16 AX CX DX BX SP BP SI DI

reg32 EAX ECX EDX EBX ESP EBP ESI EDI

reg64 RAX RCX RDX RBX RSP RBP RSI RDI

mmx MMX0 MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7

xmm XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7

ymm YMM0 YMM1 YMM2 YMM3 YMM4 YMM5 YMM6 YMM7

sReg ES CS SS DS FS GS invalid invalid

cReg CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

dReg DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7

reg8

1

R8B R9B R10B R11B R12B R13B R14B R15B

reg16 R8W R9W R10W R11W R12W R13W R14W R15W

reg32 R8D R9D R10D R11D R12D R13D R14D R15D

reg64 R8 R9 R10 R11 R12 R13 R14 R15

mmx MMX0 MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7

xmm XMM8 XMM9 XMM10 XMM11 XMM12 XMM13 XMM14 XMM15

ymm YMM8 YMM9 YMM10 YMM11 YMM12 YMM13 YMM14 YMM15

sReg ES CS SS DS FS GS invalid invalid

cReg CR8 CR9 CR10 CR11 CR12 CR13 CR14 CR15

dReg DR8 DR9 DR10 DR11 DR12 DR13 DR14 DR15

[AMD Public Use]

Opcode and Operand Encodings 551

24594—Rev. 3.32—March 2021 AMD64 Technology

Table A-35. ModRM Byte Encoding, 32-Bit and 64-Bit Addressing

Effective Address
ModRM

mod
Field

(binary)

ModRM reg Field1 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

REX.B = 0 REX.B = 1 Complete ModRM Byte (hex)

[rAX] [r8]

00

00 08 10 18 20 28 30 38 000

[rCX] [r9] 01 09 11 19 21 29 31 39 001

[rDX] [r10] 02 0A 12 1A 22 2A 32 3A 010

[rBX] [r11] 03 0B 13 1B 23 2B 33 3B 011

SIB2 SIB2 04 0C 14 1C 24 2C 34 3C 100

[rIP] + disp32 or

disp323
[rIP] + disp32 or

disp323 05 0D 15 1D 25 2D 35 3D 101

[rSI] [r14] 06 0E 16 1E 26 2E 36 3E 110

[rDI] [r15] 07 0F 17 1F 27 2F 37 3F 111

[rAX] + disp8 [r8] + disp8

01

40 48 50 58 60 68 70 78 000

[rCX] + disp8 [r9] + disp8 41 49 51 59 61 69 71 79 001

[rDX] + disp8 [r10] + disp8 42 4A 52 5A 62 6A 72 7A 010

[rBX] + disp8 [r11] + disp8 43 4B 53 5B 63 6B 73 7B 011

[SIB] + disp8 [SIB] + disp8 44 4C 54 5C 64 6C 74 7C 100

[rBP] + disp8 [r13] + disp8 45 4D 55 5D 65 6D 75 7D 101

[rSI] + disp8 [r14] + disp8 46 4E 56 5E 66 6E 76 7E 110

[rDI] + disp8 [r15] + disp8 47 4F 57 5F 67 6F 77 7F 111

[rAX] + disp32 [r8] + disp32

10

80 88 90 98 A0 A8 B0 B8 000

[rCX] + disp32 [r9] + disp32 81 89 91 99 A1 A9 B1 B9 001

[rDX] + disp32 [r10] + disp32 82 8A 92 9A A2 AA B2 BA 010

[rBX] + disp32 [r11] + disp32 83 8B 93 9B A3 AB B3 BB 011

SIB + disp32 SIB + disp32 84 8C 94 9C A4 AC B4 BC 100

[rBP] + disp32 [r13] + disp32 85 8D 95 9D A5 AD B5 BD 101

[rSI] + disp32 [r14] + disp32 86 8E 96 9E A6 AE B6 BE 110

[rDI] + disp32 [r15] + disp32 87 8F 97 9F A7 AF B7 BF 111

Notes:
1. See Table A-34 for complete specification of ModRM “reg” field.
2. If SIB.base = 5, the SIB byte is followed by four-byte disp32 field and addressing mode is absolute.
3. In 64-bit mode, the effective address is [rIP]+disp32. In all other modes, the effective address is disp32. If the

address-size prefix is used in 64-bit mode to override 64-bit addressing, the [RIP]+disp32 effective address is trun-
cated after computation to 32 bits.

[AMD Public Use]

552 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

A.2.2 SIB Operand References

Figure A-3 on page 553 shows the format of a scale-index-base (SIB) byte. Some instructions have an
SIB byte following their ModRM byte to define memory addressing for the complex-addressing
modes described in “Effective Addresses” in Volume 1. The SIB byte has three fields—scale, index,
and base—that define the scale factor, index-register number, and base-register number for 32-bit and
64-bit complex addressing modes. In 64-bit mode, the REX.B and REX.X bits extend the encoding of
the SIB byte’s base and index fields.

AL/rAX/MMX0/XMM0/
YMM0

r8/MMX0/XMM8/
YMM8

11

C0 C8 D0 D8 E0 E8 F0 F8 000

CL/rCX/MMX1/XMM1/
YMM1

r9/MMX1/XMM9/
YMM9

C1 C9 D1 D9 E1 E9 F1 F9 001

DL/rDX/MMX2/XMM2/
YMM2

r10/MMX2/XMM10/
YMM10

C2 CA D2 DA E2 EA F2 FA 010

BL/rBX/MMX3/XMM3/
YMM3

r11/MMX3/XMM11/
YMM11

C3 CB D3 DB E3 EB F3 FB 011

AH/SPL/rSP/MMX4/
XMM4/YMM4

r12/MMX4/XMM12/
YMM12

C4 CC D4 DC E4 EC F4 FC 100

CH/BPL/rBP/MMX5/
XMM5/YMM5

r13/MMX5/XMM13/
YMM13

C5 CD D5 DD E5 ED F5 FD 101

DH/SIL/rSI/MMX6/
XMM6/YMM6

r14/MMX6/XMM14/
YMM14

C6 CE D6 DE E6 EE F6 FE 110

BH/DIL/rDI/MMX7/
XMM7/YMM7

r15/MMX7/XMM15/
YMM15

C7 CF D7 DF E7 EF F7 FF 111

Table A-35. ModRM Byte Encoding, 32-Bit and 64-Bit Addressing (continued)

Effective Address
ModRM

mod
Field

(binary)

ModRM reg Field1 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

REX.B = 0 REX.B = 1 Complete ModRM Byte (hex)

Notes:
1. See Table A-34 for complete specification of ModRM “reg” field.
2. If SIB.base = 5, the SIB byte is followed by four-byte disp32 field and addressing mode is absolute.
3. In 64-bit mode, the effective address is [rIP]+disp32. In all other modes, the effective address is disp32. If the

address-size prefix is used in 64-bit mode to override 64-bit addressing, the [RIP]+disp32 effective address is trun-
cated after computation to 32 bits.

[AMD Public Use]

Opcode and Operand Encodings 553

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure A-3. SIB Byte Format

Table A-36 shows the encodings for the SIB byte’s base field, which specifies the base register for
addressing. Table A-37 on page 554 shows the encodings for the effective address referenced by a
complete SIB byte, including its scale and index fields. The /0 through /7 notation for the SIB base
field means that the three-bit field contains a value between zero (binary 000) and 7 (binary 111).

Table A-36. Addressing Modes: SIB base Field Encoding

REX.B Bit ModRM mod Field
SIB base Field

/0 /1 /2 /3 /4 /5 /6 /7

0

00

[rAX] [rCX] [rDX] [rBX] [rSP]

disp32

[rSI] [rDI]01 [rBP] + disp8

10 [rBP] + disp32

1

00

[r8] [r9] [r10] [r11] [r12]

disp32

[r14] [r15]01 [r13] + disp8

10 [r13] + disp32

Bits:

scale index base SIB
01234567

REX.X bit of REX prefix can
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

[AMD Public Use]

554 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

Table A-37. Addressing Modes: SIB Byte Encoding

Effective Address SIB
scale
Field

SIB
index
Field

SIB base Field1

REX.B = 0 rAX rCX rDX rBX rSP
note

1
rSI rDI

REX.B = 1 r8 r9 r10 r11 r12
note

1
r14 r15

/0 /1 /2 /3 /4 /5 /6 /7

REX.X = 0 REX.X = 1 Complete SIB Byte (hex)

[rAX] + [base] [r8] + [base]

00

000 00 01 02 03 04 05 06 07

[rCX] + [base] [r9] + [base] 001 08 09 0A 0B 0C 0D 0E 0F

[rDX] + [base] [r10] + [base] 010 10 11 12 13 14 15 16 17

[rBX] + [base] [r11] + [base] 011 18 19 1A 1B 1C 1D 1E 1F

[base] [r12] + [base] 100 20 21 22 23 24 25 26 27

[rBP] + [base] [r13] + [base] 101 28 29 2A 2B 2C 2D 2E 2F

[rSI] + [base] [r14] + [base] 110 30 31 32 33 34 35 36 37

[rDI] + [base] [r15] + [base] 111 38 39 3A 3B 3C 3D 3E 3F

[rAX] * 2 + [base] [r8] * 2 + [base]

01

000 40 41 42 43 44 45 46 47

[rCX] * 2 + [base] [r9] * 2 + [base] 001 48 49 4A 4B 4C 4D 4E 4F

[rDX] * 2 + [base] [r10] * 2 + [base] 010 50 51 52 53 54 55 56 57

[rBX] * 2 + [base] [r11] * 2 + [base] 011 58 59 5A 5B 5C 5D 5E 5F

[base] [r12] * 2 + [base] 100 60 61 62 63 64 65 66 67

[rBP] * 2 + [base] [r13] * 2 + [base] 101 68 69 6A 6B 6C 6D 6E 6F

[rSI] * 2 + [base] [r14] * 2 + [base] 110 70 71 72 73 74 75 76 77

[rDI] * 2 + [base] [r15] * 2 + [base] 111 78 79 7A 7B 7C 7D 7E 7F

[rAX] * 4 + [base] [r8] * 4 + [base]

10

000 80 81 82 83 84 85 86 87

[rCX] * 4 + [base] [r9] * 4 + [base] 001 88 89 8A 8B 8C 8D 8E 8F

[rDX] * 4 + [base] [r10] * 4 + [base] 010 90 91 92 93 94 95 96 97

[rBX] * 4 + [base] [r11] * 4 + [base] 011 98 99 9A 9B 9C 9D 9E 9F

[base] [r12] * 4 + [base] 100 A0 A1 A2 A3 A4 A5 A6 A7

[rBP]*4+[base] [r13] * 4 + [base] 101 A8 A9 AA AB AC AD AE AF

[rSI]*4+[base] [r14] * 4 + [base] 110 B0 B1 B2 B3 B4 B5 B6 B7

[rDI]*4+[base] [r15] * 4 + [base] 111 B8 B9 BA BB BC BD BE BF

Notes:
1. See Table A-36 on page 553 for complete specification of SIB base field.

[AMD Public Use]

Opcode and Operand Encodings 555

24594—Rev. 3.32—March 2021 AMD64 Technology

[rAX] * 8 + [base] [r8] * 8 + [base]

11

000 C0 C1 C2 C3 C4 C5 C6 C7

[rCX] * 8 + [base] [r9] * 8 + [base] 001 C8 C9 CA CB CC CD CE CF

[rDX] * 8 + [base] [r10] * 8 + [base] 010 D0 D1 D2 D3 D4 D5 D6 D7

[rBX] * 8 + [base] [r11] * 8 + [base] 011 D8 D9 DA DB DC DD DE DF

[base] [r12] * 8 + [base] 100 E0 E1 E2 E3 E4 E5 E6 E7

[rBP] * 8 + [base] [r13] * 8 + [base] 101 E8 E9 EA EB EC ED EE EF

[rSI] * 8 + [base] [r14] * 8 + [base] 110 F0 F1 F2 F3 F4 F5 F6 F7

[rDI] * 8 + [base] [r15] * 8 + [base] 111 F8 F9 FA FB FC FD FE FF

Table A-37. Addressing Modes: SIB Byte Encoding (continued)

Effective Address SIB
scale
Field

SIB
index
Field

SIB base Field1

REX.B = 0 rAX rCX rDX rBX rSP
note

1
rSI rDI

REX.B = 1 r8 r9 r10 r11 r12
note

1
r14 r15

/0 /1 /2 /3 /4 /5 /6 /7

REX.X = 0 REX.X = 1 Complete SIB Byte (hex)

Notes:
1. See Table A-36 on page 553 for complete specification of SIB base field.

[AMD Public Use]

556 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 557

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix B General-Purpose Instructions in
64-Bit Mode

This appendix provides details of the general-purpose instructions in 64-bit mode and its differences
from legacy and compatibility modes. The appendix covers only the general-purpose instructions
(those described in Chapter 3, “General-Purpose Instruction Reference”). It does not cover the 128-bit
media, 64-bit media, or x87 floating-point instructions because those instructions are not affected by
64-bit mode, other than in the access by such instructions to extended GPR and XMM registers when
using a REX prefix.

B.1 General Rules for 64-Bit Mode

In 64-bit mode, the following general rules apply to instructions and their operands:

• “Promoted to 64 Bit”: If an instruction’s operand size (16-bit or 32-bit) in legacy and
compatibility modes depends on the CS.D bit and the operand-size override prefix, then the
operand-size choices in 64-bit mode are extended from 16-bit and 32-bit to include 64 bits (with a
REX prefix), or the operand size is fixed at 64 bits. Such instructions are said to be “Promoted to
64 bits” in Table B-1. However, byte-operand opcodes of such instructions are not promoted.

• Byte-Operand Opcodes Not Promoted: As stated above in “Promoted to 64 Bit”, byte-operand
opcodes of promoted instructions are not promoted. Those opcodes continue to operate only on
bytes.

• Fixed Operand Size: If an instruction’s operand size is fixed in legacy mode (thus, independent of
CS.D and prefix overrides), that operand size is usually fixed at the same size in 64-bit mode. For
example, CPUID operates on 32-bit operands, irrespective of attempts to override the operand
size.

• Default Operand Size: The default operand size for most instructions is 32 bits, and a REX prefix
must be used to change the operand size to 64 bits. However, two groups of instructions default to
64-bit operand size and do not need a REX prefix: (1) near branches and (2) all instructions, except
far branches, that implicitly reference the RSP. See Table B-5 on page 587 for a list of all
instructions that default to 64-bit operand size.

• Zero-Extension of 32-Bit Results: Operations on 32-bit operands in 64-bit mode zero-extend the
high 32 bits of 64-bit GPR destination registers.

• No Extension of 8-Bit and 16-Bit Results: Operations on 8-bit and 16-bit operands in 64-bit
mode leave the high 56 or 48 bits, respectively, of 64-bit GPR destination registers unchanged.

• Shift and Rotate Counts: When the operand size is 64 bits, shifts and rotates use one additional
bit (6 bits total) to specify shift-count or rotate-count, allowing 64-bit shifts and rotates.

• Immediates: The maximum size of immediate operands is 32 bits, except that 64-bit immediates
can be MOVed into 64-bit GPRs. Immediates that are less than 64 bits are a maximum of 32 bits,
and are sign-extended to 64 bits during use.

[AMD Public Use]

558 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

• Displacements and Offsets: The maximum size of an address displacement or offset is 32 bits,
except that 64-bit offsets can be used by specific MOV opcodes that read or write AL or rAX.
Displacements and offsets that are less than 64 bits are a maximum of 32 bits, and are sign-
extended to 64 bits during use.

• Undefined High 32 Bits After Mode Change: The processor does not preserve the upper 32 bits
of the 64-bit GPRs across switches from 64-bit mode to compatibility or legacy modes. In
compatibility or legacy mode, the upper 32 bits of the GPRs are undefined and not accessible to
software.

B.2 Operation and Operand Size in 64-Bit Mode

Table B-1 lists the integer instructions, showing operand size in 64-bit mode and the state of the high
32 bits of destination registers when 32-bit operands are used. Opcodes, such as byte-operand versions
of several instructions, that do not appear in Table B-1 are covered by the general rules described in
“General Rules for 64-Bit Mode” on page 557.

Table B-1. Operations and Operands in 64-Bit Mode

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

AAA - ASCII Adjust after Addition
INVALID IN 64-BIT MODE (invalid-opcode exception)

37

AAD - ASCII Adjust AX before Division
INVALID IN 64-BIT MODE (invalid-opcode exception)

D5

AAM - ASCII Adjust AX after Multiply
INVALID IN 64-BIT MODE (invalid-opcode exception)

D4

AAS - ASCII Adjust AL after Subtraction
INVALID IN 64-BIT MODE (invalid-opcode exception)

3F

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 559

24594—Rev. 3.32—March 2021 AMD64 Technology

ADC—Add with Carry

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

11

13

15

81 /2

83 /2

ADD—Signed or Unsigned Add

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

01

03

05

81 /0

83 /0

AND—Logical AND

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

21

23

25

81 /4

83 /4

ARPL - Adjust Requestor Privilege Level
OPCODE USED as MOVSXD in 64-BIT MODE

63

BOUND - Check Array Against Bounds
INVALID IN 64-BIT MODE (invalid-opcode exception)

62

BSF—Bit Scan Forward
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.0F BC

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

560 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

BSR—Bit Scan Reverse
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.0F BD

BSWAP—Byte Swap
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Swap all 8 bytes
of a 64-bit GPR.0F C8 through 0F CF

BT—Bit Test
Promoted to
64 bits.

32 bits No GPR register results.0F A3

0F BA /4

BTC—Bit Test and Complement
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

0F BB

0F BA /7

BTR—Bit Test and Reset
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

0F B3

0F BA /6

BTS—Bit Test and Set
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

0F AB

0F BA /5

CALL—Procedure Call Near See “Near Branches in 64-Bit Mode” in Volume 1.

E8
Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 32-
bit displacement
sign-extended to
64 bits.

FF /2
Promoted to
64 bits.

64 bits Can’t encode.6

RIP = 64-bit
offset from
register or
memory.

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 561

24594—Rev. 3.32—March 2021 AMD64 Technology

CALL—Procedure Call Far See “Branches to 64-Bit Offsets” in Volume 1.

9A INVALID IN 64-BIT MODE (invalid-opcode exception)

FF /3
Promoted to
64 bits.

32 bits

If selector points to a gate, then
RIP = 64-bit offset from gate, else
RIP = zero-extended 32-bit offset
from far pointer referenced in
instruction.

CBW, CWDE, CDQE—Convert Byte to
Word, Convert Word to Doubleword,
Convert Doubleword to Quadword

Promoted to
64 bits.

32 bits

(size of desti-
nation regis-

ter)

CWDE: Converts
word to
doubleword.

Zero-extends
EAX to RAX.

CDQE (new
mnemonic):
Converts
doubleword to
quadword.

RAX = sign-
extended EAX.

98

CDQ see CWD, CDQ, CQO

CDQE (new mnemonic) see CBW, CWDE, CDQE

CDWE see CBW, CWDE, CDQE

CLC—Clear Carry Flag Same as
legacy mode.

Not relevant. No GPR register results.
F8

CLD—Clear Direction Flag Same as
legacy mode.

Not relevant. No GPR register results.
FC

CLFLUSH—Cache Line Invalidate Same as
legacy mode.

Not relevant. No GPR register results.
0F AE /7

CLGI—Clear Global Interrupt Same as
legacy mode

Not relevant No GPR register results.
0F 01 DD

CLI—Clear Interrupt Flag Same as
legacy mode.

Not relevant. No GPR register results.
FA

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

562 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

CLTS—Clear Task-Switched Flag in
CR0 Same as

legacy mode.
Not relevant. No GPR register results.

0F 06

CMC—Complement Carry Flag Same as
legacy mode.

Not relevant. No GPR register results.
F5

CMOVcc—Conditional Move

Promoted to
64 bits.

32 bits

Zero-extends 32-
bit register
results to 64 bits.
This occurs even
if the condition is
false.

0F 40 through 0F 4F

CMP—Compare

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

39

3B

3D

81 /7

83 /7

CMPS, CMPSW, CMPSD, CMPSQ—
Compare Strings

Promoted to
64 bits.

32 bits

CMPSD:
Compare String
Doublewords.

See footnote5

CMPSQ (new
mnemonic):
Compare String
Quadwords

See footnote5
A7

CMPXCHG—Compare and Exchange
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.0F B1

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 563

24594—Rev. 3.32—March 2021 AMD64 Technology

CMPXCHG8B—Compare and
Exchange Eight Bytes

Same as
legacy mode.

32 bits.
Zero-extends
EDX and EAX to
64 bits.

CMPXCHG16B
(new mne-

monic): Com-
pare and

Exchange 16
Bytes.

0F C7 /1

CPUID—Processor Identification
Same as
legacy mode.

Operand size
fixed at 32

bits.

Zero-extends 32-bit register results
to 64 bits. 0F A2

CQO (new mnemonic) see CWD, CDQ, CQO

CWD, CDQ, CQO—Convert Word to
Doubleword, Convert Doubleword to
Quadword, Convert Quadword to Double
Quadword

Promoted to
64 bits.

32 bits

(size of desti-
nation regis-

ter)

CDQ: Converts
doubleword to
quadword.

Sign-extends
EAX to EDX.
Zero-extends
EDX to RDX.
RAX is
unchanged.

CQO (new
mnemonic):
Converts
quadword to
double
quadword.

Sign-extends
RAX to RDX.
RAX is
unchanged.

99

DAA - Decimal Adjust AL after Addition
INVALID IN 64-BIT MODE (invalid-opcode exception)

27

DAS - Decimal Adjust AL after
Subtraction INVALID IN 64-BIT MODE (invalid-opcode exception)

2F

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

564 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

DEC—Decrement by 1

FF /1
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

48 through 4F OPCODE USED as REX PREFIX in 64-BIT MODE

DIV—Unsigned Divide

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX
contain a 64-bit
quotient (RAX)
and 64-bit
remainder
(RDX).

F7 /6

ENTER—Create Procedure Stack
Frame Promoted to

64 bits.
64 bits Can’t encode6

C8

HLT—Halt Same as
legacy mode.

Not relevant. No GPR register results.
F4

IDIV—Signed Divide

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX
contain a 64-bit
quotient (RAX)
and 64-bit
remainder
(RDX).

F7 /7

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 565

24594—Rev. 3.32—March 2021 AMD64 Technology

IMUL - Signed Multiply

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX = RAX
* reg/mem64
(i.e., 128-bit
result)

F7 /5

0F AF
reg64 = reg64 *
reg/mem64

69
reg64 =
reg/mem64 *
imm32

6B
reg64 =
reg/mem64 *
imm8

IN—Input From Port
Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.

E5

ED

INC—Increment by 1
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.FF /0

40 through 47 OPCODE USED as REX PREFIX in 64-BIT MODE

INS, INSW, INSD—Input String
Same as
legacy mode.

32 bits

INSD: Input String Doublewords.

No GPR register results.

See footnote56D

INT n—Interrupt to Vector

Promoted to
64 bits.

Not relevant.
See “Long-Mode Interrupt Control
Transfers” in Volume 2.

CD

INT3—Interrupt to Debug Vector

CC

INTO - Interrupt to Overflow Vector
INVALID IN 64-BIT MODE (invalid-opcode exception)

CE

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

566 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

INVD—Invalidate Internal Caches Same as
legacy mode.

Not relevant. No GPR register results.
0F 08

INVLPG—Invalidate TLB Entry Promoted to
64 bits.

Not relevant. No GPR register results.
0F 01 /7

INVLPGA—Invalidate TLB Entry in a
Specified ASID

Same as
legacy mode.

Not relevant. No GPR register results.

IRET, IRETD, IRETQ—Interrupt Return

Promoted to
64 bits.

32 bits

IRETD: Interrupt
Return
Doubleword.

See “Long-Mode
Interrupt Control
Transfers” in
Volume 2.

IRETQ (new
mnemonic):
Interrupt Return
Quadword.

See “Long-Mode
Interrupt Control
Transfers” in
Volume 2.

CF

Jcc—Jump Conditional See “Near Branches in 64-Bit Mode” in Volume 1.

70 through 7F

Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

0F 80 through 0F 8F

RIP = RIP + 32-
bit displacement
sign-extended to
64 bits.

JCXZ, JECXZ, JRCXZ—Jump on
CX/ECX/RCX Zero

Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

See footnote5
E3

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 567

24594—Rev. 3.32—March 2021 AMD64 Technology

JMP—Jump Near See “Near Branches in 64-Bit Mode” in Volume 1.

EB

Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

E9

RIP = RIP + 32-
bit displacement
sign-extended to
64 bits.

FF /4

RIP = 64-bit
offset from
register or
memory.

JMP—Jump Far See “Branches to 64-Bit Offsets” in Volume 1.

EA INVALID IN 64-BIT MODE (invalid-opcode exception)

FF /5
Promoted to
64 bits.

32 bits

If selector points to a gate, then
RIP = 64-bit offset from gate, else
RIP = zero-extended 32-bit offset
from far pointer referenced in
instruction.

LAHF - Load Status Flags into AH
Register Same as leg-

acy mode.
Not relevant.

9F

LAR—Load Access Rights Byte
Same as
legacy mode.

32 bits
Zero-extends 32-
bit register
results to 64 bits. 0F 02

LDS - Load DS Far Pointer
INVALID IN 64-BIT MODE (invalid-opcode exception)

C5

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

568 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

LEA—Load Effective Address
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.8D

LEAVE—Delete Procedure Stack Frame Promoted to
64 bits.

64 bits Can’t encode6
C9

LES - Load ES Far Pointer
INVALID IN 64-BIT MODE (invalid-opcode exception)

C4

LFENCE—Load Fence Same as
legacy mode.

Not relevant. No GPR register results.
0F AE /5

LFS—Load FS Far Pointer Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.0F B4

LGDT—Load Global Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.

Loads 8-byte base and 2-byte limit.
0F 01 /2

LGS—Load GS Far Pointer Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.0F B5

LIDT—Load Interrupt Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.

Loads 8-byte base and 2-byte limit.
0F 01 /3

LLDT—Load Local Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 16

bits.

No GPR register results.

References 16-byte descriptor to
load 64-bit base.0F 00 /2

LMSW—Load Machine Status Word
Same as
legacy mode.

Operand size
fixed at 16

bits.
No GPR register results.

0F 01 /6

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 569

24594—Rev. 3.32—March 2021 AMD64 Technology

LODS, LODSW, LODSD, LODSQ—
Load String

Promoted to
64 bits.

32 bits

LODSD: Load
String
Doublewords.
Zero-extends 32-
bit register
results to 64 bits.

See footnote5

LODSQ (new
mnemonic): Load
String
Quadwords.

See footnote5
AD

LOOP—Loop

Promoted to
64 bits.

64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

See footnote5

E2

LOOPZ, LOOPE—Loop if Zero/Equal

E1

LOOPNZ, LOOPNE—Loop if Not
Zero/Equal

E0

LSL—Load Segment Limit Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.0F 03

LSS —Load SS Segment Register Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.0F B2

LTR—Load Task Register
Promoted to
64 bits.

Operand size
fixed at 16

bits.

No GPR register results.

References 16-byte descriptor to
load 64-bit base.0F 00 /3

LZCNT—Count Leading Zeros
F3 0F BD

Promoted to
64 bits.

32 bits
Zero-extends 32-bit register results
to 64 bits.

MFENCE—Memory Fence Same as
legacy mode.

Not relevant. No GPR register results.
0F AE /6

MONITOR—Setup Monitor Address
0F 01 C8

Same as
legacy mode.

Operand size
fixed at 32
bits.

No GPR register results.

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

570 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

MOV—Move

Promoted to
64 bits.

32 bits

Zero-extends 32-
bit register
results to 64 bits.

89

8B

C7
32-bit immediate
is sign-extended
to 64 bits.

B8 through BF 64-bit immediate.

A1 (moffset) Zero-extends 32-
bit register
results to 64 bits.

Memory offsets
are address-
sized and default
to 64 bits.

Memory offsets
are address-
sized and default
to 64 bits. A3 (moffset)

MOV—Move to/from Segment Registers

Same as
legacy mode.

32 bits
Zero-extends 32-bit register results
to 64 bits.8C

8E
Operand size
fixed at 16
bits.

No GPR register results.

MOV(CRn)—Move to/from Control
Registers Promoted to

64 bits.

Operand size
fixed at 64

bits.

The high 32 bits of control registers
differ in their writability and reserved
status. See “System Resources” in
Volume 2 for details.

0F 22

0F 20

MOV(DRn)—Move to/from Debug
Registers

Promoted to
64 bits.

Operand size
fixed at 64

bits.

The high 32 bits of debug registers
differ in their writability and reserved
status. See “Debug and
Performance Resources” in
Volume 2 for details.

0F 21

0F 23

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 571

24594—Rev. 3.32—March 2021 AMD64 Technology

MOVD—Move Doubleword or
Quadword

Promoted to
64 bits.

32 bits

Zero-extends 32-
bit register
results to 64 bits.

0F 6E

0F 7E

66 0F 6E Zero-extends 32-
bit register
results to 128
bits.

Zero-extends 64-
bit register
results to 128
bits.

66 0F 7E

MOVNTI—Move Non-Temporal
Doubleword Promoted to

64 bits.
32 bits No GPR register results.

0F C3

MOVS, MOVSW, MOVSD, MOVSQ—
Move String

Promoted to
64 bits.

32 bits

MOVSD: Move
String
Doublewords.

See footnote5

MOVSQ (new
mnemonic):
Move String
Quadwords.

See footnote5
A5

MOVSX—Move with Sign-Extend

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

0F BE
Sign-extends
byte to
quadword.

0F BF
Sign-extends
word to
quadword.

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

572 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

MOVSXD—Move with Sign-Extend
Doubleword

New
instruction,
available only
in 64-bit
mode. (In
other modes,
this opcode
is ARPL
instruction.)

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Sign-extends
doubleword to
quadword.63

MOVZX—Move with Zero-Extend

Zero-extends 32-
bit register
results to 64 bits.

0F B6

Promoted to
64 bits.

32 bits

Zero-extends
byte to
quadword.

0F B7
Zero-extends
word to
quadword.

MUL—Multiply Unsigned
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX=RAX *
quadword in
register or
memory.

F7 /4

MWAIT—Monitor Wait

0F 01 C9
Same as
legacy mode.

Operand size
fixed at 32
bits.

No GPR register results.

NEG—Negate Two’s Complement
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.F7 /3

NOP—No Operation Same as
legacy mode.

Not relevant. No GPR register results.
90

NOT—Negate One’s Complement
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.F7 /2

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 573

24594—Rev. 3.32—March 2021 AMD64 Technology

OR—Logical OR

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

09

0B

0D

81 /1

83 /1

OUT—Output to Port
Same as
legacy mode.

32 bits No GPR register results.E7

EF

OUTS, OUTSW, OUTSD—Output String
Same as
legacy mode.

32 bits

Writes doubleword to I/O port.

No GPR register results.

See footnote56F

PAUSE—Pause Same as
legacy mode.

Not relevant. No GPR register results.
F3 90

POP—Pop Stack
Promoted to
64 bits.

64 bits Cannot encode6 No GPR register
results.

8F /0

58 through 5F

POP—Pop (segment register from)
Stack Same as

legacy mode.
64 bits Cannot encode6 No GPR register

results.0F A1 (POP FS)

0F A9 (POP GS)

1F (POP DS)

INVALID IN 64-BIT MODE (invalid-opcode exception)07 (POP ES)

17 (POP SS)

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

574 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

POPA, POPAD—Pop All to GPR Words
or Doublewords INVALID IN 64-BIT MODE (invalid-opcode exception)

61

POPCNT—Bit Population Count

F3 0F B8
Promoted to
64 bits.

32 bits
Zero-extends 32-bit register results
to 64 bits.

POPF, POPFD, POPFQ—Pop to
rFLAGS Word, Doublword, or Quadword

Promoted to
64 bits.

64 bits Cannot encode6

POPFQ (new
mnemonic): Pops
64 bits off stack,
writes low 32 bits
into EFLAGS and
zero-extends the
high 32 bits of
RFLAGS.

9D

PREFETCH—Prefetch L1 Data-Cache
Line Same as

legacy mode.
Not relevant. No GPR register results.

0F 0D /0

PREFETCHlevel—Prefetch Data to
Cache Level level Same as

legacy mode.
Not relevant. No GPR register results.

0F 18 /0-3

PREFETCHW—Prefetch L1 Data-Cache
Line for Write Same as

legacy mode.
Not relevant. No GPR register results.

0F 0D /1

PUSH—Push onto Stack

Promoted to
64 bits.

64 bits Cannot encode6

FF /6

50 through 57

6A

68

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 575

24594—Rev. 3.32—March 2021 AMD64 Technology

PUSH—Push (segment register) onto
Stack Promoted to

64 bits.
64 bits Cannot encode6

0F A0 (PUSH FS)

0F A8 (PUSH GS)

0E (PUSH CS)

INVALID IN 64-BIT MODE (invalid-opcode exception)
1E (PUSH DS)

06 (PUSH ES)

16 (PUSH SS)

PUSHA, PUSHAD - Push All to GPR
Words or Doublewords INVALID IN 64-BIT MODE (invalid-opcode exception)

60

PUSHF, PUSHFD, PUSHFQ—Push
rFLAGS Word, Doubleword, or
Quadword onto Stack

Promoted to
64 bits.

64 bits Cannot encode6

PUSHFQ (new
mnemonic):
Pushes the 64-bit
RFLAGS
register. 9C

RCL—Rotate Through Carry Left

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /2

D3 /2

C1 /2

RCR—Rotate Through Carry Right

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /3

D3 /3

C1 /3

RDMSR—Read Model-Specific Register
Same as
legacy mode.

Not relevant.

RDX[31:0] contains MSR[63:32],
RAX[31:0] contains MSR[31:0].
Zero-extends 32-bit register results
to 64 bits.

0F 32

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

576 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

RDPMC—Read Performance-
Monitoring Counters Same as

legacy mode.
Not relevant.

RDX[31:0] contains PMC[63:32],
RAX[31:0] contains PMC[31:0].
Zero-extends 32-bit register results
to 64 bits. 0F 33

RDTSC—Read Time-Stamp Counter
Same as
legacy mode.

Not relevant.

RDX[31:0] contains TSC[63:32],
RAX[31:0] contains TSC[31:0].
Zero-extends 32-bit register results
to 64 bits.

0F 31

RDTSCP—Read Time-Stamp Counter
and Processor ID

Same as
legacy mode.

Not relevant.

RDX[31:0] contains TSC[63:32],
RAX[31:0] contains TSC[31:0].
RCX[31:0] contains the TSC_AUX
MSR C000_0103h[31:0]. Zero-
extends 32-bit register results to 64
bits.

0F 01 F9

REP INS—Repeat Input String Same as
legacy mode.

32 bits
Reads doubleword I/O port.

See footnote5F3 6D

REP LODS—Repeat Load String
Promoted to
64 bits.

32 bits

Zero-extends
EAX to 64 bits.

See footnote5
See footnote5

F3 AD

REP MOVS—Repeat Move String Promoted to
64 bits.

32 bits
No GPR register results.

See footnote5F3 A5

REP OUTS—Repeat Output String to
Port Same as

legacy mode.
32 bits

Writes doubleword to I/O port.

No GPR register results.

See footnote5F3 6F

REP STOS—Repeat Store String Promoted to
64 bits.

32 bits
No GPR register results.

See footnote5F3 AB

REPx CMPS —Repeat Compare String Promoted to
64 bits.

32 bits
No GPR register results.

See footnote5F3 A7

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 577

24594—Rev. 3.32—March 2021 AMD64 Technology

REPx SCAS —Repeat Scan String Promoted to
64 bits.

32 bits
No GPR register results.

See footnote5F3 AF

RET—Return from Call Near See “Near Branches in 64-Bit Mode” in Volume 1.

C2 Promoted to
64 bits.

64 bits Cannot encode.6
No GPR register
results. C3

RET—Return from Call Far
Promoted to
64 bits.

32 bits
See “Control Transfers” in Volume 1
and “Control-Transfer Privilege
Checks” in Volume 2.

CB

CA

ROL—Rotate Left

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /0

D3 /0

C1 /0

ROR—Rotate Right

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /1

D3 /1

C1 /1

RSM—Resume from System
Management Mode

New SMM
state-save
area.

Not relevant.
See “System-Management Mode” in
Volume 2.

0F AA

SAHF—Store AH into Flags Same as leg-
acy mode.

Not relevant. No GPR register results.
9E

SAL—Shift Arithmetic Left

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /4

D3 /4

C1 /4

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

578 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

SAR—Shift Arithmetic Right

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /7

D3 /7

C1 /7

SBB—Subtract with Borrow

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

19

1B

1D

81 /3

83 /3

SCAS, SCASW, SCASD, SCASQ—
Scan String

Promoted to
64 bits.

32 bits

SCASD: Scan
String
Doublewords.

Zero-extends 32-
bit register
results to 64 bits.

See footnote5

SCASQ (new
mnemonic): Scan
String
Quadwords.

See footnote5
AF

SFENCE—Store Fence Same as
legacy mode.

Not relevant. No GPR register results.
0F AE /7

SGDT—Store Global Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.

Stores 8-byte base and 2-byte limit.
0F 01 /0

SHL—Shift Left

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /4

D3 /4

C1 /4

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 579

24594—Rev. 3.32—March 2021 AMD64 Technology

SHLD—Shift Left Double
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count. 0F A4

0F A5

SHR—Shift Right

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /5

D3 /5

C1 /5

SHRD—Shift Right Double
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count. 0F AC

0F AD

SIDT—Store Interrupt Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.

Stores 8-byte base and 2-byte limit.
0F 01 /1

SKINIT—Secure Init and Jump with
Attestation

0F 01 DE

Same as
legacy mode.

Not relevant
Zero-extends 32-
bit register
results to 64 bits.

SLDT—Store Local Descriptor Table
Register Same as

legacy mode.
32

Zero-extends 2-byte LDT selector to
64 bits.

0F 00 /0

SMSW—Store Machine Status Word
Same as
legacy mode.

32
Zero-extends 32-
bit register
results to 64 bits.

Stores 64-bit
machine status

word (CR0).0F 01 /4

STC—Set Carry Flag Same as
legacy mode.

Not relevant. No GPR register results.
F9

STD—Set Direction Flag Same as
legacy mode.

Not relevant. No GPR register results.
FD

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

580 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

STGI—Set Global Interrupt Flag Same as
legacy mode.

Not relevant.
No GPR register results.

0F 01 DC

STI - Set Interrupt Flag Same as
legacy mode.

Not relevant. No GPR register results.
FB

STOS, STOSW, STOSD, STOSQ- Store
String

Promoted to
64 bits.

32 bits

STOSD: Store
String
Doublewords.

See footnote5

STOSQ (new
mnemonic):
Store String
Quadwords.

See footnote5
AB

STR—Store Task Register Same as
legacy mode.

32
Zero-extends 2-byte TR selector to
64 bits. 0F 00 /1

SUB—Subtract

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

29

2B

2D

81 /5

83 /5

SWAPGS—Swap GS Register with
KernelGSbase MSR

New
instruction,
available only
in 64-bit
mode. (In
other modes,
this opcode
is invalid.)

Not relevant.
See “SWAPGS Instruction” in
Volume 2.

0F 01 /7

SYSCALL—Fast System Call Promoted to
64 bits.

Not relevant.
See “SYSCALL and SYSRET
Instructions” in Volume 2 for details.0F 05

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 581

24594—Rev. 3.32—March 2021 AMD64 Technology

SYSENTER—System Call
INVALID IN LONG MODE (invalid-opcode exception)

0F 34

SYSEXIT—System Return
INVALID IN LONG MODE (invalid-opcode exception)

0F 35

SYSRET—Fast System Return Promoted to
64 bits.

32 bits
See “SYSCALL and SYSRET
Instructions” in Volume 2 for details.0F 07

TEST—Test Bits

Promoted to
64 bits.

32 bits No GPR register results.
85

A9

F7 /0

UD2—Undefined Operation Same as
legacy mode.

Not relevant. No GPR register results.
0F 0B

VERR—Verify Segment for Reads
Same as
legacy mode.

Operand size
fixed at 16

bits
No GPR register results.

0F 00 /4

VERW—Verify Segment for Writes
Same as
legacy mode.

Operand size
fixed at 16

bits
No GPR register results.

0F 00 /5

VMLOAD—Load State from VMCB Same as
legacy mode.

Not relevant. No GPR register results.
0F 01 DA

VMMCALL—Call VMM Same as
legacy mode.

Not relevant. No GPR register results.
0F 01 D9

VMRUN—Run Virtual Machine Same as
legacy mode.

Not relevant. No GPR register results.
0F 01 D8

VMSAVE—Save State to VMCB Same as
legacy mode.

Not relevant. No GPR register results.
0F 01 DB

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

582 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

WAIT—Wait for Interrupt Same as
legacy mode.

Not relevant. No GPR register results.
9B

WBINVD—Writeback and Invalidate All
Caches Same as

legacy mode.
Not relevant. No GPR register results.

0F 09

WRMSR—Write to Model-Specific
Register Same as

legacy mode.
Not relevant.

No GPR register results.

MSR[63:32] = RDX[31:0]
MSR[31:0] = RAX[31:0]0F 30

XADD—Exchange and Add
Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.0F C1

XCHG—Exchange Register/Memory
with Register Promoted to

64 bits.
32 bits

Zero-extends 32-
bit register
results to 64 bits.

87

90

XOR—Logical Exclusive OR

Promoted to
64 bits.

32 bits
Zero-extends 32-
bit register
results to 64 bits.

31

33

35

81 /6

83 /6

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and

Opcode (hex)1
Type of

Operation2

Default
Operand

Size3

For 32-Bit

Operand Size4
For 64-Bit

Operand Size4

Notes:
1. See “General Rules for 64-Bit Mode” on page 557, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 557 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 583

24594—Rev. 3.32—March 2021 AMD64 Technology

B.3 Invalid and Reassigned Instructions in 64-Bit Mode

Table B-2 lists instructions that are illegal in 64-bit mode. Attempted use of these instructions
generates an invalid-opcode exception (#UD).

Table B-2. Invalid Instructions in 64-Bit Mode

Mnemonic
Opcode

(hex)
Description

AAA 37 ASCII Adjust After Addition

AAD D5 ASCII Adjust Before Division

AAM D4 ASCII Adjust After Multiply

AAS 3F ASCII Adjust After Subtraction

BOUND 62 Check Array Bounds

CALL (far) 9A Procedure Call Far (far absolute)

DAA 27 Decimal Adjust after Addition

DAS 2F Decimal Adjust after Subtraction

INTO CE Interrupt to Overflow Vector

JMP (far) EA Jump Far (absolute)

LDS C5 Load DS Far Pointer

LES C4 Load ES Far Pointer

POP DS 1F Pop Stack into DS Segment

POP ES 07 Pop Stack into ES Segment

POP SS 17 Pop Stack into SS Segment

POPA, POPAD 61 Pop All to GPR Words or Doublewords

PUSH CS 0E Push CS Segment Selector onto Stack

PUSH DS 1E Push DS Segment Selector onto Stack

PUSH ES 06 Push ES Segment Selector onto Stack

PUSH SS 16 Push SS Segment Selector onto Stack

PUSHA,
PUSHAD

60 Push All to GPR Words or Doublewords

Redundant Grp1 82 /2
Redundant encoding of group1 Eb,Ib
opcodes

SALC D6 Set AL According to CF

[AMD Public Use]

584 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

Table B-3 lists instructions that are reassigned to different functions in 64-bit mode. Attempted use of
these instructions generates the reassigned function.

Table B-4 lists instructions that are illegal in long mode. Attempted use of these instructions generates
an invalid-opcode exception (#UD).

B.4 Instructions with 64-Bit Default Operand Size

In 64-bit mode, two groups of instructions default to 64-bit operand size without the need for a REX
prefix:

• Near branches —CALL, Jcc, JrCX, JMP, LOOP, and RET.

• All instructions, except far branches, that implicitly reference the RSP—CALL, ENTER, LEAVE,
POP, PUSH, and RET (CALL and RET are in both groups of instructions).

Table B-5 lists these instructions.

Table B-3. Reassigned Instructions in 64-Bit Mode

Mnemonic
Opcode

(hex)
Description

ARPL 63
Opcode for MOVSXD instruction in 64-bit
mode. In all other modes, this is the Adjust
Requestor Privilege Level instruction opcode.

DEC and INC 40-4F
REX prefixes in 64-bit mode. In all other
modes, decrement by 1 and increment by 1.

LDS C5
VEX Prefix. Introduces the VEX two-byte
instruction encoding escape sequence.

LES C4
VEX Prefix. Introduces the VEX three-byte
instruction encoding escape sequence.

Table B-4. Invalid Instructions in Long Mode

Mnemonic
Opcode

(hex)
Description

SYSENTER 0F 34 System Call

SYSEXIT 0F 35 System Return

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 585

24594—Rev. 3.32—March 2021 AMD64 Technology

The 64-bit default operand size can be overridden to 16 bits using the 66h operand-size override.
However, it is not possible to override the operand size to 32 bits because there is no 32-bit operand-
size override prefix for 64-bit mode. See “Operand-Size Override Prefix” on page 7 for details.

B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode

In 64-bit mode, the legacy encodings for the 16 single-byte INC and DEC instructions (one for each of
the eight GPRs) are used to encode the REX prefix values, as described in “REX Prefix” on page 14.
Therefore, these single-byte opcodes for INC and DEC are not available in 64-bit mode, although they
are available in legacy and compatibility modes. The functionality of these INC and DEC instructions
is still available in 64-bit mode, however, using the ModRM forms of those instructions (opcodes FF/0
and FF/1).

Table B-5. Instructions Defaulting to 64-Bit Operand Size

Mnemonic
Opcode

(hex)

Implicitly
Reference

RSP
Description

CALL E8, FF /2 yes Call Procedure Near

ENTER C8 yes Create Procedure Stack Frame

Jcc many no Jump Conditional Near

JMP E9, EB, FF /4 no Jump Near

LEAVE C9 yes Delete Procedure Stack Frame

LOOP E2 no Loop

LOOPcc E0, E1 no Loop Conditional

POP reg/mem 8F /0 yes Pop Stack (register or memory)

POP reg 58-5F yes Pop Stack (register)

POP FS 0F A1 yes Pop Stack into FS Segment Register

POP GS 0F A9 yes Pop Stack into GS Segment Register

POPF, POPFD, POPFQ 9D yes Pop to rFLAGS Word, Doubleword, or Quadword

PUSH imm8 6A yes Push onto Stack (sign-extended byte)

PUSH imm32 68 yes Push onto Stack (sign-extended doubleword)

PUSH reg/mem FF /6 yes Push onto Stack (register or memory)

PUSH reg 50-57 yes Push onto Stack (register)

PUSH FS 0F A0 yes Push FS Segment Register onto Stack

PUSH GS 0F A8 yes Push GS Segment Register onto Stack

PUSHF, PUSHFD,
PUSHFQ

9C yes
Push rFLAGS Word, Doubleword, or Quadword
onto Stack

RET C2, C3 yes Return From Call (near)

[AMD Public Use]

586 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

B.6 NOP in 64-Bit Mode

Programs written for the legacy x86 architecture commonly use opcode 90h (the XCHG EAX, EAX
instruction) as a one-byte NOP. In 64-bit mode, the processor treats opcode 90h specially in order to
preserve this legacy NOP use. Without special handling in 64-bit mode, the instruction would not be a
true no-operation. Therefore, in 64-bit mode the processor treats XCHG EAX, EAX as a true NOP,
regardless of operand size.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction. Unless a
64-bit operand size is specified using a REX prefix byte, using the two byte form of XCHG to
exchange a register with itself will not result in a no-operation because the default operation size is 32
bits in 64-bit mode.

B.7 Segment Override Prefixes in 64-Bit Mode

In 64-bit mode, the CS, DS, ES, SS segment-override prefixes have no effect. These four prefixes are
no longer treated as segment-override prefixes in the context of multiple-prefix rules. Instead, they are
treated as null prefixes.

The FS and GS segment-override prefixes are treated as true segment-override prefixes in 64-bit
mode. Use of the FS and GS prefixes cause their respective segment bases to be added to the effective
address calculation. See “FS and GS Registers in 64-Bit Mode” in Volume 2 for details.

[AMD Public Use]

General-Purpose Instructions in 64-Bit Mode 587

24594—Rev. 3.32—March 2021 AMD64 Technology

[AMD Public Use]

588 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

Differences Between Long Mode and Legacy Mode 589

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix C Differences Between Long Mode and
Legacy Mode

Table C-1 summarizes the major differences between 64-bit mode and legacy protected mode. The
third column indicates differences between 64-bit mode and legacy mode. The fourth column indicates
whether that difference also applies to compatibility mode.

Table C-1. Differences Between Long Mode and Legacy Mode

Type Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

Application
Programming

Addressing RIP-relative addressing available

no

Data and Address
Sizes

Default data size is 32 bits

REX Prefix toggles data size to 64 bits

Default address size is 64 bits

Address size prefix toggles address size to 32 bits

Instruction
Differences

Various opcodes are invalid or changed in 64-bit
mode (see Table B-2 on page 585 and Table B-3 on
page 586)

Various opcodes are invalid in long mode (see
Table B-4 on page 586)

yes

MOV reg,imm32 becomes MOV reg,imm64 (with
REX operand size prefix)

no

REX is always enabled

Direct-offset forms of MOV to or from accumulator
become 64-bit offsets

MOVD extended to MOV 64 bits between MMX
registers and long GPRs (with REX operand-size
prefix)

[AMD Public Use]

590 Differences Between Long Mode and Legacy Mode

AMD64 Technology 24594—Rev. 3.32—March 2021

System
Programming

x86 Modes Real and virtual-8086 modes not supported yes

Task Switching Task switching not supported yes

Addressing

64-bit virtual addresses

yes4-level paging structures

PAE must always be enabled

Segmentation

CS, DS, ES, SS segment bases are ignored

noCS, DS, ES, FS, GS, SS segment limits are ignored

CS, DS, ES, SS Segment prefixes are ignored

Exception and
Interrupt Handling

All pushes are 8 bytes

yes

16-bit interrupt and trap gates are illegal

32-bit interrupt and trap gates are redefined as 64-bit
gates and are expanded to 16 bytes

SS is set to null on stack switch

SS:RSP is pushed unconditionally

Call Gates

All pushes are 8 bytes

yes

16-bit call gates are illegal

32-bit call gate type is redefined as 64-bit call gate
and is expanded to 16 bytes.

SS is set to null on stack switch

System-Descriptor
Registers

GDT, IDT, LDT, TR base registers expanded to 64
bits

yes

System-Descriptor
Table Entries and
Pseudo-descriptors

LGDT and LIDT use expanded 10-byte pseudo-
descriptors. no

LLDT and LTR use expanded 16-byte table entries.

Table C-1. Differences Between Long Mode and Legacy Mode (continued)

Type Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

[AMD Public Use]

Instruction Subsets and CPUID Feature Flags 591

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix D Instruction Subsets and CPUID
Feature Flags

This appendix provides information that can be used to determine if a specific instruction within the
AMD64 instruction-set architecture (ISA) is supported on a processor.

Originally the x86 ISA was composed of a set of instructions from the general-purpose and system
instruction groups. This set forms the base of the AMD64 ISA. As the ISA expanded over time, new
instructions were added. Each addition constituted either a single instruction or a set of instructions
and each addition was assigned a specific processor feature flag.

Although most current processor products support the entire ISA, support for each added instruction or
instruction subset is optional and must be confirmed by testing the corresponding feature flag. The
presence of a particular instruction or subset is indicated by the corresponding feature flag being set. A
feature flag is a single bit value located at a specific bit position within the 32-bit value returned in a
register as a result of executing the CPUID instruction.

For more information on using the CPUID instruction, see the instruction reference page for CPUID
on page 160. For a comprehensive list of processor feature flags accessed using the CPUID
instruction, see Appendix E, “Obtaining Processor Information Via the CPUID Instruction” on
page 597.

[AMD Public Use]

592 Instruction Subsets and CPUID Feature Flags

AMD64 Technology 24594—Rev. 3.32—March 2021

D.1 Instruction Set Overview

The AMD64 ISA can be organized into five instruction groups:

1. General-purpose instructions

These instructions operate on the general-purpose registers (GP registers) and can be used at all
privilege levels. This group includes instructions to load and store the contents of a GP register to
and from memory, move values between the GP registers, and perform arithmetic and logical
operations on the contents of the registers.

2. System instructions

These instructions provide the means to manipulate the processor operating mode, access
processor resources, handle program and system errors, and manage system memory. Many of
these instructions require privilege level 0 to execute.

3. x87 instructions

These instructions are available at all privilege levels and include legacy floating-point
instructions that use the ST(0)–ST(7) stack registers (FPR0–FPR7 physical registers) and
internally use extended precision (80-bit) binary floating-point representation and operations.

4. 64-bit media Instructions

These instructions are available at all privilege levels and perform vector operations on packed
integer and floating-point values held in the 64-bit MMX™ registers. The MMX register set
overlays the FPR0–FPR7 physical registers. This group is composed of the MMX and 3DNow!™
instruction subsets and was subsequently expanded by the MMX and 3DNow! extensions subsets.

5. SSE instructions

The SSE instructions operate on packed integer and floating-point values held in the XMM / YMM
registers. SSE includes the original Streaming SIMD Extensions, all the subsequent named SSE
subsets, and the AVX, XOP, and AES instructions.

Figure D-1 on page 593 represents the relationship between the five major instruction groups and the
named instruction subsets. Circles represent the instruction subsets. These include the base instruction
set labeled “Base Instructions” in the diagram and the named subsets. The diagram omits individual
optional instructions and some of the minor named instruction subsets. Dashed-line polygons
represent the instruction groups.

Note that the 128-bit and 256-bit media instructions are referred to collectively as the Streaming SIMD
Extensions (SSE). This is also the name of the original SSE subset. In the diagram the original SSE
subset is labeled “SSE1 Instructions.” Collectively the 64-bit media and the SSE instructions make up
the single instruction / multiple data (SIMD) group (labeled “SIMD Instructions” in the diagram).

The overlapping of the SSE and 64-bit media instruction subsets indicates that these subsets share
some common mnemonics. However, these common mnemonics either have distinct opcodes for each
subset or they take operands in both the MMX and XMM register sets.

The horizontal axis of Figure D-1 shows how the subsets have evolved over time.

[AMD Public Use]

Instruction Subsets and CPUID Feature Flags 593

24594—Rev. 3.32—March 2021 AMD64 Technology

Figure D-1. AMD64 ISA Instruction Subsets

AMD 3DNow!™
Instructions

MMX™

x87 Instructions

Instructions

General-Purpose Instructions

x87 Instructions

System Instructions

AMD Extension
to

3DNow!™
Instructions

SSE1
Instructions

SSE3
Instructions

128-Bit Media
Instructions

64-Bit Media
Instructions

Time of Introduction

Dashed-line boxes show instruction groups.
Circles show major named instruction subsets.
(Minor instruction subsets are not shown.)

Base
Instructions

Long-Mode
Instructions

SSE4A
Instructions

AMD Extensions
to MMX™

Instructions

SVM
Instructions

SSE2
Instructions

AVX
Instructions

XOP
Instructions

256-Bit Media
Instructions

SIMD Instructions

Streaming SIMD Extensions

[AMD Public Use]

594 Instruction Subsets and CPUID Feature Flags

AMD64 Technology 24594—Rev. 3.32—March 2021

D.2 CPUID Feature Flags Related to Instruction Support

Only a subset of the CPUID feature flags provides information related to instruction support.

The feature flags related to supported instruction subsets are accessed via the standard function
number 0000_0001h, the extended function number 8000_0001h, and the structured extended
function number 0000_0007h.

The following table lists all flags related to instruction support. Entries for each flag provide the
instruction or instruction subset corresponding to the flag, the CPUID function that must be executed
to access the flag, and the bit position of the flag in the return value.

Table D-1. Feature Flags for Instruction / Instruction Subset Support

Feature Flag Instruction or Subset CPUID Function1 Feature Flag Bit Position2

3DNow 3DNow! extended EDX[31]

3DNowExt 3DNow! Extensions extended EDX[30]

3DNowPrefetch
PREFETCH /
PREFETCHW

extended ECX[8], EDX[29], or EDX[31]

ABM LZCNT extended ECX[5]

ADX ADCX, ADOX 0000_0007_0 EBX[19]

AES AES standard ECX[25]

AVX AVX standard ECX[28]

AVX2 AVX2 0000_0007_0 EBX[5]

BASE Base Instruction set — —

BMI1 Bit Manipulation, group 1 0000_0007_0 EBX[3]

BMI2 Bit Manipulation, group 2 0000_0007_0 EBX[8]

CET_SS

Shadow Stack,
CLRSSBSY, INCSSP,
RDSSP, RSTORSSP,
SAVEPREVSSP,
SETSSBSY, WRSS,
WRUSS

0000_0007_0 ECX[7]

CLFLOPT CLFLUSHOPT 0000_0007_0 EBX[23]

CLFSH CLFLUSH, CLWB standard EDX[19]

CLWB CLWB 0000_0007_0 EBX[24]

CLZERO CLZERO 8000_0008 EBX[0]

CMPXCHG8B CMPXCHG8B both EDX[8]

CMPXCHG16B CMPXCHG16B standard ECX[13]

CMOV CMOVcc both EDX[15]

Notes:
1. standard = Fn0000_0001h; extended = Fn 8000_0001h; both means that both standard and extended CPUID

functions return the same feature flag in the same bit position of the return value. For functions of the form xxxx-
_xxxx_x, the trailing digit is the value required in ECX.

2. Register and bit position of the return value that corresponds to the feature flag.
3. FCMOVcc instruction is supported if x87 and CMOVcc instructions are both supported.
4. XSAVE (and related) instructions require separate enablement.

[AMD Public Use]

Instruction Subsets and CPUID Feature Flags 595

24594—Rev. 3.32—March 2021 AMD64 Technology

F16C
16-bit floating-point
conversion

standard ECX[29]

FMA FMA standard ECX[12]

FMA4 FMA4 extended ECX[16]

FPU x87 both EDX[0]

FSGSBASE
FS and GS base read
and write

0000_0007_0 EBX[0]

FXSR FXSAVE / FXRSTOR both EDX[24]

INVLPGB INVLPGB, TLBSYNC 8000_0008 EBX[3]

INVPCID INVPCID 0000_0007_0 EBX[10]

LahfSahf LAHF / SAHF extended ECX[0]

LM Long Mode extended EDX[29]

MCOMMIT MCOMMIT 8000_0008 EBX[8]

MMX MMX both EDX[23]

MmxExt MMX Extensions extended EDX[22]

MONITOR MONITOR / MWAIT standard ECX[3]

MONITORX MONITORX / MWAITX extended ECX[29]

MOVBE MOVBE standard ECX[22]

MSR RDMSR / WRMSR both EDX[5]

OSPKE RDPKRU, WRPKRU 0000_0007_0 ECX[4]

PCLMULQDQ PCLMULQDQ standard ECX[1]

POPCNT POPCNT standard ECX[23]

RDPID RDPID 0000_0007_0 ECX[22]

RDPRU RDPRU 8000_0008 EBX[4]

RDRAND RDRAND standard ECX[30]

RDTSCP RDTSCP extended EDX[27]

RDSEED RDSEED 0000_0007_0 EBX[18]

SevEs VMGEXIT 8000_001F EAX[3]

SHA SHA 0000_0007_0 EBX[29]

SKINIT SKINIT / STGI extended ECX[12]

SMAP CLAC, STAC 0000_0007_0 EBX[20]

SNP
PSMASH, PVALIDATE,
RMPADJUST,
RMPUPDATE

8000_001F EAX[4]

SSE SSE1 standard EDX[25]

SSE2 SSE2 standard EDX[26]

Table D-1. Feature Flags for Instruction / Instruction Subset Support (continued)

Feature Flag Instruction or Subset CPUID Function1 Feature Flag Bit Position2

Notes:
1. standard = Fn0000_0001h; extended = Fn 8000_0001h; both means that both standard and extended CPUID

functions return the same feature flag in the same bit position of the return value. For functions of the form xxxx-
_xxxx_x, the trailing digit is the value required in ECX.

2. Register and bit position of the return value that corresponds to the feature flag.
3. FCMOVcc instruction is supported if x87 and CMOVcc instructions are both supported.
4. XSAVE (and related) instructions require separate enablement.

[AMD Public Use]

596 Instruction Subsets and CPUID Feature Flags

AMD64 Technology 24594—Rev. 3.32—March 2021

SSE3 SSE3 standard ECX[0]

SSSE3 SSSE3 standard ECX[9]

SSE4A SSE4A extended ECX[6]

SSE41 SSE4.1 standard ECX[19]

SSE42 SSE4.2 standard ECX[20]

SVM Secure Virtual Machine extended ECX[2]

SysCallSysRet SYSCALL / SYSRET extended EDX[11]

SysEnterSysExit SYSENTER / SYSEXIT standard EDX[11]

TBM Trailing bit manipulation extended ECX[21]

TSC RDTSC both EDX[4]

VAES VAES 256-bit instructions 0000_0007_0 ECX[9]

VPCMULQDQ
VPCMULQDQ 256-bit
instructions

0000_0007_0 ECX[10]

WBNOINVD WBNOINVD 8000_0008 EBX[9]

x87 && CMOV FCMOVcc3 both EDX[0] && EDX[15]

XGETBV w/ ECX=1 XGETBV w/ ECX=1 0000_000D_1 EAX[2]

XOP XOP extended ECX[11]

XSAVE XSAVE / XRSTOR4 standard ECX[26]

XSAVEC XSAVEC 0000_000D_1 EAX[1]

XSAVEOPT XSAVEOPT 0000_000D_1 EAX[0]

XSAVES/XRSTORS XSAVES / XRSTORS 0000_000D_1 EAX[3]

Table D-1. Feature Flags for Instruction / Instruction Subset Support (continued)

Feature Flag Instruction or Subset CPUID Function1 Feature Flag Bit Position2

Notes:
1. standard = Fn0000_0001h; extended = Fn 8000_0001h; both means that both standard and extended CPUID

functions return the same feature flag in the same bit position of the return value. For functions of the form xxxx-
_xxxx_x, the trailing digit is the value required in ECX.

2. Register and bit position of the return value that corresponds to the feature flag.
3. FCMOVcc instruction is supported if x87 and CMOVcc instructions are both supported.
4. XSAVE (and related) instructions require separate enablement.

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 597

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix E Obtaining Processor Information Via
the CPUID Instruction

This appendix specifies the information that software can obtain about the processor on which it is
running by executing the CPUID instruction. The information in this appendix supersedes the con-
tents of the CPUID Specification, order #25481, which is now obsolete.

The CPUID instruction is described on page 160. This appendix does not replace the CPUID
instruction reference information presented there.

The CPUID instruction behaves much like a function call. Parameters are passed to the instruction via
registers and on execution the instruction loads specific registers with return values. These return
values can be interpreted by software based on the field definitions and their assigned meanings.

The first input parameter is the function number which is passed to the instruction via the EAX
register. Some functions also accept a second input parameter passed via the ECX register. Values are
returned via the EAX, EBX, ECX, and EDX registers. Software should not assume that any values
written to these registers prior to the execution of CPUID instruction will be retained after the
instruction executes (even those that are marked reserved).

The description of each return value breaks the value down into one or more named fields which
represent a bit position or contiguous range of bits. All bit positions that are not defined as fields are
reserved. The value of bits within reserved ranges cannot be relied upon to be zero. Software must
mask off all reserved bits in the return value prior to making any value comparisons of represented
information.

This appendix applies to all AMD processors with a family designation of 0Fh or greater.

E.1 Special Notational Conventions

The following special notation conventions are used in this appendix:

• The notation (standard throughout this APM) for representing the function number, optional input
parmeter, and the information returned is as follows:

CPUID FnXXXX_XXXX_RRR[FieldName]_xYYY.

Where:

- XXXX_XXXX is the function number represented in hexadecimal (passed to the instruction in
EAX).

- RRR is one of {EDX, ECX, EBX, EAX} and represents a register holding a return value.

- YYY represents the optional input parameter passed in the ECX register expressed as a
hexadecimal number. If this parameter is not used, the characters represented by _xYYY are
ommitted from the notation.

[AMD Public Use]

598 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

- FieldName identifies a specific named element of processor information represented by a
specific bit range (1 or more bits wide) within the RRR register.

• The notation CPUID FnXXXX_XXXX _RRR is used when refering to one of the registers that holds
information returned by the instruction.

• The notation CPUID FnXXXX_XXXX or FnXXXX_XXXX is used to refer to a specific function
number.

• Most one-bit fields indicate support or non-support of a specific processor feature. By convention,
(unless otherwise noted) a value of 1 means that the feature is supported by the processor and a
value of 0 means that the feature is not supported by the processor.

E.2 Standard and Extended Function Numbers

The CPUID instruction supports two sets or ranges of function numbers: standard and extended.

• The smallest function number of the standard function range is Fn0000_0000. The largest function
number of the standard function range, for a particular implementation, is returned in CPUID
Fn0000_0000_EAX.

• The smallest function number of the extended function range is Fn8000_0000. The largest
function number of the extended function range, for a particular implementation, is returned in
CPUID Fn8000_0000_EAX.

E.3 Standard Feature Function Numbers

This section describes each of the defined CPUID functions in the standard range.

E.3.1 Function 0h—Maximum Standard Function Number and Vendor String

This function number provides information about the maximum standard function number supported
on this processor and a string that identifies the vendor of the product.

The value returned in EAX provides the largest standard function number supported by this processor.

The values returned in EBX, EDX, and ECX together provide a 12-character string identifying the
vendor of this processor. Each register supplies 4 characters. The leftmost character of each substring

CPUID Fn0000_0000_EAX Largest Standard Function Number

Bits Field Name Description

31:0 LFuncStd
Largest standard function. The largest CPUID standard function input value
supported by the processor implementation.

CPUID Fn0000_0000_E[D,C,B]X Processor Vendor

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 599

24594—Rev. 3.32—March 2021 AMD64 Technology

is stored in the least significant bit position in the register. The string is the concatenation of the
contents of EBX, EDX, and ECX in left to right order. No null terminator is included in the string.

CPUID Fn8000_0000_E[D,C,B]X return the same values as this function.

E.3.2 Function 1h—Processor and Processor Feature Identifiers

This function number identifies the processor family, model, and stepping and provides feature
support information.

The value returned in EAX provides the family, model, and stepping identifiers. Three values are used
by software to identify a processor: Family, Model, and Stepping.

The processor Family identifies one or more processors as belonging to a group that possesses some
common definition for software or hardware purposes. The Model specifies one instance of a
processor family. The Stepping identifies a particular version of a specific model. Therefore, Family,
Model and Stepping, when taken together, form a unique identification or signature for a processor.

The Family is an 8-bit value and is defined as: Family[7:0] = ({0000b,BaseFamily[3:0]} +
ExtFamily[7:0]). For example, if BaseFamily[3:0] = Fh and ExtFamily[7:0] = 01h, then Family[7:0] =

Bits Field Name Description

31:0 Vendor
Four characters of the 12-byte character string (encoded in ASCII)
“AuthenticAMD”. See Table E-1 below.

Table E-1. CPUID Fn0000_0000_E[D,C,B]X values

Register Value Description

CPUID Fn0000_0000_EBX 6874_7541h The ASCII characters “h t u A”.

CPUID Fn0000_0000_ECX 444D_4163h The ASCII characters “D M A c”.

CPUID Fn0000_0000_EDX 6974_6E65h The ASCII characters “i t n e”.

CPUID Fn0000_0001_EAX Family, Model, Stepping Identifiers

Bits Field Name Description

31:28 — Reserved.

27:20 ExtFamily Processor extended family. See above for definition of Family[7:0].

19:16 ExtModel Processor extended model. See above for definition of Model[7:0].

15:12 — Reserved.

11:8 BaseFamily Base processor family. See above for definition of Family[7:0].

7:4 BaseModel Base processor model. See above for definition of Model[7:0].

3:0 Stepping Processor stepping. Processor stepping (revision) for a specific model.

[AMD Public Use]

600 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

10h. If BaseFamily[3:0] is less than Fh, then ExtFamily is reserved and Family is equal to
BaseFamily[3:0].

Model is an 8-bit value and is defined as: Model[7:0] = {ExtModel[3:0],BaseModel[3:0]}. For
example, if ExtModel[3:0] = Eh and BaseModel[3:0] = 8h, then Model[7:0] = E8h. If BaseFamily[3:0]
is less than 0Fh, then ExtModel is reserved and Model is equal to BaseModel[3:0].

The value returned by CPUID Fn8000_0001_EAX is equivalent to CPUID Fn0000_0001_EAX.

The value returned in EBX provides miscellaneous information regarding the processor brand, the
number of logical threads per processor socket, the CLFLUSH instruction, and APIC.

The value returned in ECX contains the following miscellaneous feature identifiers:

CPUID Fn0000_0001_EBX LocalApicId, LogicalProcessorCount, CLFlush

Bits Field Name Description

31:24 LocalApicId

Initial local APIC physical ID. The 8-bit value assigned to the local APIC physical ID
register at power-up. Some of the bits of LocalApicId represent the core within a
processor and other bits represent the processor ID. See the APIC20 “APIC ID”
register in the processor BKDG or PPR for details.

23:16
LogicalProcessor
Count

Logical processor count.

If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number
of logic processors per package.

If CPUID Fn0000_0001_EDX[HTT] = 0 then LogicalProcessorCount is reserved.

See E.5.1 [Legacy Method].

15:8 CLFlush
CLFLUSH size. Specifies the size of a cache line in quadwords flushed by the
CLFLUSH instruction. See “CLFLUSH” in APM3.

7:0 8BitBrandId

8-bit brand ID. This field, in conjunction with CPUID Fn8000_0001_EBX[BrandId],
is used by the system firmware to generate the processor name string. See the
appropriate processor revision guide for how to program the processor name
string.

CPUID Fn0000_0001_ECX Feature Identifiers

Bits Field Name Description

31 — RAZ. Reserved for use by hypervisor to indicate guest status.

30 RDRAND RDRAND instruction support.

29 F16C
Half-precision convert instruction support. See "Half-Precision Floating-Point
Conversion" in APM1 and listings for individual F16C instructions in APM5.

28 AVX AVX instruction support. See APM4.

27 OSXSAVE XSAVE (and related) instructions are enabled. See “OSXSAVE” in APM2. .

26 XSAVE
XSAVE (and related) instructions are supported by hardware. See
“XSAVE/XRSTOR Instructions” in APM2.

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 601

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EDX contains the following miscellaneous feature identifiers:

25 AES AES instruction support. See “AES Instructions” in APM4.

24 — Reserved.

23 POPCNT POPCNT instruction. See “POPCNT” in APM3.

22 MOVBE: MOVBE instruction support.

21 — Reserved.

20 SSE42
SSE4.2 instruction support. "Determining Media and x87 Feature Support" in
APM2 and individual SSE4.2 instruction listings in APM4.

19 SSE41 SSE4.1 instruction support. See individual instruction listings in APM4. .

18:14 — Reserved.

13 CMPXCHG16B CMPXCHG16B instruction support. See “CMPXCHG16B” in APM3.

12 FMA FMA instruction support.

11:10 — Reserved.

9 SSSE3 Supplemental SSE3 instruction support.

8:4 — Reserved.

3 MONITOR MONITOR/MWAIT instructions. See “MONITOR” and “MWAIT” in APM3.

2 — Reserved.

1 PCLMULQDQ
PCLMULQDQ instruction support. See instruction reference page for the
PCLMULQDQ / VPCLMULQDQ instruction in APM4.

0 SSE3
SSE3 instruction support. See Appendix D “Instruction Subsets and CPUID
Feature Sets” in APM3 for the list of instructions covered by the SSE3 feature bit.
See APM4 for the definition of the SSE3 instructions.

CPUID Fn0000_0001_EDX Feature Identifiers

Bits Field Name Description

31:29 — Reserved.

28 HTT
Hyper-threading technology. Indicates either that there is more than one thread per
core or more than one core per compute unit.See “Legacy Method” on page 636.

27 — Reserved.

26 SSE2 SSE2 instruction support. See Appendix D “CPUID Feature Sets” in APM3.

25 SSE
SSE instruction support. See Appendix D “CPUID Feature Sets” in APM3 appendix
and “64-Bit Media Programming” in APM1.

24 FXSR FXSAVE and FXRSTOR instructions. See “FXSAVE” and “FXRSTOR” in APM5.

23 MMX
MMX™ instructions. See Appendix D “CPUID Feature Sets” in APM3 and “128-Bit
Media and Scientific Programming” in APM1.

22:20 — Reserved.

19 CLFSH CLFLUSH instruction support. See “CLFLUSH” in APM3.

Bits Field Name Description

[AMD Public Use]

602 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

E.3.3 Functions 2h–4h—Reserved

These function numbers are reserved.

E.3.4 Function 5h—Monitor and MWait Features

This function provides feature identifiers for the MONITOR and MWAIT instructions. For more
information see the description of the MONITOR instruction on page 392 and the MWAIT instruction
on page 398.

18 — Reserved.

17 PSE36
Page-size extensions. The PDE[20:13] supplies physical address [39:32]. See
“Page Translation and Protection” in APM2.

16 PAT Page attribute table. See “Page-Attribute Table Mechanism” in APM2.

15 CMOV Conditional move instructions. See “CMOV”, “FCMOV” in APM3.

14 MCA Machine check architecture. See “Machine Check Mechanism” in APM2.

13 PGE Page global extension. See “Page Translation and Protection” in APM2.

12 MTRR Memory-type range registers. See “Page Translation and Protection” in APM2.

11 SysEnterSysExit SYSENTER and SYSEXIT instructions. See “SYSENTER”, “SYSEXIT“ in APM3.

10 — Reserved.

9 APIC
Avanced programmable interrupt controller. Indicates APIC exists and is enabled.
See “Exceptions and Interrupts” in APM2.

8 CMPXCHG8B CMPXCHG8B instruction. See “CMPXCHG8B” in APM3.

7 MCE Machine check exception. See “Machine Check Mechanism” in APM2.

6 PAE
Physical-address extensions. Indicates support for physical addresses ³ 32b.
Number of physical address bits above 32b is implementation specific. See “Page
Translation and Protection” in APM2.

5 MSR
AMD model-specific registers. Indicates support for AMD model-specific registers
(MSRs), with RDMSR and WRMSR instructions. See “Model Specific Registers” in
APM2.

4 TSC
Time stamp counter. RDTSC and RDTSCP instruction support. See “Debug and
Performance Resources” in APM2.

3 PSE Page-size extensions. See “Page Translation and Protection” in APM2.

2 DE Debugging extensions. See “Debug and Performance Resources” in APM2.

1 VME
Virtual-mode enhancements. CR4.VME, CR4.PVI, software interrupt indirection,
expansion of the TSS with the software, indirection bitmap, EFLAGS.VIF,
EFLAGS.VIP. See “System Resources” in APM2.

0 FPU x87 floating point unit on-chip. See “x87 Floating Point Programming” in APM1.

CPUID Fn0000_000[4:2] Reserved

Bits Field Name Description

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 603

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EAX provides the following information:

The value returned in EBX provides the following information:

The value returned in ECX provides the following information:

The value returned in EDX is undefined and is reserved.

E.3.5 Function 6h—Power Management Related Features

This function provides information about the local APIC timer timebase and the effective frequency
interface for the processor.

The value returned in EAX is undefined and is reserved.

CPUID Fn0000_0005_EAX Monitor/MWait

Bits Field Name Description

31:16 — Reserved.

15:0 MonLineSizeMin Smallest monitor-line size in bytes.

CPUID Fn0000_0005_EBX Monitor/MWait

Bits Field Name Description

31:16 — Reserved.

15:0 MonLineSizeMax Largest monitor-line size in bytes.

CPUID Fn0000_0005_ECX Monitor/MWait

Bits Field Name Description

31:2 — Reserved.

1 IBE
Interrupt break-event. Indicates MWAIT can use ECX bit 0 to allow interrupts to
cause an exit from the monitor event pending state, even if EFLAGS.IF=0.

0 EMX
Enumerate MONITOR/MWAIT extensions: Indicates enumeration
MONITOR/MWAIT extensions are supported.

CPUID Fn0000_0005_EDX Monitor/MWait

CPUID Fn0000_0006_EAX Local APIC Timer Invariance

[AMD Public Use]

604 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in EBX is undefined and is reserved.

The value returned in ECX indicates support of the processor effective frequency interface. For more
information on this feature, see "Determining Processor Effective Frequency" in APM2.

The value returned in EDX is undefined and is reserved.

E.3.6 Function 7h—Structured Extended Feature Identifiers

Bits Field Name Description

31:3 — Reserved.

2 ARAT
If set, indicates that the timebase for the local APIC timer is not affected by
processor p-state.

1:0 — Reserved.

CPUID Fn0000_0006_EBX Reserved

CPUID Fn0000_0006_ECX Effective Processor Frequency Interface

Bits Field Name Description

31:1 — Reserved.

0 EffFreq
Effective frequency interface support. If set, indicates presence of MSR0000_00E7
(MPERF) and MSR0000_00E8 (APERF).

CPUID Fn0000_0006_EDX Reserved

CPUID Fn0000_0007_EAX_x0 Structured Extended Feature Identifiers (ECX=0)

Bits Field Name Description

31:0 MaxSubFn Returns the number of subfunctions supported.

CPUID Fn0000_0007_EBX_x0 Structured Extended Feature Identifiers (ECX=0)

Bits Field Name Description

31:30 — Reserved.

29 SHA Secure Hash Algorithm instruction extension.

28:25 — Reserved.

24 CLWB CLWB instruction support.

23 CLFLUSHOPT CLFLUSHOPT instruction support.

22 RDPID RDPID instruction and TSC_AUX MSR support.

21 — Reserved.

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 605

24594—Rev. 3.32—March 2021 AMD64 Technology

E.3.7 Functions 8h–Ah—Reserved

E.3.8 Function Bh — Extended Topology Enumeration

20 SMAP Supervisor mode access prevention.

19 ADX ADCX, ADOX instruction support.

18 RDSEED RDSEED instruction support.

17:9 — Reserved.

8 BMI2 Bit manipulation group 2 instruction support.

7 SMEP Supervisor mode execution prevention.

6 — Reserved.

5 AVX2 AVX2 instruction subset support.

4 — Reserved.

3 BMI1 Bit manipulation group 1 instruction support.

2:1 — Reserved.

0 FSGSBASE FS and GS base read/write instruction support.

CPUID Fn0000_0007_ECX_x0 Structured Extended Feature Identifiers (ECX=0)

Bits Field Name Description

31:11 — Reserved.

10 VPCMULQDQ Support for VPCLMULQDQ 256-bit instruction.

9 VAES Support for VAES 256-bit instructions.

8 — Reserved.

7 CET_SS Shadow Stacks supported.

6:5 — Reserved.

4 OSPKE
OS has enabled Memory Protection Keys and use of the RDPKRU/WRPKRU
instructions by setting CR4.PKE=1.

3 PKU Memory Protection Keys supported.

2 UMIP User mode instruction prevention support.

1:0 — Reserved.

CPUID Fn0000_0007_EDX_x0 Structured Extended Feature Identifiers (ECX=0)

Bits Field Name Description

31:0 — Reserved.

Bits Field Name Description

[AMD Public Use]

606 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

CPUID Fn0000_000B enumerates each level in the processor’s topological hierarchy. The level
number is specified by the input value passed in the ECX register.

If this function is executed with an unimplemented level (passed in ECX), the instruction returns all
zeros in the EAX register.

Subfunction 0 of Fn0000_000B - Thread Level

Subfunction 0 provides information about the thread-level topology.

Subfunction 1 of Fn0000_000B - Core Level

CPUID Fn0000_000B_EAX_x0 Extended Topology Enumeration (ECX=0)

Bits Field Name Description

31:5 — Reserved.

4:0 ThreadMaskWidth Number of bits to shift x2APIC_ID right to get to the topology ID of the next level

CPUID Fn0000_000B_EBX_x0 Extended Topology Enumeration (ECX=0)

Bits Field Name Description

31:16 — Reserved.

15:0 Number of threads in a core

CPUID Fn0000_000B_ECX_x0 Extended Topology Enumeration (ECX=0)

Bits Field Name Description

31:16 — Reserved.

15:8 level number returns ‘1’ indicating thread level

7:0 ECX input value returns ‘0’

CPUID Fn0000_000B_EDX_x0 Extended Topology Enumeration (ECX=0)

Bits Field Name Description

31:0 x2APIC_ID 32-bit Extended APIC_ID

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 607

24594—Rev. 3.32—March 2021 AMD64 Technology

Subfunction 1 provides information about the core-level topology.

E.3.9 Function Ch—Reserved

E.3.10 Function Dh—Processor Extended State Enumeration

The XSAVE / XRSTOR instructions are used to save and restore x87/MMX FPU and SSE processor
state. These instructions allow processor state associated with specific architected features to be
selectively saved and restored. This function provides information about extended state support and
save area size requirements.

The function has a number of subfunctions specified by the input value passed to the CPUID
instruction in the ECX register. If CPUID Fn0000_000D is executed with an unimplemented
subfunction (passed in ECX), the instruction returns all zeros in the EAX, EBX, ECX, and EDX
registers.

CPUID Fn0000_000B_EAX_x1 Extended Topology Enumeration (ECX=1)

Bits Field Name Description

31:5 — Reserved.

4:0 CoreMaskWidth Number of bits to shift x2APIC_ID right to get to the topology ID of the next level

CPUID Fn0000_000B_EBX_x1 Extended Topology Enumeration (ECX=1)

Bits Field Name Description

31:16 — Reserved.

15:0 Number of logical cores in socket

CPUID Fn0000_000B_ECX_x1 Extended Topology Enumeration (ECX=1)

Bits Field Name Description

31:16 — Reserved.

15:8 level numbers returns ‘2’, indicating core-level

7:0 ECX input value returns ‘1’

CPUID Fn0000_000B_EDX_x1 Extended Topology Enumeration (ECX=1)

Bits Field Name Description

31:0 x2APIC_ID 32-bit Extended APIC_ID

[AMD Public Use]

608 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

Subfunction 0 of Fn0000_000D

Subfunction 0 provides information about features within the extended processor state management
architecture that are supported by the processor.

The value returned in EAX provides a bit mask specifying which of the features defined by the
extended processor state architecture are supported by the processor.

The value returned in EBX gives the save area size requirement in bytes based on the features
currently enabled in the XFEATURE_ENABLED_MASK (XCR0).

The value returned in ECX gives the save area size requirement in bytes for all extended state
management features supported by the processor (whether enabled or not).

The value returned in EDX provides a bit mask specifying which of the features defined by the
extended processor state architecture are supported by the processor.

CPUID Fn0000_000D_EAX_x0 Processor Extended State Enumeration (ECX=0)

Bits Field Name Description

31:0 XFeatureSupportedMask[31:0]
Reports the valid bit positions for the lower 32 bits of the
XFeatureEnabledMask register. If a bit is set, the corresponding
feature is supported. See “XSAVE/XRSTOR Instructions” in APM2.

CPUID Fn0000_000D_EBX_x0 Processor Extended State Enumeration (ECX=0)

Bits Field Name Description

31:0 XFeatureEnabledSizeMax
Size in bytes of XSAVE/XRSTOR area for the currently enabled features in
XCR0.

CPUID Fn0000_000D_ECX_x0 Processor Extended State Enumeration (ECX=0)

Bits Field Name Description

31:0 XFeatureSupportedSizeMax
Size in bytes of XSAVE/XRSTOR area for all features that the logical
processor supports. See XFeatureEnabledSizeMax.

CPUID Fn0000_000D_EDX_x0 Processor Extended State Enumeration (ECX=0)

Bits Field Name Description

31:0 XFeatureSupportedMask[63:32]
Reports the valid bit positions for the upper 32 bits of the
XFeatureEnabledMask register. If a bit is set, the corresponding
feature is supported.

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 609

24594—Rev. 3.32—March 2021 AMD64 Technology

See “XSAVE/XRSTOR Instructions” in APM2 and reference pages for the individual instructions in
APM4.

Subfunction 1 of Fn0000_000D

Subfunction 1 provides additional information about features within the extended processor state
management architecture that are supported by the processor.

The value returned on EBX represents the fixed size of the save area (240h) plus the state size of each
enabled extended feature:

EBX = 0240h
+ ((XCR0[AVX] == 1) ? 0000_0100h : 0)
+ ((XCR0[MPK] == 1) ? 0000_0008h : 0)
+ ((XSS[CET_U] == 1) ? 0000_0010h : 0)
+ ((XSS[CET_S] == 1) ? 0000_0018h : 0)

The value returned on ECX returns a "1" for each bit that is settable in the XSS MSR. The following
bits are defined:

CPUID Fn0000_000D_EAX_x1 Processor Extended State Enumeration (ECX=1)

Bits Field Name Description

31:4 Reserved.

3 XSAVES XSAVES, XRSTOR, and XSS are supported.

2 XGETBV XGETBV with ECX = 1 supported.

1 XSAVEC XSAVEC and compact XRSTOR supported.

0 XSAVEOPT XSAVEOPT is available.

CPUID Fn0000_000D_EBX_x1 Processor Extended State Enumeration (ECX=1)

CPUID Fn0000_000D_ECX_x1 Processor Extended State Enumeration (ECX=1)

Bits Field Name Description

31:13 — Reserved.

12 CET_S CET supervisor.

11 CET_U CET user state.

10:0 — Reserved

CPUID Fn0000_000D_EDX_x1 Processor Extended State Enumeration (ECX=1)

[AMD Public Use]

610 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in EDX for subfunction 1 is undefined and reserved.

Subfunction 2 of Fn0000_000D

Subfunction 2 provides information about the size and offset of the 256-bit SSE vector floating point
processor unit state save area.

The value returned in EAX provides information about the size of the 256-bit SSE vector floating
point processor unit state save area.

The value returned in EBX provides information about the offset of the 256-bit SSE vector floating
point processor unit state save area from the base of the extended state (XSAVE/XRSTOR) save area.

The values returned in ECX and EDX for subfunction 2 are undefined and are reserved.

Subfunction 11 of Fn0000_000D

Subfunction 11 provides information about the CET user state save area.

The value returned in EAX, EBX, ECX and EDX provides information about the CET user state save
area.

CPUID Fn0000_000D_EAX_x2 Processor Extended State Enumeration (ECX=2)

Bits Field Name Description

31:0 YmmSaveStateSize YMM state save size. The state save area size in bytes for The YMM registers.

CPUID Fn0000_000D_EBX_x2 Processor Extended State Enumeration (ECX=2)

Bits Field Name Description

31:0 YmmSaveStateOffset
YMM state save offset. The offset in bytes from the base of the extended state
save area of the YMM register state save area.

CPUID Fn0000_000D_E[D,C]X_x2 Processor Extended State Enumeration (ECX=2)

CPUID Fn0000_000D_E[A, B, C, D]X_x11 Processor Extended State Emulation (ECX=11)

Register Bits Field Name Description

EAX 31:0 CetUserSize CET user state save size in bytes

EBX 31:0 CetUserOffset CET user state offset from the base of the extended state save area

ECX 0 U/S Set to '1', indicating a supervisor state component

ECX 31:0 — Cleared to 0

EDX 31:0 — Unused, cleared to 0

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 611

24594—Rev. 3.32—March 2021 AMD64 Technology

Subfunction 12 of Fn0000_000D

Subfunction 12 provides information about the CET supervisor state save area.

The value returned in EAX, EBX, ECX and EDX provides information about the CET supervisor state
save area.

Subfunction 3Eh of Fn0000_000D

Subfunction 3Eh provides information about the size and offset of the Lightweight Profiling (LWP)
unit state save area.

The value returned in EAX provides the size of the Lightweight Profiling (LWP) unit state save area.

The value returned in EBX provides the offset of the Lightweight Profiling (LWP) unit state save area
from the base of the extended state (XSAVE/XRSTOR) save area.

CPUID Fn0000_000D_E[A, B, C, D]X_x12 Processor Extended State Emulation (ECX=12)

Register Bits Field Name Description

EAX 31:0 CetSupervisorSize CET supervisor state save size in bytes

EBX 31:0 CetSupervisorOffset
CET supervisor state offset from the base of the extended state save
area

ECX 0 U/S Set to '1', indicating a supervisor state component

ECX 31:0 — Cleared to 0

EDX 31:0 — Unused, cleared to 0

CPUID Fn0000_000D_EAX_x3E Processor Extended State Enumeration (ECX=62)

Bits Field Name Description

31:0 LwpSaveStateSize
LWP state save area size. The size of the save area for LWP state in bytes. See
“Lightweight Profiling” in APM2.

CPUID Fn0000_000D_EBX_x3E Processor Extended State Enumeration (ECX=62)

[AMD Public Use]

612 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The values returned in ECX and EDX for subfunction 3Eh are undefined and are reserved.

Subfunctions of Fn0000_000D greater than 3Eh

For CPUID Fn0000_000D, if the subfunction (specified by contents of ECX) passed as input to the
instruction is greater than 3Eh, the instruction returns zero in the EAX, EBX, ECX, and EDX registers.

E.3.11 Functions 4000_0000h–4000_FFh—Reserved for Hypervisor Use

These function numbers are reserved for use by the virtual machine monitor.

E.4 Extended Feature Function Numbers

This section describes each of the defined CPUID functions in the extended range.

E.4.1 Function 8000_0000h—Maximum Extended Function Number and Vendor
String

This function provides information about the maximum extended function number supported on this
processor and a string that identifies the vendor of the product.

The value returned in EAX provides the largest extended function number supported by the processor.

The values returned in EBX, ECX, and EDX together provide a 12-character string identifying the
vendor of this processor. The output string is the same as the one returned by Fn0000_0000. See
CPUID Fn0000_0000_E[D,C,B]X on page 598 for more details.

Bits Field Name Description

31:0 LwpSaveStateOffset
LWP state save byte offset. The offset in bytes from the base of the extended
state save area of the state save area for LWP. See “Lightweight Profiling” in
APM2.

CPUID Fn0000_000D_E[D,C]X_x3E Processor Extended State Enumeration (ECX=62)

CPUID Fn4000_00[FF:00] Reserved

CPUID Fn8000_0000_EAX Largest Extended Function Number

Bits Field Name Description

31:0 LFuncExt
Largest extended function. The largest CPUID extended function input value
supported by the processor implementation.

CPUID Fn8000_0000_E[D,C,B]X Processor Vendor

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 613

24594—Rev. 3.32—March 2021 AMD64 Technology

E.4.2 Function 8000_0001h—Extended Processor and Processor Feature Identifiers

The value returned in EAX provides the family, model, and stepping identifiers. Three values are used
by software to identify a processor: Family, Model, and Stepping. The value returned in EAX is the
same as the value returned in EAX for Fn0000_0001. See CPUID Fn0000_0001_EAX on page 599
for more details on the field definitions.

The value returned in EBX provides package type and a 16-bit processor name string identifiers.

For processor families 10h and greater, PkgType is described in the BIOS and Kernel Developer’s
Guide for the product.

This function contains the following miscellaneous feature identifiers:

Bits Field Name Description

31:0 Vendor
Four characters of the 12-byte character string (encoded in ASCII)
“AuthenticAMD”. See Table E-2 below.

Table E-2. CPUID Fn8000_0000_E[D,C,B]X values

Register Value Description

CPUID Fn8000_0000_EBX 6874_7541h The ASCII characters “h t u A”.

CPUID Fn8000_0000_ECX 444D_4163h The ASCII characters “D M A c”.

CPUID Fn8000_0000_EDX 6974_6E65h The ASCII characters “i t n e”.

CPUID Fn8000_0001_EAX AMD Family, Model, Stepping

Bits Field Names Description

31:0 Family, Model, Stepping See: CPUID Fn0000_0001_EAX.

CPUID Fn8000_0001_EBX BrandId Identifier

Bits Field Name Description

31:28 PkgType
Package type. If (Family[7:0] >= 10h), this field is valid. If (Family[7:0]<10h), this
field is reserved.

27:16 — Reserved.

15:0 BrandId
Brand ID. This field, in conjunction with CPUID Fn0000_0001_EBX[8BitBrandId], is
used by system firmware to generate the processor name string. See your
processor revision guide for how to program the processor name string.

CPUID Fn8000_0001_ECX Feature Identifiers

[AMD Public Use]

614 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

Bits Field Name Description

31 — Reserved.

30 AddrMaskExt Breakpoint Addressing masking extended to bit 31.

29 MONITORX Support for MWAITX and MONITORX instructions.

28 PerfCtrExtLLC Support for L3 performance counter extension.

27 PerfTsc
Performance time-stamp counter. Indicates support for MSRC001_0280
[Performance Time Stamp Counter].

26 DataBkptExt
Data access breakpoint extension. Indicates support for MSRC001_1027 and
MSRC001_101[B:9].

25 — Reserved

24 PerfCtrExtNB
NB performance counter extensions support. Indicates support for
MSRC001_024[6,4,2,0] and MSRC001_024[7,5,3,1].

23 PerfCtrExtCore
Processor performance counter extensions support. Indicates support for
MSRC001_020[A,8,6,4,2,0] and MSRC001_020[B,9,7,5,3,1].

22
TopologyExtensio
ns

Topology extensions support. Indicates support for CPUID
Fn8000_001D_EAX_x[N:0]-CPUID Fn8000_001E_EDX.

21 TBM Trailing bit manipulation instruction support.

20 — Reserved.

19 — Reserved.

18 — Reserved.

17 — Reserved.

16 FMA4 Four-operand FMA instruction support.

15 LWP
Lightweight profiling support. See “Lightweight Profiling” in APM2 and reference
pages for individual LWP instructions in APM3.

14 — Reserved.

13 WDT
Watchdog timer support. See APM2 and APM3. Indicates support for
MSRC001_0074.

12 SKINIT
SKINIT and STGI are supported. Indicates support for SKINIT and STGI,
independent of the value of MSRC000_0080[SVME]. See APM2 and APM3.

11 XOP Extended operation support.

10 IBS Instruction based sampling. See “Instruction Based Sampling” in APM2.

9 OSVW
OS visible workaround. Indicates OS-visible workaround support. See “OS Visible
Work-around (OSVW) Information” in APM2.

8 3DNowPrefetch
PREFETCH and PREFETCHW instruction support. See “PREFETCH” and
“PREFETCHW” in APM3.

7 MisAlignSse
Misaligned SSE mode. See “Misaligned Access Support Added for SSE
Instructions” in APM1.

6 SSE4A
EXTRQ, INSERTQ, MOVNTSS, and MOVNTSD instruction support. See
“EXTRQ”, “INSERTQ”, “MOVNTSS”, and “MOVNTSD” in APM4.

5 ABM Advanced bit manipulation. LZCNT instruction support. See “LZCNT” in APM3.

4 AltMovCr8 LOCK MOV CR0 means MOV CR8. See “MOV(CRn)” in APM3.

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 615

24594—Rev. 3.32—March 2021 AMD64 Technology

This function contains the following miscellaneous feature identifiers:

3 ExtApicSpace
Extended APIC space. This bit indicates the presence of extended APIC register
space starting at offset 400h from the “APIC Base Address Register,” as specified
in the BKDG.

2 SVM Secure virtual machine. See “Secure Virtual Machine” in APM2.

1 CmpLegacy Core multi-processing legacy mode. See “Legacy Method” on page 636.

0 LahfSahf
LAHF and SAHF instruction support in 64-bit mode. See “LAHF” and “SAHF” in
APM3.

CPUID Fn8000_0001_EDX Feature Identifiers

Bits Field Name Description

31 3DNow
3DNow!™ instructions. See Appendix D “Instruction Subsets and CPUID Feature
Sets” in APM3.

30 3DNowExt
AMD extensions to 3DNow! instructions. See Appendix D “Instruction Subsets and
CPUID Feature Sets” in APM3.

29 LM Long mode. See “Processor Initialization and Long-Mode Activation” in APM2.

28 — Reserved.

27 RDTSCP RDTSCP instruction. See “RDTSCP” in APM3.

26 Page1GB 1-GB large page support. See “1-GB Paging Support” in APM2.

25 FFXSR
FXSAVE and FXRSTOR instruction optimizations. See “FXSAVE” and “FXRSTOR”
in APM5.

24 FXSR FXSAVE and FXRSTOR instructions. Same as CPUID Fn0000_0001_EDX[FXSR].

23 MMX MMX™ instructions. Same as CPUID Fn0000_0001_EDX[MMX].

22 MmxExt
AMD extensions to MMX instructions. See Appendix D “Instruction Subsets and
CPUID Feature Sets” in APM3 and “128-Bit Media and Scientific Programming” in
APM1.

21 — Reserved.

20 NX No-execute page protection. See “Page Translation and Protection” in APM2.

19:18 — Reserved.

17 PSE36 Page-size extensions. Same as CPUID Fn0000_0001_EDX[PSE36].

16 PAT Page attribute table. Same as CPUID Fn0000_0001_EDX[PAT].

15 CMOV Conditional move instructions. Same as CPUID Fn0000_0001_EDX[CMOV].

14 MCA Machine check architecture. Same as CPUID Fn0000_0001_EDX[MCA].

13 PGE Page global extension. Same as CPUID Fn0000_0001_EDX[PGE].

12 MTRR Memory-type range registers. Same as CPUID Fn0000_0001_EDX[MTRR].

11 SysCallSysRet SYSCALL and SYSRET instructions. See “SYSCALL” and “SYSRET” in APM3.

10 — Reserved.

Bits Field Name Description

[AMD Public Use]

616 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

E.4.3 Functions 8000_0002h–8000_0004h—Extended Processor Name String

The three extended functions from Fn8000_0002 to Fn8000_0004 are programmed to return a null
terminated ASCII string up to 48 characters in length corresponding to the processor name.

The 48 character maximum includes the terminating null character. The 48 character string is ordered
first to last (left to right) as follows:

Fn8000_0002[EAX[7:0],..., EAX[31:24], EBX[7:0],..., EBX[31:24], ECX[7:0],...,
ECX[31:24],EDX[7:0],..., EDX[31:24]],
Fn8000_0003[EAX[7:0],..., EAX[31:24], EBX[7:0],..., EBX[31:24], ECX[7:0],..., ECX[31:24],
EDX[7:0],..., EDX[31:24]],
Fn8000_0004[EAX[7:0],..., EAX[31:24], EBX[7:0],..., EBX[31:24], ECX[7:0],..., ECX[31:24],
EDX[7:0],..., EDX[31:24]].

The extended processor name string is programmed by system firmware. See your processor revision
guide for information about how to display the extended processor name string.

E.4.4 Function 8000_0005h—L1 Cache and TLB Information

This function provides first level cache TLB characteristics for the processor that executes the
instruction.

The value returned in EAX provides information about the L1 TLB for 2-MB and 4-MB pages.

9 APIC
Advanced programmable interrupt controller. Same as CPUID
Fn0000_0001_EDX[APIC].

8 CMPXCHG8B CMPXCHG8B instruction. Same as CPUID Fn0000_0001_EDX[CMPXCHG8B].

7 MCE Machine check exception. Same as CPUID Fn0000_0001_EDX[MCE].

6 PAE Physical-address extensions. Same as CPUID Fn0000_0001_EDX[PAE].

5 MSR AMD model-specific registers. Same as CPUID Fn0000_0001_EDX[MSR].

4 TSC Time stamp counter. Same as CPUID Fn0000_0001_EDX[TSC].

3 PSE Page-size extensions. Same as CPUID Fn0000_0001_EDX[PSE].

2 DE Debugging extensions. Same as CPUID Fn0000_0001_EDX[DE].

1 VME Virtual-mode enhancements. Same as CPUID Fn0000_0001_EDX[VME].

0 FPU x87 floating-point unit on-chip. Same as CPUID Fn0000_0001_EDX[FPU].

CPUID Fn8000_000[4:2]_E[D,C,B,A]X Processor Name String Identifier

Bits Field Name Description

31:0 ProcName Four characters of the extended processor name string.

CPUID Fn8000_0005_EAX L1 TLB 2M/4M Information

Bits Field Name Description

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 617

24594—Rev. 3.32—March 2021 AMD64 Technology

The associativity fields (L1DTlb2and4MAssoc and L1ITlb2and4MAssoc) are encoded as follows:

The value returned in EBX provides information about the L1 TLB for 4-KB pages.

The associativity fields (L1DTlb4KAssoc and L1ITlb4KAssoc) are encoded as specified in Table E-3
on page 617.

The value returned in ECX provides information about the first level data cache.

Bits Field Name Description

31:24 L1DTlb2and4MAssoc
Data TLB associativity for 2-MB and 4-MB pages. Encoding is per Table E-3
below.

23:16 L1DTlb2and4MSize

Data TLB number of entries for 2-MB and 4-MB pages. The value returned is
for the number of entries available for the 2-MB page size; 4-MB pages require
two 2-MB entries, so the number of entries available for the 4-MB page size is
one-half the returned value.

15:8 L1ITlb2and4MAssoc
Instruction TLB associativity for 2-MB and 4-MB pages. Encoding is per
Table E-3 below.

7:0 L1ITlb2and4MSize

Instruction TLB number of entries for 2-MB and 4-MB pages. The value
returned is for the number of entries available for the 2-MB page size; 4-MB
pages require two 2-MB entries, so the number of entries available for the 4-MB
page size is one-half the returned value.

Table E-3. L1 Cache and TLB Associativity Field Encodings

Associativity
[7:0]

Definition

00h Reserved

01h 1 way (direct mapped)

02h–FEh n-way associative. (field encodes n)

FFh Fully associative

CPUID Fn8000_0005_EBX L1 TLB 4K Information

Bits Field Name Description

31:24 L1DTlb4KAssoc Data TLB associativity for 4 KB pages. Encoding is per Table E-3 above.

23:16 L1DTlb4KSize Data TLB number of entries for 4 KB pages.

15:8 L1ITlb4KAssoc Instruction TLB associativity for 4 KB pages. Encoding is per Table E-3 above.

7:0 L1ITlb4KSize Instruction TLB number of entries for 4 KB pages.

CPUID Fn8000_0005_ECX L1 Data Cache Information

[AMD Public Use]

618 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The associativity field (L1DcAssoc) is encoded as specified in Table E-3 on page 617.

The value returned in EDX provides information about the first level instruction cache.

The associativity field (L1IcAssoc) is encoded as specified in Table E-3 on page 617.

E.4.5 Function 8000_0006h—L2 Cache and TLB and L3 Cache Information

This function provides the second level cache and TLB characteristics for the logical processor that
executes the instruction. The EDX register returns the processor’s third level cache characteristics that
are shared by all logical processors in the package.

The value returned in EAX provides information about the L2 TLB for 2-MB and 4-MB pages.

Bits Field Name Description

31:24 L1DcSize L1 data cache size in KB.

23:16 L1DcAssoc L1 data cache associativity. Encoding is per Table E-3.

15:8 L1DcLinesPerTag L1 data cache lines per tag.

7:0 L1DcLineSize L1 data cache line size in bytes.

CPUID Fn8000_0005_EDX L1 Instruction Cache Information

Bits Field Name Description

31:24 L1IcSize L1 instruction cache size KB.

23:16 L1IcAssoc L1 instruction cache associativity. Encoding is per Table E-3.

15:8 L1IcLinesPerTag L1 instruction cache lines per tag.

7:0 L1IcLineSize L1 instruction cache line size in bytes.

CPUID Fn8000_0006_EAX L2 TLB 2M/4M Information

Bits Field Name Description

31:28 L2DTlb2and4MAssoc
L2 data TLB associativity for 2-MB and 4-MB pages. Encoding is per
Table E-4 below.

27:16 L2DTlb2and4MSize

L2 data TLB number of entries for 2-MB and 4-MB pages. The value returned
is for the number of entries available for the 2 MB page size; 4 MB pages
require two 2 MB entries, so the number of entries available for the 4 MB page
size is one-half the returned value.

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 619

24594—Rev. 3.32—March 2021 AMD64 Technology

The associativity fields (L2DTlb2and4MAssoc and L2ITlb2and4MAssoc) are encoded as follows:

The value returned in EBX provides information about the L2 TLB for 4-KB pages.

The associativity fields (L2DTlb4KAssoc and L2ITlb4KAssoc) are encoded per Table E-4 above.

15:12 L2ITlb2and4MAssoc
L2 instruction TLB associativity for 2-MB and 4-MB pages. Encoding is per
Table E-4 below.

11:0 L2ITlb2and4MSize

L2 instruction TLB number of entries for 2-MB and 4-MB pages. The value
returned is for the number of entries available for the 2 MB page size; 4 MB
pages require two 2 MB entries, so the number of entries available for the 4
MB page size is one-half the returned value.

Table E-4. L2/L3 Cache and TLB Associativity Field Encoding

Associativity
[3:0]

Definition

0h L2/L3 cache or TLB is disabled.

1h Direct mapped.

2h 2-way associative.

3h 3-way associative.

4h 4-way associative.

5h 6-way associative.

6h 8-way associative.

8h 16-way associative.

9h Value for all fields should be determined from
Fn8000_001D

Ah 32-way associative.

Bh 48-way associative.

Ch 64-way associative.

Dh 96-way associative.

Eh 128-way associative.

Fh Fully associative.

All other encodings are reserved.

CPUID Fn8000_0006_EBX L2 TLB 4K Information

Bits Field Name Description

31:28 L2DTlb4KAssoc L2 data TLB associativity for 4-KB pages. Encoding is per Table E-4 above.

27:16 L2DTlb4KSize L2 data TLB number of entries for 4-KB pages.

15:12 L2ITlb4KAssoc L2 instruction TLB associativity for 4-KB pages. Encoding is per Table E-4 above.

11:0 L2ITlb4KSize L2 instruction TLB number of entries for 4-KB pages.

[AMD Public Use]

620 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in ECX provides information about the L2 cache.

The associativity field (L2Assoc) is encoded per Table E-4 on page 619.

The value returned in EDX provides the third level cache characteristics shared by all logical
processors in the package.

The associativity field (L3Assoc) is encoded per Table E-4 on page 619.

E.4.6 Function 8000_0007h—Processor Power Management and RAS Capabilities

This function provides information about the power management, power reporting, and RAS
capabilities of the processor that executes the instruction.There may be other processor-specific
features and reporting capabilities not covered here. Refer to the BIOS and Kernel Developer’s Guide
for your specific product to otain more information.

CPUID Fn8000_0006_ECX L2 Cache Information

Bits Field Name Description

31:16 L2Size L2 cache size in KB.

15:12 L2Assoc L2 cache associativity. Encoding is per Table E-4 on page 619.

11:8 L2LinesPerTag L2 cache lines per tag.

7:0 L2LineSize L2 cache line size in bytes.

CPUID Fn8000_0006_EDX L3 Cache Information

Bits Field Name Description

31:18 L3Size
Specifies the L3 cache size range:

(L3Size[31:18] * 512KB) L3 cache size < ((L3Size[31:18]+1) * 512KB).

17:16 — Reserved.

15:12 L3Assoc L3 cache associativity. Encoded per Table E-4 on page 619.

11:8 L3LinesPerTag L3 cache lines per tag.

7:0 L3LineSize L3 cache line size in bytes.

CPUID Fn8000_0007_EAX Reserved

Bits Field Name Description

31:0 — Reserved.

CPUID Fn8000_0007_EBX RAS Capabilities

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 621

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EBX provides information about RAS features that allow system software to
detect specific hardware errors.

The value returned in ECX provides information about the implementation of the processor power
monitoring interface.

The value returned in EDX provides information about the advanced power management and power
reporting features available. Refer to the BIOS and Kernel Developer’s Guide for your specific product
for a detailed description of the definition of each power management feature.

Bits Field Name Description

31:3 — Reserved.

2 HWA Hardware assert supported. Indicates support for MSRC001_10[DF:C0].

1 SUCCOR

Software uncorrectable error containment and recovery capability.

The processor supports software containment of uncorrectable errors through
context synchronizing data poisoning and deferred error interrupts; see APM2,
Chapter 9, “Determining Machine-Check Architecture Support.”

0 McaOverflowRecov

MCA overflow recovery support. If set, indicates that MCA overflow conditions
(MCi_STATUS[Overflow]=1) are not fatal; software may safely ignore such
conditions. If clear, MCA overflow conditions require software to shut down the
system. See APM2, Chapter 9, “Handling Machine Check Exceptions.”

CPUID Fn8000_0007_ECX Processor Power Monitoring Interface

Bits Field Name Description

31:0 CpuPwrSampleTimeRatio
Specifies the ratio of the compute unit power accumulator sample
period to the TSC counter period. Returns a value of 0 if not applicable
for the system.

CPUID Fn8000_0007_EDX Advanced Power Management Features

Bits Field Name Description

31:13 — Reserved.

12 ProcPowerReporting Processor power reporting interface supported.

11 ProcFeedbackInterface
Processor feedback interface. Value: 1. 1=Indicates support for processor
feedback interface. Note: This feature is deprecated.

10 EffFreqRO

Read-only effective frequency interface. 1=Indicates presence of
MSRC000_00E7 [Read-Only Max Performance Frequency Clock Count
(MPerfReadOnly)] and MSRC000_00E8 [Read-Only Actual Performance
Frequency Clock Count (APerfReadOnly)].

9 CPB Core performance boost.

[AMD Public Use]

622 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

E.4.7 Function 8000_0008h—Processor Capacity Parameters and Extended Feature
Identification

This function provides the size or capacity of various architectural parameters that vary by
implementation, as well as an extension to the Fn8000_0001 feature identifiers.

The value returned in EAX provides information about the maximum host and guest physical and
linear address width (in bits) supported by the processor.

The address width reported is the maximum supported in any mode. For long mode capable proces-
sors, the size reported is independent of whether long mode is enabled. See “Processor Initialization
and Long-Mode Activation” in APM2.

The value returned in EBX is an extension to the Fn8000_0001 feature flags and indicates the presence
of various ISA extensions.

8 TscInvariant

TSC invariant. The TSC rate is ensured to be invariant across all P-States, C-
States, and stop grant transitions (such as STPCLK Throttling); therefore the
TSC is suitable for use as a source of time. 0 = No such guarantee is made
and software should avoid attempting to use the TSC as a source of time.

7 HwPstate
Hardware P-state control. MSRC001_0061 [P-state Current Limit],
MSRC001_0062 [P-state Control] and MSRC001_0063 [P-state Status] exist.

6 100MHzSteps 100 MHz multiplier Control.

5 — Reserved.

4 TM Hardware thermal control (HTC).

3 TTP THERMTRIP.

2 VID Voltage ID control. Function replaced by HwPstate.

1 FID Frequency ID control. Function replaced by HwPstate.

0 TS Temperature sensor.

CPUID Fn8000_0008_EAX Long Mode Size Identifiers

Bits Field Name Description

31:24 — Reserved.

23:16 GuestPhysAddrSize

Maximum guest physical address size in bits. This number applies only to guests
using nested paging. When this field is zero, refer to the PhysAddrSize field for
the maximum guest physical address size. See “Secure Virtual Machine” in
APM2.

15:8 LinAddrSize Maximum linear address size in bits.

7:0 PhysAddrSize
Maximum physical address size in bits. When GuestPhysAddrSize is zero, this
field also indicates the maximum guest physical address size.

CPUID Fn8000_0008_EBX Extended Feature Identifiers

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 623

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in ECX provides information about the number of cores supported by the
processor, the width of the APIC ID, and the width of the performance time-stamp counter.

Bit Field Name Description

31:22 — Reserved

21 INVLPGBnestedPages INVLPGB support for invalidating guest nested translations

20 EferLmsleUnsupported EFER.LMSLE is unsupported.

19:14 — Reserved

13 INT_WBINVD WBINVD/WBNOINVD are interruptible.

12:10 — Reserved

9 WBNOINVD WBNOINVD instruction supported

8 MCOMMIT MCOMMIT instruction supported

7:5 — Reserved

4 RDPRU RDPRU instruction supported

3 INVLPGB INVLPGB and TLBSYNC instruction supported

2 RstrFpErrPtrs FP Error Pointers Restored by XRSTOR

1 InstRetCntMsr Instruction Retired Counter MSR available

0 CLZERO CLZERO instruction supported

CPUID Fn8000_0008_ECX Size Identifiers

Bits Field Name Description

31:16 — Reserved.

17:16 PerfTscSize

Performance time-stamp counter size. Indicates the size of
MSRC001_0280[PTSC].

Bits Description

00b 40 bits

01b 48 bits

10b 56 bits

11b 64 bits

[AMD Public Use]

624 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in EDX identifies the maximum recognized register identifier for the RDPRU
instruction.

E.4.8 Function 8000_0009h—Reserved

This function is reserved.

E.4.9 Function 8000_000Ah—SVM Features

This function provides information about the SVM features that the processory supports. If SVM is
not supported (CPUID Fn8000_0001_ECX[SVM] = 0), this function is reserved.

15:12 ApicIdSize

APIC ID size. The number of bits in the initial APIC20[ApicId] value that indicate
logical processor ID within a package. The size of this field determines the
maximum number of logical processors (MNLP) that the package could
theoretically support, and not the actual number of logical processors that are
implemented or enabled in the package, as indicated by CPUID
Fn8000_0008_ECX[NC]. A value of zero indicates that legacy methods must be
used to determine the maximum number of logical processors, as indicated by
CPUID Fn8000_0008_ECX[NC].

if (ApicIdSize[3:0] == 0) {

// Used by legacy dual-core/single-core processors

MNLP = CPUID Fn8000_0008_ECX[NC] + 1;

} else {

// use ApicIdSize[3:0] field

MNLP = (2 raised to the power of ApicIdSize[3:0]);

}

11:8 — Reserved.

7:0 NT
Number of physical threads - 1. The number of threads in the processor is NT+1
(e.g., if NT = 0, then there is one thread). See “Legacy Method” on page 636.

CPUID Fn8000_0008_EDX RDPRU Register Identifier Range

Bits Field Name Description

63:32 — Reserved.

31:16 MaxRdpruID The maximum ECX value recognized by RDPRU.

15:0 InvlpgbCountMax Maximum page count for INVLPGB instruction.

CPUID Fn8000_0009 Reserved

Bits Field Name Description

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 625

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EAX provides the SVM revision number. I

The value returned in EBX provides the number of address space identifiers (ASIDs) that the
processor supports.

The value returned in ECX for this function is undefined and is reserved.

The value returned in EDX provides Secure Virtual Machine architecture feature information. All
cross references in the table below are to sections within the Secure Virtual Machine chapter of APM2.

CPUID Fn8000_000A_EAX SVM Revision and Feature Identification

Bits Field Name Description

31:8 — Reserved.

7:0 SvmRev SVM revision number.

CPUID Fn8000_000A_EBX SVM Revision and Feature Identification

Bits Field Name Description

31:0 NASID Number of available address space identifiers (ASID).

CPUID Fn8000_000A_ECX Reserved

CPUID Fn8000_000A_EDX SVM Feature Identification

Bits Field Name Description

31:25 — Reserved.

24 TlbiCtl
Support for INVLPGB/TLBSYNC hypervisor enable in VMCB and
TLBSYNC intercept.

23 HOST_MCE_OVERRIDE
When host CR4.MCE=1 and guest CR4.MCE=0, machine check
exceptions (#MC) in a guest do not cause shutdown and are always
intercepted.

22:21 — Reserved.

20 SpecCtrl SPEC_CTRL virtualization.

19 SSSCheck
SVM supervisor shadow stack restrictions. See “Supervisor Shadow Stack
Restrictions” in Volume 2.

18 — Reserved.

17 GMET Guest Mode Execution Trap.

16 VGIF Virtualize the Global Interrupt Flag. See "Nested Virtualization"

15 VMSAVEvirt VMSAVE and VMLOAD virtualization. See "Nested Virtualization"

14 — Reserved.

[AMD Public Use]

626 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

E.4.10 Functions 8000_000Bh–8000_0018h—Reserved

These functions are reserved.

E.4.11 Function 8000_0019h—TLB Characteristics for 1GB pages

This function provides information about the TLB for 1 GB pages for the processor that executes the
instruction.

The value returned in EAX provides information about the L1 TLB for 1 GB pages.

13 AVIC
Support for the AMD advanced virtual interrupt controller. See “Advanced
Virtual Interrupt Controller.”

12 PauseFilterThreshold
PAUSE filter threshold. Indicates support for the PAUSE filter cycle count
threshold. See "Pause Intercept Filtering” in Volume 2.

11 — Reserved.

10 PauseFilter
Pause intercept filter. Indicates support for the pause intercept filter. See
“Pause Intercept Filtering.”

9:8 — Reserved.

7 DecodeAssists
Decode assists. Indicates support for the decode assists. See “Decode
Assists.”

6 FlushByAsid
Flush by ASID. Indicates that TLB flush events, including CR3 writes and
CR4.PGE toggles, flush only the current ASID's TLB entries. Also indicates
support for the extended VMCB TLB_Control. See “TLB Control.”

5 VmcbClean
VMCB clean bits. Indicates support for VMCB clean bits. See “VMCB
Clean Bits.”

4 TscRateMsr
MSR based TSC rate control. Indicates support for MSR TSC ratio
MSRC000_0104. See “TSC Ratio MSR (C000_0104h).”

3 NRIPS
NRIP save. Indicates support for NRIP save on #VMEXIT. See “State
Saved on Exit.”

2 SVML SVM lock. Indicates support for SVM-Lock. See “Enabling SVM.”

1 LbrVirt
LBR virtualization. Indicates support for LBR Virtualization. See “Enabling
LBR Virtualization.”

0 NP Nested paging. Indicates support for nested paging. See “Nested Paging.”

CPUID Fn8000_00[18:0B] Reserved

CPUID Fn8000_0019_EAX L1 TLB 1G Information

Bits Field Name Description

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 627

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EBX provides information about the L2 TLB for 1 GB pages.

The values returned in ECX and EDX for this function are undefined and reserved for future use.

E.4.12 Function 8000_001Ah—Instruction Optimizations

This function returns performance related information. For more details on how to use these bits to optimize
software, see the Software Optimization Guide applicable to your product.

Bits Field Name Description

31:28 L1DTlb1GAssoc L1 data TLB associativity for 1 GB pages. See Table E-4 on page 619.

27:16 L1DTlb1GSize L1 data TLB number of entries for 1 GB pages.

15:12 L1ITlb1GAssoc L1 instruction TLB associativity for 1 GB pages. See Table E-4 on page 619.

11:0 L1ITlb1GSize L1 instruction TLB number of entries for 1 GB pages.

CPUID Fn8000_0019_EBX L2 TLB 1G Information

Bits Field Name Description

31:28 L2DTlb1GAssoc L2 data TLB associativity for 1 GB pages. See Table E-4 on page 619.

27:16 L2DTlb1GSize L2 data TLB number of entries for 1 GB pages.

15:12 L2ITlb1GAssoc L2 instruction TLB associativity for 1 GB pages. See Table E-4 on page 619.

11:0 L2ITlb1GSize L2 instruction TLB number of entries for 1 GB pages.

CPUID Fn8000_0019_E[D,C]X Reserved

CPUID Fn8000_001A_EAX Performance Optimization Identifiers

Bits Field Name Description

31:3 — Reserved.

2 FP256
256-bit AVX instructions are executed with full-width internal operations and
pipelines rather than decomposing them into internal 128-bit suboperations. This
may impact how software performs instruction selection and scheduling.

1 MOVU
MOVU SSE nstructions are more efficient and should be preferred to SSE
MOVL/MOVH. MOVUPS is more efficient than MOVLPS/MOVHPS. MOVUPD is
more efficient than MOVLPD/MOVHPD.

0 FP128

128-bit SSE (multimedia) instructions are executed with full-width internal
operations and pipelines rather than decomposing them into internal 64-bit
suboperations. This may impact how software performs instruction selection and
scheduling.

CPUID Fn8000_001A_E[D,C,B]X Reserved

[AMD Public Use]

628 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The values returned in EBX, ECX, and EDX are undefined for this function and are reserved.

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 629

24594—Rev. 3.32—March 2021 AMD64 Technology

E.4.13 Function 8000_001Bh—Instruction-Based Sampling Capabilities

If instruction-based sampling (IBS) is supported (CPUID Fn8000_0001_ECX[IBS] = 1), this CPUID
function can be used to obtain IBS feature information. If IBS is not supported (CPUID
Fn8000_0001_ECX[IBS] = 0), this function number is reserved. For more information on using IBS,
see “Instruction-Based Sampling” in APM2.

The value returned in EAX provides the following information about the specific features of IBS that
the processor supports:

The values returned in EBX, ECX, and EDX are undefined and are reserved.

E.4.14 Function 8000_001Ch—Lightweight Profiling Capabilities

If lightweight profilling (LWP) is supported (CPUID Fn8000_0001_ECX[LWP] = 1), this CPUID
function can be used to obtain information about LWP features supported by the processor. If LWP is
not supported (CPUID Fn8000_0001_ECX[LWP] = 0), this function number is reserved. For more
information on using LWP, see “Lightweight Profiling” in APM2.

CPUID Fn8000_001B_EAX Instruction-Based Sampling Feature Indicators

Bits Field Name Description

31:9 Reserved.

8 OpBrnFuse Fused branch micro-op indication supported.

7 RipInvalidChk Invalid RIP indication supported.

6 OpCntExt IbsOpCurCnt and IbsOpMaxCnt extend by 7 bits.

5 BrnTrgt Branch target address reporting supported.

4 OpCnt Op counting mode supported.

3 RdWrOpCnt Read write of op counter supported.

2 OpSam IBS execution sampling supported.

1 FetchSam IBS fetch sampling supported.

0 IBSFFV IBS feature flags valid.

CPUID Fn8000_001B_E[D,C,B]X Reserved

[AMD Public Use]

630 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The value returned in EAX provides the following information about LWP capabilities supported by
the processor:

The value returned in EBX provides the following additional information about LWP capabilities
supported by the processor:

The value returned in ECX provides the following additional information about LWP capabilities
supported by the processor:

CPUID Fn8000_001C_EAX Lightweight Profiling Capabilities 0

Bits Field Name Description

31 LwpInt Interrupt on threshold overflow available.

30 LwpPTSC Performance time stamp counter in event record is available.

29 LwpCont Sampling in continuous mode is available.

28:7 — Reserved.

6 LwpRNH Core reference clocks not halted event available.

5 LwpCNH Core clocks not halted event available.

4 LwpDME DC miss event available.

3 LwpBRE Branch retired event available.

2 LwpIRE Instructions retired event available.

1 LwpVAL LWPVAL instruction available.

0 LwpAvail The LWP feature is available.

CPUID Fn8000_001C_EBX Lightweight Profiling Capabilities 0

Bits Field Name Description

31:24 LwpEventOffset Offset in bytes from the start of the LWPCB to the EventInterval1 field.

23:16 LwpMaxEvents Maximum EventId value supported.

15:8 LwpEventSize Event record size. Size in bytes of an event record in the LWP event ring buffer.

7:0 LwpCbSize Control block size. Size in quadwords of the LWPCB.

CPUID Fn8000_001C_ECX Lightweight Profiling Capabilities 0

Bits Field Name Description

31 LwpCacheLatency Cache latency filtering supported. Cache-related events can be filtered by latency.

30 LwpCacheLevels
Cache level filtering supported. Cache-related events can be filtered by the cache
level that returned the data.

29 LwpIpFiltering IP filtering supported.

28
LwpBranchPredict
ion

Branch prediction filtering supported. Branches Retired events can be filtered
based on whether the branch was predicted properly.

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 631

24594—Rev. 3.32—March 2021 AMD64 Technology

The value returned in EDX provides the following additional information about LWP capabilities
supported by the processor:

E.4.15 Function 8000_001Dh—Cache Topology Information

CPUID Fn8000_001D_E[D,C,B,A]X reports cache topology information for the cache enumerated by
the value passed to the instruction in ECX, referred to as Cache n in the following description. To
gather information for all cache levels, software must repeatedly execute CPUID with 8000_001Dh in
EAX and ECX set to increasing values beginning with 0 until a value of 00h is returned in the field
CacheType (EAX[4:0]) indicating no more cache descriptions are available for this processor.

If CPUID Fn8000_0001_ECX[TopologyExtensions] = 0, then CPUID Fn8000_001Dh is reserved.
Any value in ECX which does not select an existing cache will return a Null cache type in EAX[4:0].

27:24 — Reserved.

23:16 LwpMinBufferSize
Event ring buffer size. Minimum size of the LWP event ring buffer, in units of 32
event records.

15:9 LwpVersion Version of LWP implementation.

8:6 LwpLatencyRnd Amount by which cache latency is rounded.

5 LwpDataAddress Data cache miss address valid. Address is valid for cache miss event records.

4:0 LwpLatencyMax Latency counter size. Size in bits of the cache latency counters.

CPUID Fn8000_001C_EDX Lightweight Profiling Capabilities 0

Bits Field Name Description

31 LwpInt Interrupt on threshold overflow supported.

30 LwpPTSC Performance time stamp counter in event record is supported.

29 LwpCont Sampling in continuous mode is supported.

28:7 — Reserved.

6 LwpRNH Core reference clocks not halted event is supported.

5 LwpCNH Core clocks not halted event is supported.

4 LwpDME DC miss event is supported.

3 LwpBRE Branch retired event is supported.

2 LwpIRE Instructions retired event is supported.

1 LwpVAL LWPVAL instruction is supported.

0 LwpAvail Lightweight profiling is supported.

Bits Field Name Description

[AMD Public Use]

632 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

CPUID Fn8000_001D_EAX_x[N:0] Cache Properties

Bits Field Name Description

31:26 — Reserved.

25:14 NumSharingCache

Specifies the number of logical processors sharing the cache enumerated by N,
the value passed to the instruction in ECX. The number of logical processors
sharing this cache is the value of this field incremented by 1. To determine which
logical processors are sharing a cache, determine a Share Id for each processor
as follows:

ShareId = LocalApicId >> log2(NumSharingCache+1)

Logical processors with the same ShareId then share a cache. If
NumSharingCache+1 is not a power of two, round it up to the next power of two.

13:10 — Reserved.

9 FullyAssociative
Fully associative cache. When set, indicates that the cache is fully associative. If
0 is returned in this field, the cache is set associative.

8 SelfInitialization
Self-initializing cache. When set, indicates that the cache is self initializing;
software initialization not required. If 0 is returned in this field, hardware does not
initialize this cache.

7:5 CacheLevel

Cache level. Identifies the level of this cache. Note that the enumeration value is
not necessarily equal to the cache level.

Bits Description

000b Reserved.

001b Level 1

010b Level 2

011b Level 3

111b-100b Reserved.

4:0 CacheType

Cache type. Identifies the type of cache.

Bits Description

00h Null; no more caches.

01h Data cache

02h Instruction cache

03h Unified cache

1Fh-04h Reserved.

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 633

24594—Rev. 3.32—March 2021 AMD64 Technology

See CPUID Fn8000_001D_EAX_x[N:0].

See CPUID Fn8000_001D_EAX_x[N:0].

See CPUID Fn8000_001D_EAX_x[N:0].

E.4.16 Function 8000_001Eh—Processor Topology Information

If CPUID Fn8000_0001_ECX[TopologyExtensions] = 0, this function number is reserved.

CPUID Fn8000_001D_EBX_x[N:0] Cache Properties

Bits Field Name Description

31:22 CacheNumWays
Number of ways for this cache. The number of ways is the value returned in this
field incremented by 1.

21:12 CachePhysPartitions
Number of physical line partitions. The number of physical line partitions is the
value returned in this field incremented by 1.

11:0 CacheLineSize
Cache line size. The cache line size in bytes is the value returned in this field
incremented by 1.

CPUID Fn8000_001D_ECX_x[N:0] Cache Properties

Bits Field Name Description

31:0 CacheNumSets
Number of ways for set associative cache. Number of ways is the value returned in
this field incremented by 1. Only valid for caches that are not fully associative
(Fn8000_001D_EAX_xn[FullyAssociative] = 0).

CPUID Fn8000_001D_EDX_x[N:0] Cache Properties

Bits Field Name Description

31:2 — Reserved.

1 CacheInclusive
Cache inclusivity. A value of 0 indicates that this cache is not inclusive of lower
cache levels. A value of 1 indicates that the cache is inclusive of lower cache
levels.

0 WBINVD

Write-Back Invalidate/Invalidate execution scope. A value of 0 returned in this field
indicates that the WBINVD/INVD instruction invalidates all lower level caches of
non-originating logical processors sharing this cache. When set, this field indicates
that the WBINVD/INVD instruction is not guaranteed to invalidate all lower level
caches of non-originating logical processors sharing this cache.

CPUID Fn8000_001E_EAX Extended APIC ID

Bits Field Name Description

31:0 ExtendedApicId Extended APIC ID. If MSR0000_001B[ApicEn] = 0, this field is reserved..

[AMD Public Use]

634 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

See CPUID Fn8000_001E_EAX.

See CPUID Fn8000_001E_EAX.

The value returned in EDX is undefined and is reserved.

E.4.17 Function 8000_001Fh—Encrypted Memory Capabilities

CPUID Fn8000_001E_EBX Compute Unit Identifiers

Bits Field Name Description

31:16 — Reserved.

15:8 ThreadsPerComputeUnit

Threads per compute unit (zero-based count). The actual number of threads
per compute unit is the value of this field + 1. To determine which logical
processors (threads) belong to a given Compute Unit, determine a ShareId
for each processor as follows:

ShareId = LocalApicId >> log2(ThreadsPerComputeUnit+1)

Logical processors with the same ShareId then belong to the same Compute
Unit. (If ThreadsPerComputeUnit+1 is not a power of two, round it up to the
next power of two).

7:0 ComputeUnitId
Compute unit ID. Identifies a Compute Unit, which may be one or more
physical cores that each implement one or more logical processors.

CPUID Fn8000_001E_ECX Node Identifiers

Bits Field Name Description

31:0 — Reserved.

10:8 NodesPerProcessor
Specifies the number of nodes in the package/socket in which this logical
processor resides. Node in this context corresponds to a processor die.
Encoding is N-1, where N is the number of nodes present in the socket.

7:0 NodeId
Specifies the ID of the node containing the current logical processor. NodeId
values are unique across the system..

CPUID Fn8000_001E_EDX Reserved

CPUID Fn8000_001F_EAX Secure Encryption

Bits Field Name Description

31:17 — Reserved.

16 VTE Virtual Transparent Encryption supported

15 PreventHostIbs Disallowing IBS use by the host supported

14 DebugSwap Full debug state swap supported for SEV-ES guests

13 AlternateInjection Alternate Injection supported

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 635

24594—Rev. 3.32—March 2021 AMD64 Technology

E.4.18 Function 8000_0020—Reserved

E.4.19 Function 8000_0021—Extended Feature Identification 2

12 RestrictedInjection Restricted Injection supported

11 64BitHost SEV guest execution only allowed from a 64-bit host

10 HwEnfCacheCoh Hardware cache coherency across encryption domains enforced

9:6 — Reserved.

5 VMPL VM Permission Levels supported

4 SEV-SNP SEV Secure Nested Paging supported

3 SEV-ES SEV Encrypted State supported

2 PageFlushMsr Page Flush MSR available

1 SEV Secure Encrypted Virtualization supported

0 SME Secure Memory Encryption supported

CPUID Fn8000_001F_EBX Secure Encryption

Bits Field Name Description

31:16 — Reserved.

15:12 NumVMPL Number of VM Permission Levels supported

11:6 PhysAddrReduction Physical Address bit reduction

5:0 CbitPosition C-bit location in page table entry

CPUID Fn8000_001F_ECX Secure Encryption

Bits Field Name Description

31:0 NumEncryptedGuests Number of encrypted guests supported simultaneously

CPUID Fn8000_001F_EDX Minimum ASID

Bits Field Name Description

31:0 MinSevNoEsAsid Minimum ASID value for an SEV enabled, SEV-ES disabled guest

CPUID Fn8000_0021_EAX Extended Feature 2

Bits Field Name Description

[AMD Public Use]

636 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

The values returned in EBX, ECX, and EDX are undefined and are reserved.

E.5 Multiple Processor Calculation
Operating systems may use one of two possible methods to calculate the actual number of logical processors
per package (NC), and the maximum possible number of logical processors per package (MNLP). The
extended method is recommended, but a legacy method is also available.

E.5.1 Legacy Method
The CPUID identification of total number of logical processors per package is derived from information
returned by the following fields:

• CPUID Fn0000_0001_EBX[LogicalProcessorCount]
• CPUID Fn0000_0001_EDX[HTT] (Hyper-Threading Technology)
• CPUID Fn8000_0001_ECX[CmpLegacy]
• CPUID Fn8000_0008_ECX[NC]

Table E-5 defines LogicalProcessorCount, HTT, CmpLegacy, and NC as a function of the number of
logical processors per package (n).

When HTT = 0, LogicalProcessorCount is reserved and the package contains one logical processor.

When HTT = 1 and CmpLegacy = 1, LogicalProcessorCount represents the number of logical processors per
package (n).

Bits Field Name Description

31:14 — Reserved

13 PrefetchCtlMsr
Prefetch control MSR supported. See Core::X86::Msr::PrefetchControl in
BKDG or PPR for details

12:7 — Reserved

6 NullSelectClearsBase
Null segment selector loads also clear the destination segment register
base and limit

5:4 — Reserved

3 SmmPgCfgLock SMM paging configuration lock supported.

2 LFenceAlwaysSerializing LFENCE is always dispatch serializing.

1 — Reserved

0 NoNestedDataBp Processor ignores nested data breakpoints

CPUID Fn8000_0021_E[B,C,D]X Reserved

[AMD Public Use]

Obtaining Processor Information Via the CPUID Instruction 637

24594—Rev. 3.32—March 2021 AMD64 Technology

The use of CmpLegacy and LogicalProcessorCount for determining the number of logical processors is depre-
cated. Instead, use NC to determine the number of logical processors per package.

E.5.2 Extended Method (Recommended)
The CPUID identification of total number of logical processors per package is derived from information
returned by the CPUID Fn8000_0008_ECX[ApicIdSize[3:0]]. This field indicates the number of least signifi-
cant bits in the CPUID Fn0000_0001_EBX[LocalApicId] that indicates logical processor ID within the pack-
age. The size of this field determines the maximum number of logical processors (MNLP) that the package
could theoretically support, and not the actual number of logical processors that are implemented or enabled in
the package, as indicated by CPUID Fn8000_0008_ECX[NC].

A value of zero for ApicIdSize[3:0] indicates that the legacy method (section E5.1) should be used to derive
the maximum number of logical processors:

 MNLP = CPUID Fn8000_0008_ECX[NC] + 1.

And for non-zero values of ApicIdSize[3:0]:

 MNLP = 2 raised to the power of ApicIdSize[3:0]

Table E-5. LogicalProcessorCount, CmpLegacy, HTT, and NC

Logical Processors per package CmpLegacy HTT LogicalProcessorCount NC

1 0 0 Reserved 0

2 or more 1 1 n n-1

[AMD Public Use]

638 Obtaining Processor Information Via the CPUID Instruction

AMD64 Technology 24594—Rev. 3.32—March 2021

[AMD Public Use]

Instruction Effects on RFLAGS 639

24594—Rev. 3.32—March 2021 AMD64 Technology

Appendix F Instruction Effects on RFLAGS

The flags in the RFLAGS register are described in “Flags Register” in Volume 1 and “RFLAGS
Register” in Volume 2. Table F-1 summarizes the effect that instructions have on these flags. The table
includes all instructions that affect the flags. Instructions not shown have no effect on RFLAGS.

The following codes are used within the table:

• 0—The flag is always cleared to 0.

• 1—The flag is always set to 1.

• AH—The flag is loaded with value from AH register.

• Mod—The flag is modified, depending on the results of the instruction.

• Pop—The flag is loaded with value popped off of the stack.

• Tst—The flag is tested.

• U—The effect on the flag is undefined.

• Gray shaded cells indicate that the flag is not affected by the instruction.

Table F-1. Instruction Effects on RFLAGS

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number

ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13:12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

AAA
AAS

U U U
Tst

Mod
U Mod

AAD
AAM

Mod Mod U Mod UU

ADC Mod Mod Mod Mod Mod
Tst

Mod

ADD Mod Mod Mod Mod Mod Mod

AND 0 Mod Mod U Mod 0

ARPL Mod

BSF
BSR

U U Mod U U U

BT
BTC
BTR
BTS

U U U U U Mod

BZHI 0 Mod Mod U U Mod

CLC 0

CLD 0

CLI Mod TST Mod

CMC Mod

CMOVcc Tst Tst Tst Tst Tst

CMP Mod Mod Mod Mod Mod Mod

[AMD Public Use]

640 Instruction Effects on RFLAGS

AMD64 Technology 24594—Rev. 3.32—March 2021

CMPSx Mod Tst Mod Mod Mod Mod Mod

CMPXCHG Mod Mod Mod Mod Mod Mod

CMPXCHG8B Mod

CMPXCHG16B Mod

COMISD
COMISS

0 0 Mod 0 Mod Mod

DAA
DAS

U Mod Mod
Tst

Mod
Mod

Tst
Mod

DEC Mod Mod Mod Mod Mod

DIV U U U U U U

FCMOVcc Tst Tst Tst

FCOMI
FCOMIP
FUCOMI

FUCOMIP

Mod Mod Mod

IDIV U U U U U U

IMUL Mod U U U U Mod

INC Mod Mod Mod Mod Mod

IN Tst

INSx Tst Tst

INT
INT 3

Mod Mod
Tst

Mod
0 Mod Tst Mod 0

INTO Mod
Tst

Mod
0 Mod Tst Tst Mod Mod

IRETx Pop Pop Pop Pop
Tst
Pop

Pop
Tst
Pop

Tst
Pop

Pop Pop Pop Pop Pop Pop Pop Pop Pop

Jcc Tst Tst Tst Tst Tst

LAR Mod

LODSx Tst

LOOPE
LOOPNE

Tst

LSL Mod

LZCNT U U Mod U U Mod

MOVSx Tst

MUL Mod U U U U Mod

NEG Mod Mod Mod Mod Mod Mod

OR 0 Mod Mod U Mod 0

OUT Tst

OUTSx Tst Tst

PSMASH Mod Mod Mod Mod Mod

PVALIDATE Mod Mod Mod Mod Mod Mod

POPCNT 0 0 Mod 0 0 0

Table F-1. Instruction Effects on RFLAGS (continued)

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number

ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13:12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

[AMD Public Use]

Instruction Effects on RFLAGS 641

24594—Rev. 3.32—March 2021 AMD64 Technology

POPFx Pop Tst Mod Pop Tst 0 Pop
Tst
Pop

Pop Pop Pop Pop Pop Pop Pop Pop Pop

RCL 1 Mod
Tst

Mod

RCL count U
Tst

Mod

RCR 1 Mod
Tst

Mod

RCR count U
Tst

Mod

RMPADJUST Mod Mod Mod Mod Mod

RMPUPDATE Mod Mod Mod Mod Mod

ROL 1 Mod Mod

ROL count U Mod

ROR 1 Mod Mod

ROR count U Mod

RSM Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod

SAHF AH AH AH AH AH

SHL/SAL 1 Mod Mod Mod U Mod Mod

SHL/SAL count U Mod Mod U Mod Mod

SAR 1 Mod Mod Mod U Mod Mod

SAR count U Mod Mod U Mod Mod

SBB Mod Mod Mod Mod Mod
Tst

Mod

SCASx Mod Tst Mod Mod Mod Mod Mod

SETcc Tst Tst Tst Tst Tst

SHLD 1
SHRD 1

Mod Mod Mod U Mod Mod

SHLD count
SHRD count

U Mod Mod U Mod Mod

SHR 1 Mod Mod Mod U Mod Mod

SHR count U Mod Mod U Mod Mod

STC 1

STD 1

STI Mod Tst Mod

STOSx Tst

SUB Mod Mod Mod Mod Mod Mod

SYSCALL Mod Mod Mod Mod 0 0 Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod

SYSENTER 0 0 0

SYSRET Mod Mod Mod Mod 0 Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod

TEST 0 Mod Mod U Mod 0

Table F-1. Instruction Effects on RFLAGS (continued)

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number

ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13:12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

[AMD Public Use]

642 Instruction Effects on RFLAGS

AMD64 Technology 24594—Rev. 3.32—March 2021

UCOMISD
UCOMISS

0 0 Mod 0 Mod Mod

VERR
VERW

Mod

XADD Mod Mod Mod Mod Mod Mod

XOR 0 Mod Mod U Mod 0

Table F-1. Instruction Effects on RFLAGS (continued)

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number

ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13:12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

[AMD Public Use]

Index 643

24594—Rev. 3.32—March 2021 AMD64 Technology

Numerics

0F_38h opcode map... 521
0F_3Ah opcode map .. 521

A

addressing
effective address........................... 548, 551, 552, 554

AMD64 Instruction-set Architecture........................ 591
AMD64 ISA.. 591

B

base field.. 553, 554

C

CMOVcc .. 516
condition codes

rFLAGS.. 516, 536
count .. 557
CPUID

feature flags ... 594

D

DEC ... 587

E

effective address 548, 551, 552, 554

F

FCMOVcc .. 536

I

immediate operands ... 557
INC .. 587
index field ... 554
instructions

effects on rFLAGS ... 635
invalid in 64-bit mode... 585
invalid in long mode ... 586
reassigned in 64-bit mode.................................... 586

J

Jcc .. 516

M

mod field... 551
mode-register-memory (ModRM) 547
modes ... 589

64-bit... 589

compatibility .. 589
long ... 589

ModRM .. 547
ModRM byte .. 517, 527, 547

N

NOP.. 588

O

one-byte opcodes ... 508
opcode

two-byte... 510
opcode map

0F_38h .. 521
0F_3Ah.. 521
primary .. 508
secondary... 510

opcode maps.. 508
opcodes

3DNow!™ ... 524
group 1 .. 517
group 10 .. 519
group 12 .. 519
group 13 .. 519
group 14 .. 519
group 16 .. 520
group 17 .. 520
group 1a... 518
group 2 .. 518
group 3 .. 518
group 4 .. 518
group 5 .. 518
group 6 .. 519
group 7 .. 519
group 8 .. 519
group 9 .. 519
group P .. 520
groups.. 517
ModRM byte.. 517
one-byte... 508
x87 opcode map ... 527

operands
immediate .. 557
size... 557, 558, 586

P

primary opcode map... 508

R

r/m field .. 517

Index

[AMD Public Use]

644 Index

AMD64 Technology 24594—Rev. 3.32—March 2021

reg field .. 517, 548, 550, 551
registers

rFLAGS.. 516, 536, 635
REX prefixe .. 547
REX.B bit .. 551, 553
REX.R bit ... 550
rFLAGS conditions codes................................ 516, 536
rFLAGS register .. 635
rotate count ... 557

S

scale field.. 554
scale-index-base (SIB) ... 547
secondary opcode map ... 510
segment prefixes.. 588
SETcc ... 516
shift count ... 557
SIB... 547
SIB byte.. 552

T

two-byte opcode .. 510

V

VEX prefix ... 547

X

XOP prefix.. 547

Z

zero-extension ... 557

[AMD Public Use]

Advanced Micro Devices

Publication No. Revision Date
26568 3.24 May 2020

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 4:
128-Bit and 256-Bit
Media Instructions

Publication No. Revision Date
26568 3.24 May 2020

[AMD Public Use]

© 2013 – 2020 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale. Any unauthorized copying, alteration, distribution,

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and 3DNow! are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

[AMD Public Use]

iii

26568—Rev. 3.24—May 2020 AMD64 Technology

Contents

Revision History. xxiii

Preface. xxvii
About This Book. xxvii
Audience . xxvii
Organization . xxvii
Conventions and Definitions . xxviii
Related Documents . xl

1 Introduction .1
1.1 Syntax and Notation . 2
1.2 Extended Instruction Encoding . 3

1.2.1 Immediate Byte Usage Unique to the SSE instructions . 4
1.2.2 Instruction Format Examples . 4

1.3 VSIB Addressing . 6
1.3.1 Effective Address Array Computation . 7
1.3.2 Notational Conventions Related to VSIB Addressing Mode . 8
1.3.3 Memory Ordering and Exception Behavior . 9

1.4 Enabling SSE Instruction Execution . 10
1.5 String Compare Instructions . 10

1.5.1 Source Data Format . 13
1.5.2 Comparison Type . 14
1.5.3 Comparison Summary Bit Vector . 16
1.5.4 Intermediate Result Post-processing. 18
1.5.5 Output Option Selection . 18
1.5.6 Affect on Flags . 19

2 Instruction Reference .21
ADDPD
VADDPD . 23
ADDPS
VADDPS . 25
ADDSD
VADDSD . 27
ADDSS
VADDSS . 29
ADDSUBPD
VADDSUBPD . 31
ADDSUBPS
VADDSUBPS . 33
AESDEC
VAESDEC . 35
AESDECLAST
VAESDECLAST . 37
AESENC

[AMD Public Use]

iv

AMD64 Technology 26568—Rev. 3.24—May 2020

VAESENC . 39
AESENCLAST
VAESENCLAST . 41
AESIMC
VAESIMC . 43
AESKEYGENASSIST
VAESKEYGENASSIST . 45
ANDNPD
VANDNPD . 47
ANDNPS
VANDNPS. 49
ANDPD
VANDPD . 51
ANDPS
VANDPS . 53
BLENDPD
VBLENDPD . 55
BLENDPS
VBLENDPS. 57
BLENDVPD
VBLENDVPD . 59
BLENDVPS
VBLENDVPS . 61
CMPPD
VCMPPD. 63
CMPPS
VCMPPS . 67
CMPSD
VCMPSD. 71
CMPSS
VCMPSS . 75
COMISD
VCOMISD. 79
COMISS
VCOMISS . 82
CVTDQ2PD
VCVTDQ2PD . 84
CVTDQ2PS
VCVTDQ2PS . 86
CVTPD2DQ
VCVTPD2DQ . 88
CVTPD2PS
VCVTPD2PS. 90
CVTPS2DQ
VCVTPS2DQ . 92
CVTPS2PD
VCVTPS2PD. 94

[AMD Public Use]

v

26568—Rev. 3.24—May 2020 AMD64 Technology

CVTSD2SI
VCVTSD2SI . 96
CVTSD2SS
VCVTSD2SS. 99
CVTSI2SD
VCVTSI2SD . 101
CVTSI2SS
VCVTSI2SS . 104
CVTSS2SD
VCVTSS2SD. 107
CVTSS2SI
VCVTSS2SI . 109
CVTTPD2DQ
VCVTTPD2DQ . 112
CVTTPS2DQ
VCVTTPS2DQ . 115
CVTTSD2SI
VCVTTSD2SI . 117
CVTTSS2SI
VCVTTSS2SI . 120
DIVPD
VDIVPD . 123
DIVPS
VDIVPS. 125
DIVSD
VDIVSD . 127
DIVSS
VDIVSS. 129
DPPD
VDPPD . 131
DPPS
VDPPS. 134
EXTRACTPS
VEXTRACTPS . 137
EXTRQ . 139
HADDPD
VHADDPD . 141
HADDPS
VHADDPS . 143
HSUBPD
VHSUBPD. 146
HSUBPS
VHSUBPS . 149
INSERTPS
VINSERTPS . 152
INSERTQ. 154
LDDQU

[AMD Public Use]

vi

AMD64 Technology 26568—Rev. 3.24—May 2020

VLDDQU . 156
LDMXCSR
VLDMXCSR . 158
MASKMOVDQU
VMASKMOVDQU. 160
MAXPD
VMAXPD . 162
MAXPS
VMAXPS. 165
MAXSD
VMAXSD . 168
MAXSS
VMAXSS. 170
MINPD
VMINPD . 172
MINPS
VMINPS . 175
MINSD
VMINSD . 178
MINSS
VMINSS . 180
MOVAPD
VMOVAPD . 182
MOVAPS
VMOVAPS . 184
MOVD
VMOVD . 186
MOVDDUP
VMOVDDUP . 188
MOVDQA
VMOVDQA. 190
MOVDQU
VMOVDQU . 192
MOVHLPS
VMOVHLPS . 194
MOVHPD
VMOVHPD . 196
MOVHPS
VMOVHPS . 198
MOVLHPS
VMOVLHPS . 200
MOVLPD
VMOVLPD . 202
MOVLPS
VMOVLPS . 204
MOVMSKPD
VMOVMSKPD . 206

[AMD Public Use]

vii

26568—Rev. 3.24—May 2020 AMD64 Technology

MOVMSKPS
VMOVMSKPS . 208
MOVNTDQ
VMOVNTDQ . 210
MOVNTDQA
VMOVNTDQA . 212
MOVNTPD
VMOVNTPD. 214
MOVNTPS
VMOVNTPS . 216
MOVNTSD . 218
MOVNTSS . 220
MOVQ
VMOVQ . 222
MOVSD
VMOVSD . 224
MOVSHDUP
VMOVSHDUP . 226
MOVSLDUP
VMOVSLDUP. 228
MOVSS
VMOVSS. 230
MOVUPD
VMOVUPD . 232
MOVUPS
VMOVUPS . 234
MPSADBW
VMPSADBW . 236
MULPD
VMULPD . 241
MULPS
VMULPS . 243
MULSD
VMULSD . 245
MULSS
VMULSS . 247
ORPD
VORPD . 249
ORPS
VORPS . 251
PABSB
VPABSB . 253
PABSD
VPABSD . 255
PABSW
VPABSW. 257
PACKSSDW

[AMD Public Use]

viii

AMD64 Technology 26568—Rev. 3.24—May 2020

VPACKSSDW . 259
PACKSSWB
VPACKSSWB . 261
PACKUSDW
VPACKUSDW . 263
PACKUSWB
VPACKUSWB. 265
PADDB
VPADDB . 267
PADDD
VPADDD . 269
PADDQ
VPADDQ . 271
PADDSB
VPADDSB . 273
PADDSW
VPADDSW . 275
PADDUSB
VPADDUSB . 277
PADDUSW
VPADDUSW . 279
PADDW
VPADDW . 281
PALIGNR
VPALIGNR . 283
PAND
VPAND . 285
PANDN
VPANDN . 287
PAVGB
VPAVGB . 289
PAVGW
VPAVGW. 291
PBLENDVB
VPBLENDVB . 293
PBLENDW
VPBLENDW . 295
PCLMULQDQ
VPCLMULQDQ . 297
PCMPEQB
VPCMPEQB . 299
PCMPEQD
VPCMPEQD . 301
PCMPEQQ
VPCMPEQQ . 303
PCMPEQW
VPCMPEQW. 305

[AMD Public Use]

ix

26568—Rev. 3.24—May 2020 AMD64 Technology

PCMPESTRI
VPCMPESTRI. 307
PCMPESTRM
VPCMPESTRM . 310
PCMPGTB
VPCMPGTB . 313
PCMPGTD
VPCMPGTD . 315
PCMPGTQ
VPCMPGTQ . 317
PCMPGTW
VPCMPGTW. 319
PCMPISTRI
VPCMPISTRI . 321
PCMPISTRM
VPCMPISTRM . 324
PEXTRB
VPEXTRB . 327
PEXTRD
VPEXTRD. 329
PEXTRQ
VPEXTRQ. 331
PEXTRW
VPEXTRW . 333
PHADDD
VPHADDD . 335
PHADDSW
VPHADDSW. 337
PHADDW
VPHADDW. 340
PHMINPOSUW
VPHMINPOSUW . 343
PHSUBD
VPHSUBD. 345
PHSUBSW
VPHSUBSW . 347
PHSUBW
VPHSUBW . 350
PINSRB
VPINSRB . 353
PINSRD
VPINSRD . 356
PINSRQ
VPINSRQ . 358
PINSRW
VPINSRW . 360
PMADDUBSW

[AMD Public Use]

x

AMD64 Technology 26568—Rev. 3.24—May 2020

VPMADDUBSW. 362
PMADDWD
VPMADDWD . 365
PMAXSB
VPMAXSB . 367
PMAXSD
VPMAXSD . 369
PMAXSW
VPMAXSW. 371
PMAXUB
VPMAXUB . 373
PMAXUD
VPMAXUD . 375
PMAXUW
VPMAXUW . 377
PMINSB
VPMINSB . 379
PMINSD
VPMINSD . 381
PMINSW
VPMINSW. 383
PMINUB
VPMINUB. 385
PMINUD
VPMINUD. 387
PMINUW
VPMINUW . 389
PMOVMSKB
VPMOVMSKB . 391
PMOVSXBD
VPMOVSXBD . 393
PMOVSXBQ
VPMOVSXBQ . 395
PMOVSXBW
VPMOVSXBW . 397
PMOVSXDQ
VPMOVSXDQ . 399
PMOVSXWD
VPMOVSXWD . 401
PMOVSXWQ
VPMOVSXWQ . 403
PMOVZXBD
VPMOVZXBD . 405
PMOVZXBQ
VPMOVZXBQ . 407
PMOVZXBW
VPMOVZXBW . 409

[AMD Public Use]

xi

26568—Rev. 3.24—May 2020 AMD64 Technology

PMOVZXDQ
VPMOVZXDQ . 411
PMOVZXWD
VPMOVZXWD. 413
PMOVZXWQ
VPMOVZXWQ. 415
PMULDQ
VPMULDQ . 417
PMULHRSW
VPMULHRSW . 419
PMULHUW
VPMULHUW . 421
PMULHW
VPMULHW. 423
PMULLD
VPMULLD . 425
PMULLW
VPMULLW . 427
PMULUDQ
VPMULUDQ. 429
POR
VPOR. 431
PSADBW
VPSADBW . 433
PSHUFB
VPSHUFB . 435
PSHUFD
VPSHUFD . 437
PSHUFHW
VPSHUFHW . 440
PSHUFLW
VPSHUFLW . 443
PSIGNB
VPSIGNB . 446
PSIGND
VPSIGND . 448
PSIGNW
VPSIGNW . 450
PSLLD
VPSLLD . 452
PSLLDQ
VPSLLDQ . 455
PSLLQ
VPSLLQ . 457
PSLLW
VPSLLW . 460
PSRAD

[AMD Public Use]

xii

AMD64 Technology 26568—Rev. 3.24—May 2020

VPSRAD . 463
PSRAW
VPSRAW. 466
PSRLD
VPSRLD . 469
PSRLDQ
VPSRLDQ . 472
PSRLQ
VPSRLQ . 474
PSRLW
VPSRLW . 477
PSUBB
VPSUBB . 480
PSUBD
VPSUBD . 482
PSUBQ
VPSUBQ . 484
PSUBSB
VPSUBSB . 486
PSUBSW
VPSUBSW. 488
PSUBUSB
VPSUBUSB. 490
PSUBUSW
VPSUBUSW . 492
PSUBW
VPSUBW. 494
PTEST
VPTEST. 496
PUNPCKHBW
VPUNPCKHBW . 498
PUNPCKHDQ
VPUNPCKHDQ . 501
PUNPCKHQDQ
VPUNPCKHQDQ . 504
PUNPCKHWD
VPUNPCKHWD . 507
PUNPCKLBW
VPUNPCKLBW . 510
PUNPCKLDQ
VPUNPCKLDQ . 513
PUNPCKLQDQ
VPUNPCKLQDQ . 516
PUNPCKLWD
VPUNPCKLWD . 519
PXOR
VPXOR . 522

[AMD Public Use]

xiii

26568—Rev. 3.24—May 2020 AMD64 Technology

RCPPS
VRCPPS . 524
RCPSS
VRCPSS . 526
ROUNDPD
VROUNDPD . 528
ROUNDPS
VROUNDPS . 531
ROUNDSD
VROUNDSD . 534
ROUNDSS
VROUNDSS . 537
RSQRTPS
VRSQRTPS . 540
RSQRTSS
VRSQRTSS . 542
SHA1RNDS4. 544
SHA1NEXTE . 546
SHA1MSG1. 548
SHA1MSG2. 550
SHA256RNDS2. 552
SHA256MSG1. 554
SHA256MSG2. 556
SHUFPD
VSHUFPD . 558
SHUFPS
VSHUFPS . 561
SQRTPD
VSQRTPD . 564
SQRTPS
VSQRTPS . 566
SQRTSD
VSQRTSD . 568
SQRTSS
VSQRTSS . 570
STMXCSR
VSTMXCSR . 572
SUBPD
VSUBPD . 574
SUBPS
VSUBPS . 576
SUBSD
VSUBSD . 578
SUBSS
VSUBSS . 580
UCOMISD
VUCOMISD . 582

[AMD Public Use]

xiv

AMD64 Technology 26568—Rev. 3.24—May 2020

UCOMISS
VUCOMISS. 584
UNPCKHPD
VUNPCKHPD. 586
UNPCKHPS
VUNPCKHPS . 588
UNPCKLPD
VUNPCKLPD . 590
UNPCKLPS
VUNPCKLPS . 592
VBROADCASTF128 . 594
VBROADCASTI128. 596
VBROADCASTSD . 598
VBROADCASTSS . 600
VCVTPH2PS. 602
VCVTPS2PH. 605
VEXTRACTF128 . 609
VEXTRACTI128. 611
VFMADDPD
VFMADD132PD
VFMADD213PD
VFMADD231PD. 613
VFMADDPS
VFMADD132PS
VFMADD213PS
VFMADD231PS . 616
VFMADDSD
VFMADD132SD
VFMADD213SD
VFMADD231SD. 619
VFMADDSS
VFMADD132SS
VFMADD213SS
VFMADD231SS . 622
VFMADDSUBPD
VFMADDSUB132PD
VFMADDSUB213PD
VFMADDSUB231PD . 625
VFMADDSUBPS
VFMADDSUB132PS
VFMADDSUB213PS
VFMADDSUB231PS . 628
VFMSUBADDPD
VFMSUBADD132PD
VFMSUBADD213PD
VFMSUBADD231PD . 631
VFMSUBADDPS

[AMD Public Use]

xv

26568—Rev. 3.24—May 2020 AMD64 Technology

VFMSUBADD132PS
VFMSUBADD213PS
VFMSUBADD231PS . 634
VFMSUBPD
VFMSUB132PD
VFMSUB213PD
VFMSUB231PD . 637
VFMSUBPS
VFMSUB132PS
VFMSUB213PS
VFMSUB231PS . 640
VFMSUBSD
VFMSUB132SD
VFMSUB213SD
VFMSUB231SD . 643
VFMSUBSS
VFMSUB132SS
VFMSUB213SS
VFMSUB231SS . 646
VFNMADDPD
VFNMADD132PD
VFNMADD213PD
VFNMADD231PD . 649
VFNMADDPS
VFNMADD132PS
VFNMADD213PS
VFNMADD231PS. 652
VFNMADDSD
VFNMADD132SD
VFNMADD213SD
VFNMADD231SD . 655
VFNMADDSS
VFNMADD132SS
VFNMADD213SS
VFNMADD231SS. 658
VFNMSUBPD
VFNMSUB132PD
VFNMSUB213PD
VFNMSUB231PD. 661
VFNMSUBPS
VFNMSUB132PS
VFNMSUB213PS
VFNMSUB231PS . 664
VFNMSUBSD
VFNMSUB132SD
VFNMSUB213SD
VFNMSUB231SD. 667

[AMD Public Use]

xvi

AMD64 Technology 26568—Rev. 3.24—May 2020

VFNMSUBSS
VFNMSUB132SS
VFNMSUB213SS
VFNMSUB231SS . 670
VFRCZPD . 673
VFRCZPS . 675
VFRCZSD . 677
VFRCZSS . 679
VGATHERDPD. 681
VGATHERDPS . 683
VGATHERQPD. 685
VGATHERQPS . 687
VINSERTF128 . 689
VINSERTI128 . 691
VMASKMOVPD . 693
VMASKMOVPS . 695
VPBLENDD . 697
VPBROADCASTB . 699
VPBROADCASTD . 701
VPBROADCASTQ . 703
VPBROADCASTW . 705
VPCMOV . 707
VPCOMB . 709
VPCOMD . 711
VPCOMQ . 713
VPCOMUB . 715
VPCOMUD . 717
VPCOMUQ . 719
VPCOMUW. 721
VPCOMW . 723
VPERM2F128 . 725
VPERM2I128 . 727
VPERMD. 729
VPERMIL2PD. 731
VPERMIL2PS . 735
VPERMILPD. 739
VPERMILPS . 742
VPERMPD . 746
VPERMPS . 748
VPERMQ. 750
VPGATHERDD. 752
VPGATHERDQ. 754
VPGATHERQD. 756
VPGATHERQQ. 758
VPHADDBD . 760
VPHADDBQ . 762
VPHADDBW . 764

[AMD Public Use]

xvii

26568—Rev. 3.24—May 2020 AMD64 Technology

VPHADDDQ. 766
VPHADDUBD . 768
VPHADDUBQ . 770
VPHADDUBW . 772
VPHADDUDQ . 774
VPHADDUWD . 776
VPHADDUWQ . 778
VPHADDWD . 780
VPHADDWQ . 782
VPHSUBBW . 784
VPHSUBDQ . 786
VPHSUBWD. 788
VPMACSDD . 790
VPMACSDQH . 792
VPMACSDQL. 794
VPMACSSDD. 796
VPMACSSDQH . 798
VPMACSSDQL. 800
VPMACSSWD . 802
VPMACSSWW . 804
VPMACSWD . 806
VPMACSWW . 808
VPMADCSSWD . 810
VPMADCSWD . 812
VPMASKMOVD . 814
VPMASKMOVQ . 816
VPPERM . 818
VPROTB . 820
VPROTD . 822
VPROTQ . 824
VPROTW. 826
VPSHAB . 828
VPSHAD . 830
VPSHAQ . 832
VPSHAW. 834
VPSHLB . 836
VPSHLD . 838
VPSHLQ . 840
VPSHLW . 842
VPSLLVD . 844
VPSLLVQ . 846
VPSRAVD . 848
VPSRLVD . 850
VPSRLVQ . 852
VTESTPD . 854
VTESTPS . 856
VZEROALL . 858

[AMD Public Use]

xviii

AMD64 Technology 26568—Rev. 3.24—May 2020

VZEROUPPER . 859
XGETBV . 860
XORPD
VXORPD. 861
XORPS
VXORPS . 863
XRSTOR . 865
XRSTORS . 867
XSAVE. 869
XSAVEC . 871
XSAVEOPT. 873
XSAVES . 875
XSETBV . 877

3 Exception Summary .879

Appendix A AES Instructions .973
A.1 AES Overview. 973
A.2 Coding Conventions . 973
A.3 AES Data Structures . 974
A.4 Algebraic Preliminaries . 974

A.4.1 Multiplication in the Field GF. 975
A.4.2 Multiplication of 4x4 Matrices Over GF. 976

A.5 AES Operations . 976
A.5.1 Sequence of Operations . 978

A.6 Initializing the Sbox and InvSBox Matrices . 979
A.6.1 Computation of SBox and InvSBox . 980
A.6.2 Initialization of InvSBox[] . 982

A.7 Encryption and Decryption . 984
A.7.1 The Encrypt() and Decrypt() Procedures . 984
A.7.2 Round Sequences and Key Expansion . 985

A.8 The Cipher Function . 986
A.8.1 Text to Matrix Conversion. 987
A.8.2 Cipher Transformations. 987
A.8.3 Matrix to Text Conversion. 989

A.9 The InvCipher Function. 989
A.9.1 Text to Matrix Conversion. 990
A.9.2 InvCypher Transformations. 990
A.9.3 Matrix to Text Conversion. 992

A.10 An Alternative Decryption Procedure . 992
A.11 Computation of GFInv with Euclidean Greatest Common Divisor 994

Index . 997

[AMD Public Use]

xix

26568—Rev. 3.24—May 2020 AMD64 Technology

Figures
Figure 1-1. Typical Descriptive Synopsis - Extended SSE Instructions . 3

Figure 1-2. VSIB Byte Format . 7

Figure 1-3. Byte-wide Character String – Memory and Register Image. 13

Figure 2-1. Typical Instruction Description . 21

Figure 2-2. (V)MPSADBW Instruction. 238

Figure A-1. GFMatrix Representation of 16-byte Block . 974

Figure A-2. GFMatrix to Operand Byte Mappings . 974

[AMD Public Use]

xx

AMD64 Technology 26568—Rev. 3.24—May 2020

[AMD Public Use]

xxi

26568—Rev. 3.24—May 2020 AMD64 Technology

Tables
Table 1-1. Three-Operand Selection . 5
Table 1-2. Four-Operand Selection . 6
Table 1-3. Source Data Format . 14
Table 1-4. Comparison Type . 15
Table 1-5. Post-processing Options . 18
Table 1-6. Indexed Output Option Selection . 18
Table 1-7. Masked Output Option Selection . 18
Table 1-8. State of Affected Flags After Execution . 19
Table 3-1. Instructions By Exception Class . 879
Table A-1. SBox Definition . 982
Table A-2. InvSBox Definition . 984
Table A-3. Cipher Key, Round Sequence, and Round Key Length . 985

[AMD Public Use]

xxii

AMD64 Technology 26568—Rev. 3.24—May 2020

[AMD Public Use]

xxiii

26568—Rev. 3.24—May 2020 AMD64 Technology

Revision History

Date Revision Description

May 2020 3.24
Chapter 2: Sections: Updated VAESDEC, VAESDECLAST,
VAESENC, VAESENCLAST, VCMPPS, VPCLMULQDQ, and
VPCMPGTQ.

January 2019 3.23

Updated the Exceptions table for MOVNTDAQA and
VMOVNTDAQA.
Corrections to VPMACSSDD and VPMACSSWW.
Corrected scr1 to src1 throughout the document.

May 2018 3.22

Update Packed String Compare Algorithm
Fixed a number of erroneous references to double precision that
should be single precision
Separate out MOVQ from MOVD

December 2017 3.21 Clarifications to XGETBV, XRSTOR, XRSTORS, XSAVE,
XSAVEC, XSAVEOPT, XSAVES, and XSETBV instructions.

March 2017 3.20

Corrections to ROUNDPD, VROUNDPD, ROUNDPS,
VROUNDPS, ROUNDSD, VROUNDSD, ROUNDSS,
VROUNDSS, VPERMD, VPERMPD, VPERMPS, VPERMQ,
VTESTPD, VTESTPS, XGETBV, XSETBV, XSAVE, and AVX
instruction descriptions.
Added SHA1RNDS4, SHA1NEXTE, SHA1MSG1, SHA1MSG2,
SHA256RNDS2, SHA256MSG1, SHA256MSG2, XRSTOR,
XRSTORS and XSAVEC instructions.

June 2015 3.19 Corrections to the MOVLPD, PHSUBW, PHSUBSW instruction
descriptions.

October 2013 3.18
Added AVX2 Instructions.
Added “Instruction Support” subsection to each instruction
reference page that lists CPUID feature bit information in a table.

May 2013 3.17

Removed all references to the CPUID specification which has
been superseded by Volume 3, Appendix E, "Obtaining
Processor Information Via the CPUID Instruction."
Corrected exceptions table for the explicitly-aligned load/store
instructions. General protection exception does not depend on
state of MXCSR.MM bit.

[AMD Public Use]

xxiv

AMD64 Technology 26568—Rev. 3.24—May 2020

September
2012 3.16

Corrected REX.W bit encoding for the MOVD instruction. (See
page 186.)
Corrected L bit encoding for the VMOVQ (D6h opcode)
instruction. (See page 222.)
Corrected statement about zero extension for third encoding (11h
opcode) of MOVSS instruction. (See page 230.)

March 2012 3.15
Corrected instruction encoding for VPCOMUB, VPCOMUD,
VPCOMUQ, VPCOMUW, and VPHSUBDQ instructions. Other
minor corrections.

December 2011 3.14

Reworked Section 1.5, "String Compare Instructions" on page 10.
Revised descriptions of the string compare instructions in
instruction reference.
Moved AES overview to Appendix A.
Clarified trap and exception behavior for elements not selected
for writing. See MASKMOVDQU VMASKMOVDQU on page 160.
Additional minor corrections and clarifications.

September 2011 3.13

Moved discussion of extended instruction encoding; VEX and
XOP prefixes to Volume 3.
Added FMA instructions. Described on the corresponding FMA4
reference page.
Moved BMI and TBM instructions to Volume 3.
Added XSAVEOPT instruction.
Corrected descriptions of VSQRTSD and VSQRTSS.

May 2011 3.12 Added F16C, BMI, and TBM instructions.

December 2010 3.11

Complete revision and reformat accommodating 128-bit and 256-
bit media instructions. Includes revised definitions of legacy SSE,
SSE2, SSE3, SSE4.1, SSE4.2, and SSSE3 instructions, as well
as new definitions of extended AES, AVX, CLMUL, FMA4, and
XOP instructions. Introduction includes supplemental information
concerning encoding of extended instructions, enhanced
processor state management provided by the XSAVE/XRSTOR
instructions, cryptographic capabilities of the AES instructions,
and functionality of extended string comparison instructions.

September 2007 3.10 Added minor clarifications and corrected typographical and
formatting errors.

Date Revision Description

[AMD Public Use]

xxv

26568—Rev. 3.24—May 2020 AMD64 Technology

July 2007 3.09

Added the following instructions: EXTRQ, INSERTQ, MOVNTSD,
and MOVNTSS.
Added misaligned exception mask (MXCSR.MM) information.
Added imm8 values with corresponding mnemonics to
(V)CMPPD, (V)CMPPS, (V)CMPSD, and (V)CMPSS.
Reworded CPUID information in condition tables.
Added minor clarifications and corrected typographical and
formatting errors.

September 2006 3.08 Made minor corrections.

December 2005 3.07 Made minor editorial and formatting changes.

January 2005 3.06 Added documentation on SSE3 instructions. Corrected numerous
minor factual errors and typos.

September 2003 3.05 Made numerous small factual corrections.

April 2003 3.04 Made minor corrections.

Date Revision Description

[AMD Public Use]

xxvi

AMD64 Technology 26568—Rev. 3.24—May 2020

[AMD Public Use]

xxvii

26568—Rev. 3.24—May 2020 AMD64 Technology

Preface

About This Book
This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual.
The complete set includes the following volumes.

Audience
This volume is intended for programmers who develop application or system software.

Organization
Volumes 3, 4, and 5 describe the AMD64 instruction set in detail, providing mnemonic syntax,
instruction encoding, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

• General-purpose instructions
• System instructions
• Streaming SIMD Extensions (includes 128-bit and 256-bit media instructions)
• 64-bit media instructions (MMX™)
• x87 floating-point instructions

Several instructions belong to, and are described identically in, multiple instruction subsets.

This volume describes the Streaming SIMD Extensions (SSE) instruction set which includes 128-bit
and 256-bit media instructions. SSE includes both legacy and extended forms. The index at the end
cross-references topics within this volume. For other topics relating to the AMD64 architecture, and
for information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

[AMD Public Use]

xxviii

AMD64 Technology 26568—Rev. 3.24—May 2020

Conventions and Definitions
The section which follows, Notational Conventions, describes notational conventions used in this
volume. The next section, Definitions, lists a number of terms used in this volume along with their
technical definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See
“Related Documents” on page xl for further information about the legacy x86 architecture. Finally, the
Registers section lists the registers which are a part of the system programming model.

Notational Conventions

Section 1.1, “Syntax and Notation” on page 2 describes notation relating specifically to instruction
encoding.

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value, in this example, a 4-bit value.

F0EA_0B40h
A hexadecimal value, in this example a 32-bit value. Underscore characters may be used to
improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

#GP(0)
A general-protection exception (#GP) with error code of 0.

CPUID FnXXXX_XXXX_RRR[FieldName]
Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “_RRR” notation is followed by
“_xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CR0–CR4
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

[AMD Public Use]

xxix

26568—Rev. 3.24—May 2020 AMD64 Technology

CR4[OSXSAVE], CR4.OSXSAVE
The OSXSAVE bit of the CR4 register.

CR0[PE] = 1, CR0.PE = 1
The PE bit of the CR0 register has a value of 1.

EFER[LME] = 0, EFER.LME = 0
The LME field of the EFER register is cleared (contains a value of 0).

DS:rSI
The content of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

RFLAGS[13:12]
A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

128-bit media instruction
Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instruction
Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions
Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX and 3DNow!™ instruction sets and their extensions, with some additional instructions from
the SSE1 and SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

[AMD Public Use]

xxx

AMD64 Technology 26568—Rev. 3.24—May 2020

absolute
A displacement that references the base of a code segment rather than an instruction pointer.
See relative.

AES
Advance Encryption Standard (AES) algorithm acceleration instructions; part of Streaming SIMD
Extensions (SSE).

ASID
Address space identifier.

AVX
Extension of the SSE instruction set supporting 256-bit vector (packed) operands. See Streaming
SIMD Extensions.

biased exponent
The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear, cleared
To write the value 0 to a bit or a range of bits. See set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct
Referencing a memory address included in the instruction syntax as an immediate operand. The
address may be an absolute or relative address. See indirect.

displacement
A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

[AMD Public Use]

xxxi

26568—Rev. 3.24—May 2020 AMD64 Technology

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size
The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of instruction execution. Processor response to an
exception depends on the type of exception. For all exceptions except SSE floating-point
exceptions and x87 floating-point exceptions, control is transferred to a handler (or service
routine) for that exception as defined by the exception’s vector. For floating-point exceptions
defined by the IEEE 754 standard, there are both masked and unmasked responses. When
unmasked, the exception handler is called, and when masked, a default response is provided
instead of calling the handler.

extended SSE instructions
Enhanced set of SIMD instructions supporting 256-bit vector data types and allowing the
specification of up to four operands. A subset of the Streaming SIMD Extensions (SSE). Includes
the AVX, FMA, FMA4, and XOP instructions. Compare legacy SSE.

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

FMA4
Fused Multiply Add, four operand. Part of the extended SSE instruction set.

FMA
Fused Multiply Add. Part of the extended SSE instruction set.

GDT
Global descriptor table.

[AMD Public Use]

xxxii

AMD64 Technology 26568—Rev. 3.24—May 2020

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN
Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. See direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

legacy SSE instructions
All Streaming SIMD Extensions instructions prior to AVX, XOP, and FMA4. Legacy SSE
instructions primarily utilize operands held in XMM registers. The legacy SSE instructions
include the original Streaming SIMD Extensions (SSE1) and the subsequent extensions SSE2,
SSE3, SSSE3, SSE4, SSE4A, SSE4.1, and SSE4.2. See Streaming SIMD instructions.

long mode
An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

[AMD Public Use]

xxxiii

26568—Rev. 3.24—May 2020 AMD64 Technology

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs. See reserved.

memory
Unless otherwise specified, main memory.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

octword
Same as double quadword.

offset
Same as displacement.

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

[AMD Public Use]

xxxiv

AMD64 Technology 26568—Rev. 3.24—May 2020

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in processor caches or internal buffers. External probes originate outside
the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, eight bytes, or 64 bits.

RAZ
Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. See reserved.

real-address mode, real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (offset) from an instruction pointer rather than the base of a code
segment. See absolute.

reserved
Fields marked as reserved may be used at some future time.
To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.
If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.
Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX
A legacy instruction modifier prefix that specifies 64-bit operand size and provides access to
additional registers.

RIP-relative addressing
Addressing relative to the 64-bit relative instruction pointer.

SBZ
Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

[AMD Public Use]

xxxv

26568—Rev. 3.24—May 2020 AMD64 Technology

scalar
An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

set
To write the value 1 to a bit or a range of bits. See clear.

SIMD
Single instruction, multiple data. See vector.

Streaming SIMD Extensions (SSE)
Instructions that operate on scalar or vector (packed) integer and floating point numbers. The SSE
instruction set comprises the legacy SSE and extended SSE instruction sets.

SSE1
Original SSE instruction set. Includes instructions that operate on vector operands in both the
MMX and the XMM registers.

SSE2
Extensions to the SSE instruction set.

SSE3
Further extensions to the SSE instruction set.

SSSE3
Further extensions to the SSE instruction set.

SSE4.1
Further extensions to the SSE instruction set.

SSE4.2
Further extensions to the SSE instruction set.

SSE4A
A minor extension to the SSE instruction set adding the instructions EXTRQ, INSERTQ,
MOVNTSS, and MOVNTSD.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TSS
Task-state segment.

[AMD Public Use]

xxxvi

AMD64 Technology 26568—Rev. 3.24—May 2020

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most media instructions use vectors as operands. Also called packed or SIMD operands.
(2) An interrupt descriptor table index, used to access exception handlers. See exception.

VEX prefix
Extended instruction encoding escape prefix. Introduces a two- or three-byte encoding escape
sequence used in the encoding of AVX instructions. Opens a new extended instruction encoding
space. Fields select the opcode map and allow the specification of operand vector length and an
additional operand register. See XOP prefix.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

XOP instructions
Part of the extended SSE instruction set using the XOP prefix. See Streaming SIMD Extensions.

XOP prefix
Extended instruction encoding escape prefix. Introduces a three-byte escape sequence used in the
encoding of XOP instructions. Opens a new extended instruction encoding space distinct from the
VEX opcode space. Fields select the opcode map and allow the specification of operand vector
length and an additional operand register. See VEX prefix.

Registers

In the following list of registers, mnemonics refer either to the register itself or to the register content:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. See [AL–DL].

[AMD Public Use]

xxxvii

26568—Rev. 3.24—May 2020 AMD64 Technology

AL–DL
The low 8-bit AL, BL, CL, and DL registers. See [AH–DH].

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and [r8B–r15B] registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. See [rAX–rSP].

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. See rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. See rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

[AMD Public Use]

xxxviii

AMD64 Technology 26568—Rev. 3.24—May 2020

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. See RFLAGS.

RFLAGS
64-bit flags register. See rFLAGS.

[AMD Public Use]

xxxix

26568—Rev. 3.24—May 2020 AMD64 Technology

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. See RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register (CR8).

TR
Task register.

YMM/XMM
Set of sixteen (eight accessible in legacy and compatibility modes) 256-bit wide registers that hold
scalar and vector operands used by the SSE instructions.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with the least-significant byte at the lowest byte address, and illustrated with their
least significant byte at the right side. Strings are illustrated in reverse order, because the addresses of
string bytes increase from right to left.

[AMD Public Use]

xl

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.
• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood

Cliffs, NJ, 1991.
• AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
• AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.
• AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.
• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New

York, 1995.
• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,

1992.
• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,

Macmillan Publishing Co., New York, 1994.
• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,

Prentice-Hall, Englewood Cliffs, NJ, 1995.
• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.
• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest

McGraw-Hill, 1993.
• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.
• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and

Technologies, Inc., San Jose, 1992.
• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.
• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,

1995.
• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.
• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,

TX, 1996.
• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.
• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,

NY, 1991.
• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New

York, 1991.
• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.
• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,

San Mateo, CA, 1996.
• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

[AMD Public Use]

xli

26568—Rev. 3.24—May 2020 AMD64 Technology

• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.
• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel

Pentium, Oxford University Press, New York, 1999.
• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &

Sons, New York, 1987.
• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.
• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium III,

www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.
• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,

Redmond, WA, 1993.
• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.
• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,

New York, 1993.
• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite

class, 1992.
• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.
• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson

Corporation, 1995.

[AMD Public Use]

xlii

AMD64 Technology 26568—Rev. 3.24—May 2020

• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
• Web sites and newsgroups:

- www.amd.com
- news.comp.arch
- news.comp.lang.asm.x86
- news.intel.microprocessors
- news.microsoft

[AMD Public Use]

1

26568—Rev. 3.24—May 2020 AMD64 Technology

1 Introduction

Processors capable of performing the same mathematical operation simultaneously on multiple data
streams are classified as single-instruction, multiple-data (SIMD). Instructions that utilize this
hardware capability are called SIMD instructions.

Software can utilize SIMD instructions to drastically increase the performance of media applications
which typically employ algorithms that perform the same mathematical operation on a set of values in
parallel. The original SIMD instruction set was called MMX and operated on 64-bit wide vectors of
integer and floating-point elements. Subsequently a new SIMD instruction set called the Streaming
SIMD Extensions (SSE) was added to the architecture.

The SSE instruction set defines a new programming model with its own array of vector data registers
(YMM/XMM registers) and a control and status register (MXCSR). Most SSE instructions pull their
operands from one or more YMM/XMM registers and store results in a YMM/XMM register,
although some instructions use a GPR as either a source or destination. Most instructions allow one
operand to be loaded from memory. The set includes instructions to load a YMM/XMM register from
memory (aligned or unaligned) and store the contents of a YMM/XMM register.

An overview of the SSE instruction set is provided in Volume 1, Chapter 4.

This volume provides detailed descriptions of each instruction within the SSE instruction set. The SSE
instruction set comprises the legacy SSE instructions and the extended SSE instructions.

Legacy SSE instructions comprise the following subsets:

• The original Streaming SIMD Extensions (herein referred to as SSE1)
• SSE2
• SSE3
• SSSE3
• SSE4.1
• SSE4.2
• SSE4A
• Advanced Encryption Standard (AES)

Extended SSE instructions comprise the following subsets:

• AVX
• AVX2
• FMA
• FMA4
• XOP

[AMD Public Use]

2

AMD64 Technology 26568—Rev. 3.24—May 2020

Legacy SSE architecture supports operations involving 128-bit vectors and defines the base
programming model including the SSE registers, the Media eXtension Control and Status Register
(MXCSR), and the instruction exception behavior.

The Streaming SIMD Extensions (SSE) instruction set is extended to include the AVX, FMA, FMA4,
and XOP instruction sets. The AVX instruction set provides an extended form for most legacy SSE
instructions and several new instructions. Extensions include providing for the specification of a
unique destination register for operations with two or more source operands and support for 256-bit
wide vectors. Some AVX instructions also provide enhanced functionality compared to their legacy
counterparts.

A significant feature of the extended SSE instruction set architecture is the doubling of the width of the
XMM registers. These registers are referred to as the YMM registers. The XMM registers overlay the
lower octword (128 bits) of the YMM registers. Registers YMM/XMM0–7 are accessible in legacy
and compatibility mode. Registers YMM/XMM8–15 are available in 64-bit mode (a subset of long
mode). VEX/XOP instruction prefixes allow instruction encodings to address the additional registers.

The SSE instructions can be used in processor legacy mode or long (64-bit) mode. CPUID
Fn8000_0001_EDX[LM] indicates the availability of long mode.

Compilation for execution in 64-bit mode offers the following advantages:

• Access to an additional eight YMM/XMM registers for a total of 16
• Access to an additional eight 64-bit general-purpose registers for a total of 16
• Access to the 64-bit virtual address space and the RIP-relative addressing mode

Hardware support for each of the subsets of SSE instructions listed above is indicated by CPUID
feature flags. Refer to Volume 3, Appendix D, “Instruction Subsets and CPUID Feature Flags,” for a
complete list of instruction-related feature flags. The CPUID feature flags that pertain to each
instruction are also given in the instruction descriptions below. For information on using the CPUID
instruction, see the instruction description in Volume 3.

Chapter 2, “Instruction Reference” contains detailed descriptions of each instruction, organized in
alphabetic order by mnemonic. For those legacy SSE instructions that have an AVX form, the
extended form of the instruction is described together with the legacy instruction in one entry. For
these instructions, the instruction reference page is located based on the instruction mnemonic of the
legacy SSE and not the extended (AVX) form. Those AVX instructions without a legacy form are
listed in order by their AVX mnemonic. The mnemonic for all extended SSE instructions including the
FMA and XOP instructions begin with the letter V.

1.1 Syntax and Notation
The descriptive synopsis of opcode syntax for legacy SSE instructions follows the conventions
described in Volume 3: General Purpose and System Instructions. See Chapter 2 and the section
entitled “Notation.”

[AMD Public Use]

3

26568—Rev. 3.24—May 2020 AMD64 Technology

For general information on the programming model and overview descriptions of the SSE instruction
set, see:

• “Streaming SIMD Extensions Media and Scientific Programming” in Volume 1.
• “Instruction Encoding” in Volume 3
• “Summary of Registers and Data Types” in Volume 3.

The syntax of the extended instruction sets requires an expanded synopsis. The expanded synopsis
includes a mnemonic summary and a summary of prefix sequence fields. Figure 1-1 shows the
descriptive synopsis of a typical XOP instruction. The synopsis of VEX-encoded instructions have the
same format, differing only in regard to the instruction encoding escape prefix, that is, VEX instead of
XOP.

Figure 1-1. Typical Descriptive Synopsis - Extended SSE Instructions

1.2 Extended Instruction Encoding
The legacy SSE instructions are encoded using the legacy encoding syntax and the extended
instructions are encoded using an enhanced encoding syntax which is compatible with the legacy
syntax. Both are described in detail in Chapter 1 of Volume 3.

As described in Volume 3, the extended instruction encoding syntax utilizes multi-byte escape
sequences to both select alternate opcode maps as well as augment the encoding of the instruction.
Multi-byte escape sequences are introduced by one of the two VEX prefixes or the XOP prefix.

The AVX and AVX2 instructions utilize either the two-byte (introduced by the VEX C5h prefix) or the
three-byte (introduced by the VEX C4h prefix) encoding escape sequence. XOP instructions are
encoded using a three-byte encoding escape sequence introduced by the XOP prefix (except for the
XOP instructions VPERMIL2PD and VPERMIL2PS which are encoded using the VEX prefix). The
XOP prefix is 8Fh. The three-byte encoding escape sequences utilize the map_select field of the
second byte to select the opcode map used to interpret the opcode byte.

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCMOV ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.08 0.src.1.00 A2 /r ib

assembly language representation

3-bit field representing R, X, B bit values

W bit
vvvv field

L bit
pp field

opcode
register/memory type specifier

immediate operand
5-bit map_select field

encoding escape prefix

[AMD Public Use]

4

AMD64 Technology 26568—Rev. 3.24—May 2020

The two-byte VEX prefix sequence implicitly selects the secondary (“two-byte”) opcode map.

1.2.1 Immediate Byte Usage Unique to the SSE instructions
An immediate is a value, typically an operand, explicitly provided within the instruction encoding.
Depending on the opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8
bytes. Legacy and extended media instructions typically use an immediate byte operand (imm8).

A one-byte immediate is generally shown in the instruction synopsis as “ib” suffix. For extended SSE
instructions with four source operands, the suffix “is4” is used to indicate the presence of the
immediate byte used to select the fourth source operand.

The VPERMIL2PD and VPERMIL2PS instructions utilize a fifth 2-bit operand which is encoded
along with the fourth register select index in an immediate byte. For this special case the immediate
byte will be shown in the instruction synopsis as “is5”.

1.2.2 Instruction Format Examples
The following sections provide examples of two-, three-, and four-operand extended instructions.
These instructions generally perform nondestructive-source operations, meaning that the result of the
operation is written to a separately specified destination register rather than overwriting one of the
source operands. This preserves the contents of the source registers. Most legacy SSE instructions
perform destructive-source operations, in which a single register is both source and destination, so
source content is lost.

1.2.2.1 XMM Register Destinations

The following general properties apply to YMM/XMM register destination operands.

• For legacy instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are not affected.

• For extended instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

1.2.2.2 Two Operand Instructions

Two-operand instructions use ModRM-based operand assignment. For most instructions, the first
operand is the destination, selected by the ModRM.reg field, and the second operand is either a register
or a memory source, selected by the ModRM.r/m field.

VCVTDQ2PD is an example of a two-operand AVX instruction.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.01 0.1111.0.10 E6 /r
VCVTDQ2PD ymm1, xmm2/mem128 C4 RXB.01 0.1111.1.10 E6 /r

[AMD Public Use]

5

26568—Rev. 3.24—May 2020 AMD64 Technology

The destination register is selected by ModRM.reg. The size of the destination register is determined
by VEX.L. The source is either a YMM/XMM register or a memory location specified by ModRM.r/m
Because this instruction converts packed doubleword integers to double-precision floating-point
values, the source data size is smaller than the destination data size.

VEX.vvvv is not used and must be set to 1111b.

1.2.2.3 Three-Operand Instructions

These extended instructions have two source operands and a destination operand.

VPROTB is an example of a three-operand XOP instruction.

There are versions of the instruction for variable-count rotation and for fixed-count rotation.

VPROTB dest, src, variable-count

VPROTB dest, src, fixed-count

For both versions of the instruction, the destination (dest) operand is an XMM register specified by
ModRM.reg.

The variable-count version of the instruction rotates each byte of the source as specified by the
corresponding byte element variable-count.

Selection of src and variable-count is controlled by XOP.W.

• When XOP.W = 0, src is either an XMM register or a 128-bit memory location specified by
ModRM.r/m, and variable-count is an XMM register specified by XOP.vvvv.

• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an
XMM register or a 128-bit memory location specified by ModRM.r/m.

Table 1-1 summarizes the effect of the XOP.W bit on operand selection.

Table 1-1. Three-Operand Selection

The fixed-count version of the instruction rotates each byte of src as specified by the immediate byte
operand fixed-count. For this version, src is either an XMM register or a 128-bit memory location

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.src.0.00 90 /r
VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 90 /r
VPROTB xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 90 /r ib

XOP.W dest src variable-count
0 ModRM.reg ModRM.r/m XOP.vvvv
1 ModRM.reg XOP.vvvv ModRM.r/m

[AMD Public Use]

6

AMD64 Technology 26568—Rev. 3.24—May 2020

specified by ModRM.r/m. Because XOP.vvvv is not used to specify the source register, it must be set
to 1111b or execution of the instruction will cause an Invalid Opcode (#UD) exception.

1.2.2.4 Four-Operand Instructions

Some extended instructions have three source operands and a destination operand. This is
accomplished by using the VEX/XOP.vvvv field, the ModRM.reg and ModRM.r/m fields, and bits
[7:4] of an immediate byte to select the operands. The opcode suffix “is4” is used to identify the
immediate byte, and the selected operands are shown in the synopsis.

VFMSUBPD is an example of an four-operand FMA4 instruction.

VFMSUBPD dest, src1, src2, src3 dest = src1* src2 - src3

The first operand, the destination (dest), is an XMM register or a YMM register (as determined by
VEX.L) selected by ModRM.reg. The following three operands (src1, src2, src3) are sources.

The src1 operand is an XMM or YMM register specified by VEX.vvvv.

VEX.W determines the configuration of the src2 and src3 operands.

• When VEX.W = 0, src2 is either a register or a memory location specified by ModRM.r/m, and
src3 is a register specified by bits [7:4] of the immediate byte.

• When VEX.W = 1, src2 is a register specified by bits [7:4] of the immediate byte and src3 is either
a register or a memory location specified by ModRM.r/m.

Table 1-1 summarizes the effect of the VEX.W bit on operand selection.

Table 1-2. Four-Operand Selection

1.3 VSIB Addressing
Specific AVX2 instructions utilize a vectorized form of indexed register-indirect addressing called
vector SIB (VSIB) addressing. In contrast to the standard indexed register-indirect address mode,
which generates a single effective address to access a single memory operand, VSIB addressing gen-
erates an array of effective addresses which is used to access data from multiple memory locations in
a single operation.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src.0.01 6D /r is4
VFMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src.1.01 6D /r is4
VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src.0.01 6D /r is4
VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src.1.01 6D /r is4

VEX.W dest src1 src2 src3
0 ModRM.reg VEX.vvvv ModRM.r/m is4[7:4]
1 ModRM.reg VEX.vvvv is4[7:4] ModRM.r/m

[AMD Public Use]

7

26568—Rev. 3.24—May 2020 AMD64 Technology

VSIB addressing is encoded using three or six bytes following the opcode byte, augmented by the X
and B bits from the VEX prefix. The first byte is the ModRM byte with the standard mod, reg, and
r/m fields (although allowed values for the mod and r/m fields are restricted). The second is the VSIB
byte which replaces the SIB byte in the encoding. The VSIB byte specifies a GPR which serves as a
base address register and an XMM/YMM register that contains a packed array of index values. The
two-bit scale field specifies a common scaling factor to be applied to all of the index values. A con-
stant displacement value is encoded in the one or four bytes that follow the VSIB byte.

Figure 1-2 shows the format of the VSIB byte.

Figure 1-2. VSIB Byte Format

VSIB.SS (Bits [7:6]). The SS field is used to specify the scale factor to be used in the computation
of each of the effective addresses. The scale factor scale is equal to 2SS (two raised to power of the
value of the SS field). Therefore, if SS = 00b, scale = 1; if SS = 01b, scale = 2; if SS = 10b, scale = 4;
and if SS = 11b, scale = 8.

VSIB.index (Bits [5:3]). This field is concatenated with the complement of the VEX.X bit ({X,
index}) to specify the YMM/XMM register that contains the packed array of index values index[i] to
be used in the computation of the array of effective addresses effective address[i].

VSIB.base (Bits [5:3]). This field is concatenated with the complement of the VEX.B bit ({B,
base}) to specify the general-purpose register (base GPR) that contains the base address base to be
used in the computation of each of the effective addresses.

1.3.1 Effective Address Array Computation
Each element i of the effective address array is computed using the formula:

effective address[i] = scale * index[i] + base + displacement.

where index[i] is the ith element of the XMM/YMM register specified by {X,VSIB.index}. An index
element is either 32 or 64 bits wide and is treated as a signed integer.
Variants of this mode use either an eight-bit or a 32-bit displacement value. One variant sets the base
to zero. The value of the ModRM.mod field specifies the specific variant of VSIB addressing mode,
as shown in Table 1. In the table, the notation [XMMn/YMMn] indicates the XMM/YMM register
that contains the packed index array and [base GPR] means the contents of the base GPR selected by
{B, base}.

v4_VSIB_format.eps

SS

VEX.X extends this field to 4 bits

VEX.B extends this field to 4 bits

index base VSIB

01234567

[AMD Public Use]

8

AMD64 Technology 26568—Rev. 3.24—May 2020

1.3.2 Notational Conventions Related to VSIB Addressing Mode
In the instruction descriptions that follow, the notation vm32x indicates a packed array of four 32-bit
index values contained in the specified XMM index register and vm32y indicates a packed array of
eight 32-bit index values contained in the specified YMM index register. Depending on the instruc-
tion, these indices can be used to compute the effective address of up to four (vm32x) or eight
(vm32y) memory-based operands.
The notation vm64x indicates a packed array of two 64-bit index values contained in the specified
XMM index register and vm64y indicates a packed array of four 64-bit index values contained in the
specified YMM index register. Depending on the instruction, these indices can be used to compute
the effective address of up to two (vm64x) or four (vm64y) memory-based operands.

Table 1: Vectorized Addressing Modes

Index1 ModRM.mod
00 01 10

0000 scale * [XMM0/YMM0] + Disp32 scale * [XMM0/YMM0] + Disp8 +
[base GPR]

scale * [XMM0/YMM0] + Disp32 +
[base GPR]

0001 scale * [XMM1/YMM1] + Disp32 scale * [XMM1/YMM1] + Disp8 +
[base GPR]

scale * [XMM1/YMM1] + Disp32 +
[base GPR]

0010 scale * [XMM2/YMM2] + Disp32 scale * [XMM2/YMM2] + Disp8 +
[base GPR]

scale * [XMM2/YMM2] + Disp32 +
[base GPR]

0011 scale * [XMM3/YMM3] + Disp32 scale * [XMM3/YMM3] + Disp8 +
[base GPR]

scale * [XMM3/YMM3] + Disp32 +
[base GPR]

0100 scale * [XMM4/YMM4] + Disp32 scale * [XMM4/YMM4] + Disp8 +
[base GPR]

scale * [XMM4/YMM4] + Disp32 +
[base GPR]

0101 scale * [XMM5/YMM5] + Disp32 scale * [XMM5/YMM5] + Disp8 +
[base GPR]

scale * [XMM5/YMM5] + Disp32 +
[base GPR]

0110 scale * [XMM6/YMM6] + Disp32 scale * [XMM6/YMM6] + Disp8 +
[base GPR]

scale * [XMM6/YMM6] + Disp32 +
[base GPR]

0111 scale * [XMM7/YMM7] + Disp32 scale * [XMM7/YMM7] + Disp8 +
[base GPR]

scale * [XMM7/YMM7] + Disp32 +
[base GPR]

1000 scale * [XMM8/YMM8] + Disp32 scale * [XMM8/YMM8] + Disp8 +
[base GPR]

scale * [XMM8/YMM8] + Disp32 +
[base GPR]

1001 scale * [XMM9/YMM9] + Disp32 scale * [XMM9/YMM9] + Disp8 +
[base GPR]

scale * [XMM9/YMM9] + Disp32 +
[base GPR]

1010 scale * [XMM10/YMM10] + Disp32 scale * [XMM10/YMM10] + Disp8 +
[base GPR]

scale * [XMM10/YMM10] + Disp32 +
[base GPR]

1011 scale * [XMM11/YMM11] + Disp32 scale * [XMM11/YMM11] + Disp8 +
[base GPR]

scale * [XMM11/YMM11] + Disp32 +
[base GPR]

1100 scale * [XMM12/YMM12] + Disp32 scale * [XMM12/YMM12] + Disp8 +
[base GPR]

scale * [XMM12/YMM12] + Disp32 +
[base GPR]

1101 scale * [XMM13/YMM13] + Disp32 scale * [XMM13/YMM13] + Disp8 +
[base GPR]

scale * [XMM13/YMM13] + Disp32 +
[base GPR]

1110 scale * [XMM14/YMM14] + Disp32 scale * [XMM14/YMM14] + Disp8 +
[base GPR]

scale * [XMM14/YMM14] + Disp32 +
[base GPR]

1111 scale * [XMM15/YMM15] + Disp32 scale * [XMM15/YMM15] + Disp8 +
[base GPR]

scale * [XMM15/YMM15] + Disp32 +
[base GPR]

Note 1. Index = {VEX.X,VSIB.index}. In 32-bit mode, VEX.X = 1.

[AMD Public Use]

9

26568—Rev. 3.24—May 2020 AMD64 Technology

In body of the description of the instructions, the notation mem32[vm32x] is used to represent a
sparse array of 32-bit memory operands where the packed array of four 32-bit indices used to calcu-
late the effective addresses of the operands is held in an XMM register. The notation mem32[vm32y]
refers to a similar array of 32-bit memory operands where the packed array of eight 32-bit indices is
held in a YMM register. The notation mem32[vm64x] means a sparse array of 32-bit memory oper-
ands where the packed array of two 64-bit indices is held in an XMM register and mem32[vm64y]
means a sparse array of 32-bit memory operands where the packed array of four 64-bit indices is held
in a YMM register.
The notation mem64[index_array], where index_array is either vm32x, vm64x, or vm64y, speci-
fies a sparse array of 64-bit memory operands addressed via a packed array of 32-bit or 64-bit indices
held in an XMM/YMM register. If an instruction uses either an XMM or a YMM register, depending
on operand size, to hold the index array, the notation vm32x/y or vm64x/y is used to represent the
array.
In summary, given a maximum operand size of 256-bits, a sparse array of 32-bit memory-based oper-
ands can be addressed using a vm32x, vm32y, vm64x, or vm64y index array. A sparse array of 64-
bit memory-based operands can be addressed using a vm32x, vm64x, or vm64y index array. Spe-
cific instructions may use fewer than the maximum number of memory operands that can be
addressed using the specified index array.
VSIB addressing is only valid in 32-bit or 64-bit effective addressing mode and is only supported for
instruction encodings using the VEX prefix. The ModRM.mod value of 11b is not valid in VSIB
addressing mode and ModRM.r/m must be set to 100b.

1.3.3 Memory Ordering and Exception Behavior
VSIB addressing has some special considerations relative to memory ordering and the signaling of
exceptions.
VSIB addressing specifies an array of addresses that allows an instruction to access multiple memory
locations. The order in which data is read from or written to memory is not specified. Memory order-
ing with respect to other instructions follows the memory-ordering model described in Volume 2.
Data may be accessed by the instruction in any order, but access-triggered exceptions are delivered in
right-to-left order. That is, if a exception is triggered by the load or store of an element of an
XMM/YMM register and delivered, all elements to the right of that element (all the lower indexed
elements) have been or will be completed without causing an exception. Elements to the left of the
element causing the exception may or may not be completed. If the load or store of a given element
triggers multiple exceptions, they are delivered in the conventional order.
Because data can be accessed in any order, elements to the left of the one that triggered the exception
may be read or written before the exception is delivered. Although the ordering of accesses is not
specified, it is repeatable in a specific processor implementation. Given the same input values and ini-
tial architectural state, the same set of elements to the left of the faulting one will be accessed.
VSIB addressing should not be used to access memory mapped I/O as the ordering of the individual
loads is implementation-specific and some implementations may access data larger than the data ele-
ment size or access elements more than once.

[AMD Public Use]

10

AMD64 Technology 26568—Rev. 3.24—May 2020

1.4 Enabling SSE Instruction Execution
Application software that utilizes the SSE instructions requires support from operating system
software.

To enable and support SSE instruction execution, operating system software must:

• enable hardware for supported SSE subsets
• manage the SSE hardware architectural state, saving and restoring it as required during and after

task switches
• provide exception handlers for all unmasked SSE exceptions.

See Volume 2, Chapter 11, for details on enabling SSE execution and managing its execution state.

1.5 String Compare Instructions
The legacy SSE instructions PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM and the
extended SSE instructions VPCMPESTRI, VPCMPESTRM, VPCMPISTRI, and VPCMPISTRM
provide a versatile means of classifying characters of a string by performing one of several different
types of comparison operations using a second string as a prototype.

This section describes the operation of the legacy string compare instructions. This discussion applies
equally to the extended versions of the instructions. Any difference between the legacy and the
extended version of a given instruction is described in the instruction reference entry for the
instruction in the following chapter.

A character string is a vector of data elements that is normally used to represent an ordered
arrangement of graphemes which may be stored, processed, displayed, or printed. Ordered strings of
graphemes are most often used to convey information in a human-readable manner. The string
compare instructions, however, do not restrict the use or interpretation of their operands.

The first source operand provides the prototype string and the second operand is the string to be
scanned and characterized (referred to herein as the string under test, or SUT). Four string formats and
four types of comparisons are supported. The intermediate result of this processing is a bit vector that
summarizes the characterization of each character in the SUT. This bit vector is then post-processed
based on options specified in the instruction encoding. Instruction variants determine the final result—
either an index or a mask.

Instruction execution affects the arithmetic status flags (ZF, CF, SF, OF, AF, PF), but the significance
of many of the flags is redefined to provide information tailored to the result of the comparison
performed. See Section 1.5.6, “Affect on Flags” on page 19.

The instructions have a defined base function and additional functionality controlled by bit fields in an
immediate byte operand (imm8). The base function determines whether the source strings have
implicitly (PCMPISTRI and PCMPISTRM) or explicitly (PCMPESTRI and PCMPESTRM) defined
lengths, and whether the result is an index (PCMPISTRI and PCMPESTRI) or a mask (PCMPISTRM
and PCMPESTRM).

[AMD Public Use]

11

26568—Rev. 3.24—May 2020 AMD64 Technology

PCMPISTRI and PCMPESTRI return their final result (an integer value) via the ECX register, while
PCMPISTRM and PCMPESTRM write a bit or character mask, depending on the option selected, to
the XMM0 register.

There are a number of different schemes for encoding a set of graphemes, but the most common ones
use either an 8-bit code (ASCII) or a 16-bit code (unicode). The string compare instructions support
both character sizes.

[AMD Public Use]

12

AMD64 Technology 26568—Rev. 3.24—May 2020

Bit fields of the immediate operand control the following functions:

• Source data format — character size (byte or word), signed or unsigned values
• Comparison type
• Intermediate result postprocessing
• Output option selection

This overview description covers functions common to all of the string compare instructions and
describes some of the differentiated features of specific instructions. Information on instruction
encoding and exception behavior are covered in the individual instruction reference pages in the
following chapter.

[AMD Public Use]

13

26568—Rev. 3.24—May 2020 AMD64 Technology

1.5.1 Source Data Format
The character strings that constitute the source operands for the string compare instructions are
formatted as either 8-bit or 16-bit integer values packed into a 128-bit data type. The figure below
illustrates how a string of byte-wide characters is laid out in memory and how these characters are
arranged when loaded into an XMM register.

Figure 1-3. Byte-wide Character String – Memory and Register Image

Note from the figure that the longest string that can be packed in a 128-bit data object is either sixteen
8-bit characters (as illustrated) or eight 16-bit characters. When loaded from memory, the character
read from the lowest address in memory is placed in the least-significant position of the register and
the character read from the highest address is placed in the most-significant position. In other words,
for character i of width w, bits [w−1:0] of the character are placed in bits [iw + (w−1):iw] of the
register.

10Fh

110h

111h

112h Highest address

128-bit String of

Byte-wide

Characters in

Memory (ASCII

Encoded)

v4_String_layout.eps

Lowest address
Defines address of string

[null] (00)

. (2Eh)

g (67h)

n (6Eh)

i (69h)

r (72h)

t (74h)

s (73h)

[blank] (20h)

t (74h)

r (72h)

h (68h)

s (73h)

[blank] (20h)

A (41h) 103h

105h

106h

107h

108h

109h

10Ah

10Bh

10Ch

10Dh

10Eh

104h

o (6Fh)

Memory Image

XMM Register Image

[null] (00) . (2Eh) g (67h) n (6Eh) i (69h) r (72h) t (74h) s (73h)

127 6489101112131415

[blank] (20h) t (74h) r (72h) o (6Fh) h (68h) s (73h) [blank] (20h) A (41h)

063 01234567

[AMD Public Use]

14

AMD64 Technology 26568—Rev. 3.24—May 2020

Bits [1:0] of the immediate byte operand specify the source string data format, as shown in Table 1-3.

The string compare instructions are defined with the capability of operating on strings of lengths from
0 to the maximum that can be packed into the 128-bit data type as shown in the table above. Because
strings being processed may be shorter than the maximum string length, a means is provided to
designate the length of each string. As mentioned above, one pair of string compare instructions relies
on an explicit method while the other utilizes an implicit method.

For the explicit method, the length of the first operand (the prototype string) is specified by the
absolute value of the signed integer contained in rAX and the length of the second operand (the SUT)
is specified by the absolute value of the signed integer contained in rDX. If a specified length is greater
than the maximum allowed, the maximum value is used. Using the explicit method of length
specification, null characters (characters whose numerical value is 0) can be included within a string.

Using the implicit method, a string shorter than the maximum length is terminated by a null character.
If no null character is found in the string, its length is implied to be the maximum. For the example
illustrated in Figure 1-3 above, the implicit length of the string is 15 because the final character is null.
However, using the explicit method, a specified length of 16 would include the null character in the
string.

In the following discussion, l1 is the length of the first operand string (the prototype string), l2 is the
length of the second operand string (the SUT) and m is the maximum string length based on the
selected character size.

1.5.2 Comparison Type
Although the string compare instructions can be implemented in many different ways, the instructions
are most easily understood as the sequential processing of the SUT using the characters of the
prototype string as a template. The template is applied at each character index of SUT, processing the
string from the first character (index 0) to the last character (index l2−1).

The result of each comparison is recorded in successive positions of a summary bit vector CmprSumm.
When the sequence of comparisons is complete, this bit vector summarizes the results of comparison
operations that were performed. The length of the CmprSumm bit vector is equal to the maximum
input operand string length (m). The rules for the setting of CmprSumm bits beyond the end of the SUT
(CmprSumm[m−1:l2]) are dependent on the comparison type (see Table 1-4 below.)

Bits [3:2] of the immediate byte operand determine the comparison type, as shown in Table 1-4.

Table 1-3. Source Data Format
Imm8[1:0] Character Format Maximum String Length

00b unsigned bytes 16
01b unsigned words 8
10b signed bytes 16
11b signed words 8

[AMD Public Use]

15

26568—Rev. 3.24—May 2020 AMD64 Technology

In the Sub-string comparison type, any matching sub-string of the SUT must match the prototype
string one-for-one, in order, and without gaps. Null characters in the SUT do not match non-null
characters in the prototype. If the prototype and the SUT are equal in length and less than the max
length, the two strings must be identical for the comparison to be TRUE. In this case, bit 0 of
CmprSumm is set to one and the remainder are all 0s. If the length of the SUT is less than the prototype
string, no match is possible and CmprSumm is all 0s.

If the prototype string is shorter than the SUT (l1 < l2), a sequential search of the SUT is performed.
For each i from 0 to l2−l1, the prototype is compared to characters [i + l1−1:i] of the SUT. If the
prototype and the sub-string SUT[i + l1−1:i] match exactly, then CmprSumm[i] is set, otherwise the bit
is cleared. When the comparison at i = l2−l1 is complete, no further testing is required because there
are not enough characters remaining in the SUT for a match to be possible. The remaining bits l2−l1+1
through m-1 are all set to 0.

For the Match comparison type, the character-by-character comparison is performed on all m
characters in the 128-bit operand data, which may extend beyond the end of one or both strings. A null
character at index i within one string is not considered a match when compared with a character
beyond the end of the other string. In this case, CmprSumm[i] is cleared. For index positions beyond
the end of both strings, CmprSumm[i] is set.

The following section provides more detail on the generation of the comparison summary bit vector
based on the specified comparison type.

Table 1-4. Comparison Type

Imm8[3:2]
Comparison

Type Description
00b Subset Tests each character of the SUT to determine if it is within the subset of

characters specified by the prototype string. Each set bit of CmprSumm
indicates that the corresponding character of the SUT is within the subset
specified by the prototype. Bits [m−1:l2] are cleared.

01b Ranges Tests each character of the SUT to determine if it lies within one or more
ranges specified by pairs of values within the prototype string. The ranges
are inclusive. Each set bit in CmprSumm indicates that the corresponding
character of the SUT is within one or more of the inclusive ranges specified.
Bits [m−1:l2] are cleared. If the length of the prototype is odd, the last value
in the prototype is effectively ignored.

10b Match Performs a character-by-character comparison between the SUT and the
prototype string. Each set bit of CmprSumm indicates that the
corresponding characters in the two strings match. If not, the bit is cleared.
Bits [m−1:max(l1, l2)] of CmprSumm are set.

11b Sub-string Searches for an exact match between the prototype string and an ordered
sequence of characters (a sub-string) in the SUT beginning at the current
index i. Bit i of CmprSumm is set for each value of i where the sub-string
match is made, otherwise the bit is cleared. See discussion below.

[AMD Public Use]

16

AMD64 Technology 26568—Rev. 3.24—May 2020

1.5.3 Comparison Summary Bit Vector
The following pseudo code provides more detail on the generation of the comparison summary bit
vector CmprSumm. The function CompareStrgs defined below returns a bit vector of length m, the
maximum length of the operand data strings.
bit vector CompareStrgs(ProtoType, length1, SUT, length2, CmpType, signed, m)

doubleword vector StrUndTst // temp vector; holds string under test
doubleword vector StrProto // temp vector; holds prototype string
bit vector[m] Result // length of vector is m

StrProto = m{0} //initialize m elements of StrProto to 0
StrUndTst = m{0} //initialize m elements of StrUndTst to 0
Result = m{0} //initialize result bit vector

FOR i = 0 to length1
StrProto[i] = signed ? SignExtend(ProtoType[i]) : ZeroExtend(ProtoType[i])

FOR i = 0 to length2
StrUndTst[i] = signed ? SignExtend(SUT[i]) : ZeroExtend(SUT[i])

IF CmpType == Subset
FOR j = 0 to length2 - 1 // j indexes SUT

FOR i = 0 to length1 - 1 // i indexes prototype
Result[j] |= (StrProto[i] == StrUndTst[j])

IF CmpType == Ranges

FOR j = 0 to length2 - 1 // j indexes SUT
FOR i = 0 to length1 - 2, BY 2 // i indexes prototype

Result[j] |= (StrProto[i] <= StrUndTst[j])
&& (StrProto[i+1] >= StrUndTst[j])

IF CmpType == Match

FOR i = 0 to (min(length1, length2)-1)
Result[i] = (StrProto[i] == StrUndTst[i])

FOR i = min(length1, length2) to (max(length1, length2)-1)
Result[i] = 0

FOR i = max(length1, length2) to (m-1)
Result[i] = 1

IF CmpType == Sub-string
IF (length2==16)&& (length1==16)

maxlength=15
else

 maxlength = length2-length1
IF length2 >= lenght1

 FOR j = 0 to maxlength // j indexes result bit vector
 Result[j] = 1
 k = j // k scans the SUT
 FOR i = 0 to length1 - 1 // i scans the Prototype

Result[j] &= (StrProto[i] == StrUndTst[k])// Result[j] is cleared if
any of the comparisons do not match

k++

Return Result

[AMD Public Use]

17

26568—Rev. 3.24—May 2020 AMD64 Technology

Given the above definition of CompareStrgs(), the following pseudo code computes the value of
CmprSumm:
ProtoType = contents of first source operand (xmm1)
SUT = contents of xmm2 or 128-bit value read from the specified memory location
length1 = length of first operand string //specified implicitly or explicitly
length2 = length of second operand string //specified implicitly or explicitly
m = Maximum String Length from Table 1-3 above
CmpType = Comparison Type from Table 1-4 above
signed = (imm8[1] == 1) ? TRUE : FALSE
bit vector [m] CmprSumm // CmprSumm is m bits long

CmprSumm = CompareStrgs(ProtoType, length1, SUT, length2, CmpType, signed, m)

The following examples demonstrate the comparison summary bit vector CmprSumm for each
comparison type. For the sake of illustration, the operand strings are represented as ASCII-encoded
strings. Each character value is represented by its ASCII grapheme. Strings are displayed with the
lowest indexed character on the left as they would appear when printed or displayed. CmprSumm is
shown in reverse order with the least significant bit on the left to agree with the string presentation.

Comparison Type = Subset

Prototype: ZCx
SUT: aCx%xbZreCx
CmprSumm: 0110101001100000

Comparison Type = Ranges

Prototype: ACax
SUT: aCx%xbZreCx
CmprSumm: 1110110111100000

Comparison Type = Match

Prototype: ZCx
SUT: aCx%xbZreCx
CmprSumm: 0110000000011111

Comparison Type = Sub-string

Prototype: ZCx
SUT: aZCx%xCZreZCxCZ
CmprSumm: 0100000000100000

[AMD Public Use]

18

AMD64 Technology 26568—Rev. 3.24—May 2020

1.5.4 Intermediate Result Post-processing
Post-processing of the CmprSumm bit vector is controlled by imm8[5:4]. The result of this step is
designated pCmprSumm.

Bit [4] of the immediate operand determines whether a ones’ complement (bit-wise inversion) is
performed on CmprSumm; bit [5] of the immediate operand determines whether the inversion applies
to the entire comparison summary bit vector (CmprSumm) or just to those bits that correspond to
characters within the SUT. See Table 1-5 below for the encoding of the imm8[5:4] field.

1.5.5 Output Option Selection
For PCMPESTRI and PCMPISTRI, imm8[6] determines whether the index of the lowest set bit or the
highest set bit of pCmprSumm is written to ECX, as shown in Table 1-6.

For PCMPESTRM and PCMPISTRM, imm8[6] specifies whether the output from the instruction is a
bit mask or an expanded mask. The bit mask is a copy of pCmprSumm zero-extended to 128 bits. The
expanded mask is a packed vector of byte or word elements, as determined by the string operand
format (as indicated by imm8[0]). The expanded mask is generated by copying each bit of
pCmprSumm to all bits of the element of the same index. Table 1-7 below shows the encoding of
imm8[6].

The PCMPESTRM and PCMPISTRM instructions return their output in register XMM0. For the
extended forms of the instructions, bits [127:64] of YMM0 are cleared.

Table 1-5. Post-processing Options
Imm8[5:4] Post-processing Applied

x0b pCmprSumm = CmprSumm
01b pCmprSumm = NOT CmprSumm
11b pCmprSumm[i] = !CmprSumm[i] for i < l2,

pCmprSumm[i] = CmprSumm[i], for l2 ≤ i < m

Table 1-6. Indexed Output Option Selection
Imm8[6] Description

0b Return the index of the least significant set bit in pCmprSumm.
1b Return the index of the most significant set bit in pCmprSumm.

Table 1-7. Masked Output Option Selection
Imm8[6] Description

0b Return pCmprSumm as the output with zero extension to 128 bits.
1b Return expanded pCmprSumm byte or word mask.

[AMD Public Use]

19

26568—Rev. 3.24—May 2020 AMD64 Technology

1.5.6 Affect on Flags
The execution of a string compare instruction updates the state of the CF, PF, AF, ZF, SF, and OF flags
within the rFLAGs register. All other flags are unaffected. The PF and AF flags are always cleared.
The ZF and SF flags are set or cleared based on attributes of the source strings and the CF and OF flags
are set or cleared based on attributes of the summary bit vector after post processing.

The CF flag is cleared if the summary bit vector, after post processing, is zero; the flag is set if one or
more of the bits in the post-processed bit vector are 1. The OF flag is updated to match the value of the
least significant bit of the post-processed summary bit vector.

The ZF flag is set if the length of the second string operand (SUT) is shorter than m, the maximum
number of 8-bit or 16-bit characters that can be packed into 128 bits. Similarly, the SF flag is set if the
length of the first string operand (prototype) is shorter than m.

This information is summarized in Table 1-8 below.

Table 1-8. State of Affected Flags After Execution
Unconditional Source String Length Post-processed Bit Vector

PF AF SF ZF CF OF
0 0 (l1 < m) (l2 < m) pCmprSumm ≠ 0 pCmprSumm [0]

[AMD Public Use]

20

AMD64 Technology 26568—Rev. 3.24—May 2020

[AMD Public Use]

Instruction Reference 21

26568—Rev. 3.24—May 2020 AMD64 Technology

2 Instruction Reference
Instructions are listed by mnemonic, in alphabetic order. Each entry describes instruction function,
syntax, opcodes, affected flags and exceptions related to the instruction.
Figure 2-1 shows the conventions used in the descriptions. Items that do not pertain to a particular
instruction, such as a synopsis of the 256-bit form, may be omitted.

Figure 2-1. Typical Instruction Description

Brief functional description

INST

Description of legacy version of instruction.

VINST

Description of extended version of instruction.

XMM Encoding

Description of 128-bit extended instruction.

YMM Encoding

Description of 256-bit extended instruction.

Information about CPUID functions related to the instruction set.

Synopsis diagrams for legacy and extended versions of the instruction.

Related Instructions

Instructions that perform similar or related functions.

rFLAGS Affected

Rflags diagram.

MXCSR Flags Affected

MXCSR diagram.

Exceptions

Exception summary table.

INST
VINST

Instruction
Mnemonic Expansion

Mnemonic Opcode Description
INST xmm1, xmm2/mem128 FF FF /r Brief summary of legacy operation.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VINST xmm1, xmm2/mem128, xmm3 C4 RXB.11 0.src.0.00 FF /r
V ymm1, ymm2/mem256, ymm3 C4 RXB.11 0.src.0.00 FF /r

[AMD Public Use]

22 Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Exceptions
Under various conditions instructions described below can cause exceptions. The conditions that
cause these exceptions can differ based on processor mode and instruction subset. This information is
summarized at the end of each instruction reference page in an Exception Table. Rows list the appli-
cable exceptions and the different conditions that trigger each exception for the instruction. For each
processor mode (real, virtual, and protected) a symbol in the table indicates whether this exception
condition applies.
Each AVX instruction has a legacy form that comes from one of the legacy (SSE1, SSE2, ...) subsets.
An “X” at the intersection of a processor mode column and an exception cause row indicates that the
causing condition and potential exception applies to both the AVX instruction and the legacy SSE
instruction. “A” indicates that the causing condition applies only to the AVX instruction and “S” indi-
cates that the condition applies to the SSE legacy instruction.
Note that XOP and FMA4 instructions do not have corresponding instructions from the SSE legacy
subsets. In the exception tables for these instructions, “X” represents the XOP instruction and “F”
represents the FMA4 instruction.

[AMD Public Use]

Instruction Reference ADDPD, VADDPD 23

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds each packed double-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
quadword of the destination.
There are legacy and extended forms of the instruction:
ADDPD
Adds two pairs of values.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VADDPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds two pairs of values.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
Adds four pairs of values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

ADDPD
VADDPD

Add
Packed Double-Precision Floating-Point

Form Subset Feature Flag
ADDPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VADDPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ADDPD xmm1, xmm2/mem128 66 0F 58 /r Adds two packed double-precision floating-point

values in xmm1 to corresponding values in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 58 /r
VADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 58 /r

[AMD Public Use]

24 ADDPD, VADDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)ADDPS, (V)ADDSD, (V)ADDSS

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ADDPS, VADDPS 25

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds each packed single-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
elements of the destination.
There are legacy and extended forms of the instruction:
ADDPS
Adds four pairs of values.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VADDPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds four pairs of values.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
Adds eight pairs of values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

ADDPS
VADDPS

Add
Packed Single-Precision Floating-Point

Form Subset Feature Flag
ADDPS SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VADDPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ADDPS xmm1, xmm2/mem128 0F 58 /r Adds four packed single-precision floating-point values in

xmm1 to corresponding values in xmm2 or mem128. Writes
results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 58 /r
VADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 58 /r

[AMD Public Use]

26 ADDPS, VADDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)ADDPD, (V)ADDSD, (V)ADDSS

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ADDSD, VADDSD 27

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds the double-precision floating-point value in the low-order quadword of the first source operand
to the corresponding value in the low-order quadword of the second source operand and writes the
result into the low-order quadword of the destination.
There are legacy and extended forms of the instruction:
ADDSD
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding YMM register are not affected.
VADDSD
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first
source operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSS

rFLAGS Affected
None

ADDSD
VADDSD

Add
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
ADDSD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VADDSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ADDSD xmm1, xmm2/mem64 F2 0F 58 /r Adds low-order double-precision floating-point values in

xmm1 to corresponding values in xmm2 or mem64.
Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VADDSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 58 /r

[AMD Public Use]

28 ADDSD, VADDSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ADDSS, VADDSS 29

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds the single-precision floating-point value in the low-order doubleword of the first source oper-
and to the corresponding value in the low-order doubleword of the second source operand and writes
the result into the low-order doubleword of the destination.
There are legacy and extended forms of the instruction:
ADDSS
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.
VADDSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM regis-
ter that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSD

rFLAGS Affected
None

ADDSS
VADDSS

Add
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
ADDSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VADDSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ADDSS xmm1, xmm2/mem32 F3 0F 58 /r Adds a single-precision floating-point value in the low-order

doubleword of xmm1 to a corresponding value in xmm2 or
mem32. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VADDSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 58 /r

[AMD Public Use]

30 ADDSS, VADDSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ADDSUBPD, VADDSUBPD 31

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds the odd-numbered packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the sum to the corresponding odd-
numbered element of the destination; subtracts the even-numbered packed double-precision floating-
point values of the second source operand from the corresponding values of the first source operand
and writes the differences to the corresponding even-numbered element of the destination.
There are legacy and extended forms of the instruction:
ADDSUBPD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VADDSUBPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

ADDSUBPD
VADDSUBPD

Alternating Addition and Subtraction
Packed Double-Precision Floating-Point

Form Subset Feature Flag
ADDSUBPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VADDSUBPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ADDSUBPD xmm1, xmm2/mem128 66 0F D0 /r Adds a value in the upper 64 bits of xmm1 to the

corresponding value in xmm2 and writes the result to
the upper 64 bits of xmm1; subtracts the value in the
lower 64 bits of xmm1 from the corresponding value
in xmm2 and writes the result to the lower 64 bits of
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VADDSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D0 /r
VADDSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 D0 /r

[AMD Public Use]

32 ADDSUBPD, VADDSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)ADDSUBPS

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ADDSUBPS, VADDSUBPS 33

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds the second and fourth single-precision floating-point values of the first source operand to the
corresponding values of the second source operand and writes the sums to the second and fourth ele-
ments of the destination. Subtracts the first and third single-precision floating-point values of the sec-
ond source operand from the corresponding values of the first source operand and writes the
differences to the first and third elements of the destination.
There are legacy and extended forms of the instruction:
ADDSUBPS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VADDSUBPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

ADDSUBPS
VADDSUBPS

Alternating Addition and Subtraction
Packed Single-Precision Floating Point

Form Subset Feature Flag
ADDSUBPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VADDSUBPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ADDSUBPS xmm1, xmm2/mem128 F2 0F D0 /r Adds the second and fourth packed single-precision

values in xmm2 or mem128 to the corresponding
values in xmm1 and writes results to the
corresponding positions of xmm1. Subtracts the first
and third packed single-precision values in xmm2 or
mem128 from the corresponding values in xmm1 and
writes results to the corresponding positions of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VADDSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 D0 /r
VADDSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 D0 /r

[AMD Public Use]

34 ADDSUBPS, VADDSUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)ADDSUBPD

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference AESDEC, VAESDEC 35

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs a single round of AES decryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.
See Appendix A on page 973 for more information about the operation of the AES instructions.
Decryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr. The AESDEC and VAESDEC instructions perform all the rounds except the
last; the AESDECLAST and VAESDECLAST instructions perform the final round.
The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.
There are legacy and extended forms of the instruction:

AESDEC
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VAESDEC
The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

YMM encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

AESDEC
VAESDEC

AES
Decryption Round

Form Subset Feature Flag
AESDEC AES CPUID Fn0000_0001_ECX[AES] (bit 25)

VAESDEC 128 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VAESDEC 256 VAES CPUID Fn0000_0007_ECX[VAES]_x0 (bit 9)

[AMD Public Use]

36 AESDEC, VAESDEC Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
AESDEC xmm1, xmm2/mem128 66 0F 38 DE /r Performs one decryption round on a state value

in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VAESDEC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DE /r
VAESDEC ymm1, ymm2, ymm3/mem256 C4 RXB.00010 X.src.1.01 DE /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference AESDECLAST, VAESDECLAST 37

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs the final round of AES decryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.
See Appendix A on page 973 for more information about the operation of the AES instructions.
Decryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr.The AESDEC and VAESDEC instructions perform all the rounds before the
final round; the AESDECLAST and VAESDECLAST instructions perform the final round.
The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.
There are legacy and extended forms of the instruction:
AESDECLAST
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VAESDECLAST
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

AESDECLAST
VAESDECLAST

AES
Last Decryption Round

Form Subset Feature Flag
AESDECLAST AES CPUID Fn0000_0001_ECX[AES] (bit 25)

VAESDECLAST 128 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VAESDECLAST 256 VAES CPUID Fn0000_0007_ECX[VAES]_x0 (bit 9)

Mnemonic Opcode Description
AESDECLAST xmm1, xmm2/mem128 66 0F 38 DF/r Performs the last decryption round on a state

value in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

[AMD Public Use]

38 AESDECLAST, VAESDECLAST Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected
None

MXCSR Flags Affected
None

VAESDECLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DF /r
VAESDECLAST ymm1, ymm2, ymm3/mem256 C4 RXB.00010 X.src.1.01 DF /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference AESENC, VAESENC 39

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs a single round of AES encryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.
See Appendix A on page 973 for more information about the operation of the AES instructions.
Encryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.
The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register
There are legacy and extended forms of the instruction:
AESENC
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VAESENC
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

AESENC
VAESENC

AES
Encryption Round

Form Subset Feature Flag
AESENC AES CPUID Fn0000_0001_ECX[AES] (bit 25)

VAESENC 128 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VAESENC 256 VAES CPUID Fn0000_0007_ECX[VAES]_x0 (bit 9)

Mnemonic Opcode Description
AESENC xmm1, xmm2/mem128 66 0F 38 DC /r Performs one encryption round on a state value

in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

[AMD Public Use]

40 AESENC, VAESENC Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected
None

MXCSR Flags Affected
None

VAESENC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DC /r
VAESENC ymm1, ymm2, ymm3/mem256 C4 RXB.00010 X.src.1.01 DC /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference AESENCLAST, VAESENCLAST 41

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs the final round of AES encryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.
See Appendix A on page 973 for more information about the operation of the AES instructions.
Encryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.
The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.
There are legacy and extended forms of the instruction:
AESENCLAST
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VAESENCLAST
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

AESENCLAST
VAESENCLAST

 AES
Last Encryption Round

Form Subset Feature Flag
AESENCLAST AES CPUID Fn0000_0001_ECX[AES] (bit 25)

VAESENCLAST 128 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VAESENCLAST 256 VAES CPUID Fn0000_0007_ECX[VAES]_x0 (bit 9)

Mnemonic Opcode Description
AESENCLAST xmm1, xmm2/mem128 66 0F 38 DD /r Performs the last encryption round on a

state value in xmm1 using the key value in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

[AMD Public Use]

42 AESENCLAST, VAESENCLAST Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected
None

MXCSR Flags Affected
None

VAESENCLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DD /r
VAESENCLAST ymm1, ymm2, ymm3/mem256 C4 RXB.00010 X.src.1.01 DD /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference AESIMC, VAESIMC 43

26568—Rev. 3.24—May 2020 AMD64 Technology

Applies the AES InvMixColumns() transformation to expanded round keys in preparation for decryp-
tion. Transforms an expanded key specified by the second source operand and writes the result to a
destination register.
See Appendix A on page 973 for more information about the operation of the AES instructions.
The 128-bit round key vector is interpreted as 16-byte column-major entries in a 4-by-4 matrix of
bytes.The transformed result is written to the destination in column-major order.
AESIMC and VAESIMC are not used to transform the first and last round key in a decryption
sequence.
There are legacy and extended forms of the instruction:
AESIMC
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VAESIMC
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESKEYGENASSIST

rFLAGS Affected
None

AESIMC
VAESIMC

AES
InvMixColumn Transformation

Form Subset Feature Flag
AESIMC AES CPUID Fn0000_0001_ECX[AES] (bit 25)

VAESIMC AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
AESIMC xmm1, xmm2/mem128 66 0F 38 DB /r Performs AES InvMixColumn transformation on

a round key in the xmm2 or mem128 and stores
the result in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VAESIMC xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 DB /r

[AMD Public Use]

44 AESIMC, VAESIMC Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference AESKEYGENASSIST, VAESKEYGENASSIST 45

26568—Rev. 3.24—May 2020 AMD64 Technology

Expands a round key for encryption. Transforms a 128-bit round key operand using an 8-bit round
constant and writes the result to a destination register.
See Appendix A on page 973 for more information about the operation of the AES instructions.
The round key is provided by the second source operand and the round constant is specified by an
immediate operand. The 128-bit round key vector is interpreted as 16-byte column-major entries in a
4-by-4 matrix of bytes. The transformed result is written to the destination in column-major order.
There are legacy and extended forms of the instruction:
AESKEYGENASSIST
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VAESKEYGENASSIST
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST,(V)AESIMC

rFLAGS Affected
None

AESKEYGENASSIST
VAESKEYGENASSIST

AES
Assist Round Key Generation

Form Subset Feature Flag
AESKEYGENASSIST AES CPUID Fn0000_0001_ECX[AES] (bit 25)

VAESKEYGENASSIST AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
AESKEYGENASSIST xmm1, xmm2/mem128, imm8 66 0F 3A DF /r ib Expands a round key in xmm2 or

mem128 using an immediate
round constant. Writes the result
to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

AESKEYGENASSIST xmm1, xmm2 /mem128, imm8 C4 RXB.00011 X.src.0.01 DF /r ib

[AMD Public Use]

46 AESKEYGENASSIST, VAESKEYGENASSIST Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ANDNPD, VANDNPD 47

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs a bitwise AND of two packed double-precision floating-point values in the second source
operand with the ones’-complement of the two corresponding packed double-precision floating-point
values in the first source operand and writes the result into the destination.
There are legacy and extended forms of the instruction:
ANDNPD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VANDNPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

ANDNPD
VANDNPD

AND NOT
Packed Double-Precision Floating-Point

Form Subset Feature Flag
ANDNPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VANDNPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ANDNPD xmm1, xmm2/mem128 66 0F 55 /r Performs bitwise AND of two packed double-precision

floating-point values in xmm2 or mem128 with the ones’-
complement of two packed double-precision floating-
point values in xmm1. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VANDNPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 55 /r
VANDNPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 55 /r

[AMD Public Use]

48 ANDNPD, VANDNPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ANDNPS, VANDNPS 49

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs a bitwise AND of four packed single-precision floating-point values in the second source
operand with the ones’-complement of the four corresponding packed single-precision floating-point
values in the first source operand, and writes the result in the destination.
There are legacy and extended forms of the instruction:
ANDNPS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VANDNPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ANDNPD, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

ANDNPS
VANDNPS

AND NOT
Packed Single-Precision Floating-Point

Form Subset Feature Flag
ANDNPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VANDNPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ANDNPS xmm1, xmm2/mem128 0F 55 /r Performs bitwise AND of four packed single-precision

floating-point values in xmm2 or mem128 with the ones’-
complement of four packed single-precision floating-point
values in xmm1. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VANDNPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 55 /r
VANDNPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 55 /r

[AMD Public Use]

50 ANDNPS, VANDNPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ANDPD, VANDPD 51

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs bitwise AND of two packed double-precision floating-point values in the first source oper-
and with the corresponding two packed double-precision floating-point values in the second source
operand and writes the results into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:
ANDPD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VANDPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

ANDPD
VANDPD

AND
Packed Double-Precision Floating-Point

Form Subset Feature Flag
ANDPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VANDPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ANDPD xmm1, xmm2/mem128 66 0F 54 /r Performs bitwise AND of two packed double-precision

floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VANDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 54 /r
VANDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 54 /r

[AMD Public Use]

52 ANDPD, VANDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ANDPS, VANDPS 53

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs bitwise AND of the four packed single-precision floating-point values in the first source
operand with the corresponding four packed single-precision floating-point values in the second
source operand, and writes the result into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:
ANDPS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VANDPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

ANDPS
VANDPS

AND
Packed Single-Precision Floating-Point

Form Subset Feature Flag
ANDPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VANDPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ANDPS xmm1, xmm2/mem128 0F 54 /r Performs bitwise AND of four packed single-precision floating-

point values in xmm1 with corresponding values in xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VANDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 54 /r
VANDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 54 /r

[AMD Public Use]

54 ANDPS, VANDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference BLENDPD, VBLENDPD 55

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.
Each mask bit specifies a 64-bit element in a source location and a corresponding 64-bit element in
the destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.
There are legacy and extended forms of the instruction:
BLENDPD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Only mask bits [1:0] are used.
VBLENDPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. Only mask bits [1:0] are used.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

BLENDPD
VBLENDPD

 Blend
Packed Double-Precision Floating-Point

Form Subset Feature Flag
BLENDPD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VBLENDPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
BLENDPD xmm1, xmm2/mem128, imm8 66 0F 3A 0D /r ib Copies values from xmm1 or

xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VBLENDPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0D /r ib
VBLENDPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 0D /r ib

[AMD Public Use]

56 BLENDPD, VBLENDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)BLENDPS, (B)BLENDVPD, (V)BLENDVPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference BLENDPS, VBLENDPS 57

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.
Each mask bit specifies a 32-bit element in a source location and a corresponding 32-bit element in
the destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.
There are legacy and extended forms of the instruction:
BLENDPS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Only mask bits [3:0] are used.
VBLENDPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.Only mask bits [3:0] are used.
YMM Encoding
The first operand is a YMM register and the second operand is either a YMM register or a 256-bit
memory location. The destination is a third YMM register. All 8 bits of the mask are used.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

BLENDPS
VBLENDPS

 Blend
Packed Single-Precision Floating-Point

Form Subset Feature Flag
BLENDPS SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VBLENDPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
BLENDPS xmm1, xmm2/mem128, imm8 66 0F 3A 0C /r ib Copies values from xmm1 or

xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VBLENDPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0C /r ib
VBLENDPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 0C /r ib

[AMD Public Use]

58 BLENDPS, VBLENDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)BLENDPD, (V)BLENDVPD, (V)BLENDVPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference BLENDVPD, VBLENDVPD 59

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.
Each mask bit specifies a 64-bit element of a source location and a corresponding 64-bit element of
the destination. The position of a mask bit corresponds to the position of the most significant bit of a
copied value. When a mask bit = 0, the specified element of the first source is copied to the corre-
sponding position in the destination. When a mask bit = 1, the specified element of the second source
is copied to the corresponding position in the destination.
There are legacy and extended forms of the instruction:
BLENDVPD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. The mask is defined by bits 127
and 63 of the implicit register XMM0.
VBLENDVPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. The mask is defined by bits 127 and 63 of a fourth
XMM register.
YMM Encoding
The first operand is a YMM register and the second operand is either a YMM register or a 256-bit
memory location. The destination is a third YMM register. The mask is defined by bits 255, 191, 127,
and 63 of a fourth YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

BLENDVPD
VBLENDVPD

 Variable Blend
Packed Double-Precision Floating-Point

Form Subset Feature Flag
BLENDVPD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VBLENDVPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

60 BLENDVPD, VBLENDVPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
BLENDVPD xmm1, xmm2/mem128 66 0F 38 15 /r Copies values from xmm1 or xmm2/mem128 to

xmm1, as specified by the MSB of corresponding
elements of xmm0.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VBLENDVPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4B /r
VBLENDVPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4B /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference BLENDVPS, VBLENDVPS 61

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.
Each mask bit specifies a 32-bit element of a source location and a corresponding 32-bit element of
the destination register. The position of a mask bits corresponds to the position of the most significant
bit of a copied value. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination. When a mask bit = 1, the specified element of the second
source is copied to the corresponding position in the destination.
There are legacy and extended forms of the instruction:
BLENDVPS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. The mask is defined by bits 127,
95, 63, and 31 of the implicit register XMM0.
VBLENDVPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. The mask is defined by bits 127, 95, 63, and 31 of
a fourth XMM register.
YMM Encoding
The first operand is a YMM register and the second operand is either a YMM register or a 256-bit
memory location. The destination is a third YMM register. The mask is defined by bits 255, 223, 191,
159, 127, 95, 63, and 31 of a fourth YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

BLENDVPS
VBLENDVPS

 Variable Blend
Packed Single-Precision Floating-Point

Form Subset Feature Flag
BLENDVPS SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VBLENDVPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

62 BLENDVPS, VBLENDVPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPD

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
BLENDVPS xmm1, xmm2/mem128 66 0F 38 14 /r Copies packed single-precision

floating-point values from xmm1 or
xmm2/mem128 to xmm1, as
specified by bits in xmm0.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VBLENDVPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4A /r
VBLENDVPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4A /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CMPPD, VCMPPD 63

26568—Rev. 3.24—May 2020 AMD64 Technology

Compares each of the two packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 64-bit element of the destination. When a comparison is TRUE, all 64 bits of the desti-
nation element are set; when a comparison is FALSE, all 64 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.
Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.
QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.
There are legacy and extended forms of the instruction:
CMPPD
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a128-bit memory location.The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.
VCMPPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an
immediate byte operand.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination operand is a YMM register. Comparison type is speci-
fied by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding
CMPPD uses bits [2:0] of the 8-bit immediate operand and VCMPPD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPD supports 20h encoding values, the comparison types echo
those of CMPPD on 4-bit boundaries. The following table shows the immediate operand value for
CMPPD and each of the VCMPPD echoes.
Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations.

CMPPD
VCMPPD

Compare
Packed Double-Precision Floating-Point

[AMD Public Use]

64 CMPPD, VCMPPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

The following alias mnemonics for (V)CMPPD with appropriate value of imm8 are supported.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception
00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal

(swapped operands)
TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8
(V)CMPEQPD 00h, 08h, 10h, 18h
(V)CMPLTPD 01h, 09h, 11h, 19h
(V)CMPLEPD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPD 04h, 0Ch, 14h, 1Ch
(V)CMPNLTPD 05h, 0Dh, 15h, 1Dh
(V)CMPNLEPD 06h, 0Eh, 16h, 1Eh
(V)CMPORDPD 07h, 0Fh, 17h, 1Fh

Form Subset Feature Flag
CMPPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCMPPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference CMPPD, VCMPPD 65

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Opcode Description
CMPPD xmm1, xmm2/mem128, imm8 66 0F C2 /r ib Compares two pairs of values in xmm1 to

corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCMPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.01 C2 /r ib
VCMPPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00001 X.src.1.01 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

66 CMPPD, VCMPPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CMPPS, VCMPPS 67

26568—Rev. 3.24—May 2020 AMD64 Technology

Compares each of the four packed single-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 32-bit element of the destination. When a comparison is TRUE, all 32 bits of the desti-
nation element are set; when a comparison is FALSE, all 32 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.
Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.
QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.
There are legacy and extended forms of the instruction:
CMPPS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. Comparison type is specified by
bits [2:0] of an immediate byte operand.
VCMPPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an
immediate byte operand.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination operand is a YMM register. Comparison type is speci-
fied by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding
CMPPS uses bits [2:0] of the 8-bit immediate operand and VCMPPS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPS supports 20h encoding values, the comparison types echo
those of CMPPS on 4-bit boundaries. The following table shows the immediate operand value for
CMPPS and each of the VCMPPDS echoes.
Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown in
with the directly supported comparison operations.

CMPPS
VCMPPS

Compare
Packed Single-Precision Floating-Point

[AMD Public Use]

68 CMPPS, VCMPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

The following alias mnemonics for (V)CMPPS with appropriate value of imm8 are supported.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception
00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal

(swapped operands)
TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8
(V)CMPEQPS 00h, 08h, 10h, 18h
(V)CMPLTPS 01h, 09h, 11h, 19h
(V)CMPLEPS 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPS 04h, 0Ch, 14h, 1Ch
(V)CMPNLTPS 05h, 0Dh, 15h, 1Dh
(V)CMPNLEPS 06h, 0Eh, 16h, 1Eh
(V)CMPORDPS 07h, 0Fh, 17h, 1Fh

Form Subset Feature Flag
CMPPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VCMPPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference CMPPS, VCMPPS 69

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)CMPPD, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Opcode Description
CMPPS xmm1, xmm2/mem128, imm8 0F C2 /r ib Compares four pairs of values in xmm1 to

corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCMPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.00 C2 /r ib
VCMPPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00001 X.src.1.00 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

70 CMPPS, VCMPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CMPSD, VCMPSD 71

26568—Rev. 3.24—May 2020 AMD64 Technology

Compares a double-precision floating-point value in the low-order 64 bits of the first source operand
with a double-precision floating-point value in the low-order 64 bits of the second source operand and
writes the result to the low-order 64 bits of the destination. When a comparison is TRUE, all 64 bits
of the destination element are set; when a comparison is FALSE, all 64 bits of the destination element
are cleared. Comparison type is specified by an immediate byte operand.
Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.
QNaN operands generate an Invalid Operation Exception (IE) only when the comparison type is not
Equal, Unequal, Ordered, or Unordered. SNaN operands always generate an IE.
There are legacy and extended forms of the instruction:
CMPSD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The first source register is also the destination. Bits [127:64] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected. Comparison type is specified by bits [2:0] of an immediate byte operand.
This CMPSD instruction must not be confused with the same-mnemonic CMPSD (compare strings
by doubleword) instruction in the general-purpose instruction set. Assemblers can distinguish the
instructions by the number and type of operands.
VCMPSD
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the destination
are copied from bits [127:64] of the first source. Bits [255:128] of the YMM register that corresponds
to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate byte oper-
and.

Immediate Operand Encoding
CMPSD uses bits [2:0] of the 8-bit immediate operand and VCMPSD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSD supports 20h encoding values, the comparison types echo
those of CMPSD on 4-bit boundaries. The following table shows the immediate operand value for
CMPSD and each of the VCMPSD echoes.
Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations. When operands are swapped, the first source
XMM register is overwritten by the result.

CMPSD
VCMPSD

Compare
Scalar Double-Precision Floating-Point

[AMD Public Use]

72 CMPSD, VCMPSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

The following alias mnemonics for (V)CMPSD with appropriate value of imm8 are supported.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception
00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal

(swapped operands)
TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8
(V)CMPEQSD 00h, 08h, 10h, 18h
(V)CMPLTSD 01h, 09h, 11h, 19h
(V)CMPLESD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSD 04h, 0Ch, 14h, 1Ch
(V)CMPNLTSD 05h, 0Dh, 15h, 1Dh
(V)CMPNLESD 06h, 0Eh, 16h, 1Eh
(V)CMPORDSD 07h, 0Fh, 17h, 1Fh

Form Subset Feature Flag
CMPSD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCMPSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference CMPSD, VCMPSD 73

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Opcode Description
CMPSD xmm1, xmm2/mem64, imm8 F2 0F C2 /r ib Compares double-precision floating-point

values in the low-order 64 bits of xmm1 with
corresponding values in xmm2 or mem64.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCMPSD xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.00001 X.src.X.11 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

74 CMPSD, VCMPSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CMPSS, VCMPSS 75

26568—Rev. 3.24—May 2020 AMD64 Technology

Compares a single-precision floating-point value in the low-order 32 bits of the first source operand
with a single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the result to the low-order 32 bits of the destination. When a comparison is TRUE, all 32 bits
of the destination element are set; when a comparison is FALSE, all 32 bits of the destination element
are cleared. Comparison type is specified by an immediate byte operand.
Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.
QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.
There are legacy and extended forms of the instruction:
CMPSS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected. Comparison type is specified by bits [2:0] of an immediate byte operand.
VCMPSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the destination
are copied from bits [127L32] of the first source. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate byte
operand.

Immediate Operand Encoding
CMPSS uses bits [2:0] of the 8-bit immediate operand and VCMPSS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSS supports 20h encoding values, the comparison types echo
those of CMPSS on 4-bit boundaries. The following table shows the immediate operand value for
CMPSS and each of the VCMPSS echoes.
Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
below with the directly supported comparison operations. When operands are swapped, the first
source XMM register is overwritten by the result.

CMPSS
VCMPSS

Compare
Scalar Single-Precision Floating-Point

[AMD Public Use]

76 CMPSS, VCMPSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

The following alias mnemonics for (V)CMPSS with appropriate value of imm8 are supported.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception
00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal

(swapped operands)
TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8
(V)CMPEQSS 00h, 08h, 10h, 18h
(V)CMPLTSS 01h, 09h, 11h, 19h
(V)CMPLESS 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSS 04h, 0Ch, 14h, 1Ch
(V)CMPNLTSS 05h, 0Dh, 15h, 1Dh
(V)CMPNLESS 06h, 0Eh, 16h, 1Eh
(V)CMPORDSS 07h, 0Fh, 17h, 1Fh

Form Subset Feature Flag
CMPSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VCMPSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference CMPSS, VCMPSS 77

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Opcode Description
CMPSS xmm1, xmm2/mem32, imm8 F3 0F C2 /r ib Compares single-precision floating-point

values in the low-order 32 bits of xmm1 with
corresponding values in xmm2 or mem32.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCMPSS xmm1, xmm2, xmm3/mem32, imm8 C4 RXB.00001 X.src.X.10 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

78 CMPSS, VCMPSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference COMISD, VCOMISD 79

26568—Rev. 3.24—May 2020 AMD64 Technology

Compares a double-precision floating-point value in the low-order 64 bits of the first operand with a
double-precision floating-point value in the low-order 64 bits of the second operand and sets
rFLAGS.ZF, PF, and CF to show the result of the comparison:

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.
There are legacy and extended forms of the instruction:
COMISD
The first source operand is an XMM register and the second source operand is an XMM register or a
64-bit memory location.
VCOMISD
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISS, (V)UCOMISD, (V)UCOMISS

COMISD
VCOMISD

Compare Ordered
Scalar Double-Precision Floating-Point

Comparison ZF PF CF
NaN input 1 1 1

operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 == operand 2 1 0 0

Form Subset Feature Flag
COMISD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCOMISD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
COMISD xmm1, xmm2/mem64 66 0F 2F /r Compares double-precision floating-point values in xmm1

with corresponding values in xmm2 or mem64 and sets
rFLAGS.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCOMISD xmm1, xmm2 /mem64 C4 RXB.00001 X.src.X.01 2F /r

[AMD Public Use]

80 COMISD, VCOMISD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 M 0 M M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference COMISD, VCOMISD 81

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

82 COMISS, VCOMISS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares a double-precision floating-point value in the low-order 32 bits of the first operand with a
single-precision floating-point value in the low-order 32 bits of the second operand and sets
rFLAGS.ZF, PF, and CF to show the result of the comparison:

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.
There are legacy and extended forms of the instruction:
COMISS
The first source operand is an XMM register and the second source operand is an XMM register or a
32-bit memory location.
VCOMISS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)UCOMISD, (V)UCOMISS

COMISS
VCOMISS

Compare
Ordered Scalar Single-Precision Floating-Point

Comparison ZF PF CF
NaN input 1 1 1

operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 == operand 2 1 0 0

Form Subset Feature Flag
COMISS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VCOMISS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
COMISS xmm1, xmm2/mem32 0F 2F /r Compares single-precision floating-point values in xmm1

with corresponding values in xmm2 or mem32 and sets
rFLAGS.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCOMISS xmm1, xmm2 /mem32 C4 RXB.00001 X.src.X.00 2F /r

[AMD Public Use]

Instruction Reference COMISS, VCOMISS 83

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 M 0 M M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

84 CVTDQ2PD, VCVTDQ2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts packed 32-bit signed integer values to packed double-precision floating-point values and
writes the converted values to the destination.
There are legacy and extended forms of the instruction:
CVTDQ2PD
Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted values to an XMM register. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.
VCVTDQ2PD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted values to an XMM register. Bits [255:128] of the YMM register that corresponds to the desti-
nation are cleared.
YMM Encoding
Converts four packed 32-bit signed integer values in the low-order 128 bits of a YMM register or a
256-bit memory location to four packed double-precision floating-point values and writes the con-
verted values to a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

CVTDQ2PD
VCVTDQ2PD

Convert Packed Doubleword Integers
to Packed Double-Precision Floating-Point

Form Subset Feature Flag
CVTDQ2PD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTDQ2PD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
CVTDQ2PD xmm1, xmm2/mem64 F3 0F E6 /r Converts packed doubleword signed integers in xmm2

or mem64 to double-precision floating-point values in
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.10 E6 /r
VCVTDQ2PD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 E6 /r

[AMD Public Use]

Instruction Reference CVTDQ2PD, VCVTDQ2PD 85

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ, (V)CVTT-
SD2SI

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

86 CVTDQ2PS, VCVTDQ2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts packed 32-bit signed integer values to packed single-precision floating-point values and
writes the converted values to the destination. When the result is an inexact value, it is rounded as
specified by MXCSR.RC.
There are legacy and extended forms of the instruction:
CVTDQ2PS
Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location
to four packed single-precision floating-point values and writes the converted values to an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VCVTDQ2PS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location
to four packed single-precision floating-point values and writes the converted values to an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Converts eight packed 32-bit signed integer values in a YMM register or a 256-bit memory location
to eight packed single-precision floating-point values and writes the converted values to a YMM reg-
ister.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

CVTDQ2PS
VCVTDQ2PS

Convert Packed Doubleword Integers
to Packed Single-Precision Floating-Point

Form Subset Feature Flag
CVTDQ2PS SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTDQ2PS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
CVTDQ2PS xmm1, xmm2/mem128 0F 5B /r Converts packed doubleword integer values in xmm2 or

mem128 to packed single-precision floating-point
values in xmm2.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTDQ2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 5B /r
VCVTDQ2PS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 5B /r

[AMD Public Use]

Instruction Reference CVTDQ2PS, VCVTDQ2PS 87

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

88 CVTPD2DQ, VCVTPD2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts packed double-precision floating-point values to packed signed doubleword integers and
writes the converted values to the destination.
When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value (8000_0000h)
when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTPD2DQ
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VCVTPD2DQ
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword values and writes the converted values to an XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

CVTPD2DQ
VCVTPD2DQ

Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integer

Form Subset Feature Flag
CVTPD2DQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTPD2DQ AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
CVTPD2DQ xmm1, xmm2/mem128 F2 0F E6 /r Converts two packed double-precision floating-point

values in xmm2 or mem128 to packed doubleword
integers in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.11 E6 /r
VCVTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.11 E6 /r

[AMD Public Use]

Instruction Reference CVTPD2DQ, VCVTPD2DQ 89

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)CVTDQ2PD, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ, (V)CVTT-
SD2SI

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

90 CVTPD2PS, VCVTPD2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts packed double-precision floating-point values to packed single-precision floating-point val-
ues and writes the converted values to the low-order doubleword elements of the destination. When
the result is an inexact value, it is rounded as specified by MXCSR.RC.
There are legacy and extended forms of the instruction:
CVTPD2PS
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.
VCVTPD2PS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.
YMM Encoding
Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four packed single-precision floating-point values and writes the converted values to a
YMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

CVTPD2PS
VCVTPD2PS

Convert Packed Double-Precision Floating-Point
to Packed Single-Precision Floating-Point

Form Subset Feature Flag
CVTPD2PS SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTPD2PS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
CVTPD2PS xmm1, xmm2/mem128 66 0F 5A /r Converts packed double-precision floating-point

values in xmm2 or mem128 to packed single-
precision floating-point values in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPD2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5A /r
VCVTPD2PS xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5A /r

[AMD Public Use]

Instruction Reference CVTPD2PS, VCVTPD2PS 91

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)CVTPS2PD, (V)CVTSD2SS, (V)CVTSS2SD

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

92 CVTPS2DQ, VCVTPS2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.
When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value (8000_0000h)
when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTPS2DQ
Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VCVTPS2DQ
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

CVTPS2DQ
VCVTPS2DQ

Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers

Form Subset Feature Flag
CVTPS2DQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTPS2DQ AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
CVTPS2DQ xmm1, xmm2/mem128 66 0F 5B /r Converts four packed single-precision floating-point

values in xmm2 or mem128 to four packed
doubleword integers in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5B /r
VCVTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5B /r

[AMD Public Use]

Instruction Reference CVTPS2DQ, VCVTPS2DQ 93

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)CVTDQ2PS, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

94 CVTPS2PD, VCVTPS2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts packed single-precision floating-point values to packed double-precision floating-point val-
ues and writes the converted values to the destination.
There are legacy and extended forms of the instruction:
CVTPS2PD
Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.
VCVTPS2PD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.
YMM Encoding
Converts four packed single-precision floating-point values in a YMM register or a 128-bit memory
location to four double-precision floating-point values and writes the converted values to a YMM
register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)CVTPD2PS, (V)CVTSD2SS, (V)CVTSS2SD

CVTPS2PD
VCVTPS2PD

Convert Packed Single-Precision Floating-Point
to Packed Double-Precision Floating-Point

Form Subset Feature Flag
CVTPS2PD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTPS2PD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
CVTPS2PD xmm1, xmm2/mem64 0F 5A /r Converts packed single-precision floating-point values

in xmm2 or mem64 to packed double-precision floating-
point values in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPS2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.00 5A /r
VCVTPS2PD ymm1, ymm2/mem128 C4 RXB.00001 X.1111.1.00 5A /r

[AMD Public Use]

Instruction Reference CVTPS2PD, VCVTPS2PD 95

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

96 CVTSD2SI, VCVTSD2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts a scalar double-precision floating-point value to a 32-bit or 64-bit signed integer value and
writes the converted value to a general-purpose register.
When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the instruction returns the indefinite
integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers) when the
invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTSD2SI
The legacy form has two encodings:
• When REX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When REX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTSD2SI
The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When VEX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

CVTSD2SI
VCVTSD2SI

Convert Scalar Double-Precision Floating-Point
to Signed Doubleword or Quadword Integer

Form Subset Feature Flag
CVTSD2SI SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTSD2SI AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference CVTSD2SI, VCVTSD2SI 97

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSI2SD, (V)CVTTPD2DQ, (V)CVTT-
SD2SI

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Opcode Description
CVTSD2SI reg32, xmm1/mem64 F2 (W0) 0F 2D /r Converts a packed double-precision floating-point value

in xmm1 or mem64 to a doubleword integer in reg32.
CVTSD2SI reg64, xmm1/mem64 F2 (W1) 0F 2D /r Converts a packed double-precision floating-point value

in xmm1 or mem64 to a quadword integer in reg64.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2D /r
VCVTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2D /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

98 CVTSD2SI, VCVTSD2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CVTSD2SS, VCVTSD2SS 99

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts a scalar double-precision floating-point value to a scalar single-precision floating-point
value and writes the converted value to the low-order 32 bits of the destination. When the result is an
inexact value, it is rounded as specified by MXCSR.RC.
There are legacy and extended forms of the instruction:
CVTSD2SS
Converts a scalar double-precision floating-point value in the low-order 64 bits of the second source
XMM register or a 64-bit memory location to a scalar single-precision floating-point value and writes
the converted value to the low-order 32 bits of a destination XMM register. Bits [127:32] of the desti-
nation are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VCVTSD2SS
The extended form of the instruction has a 128-bit encoding only.
Converts a scalar double-precision floating-point value in the low-order 64 bits of a source XMM
register or a 64-bit memory location to a scalar single-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the destina-
tion are copied from the first source XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSS2SD

rFLAGS Affected
None

CVTSD2SS
VCVTSD2SS

Convert Scalar Double-Precision Floating-Point
to Scalar Single-Precision Floating-Point

Form Subset Feature Flag
CVTSD2SS SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTSD2SS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
CVTSD2SS xmm1, xmm2/mem64 F2 0F 5A /r Converts a scalar double-precision floating-point

value in xmm2 or mem64 to a scalar single-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSD2SS xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5A /r

[AMD Public Use]

100 CVTSD2SS, VCVTSD2SS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CVTSI2SD, VCVTSI2SD 101

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts a signed integer value to a double-precision floating-point value and writes the converted
value to a destination register. When the result of the conversion is an inexact value, the value is
rounded as specified by MXCSR.RC.
There are legacy and extended forms of the instruction:
CVTSI2SD
The legacy form as two encodings:
• When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

• When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit double-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the
destination XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SD
The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• When VEX.W = 1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

CVTSI2SD
VCVTSI2SD

Convert Signed Doubleword or Quadword Integer
to Scalar Double-Precision Floating-Point

Form Subset Feature Flag
CVTSI2SD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTSI2SD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

102 CVTSI2SD, VCVTSI2SD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTTPD2DQ, (V)CVTT-
SD2SI

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Opcode Description
CVTSI2SD xmm1, reg32/mem32 F2 (W0) 0F 2A /r Converts a doubleword integer in reg32 or mem32 to a

double-precision floating-point value in xmm1.
CVTSI2SD xmm1, reg64/mem64 F2 (W1) 0F 2A /r Converts a quadword integer in reg64 or mem64 to a

double-precision floating-point value in xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSI2SD xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.11 2A /r
VCVTSI2SD xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X.11 2A /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

Instruction Reference CVTSI2SD, VCVTSI2SD 103

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

104 CVTSI2SS, VCVTSI2SS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts a signed integer value to a single-precision floating-point value and writes the converted
value to an XMM register. When the result of the conversion is an inexact value, the value is rounded
as specified by MXCSR.RC.
There are legacy and extended forms of the instruction:
CVTSI2SS
The legacy form has two encodings:
• When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

• When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SS
The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• When VEX.W = 1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a single-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

CVTSI2SS
VCVTSI2SS

Convert Signed Doubleword or Quadword Integer
to Scalar Single-Precision Floating-Point

Form Subset Feature Flag
CVTSI2SS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VCVTSI2SS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference CVTSI2SS, VCVTSI2SS 105

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Opcode Description
CVTSI2SS xmm1, reg32/mem32 F3 (W0) 0F 2A /r Converts a doubleword integer in reg32 or mem32 to a

single-precision floating-point value in xmm1.
CVTSI2SS xmm1, reg64/mem64 F3 (W1) 0F 2A /r Converts a quadword integer in reg64 or mem64 to a

single-precision floating-point value in xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSI2SS xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.10 2A /r
VCVTSI2SS xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X.10 2A /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

106 CVTSI2SS, VCVTSI2SS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CVTSS2SD, VCVTSS2SD 107

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts a scalar single-precision floating-point value to a scalar double-precision floating-point
value and writes the converted value to the low-order 64 bits of the destination.
There are legacy and extended forms of the instruction:
CVTSS2SD
Converts a scalar single-precision floating-point value in the low-order 32 bits of a source XMM reg-
ister or a 32-bit memory location to a scalar double-precision floating-point value and writes the con-
verted value to the low-order 64 bits of a destination XMM register. Bits [127:64] of the destination
and bits [255:128] of the corresponding YMM register are not affected.
VCVTSS2SD
The extended form of the instruction has a 128-bit encoding only.
Converts a scalar single-precision floating-point value in the low-order 32 bits of the second source
XMM register or 32-bit memory location to a scalar double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the des-
tination are copied from the first source XMM register. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSD2SS

CVTSS2SD
VCVTSS2SD

Convert Scalar Single-Precision Floating-Point
to Scalar Double-Precision Floating-Point

Form Subset Feature Flag
CVTSS2SD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTSS2SD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
CVTSS2SD xmm1, xmm2/mem32 F3 0F 5A /r Converts a scalar single-precision floating-point value

in xmm2 or mem32 to a scalar double-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSS2SD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.10 5A /r

[AMD Public Use]

108 CVTSS2SD, VCVTSS2SD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CVTSS2SI, VCVTSS2SI 109

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.
When the result of the conversion is an inexact value, the value is rounded as specified by
MXCSR.RC. When the floating-point value is a NaN, infinity, or the result of the conversion is larger
than the maximum signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the
indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers)
is returned when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTSS2SI
The legacy form has two encodings:
• When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

• When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

VCVTSS2SI
The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

• When VEX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

CVTSS2SI
VCVTSS2SI

Convert Scalar Single-Precision Floating-Point
to Signed Doubleword or Quadword Integer

Form Subset Feature Flag
CVTSS2SI SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VCVTSS2SI AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

110 CVTSS2SI, VCVTSS2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTTPS2DQ, (V)CVTTSS2SI

MXCSR Flags Affected

Mnemonic Opcode Description
CVTSS2SI reg32, xmm1/mem32 F3 (W0) 0F 2D /r Converts a single-precision floating-point value in

xmm1 or mem32 to a 32-bit integer value in reg32
CVTSS2SI reg64, xmm1//mem64 F3 (W1) 0F 2D /r Converts a single-precision floating-point value in

xmm1 or mem64 to a 64-bit integer value in reg64

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSS2SI reg32, xmm1/mem32 C4 RXB.00001 0.1111.X.10 2D /r
VCVTSS2SI reg64, xmm1/mem64 C4 RXB.00001 1.1111.X.10 2D /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

Instruction Reference CVTSS2SI, VCVTSS2SI 111

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

112 CVTTPD2DQ, VCVTTPD2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts packed double-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.
When the result is an inexact value, it is truncated (rounded toward zero). When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value (8000_0000h) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTPD2DQ
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VCVTTPD2DQ
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.
YMM Encoding
Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword integer values and writes the converted values to an XMM regis-
ter. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

CVTTPD2DQ
VCVTTPD2DQ

Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integer, Truncated

Form Subset Feature Flag
CVTTPD2DQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTTPD2DQ AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference CVTTPD2DQ, VCVTTPD2DQ 113

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTSD2SI

MXCSR Flags Affected

Mnemonic Opcode Description
CVTTPD2DQ xmm1, xmm2/mem128 66 0F E6 /r Converts two packed double-precision floating-point

values in xmm2 or mem128 to packed doubleword
integers in xmm1. Truncates inexact result.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 E6 /r
VCVTTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 E6 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

114 CVTTPD2DQ, VCVTTPD2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CVTTPS2DQ, VCVTTPS2DQ 115

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.
When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the max-
imum signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTTPS2DQ
Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. The high-order 128-bits of the corresponding YMM register are not affected.
VCVTTPS2DQ
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

CVTTPS2DQ
VCVTTPS2DQ

Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers, Truncated

Form Subset Feature Flag
CVTTPS2DQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTTPS2DQ AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
CVTTPS2DQ xmm1, xmm2/mem128 F3 0F 5B /r Converts four packed single-precision floating-point

values in xmm2 or mem128 to four packed
doubleword integers in xmm1. Truncates inexact
result.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 5B /r
VCVTTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 5B /r

[AMD Public Use]

116 CVTTPS2DQ, VCVTTPS2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTSS2SI

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference CVTTSD2SI, VCVTTSD2SI 117

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts a scalar double-precision floating-point value to a signed integer value and writes the con-
verted value to a general-purpose register.
When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the max-
imum signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the instruction
returns the indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-
bit integers) when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTTSD2SI
The legacy form of the instruction has two encodings:
• When REX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When REX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTTSD2SI
The extended form of the instruction has two 128-bit encodings.
• When VEX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When VEX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

CVTTSD2SI
VCVTTSD2SI

Convert Scalar Double-Precision Floating-Point
to Signed Double- or Quadword Integer, Truncated

Form Subset Feature Flag
CVTTSD2SI SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VCVTTSD2SI AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

118 CVTTSD2SI, VCVTTSD2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD,
(V)CVTTPD2DQ

MXCSR Flags Affected

Mnemonic Opcode Description
CVTTSD2SI reg32, xmm1/mem64 F2 (W0) 0F 2C /r Converts a packed double-precision floating-point

value in xmm1 or mem64 to a doubleword integer in
reg32. Truncates inexact result.

CVTTSD2SI reg64, xmm1/mem64 F2 (W1) 0F 2C /r Converts a packed double-precision floating-point
value in xmm1 or mem64 to a quadword integer in
reg64.Truncates inexact result.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2C /r
VCVTTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2C /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference CVTTSD2SI, VCVTTSD2SI 119

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

120 CVTTSS2SI, VCVTTSS2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.
When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the max-
imum signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the indefinite inte-
ger value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers) is returned
when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTTSS2SI
The legacy form of the instruction has two encodings:
• When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

• When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

VCVTTSS2SI
The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

• When VEX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

CVTTSS2SI
VCVTTSS2SI

Convert Scalar Single-Precision Floating-Point
to Signed Double or Quadword Integer, Truncated

Form Subset Feature Flag
CVTTSS2SI SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VCVTTSS2SI AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference CVTTSS2SI, VCVTTSS2SI 121

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ

MXCSR Flags Affected

Mnemonic Opcode Description
CVTTSS2SI reg32, xmm1/mem32 F3 (W0) 0F 2C /r Converts a single-precision floating-point value in

xmm1 or mem32 to a 32-bit integer value in reg32.
Truncates inexact result.

CVTTSS2SI reg64, xmm1/mem64 F3 (W1) 0F 2C /r Converts a single-precision floating-point value in
xmm1 or mem64 to a 64-bit integer value in reg64.
Truncates inexact result.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTTSS2SI reg32, xmm1/mem32 C4 RXB.00001 0.1111.X.10 2C /r
VCVTTSS2SI reg64, xmm1/mem64 C4 RXB.00001 1.1111.X.10 2C /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

122 CVTTSS2SI, VCVTTSS2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference DIVPD, VDIVPD 123

26568—Rev. 3.24—May 2020 AMD64 Technology

Divides each of the packed double-precision floating-point values of the first source operand by the
corresponding packed double-precision floating-point values of the second source operand and writes
the quotients to the destination.
There are legacy and extended forms of the instruction:
DIVPD
Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VDIVPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes the two results a destination XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.
YMM Encoding
Divides four packed double-precision floating-point values in the first source YMM register by the
corresponding packed double-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

DIVPD
VDIVPD

Divide
Packed Double-Precision Floating-Point

Form Subset Feature Flag
DIVPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VDIVPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
DIVPD xmm1, xmm2/mem128 66 0F 5E /r Divides packed double-precision floating-point values in

xmm1 by the packed double-precision floating-point
values in xmm2 or mem128. Writes quotients to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VDIVPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5E /r
VDIVPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5E /r

[AMD Public Use]

124 DIVPD, VDIVPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)DIVPS, (V)DIVSD, (V)DIVSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference DIVPS, VDIVPS 125

26568—Rev. 3.24—May 2020 AMD64 Technology

Divides each of the packed single-precision floating-point values of the first source operand by the
corresponding packed single-precision floating-point values of the second source operand and writes
the quotients to the destination.
There are legacy and extended forms of the instruction:
DIVPS
Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VDIVPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes two results to a third destination XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Divides eight packed single-precision floating-point values in the first source YMM register by the
corresponding packed single-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

DIVPS
VDIVPS

Divide
Packed Single-Precision Floating-Point

Form Subset Feature Flag
DIVPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VDIVPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
DIVPS xmm1, xmm2/mem128 0F 5E /r Divides packed single-precision floating-point values in

xmm1 by the corresponding values in xmm2 or mem128.
Writes quotients to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VDIVPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5E /r
VDIVPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5E /r

[AMD Public Use]

126 DIVPS, VDIVPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)DIVPD, (V)DIVSD, (V)DIVSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference DIVSD, VDIVSD 127

26568—Rev. 3.24—May 2020 AMD64 Technology

Divides the double-precision floating-point value in the low-order quadword of the first source oper-
and by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the quotient to the low-order quadword of the destination.
There are legacy and extended forms of the instruction:

DIVSD
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination are not affected. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VDIVSD
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. Bits [127:64] of the first source operand are copied to bits [127:64] of
the destination. The destination is a third XMM register. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSS

DIVSD
VDIVSD

Divide
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
DIVSD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VDIVSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
DIVSD xmm1, xmm2/mem64 F2 0F 5E /r Divides the double-precision floating-point value in the low-

order 64 bits of xmm1by the corresponding value in xmm2
or mem64. Writes quotient to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VDIVSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5E /r

[AMD Public Use]

128 DIVSD, VDIVSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference DIVSS, VDIVSS 129

26568—Rev. 3.24—May 2020 AMD64 Technology

Divides the single-precision floating-point value in the low-order doubleword of the first source oper-
and by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the quotient to the low-order doubleword of the destination.
There are legacy and extended forms of the instruction:

DIVSS
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination register. Bits [127:32]
of the destination are not affected. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VDIVSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source operand are copied to bits [127:32] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSD

DIVSS
VDIVSS

Divide Scalar Single-Precision Floating-Point

Form Subset Feature Flag
DIVSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VDIVSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
DIVSS xmm1, xmm2/mem32 F3 0F 5E /r Divides a single-precision floating-point value in the low-

order doubleword of xmm1 by a corresponding value in
xmm2 or mem32. Writes the quotient to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VDIVSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5E /r

[AMD Public Use]

130 DIVSS, VDIVSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference DPPD, VDPPD 131

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.
Selectively multiplies packed double-precision values in a source operand by the corresponding val-
ues in a second source operand, writes the results to a temporary location, adds the results, writes the
sum to a second temporary location and selectively writes the sum to a destination.
Mask bits [5:4] of an 8-bit immediate operand perform multiplicative selection. Bit 5 selects bits
[127:64] of the source operands; bit 4 selects bits [63:0] of the source operands. When a mask bit = 1,
the corresponding packed double-precision floating point values are multiplied and the product is
written to the corresponding position of a 128-bit temporary location. When a mask bit = 0, the corre-
sponding position of the temporary location is cleared.
After the two 64-bit values in the first temporary location are added and written to the 64-bit second
temporary location, mask bits [1:0] of the same 8-bit immediate operand perform write selection. Bit
1 selects bits [127:64] of the destination; bit 0 selects bits [63:0] of the destination. When a mask bit =
1, the 64-bit value of the second temporary location is written to the corresponding position of the
destination. When a mask bit = 0, the corresponding position of the destination is cleared.
When the operation produces a NaN, its value is determined as follows.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when both
multiplications produce NaNs, the one that corresponds to bits [64:0] is written to all indicated fields
of the destination, regardless of how those NaNs were generated from the sources. When the high-
order multiplication produces NaNs and the low-order multiplication produces infinities of opposite
signs, the real indefinite QNaN (produced as the sum of the infinities) is written to the destination.
NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

DPPD
VDPPD

Dot Product
Packed Double-Precision Floating-Point

Source Operands (in either order) NaN Result1

QNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of QNaN

SNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of SNaN,
converted to a QNaN2

QNaN QNaN First operand
QNaN SNaN First operand

(converted to QNaN if SNaN
SNaN SNaN First operand

converted to a QNaN2

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

[AMD Public Use]

132 DPPD, VDPPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

There are legacy and extended forms of the instruction:
DPPD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VDPPD
The extended form of the instruction has a single 128-bit encoding.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)DPPS

MXCSR Flags Affected

Form Subset Feature Flag
DPPD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VDPPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
DPPD xmm1, xmm2/mem128, imm8 66 0F 3A 41 /r ib Selectively multiplies packed double-precision

floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VDPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 41 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

[AMD Public Use]

Instruction Reference DPPD, VDPPD 133

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

134 DPPS, VDPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.
Selectively multiplies packed single-precision values in a source operand by corresponding values in
a second source operand, writes results to a temporary location, adds pairs of results, writes the sums
to additional temporary locations, and selectively writes a cumulative sum to a destination.
Mask bits [7:4] of an 8-bit immediate operand perform multiplicative selection. Each bit selects a 32-
bit segment of the source operands; bit 7 selects bits [127:96], bit 6 selects bits [95:64], bit 5 selects
bits [63:32], and bit 4 selects bits [31:0]. When a mask bit = 1, the corresponding packed single-preci-
sion floating point values are multiplied and the product is written to the corresponding position of a
128-bit temporary location. When a mask bit = 0, the corresponding position of the temporary loca-
tion is cleared.
After multiplication, three pairs of 32-bit values are added and written to temporary locations.
Bits [63:32] and [31:0] of temporary location 1 are added and written to 32-bit temporary location 2;
bits [127:96] and [95:64] of temporary location 1 are added and written to 32-bit temporary location
3; then the contents of temporary locations 2 and 3 are added and written to 32-bit temporary location
4.
After addition, mask bits [3:0] of the same 8-bit immediate operand perform write selection. Each bit
selects a 32-bit segment of the source operands; bit 3 selects bits [127:96], bit 2 selects bits [95:64],
bit 1 selects bits [63:32], and bit 0 selects bits [31:0] of the destination. When a mask bit = 1, the 64-
bit value of the fourth temporary location is written to the corresponding position of the destination.
When a mask bit = 0, the corresponding position of the destination is cleared.

For the 256-bit extended encoding, this process is performed on the upper and lower 128 bits of the
affected YMM registers.
When the operation produces a NaN, its value is determined as follows.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when all four
multiplications produce NaNs, the one that corresponds to bits [31:0] is written to all indicated fields

DPPS
VDPPS

Dot Product
Packed Single-Precision Floating-Point

Source Operands (in either order) NaN Result1

QNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of QNaN

SNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of SNaN,
converted to a QNaN2

QNaN QNaN First operand
QNaN SNaN First operand

(converted to QNaN if SNaN
SNaN SNaN First operand

converted to a QNaN2

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

[AMD Public Use]

Instruction Reference DPPS, VDPPS 135

26568—Rev. 3.24—May 2020 AMD64 Technology

of the destination, regardless of how those NaNs were generated from the sources. When the two
highest-order multiplication produce NaNs and the two lowest-low-order multiplications produce
infinities of opposite signs, the real indefinite QNaN (produced as the sum of the infinities) is written
to the destination.
NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.
There are legacy and extended forms of the instruction:
DPPS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VDPPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)DPPD

Form Subset Feature Flag
DPPS SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VDPPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
DPPS xmm1, xmm2/mem128, imm8 66 0F 3A 40 /r ib Selectively multiplies packed single-precision

floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VDPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 40 /r ib
VDPPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 40 /r ib

[AMD Public Use]

136 DPPS, VDPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference EXTRACTPS, VEXTRACTPS 137

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies one of four packed single-precision floating-point values from a source XMM register to a
general purpose register or a 32-bit memory location.
Bits [1:0] of an immediate byte operand specify the location of the 32-bit value that is copied. 00b
corresponds to the low word of the source register and 11b corresponds to the high word of the source
register. Bits [7:2] of the immediate operand are ignored.

There are legacy and extended forms of the instruction:
EXTRACTPS
The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location. A 32-bit single-precision value extracted to a general purpose register is zero-
extended to 64-bits.
VEXTRACTPS
The extended form of the instruction has a single 128-bit encoding.
The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)INSERTPS

EXTRACTPS
VEXTRACTPS

Extract
Packed Single-Precision Floating-Point

Form Subset Feature Flag
EXTRACTPS SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VEXTRACTPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
EXTRACTPS reg32/mem32, xmm1
imm8

66 0F 3A 17 /r ib Extract the single-precision floating-point
element of xmm1 specified by imm8 to
reg32/mem32.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VEXTRACTPS reg32/mem32, xmm1, imm8 C4 RXB.00011 X.1111.0.01 17 /r ib

[AMD Public Use]

138 EXTRACTPS, VEXTRACTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference EXTRQ 139

26568—Rev. 3.24—May 2020 AMD64 Technology

Extracts specified bits from the lower 64 bits of the first operand (the destination XMM register). The
extracted bits are saved in the least-significant bit positions of the lower quadword of the destination;
the remaining bits in the lower quadword of the destination register are cleared to 0. The upper quad-
word of the destination register is undefined.
The portion of the source data being extracted is defined by the bit index and the field length. The bit
index defines the least-significant bit of the source operand being extracted. Bits [bit index + length
field – 1]:[bit index] are extracted. If the sum of the bit index + length field is greater than 64, the
results are undefined.
For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source [47:32] in bits 15:0, with zeros in bits 63:16.
A value of zero in the field length is defined as a length of 64. If the length field is 0 and the
bit index is 0, bits 63:0 of the source are extracted. For any other value of the bit index, the results are
undefined.
The bit index and field length can be specified as immediate values (second and first immediate oper-
ands, respectively, in the case of the three argument version of the instruction), or they can both be
specified by fields in an XMM source operand. In the latter case, bits [5:0] of the XMM register spec-
ify the number of bits to extract (the field length) and bits [13:8] of the XMM register specify the
index of the first bit in the field to extract. The bit index and field length are each six bits in length;
other bits of the field are ignored.
The diagram below illustrates the operation of this instruction.

EXTRQ Extract Field From Register

XMM1 XMM2

06364127 127

shift right

mask to field length

XMM1
second imm8

06364127 05

shift right

mask to field length

first imm8
05

13 8 5 0

7 7

[AMD Public Use]

140 EXTRQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Support

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Related Instructions
INSERTQ, PINSRW, PEXTRW

rFLAGS Affected
None

Exceptions

Form Subset Feature Flag
EXTRQ SSE4A CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Mnemonic Opcode Description

EXTRQ xmm1, imm8, imm8 66 0F 78 /0 ib ib

Extract field from xmm1, with the least significant bit
of the extracted data starting at the bit index
specified by [5:0] of the second immediate byte, with
the length specified by [5:0] of the first immediate
byte.

EXTRQ xmm1, xmm2 66 0F 79 /r
Extract field from xmm1, with the least significant bit
of the extracted data starting at the bit index
specified by xmm2[13:8], with the length specified
by xmm2[5:0].

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

[AMD Public Use]

Instruction Reference HADDPD, VHADDPD 141

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds adjacent pairs of double-precision floating-point values in two source operands and writes the
sums to a destination.
There are legacy and extended forms of the instruction:
HADDPD
Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination; adds the corresponding doublewords of the
second source XMM register or a 128-bit memory location and writes the sum to bits [127:64] of the
destination. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.
VHADDPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination XMM register; adds the corresponding dou-
blewords of the second source XMM register or a 128-bit memory location and writes the sum to bits
[127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the destination
are cleared.
YMM Encoding
Adds the packed double-precision values in bits [127:64] and bits [63:0] of the of the first source
YMM register and writes the sum to bits [63:0] of the destination YMM register; adds the corre-
sponding doublewords of the second source YMM register or a 256-bit memory location and writes
the sum to bits [127:64] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

HADDPD
VHADDPD

Horizontal Add
Packed Double-Precision Floating-Point

Form Subset Feature Flag
HADDPD SSE3 CPUID Fn0000_0001_ECX[SSE3] (bit 0)

VHADDPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
HADDPD xmm1, xmm2/mem128 66 0F 7C /r Adds adjacent pairs of double-precision values in xmm1

and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VHADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7C /r
VHADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7C /r

[AMD Public Use]

142 HADDPD, VHADDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)HADDPS, (V)HSUBPD, (V)HSUBPS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference HADDPS, VHADDPS 143

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds adjacent pairs of single-precision floating-point values in two source operands and writes the
sums to a destination.
There are legacy and extended forms of the instruction:
HADDPS
Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM regis-
ter and writes the sum to bits [31:0] of the destination; adds the packed single-precision values in bits
[127:96] and bits [95:64] of the first source register and writes the sum to bits [63:32] of the destina-
tion. Adds the corresponding values in the second source XMM register or a 128-bit memory location
and writes the sum to bits [95:64] and [127:96] of the destination. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VHADDPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM regis-
ter and writes the sum to bits [31:0] of the destination XMM register; adds the packed single-preci-
sion values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source XMM register or a
128-bit memory location and writes the sum to bits [95:64] and [127:96] of the destination. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source YMM regis-
ter and writes the sum to bits [31:0] of the destination YMM register; adds the packed single-preci-
sion values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source YMM register or a
256-bit memory location and writes the sums to bits [95:64] and [127:96] of the destination. Performs
the same process for the upper 128 bits of the sources and destination.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

HADDPS
VHADDPS

Horizontal Add
Packed Single-Precision

Form Subset Feature Flag
HADDPS SSE3 CPUID Fn0000_0001_ECX[SSE3] (bit 0)

VHADDPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

144 HADDPS, VHADDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)HADDPD, (V)HSUBPD, (V)HSUBPS

MXCSR Flags Affected

Mnemonic Opcode Description
HADDPS xmm1, xmm2/mem128 F2 0F 7C /r Adds adjacent pairs of single-precision values in xmm1

and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VHADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7C /r
VHADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7C /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

Instruction Reference HADDPS, VHADDPS 145

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

146 HSUBPD, VHSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Subtracts adjacent pairs of double-precision floating-point values in two source operands and writes
the sums to a destination.
There are legacy and extended forms of the instruction:
HSUBPD
The first source register is also the destination.
Subtracts the packed double-precision value in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination; subtracts the corre-
sponding values of the second source XMM register or a 128-bit memory location and writes the dif-
ference to bits [127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are not affected.
VHSUBPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination XMM register; sub-
tracts the corresponding values of the second source XMM register or a 128-bit memory location and
writes the difference to bits [127:64] of the destination. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.
YMM Encoding
Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the of
the first source YMM register and writes the difference to bits [63:0] of the destination YMM regis-
ter; subtracts the corresponding values of the second source YMM register or a 256-bit memory loca-
tion and writes the difference to bits [127:64] of the destination. Performs the same process for the
upper 128 bits of the sources and destination.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

HSUBPD
VHSUBPD

Horizontal Subtract
Packed Double-Precision

Form Subset Feature Flag
HSUBPD SSE3 CPUID Fn0000_0001_ECX[SSE3] (bit 0)

VHSUBPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference HSUBPD, VHSUBPD 147

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)HSUBPS, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected

Mnemonic Opcode Description
HSUBPD xmm1, xmm2/mem128 66 0F 7D /r Subtracts adjacent pairs of double-precision floating-

point values in xmm1 and xmm2 or mem128. Writes the
differences to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VHSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7D /r
VHSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7D /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

148 HSUBPD, VHSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference HSUBPS, VHSUBPS 149

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts adjacent pairs of single-precision floating-point values in two source operands and writes
the differences to a destination.
There are legacy and extended forms of the instruction:
HSUBPS
Subtracts the packed single-precision values in bits [63:32] from the values in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination; subtracts the packed
single-precision values in bits [127:96] from the value in bits [95:64] of the first source register and
writes the difference to bits [63:32] of the destination. Subtracts the corresponding values of the sec-
ond source XMM register or a 128-bit memory location and writes the differences to bits [95:64] and
[127:96] of the destination. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VHSUBPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination XMM register; sub-
tracts the packed single-precision values in bits [127:96] from the value bits [95:64] of the first source
register and writes the sum to bits [63:32] of the destination. Subtracts the corresponding values of the
second source XMM register or a 128-bit memory location and writes the differences to bits [95:64]
and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to the destina-
tion are cleared.
YMM Encoding
Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source YMM register and writes the difference to bits [31:0] of the destination YMM register; sub-
tracts the packed single-precision values in bits [127:96] from the value in bits [95:64] of the first
source register and writes the difference to bits [63:32] of the destination. Subtracts the corresponding
values of the second source YMM register or a 256-bit memory location and writes the differences to
bits [95:64] and [127:96] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

HSUBPS
VHSUBPS

Horizontal Subtract Packed Single

Form Subset Feature Flag
HSUBPS SSE3 CPUID Fn0000_0001_ECX[SSE3] (bit 0)

VHSUBPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

150 HSUBPS, VHSUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)HSUBPD, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected

Mnemonic Opcode Description
HSUBPS xmm1, xmm2/mem128 F2 0F 7D /r Subtracts adjacent pairs of values in xmm1 and xmm2

or mem128. Writes differences to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VHSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7D /r
VHSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7D /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

Instruction Reference HSUBPS, VHSUBPS 151

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

152 INSERTPS, VINSERTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies a selected single-precision floating-point value from a source operand to a selected location in
a destination register and optionally clears selected elements of the destination. The legacy and
extended forms of the instruction treat the remaining elements of the destination in different ways.
Selections are specified by three fields of an immediate 8-bit operand:

COUNT_S — The binary value of the field specifies a 32-bit element of a source register, counting
upward from the low-order doubleword. COUNT_S is used only for register source; when the source
is a memory operand, COUNT_S = 0.
COUNT_D — The binary value of the field specifies a 32-bit destination element, counting upward
from the low-order doubleword.
ZMASK — Set a bit to clear a 32-bit element of the destination.
There are legacy and extended forms of the instruction:
INSERTPS
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
When the source operand is a register, the instruction copies the 32-bit element of the source specified
by Count_S to the location in the destination specified by Count_D, and clears destination elements
as specified by ZMask. Elements of the destination that are not cleared are not affected.
When the source operand is a memory location, the instruction copies a 32-bit value from memory, to
the location in the destination specified by Count_D, and clears destination elements as specified by
ZMask. Elements of the destination that are not cleared are not affected.
VINSERTPS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
When the second source operand is a register, the instruction copies the 32-bit element of the source
specified by Count_S to the location in the destination specified by Count_D. The other elements of
the destination are either copied from the first source operand or cleared as specified by ZMask.
When the second source operand is a memory location, the instruction copies a 32-bit value from the
source to the location in the destination specified by Count_D. The other elements of the destination
are either copied from the first source operand or cleared as specified by ZMask.

Instruction Support

INSERTPS
VINSERTPS

Insert
Packed Single-Precision Floating-Point

7 6 5 4 3 2 1 0
COUNT_S COUNT_D ZMASK

Form Subset Feature Flag
INSERTPS SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VINSERTPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference INSERTPS, VINSERTPS 153

26568—Rev. 3.24—May 2020 AMD64 Technology

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)EXTRACTPS

Mnemonic Opcode Description
INSERTPS xmm1, xmm2/mem32, imm8 66 0F 3A 21 /r ib Insert a selected single-precision floating-

point value from xmm2 or from mem32 at a
selected location in xmm1 and clear
selected elements of xmm1. Selections
specified by imm8.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VINSERTPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 21 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

154 INSERTQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Inserts bits from the lower 64 bits of the source operand into the lower 64 bits of the destination oper-
and. No other bits in the lower 64 bits of the destination are modified. The upper 64 bits of the desti-
nation are undefined.
The least-significant l bits of the source operand are inserted into the destination, with the least-signif-
icant bit of the source operand inserted at bit position n, where l and n are defined as the field length
and bit index, respectively.
Bits (field length – 1):0 of the source operand are inserted into bits (bit index + field length – 1):(bit
index) of the destination. If the sum of the bit index + length field is greater than 64, the results are
undefined.
For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source operand[15:0] in bits 47:32. Bits 63:48 and bits 31:0 are not modified.
A value of zero in the field length is defined as a length of 64. If the length field is 0 and the bit index
is 0, bits 63:0 of the source operand are inserted. For any other value of the bit index, the results are
undefined.
The bits to insert are located in the XMM2 source operand. The bit index and field length can be spec-
ified as immediate values or can be specified in the XMM source operand. In the immediate form, the
bit index and the field length are specified by the fourth (second immediate byte) and third operands
(first immediate byte), respectively. In the register form, the bit index and field length are specified in
bits [77:72] and bits [69:64] of the source XMM register, respectively. The bit index and field length
are each six bits in length; other bits in the field are ignored.
The diagram below illustrates the operation of this instruction.

INSERTQ Insert Field

7

XMM1 XMM2

06364127 0127

XMM2
second

06364127 05

select number of bits to insert

select bit position for insert

first

05
imm8 imm8

06364127

XMM1

 69
 64 63

select bit position for insert

select number of bits to insert

77
 72

7

[AMD Public Use]

Instruction Reference INSERTQ 155

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Support

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Related Instructions
EXTRQ, PINSRW, PEXTRW

rFLAGS Affected
None

Exceptions

Form Subset Feature Flag
INSERTQ SSE4A CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Mnemonic Opcode Description

INSERTQ xmm1, xmm2, imm8,
imm8 F2 0F 78 /r ib ib

Insert field starting at bit 0 of xmm2 with the length
specified by [5:0] of the first immediate byte. This
field is inserted into xmm1 starting at the bit position
specified by [5:0] of the second immediate byte.

INSERTQ xmm1, xmm2 F2 0F 79 /r
Insert field starting at bit 0 of xmm2 with the length
specified by xmm2[69:64]. This field is inserted into
xmm1 starting at the bit position specified by
xmm2[77:72].

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

[AMD Public Use]

156 LDDQU, VLDDQU Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Loads unaligned double quadwords from a memory location to a destination register.
Like the (V)MOVUPD instructions, (V)LDDQU loads a 128-bit or 256-bit operand from an
unaligned memory location. However, to improve performance when the memory operand is actually
misaligned, (V)LDDQU may read an aligned 16 or 32 bytes to get the first part of the operand, and an
aligned 16 or 32 bytes to get the second part of the operand. This behavior is implementation-specific,
and (V)LDDQU may only read the exact 16 or 32 bytes needed for the memory operand. If the mem-
ory operand is in a memory range where reading extra bytes can cause performance or functional
issues, use (V)MOVUPD instead of (V)LDDQU.
Memory operands that are not aligned on 16-byte or 32-byte boundaries do not cause general-protec-
tion exceptions.
There are legacy and extended forms of the instruction:
LDDQU
The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are not
affected.
VLDDQU
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are cleared.
YMM Encoding
The source operand is an unaligned 256-bit memory location. The destination operand is a YMM reg-
ister.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

LDDQU
VLDDQU

Load
Unaligned Double Quadword

Form Subset Feature Flag
LDDQU SSE3 CPUID Fn0000_0001_ECX[SSE3] (bit 0)

VLDDQU AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
LDDQU xmm1, mem128 F2 0F F0 /r Loads a 128-bit value from an unaligned mem128 to

xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VLDDQU xmm1, mem128 C4 RXB.00001 X.1111.0.11 F0 /r
VLDDQU ymm1, mem256 C4 RXB.00001 X.1111.1.11 F0 /r

[AMD Public Use]

Instruction Reference LDDQU, VLDDQU 157

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)MOVDQU
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Alignment check, #AC S S X Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

158 LDMXCSR, VLDMXCSR Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Loads the MXCSR register with a 32-bit value from memory.
For both legacy LDMXCSR and extended VLDMXCSR forms of the instruction, the source operand
is a 32-bit memory location and the destination operand is the MXCSR.
If an MXCSR load clears a SIMD floating-point exception mask bit and sets the corresponding
exception flag bit, a SIMD floating-point exception is not generated immediately. An exception is
generated only when the next instruction that operates on an XMM or YMM register operand and
causes that particular SIMD floating-point exception to be reported executes.
A general protection exception occurs if the instruction attempts to load non-zero values into reserved
MXCSR bits. Software can use MXCSR_MASK to determine which bits are reserved. For details,
see “128-Bit, 64-Bit, and x87 Programming” in Volume 2.
The MXCSR register is described in “Registers” in Volume 1.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)STMXCSR

MXCSR Flags Affected

LDMXCSR
VLDMXCSR

Load
MXCSR Control/Status Register

Form Subset Feature Flag
LDMXCSR SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VLDMXCSR AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
LDMXCSR mem32 0F AE /2 Loads MXCSR register with 32-bit value from memory.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VLDMXCSR mem32 C4 RXB.00001 X.1111.0.00 AE /2

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M M M M M M M M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

Instruction Reference LDMXCSR, VLDMXCSR 159

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Null data segment used to reference memory.
S S X Attempt to load non-zero values into reserved MXCSR bits

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

160 MASKMOVDQU, VMASKMOVDQU Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves bytes from the first source operand to a memory location specified by the DS:rDI register.
Bytes are selected by mask bits in the second source operand. The memory location may be
unaligned.
The mask consists of the most significant bit of each byte of the second source register.
When a mask bit = 1, the corresponding byte of the first source register is written to the destination;
when a mask bit = 0, the corresponding byte is not written.
Exception and trap behavior for elements not selected for storage to memory is implementation
dependent. For instance, a given implementation may signal a data breakpoint or a page fault for
bytes that are zero-masked and not actually written.
The instruction implicitly uses weakly-ordered, write-combining buffering for the data, as described
in “Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple pro-
cessors, this instruction should be used together with a fence instruction in order to ensure data coher-
ency (see “Cache and TLB Management” in Volume 2).
There are legacy and extended forms of the instruction:
MASKMOVDQU
The first source operand is an XMM register and the second source operand is an XMM register. The
destination is a 128-bit memory location.
VMASKMOVDQU
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is an XMM register. The
destination is a 128-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MASKMOVPD, (V)MASKMOVPS

MASKMOVDQU
VMASKMOVDQU

Masked Move
Double Quadword Unaligned

Form Subset Feature Flag
MASKMOVDQU SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMASKMOVDQU AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MASKMOVDQU xmm1, xmm2 66 0F F7 /r Move bytes selected by a mask value in xmm2 from

xmm1 to the memory location specified by DS:rDI.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMASKMOVDQU xmm1, xmm2 C4 RXB.00001 X.1111.0.01 F7 /r

[AMD Public Use]

Instruction Reference MASKMOVDQU, VMASKMOVDQU 161

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

162 MAXPD, VMAXPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:
MAXPD
Compares two pairs of packed double-precision floating-point values.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VMAXPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
Compares four pairs of packed double-precision floating-point values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MAXPD
VMAXPD

Maximum
Packed Double-Precision Floating-Point

Form Subset Feature Flag
MAXPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMAXPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MAXPD, VMAXPD 163

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected

Mnemonic Opcode Description
MAXPD xmm1, xmm2/mem128 66 0F 5F /r Compares two pairs of packed double-precision values in

xmm1 and xmm2 or mem128 and writes the greater value
to the corresponding position in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMAXPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5F /r
VMAXPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5F /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

164 MAXPD, VMAXPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference MAXPS, VMAXPS 165

26568—Rev. 3.24—May 2020 AMD64 Technology

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:
MAXPS
Compares four pairs of packed single-precision floating-point values.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VMAXPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
Compares eight pairs of packed single-precision floating-point values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MAXPS
VMAXPS

Maximum
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MAXPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMAXPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

166 MAXPS, VMAXPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)MAXPD, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected

Mnemonic Opcode Description
MAXPS xmm1, xmm2/mem128 0F 5F /r Compares four pairs of packed single-precision values in

xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMAXPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5F /r
VMAXPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5F /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

Instruction Reference MAXPS, VMAXPS 167

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

168 MAXSD, VMAXSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 64 bits of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:
MAXSD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The first source register is also the destination. When the second source is
a 64-bit memory location, the upper 64 bits of the first source register are copied to the destination.
Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that corresponds
to the destination are not affected.
VMAXSD
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is an XMM register. When the second source is a 64-
bit memory location, the upper 64 bits of the first source register are copied to the destination. Bits
[127:64] of the destination are copied from bits [127:64] of the first source. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MAXSD
VMAXSD

Maximum
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
MAXSD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMAXSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MAXSD xmm1, xmm2/mem64 F2 0F 5F /r Compares a pair of scalar double-precision values in the

low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the greater value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMAXSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5F /r

[AMD Public Use]

Instruction Reference MAXSD, VMAXSD 169

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

170 MAXSS, VMAXSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 32 bits of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:
MAXSS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VMAXSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the destination
are copied from the first source operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MAXSS
VMAXSS

Maximum
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
MAXSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMAXSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MAXSS xmm1, xmm2/mem32 F3 0F 5F /r Compares a pair of scalar single-precision values in the

low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the greater value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMAXSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5F /r

[AMD Public Use]

Instruction Reference MAXSS, VMAXSS 171

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

172 MINPD, VMINPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:
MINPD
Compares two pairs of packed double-precision floating-point values.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VMINPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
Compares four pairs of packed double-precision floating-point values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MINPD
VMINPD

Minimum
Packed Double-Precision Floating-Point

Form Subset Feature Flag
MINPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMINPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MINPD, VMINPD 173

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected

Mnemonic Opcode Description
MINPD xmm1, xmm2/mem128 66 0F 5D /r Compares two pairs of packed double-precision values in

xmm1 and xmm2 or mem128 and writes the lesser value
to the corresponding position in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMINPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5D /r
VMINPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5D /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

174 MINPD, VMINPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference MINPS, VMINPS 175

26568—Rev. 3.24—May 2020 AMD64 Technology

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:
MINPS
Compares four pairs of packed single-precision floating-point values.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VMINPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
Compares eight pairs of packed single-precision floating-point values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MINPS
VMINPS

Minimum
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MINPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMINPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

176 MINPS, VMINPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINSD, (V)MINSS

MXCSR Flags Affected

Mnemonic Opcode Description
MINPS xmm1, xmm2/mem128 0F 5D /r Compares four pairs of packed single-precision values in

xmm1 and xmm2 or mem128 and writes the lesser values
to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMINPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5D /r
VMINPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5D /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

Instruction Reference MINPS, VMINPS 177

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

178 MINSD, VMINSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 64 bits of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:
MINSD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The first source register is also the destination. Bits [127:64] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VMINSD
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is an XMM register. Bits [127:64] of the destination
are copied from the first source operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSS

MINSD
VMINSD

Minimum
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
MINSD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMINSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MINSD xmm1, xmm2/mem64 F2 0F 5D /r Compares a pair of scalar double-precision values in the

low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the lesser value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMINSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5D /r

[AMD Public Use]

Instruction Reference MINSD, VMINSD 179

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

180 MINSS, VMINSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 32 bits of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:
MINSS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the destina-
tion are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VMINSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the destination
are copied from the first source operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD

MINSS
VMINSS

Minimum
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
MINSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMINSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MINSS xmm1, xmm2/mem32 F3 0F 5D /r Compares a pair of scalar single-precision values in the

low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the lesser value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMINSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5D /r

[AMD Public Use]

Instruction Reference MINSS, VMINSS 181

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

182 MOVAPD, VMOVAPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves packed double-precision floating-point values. Values can be moved from a register or mem-
ory location to a register; or from a register to a register or memory location.
A memory operand that is not aligned causes a general-protection exception.
There are legacy and extended forms of the instruction:
MOVAPD
Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVAPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves two double-precision floating-point values. There are encodings for each type of move:
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves four double-precision floating-point values. There are encodings for each type of move:
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.
• The source operand is a YMM register. The destination operand is either a YMM register or a

256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVAPD
VMOVAPD

Move Aligned
Packed Double-Precision Floating-Point

Form Subset Feature Flag
MOVAPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVAPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVAPD, VMOVAPD 183

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Mnemonic Opcode Description
MOVAPD xmm1, xmm2/mem128 66 0F 28 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm1.
MOVAPD xmm1/mem128, xmm2 66 0F 29 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm2.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVAPD xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 28 /r
VMOVAPD xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 29 /r
VMOVAPD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 28 /r
VMOVAPD ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.01 29 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on a 16-byte boundary.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

184 MOVAPS, VMOVAPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.
A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:
MOVAPS
Moves four single-precision floating-point values.
There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVAPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves four single-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves eight single-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.
• The source operand is a YMM register. The destination operand is either a YMM register or a

256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVAPS
VMOVAPS

Move Aligned
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MOVAPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVAPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVAPS, VMOVAPS 185

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Mnemonic Opcode Description
MOVAPS xmm1, xmm2/mem128 0F 28 /r Moves four packed single-precision floating-point

values from xmm2 or mem128 to xmm1.
MOVAPS xmm1/mem128, xmm2 0F 29 /r Moves four packed single-precision floating-point

values from xmm1 or mem128 to xmm2.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVAPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 28 /r
VMOVAPS xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.00 29 /r
VMOVAPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 28 /r
VMOVAPS ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.00 29 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on a 16-byte boundary.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

186 MOVD, VMOVD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves 32-bit and 64-bit values. A value can be moved from a general-purpose register or memory
location to the corresponding low-order bits of an XMM register, with zero-extension to 128 bits; or
from the low-order bits of an XMM register to a general-purpose register or memory location.
The quadword form of this instruction is distinct from the differently-encoded (V)MOVQ instruction.
There are legacy and extended forms of the instruction:
MOVD
There are two encodings for 32-bit moves, characterized by REX.W = 0.
• The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The

destination is an XMM register. The 32-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either a 32-bit general-purpose register

or a 32-bit memory location.
There are two encodings for 64-bit moves, characterized by REX.W = 1.
• The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The

destination is an XMM register. The 64-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either a 64-bit general-purpose register

or a 64-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVD
The extended form of the instruction has four 128-bit encodings:
There are two encodings for 32-bit moves, characterized by VEX.W = 0.
• The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The

destination is an XMM register. The 32-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either a 32-bit general-purpose register

or a 32-bit memory location.
There are two encodings for 64-bit moves, characterized by VEX.W = 1.
• The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The

destination is an XMM register. The 64-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either a 64-bit general-purpose register

or a 64-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

MOVD
VMOVD

Move
Doubleword or Quadword

Form Subset Feature Flag
MOVD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVD, VMOVD 187

26568—Rev. 3.24—May 2020 AMD64 Technology

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MOVDQA, (V)MOVDQU, (V)MOVQ

Mnemonic Opcode Description
MOVD xmm, reg32/mem32 66 (W0) 0F 6E /r Move a 32-bit value from reg32/mem32 to xmm.
MOVD xmm, reg64/mem64 66 (W1) 0F 6E /r Move a 64-bit value from reg64/mem64 to xmm.
MOVD reg32/mem32, xmm 66 (W0) 0F 7E /r Move a 32-bit value from xmm to reg32/mem32
MOVD reg64/mem64, xmm 66 (W1) 0F 7E /r Move a 64-bit value from xmm to reg64/mem64.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVD1 xmm, reg32/mem32 C4 RXB.00001 0.1111.0.01 6E /r

VMOVQ xmm, reg64/mem64 C4 RXB.00001 1.1111.0.01 6E /r

VMOVD1 reg32/mem32, xmm C4 RXB.00001 0.1111.0.01 7E /r

VMOVQ reg64/mem64, xmm C4 RXB.00001 1.1111.0.01 7E /r
Note: 1. Also known as MOVQ in some developer tools.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

188 MOVDDUP, VMOVDDUP Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves and duplicates double-precision floating-point values.
There are legacy and extended forms of the instruction:
MOVDDUP
Moves and duplicates one quadword value.
The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are not affected.
VMOVDDUP
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves and duplicates one quadword value.
The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
Moves and duplicates two even-indexed quadword values.
The source operand is either a YMM register or the address of the least-significant byte of 256 bits of
data in memory. The destination is a YMM register.Bits [63:0] of the source are written to bits
[127:64] and [63:0] of the destination; bits [191:128] of the source are written to bits [255:192] and
[191:128] of the destination.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MOVDDUP
VMOVDDUP

Move and Duplicate
Double-Precision Floating-Point

Form Subset Feature Flag
MOVDDUP SSE3 CPUID Fn0000_0001_ECX[SSE3] (bit 0)

VMOVDDUP AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVDDUP xmm1, xmm2/mem64 F2 0F 12 /r Moves two copies of the low 64 bits of xmm2 or

mem64 to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
MOVDDUP xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.11 12 /r
MOVDDUP ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.11 12 /r

[AMD Public Use]

Instruction Reference MOVDDUP, VMOVDDUP 189

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)MOVSHDUP, (V)MOVSLDUP
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

190 MOVDQA, VMOVDQA Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves aligned packed integer values. Values can be moved from a register or a memory location to a
register, or from a register to a register or a memory location.
A memory operand that is not aligned causes a general-protection exception.
There are legacy and extended forms of the instruction:
MOVDQA
Moves two aligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either an XMM register or a 128-bit

memory location.
• The source operand is either an XMM register or a 128-bit memory location. The destination is an

XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVDQA
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves two aligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either an XMM register or a 128-bit

memory location.
• The source operand is either an XMM register or a 128-bit memory location. The destination is an

XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves four aligned quadwords (256-bit move). There are two encodings.
• The source operand is a YMM register. The destination is either a YMM register or a 256-bit

memory location.
• The source operand is either a YMM register or a 256-bit memory location. The destination is a

YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVDQA
VMOVDQA

Move Aligned
Double Quadword

Form Subset Feature Flag
MOVDQA SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVDQA AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVDQA, VMOVDQA 191

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVD, (V)MOVDQU, (V)MOVQ

Mnemonic Opcode Description
MOVDQA xmm1, xmm2/mem128 66 0F 6F /r Moves aligned packed integer values from xmm2

ormem128 to xmm1.
MOVDQA xmm1/mem128, xmm2 66 0F 7F /r Moves aligned packed integer values from xmm1 or

mem128 to xmm2.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVDQA xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 6F /r
VMOVDQA xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 6F /r
VMOVDQA ymm1, xmm2/mem256 C4 RXB.00001 X.1111.1.01 7F /r
VMOVDQA ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.01 7F /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on a 16-byte boundary.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

192 MOVDQU, VMOVDQU Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves unaligned packed integer values. Values can be moved from a register or a memory location to
a register, or from a register to a register or a memory location.
There are legacy and extended forms of the instruction:
MOVDQU
Moves two unaligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either an XMM register or a 128-bit

memory location.
• The source operand is either an XMM register or a 128-bit memory location. The destination is an

XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVDQU
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves two unaligned quadwords (128-bit move). There are two encodings:
• The source operand is an XMM register. The destination is either an XMM register or a 128-bit

memory location.
• The source operand is either an XMM register or a 128-bit memory location. The destination is an

XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves four unaligned quadwords (256-bit move). There are two encodings:
• The source operand is a YMM register. The destination is either a YMM register or a 256-bit

memory location.
• The source operand is either a YMM register or a 256-bit memory location. The destination is a

YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVDQU
VMOVDQU

Move
Unaligned Double Quadword

Form Subset Feature Flag
MOVDQU SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVDQU AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVDQU, VMOVDQU 193

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVD, (V)MOVDQA, (V)MOVQ

Mnemonic Opcode Description
MOVDQU xmm1, xmm2/mem128 F3 0F 6F /r Moves unaligned packed integer values from xmm2 or

mem128 to xmm1.
MOVDQU xmm1/mem128, xmm2 F3 0F 7F /r Moves unaligned packed integer values from xmm1 or

mem128 to xmm2.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVDQU xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 6F /r
VMOVDQU xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.10 6F /r
VMOVDQU ymm1, xmm2/mem256 C4 RXB.00001 X.1111.1.10 7F /r
VMOVDQU ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.10 7F /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Alignment check, #AC S S X Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

194 MOVHLPS, VMOVHLPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves two packed single-precision floating-point values from the high quadword of an XMM regis-
ter to the low quadword of an XMM register.
There are legacy and extended forms of the instruction:
MOVHLPS
The source operand is bits [127:64] of an XMM register. The destination is bits [63:0] of an XMM
register. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that cor-
responds to the destination are not affected.
VMOVHLPS
The extended form of the instruction has a 128-bit encoding only.
The source operands are bits [127:64] of two XMM registers. The destination is a third XMM regis-
ter. Bits [127:64] of the first source are moved to bits [127:64] of the destination; bits [127:64] of the
second source are moved to bits [63:0] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MOVAPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

MOVHLPS
VMOVHLPS

Move High to Low
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MOVHLPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVHLPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVHLPS xmm1, xmm2 0F 12 /r Moves two packed single-precision floating-point

values from xmm2[127:64] to xmm1[63:0].
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVHLPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 12 /r

[AMD Public Use]

Instruction Reference MOVHLPS, VMOVHLPS 195

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

196 MOVHPD, VMOVHPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.
There are legacy and extended forms of the instruction:
MOVHPD
There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM

register.
• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory

location.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVHPD
The extended form of the instruction has two 128-bit encodings:
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVHPD
VMOVHPD

Move High
Packed Double-Precision Floating-Point

Form Subset Feature Flag
MOVHPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVHPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVHPD, VMOVHPD 197

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVAPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Mnemonic Opcode Description
MOVHPD xmm1, mem64 66 0F 16 /r Moves a packed double-precision floating-point value from

mem64 to xmm1[127:64].
MOVHPD mem64, xmm1 66 0F 17 /r Moves a packed double-precision floating-point value from

xmm1[127:64] to mem64.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVHPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 16 /r
VMOVHPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 17 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

198 MOVHPS, VMOVHPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves two packed single-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.
There are legacy and extended forms of the instruction:
MOVHPS
There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM

register.
• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory

location.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVHPS
The extended form of the instruction has two 128-bit encodings:
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVHPS
VMOVHPS

Move High
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MOVHPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVHPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVHPS, VMOVHPS 199

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVAPS, (V)MOVHLPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Mnemonic Opcode Description
MOVHPS xmm1, mem64 0F 16 /r Moves two packed double-precision floating-point value from

mem64 to xmm1[127:64].
MOVHPS mem64, xmm1 0F 17 /r Moves two packed double-precision floating-point value from

xmm1[127:64] to mem64.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVHPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 16 /r
VMOVHPS mem64, xmm1 C4 RXB.00001 X.1111.0.00 17 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

200 MOVLHPS, VMOVLHPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves two packed single-precision floating-point values from the low quadword of an XMM register
to the high quadword of a second XMM register.
There are legacy and extended forms of the instruction:
MOVLHPS
The source operand is bits [63:0] of an XMM register. The destination is bits [127:64] of an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVLHPS
The extended form of the instruction has a 128-bit encoding only.
The source operands are bits [63:0] of two XMM registers. The destination is a third XMM register.
Bits [63:0] of the first source are moved to bits [63:0] of the destination; bits [63:0] of the second
source are moved to bits [127:64] of the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

MOVLHPS
VMOVLHPS

Move Low to High
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MOVLHPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVLHPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVLHPS xmm1, xmm2 0F 16 /r Moves two packed single-precision floating-point

values from xmm2[63:0] to xmm1[127:64].
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVLHPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 16 /r

[AMD Public Use]

Instruction Reference MOVLHPS, VMOVLHPS 201

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

202 MOVLPD, VMOVLPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.
There are legacy and extended forms of the instruction:
MOVLPD
There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

VMOVLPD
The extended form of the instruction has two 128-bit encodings.
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MOVLPD
VMOVLPD

Move Low
Packed Double-Precision Floating-Point

Form Subset Feature Flag
MOVLPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVLPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVLPD xmm1, mem64 66 0F 12 /r Moves a packed double-precision floating-point value from

mem64 to xmm1[63:0].
MOVLPD mem64, xmm1 66 0F 13 /r Moves a packed double-precision floating-point value from

xmm1[63:0] to mem64.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVLPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 12 /r
VMOVLPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 13 /r

[AMD Public Use]

Instruction Reference MOVLPD, VMOVLPD 203

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)MOVAPD, (V)MOVHPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

204 MOVLPS, VMOVLPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves two packed single-precision floating-point values. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.
There are legacy and extended forms of the instruction:
MOVLPS
There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.
VMOVLPS
The extended form of the instruction has two 128-bit encodings.
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MOVLPS
VMOVLPS

Move Low Packed Single-Precision
Floating-Point

Form Subset Feature Flag
MOVLPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVLPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVLPS xmm1, mem64 0F 12 /r Moves two packed single-precision floating-point value from

mem64 to xmm1[63:0].
MOVLPS mem64, xmm1 0F 13 /r Moves two packed single-precision floating-point value from

xmm1[63:0] to mem64.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVLPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 12 /r
VMOVLPS mem64, xmm1 C4 RXB.00001 X.1111.0.00 13 /r

[AMD Public Use]

Instruction Reference MOVLPS, VMOVLPS 205

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

206 MOVMSKPD, VMOVMSKPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts the sign bits of packed double-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.
There are legacy and extended forms of the instruction:
MOVMSKPD
Extracts two mask bits.
The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the source are not affected.
MOVMSKPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Extracts two mask bits.
The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Extracts four mask bits.
The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MOVMSKPD
VMOVMSKPD

Extract Sign Mask
Packed Double-Precision Floating-Point

Form Subset Feature Flag
MOVMSKPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVMSKPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVMSKPD reg, xmm 66 0F 50 /r Move zero-extended sign bits of packed double-precision

values from xmm to a general-purpose register.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVMSKPD reg, xmm C4 RXB.00001 X.1111.0.01 50 /r
VMOVMSKPD reg, ymm C4 RXB.00001 X.1111.1.01 50 /r

[AMD Public Use]

Instruction Reference MOVMSKPD, VMOVMSKPD 207

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)MOVMSKPS, (V)PMOVMSKB
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

208 MOVMSKPS, VMOVMSKPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts the sign bits of packed single-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.
There are legacy and extended forms of the instruction:
MOVMSKPS
Extracts four mask bits.
The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.
MOVMSKPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Extracts four mask bits.
The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.
YMM Encoding
Extracts eight mask bits.
The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [7:0] of the destination and clears the remaining
bits.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MOVMSKPS
VMOVMSKPS

Extract Sign Mask
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MOVMSKPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVMSKPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVMSKPS reg, xmm 0F 50 /r Move zero-extended sign bits of packed single-precision

values from xmm to a general-purpose register.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVMSKPS reg, xmm C4 RXB.00001 X.1111.0.00 50 /r
VMOVMSKPS reg, ymm C4 RXB.00001 X.1111.1.00 50 /r

[AMD Public Use]

Instruction Reference MOVMSKPS, VMOVMSKPS 209

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)MOVMSKPD, (V)PMOVMSKB
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

210 MOVNTDQ, VMOVNTDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves double quadword values from a register to a memory location.
Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For
further information, see “Memory Optimization” in Volume 1.
The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.
An attempted store to a non-aligned memory location results in a #GP exception.
There are legacy and extended forms of the instruction:
MOVNTDQ
Moves one 128-bit value.
The source operand is an XMM register. The destination is a 128-bit memory location.
VMOVNTDQ
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves one 128-bit value.
The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding
Moves two 128-bit values.
The source operand is a YMM register. The destination is a 256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MOVNTDQ
VMOVNTDQ

Move Non-Temporal
Double Quadword

Form Subset Feature Flag
MOVNTDQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVNTDQ AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVNTDQ mem128, xmm 66 0F E7 /r Moves a 128-bit value from xmm to mem128, minimizing

cache pollution.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTDQ mem128, xmm C4 RXB.00001 X.1111.0.01 E7 /r
VMOVNTDQ mem256, ymm C4 RXB.00001 X.1111.1.01 E7 /r

[AMD Public Use]

Instruction Reference MOVNTDQ, VMOVNTDQ 211

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on a 16-byte boundary.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

212 MOVNTDQA, VMOVNTDQA Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Loads an XMM/YMM register from a naturally-aligned 128-bit or 256-bit memory location.
Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the load as a write-combining (WC) memory read, which minimizes cache pollution.
The method of minimization depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in Volume 1.
The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an MFENCE instruction to force strong memory ordering of MOVNTDQA with respect
to other reads.
An attempted load from a non-aligned memory location results in a #GP exception.
There are legacy and extended forms of the instruction:
MOVNTDQA
Loads a 128-bit value into the specified XMM register from a 16-byte aligned memory location.
VMOVNTDQA
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Loads a 128-bit value into the specified XMM register from a 16-byte aligned memory location.
YMM Encoding
Loads a 256-bit value into the specified YMM register from a 32-byte aligned memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MOVNTDQ, (V)MOVNTPD, (V)MOVNTPS

MOVNTDQA
VMOVNTDQA

Move Non-Temporal
Double Quadword Aligned

Form Subset Feature Flag
MOVNTDQA SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VMOVNTDQA 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VMOVNTDQA 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
MOVNTDQA xmm, mem128 66 0F 38 2A /r Loads xmm from an aligned memory location, minimizing

cache pollution.
Encoding

Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTDQA xmm, mem128 C4 RXB.02 X.1111.0.01 2A /r
VMOVNTDQA ymm, mem256 C4 RXB.02 X.1111.1.01 2A /r

[AMD Public Use]

Instruction Reference MOVNTDQA, VMOVNTDQA 213

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions
Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on a 16-byte boundary.
S S X Write to a read-only data segment.

A 256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

214 MOVNTPD, VMOVNTPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves packed double-precision floating-point values from a register to a memory location.
Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For
further information, see “Memory Optimization” in Volume 1.
The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.
An attempted store to a non-aligned memory location results in a #GP exception.
There are legacy and extended forms of the instruction:
MOVNTPD
Moves two values.
The source operand is an XMM register. The destination is a 128-bit memory location.
MOVNTPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves two values.
The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding
Moves four values.
The source operand is a YMM register. The destination is a 256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MOVNTPD
VMOVNTPD

Move Non-Temporal
Packed Double-Precision Floating-Point

Form Subset Feature Flag
MOVNTPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVNTPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVNTPD mem128, xmm 66 0F 2B /r Moves two packed double-precision floating-point values

from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTPD mem128, xmm C4 RXB.00001 X.1111.0.01 2B /r
VMOVNTPD mem256, ymm C4 RXB.00001 X.1111.1.01 2B /r

[AMD Public Use]

Instruction Reference MOVNTPD, VMOVNTPD 215

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
MOVNTDQ, MOVNTI, MOVNTPS, MOVNTQ

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on a 16-byte boundary.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

216 MOVNTPS, VMOVNTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves packed single-precision floating-point values from a register to a memory location.
Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For
further information, see “Memory Optimization” in Volume 1.
The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.
An attempted store to a non-aligned memory location results in a #GP exception.
There are legacy and extended forms of the instruction:
MOVNTPS
Moves four values.
The source operand is an XMM register. The destination is a 128-bit memory location.
MOVNTPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves four values.
The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding
Moves eight values.
The source operand is a YMM register. The destination is a 256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MOVNTPS
VMOVNTPS

Move Non-Temporal
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MOVNTPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVNTPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MOVNTPS mem128, xmm 0F 2B /r Moves four packed double-precision floating-point values

from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTPS mem128, xmm C4 RXB.00001 X.1111.0.00 2B /r
VMOVNTPS mem256, ymm C4 RXB.00001 X.1111.1.00 2B /r

[AMD Public Use]

Instruction Reference MOVNTPS, VMOVNTPS 217

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTQ

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on a 16-byte boundary.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

218 MOVNTSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Stores one double-precision floating-point value from an XMM register to a 64-bit memory location.
This instruction indicates to the processor that the data is non-temporal, and is unlikely to be used
again soon. The processor treats the store as a write-combining memory write, which minimizes cache
pollution.

The diagram below illustrates the operation of this instruction:

Instruction Support

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Related Instructions
MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS, MOVNTQ, MOVNTSS

rFLAGS Affected
None

MOVNTSD Move Non-Temporal Scalar
Double-Precision Floating-Point

Form Subset Feature Flag
MOVNTSD SSE4A CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Mnemonic Opcode Description

MOVNTSD mem64, xmm F2 0F 2B /r
Stores one double-precision floating-point XMM
register value into a 64 bit memory location. Treat as
a non-temporal store.

mem64

XMM register

copy

063 06364127

[AMD Public Use]

Instruction Reference MOVNTSD 219

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE4A instructions are not supported, as
indicated by CPUID Fn8000_0001_ECX[SSE4A] = 0.

X X X The emulate bit (CR0.EM) was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.OSFXSR) was cleared to 0.

Device not available,
#NM X X X The task-switch bit (CR0.TS) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from executing the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

220 MOVNTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Stores one single-precision floating-point value from an XMM register to a 32-bit memory location.
This instruction indicates to the processor that the data is non-temporal, and is unlikely to be used
again soon. The processor treats the store as a write-combining memory write, which minimizes cache
pollution.

The diagram below illustrates the operation of this instruction:

Instruction Support

Software must check the CPUID bit once per program or library initialization before using the
instruction, or inconsistent behavior may result. For more on using the CPUID instruction to obtain
processor feature support information, see Appendix E of Volume 3.

Instruction Encoding

Related Instructions
MOVNTDQ, MOVNTI, MOVNTOPD, MOVNTPS, MOVNTQ, MOVNTSD

rFLAGS Affected
None

MOVNTSS Move Non-Temporal Scalar
Single-Precision Floating-Point

Form Subset Feature Flag
MOVNTSS SSE4A CPUID Fn8000_0001_ECX[SSE4A] (bit 6)

Mnemonic Opcode Description

MOVNTSS mem32, xmm F3 0F 2B /r
Stores one single-precision floating-point XMM
register value into a 32-bit memory location. Treat as
a non-temporal store.

mem32

XMM register

copy

0 03112731

[AMD Public Use]

Instruction Reference MOVNTSS 221

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE4A instructions are not supported, as
indicated by CPUID Fn8000_0001_ECX[SSE4A] = 0.

X X X The emulate bit (CR0.EM) was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.OSFXSR) was cleared to 0.

Device not available,
#NM X X X The task-switch bit (CR0.TS) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from executing the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

222 MOVQ, VMOVQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves 64-bit values. The source is either the low-order quadword of an XMM register or a 64-bit
memory location. The destination is either the low-order quadword of an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.
There are legacy and extended forms of the instruction:
MOVQ
There are two encodings:
• The source operand is either an XMM register or a 64-bit memory location. The destination is an

XMM register. The 64-bit value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either an XMM register or a 64-bit

memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVQ
The extended form of the instruction has three 128-bit encodings:
• The source operand is an XMM register. The destination is an XMM register. The 64-bit value is

zero-extended to 128 bits.
• The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit

value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either an XMM register or a 64-bit

memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVQ
VMOVQ

Move
Quadword

Form Subset Feature Flag
MOVQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVQ AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVQ, VMOVQ 223

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVD, (V)MOVDQA, (V)MOVDQU

Mnemonic Opcode Description
MOVQ xmm1, xmm2/mem64 F3 0F 7E /r Move a zero-extended 64-bit value from xmm2 or mem64

to xmm1.
MOVQ xmm1/mem64, xmm2 66 0F D6 /r Move a 64-bit value from xmm2 to xmm1 or mem64.

Zero-extends for register destination.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVQ xmm1, xmm2 C4 RXB.00001 X.1111.0.10 7E /r
VMOVQ xmm1, mem64 C4 RXB.00001 X.1111.0.10 7E /r
VMOVQ xmm1/mem64, xmm2 C4 RXB.00001 X.1111.0.01 D6 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

224 MOVSD, VMOVSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves scalar double-precision floating point values. The source is either a low-order quadword of an
XMM register or a 64-bit memory location. The destination is either a low-order quadword of an
XMM register or a 64-bit memory location.
There are legacy and extended forms of the instruction:
MOVSD
There are two encodings.
• The source operand is either an XMM register or a 64-bit memory location. The destination is an

XMM register. If the source operand is a register, bits [127:64] of the destination are not affected.
If the source operand is a 64-bit memory location, the upper 64 bits of the destination are cleared.

• The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, bits [127:64] of the destination are not
affected.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVSD
The extended form of the instruction has four 128-bit encodings. Two of the encodings are function-
ally equivalent.
• The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit

value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is a 64-bit memory location.
• Two functionally-equivalent encodings:

There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 64-bit value in bits [63:0] of the
second source register is written to bits [63:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
This instruction must not be confused with the MOVSD (move string doubleword) instruction of the
general-purpose instruction set. Assemblers can distinguish the instructions by the number and type
of operands.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVSD
VMOVSD

Move
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
MOVSD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVSD, VMOVSD 225

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVUPD

Mnemonic Opcode Description
MOVSD xmm1, xmm2/mem64 F2 0F 10 /r Moves a 64-bit value from xmm2 or mem64 to xmm1. Zero

extends to 128 bits when source operand is memory.
MOVSD xmm1/mem64, xmm2 F2 0F 11 /r Moves a 64-bit value from xmm2 to xmm1 or mem64.

Encoding 1

Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVSD xmm1, mem64 C4 RXB.00001 X.1111.X.11 10 /r
VMOVSD mem64, xmm1 C4 RXB.00001 X.1111.X.11 11 /r

VMOVSD xmm1, xmm2, xmm3 2 C4 RXB.00001 X.src.X.11 10 /r

VMOVSD xmm1, xmm2, xmm3 2 C4 RXB.00001 X.src.X.11 11 /r
Note 1: The addressing mode differentiates between the two operand form (where one operand is a memory location) and

the three operand form (where all operands are held in registers).
Note 2: These two encodings are functionally equivalent.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination enoding only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

226 MOVSHDUP, VMOVSHDUP Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves and duplicates odd-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:
MOVSHDUP
Moves and duplicates two odd-indexed single-precision floating-point values.
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the des-
tination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVSHDUP
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves and duplicates two odd-indexed single-precision floating-point values.
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the des-
tination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves and duplicates four odd-indexed single-precision floating-point values.
The source operand is a YMM register or a 256-bit memory location. The destination is a YMM reg-
ister. Bits [255:224] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [191:160] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of
the destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVSHDUP
VMOVSHDUP

Move High and Duplicate
Single-Precision

Form Subset Feature Flag
MOVSHDUP SSE3 CPUID Fn0000_0001_ECX[SSE3] (bit 0)

VMOVSHDUP AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVSHDUP, VMOVSHDUP 227

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVDDUP, (V)MOVSLDUP

Mnemonic Opcode Description
MOVSHDUP xmm1, xmm2/mem128 F3 0F 16 /r Moves and duplicates two odd-indexed single-

precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVSHDUP xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 16 /r
VMOVSHDUP ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 16 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

228 MOVSLDUP, VMOVSLDUP Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves and duplicates even-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:
MOVSLDUP
Moves and duplicates two even-indexed single-precision floating-point values.
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the desti-
nation. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVSLDUP
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves and duplicates two even-indexed single-precision floating-point values.
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the desti-
nation. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves and duplicates four even-indexed single-precision floating-point values.
The source operand is a YMM register or a 256-bit memory location. The destination is a YMM reg-
ister. Bits [223:192] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [159:128] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of
the destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVSLDUP
VMOVSLDUP

Move Low and Duplicate
Single-Precision

Form Subset Feature Flag
MOVSLDUP SSE3 CPUID Fn0000_0001_ECX[SSE3] (bit 0)

VMOVSLDUP AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVSLDUP, VMOVSLDUP 229

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVDDUP, (V)MOVSHDUP

Mnemonic Opcode Description
MOVSLDUP xmm1, xmm2/mem128 F3 0F 12 /r Moves and duplicates two even-indexed single-

precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVSLDUP xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 12 /r
VMOVSLDUP ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 12 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

230 MOVSS, VMOVSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves scalar single-precision floating point values. The source is either a low-order doubleword of
an XMM register or a 32-bit memory location. The destination is either a low-order doubleword of an
XMM register or a 32-bit memory location.
There are legacy and extended forms of the instruction:
MOVSS
There are three encodings.
• The source operand is an XMM register. The destination is an XMM register. Bits [127:32] of the

destination are not affected.
• The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit

value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is either an XMM register or a 32-bit

memory location. When the destination is a register, bits [127:32] of the destination are not
affected.

Bits [255:128] of the YMM register that corresponds to the source are not affected.
VMOVSS
The extended form of the instruction has four 128-bit encodings. Two of the encodings are function-
ally equivalent.
• The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit

value is zero-extended to 128 bits.
• The source operand is an XMM register. The destination is a 32-bit memory location.
• Two functionally-equivalent encodings:

There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 32-bit value in bits [31:0] of the
second source register is written to bits [31:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVSS
VMOVSS

Move
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
MOVSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVSS, VMOVSS 231

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,
(V)MOVUPS

Mnemonic Opcode Description
MOVSS xmm1, xmm2 F3 0F 10 /r Moves a 32-bit value from xmm2 to xmm1.
MOVSS xmm1, mem32 F3 0F 10 /r Moves a zero-extended 32-bit value from mem32 to xmm1.
MOVSS xmm2/mem32, xmm1 F3 0F 11 /r Moves a 32-bit value from xmm1 to xmm2 or mem32.
Mnemonic Encoding1

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVSS xmm1, mem32 C4 RXB.00001 X.1111.X.10 10 /r
VMOVSS mem32, xmm1 C4 RXB.00001 X.1111.X.10 11 /r

VMOVSS xmm1, xmm2, xmm3 2 C4 RXB.00001 X.src.X.10 10 /r

VMOVSS xmm1, xmm2, xmm3 2 C4 RXB.00001 X.src.X.10 11 /r
Note 1: The addressing mode differentiates between the two operand form (where one operand is a memory location) and

the three operand form (where all operands are held in registers).
Note 2: These two encodings are functionally equivalent.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination enoding only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

232 MOVUPD, VMOVUPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves packed double-precision floating-point values. Values can be moved from a register or mem-
ory location to a register; or from a register to a register or memory location.
A memory operand that is not aligned does not cause a general-protection exception.
There are legacy and extended forms of the instruction:
MOVUPD
Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVUPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves four double-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.
• The source operand is a YMM register. The destination operand is either a YMM register or a

256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVUPD
VMOVUPD

Move Unaligned
Packed Double-Precision Floating-Point

Form Subset Feature Flag
MOVUPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMOVUPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVUPD, VMOVUPD 233

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD

Mnemonic Opcode Description
MOVUPD xmm1, xmm2/mem128 66 0F 10 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm1.
MOVUPD xmm1/mem128, xmm2 66 0F 11 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm2.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVUPD xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 10 /r
VMOVUPD xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 11 /r
VMOVUPD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 10 /r
VMOVUPD ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.01 11 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Alignment check, #AC S S X Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

234 MOVUPS, VMOVUPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.
A memory operand that is not aligned does not cause a general-protection exception.

There are legacy and extended forms of the instruction:
MOVUPS
Moves four single-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVUPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves four single-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.
• The source operand is an XMM register. The destination operand is either an XMM register or a

128-bit memory location.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves eight single-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.
• The source operand is a YMM register. The destination operand is either a YMM register or a

256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

MOVUPS
VMOVUPS

Move Unaligned
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MOVUPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMOVUPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference MOVUPS, VMOVUPS 235

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,
(V)MOVSS

Mnemonic Opcode Description
MOVUPS xmm1, xmm2/mem128 0F 10 /r Moves four packed single-precision floating-point

values from xmm2 or unaligned mem128 to xmm1.
MOVUPS xmm1/mem128, xmm2 0F 11 /r Moves four packed single-precision floating-point

values from xmm1 or unaligned mem128 to xmm2.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVUPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 10 /r
VMOVUPS xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.00 11 /r
VMOVUPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 10 /r
VMOVUPS ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.00 11 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Alignment check, #AC S S X Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

236 MPSADBW, VMPSADBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Calculates 8 or 16 sums of absolute differences of sequentially selected groups of four contiguous
unsigned byte integers in the first source operand and a selected group of four contiguous unsigned
byte integers in a second source operand and writes the eight or sixteen 16-bit unsigned integer sums
to sequential words of the destination register. The 256-bit form of the instruction additionally per-
forms a similar but independent calculation using the upper 128 bits of the source operands.
Figure 2-2 on page 238 provides a graphical representation of the operation of the instruction. The
following description accompanies it.
The computation uses as inputs 11 bytes from the first source operand and 4 bytes in the second
source operand. Bit fields in the imm8 operand specify the index of the right-most byte of each group.
Bits [1:0] of the immediate operand determine the index of the right-most byte of four contiguous
bytes within the second source operand used in the operation that produces the result (or, in the case
of the 256-bit form of the instruction, the lower 128 bits of the result). Bit 2 of the immediate operand
determines the right-most index of the 11contiguous bytes in the first source operand used in the same
calculation. In the 128-bit form of the instruction, bits [7:3] of the immediate operand are ignored.
Bits [4:3] of the immediate operand determine the index of the right-most byte of four contiguous
bytes within the second source operand used in the operation that produces the upper 128 bits of the
result in the 256-bit form of the instruction. Bit 5 of the immediate operand determines the right-most
index of the 11 contiguous bytes within in the upper half of the first 256-bit source operand used in
the same calculation. In the 256-bit form of the instruction, bits [7:6] of the immediate operand are
ignored.
Each word of the destination register receives the result of a separate computation of the sum of abso-
lute differences function applied to a specific pair of four-element vectors derived from the source
operands. The sum of absolute differences function SumAbsDiff (A, B) takes as input two 4-element
unsigned 8-bit integer vectors and produces a single unsigned 16-bit integer result. The function is
defined as:

SumAbsDiff(A, B) = | A[0]-B[0] | + | A[1]-B[1] | + | A[2]-B[2] | + | A[3]-B[3] |

The sum of absolute differences function produces a quantitative measure of the difference between
two 4-element vectors. Each of the calculations that generates a result uses this metric to assess the
difference between the selected 4-byte vector from operand 2 (B in the above equation) with each of
eight overlapping 4-byte vectors (A in the equation) selected sequentially from the first source oper-
and.
The right-most word (Word 0) of the destination receives the result of the comparison of the right-
most 4 bytes of the selected group of 11 from operand 1 (src1[i1+3 : i1], as shown in the figure) to
the selected 4 bytes from operand 2 (src2[j1+3:j1], in the figure). Word 1 of the destination receives
the result of the comparison of the four bytes starting at an offset of 1 from the right-most byte of the
group of 11 (src1[i1+4 : i1+1] in the figure) to the 4 bytes from operand 2. Word 2 of the destination
receives the result of the comparison of the four bytes starting at an offset of 2 from the right-most
byte of the group of 11 (src1[i1+5 : i1+2], in the figure) to the selected 4 bytes from operand 2. This
continues in like manner until the left-most four bytes of the 11 are compared to the 4 bytes from
operand 2 with the result being written to Word 7. This completes the generation of the lower 128 bits
of the result.

MPSADBW
VMPSADBW

Multiple Sum of Absolute Differences

[AMD Public Use]

Instruction Reference MPSADBW, VMPSADBW 237

26568—Rev. 3.24—May 2020 AMD64 Technology

The generation of the upper 128 bits of the result for the 256-bit form of the instruction is performed
in like manner using separately selected groups of bytes from the upper half of the 256-bit operands,
as described above.
The following is a more formal description of the operation of the (V)MPSADBW instruction:

For both the 128-bit and 256-bit form of the instruction, the following set of operations is performed:
src1 and src2 are byte vectors that overlay the first and second source operand respectively.
dest is a word vector that overlays the destination register.
tmp1[] is an array of 4-element vectors derived from the first source operand.
tmp2 and tmp3 are 4-element vectors derived from the second source operand.

i1 = imm8[2] * 4
j1= imm8[1:0] * 4

tmp1[0] = {src1[i1+3], src1[i1+2], src1[i1+1], src1[i1]}
tmp1[1] = {src1[i1+4], src1[i1+3], src1[i1+2], src1[i1+1]}
tmp1[2] = {src1[i1+5], src1[i1+4], src1[i1+3], src1[i1+2]}
tmp1[3] = {src1[i1+6], src1[i1+5], src1[i1+4], src1[i1+3]}
tmp1[4] = {src1[i1+7], src1[i1+6], src1[i1+5], src1[i1+4]}
tmp1[5] = {src1[i1+8], src1[i1+7], src1[i1+6], src1[i1+5]}
tmp1[6] = {src1[i1+9], src1[i1+8], src1[i1+7], src1[i1+6]}
tmp1[7] = {src1[i1+10], src1[i1+9], src1[i1+8], src1[i1+7]}
tmp2 = {src2[j1+3], src2[j1+2], src2[j1+1], src2[j1]}

dest[0] = SumAbsDiff(tmp1[0], tmp2)
dest[1] = SumAbsDiff(tmp1[1], tmp2)
dest[2] = SumAbsDiff(tmp1[2], tmp2)
dest[3] = SumAbsDiff(tmp1[3], tmp2)
dest[4] = SumAbsDiff(tmp1[4], tmp2)
dest[5] = SumAbsDiff(tmp1[5], tmp2)
dest[6] = SumAbsDiff(tmp1[6], tmp2)
dest[7] = SumAbsDiff(tmp1[7], tmp2)

Additionally, for the 256-bit form of the instruction, the following set of operations is performed:
i2 = imm8[5] * 4 + 16
j2= imm8[4:3] * 4 +16

tmp1[8] = {src1[i2+3], src1[i2+2], src1[i2+1], src1[i2]}
tmp1[9] = {src1[i2+4], src1[i2+3], src1[i2+2], src1[i2+1]}
tmp1[10] = {src1[i2+5], src1[i2+4], src1[i2+3], src1[i2+2]}
tmp1[11] = {src1[i2+6], src1[i2+5], src1[i2+4], src1[i2+3]}
tmp1[12] = {src1[i2+7], src1[i2+6], src1[i2+5], src1[i2+4]}
tmp1[13] = {src1[i2+8], src1[i2+7], src1[i2+6], src1[i2+5]}
tmp1[14] = {src1[i2+9], src1[i2+8], src1[i2+7], src1[i2+6]}
tmp1[15] = {src1[i2+10], src1[i2+9], src1[i2+8], src1[i2+7]}
tmp3 = {src2[j2+3], src2[j2+2], src2[j2+1], src2[j2]}

dest[8] = SumAbsDiff(tmp1[8], tmp3)
dest[9] = SumAbsDiff(tmp1[9], tmp3)
dest[10] = SumAbsDiff(tmp1[10], tmp3)
dest[11] = SumAbsDiff(tmp1[11], tmp3)

[AMD Public Use]

238 MPSADBW, VMPSADBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

dest[12] = SumAbsDiff(tmp1[12], tmp3)
dest[13] = SumAbsDiff(tmp1[13], tmp3)
dest[14] = SumAbsDiff(tmp1[14], tmp3)
dest[15] = SumAbsDiff(tmp1[15], tmp3)

Figure 2-2. (V)MPSADBW Instruction

There are legacy and extended forms of the instruction:
MPSADBW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

Notes:

• i1 is a byte offset into source operand 1 (i1 = imm8[2] * 4).

• j1 is a byte offset into source operand 2 (j1 = imm8[1:0] * 4)

• i2 is a second byte offset into source operand 1 (i2 = imm8[5] * 4 + 16)

• j2 is a second byte offset into source operand 2 (j2 = imm8[4:3] * 4 + 16)

• Σ |Δ| represents the sum of absolute differences function which operates on two

 4-element unsigned packed byte values and produces an unsigned 16-bit integer.

Σ |Δ| Σ |Δ|Σ |Δ|Σ |Δ|Σ |Δ|Σ |Δ| Σ |Δ|Σ |Δ|

src1[i2+10:i2+7] src1[i2+8:i2+5] src1[i2+7:i2+4] src1[i2+5:i2+2] src1[i2+4:i2+1] src1[i2+3:i2]src1[i2+6:i2+3]src1[i2+9:i2+6]

Destination YMM Register (upper half)

word 8word 9word 10word 11word 12word 13word 14word 15

b y t e s b y t e s b y t e s b y t e s b y t e s b y t e s b y t e s b y t e s

b y t e s

tmp3

tmp1[15] tmp1[14] tmp1[13] tmp1[12] tmp1[11] tmp1[10] tmp1[9] tmp1[8]

src1[j2+3:j2]

src1[i1+10:i1+7] src1[i1+8:i1+5] src1[i1+7:i1+4] src1[i1+5:i1+2] src1[i1+4:i1+1] src1[i1+3:i1]src1[i1+6:i1+3]src1[i1+9:i1+6]

Σ |Δ| Σ |Δ|Σ |Δ|Σ |Δ|Σ |Δ|Σ |Δ| Σ |Δ|Σ |Δ|

Destination XMM Register (lower half of YMM Register)

word 0word 1word 2word 3word 4word 5word 6word 7

b y t e s

b y t e s b y t e s b y t e s b y t e s b y t e s b y t e s b y t e s b y t e s

tmp1[7] tmp1[6] tmp1[5] tmp1[4] tmp1[3] tmp1[2] tmp1[1] tmp1[0]

tmp2

src1[j1+3:j1]

MPSADBW_instruct2.eps

[AMD Public Use]

Instruction Reference MPSADBW, VMPSADBW 239

26568—Rev. 3.24—May 2020 AMD64 Technology

VMPSADBW
The extended form of the instruction has 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register. Bits [127:0] of the destination
receive the results of the first 8 sums of absolute differences calculation using the selected bytes of the
lower halves of the two source operands. Bits [255:128] of the destination receive the results of the
second 8 sums of absolute differences calculation using selected bytes of the upper halves of the two
source operands.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PSADBW, (V)PABSB, (V)PABSD, (V)PABSW

Form Subset Feature Flag
MPSADBW SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VMPSADBW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VMPSADBW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
MPSADBW xmm1, xmm2/mem128, imm8 66 0F 3A 42 /r ib Sums absolute difference of groups of

four 8-bit integer in xmm1 and xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMPSADBW xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.03 X.src1.0.01 42 /r ib
VMPSADBW ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.03 X.src1.1.01 42 /r ib

[AMD Public Use]

240 MPSADBW, VMPSADBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference MULPD, VMULPD 241

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies each packed double-precision floating-point value of the first source operand by the corre-
sponding packed double-precision floating-point value of the second source operand and writes the
product of each multiplication into the corresponding quadword of the destination.
There are legacy and extended forms of the instruction:
MULPD
Multiplies two double-precision floating-point values in the first source XMM register by the corre-
sponding double precision floating-point values in either a second XMM register or a 128-bit mem-
ory location. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.
VMULPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Multiplies two double-precision floating-point values in the first source XMM register by the corre-
sponding double-precision floating-point values in either a second source XMM register or a 128-bit
memory location. The destination is a third XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.
YMM Encoding
Multiplies four double-precision floating-point values in the first source YMM register by the corre-
sponding double precision floating-point values in either a second source YMM register or a 256-bit
memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MULPD
VMULPD

Multiply
Packed Double-Precision Floating-Point

Form Subset Feature Flag
MULPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMULPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MULPD xmm1, xmm2/mem128 66 0F 59 /r Multiplies two packed double-precision floating-

point values in xmm1 by corresponding values in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMULPD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src.0.01 59 /r
VMULPD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src.1.01 59 /r

[AMD Public Use]

242 MULPD, VMULPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)MULPS, (V)MULSD, (V)MULSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference MULPS, VMULPS 243

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies each packed single-precision floating-point value of the first source operand by the corre-
sponding packed single-precision floating-point value of the second source operand and writes the
product of each multiplication into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:
MULPS
Multiplies four single-precision floating-point values in the first source XMM register by the corre-
sponding single-precision floating-point values of either a second source XMM register or a 128-bit
memory location. The first source register is also the destination. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.
VMULPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Multiplies four single-precision floating-point values in the first source XMM register by the corre-
sponding single-precision floating-point values of either a second source XMM register or a 128-bit
memory location. The destination is a third XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.
YMM Encoding
Multiplies eight single-precision floating-point values in the first source YMM register by the corre-
sponding single-precision floating-point values of either a second source YMM register or a 256-bit
memory location. Writes the results to a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

MULPS
VMULPS

Multiply
Packed Single-Precision Floating-Point

Form Subset Feature Flag
MULPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMULPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MULPS xmm1, xmm2/mem128 0F 59 /r Multiplies four packed single-precision floating-point values

in xmm1 by corresponding values in xmm2 or mem128.
Writes the products to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMULPS xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.00 59 /r
VMULPS ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.00 59 /r

[AMD Public Use]

244 MULPS, VMULPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)MULPD, (V)MULSD, (V)MULSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference MULSD, VMULSD 245

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the product into the low-order quadword of the destination.
There are legacy and extended forms of the instruction:
MULSD
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding YMM register are not affected.
VMULSD
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first
source operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MULPD, (V)MULPS, (V)MULSS

MULSD
VMULSD

Multiply
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
MULSD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VMULSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MULSD xmm1, xmm2/mem64 F2 0F 59 /r Multiplies low-order double-precision floating-point values

in xmm1 by corresponding values in xmm2 or mem64.
Writes the products to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMULSD xmm1, xmm2, xmm3/mem64 C4 RXB.01 X.src1.X.11 59 /r

[AMD Public Use]

246 MULSD, VMULSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference MULSS, VMULSS 247

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second
source operand and writes the product into the low-order doubleword of the destination.
There are legacy and extended forms of the instruction:
MULSS
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.
VMULSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM regis-
ter that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MULPD, (V)MULPS, (V)MULSD

MULSS
VMULSS

Multiply Scalar Single-Precision Floating-Point

Form Subset Feature Flag
MULSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VMULSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
MULSS xmm1, xmm2/mem32 F3 0F 59 /r Multiplies a single-precision floating-point value in the low-

order doubleword of xmm1 by a corresponding value in
xmm2 or mem32. Writes the product to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMULSS xmm1, xmm2, xmm3/mem32 C4 RXB.01 X.src1.X.10 59 /r

[AMD Public Use]

248 MULSS, VMULSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ORPD, VORPD 249

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs bitwise OR of two packed double-precision floating-point values in the first source operand
with the corresponding two packed double-precision floating-point values in the second source oper-
and and writes the results into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:
ORPD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VORPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPS, (V)XORPD, (V)XORPS

ORPD
VORPD

OR
Packed Double-Precision Floating-Point

Form Subset Feature Flag
ORPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VORPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ORPD xmm1, xmm2/mem128 66 0F 56 /r Performs bitwise OR of two packed double-precision

floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VORPD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 56 /r
VORPD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 56 /r

[AMD Public Use]

250 ORPD, VORPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ORPS, VORPS 251

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs bitwise OR of the four packed single-precision floating-point values in the first source oper-
and with the corresponding four packed single-precision floating-point values in the second source
operand, and writes the result into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:
ORPS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VORPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)XORPD, (V)XORPS

ORPS
VORPS

OR
Packed Single-Precision Floating-Point

Form Subset Feature Flag
ORPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VORPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ORPS xmm1, xmm2/mem128 0F 56 /r Performs bitwise OR of four packed double-precision floating-

point values in xmm1 with corresponding values in xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VORPS xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.00 56 /r
VORPS ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.00 56 /r

[AMD Public Use]

252 ORPS, VORPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference PABSB, VPABSB 253

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the absolute value of 16 or 32 packed 8-bit signed integers in the source operand. Each
byte of the destination receives an unsigned 8-bit integer that is the absolute value of the signed 8-bit
integer in the corresponding byte of the source operand.
There are legacy and extended forms of the instruction:
PABSB
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VPABSB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is a YMM register or a 256-bit memory location. The destination is a YMM reg-
ister. All 32 bytes of the destination are written.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PABSW, (V)PABSD

PABSB
VPABSB

Packed Absolute Value
Signed Byte

Form Subset Feature Flag
PABSB SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPABSB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPABSB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PABSB xmm1, xmm2/mem128 0F 38 1C /r Computes the absolute value of each packed 8-bit signed

integer value in xmm2/mem128 and writes the 8-bit unsigned
results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPABSB xmm1, xmm2/mem128 C4 RXB.02 X.1111.0.01 1C /r
VPABSB ymm1, ymm2/mem256 C4 RXB.02 X.1111.1.01 1C /r

[AMD Public Use]

254 PABSB, VPABSB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PABSD, VPABSD 255

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the absolute value of four or eight packed 32-bit signed integers in the source operand.
Each doubleword of the destination receives an unsigned 32-bit integer that is the absolute value of
the signed 32-bit integer in the corresponding doubleword of the source operand.
There are legacy and extended forms of the instruction:
PABSD
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VPABSD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is a YMM register or a 256-bit memory location. The destination is a YMM reg-
ister. All four doublewords of the destination are written.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PABSB, (V)PABSW

PABSD
VPABSD

Packed Absolute Value
Signed Doubleword

Form Subset Feature Flag
PABSD SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPABSD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPABSD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PABSD xmm1, xmm2/mem128 0F 38 1E /r Computes the absolute value of each packed 32-bit signed

integer value in xmm2/mem128 and writes the 32-bit
unsigned results to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPABSD xmm1, xmm2/mem128 C4 RXB.02 X.1111.0.01 1E /r
VPABSD ymm1, ymm2/mem256 C4 RXB.02 X.1111.1.01 1E /r

[AMD Public Use]

256 PABSD, VPABSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PABSW, VPABSW 257

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the absolute value of eight or sixteen packed 16-bit signed integers in the source operand.
Each word of the destination receives an unsigned 16-bit integer that is the absolute value of the
signed 16-bit integer in the corresponding word of the source operand.
There are legacy and extended forms of the instruction:
PABSW
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VPABSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is a YMM register or a 256-bit memory location. The destination is a YMM reg-
ister. All 16 words of the destination are written.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PABSB, (V)PABSD

PABSW
VPABSW

Packed Absolute Value
Signed Word

Form Subset Feature Flag
PABSW SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPABSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPABSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PABSW xmm1, xmm2/mem128 0F 38 1D /r Computes the absolute value of each packed 16-bit signed

integer value in xmm2/mem128 and writes the 16-bit
unsigned results to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPABSW xmm1, xmm2/mem128 C4 RXB.02 X.1111.0.01 1D /r
VPABSW ymm1, ymm2/mem256 C4 RXB.02 X.1111.1.01 1D /r

[AMD Public Use]

258 PABSW, VPABSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PACKSSDW, VPACKSSDW 259

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts four or eight 32-bit signed integers from the first source operand and the second source
operand into 16-bit signed integers and packs the results into the destination.
Positive source value greater than 7FFFh are saturated to 7FFFh; negative source values less than
8000h are saturated to 8000h.
Converted values from the first source operand are packed into the low-order words of the destina-
tion; converted values from the second source operand are packed into the high-order words of the
destination.
There are legacy and extended forms of the instruction:
PACKSSDW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPACKSSDW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PACKSSDW
VPACKSSDW

Pack with Signed Saturation
Doubleword to Word

Form Subset Feature Flag
PACKSSDW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPACKSSDW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPACKSSDW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PACKSSDW xmm1, xmm2/mem128 66 0F 6B /r Converts 32-bit signed integers in xmm1 and xmm2

or mem128 into 16-bit signed integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPACKSSDW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 6B /r
VPACKSSDW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 6B /r

[AMD Public Use]

260 PACKSSDW, VPACKSSDW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PACKSSWB, (V)PACKUSDW, (V)PACKUSWB

MXCSR Flags Affected
None
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PACKSSWB, VPACKSSWB 261

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts eight or sixteen 16-bit signed integers from the first source operand and the second source
operand into sixteen or thirty two 8-bit signed integers and packs the results into the destination.
Positive source values greater than 7Fh are saturated to 7Fh; negative source values less than 80h are
saturated to 80h.
Converted values from the first source operand are packed into the low-order bytes of the destination;
converted values from the second source operand are packed into the high-order bytes of the destina-
tion.
There are legacy and extended forms of the instruction:
PACKSSWB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPACKSSWB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PACKSSWB
VPACKSSWB

Pack with Signed Saturation
Word to Byte

Form Subset Feature Flag
PACKSSWB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPACKSSWB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPACKSSWB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PACKSSWB xmm1, xmm2/mem128 66 0F 63 /r Converts 16-bit signed integers in xmm1 and xmm2

or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPACKSSWB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 63 /r
VPACKSSWB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 63 /r

[AMD Public Use]

262 PACKSSWB, VPACKSSWB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PACKSSDW, (V)PACKUSDW, (V)PACKUSWB

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PACKUSDW, VPACKUSDW 263

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts four or eight 32-bit signed integers from the first source operand and the second source
operand into eight or sixteen 16-bit unsigned integers and packs the results into the destination.
Source values greater than FFFFh are saturated to FFFFh; source values less than 0000h are saturated
to 0000h.
Packs converted values from the first source operand into the low-order words of the destination;
packs converted values from the second source operand into the high-order words of the destination.
There are legacy and extended forms of the instruction:
PACKUSDW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPACKUSDW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PACKUSDW
VPACKUSDW

Pack with Unsigned Saturation
Doubleword to Word

Form Subset Feature Flag
PACKUSDW SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPACKUSDW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPACKUSDW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PACKUSDW xmm1, xmm2/mem128 66 0F 38 2B /r Converts 32-bit signed integers in xmm1 and xmm2

or mem128 into 16-bit unsigned integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPACKUSDW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 2B /r
VPACKUSDW ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.0.01 2B /r

[AMD Public Use]

264 PACKUSDW, VPACKUSDW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSWB

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PACKUSWB, VPACKUSWB 265

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts eight or sixteen 16-bit signed integers from the first source operand and the second source
operand into sixteen or thirty two 8-bit unsigned integers and packs the results into the destination.
When a source value is greater than 7Fh it is saturated to FFh; when source value is less than 00h, it is
saturated to 00h.
Packs converted values from the first source operand into the low-order bytes of the destination;
packs converted values from the second source operand into the high-order bytes of the destination.
There are legacy and extended forms of the instruction:
PACKUSWB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPACKUSWB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PACKUSWB
VPACKUSWB

Pack with Unsigned Saturation
Word to Byte

Form Subset Feature Flag
PACKUSWB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPACKUSWB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPACKUSWB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PACKUSWB xmm1, xmm2/mem128 66 0F 67 /r Converts 16-bit signed integers in xmm1 and xmm2

or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPACKUSWB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 67 /r
VPACKUSWB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 67 /r

[AMD Public Use]

266 PACKUSWB, VPACKUSWB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSDW

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PADDB, VPADDB 267

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds 16 or 32 packed 8-bit integer values in the first source operand to corresponding values in the
second source operand and writes the integer sums to the corresponding bytes of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.
There are legacy and extended forms of the instruction:
PADDB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPADDB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PADDB
VPADDB

Packed Add
Bytes

Form Subset Feature Flag
PADDB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPADDB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PADDB xmm1, xmm2/mem128 66 0F FC /r Adds packed byte integer values in xmm1 and xmm2 or

mem128 Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 FC /r
VPADDB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 FC /r

[AMD Public Use]

268 PADDB, VPADDB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PADDD, VPADDD 269

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds 4 or 8 packed 32-bit integer value in the first source operand to corresponding values in the sec-
ond source operand and writes integer sums to the corresponding doublewords of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written to the destination.
There are legacy and extended forms of the instruction:
PADDD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPADDD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PADDD
VPADDD

Packed Add
Doublewords

Form Subset Feature Flag
PADDD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPADDD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PADDD xmm1, xmm2/mem128 66 0F FE /r Adds packed doubleword integer values in xmm1 and

xmm2 or mem128 Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 FE /r
VPADDD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 FE /r

[AMD Public Use]

270 PADDD, VPADDD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PADDB, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PADDQ, VPADDQ 271

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds 2 or 4 packed 64-bit integer values in the first source operand to corresponding values in the
second source operand and writes the integer sums to the corresponding quadwords of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written to the destination.
There are legacy and extended forms of the instruction:
PADDQ
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPADDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PADDQ
VPADDQ

Packed Add
Quadwords

Form Subset Feature Flag
PADDQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPADDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PADDQ xmm1, xmm2/mem128 66 0F D4 /r Adds packed quadword integer values in xmm1 and

xmm2 or mem128 Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src1.0.01 D4 /r
VPADDQ ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src1.1.01 D4 /r

[AMD Public Use]

272 PADDQ, VPADDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PADDSB, VPADDSB 273

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds 16 or 32 packed 8-bit signed integer values in the first source operand to the corresponding val-
ues in the second source operand and writes the signed integer sums to corresponding bytes of the
destination.
Positive sums greater than 7Fh are saturated to 7Fh; negative sums less than 80h are saturated to 80h.
There are legacy and extended forms of the instruction:
PADDSB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPADDSB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PADDSB
VPADDSB

Packed Add with Signed Saturation
Bytes

Form Subset Feature Flag
PADDSB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPADDSB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDSB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PADDSB xmm1, xmm2/mem128 66 0F EC /r Adds packed signed 8-bit integer values in xmm1 and

xmm2 or mem128 with signed saturation. Writes the
sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDSB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 EC /r
VPADDSB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 EC /r

[AMD Public Use]

274 PADDSB, VPADDSB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PADDSW, VPADDSW 275

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds 8 or 16 packed 16-bit signed integer value in the first source operand to the corresponding val-
ues in the second source operand and writes the signed integer sums to the corresponding words of
the destination.
Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums less than 8000h are saturated
to 8000h.
There are legacy and extended forms of the instruction:

PADDSW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PADDSW
VPADDSW

Packed Add with Signed Saturation
Words

Form Subset Feature Flag
PADDSW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPADDSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PADDSW xmm1, xmm2/mem128 66 0F ED /r Adds packed signed 16-bit integer values in xmm1 and

xmm2 or mem128 with signed saturation. Writes the
sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src1.0.01 ED /r
VPADDSW ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src1.1.01 ED /r

[AMD Public Use]

276 PADDSW, VPADDSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PADDUSB, VPADDUSB 277

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds 16 or 32 packed 8-bit unsigned integer values in the first source operand to the corresponding
values in the second source operand and writes the unsigned integer sums to the corresponding bytes
of the destination.
Sums greater than FFh are saturated to FFh.
There are legacy and extended forms of the instruction:

PADDUSB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPADDUSB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PADDUSB
VPADDUSB

Packed Add with Unsigned Saturation
Bytes

Form Subset Feature Flag
PADDUSB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPADDUSB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDUSB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PADDUSB xmm1, xmm2/mem128 66 0F DC /r Adds packed unsigned 8-bit integer values in xmm1

and xmm2 or mem128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDUSB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 DC /r
VPADDUSB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 DC /r

[AMD Public Use]

278 PADDUSB, VPADDUSB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSW, (V)PADDW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PADDUSW, VPADDUSW 279

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds 8 or 16 packed 16-bit unsigned integer value in the first source operand to the corresponding
values in the second source operand and writes the unsigned integer sums to the corresponding words
of the destination.
Sums greater than FFFFh are saturated to FFFFh.
There are legacy and extended forms of the instruction:
PADDUSW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPADDUSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PADDUSW
VPADDUSW

Packed Add with Unsigned Saturation
Words

Form Subset Feature Flag
PADDUSW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPADDUSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDUSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PADDUSW xmm1, xmm2/mem128 66 0F DD /r Adds packed unsigned 16-bit integer values in xmm1

and xmm2 or mem128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDUSW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 DD /r
VPADDUSW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 DD /r

[AMD Public Use]

280 PADDUSW, VPADDUSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PADDW, VPADDW 281

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds or 16 packed 16-bit integer value in the first source operand to the corresponding values in the
second source operand and writes the integer sums to the corresponding word of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of each
result are written to the destination.
There are legacy and extended forms of the instruction:
PADDW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPADDW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PADDW
VPADDW

Packed Add
Words

Form Subset Feature Flag
PADDW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPADDW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPADDW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PADDW xmm1, xmm2/mem128 66 0F FD /r Adds packed 16-bit integer values in xmm1 and xmm2

or mem128. Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 FD /r
VPADDW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 FD /r

[AMD Public Use]

282 PADDW, VPADDW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW

RFlags Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PALIGNR, VPALIGNR 283

26568—Rev. 3.24—May 2020 AMD64 Technology

Concatenates one or two pairs of 16-byte values from the first and second source operands and right-
shifts the concatenated values the number of bytes specified by the unsigned immediate operand.
Writes the least-significant 16 bytes of the shifted result to the destination or writes the least-signifi-
cant 16 bytes of the two shifted results to the upper and lower halves of the destination.
For the 128-bit form of the instruction, the first and second 128-bit source operands are concatenated
to form a temporary 256-bit value with the first source operand occupying the most-significant half of
the temporary value. After the right-shift operation, the lower 128 bits of the result are written to the
destination.
For the 256-bit form of the instruction, the lower 16 bytes of the first and second source operands are
concatenated to form a first temporary 256-bit value with the bytes from the first source operand
occupying the most-significant half of the temporary value. The upper 16 bytes of the first and second
source operands are concatenated to form a second temporary 256-bit value with the bytes from the
first source operand occupying the most-significant half of the second temporary value. Both tempo-
rary values are right-shifted the number of bytes specified by the immediate operand. After the right-
shift operation, the lower 16 bytes of the first temporary value are written to the lower 128 bits of the
destination and the lower 16 bytes of the second temporary value are written to the upper 128 bits of
the destination.
The binary value of the immediate operand determines the byte shift value. On each shift the most-
significant byte is set to zero. When the byte shift value is greater than 31, the destination is zeroed.
There are two forms of the instruction.
PALIGNR
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPALIGNR
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

PALIGNR
VPALIGNR

Packed Align Right

Form Subset Feature Flag
PALIGNR SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPALIGNR 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPALIGNR 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

284 PALIGNR, VPALIGNR Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
None

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PALIGNR xmm1, xmm2/mem128, imm8 66 0F 3A 0F /r ib Right-shifts xmm1:xmm2/mem128 imm8

bytes. Writes shifted result to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPALIGNR xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.03 X.src1.0.01 0F /r ib
VPALIGNR ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.03 X.src1.1.01 0F /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PAND, VPAND 285

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs a bitwise AND of the packed values in the first and second source operands and writes the
result to the destination.
There are legacy and extended forms of the instruction:
PAND
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPAND
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PANDN, (V)POR, (V)PXOR

PAND
VPAND

Packed AND

Form Subset Feature Flag
PAND SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPAND 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPAND 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PAND xmm1, xmm2/mem128 66 0F DB /r Performs bitwise AND of values in xmm1 and xmm2 or

mem128. Writes the result to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPAND xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 DB /r
VPAND ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 DB /r

[AMD Public Use]

286 PAND, VPAND Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PANDN, VPANDN 287

26568—Rev. 3.24—May 2020 AMD64 Technology

Generates the ones’ complement of the value in the first source operand and performs a bitwise AND
of the complement and the value in the second source operand. Writes the result to the destination.
There are legacy and extended forms of the instruction:

PANDN
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPANDN
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PAND, (V)POR, (V)PXOR

PANDN
VPANDN

Packed AND NOT

Form Subset Feature Flag
PANDN SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPANDN 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPANDN 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PANDN xmm1, xmm2/mem128 66 0F DF /r Generates ones’ complement of xmm1, then performs

bitwise AND with value in xmm2 or mem128. Writes the
result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPANDN xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src.0.01 DF /r
VPANDN ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src.1.01 DF /r

[AMD Public Use]

288 PANDN, VPANDN Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PAVGB, VPAVGB 289

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the rounded averages of 16 or 32 packed unsigned 8-bit integer values in the first source
operand and the corresponding values of the second source operand. Writes each average to the corre-
sponding byte of the destination.
An average is computed by adding pairs of 8-bit integer values in corresponding positions in the two
operands, adding 1 to a 9-bit temporary sum, and right-shifting the temporary sum by one bit position.
There are legacy and extended forms of the instruction:
PAVGB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPAVGB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PAVGB
VPAVGB

Packed Average
Unsigned Bytes

Form Subset Feature Flag
PAVGB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPAVGB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPAVGB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PAVGB xmm1, xmm2/mem128 66 0F E0 /r Averages pairs of packed 8-bit unsigned integer values

in xmm1 and xmm2 or mem128. Writes the averages to
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPAVGB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 E0 /r
VPAVGB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 E0 /r

[AMD Public Use]

290 PAVGB, VPAVGB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
PAVGW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PAVGW, VPAVGW 291

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the rounded average of packed unsigned 16-bit integer values in the first source operand
and the corresponding values of the second source operand. Writes each average to the corresponding
word of the destination.
An average is computed by adding pairs of 16-bit integer values in corresponding positions in the two
operands, adding 1 to a 17-bit temporary sum, and right-shifting the temporary sum by one bit posi-
tion.
There are legacy and extended forms of the instruction:
PAVGW
The first source operand is an XMM register and the second source operand is an XMM register or
128-bit memory location. The destination is the same XMM register as the first source operand; the
upper 128-bits of the corresponding YMM register are not affected.
VPAVGW
The extended form of the instruction has128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PAVGW
VPAVGW

Packed Average
Unsigned Words

Form Subset Feature Flag
PAVGW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPAVGW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPAVGW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PAVGW xmm1, xmm2/mem128 66 0F E3 /r Averages pairs of packed 16-bit unsigned integer values

in xmm1 and xmm2 or mem128. Writes the averages to
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPAVGW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 E3 /r
VPAVGW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 E3 /r

[AMD Public Use]

292 PAVGW, VPAVGW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PAVGB

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PBLENDVB, VPBLENDVB 293

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies packed bytes from either of two sources to a destination, as specified by a mask operand.
The mask is defined by the most significant bit of each byte of the mask operand. The position of a
mask bit corresponds to the position of the most significant bit of a copied value.
• When a mask bit = 0, the specified element of the first source is copied to the corresponding

position in the destination.
• When a mask bit = 1, the specified element of the second source is copied to the corresponding

position in the destination.
There are legacy and extended forms of the instruction:
PBLENDVB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected. The mask operand is the implicit
register XMM0.
VPBLENDVB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared. The mask operand is a fourth XMM register
selected by bits [7:4] of an immediate byte.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register. The mask operand is a fourth
YMM register selected by bits [7:4] of an immediate byte.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PBLENDVB
VPBLENDVB

Variable Blend
Packed Bytes

Form Subset Feature Flag
PBLENDVB SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPBLENDVB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPBLENDVB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

294 PBLENDVB, VPBLENDVB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)BLENDVPD, (V)BLENDVPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PBLENDVB xmm1, xmm2/mem128 66 0F 38 10 /r Selects byte values from xmm1 or xmm2/mem128,

depending on the value of corresponding mask bits
in XMM0. Writes the selected values to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPBLENDVB xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 4C /r is4
VPBLENDVB ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 4C /r is4

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PBLENDW, VPBLENDW 295

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies packed words from either of two sources to a destination, as specified by an immediate 8-bit
mask operand. For the 256-bit form, the same 8-bit mask is applied twice; once to select words to be
written to the lower 128 bits of the destination and again to select words to be written to the upper 128
bits of the destination.
Each bit of the mask selects a word from one of the source operands based on the position of the word
within the operand. Bit 0 of the mask selects the least-significant word (word 0) to be copied, bit 1
selects the next-most significant word (word 1), and so forth. Bit 7 selects word 7 (the most-signifi-
cant word for 128-bit operands).
For the 256-bit operands, the mask is reused to select words in the upper 128-bits of the source oper-
ands to be copied. Bit 0 of the mask selects word 8, bit 1 selects word 9, and so forth. Finally, bit 7 of
the mask selects the word from position 15.
• When a mask bit = 0, the specified element of the first source is copied to the corresponding

position in the destination.
• When a mask bit = 1, the specified element of the second source is copied to the corresponding

position in the destination.
There are legacy and extended forms of the instruction:
PBLENDW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPBLENDW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PBLENDW
VPBLENDW

Blend
Packed Words

Form Subset Feature Flag
PBLENDW SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPBLENDW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPBLENDW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

296 PBLENDW, VPBLENDW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)BLENDPD

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PBLENDW xmm1, xmm2/mem128, imm8 66 0F 3A 0E /r ib Selects word values from xmm1 or

xmm2/mem128, as specified by imm8.
Writes the selected values to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPBLENDW xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.03 X.src1.0.01 0E /r /ib
VPBLENDW ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.03 X.src1.1.01 0E /r /ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PCLMULQDQ, VPCLMULQDQ 297

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs a carry-less multiplication of a selected quadword element of the first source operand by a
selected quadword element of the second source operand and writes the product to the destination.
Carry-less multiplication, also known as binary polynomial multiplication, is the mathematical opera-
tion of computing the product of two operands without generating or propagating carries. It is an
essential component of cryptographic processing, and typically requires a large number of cycles.
The instruction provides an efficient means of performing the operation and is particularly useful in
implementing the Galois counter mode used in the Advanced Encryption Standard (AES). See
Appendix A on page 973 for additional information.
Bits 4 and 0 of an 8-bit immediate byte operand specify which quadword of each source operand to
multiply, as follows.

Alias mnemonics are provided for the various immediate byte combinations.
There are legacy and extended forms of the instruction:

PCLMULQDQ
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPCLMULQDQ
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

PCLMULQDQ
VPCLMULQDQ

Carry-less Multiply
Quadwords

Mnemonic Imm[0] Imm[4] Quadword Operands Selected
(V)PCLMULLQLQDQ 0 0 SRC1[63:0], SRC2[63:0]
(V)PCLMULHQLQDQ 1 0 SRC1[127:64], SRC2[63:0]
(V)PCLMULLQHQDQ 0 1 SRC1[63:0], SRC2[127:64]
(V)PCLMULHQHQDQ 1 1 SRC1[127:64], SRC2[127:64]

[AMD Public Use]

298 PCLMULQDQ, VPCLMULQDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PMULDQ, (V)PMULUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PCLMULQDQ PCLMULQDQ CPUID Fn0000_0001_ECX[PCLMULQDQ] (bit 1)

VPCLMULQDQ 128 AVX or
PCLMULQDQ

CPUID Fn0000_0001_ECX[PCLMULQDQ] (bit 1) or
CPUID Fn0000_0001_ECX[AVX] (bit 28)

VPCLMULQDQ 256 VPCLMULQDQ CPUID Fn0000_0007_ECX[VPCLMULQD]_x0 (bit 10)

Mnemonic Opcode Description
PCLMULQDQ xmm1, xmm2/mem128, imm8 66 0F 3A 44 /r ib Performs carry-less multiplication of a

selected quadword element of xmm1 by a
selected quadword element of xmm2 or
mem128. Elements are selected by bits 4
and 0 of imm8. Writes the product to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPCLMULQDQ xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 44 /r ib

VPCLMULQDQ ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 44 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.

[AMD Public Use]

Instruction Reference PCLMULQDQ, VPCLMULQDQ 299

26568—Rev. 3.24—May 2020 AMD64 Technology

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

[AMD Public Use]

300 PCMPEQB, VPCMPEQB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares packed byte values in the first source operand to corresponding values in the second source
operand and writes a comparison result to the corresponding byte of the destination.
When values are equal, the result is FFh; when values are not equal, the result is 00h.
There are legacy and extended forms of the instruction:
PCMPEQB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPCMPEQB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

PCMPEQB
VPCMPEQB

Packed Compare Equal
Bytes

Form Subset Feature Flag
PCMPEQB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPCMPEQB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPEQB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PCMPEQB xmm1, xmm2/mem128 66 0F 74 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPEQB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 74 /r
VPCMPEQB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 74 /r

[AMD Public Use]

Instruction Reference PCMPEQB, VPCMPEQB 301

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

302 PCMPEQD, VPCMPEQD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares packed doubleword values in the first source operand to corresponding values in the sec-
ond source operand and writes a comparison result to the corresponding doubleword of the destina-
tion.
When values are equal, the result is FFFFFFFFh; when values are not equal, the result is 00000000h.
There are legacy and extended forms of the instruction:
PCMPEQD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPCMPEQD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

PCMPEQD
VPCMPEQD

Packed Compare Equal
Doublewords

Form Subset Feature Flag
PCMPEQD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPCMPEQD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPEQD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PCMPEQD xmm1, xmm2/mem128 66 0F 76 /r Compares packed doublewords in xmm1 to packed

doublewords in xmm2 or mem128. Writes results to
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPEQD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 76 /r
VPCMPEQD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 76 /r

[AMD Public Use]

Instruction Reference PCMPEQD, VPCMPEQD 303

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

304 PCMPEQQ, VPCMPEQQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares packed quadword values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding quadword of the destination.
When values are equal, the result is FFFFFFFFFFFFFFFFh; when values are not equal, the result is
0000000000000000h.
There are legacy and extended forms of the instruction:
PCMPEQQ
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPCMPEQQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PCMPEQQ
VPCMPEQQ

Packed Compare Equal
Quadwords

Form Subset Feature Flag
PCMPEQQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPCMPEQQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPEQQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PCMPEQQ xmm1, xmm2/mem128 66 0F 38 29 /r Compares packed quadwords in xmm1 to packed

quadwords in xmm2 or mem128. Writes results to
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPEQQ xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 29 /r
VPCMPEQQ ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 29 /r

[AMD Public Use]

Instruction Reference PCMPEQQ, VPCMPEQQ 305

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

306 PCMPEQW, VPCMPEQW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares packed word values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding word of the destination.
When values are equal, the result is FFFFh; when values are not equal, the result is 0000h.
There are legacy and extended forms of the instruction:
PCMPEQW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPCMPEQW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

PCMPEQW
VPCMPEQW

Packed Compare Equal
Words

Form Subset Feature Flag
PCMPEQW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPCMPEQW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPEQW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PCMPEQW xmm1, xmm2/mem128 66 0F 75 /r Compares packed words in xmm1 to packed words in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPEQW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 75 /r
VPCMPEQW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 75 /r

[AMD Public Use]

Instruction Reference PCMPEQW, VPCMPEQW 307

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

308 PCMPESTRI, VPCMPESTRI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes an index to the ECX reg-
ister.
Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values. Each operand has associated with it a
separate integer value specifying the length of the string.
The absolute value of the data in the EAX/RAX register represents the length of the character string
in the first source operand; the absolute value of the data in the EDX/RDX register represents the
length of the character string in the second source operand.
If the absolute value of the data in either register is greater than the maximum string length that fits in
128 bits, the length is set to the maximum: 8, for 16-bit characters, or 16, for 8-bit characters.
The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.
The index of either the most significant or least significant set bit of the post-processed comparison
summary bit vector is returned in ECX. If no bits are set in the post-processed comparison summary
bit vector, ECX is set to 16 for source operand strings composed of 8-bit characters or 8 for 16-bit
character strings.
See Section 1.5, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.
The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:
PCMPESTRI
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. A result index is written to the ECX register.
VPCMPESTRI
The extended form of the instruction has a 128-bit encoding only.

PCMPESTRI
VPCMPESTRI

Packed Compare
Explicit Length Strings Return Index

Flag Condition
CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.
AF cleared.
ZF Set if the specified length of the second string is less than the maximum; otherwise

cleared.
SF Set if the specified length of the first string is less than the maximum; otherwise

cleared.
OF Equal to the value of the lsb of the post-processed comparison summary bit vector.

[AMD Public Use]

Instruction Reference PCMPESTRI, VPCMPESTRI 309

26568—Rev. 3.24—May 2020 AMD64 Technology

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. A result index is written to the ECX register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PCMPESTRM, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected

MXCSR Flags Affected
None

Form Subset Feature Flag
PCMPESTRI SSE4.2 CPUID Fn0000_0001_ECX[SSE42] (bit 20)

VPCMPESTRI AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PCMPESTRI xmm1, xmm2/mem128, imm8 66 0F 3A 61 /r ib Compares packed string data in xmm1 and

xmm2 or mem128. Writes a result index to
the ECX register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPESTRI xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 61 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
M M M 0 0 M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.

Undefined flags are U.

[AMD Public Use]

310 PCMPESTRI, VPCMPESTRI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference PCMPESTRM, VPCMPESTRM 311

26568—Rev. 3.24—May 2020 AMD64 Technology

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes a mask value to the
YMM0/XMM0 register.
Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values. Each operand has associated with it a
separate integer value specifying the length of the string.
The absolute value of the data in the EAX/RAX register represents the length of the character string
in the first source operand; the absolute value of the data in the EDX/RDX register represents the
length of the character string in the second source operand.
If the absolute value of the data in either register is greater than the maximum string length that fits in
128 bits, the length is set to the maximum: 8, for 16-bit characters, or 16, for 8-bit characters.
The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.
Depending on the output option selected, the post-processed comparison summary bit vector is either
zero-extended to 128 bits or expanded into a byte/word-mask and then written to XMM0.
See Section 1.5, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.
The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:
PCMPESTRM
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The mask result is written to the XMM0 register.
VPCMPESTRM
The extended form of the instruction has a 128-bit encoding only.

PCMPESTRM
VPCMPESTRM

Packed Compare
Explicit Length Strings Return Mask

Flag Condition
CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.
AF cleared.
ZF Set if the specified length of the second string is less than the maximum; otherwise

cleared.
SF Set if the specified length of the first string is less than the maximum; otherwise

cleared.
OF Equal to the value of the lsb of the post-processed summary bit vector.

[AMD Public Use]

312 PCMPESTRM, VPCMPESTRM Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The mask result is written to the XMM0 register. Bits [255:128] of the
YMM0 register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PCMPESTRI, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected

MXCSR Flags Affected
None

Form Subset Feature Flag
PCMPESTRM SSE4.2 CPUID Fn0000_0001_ECX[SSE42] (bit 20)

VPCMPESTRM AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PCMPESTRMxmm1, xmm2/mem128, imm8 66 0F 3A 60 /r ib Compares packed string data in xmm1 and

xmm2 or mem128. Writes a mask value to
the XMM0 register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPESTRM xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 60 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
M M M 0 0 M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared to 0 is M (modified). Unaffected flags are blank.

Undefined flags are U.

[AMD Public Use]

Instruction Reference PCMPESTRM, VPCMPESTRM 313

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

314 PCMPGTB, VPCMPGTB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares packed signed byte values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding byte of the destination.
When a value in the first operand is greater than a value in the second source operand, the result is
FFh; when a value in the first operand is less than or equal to a value in the second operand, the result
is 00h.
There are legacy and extended forms of the instruction:
PCMPGTB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPCMPGTB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PCMPGTB
VPCMPGTB

Packed Compare Greater Than
Signed Bytes

Form Subset Feature Flag
PCMPGTB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPCMPGTB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPGTB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PCMPGTB xmm1, xmm2/mem128 66 0F 64 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 64 /r
VPCMPGTB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 64 /r

[AMD Public Use]

Instruction Reference PCMPGTB, VPCMPGTB 315

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

316 PCMPGTD, VPCMPGTD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares packed signed doubleword values in the first source operand to corresponding values in the
second source operand and writes a comparison result to the corresponding doubleword of the desti-
nation.
When a value in the first operand is greater than a value in the second operand, the result is
FFFFFFFFh; when a value in the first operand is less than or equal to a value in the second operand,
the result is 00000000h.
There are legacy and extended forms of the instruction:
PCMPGTD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPCMPGTD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PCMPGTD
VPCMPGTD

Packed Compare Greater Than
Signed Doublewords

Form Subset Feature Flag
PCMPGTD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPCMPGTD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPGTD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PCMPGTD xmm1, xmm2/mem128 66 0F 66 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 66 /r
VPCMPGTD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 66 /r

[AMD Public Use]

Instruction Reference PCMPGTD, VPCMPGTD 317

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

318 PCMPGTQ, VPCMPGTQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares packed signed quadword values in the first source operand to corresponding values in the
second source operand and writes a comparison result to the corresponding quadword of the destina-
tion.
When a value in the first operand is greater than a value in the second operand, the result is
FFFFFFFFFFFFFFFFh; when a value in the first operand is less than or equal to a value in the second
operand, the result is 0000000000000000h.
There are legacy and extended forms of the instruction:
PCMPGTQ
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPCMPGTQ
The extended form of the instruction has 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PCMPGTQ
VPCMPGTQ

Packed Compare Greater Than
Signed Quadwords

Form Subset Feature Flag
PCMPGTQ SSE4.2 CPUID Fn0000_0001_ECX[SSE42] (bit 20)

VPCMPGTQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPGTQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PCMPGTQ xmm1, xmm2/mem128 66 0F 38 37 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTQ xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 37 /r
VPCMPGTQ ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 37 /r

[AMD Public Use]

Instruction Reference PCMPGTQ, VPCMPGTQ 319

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

320 PCMPGTW, VPCMPGTW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares packed signed word values in the first source operand to corresponding values in the sec-
ond source operand and writes a comparison result to the corresponding word of the destination.
When a value in the first operand is greater than a value in the second operand, the result is FFFFh;
when a value in the first operand is less than or equal to a value in the second operand, the result is
0000h.
There are legacy and extended forms of the instruction:
PCMPGTW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPCMPGTW
The extended form of the instruction has 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PCMPGTW
VPCMPGTW

Packed Compare Greater Than Signed Words

Form Subset Feature Flag
PCMPGTW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPCMPGTW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPCMPGTW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PCMPGTW xmm1, xmm2/mem128 66 0F 65 /r Compares packed bytes in xmm1 to packed bytes in

xmm2 or mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 65 /r
VPCMPGTW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 65 /r

[AMD Public Use]

Instruction Reference PCMPGTW, VPCMPGTW 321

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

322 PCMPISTRI, VPCMPISTRI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes an index to the ECX reg-
ister.
Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values.
Source operand strings shorter than the maximum that can be packed into a 128-bit value are termi-
nated by a null character (value of 0). The characters prior to the null character constitute the string. If
the first (lowest indexed) character is null, the string length is 0.
The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.
The index of either the most significant or least significant set bit of the post-processed comparison
summary bit vector is returned in ECX. If no bits are set in the post-processed comparison summary
bit vector, ECX is set to 16 for source operand strings composed of 8-bit characters or 8 for 16-bit
character strings.
See Section 1.5, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.
The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:
PCMPISTRI
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. A result index is written to the ECX register.
VPCMPISTRI
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. A result index is written to the ECX register.

PCMPISTRI
VPCMPISTRI

Packed Compare
Implicit Length Strings Return Index

Flag Condition
CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.
AF cleared.
ZF Set if any byte (word) in the second operand is null; otherwise cleared.
SF Set if any byte (word) in the first operand is null; otherwise cleared
OF Equal to the value of the lsb of the post-processed summary bit vector.

[AMD Public Use]

Instruction Reference PCMPISTRI, VPCMPISTRI 323

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRM

rFLAGS Affected

MXCSR Flags Affected
None

Form Subset Feature Flag
PCMPISTRI SSE4.2 CPUID Fn0000_0001_ECX[SSE42] (bit 20)

VPCMPISTRI AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PCMPISTRI xmm1, xmm2/mem128, imm8 66 0F 3A 63 /r ib Compares packed string data in xmm1 and

xmm2 or mem128.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPISTRI xmm1, xmm2/mem128, imm8 C4 RXB.03 X.1111.0.01 63 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
M M M 0 0 M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.

Undefined flags are U.

[AMD Public Use]

324 PCMPISTRI, VPCMPISTRI Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference PCMPISTRM, VPCMPISTRM 325

26568—Rev. 3.24—May 2020 AMD64 Technology

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes a mask value to the
YMM0/XMM0 register
Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values.
Source operand strings shorter than the maximum that can be packed into a 128-bit value are termi-
nated by a null character (value of 0). The characters prior to the null character constitute the string. If
the first (lowest indexed) character is null, the string length is 0.
The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.
Depending on the output option selected, the post-processed comparison summary bit vector is either
zero-extended to 128 bits or expanded into a byte/word-mask and then written to XMM0.
See Section 1.5, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.
The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:
PCMPISTRM
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The mask result is written to the XMM0 register.
VPCMPISTRM
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The mask result is written to the XMM0 register. Bits [255:128] of the
YMM0 register are cleared.

PCMPISTRM
VPCMPISTRM

Packed Compare Implicit Length
Strings Return Mask

Flag Condition
CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.
AF cleared.
ZF Set if any byte (word) in the second operand is null; otherwise cleared.
SF Set if any byte (word) in the first operand is null; otherwise cleared.
OF Equal to the value of the lsb of the post-processed summary bit vector.

[AMD Public Use]

326 PCMPISTRM, VPCMPISTRM Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRI

rFLAGS Affected

MXCSR Flags Affected
None

Form Subset Feature Flag
PCMPISTRM SSE4.2 CPUID Fn0000_0001_ECX[SSE42] (bit 20)

VPCMPISTRM AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PCMPISTRM xmm1, xmm2/mem128, imm8 66 0F 3A 62 /r ib Compares packed string data in xmm1 and

xmm2 or mem128. Writes a result or mask
to the XMM0 register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPISTRM xmm1, xmm2/mem128, imm8 C4 RXB.03 X.1111.0.01 62 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
M M M 0 0 M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.

Undefined flags are U.

[AMD Public Use]

Instruction Reference PCMPISTRM, VPCMPISTRM 327

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

328 PEXTRB, VPEXTRB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts a byte from a source register and writes it to an 8-bit memory location or to the low-order
byte of a general-purpose register, with zero-extension to 32 or 64 bits. Bits [3:0] of an immediate
byte operand select the byte to be extracted:

There are legacy and extended forms of the instruction:
PEXTRB
The source operand is an XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.
VPEXTRB
The extended form of the instruction has a 128-bit encoding only.
The source operand is an XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.

Instruction Support

PEXTRB
VPEXTRB

Extract
Packed Byte

Value of imm8 [3:0] Source Bits Extracted
0000 [7:0]
0001 [15:8]
0010 [23:16]
0011 [31:24]
0100 [39:32]
0101 [47:40]
0110 [55:48]
0111 [63:56]
1000 [71:64]
1001 [79:72]
1010 [87:80]
1011 [95:88]
1100 [103:96]
1101 [111:104]
1110 [119:112]
1111 [127:120]

Form Subset Feature Flag
PEXTRB SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPEXTRB AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference PEXTRB, VPEXTRB 329

26568—Rev. 3.24—May 2020 AMD64 Technology

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PEXTRB reg/m8, xmm, imm8 66 0F 3A 14 /r ib Extracts an 8-bit value specified by imm8 from xmm

and writes it to m8 or the low-order byte of a general-
purpose register, with zero-extension.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPEXTRB reg/mem8, xmm, imm8 C4 RXB.03 X.1111.0.01 14 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

330 PEXTRD, VPEXTRD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts a doubleword from a source register and writes it to an 32-bit memory location or a 32-bit
general-purpose register. Bits [1:0] of an immediate byte operand select the doubleword to be
extracted:

There are legacy and extended forms of the instruction:

PEXTRD
The encoding is the same as PEXTRQ, with REX.W = 0.
The source operand is an XMM register and the destination is either an 32-bit memory location or a
32-bit general-purpose register.

VPEXTRD
The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPEXTRQ, with VEX.W = 0.
The source operand is an XMM register and the destination is either an 32-bit memory location or a
32-bit general-purpose register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PEXTRD
VPEXTRD

Extract
Packed Doubleword

Value of imm8 [1:0] Source Bits Extracted
00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Form Subset Feature Flag
PEXTRD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPEXTRD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PEXTRD reg32/mem32, xmm, imm8 66 (W0) 0F 3A 16 /r ib Extracts a 32-bit value specified by imm8 from

xmm and writes it to mem32 or reg32.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPEXTRD reg32/mem32, xmm, imm8 C4 RXB.03 0.1111.0.01 16 /r ib

[AMD Public Use]

Instruction Reference PEXTRD, VPEXTRD 331

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PEXTRB, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

332 PEXTRQ, VPEXTRQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts a quadword from a source register and writes it to an 64-bit memory location or to a 64-bit
general-purpose register. Bit [0] of an immediate byte operand selects the quadword to be extracted:

There are legacy and extended forms of the instruction:
PEXTRQ
The encoding is the same as PEXTRD, with REX.W = 1.
The source operand is an XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.
VPEXTRQ
The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPEXTRD, with VEX.W = 1.
The source operand is an XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None

PEXTRQ
VPEXTRQ

Extract
Packed Quadword

Value of imm8 [0] Source Bits Extracted
0 [63:0]
1 [127:64]

Form Subset Feature Flag
PEXTRD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPEXTRD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PEXTRQ reg64/mem64, xmm, imm8 66 (W1) 0F 3A 16 /r ib Extracts a 64-bit value specified by imm8 from

xmm and writes it to mem64 or reg64.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPEXTRQ reg64/mem64, xmm, imm8 C4 RXB.03 1.1111.0.01 16 /r ib

[AMD Public Use]

Instruction Reference PEXTRQ, VPEXTRQ 333

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

334 PEXTRW, VPEXTRW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts a word from a source register and writes it to a 16-bit memory location or to the low-order
word of a general-purpose register, with zero-extension to 32 or 64 bits. Bits [3:0] of an immediate
byte operand select the word to be extracted:

There are legacy and extended forms of the instruction:
PEXTRW
The legacy form of the instruction has SSE2 and SSE4.1 encodings.
The source operand is an XMM register and the destination is the low-order word of a general-pur-
pose register. The extracted word is zero-extended to 32 or 64 bits.
The source operand is an XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.
VPEXTRW
The extended form of the instruction has two 128-bit encodings that correspond to the two legacy
encodings.
The source operand is an XMM register and the destination is the low-order word of a general-pur-
pose register. The extracted word is zero-extended to 32 or 64 bits.
The source operand is an XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PEXTRW
VPEXTRW

Extract Packed Word

Value of imm8 [2:0] Source Bits Extracted
000 [15:0]
001 [31:16]
010 [47:32
011 [63:48]
100 [79:64]
101 [95:80]
110 [111:96]
111 [127:112]

Form Subset Feature Flag
PEXTRW reg SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

PEXTRW reg/mem16 SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)
VPEXTRW AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference PEXTRW, VPEXTRW 335

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PEXTRW reg, xmm, imm8 66 0F C5 /r ib Extracts a 16-bit value specified by imm8 from xmm

and writes it to the low-order byte of a general-
purpose register, with zero-extension.

PEXTRW reg/m16, xmm, imm8 66 0F 3A 15 /r ib Extracts a 16-bit value specified by imm8 from xmm
and writes it to m16 or the low-order byte of a
general-purpose register, with zero-extension.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPEXTRW reg, xmm, imm8 C4 RXB.01 X.1111.0.01 C5 /r ib
VPEXTRW reg/mem16, xmm, imm8 C4 RXB.03 X.1111.0.01 15 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

336 PHADDD, VPHADDD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Adds adjacent 32-bit signed integers in each of two source operands and packs the sums into the des-
tination. If a sum overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set)
and only the low-order 32 bits of the sum are written in the destination.
Adds the 32-bit signed integer values in bits [63:32] and bits [31:0] of the first source operand and
packs the sum into bits [31:0] of the destination; adds the 32-bit signed integer values in bits [127:96]
and bits [95:64] of the first source operand and packs the sum into bits [63:32] of the destination.
Adds the corresponding values in the second source operand and packs the sums into bits [95:64] and
[127:96] of the destination.
Additionally, for the 256-bit form, adds the 32-bit signed integer values in bits [191:160] and bits
[159:128] of the first source operand and packs the sum into bits [159:128] of the destination; adds
the 32-bit signed integer values in bits [255:224] and bits [223:192] of the first source operand and
packs the sum into bits [191:160] of the destination. Adds the corresponding values in the second
source operand and packs the sums into bits [223:192] and [255:224] of the destination.
There are legacy and extended forms of the instruction:
PHADDD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination not affected.

VPHADDD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PHADDD
VPHADDD

Packed Horizontal Add
Doubleword

Form Subset Feature Flag
PHADDD SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPHADDD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPHADDD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PHADDD, VPHADDD 337

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PHADDW, (V)PHADDSW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PHADDD xmm1, xmm2/mem128 66 0F 38 02 /r Adds adjacent pairs of signed integers in xmm1 and

xmm2 or mem128. Writes packed sums to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPHADDD xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 02 /r
VPHADDD ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 02 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

338 PHADDSW, VPHADDSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Adds adjacent 16-bit signed integers in each of two source operands, with saturation, and packs the
16-bit signed sums into the destination.
Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums less than 8000h are saturated
to 8000h.
For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register – either an XMM register or the corresponding YMM register.
src1 is the first source operand. src2 is the second source operand.
Ssum() is a function that returns the saturated 16-bit signed sum of its arguments.

dest[15:0] = Ssum(src1[31:16], src1[15:0])
dest[31:16] = Ssum(src1[63:48], src1[47:32])
dest[47:32] = Ssum(src1[95:80], src1[79:64])
dest[63:48] = Ssum(src1[127:112], src1[111:96])
dest[79:64] = Ssum(src2[31:16], src2[15:0])
dest[95:80] = Ssum(src2[63:48], src2[47:32])
dest[111:96] = Ssum(src2[95:80], src2[79:64])
dest[127:112] = Ssum(src2[127:112], src2[111:96])

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[143:128] = Ssum(src1[159:144], src1[143:128])
dest[159:144] = Ssum(src1[191:176], src1[175:160])
dest[175:160] = Ssum(src1[223:208], src1[207:192])
dest[191:176] = Ssum(src1[255:240], src1[239:224])
dest[207:192] = Ssum(src2[159:144], src2[143:128])
dest[223:208] = Ssum(src2[191:176], src2[175:160])
dest[239:224] = Ssum(src2[223:208], src2[207:192])
dest[255:240] = Ssum(src2[255:240], src2[239:224])

There are legacy and extended forms of the instruction:
PHADDSW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPHADDSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

PHADDSW
VPHADDSW

Packed Horizontal Add with Saturation
Word

[AMD Public Use]

Instruction Reference PHADDSW, VPHADDSW 339

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PHADDD, (V)PHADDW

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PHADDSW SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPHADDSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPHADDSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PHADDSW xmm1, xmm2/mem128 66 0F 38 03 /r Adds adjacent pairs of signed integers in xmm1 and

xmm2 or mem128, with saturation. Writes packed
sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPHADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 03 /r
VPHADDSW ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 03 /r

[AMD Public Use]

340 PHADDSW, VPHADDSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PHADDW, VPHADDW 341

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds adjacent 16-bit signed integers in each of two source operands and packs the 16-bit sums into
the destination. If a sum overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS
is set).
For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register – either an XMM register or the corresponding YMM register.
src1 is the first source operand. src2 is the second source operand.

dest[15:0] = src1[31:16] + src1[15:0]
dest[31:16] = src1[63:48] + src1[47:32]
dest[47:32] = src1[95:80] + src1[79:64]
dest[63:48] = src1[127:112] + src1[111:96]
dest[79:64] = src2[31:16] + src2[15:0]
dest[95:80] = src2[63:48] + src2[47:32]
dest[111:96] = src2[95:80] + src2[79:64]
dest[127:112] = src2[127:112] + src2[111:96]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[143:128] = src1[159:144] + src1[143:128]
dest[159:144] = src1[191:176] + src1[175:160]
dest[175:160] = src1[223:208] + src1[207:192]
dest[191:176] = src1[255:240] + src1[239:224]
dest[207:192] = src2[159:144] + src2[143:128]
dest[223:208] = src2[191:176] + src2[175:160]
dest[239:224] = src2[223:208] + src2[207:192]
dest[255:240] = src2[255:240] + src2[239:224]

There are legacy and extended forms of the instruction:
PHADDW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPHADDW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

PHADDW
VPHADDW

Packed Horizontal Add
Word

[AMD Public Use]

342 PHADDW, VPHADDW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding
.

Related Instructions
(V)PHADDD, (V)PHADDSW

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PHADDW SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPHADDW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPHADDW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PHADDW xmm1, xmm2/mem128 66 0F 38 01 /r Adds adjacent pairs of signed integers in xmm1 and

xmm2 or mem128. Writes packed sums to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPHADDW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 01 /r
VPHADDW ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 01 /r

[AMD Public Use]

Instruction Reference PHADDW, VPHADDW 343

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

344 PHMINPOSUW, VPHMINPOSUW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Finds the minimum unsigned 16-bit value in the source operand and copies it to the low order word
element of the destination. Writes the source position index of the value to bits [18:16] of the destina-
tion and clears bits[127:19] of the destination.
There are legacy and extended forms of the instruction:
PHMINPOSUW
The source operand is an XMM register or 128-bit memory location. The destination is an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VPHMINPOSUW
The extended form of the instruction has a 128-bit encoding only.
The source operand is an XMM register or 128-bit memory location. The destination is an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected
None

MXCSR Flags Affected
None

PHMINPOSUW
VPHMINPOSUW

 Horizontal Minimum and Position

Form Subset Feature Flag
PHMINPOSUW SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPHMINPOSUW AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PHMINPOSUW xmm1, xmm2/mem128 66 0F 38 41 /r Finds the minimum unsigned word element in

xmm2 or mem128, copies it to xmm1[15:0]; writes
its position index to xmm1[18:16], and clears
xmm1[127:19].

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPHMINPOSUW xmm1, xmm2/mem128 C4 RXB.02 X.1111.0.01 41 /r

[AMD Public Use]

Instruction Reference PHMINPOSUW, VPHMINPOSUW 345

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

346 PHSUBD, VPHSUBD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Subtracts adjacent 32-bit signed integers in each of two source operands and packs the differences
into the destination. The higher-order doubleword of each pair is subtracted from the lower-order
doubleword.
Subtracts the 32-bit signed integer value in bits [63:32] of the first source operand from the 32-bit
signed integer value in bits [31:0] of the first source operand and packs the difference into bits [31:0]
of the destination; subtracts the 32-bit signed integer value in bits [127:96] of the first source operand
from the 32-bit signed integer value in bits [95:64] of the first source operand and packs the differ-
ence into bits [63:32] of the destination. Performs the corresponding operations on pairs of 32-bit
signed integer values in the second source operand and packs the differences into bits [95:64] and
[127:96] of the destination.
Additionally, for the 256-bit form, subtracts the 32-bit signed integer value in bits [191:160] of the
first source operand from the 32-bit signed integer value in bits [159:128] of the first source operand
and packs the difference into bits [159:128] of the destination; subtracts the 32-bit signed integer
value in bits [255:224] of the first source operand from the 32-bit integer value in bits [223:192] of
the first source operand and packs the difference into bits [191:160] of the destination. Performs the
corresponding operations on pairs of 32-bit signed integer values in the second source operand and
packs the differences into bits [223:192] and [255:224] of the destination.
There are legacy and extended forms of the instruction:
PHSUBD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPHSUBD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PHSUBD
VPHSUBD

Packed Horizontal Subtract
Doubleword

Form Subset Feature Flag
PHSUBD SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPHSUBD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPHSUBD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PHSUBD, VPHSUBD 347

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PHSUBW, (V)PHSUBSW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PHSUBD xmm1, xmm2/mem128 66 0F 38 06 /r Subtracts adjacent pairs of signed integers in xmm1 and

xmm2 or mem128. Writes packed differences to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPHSUBD xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 06 /r
VPHSUBD ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 06 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

348 PHSUBSW, VPHSUBSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Subtracts adjacent 16-bit signed integers in each of two source operands, with saturation, and packs
the differences into the destination. The higher-order word of each pair is subtracted from the lower-
order word.
Positive differences greater than 7FFFh are saturated to 7FFFh; negative differences less than 8000h
are saturated to 8000h.
For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register – either an XMM register or the corresponding YMM register.
src1 is the first source operand. src2 is the second source operand.
Sdiff(A,B) is a function that returns the saturated 16-bit signed difference A − B.

dest[15:0] = Sdiff(src1[15:0], src1[31:16])
dest[31:16] = Sdiff(src1[47:32], src1[63:48])
dest[47:32] = Sdiff(src1[79:64], src1[95:80])
dest[63:48] = Sdiff(src1[111:96], src1[127:112])
dest[79:64] = Sdiff(src2[15:0], src2[31:16])
dest[95:80] = Sdiff(src2[47:32], src2[63:48])
dest[111:96] = Sdiff(src2[79:64], src2[95:80])
dest[127:112] = Sdiff(src2[111:96], src2[127:112])

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[143:128] = Sdiff(src1[143:128], src1[159:144])
dest[159:144] = Sdiff(src1[175:160], src1[191:176])
dest[175:160] = Sdiff(src1[207:192], src1[223:208])
dest[191:176] = Sdiff(src1[239:224], src1[255:240])
dest[207:192] = Sdiff(src2[143:128], src2[159:144])
dest[223:208] = Sdiff(src2[175:160], src2[191:176])
dest[239:224] = Sdiff(src2[207:192], src2[223:208])
dest[255:240] = Sdiff(src2[239:224], src2[255:240])

There are legacy and extended forms of the instruction:
PHSUBSW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPHSUBSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

PHSUBSW
VPHSUBSW

Packed Horizontal Subtract with Saturation
Word

[AMD Public Use]

Instruction Reference PHSUBSW, VPHSUBSW 349

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PHSUBD, (V)PHSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PHSUBSW SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPHSUBSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPHSUBSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PHSUBSW xmm1, xmm2/mem128 66 0F 38 07 /r Subtracts adjacent pairs of signed integers in xmm1

and xmm2 or mem128, with saturation. Writes packed
differences to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPHSUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 07 /r
VPHSUBSW ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 07 /r

[AMD Public Use]

350 PHSUBSW, VPHSUBSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PHSUBW, VPHSUBW 351

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts adjacent 16-bit signed integers in each of two source operands and packs the differences
into a destination. The higher-order word of each pair is subtracted from the lower-order word.
For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register – either an XMM register or the corresponding YMM register.
src1 is the first source operand. src2 is the second source operand.

dest[15:0] = src1[15:0] − src1[31:16
dest[31:16] = src1[47:32] − src1[63:48]
dest[47:32] = src1[79:64] − src1[95:80]
dest[63:48] = src1[111:96] − src1[127:112]
dest[79:64] = src2[15:0] − src2[31:16]
dest[95:80] = src2[47:32] − src2[63:48]
dest[111:96] = src2[79:64] − src2[95:80]
dest[127:112] = src2[111:96] − src2[127:112]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[143:128] = src1[143:128] − src1[159:144]
dest[159:144] = src1[175:160] − src1[191:176]
dest[175:160] = src1[207:192] − src1[223:208]
dest[191:176] = src1[239:224] − src1[255:240]
dest[207:192] = src2[143:128] − src2[159:144]
dest[223:208] = src2[175:160] − src2[191:176]
dest[239:224] = src2[207:192] − src2[223:208]
dest[255:240] = src2[239:224] − src2[255:240]

There are legacy and extended forms of the instruction:
PHSUBW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.
VPHSUBW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

PHSUBW
VPHSUBW

Packed Horizontal Subtract
Word

[AMD Public Use]

352 PHSUBW, VPHSUBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PHSUBD, (V)PHSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PHSUBW SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPHSUBW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPHSUBW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PHSUBW xmm1, xmm2/mem128 66 0F 38 05 /r Subtracts adjacent pairs of signed integers in xmm1

and xmm2 or mem128. Writes packed differences to
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPHSUBW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 05 /r
VPHSUBW ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 05 /r

[AMD Public Use]

Instruction Reference PHSUBW, VPHSUBW 353

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

354 PINSRB, VPINSRB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Inserts a byte from an 8-bit memory location or the low-order byte of a 32-bit general-purpose regis-
ter into a destination register. Bits [3:0] of an immediate byte operand select the location where the
byte is to be inserted:

There are legacy and extended forms of the instruction:
PINSRB
The source operand is either an 8-bit memory location or the low-order byte of a 32-bit general-pur-
pose register and the destination an XMM register. The other bytes of the destination are not affected.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VPINSRB
The extended form of the instruction has a 128-bit encoding only.
There are two source operands. The first source operand is either an 8-bit memory location or the
low-order byte of a 32-bit general-purpose register and the second source operand is an XMM regis-
ter. The destination is a second XMM register. All the bytes of the second source other than the byte
that corresponds to the location of the inserted byte are copied to the destination. Bits [255:128] of the
YMM register that corresponds to destination are cleared.

PINSRB
VPINSRB

Packed Insert
Byte

Value of imm8 [3:0] Insertion Location
0000 [7:0]
0001 [15:8]
0010 [23:16]
0011 [31:24]
0100 [39:32]
0101 [47:40]
0110 [55:48]
0111 [63:56]
1000 [71:64]
1001 [79:72]
1010 [87:80]
1011 [95:88]
1100 [103:96]
1101 [111:104]
1110 [119:112]
1111 [127:120]

[AMD Public Use]

Instruction Reference PINSRB, VPINSRB 355

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRD, (V)PINSRQ, (V)PINSRW

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PINSRB SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPINSRB AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PINSRB xmm, reg32/mem8, imm8 66 0F 3A 20 /r ib Inserts an 8-bit value selected by imm8 from the

low-order byte of reg32 or from mem8 into xmm.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRB xmm, reg/mem8, xmm, imm8 C4 RXB.03 X.1111.0.01 20 /r ib

[AMD Public Use]

356 PINSRB, VPINSRB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference PINSRD, VPINSRD 357

26568—Rev. 3.24—May 2020 AMD64 Technology

Inserts a doubleword from a 32-bit memory location or a 32-bit general-purpose register into a desti-
nation register. Bits [1:0] of an immediate byte operand select the location where the doubleword is to
be inserted:

There are legacy and extended forms of the instruction:
PINSRD
The encoding is the same as PINSRQ, with REX.W = 0.
The source operand is either a 32-bit memory location or a 32-bit general-purpose register and the
destination an XMM register. The other doublewords of the destination are not affected. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPINSRD
The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPINSRQ, with VEX.W = 0.
There are two source operands. The first source operand is either a 32-bit memory location or a 32-bit
general-purpose register and the second source operand is an XMM register. The destination is a sec-
ond XMM register. All the doublewords of the second source other than the doubleword that corre-
sponds to the location of the inserted doubleword are copied to the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PINSRD
VPINSRD

Packed Insert
Doubleword

Value of imm8 [1:0] Insertion Location
00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Form Subset Feature Flag
PINSRD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPINSRD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

358 PINSRD, VPINSRD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRQ, (V)PINSRW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PINSRD xmm, reg32/mem32, imm8 66 (W0) 0F 3A 22 /r ib Inserts a 32-bit value selected by imm8 from

reg32 or mem32 into xmm.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRD xmm, reg32/mem32, xmm, imm8 C4 RXB.03 0.1111.0.01 22 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference PINSRQ, VPINSRQ 359

26568—Rev. 3.24—May 2020 AMD64 Technology

Inserts a quadword from a 64-bit memory location or a 64-bit general-purpose register into a destina-
tion register. Bit [0] of an immediate byte operand selects the location where the doubleword is to be
inserted:

There are legacy and extended forms of the instruction:
PINSRQ
The encoding is the same as PINSRD, with REX.W = 1.
The source operand is either a 64-bit memory location or a 64-bit general-purpose register and the
destination an XMM register. The other quadwords of the destination are not affected. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.
VPINSRQ
The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPINSRD, with VEX.W = 1.
There are two source operands. The first source operand is either a 64-bit memory location or a 64-bit
general-purpose register and the second source operand is an XMM register. The destination is a sec-
ond XMM register. All the quadwords of the second source other than the quadword that corresponds
to the location of the inserted quadword are copied to the destination. Bits [255:128] of the YMM reg-
ister that corresponds to the destination XMM registers are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PINSRQ
VPINSRQ

Packed Insert
Quadword

Value of imm8 [0] Insertion Location
0 [63:0]
1 [127:64]

Form Subset Feature Flag
PINSRQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPINSRQ AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PINSRQ xmm, reg64/mem64, imm8 66 (W1) 0F 3A 22 /r ib Inserts a 64-bit value selected by imm8 from

reg64 or mem64 into xmm.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRQ xmm, reg64/mem64, xmm, imm8 C4 RXB.03 1.1111.0.01 22 /r ib

[AMD Public Use]

360 PINSRQ, VPINSRQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference PINSRW, VPINSRW 361

26568—Rev. 3.24—May 2020 AMD64 Technology

Inserts a word from a 16-bit memory location or the low-order word of a 32-bit general-purpose reg-
ister into a destination register. Bits [2:0] of an immediate byte operand select the location where the
byte is to be inserted:

There are legacy and extended forms of the instruction:
PINSRW
The source operand is either a 16-bit memory location or the low-order word of a 32-bit general-pur-
pose register and the destination an XMM register. The other words of the destination are not
affected. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VPINSRW
The extended form of the instruction has a 128-bit encoding only.
There are two source operands. The first source operand is either a 16-bit memory location or the
low-order word of a 32-bit general-purpose register and the second source operand is an XMM regis-
ter. The destination is an XMM register. All the words of the second source other than the word that
corresponds to the location of the inserted word are copied to the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PINSRW
VPINSRW

Packed Insert Word

Value of imm8 [2:0] Insertion Location
000 [15:0]
001 [31:16]
010 [47:32
011 [63:48]
100 [79:64]
101 [95:80]
110 [111:96]
111 [127:112]

Form Subset Feature Flag
PINSRW SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VPINSRW AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

362 PINSRW, VPINSRW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PINSRW xmm, reg32/mem16, imm8 66 0F C4 /r ib Inserts a 16-bit value selected by imm8 from the

low-order word of reg32 or from mem16 into xmm.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRW xmm, reg32/mem16, xmm, imm8 C4 RXB.01 X.1111.0.01 C4 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference PMADDUBSW, VPMADDUBSW 363

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies and adds sets of two packed 8-bit unsigned values from the first source operand and two
packed 8-bit signed values from the second source operand, with signed saturation; writes eight 16-bit
sums to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register – either an XMM register or the corresponding YMM register.
src1 is the first source operand. src2 is the second source operand.
Ssum() is a function that returns the saturated 16-bit signed sum of its arguments.

dest[15:0] = Ssum(src1[7:0] * src2[7:0], src1[15:8] * src2[15:8])
dest[31:16] = Ssum(src1[23:16] * src2[23:16], src1[31:24] * src2[31:24])
dest[47:32] = Ssum(src1[39:32] * src2[39:32], src1[47:40] * src2[47:40])
dest[63:48] = Ssum(src1[55:48] * src2[55:48], src1[63:56] * src2[63:56])
dest[79:64] = Ssum(src1[71:64] * src2[71:64], src1[79:72] * src2[79:72])
dest[95:80] = Ssum(src1[87:80] * src2[87:80], src1[95:88] * src2[95:88])
dest[111:96] = Ssum(src1[103:96] * src2[103:96]], src1[111:104] * src2[111:104])
dest[127:112] = Ssum(src1[119:112] * src2[119:112], src1[127:120] * src2[127:120])

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[143:128] = Ssum(src1[135:128] * src2[135:128], src1[143:136] * src2[143:136])
dest[159:144] = Ssum(src1[151:144] * src2[151:144], src1[159:152] * src2[159:152])
dest[175:160] = Ssum(src1[167:160] * src2[167:160], src1[175:168] * src2[175:168])
dest[191:176] = Ssum(src1[183:176] * src2[183:176], src1[191:184] * src2[191:184])
dest[207:192] = Ssum(src1[199:192] * src2[199:192], src1[207:200] * src2[207:200])
dest[223:208] = Ssum(src1[215:208] * src2[215:208], src1[223:216] * src2[223:216])
dest[239:224] = Ssum(src1[231:224] * src2[231:224], src1[239:232] * src2[239:232])
dest[255:240] = Ssum(src1[247:240] * src2[247:240], src1[255:248] * src2[255:248])

There are legacy and extended forms of the instruction:
PMADDUBSW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMADDUBSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

PMADDUBSW
VPMADDUBSW

Packed Multiply and Add
Unsigned Byte to Signed Word

[AMD Public Use]

364 PMADDUBSW, VPMADDUBSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PMADDWD

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PMADDUBSW SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPMADDUBSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMADDUBSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMADDUBSW xmm1, xmm2/mem128 66 0F 38 04 /r Multiplies packed 8-bit unsigned values in xmm1 and

packed 8-bit signed values xmm2 / mem128, adds
the products, and writes saturated sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMADDUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 04 /r
VPMADDUBSW ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 04 /r

[AMD Public Use]

Instruction Reference PMADDUBSW, VPMADDUBSW 365

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

366 PMADDWD, VPMADDWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies and adds sets of four packed 16-bit signed values from two source registers; writes four
32-bit sums to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register – either an XMM register or the corresponding YMM register.
src1 is the first source operand. src2 is the second source operand.

dest[31:0] = (src1[15:0] * src2[15:0]) + (src1[31:16] * src2[31:16])
dest[63:32] = (src1[47:32] * src2[47:32]) + (src1[63:48] * src2[63:48])
dest[95:64] = (src1[79:64] * src2[79:64]) + (src1[95:80] * src2[95:80])
dest[127:96] = (src1[111:96] * src2[111:96]) + (src1[127:112] * src2[127:112])

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[159:128] = (src1[143:128] * src2[143:128]) + (src1[159:144] * src2[159:144])
dest[191:160] = (src1[175:160] * src2[175:160]) + (src1[191:176] * src2[191:176])
dest[223:192] = (src1[207:192] * src2[207:192]) + (src1[223:208] * src2[223:208])
dest[255:224] = (src1[239:224] * src2[239:224]) + (src1[255:240] * src2[255:240])

When all four of the signed 16-bit source operands in a set have the value 8000h, the 32-bit overflow
wraps around to 8000_0000h. There are no other overflow cases.
There are legacy and extended forms of the instruction:
PMADDWD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMADDWD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PMADDWD
VPMADDWD

Packed Multiply and Add
Word to Doubleword

Form Subset Feature Flag
PMADDWD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMADDWD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMADDWD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PMADDWD, VPMADDWD 367

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PMADDUBSW, (V)PMULHUW, (V)PMULHW, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PMADDWD xmm1, xmm2/mem128 66 0F F5 /r Multiplies packed 16-bit signed values in xmm1 and

xmm2 or mem128, adds the products, and writes the
sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMADDWD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 F5 /r
VPMADDWD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 F5 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

368 PMAXSB, VPMAXSB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 8-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
byte of the destination.
The 128-bit form of the instruction compares 16 pairs of 8-bit signed integer values; the 256-bit form
compares 32 pairs.
There are legacy and extended forms of the instruction:
PMAXSB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMAXSB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMAXSB
VPMAXSB

Packed Maximum
Signed Bytes

Form Subset Feature Flag
PMAXSB SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMAXSB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMAXSB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMAXSB xmm1, xmm2/mem128 66 0F 38 3C /r Compares 16 pairs of packed 8-bit values in xmm1 and

xmm2 or mem128 and writes the greater values to the
corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXSB xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 3C /r
VPMAXSB ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 3C /r

[AMD Public Use]

Instruction Reference PMAXSB, VPMAXSB 369

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

370 PMAXSD, VPMAXSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 32-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
doubleword of the destination.
The 128-bit form of the instruction compares four pairs of 32-bit signed integer values; the 256-bit
form compares eight.
There are legacy and extended forms of the instruction:
PMAXSD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMAXSD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMAXSD
VPMAXSD

Packed Maximum
Signed Doublewords

Form Subset Feature Flag
PMAXSD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMAXSD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMAXSD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMAXSD xmm1, xmm2/mem128 66 0F 38 3D /r Compares four pairs of packed 32-bit values in xmm1

and xmm2 or mem128 and writes the greater values to
the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXSD xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 3D /r
VPMAXSD ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 3D /r

[AMD Public Use]

Instruction Reference PMAXSD, VPMAXSD 371

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMAXSB, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

372 PMAXSW, VPMAXSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 16-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
word of the destination.
The 128-bit form of the instruction compares eight pairs of 16-bit signed integer values; the 256-bit
form compares 16 pairs.
There are legacy and extended forms of the instruction:
PMAXSW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMAXSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMAXSW
VPMAXSW

Packed Maximum
Signed Words

Form Subset Feature Flag
PMAXSW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMAXSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMAXSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMAXSW xmm1, xmm2/mem128 66 0F EE /r Compares eight pairs of packed 16-bit values in xmm1

and xmm2 or mem128 and writes the greater values to
the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXSW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 EE /r
VPMAXSW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 EE /r

[AMD Public Use]

Instruction Reference PMAXSW, VPMAXSW 373

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

374 PMAXUB, VPMAXUB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 8-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
byte of the destination.
The 128-bit form of the instruction compares 16 pairs of 8-bit unsigned integer values; the 256-bit
form compares 32 pairs.
There are legacy and extended forms of the instruction:
PMAXUB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMAXUB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMAXUB
VPMAXUB

Packed Maximum
Unsigned Bytes

Form Subset Feature Flag
PMAXUB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMAXUB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMAXUB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMAXUB xmm1, xmm2/mem128 66 0F DE /r Compares 16 pairs of packed unsigned 8-bit values in

xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXUB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 DE /r
VPMAXUB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 DE /r

[AMD Public Use]

Instruction Reference PMAXUB, VPMAXUB 375

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected
None

MXCSR Flags Affected
None

None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

376 PMAXUD, VPMAXUD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 32-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
doubleword of the destination.
The 128-bit form of the instruction compares four pairs of 32-bit unsigned integer values; the 256-bit
form compares eight.
There are legacy and extended forms of the instruction:
PMAXUD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMAXUD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMAXUD
VPMAXUD

Packed Maximum
Unsigned Doublewords

Form Subset Feature Flag
PMAXUD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMAXUD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMAXUD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMAXUD xmm1, xmm2/mem128 66 0F 38 3F /r Compares four pairs of packed unsigned 32-bit values

in xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXUD xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 3F /r
VPMAXUD ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 3F /r

[AMD Public Use]

Instruction Reference PMAXUD, VPMAXUD 377

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

378 PMAXUW, VPMAXUW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 16-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
word of the destination.
The 128-bit form of the instruction compares eight pairs of 16-bit unsigned integer values; the 256-bit
form compares 16 pairs.
There are legacy and extended forms of the instruction:
PMAXUW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMAXUW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMAXUW
VPMAXUW

Packed Maximum
Unsigned Words

Form Subset Feature Flag
PMAXUW SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMAXUW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMAXUW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMAXUW xmm1, xmm2/mem128 66 0F 38 3E /r Compares eight pairs of packed unsigned 16-bit values

in xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXUW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 3E /r
VPMAXUW ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 3E /r

[AMD Public Use]

Instruction Reference PMAXUW, VPMAXUW 379

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

380 PMINSB, VPMINSB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 8-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
byte of the destination.
The 128-bit form of the instruction compares 16 pairs of 8-bit signed integer values; the 256-bit form
compares 32 pairs.
There are legacy and extended forms of the instruction:
PMINSB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMINSB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMINSB
VPMINSB

Packed Minimum
Signed Bytes

Form Subset Feature Flag
PMINSB SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMINSB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMINSB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMINSB xmm1, xmm2/mem128 66 0F 38 38 /r Compares 16 pairs of packed 8-bit values in xmm1 and

xmm2 or mem128 and writes the lesser values to the
corresponding positions in xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINSB xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 38 /r
VPMINSB ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 38 /r

[AMD Public Use]

Instruction Reference PMINSB, VPMINSB 381

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

382 PMINSD, VPMINSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 32-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
doubleword of the destination.
The 128-bit form of the instruction compares four pairs of 32-bit signed integer values; the 256-bit
form compares eight.
There are legacy and extended forms of the instruction:
PMINSD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMINSD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMINSD
VPMINSD

Packed Minimum
Signed Doublewords

Form Subset Feature Flag
PMINSD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMINSD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMINSD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMINSD xmm1, xmm2/mem128 66 0F 38 39 /r Compares four pairs of packed 32-bit values in xmm1

and xmm2 or mem128 and writes the lesser values to
the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINSD xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 39 /r
VPMINSD ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 39 /r

[AMD Public Use]

Instruction Reference PMINSD, VPMINSD 383

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMINSB, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

384 PMINSW, VPMINSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 16-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
word of the destination.
The 128-bit form of the instruction compares eight pairs of 16-bit signed integer values; the 256-bit
form compares 16 pairs.
There are legacy and extended forms of the instruction:
PMINSW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMINSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMINSW
VPMINSW

Packed Minimum Signed Words

Form Subset Feature Flag
PMINSW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMINSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMINSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMINSW xmm1, xmm2/mem128 66 0F EA /r Compares eight pairs of packed 16-bit values in xmm1

and xmm2 or mem128 and writes the lesser values to the
corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINSW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 EA /r
VPMINSW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 EA /r

[AMD Public Use]

Instruction Reference PMINSW, VPMINSW 385

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

386 PMINUB, VPMINUB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 8-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
byte of the destination.
The 128-bit form of the instruction compares 16 pairs of 8-bit unsigned integer values; the 256-bit
form compares 32 pairs.
There are legacy and extended forms of the instruction:
PMINUB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMINUB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMINUB
VPMINUB

Packed Minimum
Unsigned Bytes

Form Subset Feature Flag
PMINUB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMINUB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMINUB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMINUB xmm1, xmm2/mem128 66 0F DA /r Compares 16 pairs of packed unsigned 8-bit values in

xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINUB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 DA /r
VPMINUB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 DA /r

[AMD Public Use]

Instruction Reference PMINUB, VPMINUB 387

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUD, (V)PMINUW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

388 PMINUD, VPMINUD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 32-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
doubleword of the destination.
The 128-bit form of the instruction compares four pairs of 32-bit unsigned integer values; the 256-bit
form compares eight.
There are legacy and extended forms of the instruction:
PMINUD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMINUD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMINUD
VPMINUD

Packed Minimum
Unsigned Doublewords

Form Subset Feature Flag
PMINUD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMINUD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMINUD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMINUD xmm1, xmm2/mem128 66 0F 38 3B /r Compares four pairs of packed unsigned 32-bit values

in xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINUD xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 3B /r
VPMINUD ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 3B /r

[AMD Public Use]

Instruction Reference PMINUD, VPMINUD 389

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

390 PMINUW, VPMINUW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares each packed 16-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
word of the destination.
The 128-bit form of the instruction compares eight pairs of 16-bit unsigned integer values; the 256-bit
form compares 16 pairs.
There are legacy and extended forms of the instruction:
PMINUW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMINUW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMINUW
VPMINUW

Packed Minimum Unsigned Words

Form Subset Feature Flag
PMINUW SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMINUW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMINUW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMINUW xmm1, xmm2/mem128 66 0F 38 3A /r Compares eight pairs of packed unsigned 16-bit values

in xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINUW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 3A /r
VPMINUW ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 3A /r

[AMD Public Use]

Instruction Reference PMINUW, VPMINUW 391

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

392 PMOVMSKB, VPMOVMSKB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies the value of the most-significant bit of each byte element of the source operand to create a 16
or 32 bit mask value, zero-extends the value, and writes it to the destination.

There are legacy and extended forms of the instruction:
PMOVMSKB
The source operand is an XMM register. The destination is a 32-bit general purpose register. The
mask is zero-extended to fill the destination register, the mask occupies bits [15:0].
VPMOVMSKB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is an XMM register. The destination is a 64-bit general purpose register. The
mask is zero-extended to fill the destination register, the mask occupies bits [15:0].
YMM Encoding
The source operand is a YMM register. The destination is a 64-bit general purpose register. The mask
is zero-extended to fill the destination register, the mask occupies bits [31:0].

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)MOVMSKPD, (V)MOVMSKPS

PMOVMSKB
VPMOVMSKB

Packed Move Mask
Byte

Form Subset Feature Flag
PMOVMSKB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMOVMSKB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVMSKB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVMSKB reg32, xmm1 66 0F D7 /r Moves a zero-extended mask consisting of the most-

significant bit of each byte in xmm1 to a 32-bit general-
purpose register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVMSKB reg64, xmm1 C4 RXB.01 X.1111.0.01 D7 /r
VMOVMSKB reg64, ymm1 C4 RXB.01 X.1111.1.01 D7 /r

[AMD Public Use]

Instruction Reference PMOVMSKB, VPMOVMSKB 393

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv field ! = 1111b.
A VEX.L field = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — SSE, AVX and AVX2 exception
A — AVX, AVX2exception
S — SSE exception

[AMD Public Use]

394 PMOVSXBD, VPMOVSXBD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Sign-extends four or eight packed 8-bit signed integers in the source operand to 32 bits and writes the
packed doubleword signed integers to the destination.
If the source operand is a register, the 8-bit signed integers are taken from the least-significant bytes
of the register.
There are legacy and extended forms of the instruction:
PMOVSXBD
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVSXBD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVSXBD
VPMOVSXBD

 Packed Move with Sign-Extension
Byte to Doubleword

Form Subset Feature Flag
PMOVSXBD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVSXBD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVSXBD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVSXBD xmm1, xmm2/mem32 66 0F 38 21 /r Sign-extends four packed signed 8-bit

integers in the four low bytes of xmm2 or
mem32 and writes four packed signed
32-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXBD xmm1, xmm2/mem32 C4 RXB.02 X.1111.0.01 21 /r
VPMOVSXBD ymm1, xmm2/mem64 C4 RXB.02 X.1111.1.01 21 /r

[AMD Public Use]

Instruction Reference PMOVSXBD, VPMOVSXBD 395

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

396 PMOVSXBQ, VPMOVSXBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Sign-extends two or four packed 8-bit signed integers in the source operand to 64 bits and writes the
packed quadword signed integers to the destination.
If the source operand is a register, the 8-bit signed integers are taken from the least-significant bytes
of the register.
There are legacy and extended forms of the instruction:
PMOVSXBQ
The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVSXBQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 32-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVSXBQ
VPMOVSXBQ

 Packed Move with Sign Extension
Byte to Quadword

Form Subset Feature Flag
PMOVSXBQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVSXBQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVSXBQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVSXBQ xmm1, xmm2/mem16 66 0F 38 22 /r Sign-extends two packed signed 8-bit

integers in the two low bytes of xmm2
or mem16 and writes two packed
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXBQ xmm1, xmm2/mem16 C4 RXB.02 X.1111.0.01 22 /r
VPMOVSXBQ ymm1, xmm2/mem32 C4 RXB.02 X.1111.1.01 22 /r

[AMD Public Use]

Instruction Reference PMOVSXBQ, VPMOVSXBQ 397

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

398 PMOVSXBW, VPMOVSXBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Sign-extends eight or sixteen packed 8-bit signed integers in the source operand to 16 bits and writes
the packed word signed integers to the destination.
If the source operand is a register, the eight 8-bit signed integers are taken from the lower half of the
register.
There are legacy and extended forms of the instruction:

PMOVSXBW
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXBW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 128-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVSXBW
VPMOVSXBW

 Packed Move with Sign Extension
Byte to Word

Form Subset Feature Flag
PMOVSXBW SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVSXBW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVSXBW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVSXBW xmm1, xmm2/mem64 66 0F 38 20 /r Sign-extends eight packed signed 8-bit

integers in the eight low bytes of xmm2 or
mem64 and writes eight packed signed
16-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXBW xmm1, xmm2/mem64 C4 RXB.02 X.1111.0.01 20 /r
VPMOVSXBW ymm1, xmm2/mem128 C4 RXB.02 X.1111.1.01 20 /r

[AMD Public Use]

Instruction Reference PMOVSXBW, VPMOVSXBW 399

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

400 PMOVSXDQ, VPMOVSXDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Sign-extends two or four packed 32-bit signed integers in the source operand to 64 bits and writes the
packed quadword signed integers to the destination.
If the source operand is a register, the two 32-bit signed integers are taken from the lower half of the
register.
There are legacy and extended forms of the instruction:
PMOVSXDQ
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVSXDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 128-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVSXDQ
VPMOVSXDQ

 Packed Move with Sign-Extension
Doubleword to Quadword

Form Subset Feature Flag
PMOVSXDQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVSXDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVSXDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVSXDQ xmm1, xmm2/mem64 66 0F 38 25 /r Sign-extends two packed signed 32-bit

integers in the two low doublewords of
xmm2 or mem64 and writes two packed
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXDQ xmm1, xmm2/mem64 C4 RXB.02 X.1111.0.01 25 /r
VPMOVSXDQ ymm1, xmm2/mem128 C4 RXB.02 X.1111.1.01 25 /r

[AMD Public Use]

Instruction Reference PMOVSXDQ, VPMOVSXDQ 401

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXWD, (V)PMOVSXWQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

402 PMOVSXWD, VPMOVSXWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Sign-extends four or eight packed 16-bit signed integers in the source operand to 32 bits and writes
the packed doubleword signed integers to the destination.
If the source operand is a register, the four 16-bit signed integers are taken from the lower half of the
register.
There are legacy and extended forms of the instruction:
PMOVSXWD
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVSXWD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 128-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVSXWD
VPMOVSXWD

 Packed Move with Sign-Extension
Word to Doubleword

Form Subset Feature Flag
PMOVSXWD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVSXWD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVSXWD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVSXWD xmm1, xmm2/mem64 66 0F 38 23 /r Sign-extends four packed signed 16-bit

integers in the four low words of xmm2 or
mem64 and writes four packed signed 32-bit
integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXWD xmm1, xmm2/mem64 C4 RXB.02 X.1111.0.01 23 /r
VPMOVSXWD ymm1, xmm2/mem128 C4 RXB.02 X.1111.1.01 23 /r

[AMD Public Use]

Instruction Reference PMOVSXWD, VPMOVSXWD 403

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

404 PMOVSXWQ, VPMOVSXWQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Sign-extends two or four packed 16-bit signed integers to 64 bits and writes the packed quadword
signed integers to the destination.
If the source operand is a register, the 16-bit signed integers are taken from least-significant words of
the register.
There are legacy and extended forms of the instruction:
PMOVSXWQ
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVSXWQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVSXWQ
VPMOVSXWQ

 Packed Move with Sign-Extension
Word to Quadword

Form Subset Feature Flag
PMOVSXWQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVSXWQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVSXWQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVSXWQ xmm1, xmm2/mem32 66 0F 38 24 /r Sign-extends two packed signed 16-bit

integers in the two low words of xmm2 or
mem32 and writes two packed signed
64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXWQ xmm1, xmm2/mem32 C4 RXB.02 X.1111.0.01 24 /r
VPMOVSXWQ ymm1, xmm2/mem64 C4 RXB.02 X.1111.1.01 24 /r

[AMD Public Use]

Instruction Reference PMOVSXWQ, VPMOVSXWQ 405

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

406 PMOVZXBD, VPMOVZXBD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Zero-extends four or eight packed 8-bit unsigned integers in the source operand to 32 bits and writes
the packed doubleword positive-signed integers to the destination.
If the source operand is a register, the 8-bit signed integers are taken from the least-significant bytes
of the register.
There are legacy and extended forms of the instruction:
PMOVZXBD
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVZXBD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVZXBD
VPMOVZXBD

 Packed Move with Zero-Extension
Byte to Doubleword

Form Subset Feature Flag
PMOVZXBD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVZXBD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVZXBD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVZXBD xmm1, xmm2/mem32 66 0F 38 31 /r Zero-extends four packed unsigned 8-bit

integers in the four low bytes of xmm2 or
mem32 and writes four packed positive-
signed 32-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXBD xmm1, xmm2/mem32 C4 RXB.02 X.1111.0.01 31 /r
VPMOVZXBD ymm1, xmm2/mem64 C4 RXB.02 X.1111.1.01 31 /r

[AMD Public Use]

Instruction Reference PMOVZXBD, VPMOVZXBD 407

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

408 PMOVZXBQ, VPMOVZXBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Zero-extends two or four packed 8-bit unsigned integers in the source operand to 64 bits and writes
the packed quadword positive-signed integers to the destination.
If the source operand is a register, the 8-bit signed integers are taken from the least-significant bytes
of the register.
There are legacy and extended forms of the instruction:
PMOVZXBQ
The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVZXBQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 32-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVZXBQ
VPMOVZXBQ

 Packed Move Byte to Quadword
with Zero-Extension

Form Subset Feature Flag
PMOVZXBQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVZXBQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVZXBQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVZXBQ xmm1, xmm2/mem16 66 0F 38 32 /r Zero-extends two packed unsigned 8-bit

integers in the two low bytes of xmm2 or
mem16 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXBQ xmm1, xmm2/mem16 C4 RXB.02 X.1111.0.01 32 /r
VPMOVZXBQ ymm1, xmm2/mem32 C4 RXB.02 X.1111.1.01 32 /r

[AMD Public Use]

Instruction Reference PMOVZXBQ, VPMOVZXBQ 409

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

410 PMOVZXBW, VPMOVZXBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Zero-extends eight or sixteen packed 8-bit unsigned integers in the source operand to 16 bits and
writes the packed word positive-signed integers to the destination.
If the source operand is a register, the eight 8-bit signed integers are taken from the lower half of the
register.
There are legacy and extended forms of the instruction:
PMOVZXBW
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVZXBW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 128-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVZXBW
VPMOVZXBW

 Packed Move Byte to Word with Zero-Extension

Form Subset Feature Flag
PMOVZXBW SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVZXBW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVZXBW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVZXBW xmm1, xmm2/mem64 66 0F 38 30 /r Zero-extends eight packed unsigned 8-bit

integers in the eight low bytes of xmm2 or
mem64 and writes eight packed positive-
signed 16-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXBW xmm1, xmm2/mem64 C4 RXB.02 X.1111.0.01 30 /r
VPMOVZXBW ymm1, xmm2/mem128 C4 RXB.02 X.1111.1.01 30 /r

[AMD Public Use]

Instruction Reference PMOVZXBW, VPMOVZXBW 411

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

412 PMOVZXDQ, VPMOVZXDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Zero-extends two or four packed 32-bit unsigned integers in the source operand to 64 bits and writes
the packed quadword positive-signed integers to the destination.
If the source operand is a register, the two 32-bit signed integers are taken from the lower half of the
register.
There are legacy and extended forms of the instruction:
PMOVZXDQ
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVZXDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 128-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVZXDQ
VPMOVZXDQ

 Packed Move with Zero-Extension
Doubleword to Quadword

Form Subset Feature Flag
PMOVZXDQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVZXDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVZXDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVZXDQ xmm1, xmm2/mem64 66 0F 38 35 /r Zero-extends two packed unsigned 32-bit

integers in the two low doublewords of xmm2
or mem64 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXDQ xmm1, xmm2/mem64 C4 RXB.02 X.1111.0.01 35 /r
VPMOVZXDQ ymm1, xmm2/mem128 C4 RXB.02 X.1111.1.01 35 /r

[AMD Public Use]

Instruction Reference PMOVZXDQ, VPMOVZXDQ 413

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXWD, (V)PMOVZXWQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

414 PMOVZXWD, VPMOVZXWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Zero-extends four or eight packed 16-bit unsigned integers in the source operand to 32 bits and writes
the packed doubleword positive-signed integers to the destination.
If the source operand is a register, the four 16-bit signed integers are taken from the lower half of the
register.
There are legacy and extended forms of the instruction:
PMOVZXWD
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVZXWD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 128-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVZXWD
VPMOVZXWD

 Packed Move Word to Doubleword
with Zero-Extension

Form Subset Feature Flag
PMOVZXWD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVZXWD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVZXWD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVZXWD xmm1, xmm2/mem64 66 0F 38 33 /r Zero-extends four packed unsigned 16-bit

integers in the four low words of xmm2 or
mem64 and writes four packed positive-
signed 32-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXWD xmm1, xmm2/mem64 C4 RXB.02 X.1111.0.01 33 /r
VPMOVZXWD ymm1, xmm2/mem128 C4 RXB.02 X.1111.1.01 33 /r

[AMD Public Use]

Instruction Reference PMOVZXWD, VPMOVZXWD 415

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

416 PMOVZXWQ, VPMOVZXWQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Zero-extends two or four packed 16-bit unsigned integers to 64 bits and writes the packed quadword
positive signed integers to the destination.
If the source operand is a register, the 16-bit signed integers are taken from least-significant words of
the register.
There are legacy and extended forms of the instruction:
PMOVZXWQ
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPMOVZXWQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either an XMM register or a 64-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMOVZXWQ
VPMOVZXWQ

 Packed Move with Zero-Extension
Word to Quadword

Form Subset Feature Flag
PMOVZXWQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMOVZXWQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMOVZXWQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMOVZXWQ xmm1, xmm2/mem32 66 0F 38 34 /r Zero-extends two packed unsigned 16-bit

integers in the two low words of xmm2 or
mem32 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXWQ xmm1, xmm2/mem32 C4 RXB.02 X.1111.0.01 34 /r
VPMOVZXWQ ymm1, xmm2/mem64 C4 RXB.02 X.1111.1.01 34 /r

[AMD Public Use]

Instruction Reference PMOVZXWQ, VPMOVZXWQ 417

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

418 PMULDQ, VPMULDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies two or four pairs of 32-bit signed integers in the first and second source operands and
writes two or four packed quadword signed integer products to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register – either an XMM register or the corresponding YMM register.
src1 is the first source operand. src2 is the second source operand.

dest[63:0] = (src1[31:0] * src2[31:0])
dest[127:64] = (src1[95:64] * src2[95:64])

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[191:128] = (src1[159:128] * src2[159:128])
dest[255:192] = (src1[223:192] * src2[223:192])

There are legacy and extended forms of the instruction:
PMULDQ
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMULDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PMULDQ
VPMULDQ

 Packed Multiply
Signed Doubleword to Quadword

Form Subset Feature Flag
PMULDQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMULDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMULDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PMULDQ, VPMULDQ 419

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PMULLD, (V)PMULHW, (V)PMULHUW,(V)PMULUDQ, (V)PMULLW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PMULDQ xmm1, xmm2/mem128 66 0F 38 28 /r Multiplies two packed 32-bit signed integers in

xmm1[31:0] and xmm1[95:64] by the
corresponding values in xmm2 or mem128.
Writes packed 64-bit signed integer products to
xmm1[63:0] and xmm1[127:64].

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULDQ xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 28 /r
VPMULDQ ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 28 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

420 PMULHRSW, VPMULHRSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies each packed 16-bit signed value in the first source operand by the corresponding value in
the second source operand, truncates the 32-bit product to the 18 most significant bits by right-shift-
ing, then rounds the truncated value by adding 1 to its least-significant bit. Writes bits [16:1] of the
sum to the corresponding word of the destination.

There are legacy and extended forms of the instruction:
PMULHRSW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMULHRSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMULHRSW
VPMULHRSW

Packed Multiply High with Round and Scale
Words

Form Subset Feature Flag
PMULHRSW SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPMULHRSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMULHRSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMULHRSW xmm1, xmm2/mem128 66 0F 38 0B /r Multiplies each packed 16-bit signed value in xmm1

by the corresponding value in xmm2 or mem128,
truncates product to 18 bits, rounds by adding 1.
Writes bits [16:1] of the sum to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULHRSW xmm1, xmm2, xmm3/mem128 C4 RXB.2 X.src1.0.01 0B /r
VPMULHRSW ymm1, ymm2, ymm3/mem256 C4 RXB.2 X.src1.1.01 0B /r

[AMD Public Use]

Instruction Reference PMULHRSW, VPMULHRSW 421

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
None

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

422 PMULHUW, VPMULHUW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies each packed 16-bit unsigned value in the first source operand by the corresponding value
in the second source operand; writes the high-order 16 bits of each 32-bit product to the correspond-
ing word of the destination.

There are legacy and extended forms of the instruction:
PMULHUW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMULHUW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMULHUW
VPMULHUW

Packed Multiply High
Unsigned Word

Form Subset Feature Flag
PMULHUW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMULHUW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMULHUW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMULHUW xmm1, xmm2/mem128 66 0F E4 /r Multiplies packed 16-bit unsigned values in xmm1 by

the corresponding values in xmm2 or mem128. Writes
bits [31:16] of each product to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULHUW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 E4 /r
VPMULHUW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 E4 /r

[AMD Public Use]

Instruction Reference PMULHUW, VPMULHUW 423

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMULDQ, (V)PMULHW, (V)PMULLD, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

424 PMULHW, VPMULHW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies each packed 16-bit signed value in the first source operand by the corresponding value in
the second source operand; writes the high-order 16 bits of each 32-bit product to the corresponding
word of the destination.

There are legacy and extended forms of the instruction:
PMULHW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMULHW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMULHW
VPMULHW

Packed Multiply High
Signed Word

Form Subset Feature Flag
PMULHW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMULHW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMULHW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMULHW xmm1, xmm2/mem128 66 0F E5 /r Multiplies packed 16-bit signed values in xmm1 by the

corresponding values in xmm2 or mem128. Writes bits
[31:16] of each product to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULHW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 E5 /r
VPMULHW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 E5 /r

[AMD Public Use]

Instruction Reference PMULHW, VPMULHW 425

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMULDQ, (V)PMULHUW, (V)PMULLD, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

426 PMULLD, VPMULLD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies four packed 32-bit signed integers in the first source operand by the corresponding values
in the second source operand and writes bits [31:0] of each 64-bit product to the corresponding 32-bit
element of the destination.

There are legacy and extended forms of the instruction:
PMULLD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMULLD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMULLD
VPMULLD

 Packed Multiply and Store Low
Signed Doubleword

Form Subset Feature Flag
PMULLD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPMULLD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMULLD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMULLD xmm1, xmm2/mem128 66 0F 38 40 /r Multiplies four packed 32-bit signed integers in

xmm1 by corresponding values in xmm2 or
m128. Writes bits [31:0] of each 64-bit product to
the corresponding 32-bit element of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULLD xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 40 /r
VPMULLD ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 40 /r

[AMD Public Use]

Instruction Reference PMULLD, VPMULLD 427

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMULDQ, (V)PMULHUW, (V)PMULHW, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

428 PMULLW, VPMULLW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies eight packed 16-bit signed integers in the first source operand by the corresponding values
in the second source operand and writes bits [15:0] of each 32-bit product to the corresponding 16-bit
element of the destination.

There are legacy and extended forms of the instruction:
PMULLW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMULLW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PMULLW
VPMULLW

Packed Multiply Low
Signed Word

Form Subset Feature Flag
PMULLW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMULLW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMULLW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PMULLW xmm1, xmm2/mem128 66 0F D5 /r Multiplies eight packed 16-bit signed integers in

xmm1 by corresponding values in xmm2 or
m128. Writes bits [15:0] of each 32-bit product to
the corresponding 16-bit element of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULLW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 D5 /r
VPMULLW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 D5 /r

[AMD Public Use]

Instruction Reference PMULLW, VPMULLW 429

26568—Rev. 3.24—May 2020 AMD64 Technology

Related Instructions
(V)PMULDQ, (V)PMULHUW, (V)PMULHW, (V)PMULLD, (V)PMULUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

430 PMULUDQ, VPMULUDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies two or four pairs of 32-bit unsigned integers in the first and second source operands and
writes two or four packed quadword unsigned integer products to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest is the destination register – either an XMM register or the corresponding YMM register.
src1 is the first source operand. src2 is the second source operand.

dest[63:0] = (src1[31:0] * src2[31:0])
dest[127:64] = (src1[95:64] * src2[95:64])

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[191:128] = (src1[159:128] * src2[159:128])
dest[255:192] = (src1[223:192] * src2[223:192])

There are legacy and extended forms of the instruction:
PMULUDQ
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPMULUDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PMULUDQ
VPMULUDQ

Packed Multiply
Unsigned Doubleword to Quadword

Form Subset Feature Flag
PMULUDQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPMULUDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPMULUDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PMULUDQ, VPMULUDQ 431

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PMULDQ, (V)PMULHUW, (V)PMULHW, (V)PMULLD, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PMULUDQ xmm1, xmm2/mem128 66 0F F4 /r Multiplies two packed 32-bit unsigned integers in

xmm1[31:0] and xmm1[95:64] by the
corresponding values in xmm2 or mem128.
Writes packed 64-bit unsigned integer products to
xmm1[63:0] and xmm1[127:64].

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULUDQ xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 F4 /r
VPMULUDQ ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 F4 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

432 POR, VPOR Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Performs a bitwise OR of the first and second source operands and writes the result to the destination.
When one or both of a pair of corresponding bits in the first and second operands are set, the corre-
sponding bit of the destination is set; when neither source bit is set, the destination bit is cleared.

There are legacy and extended forms of the instruction:
POR
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPOR
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PAND, (V)PANDN, (V)PXOR

POR
VPOR

Packed OR

Form Subset Feature Flag
POR SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPOR 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPOR 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
POR xmm1, xmm2/mem128 66 0F EB /r Performs bitwise OR of values in xmm1 and xmm2 or

mem128. Writes results to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPOR xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 EB /r
VPOR ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 EB /r

[AMD Public Use]

Instruction Reference POR, VPOR 433

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

434 PSADBW, VPSADBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Subtracts the 16 or 32 packed 8-bit unsigned integers in the second source operand from the corre-
sponding values in the first source operand and computes the absolute value of the differences. Com-
putes two or four unsigned 16-bit integer sums of groups of eight absolute differences and writes the
sums to specific words of the destination.
For the 128-bit form of the instruction:
• The unsigned 16-bit integer sum of absolute differences of the eight bytes [7:0] of the source

operands is written to bits [15:0] of the destination; bits [63:16] are cleared.
• The unsigned 16-bit integer sum of absolute differences of the eight bytes [15:8] of the source

operands is written to bits [79:64] of the destination; bits [127:80] are cleared.
Additionally, for the 256-bit form of the instruction:
• The unsigned 16-bit integer sum of absolute differences of the eight bytes [23:16] of the source

operands is written to bits [143:128] of the destination; bits [191:144] are cleared.
• The unsigned 16-bit integer sum of absolute differences of the eight bytes [24:31] of the source

operands is written to bits [207:192] of the destination; bits [255:208] are cleared.
There are legacy and extended forms of the instruction:
PSADBW
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPSADBW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSADBW
VPSADBW

Packed Sum of Absolute Differences
Bytes to Words

Form Subset Feature Flag
PSADBW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSADBW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSADBW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PSADBW, VPSADBW 435

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)MPSADBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSADBW xmm1, xmm2/mem128 66 0F F6 /r Compute the sum of the absolute differences of two sets

of packed 8-bit unsigned integer values in xmm1 and
xmm2 or mem128. Writes 16-bit unsigned integer sums
to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSADBW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 F6 /r
VPSADBW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 F6 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

436 PSHUFB, VPSHUFB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies bytes from the first source operand to the destination or clears bytes in the destination, as
specified by control bytes in the second source operand.
The control bytes occupy positions in the source operand that correspond to positions in the destina-
tion. Each control byte has the following fields.

For the 256-bit form of the instruction, the SRC_Index fields in the upper 16 bytes of the second
source operand select bytes in the upper 16 bytes of the first source operand to be copied.
There are legacy and extended forms of the instruction:
PSHUFB
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPSHUFB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSHUFB
VPSHUFB

Packed Shuffle
Byte

7 6 4 3 0
FRZ Reserved SRC_Index

Bits Description
[7] Set the bit to clear the corresponding byte of the destination.

Clear the bit to copy the selected source byte to the corresponding byte of the destination.
[6:4] Reserved
[3:0] Binary value selects the source byte.

Form Subset Feature Flag
PSHUFB SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPSHUFB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSHUFB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PSHUFB, VPSHUFB 437

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PSHUFD, (V)PSHUFW, (V)PSHUHW, (V)PSHUFLW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSHUFB xmm1, xmm2/mem128 66 0F 38 00 /r Moves bytes in xmm1 as specified by control bytes in

xmm2 or mem128.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSHUFB xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 00 /r
VPSHUFB ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 00 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

438 PSHUFD, VPSHUFD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies packed doubleword values from a source to a doubleword in the destination, as specified by
bit fields of an immediate byte operand. A source doubleword can be copied more than once.
Source doublewords are selected by two-bit fields in the immediate-byte operand. Each field corre-
sponds to a destination doubleword, as shown:

For the 256-bit form of the instruction, the same immediate byte selects doublewords in the upper
128-bits of the source operand to be copied to the destination.

PSHUFD
VPSHUFD

Packed Shuffle
Doublewords

Destination
Doubleword

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Doubleword

[31:0] [1:0] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[63:32] [3:2] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[95:64] [5:4] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[127:96] [7:6] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Destination
Doubleword

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Doubleword

[159:128] [1:0] 00 [159:128]
01 [191:160]
10 [223:192]
11 [225:224]

[191:160] [3:2] 00 [159:128]
01 [191:160]
10 [223:192]
11 [225:224]

[AMD Public Use]

Instruction Reference PSHUFD, VPSHUFD 439

26568—Rev. 3.24—May 2020 AMD64 Technology

There are legacy and extended forms of the instruction:
PSHUFD
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPSHUFD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

[223:192] [5:4] 00 [159:128]
01 [191:160]
10 [223:192]
11 [225:224]

[255:224] [7:6] 00 [159:128]
01 [191:160]
10 [223:192]
11 [225:224]

Form Subset Feature Flag
PSHUFD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSHUFD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSHUFD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Destination
Doubleword

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Doubleword

[AMD Public Use]

440 PSHUFD, VPSHUFD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PSHUFHW, (V)PSHUFLW, (V)PSHUFW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSHUFD xmm1, xmm2/mem128, imm8 66 0F 70 /r ib Copies packed 32-bit values from xmm2 or

mem128 to xmm1, as specified by imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSHUFD xmm1, xmm2/mem128, imm8 C4 RXB.01 X.1111.0.01 70 /r ib
VPSHUFD ymm1, ymm2/mem256, imm8 C4 RXB.01 X.1111.1.01 70 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSHUFHW, VPSHUFHW 441

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies packed word values from the high quadword of the source operand or the upper quadwords of
two halves of the source operand to a word in the high quadword of the destination or the upper quad-
words of two halves of the destination, as specified by bit fields of an immediate byte operand. A
source word can be copied more than once.
Source words are selected by two-bit fields in the immediate-byte operand. Each field corresponds to
a destination word, as shown:

The least-significant quadword of the source is copied to the corresponding quadword of the destina-
tion.
For the 256-bit form of the instruction, the same immediate byte selects words in the most-significant
quadword of the source operand to be copied to the destination:

PSHUFHW
VPSHUFHW

Packed Shuffle
High Words

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[79:64] [1:0] 00 [79:64]
01 [95:80]
10 [111:96]
11 [127:112]

[95:80] [3:2] 00 [79:64]
01 [95:80]
10 [111:96]
11 [127:112]

[111:96] [5:4] 00 [79:64]
01 [95:80]
10 [111:96]
11 [127:112]

[127:112] [7:6] 00 [79:64]
01 [95:80]
10 [111:96]
11 [127:112]

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[207:192] [1:0] 00 [207:192]
01 [223:208]
10 [239:224]
11 [255:240]

[AMD Public Use]

442 PSHUFHW, VPSHUFHW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

The least-significant quadword of the upper 128 bits of the source is copied to the corresponding
quadword of the destination.

There are legacy and extended forms of the instruction:
PSHUFHW
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPSHUFHW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

[223:208] [3:2] 00 [207:192]
01 [223:208]
10 [239:224]
11 [255:240]

[239:224] [5:4] 00 [207:192]
01 [223:208]
10 [239:224]
11 [255:240]

[255:240] [7:6] 00 [207:192]
01 [223:208]
10 [239:224]
11 [255:240]

Form Subset Feature Flag
PSHUFHW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSHUFHW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSHUFHW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[AMD Public Use]

Instruction Reference PSHUFHW, VPSHUFHW 443

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PSHUFD, (V)PSHUFLW, (V)PSHUFW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSHUFHW xmm1, xmm2/mem128, imm8 F3 0F 70 /r ib Copies packed 16-bit values from the

high-order quadword of xmm2 or mem128
to the high-order quadword of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSHUFHW xmm1, xmm2/mem128, imm8 C4 RXB.01 X.1111.0.10 70 /r ib
VPSHUFHW ymm1, ymm2/mem256, imm8 C4 RXB.01 X.1111.1.10 70 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

444 PSHUFLW, VPSHUFLW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies packed word values from the low quadword of the source operand or the lower quadwords of
two halves of the source operand to a word in the low quadword of the destination or the lower quad-
words of two halves of the destination, as specified by bit fields of an immediate byte operand. A
source word can be copied more than once.
Source words are selected by two-bit fields in the immediate-byte operand. Each bit field corresponds
to a destination word, as shown:

The most-significant quadword of the source is copied to the corresponding quadword of the destina-
tion.
For the 256-bit form of the instruction, the same immediate byte selects words in the lower quadword
of the upper 128 bits of the source operand to be copied to the destination:

PSHUFLW
VPSHUFLW

Packed Shuffle
Low Words

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[15:0] [1:0] 00 [15:0]
01 [31:16]
10 [47:32]
11 [63:48]

[31:16] [3:2] 00 [15:0]
01 [31:16]
10 [47:32]
11 [63:48]

[47:32] [5:4] 00 [15:0]
01 [31:16]
10 [47:32]
11 [63:48]

[63:48] [7:6] 00 [15:0]
01 [31:16]
10 [47:32]
11 [63:48]

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[143:128] [1:0] 00 [143:128]
01 [159:144]
10 [175:160]
11 [191:176]

[AMD Public Use]

Instruction Reference PSHUFLW, VPSHUFLW 445

26568—Rev. 3.24—May 2020 AMD64 Technology

The most-significant quadword of the upper 128 bits of the source is copied to the corresponding
quadword of the destination.
There are legacy and extended forms of the instruction:
PSHUFLW
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
VPSHUFLW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

[159:144] [3:2] 00 [143:128]
01 [159:144]
10 [175:160]
11 [191:176]

[175:160] [5:4] 00 [143:128]
01 [159:144]
10 [175:160]
11 [191:176]

[191:176] [7:6] 00 [143:128]
01 [159:144]
10 [175:160]
11 [191:176]

Form Subset Feature Flag
PSHUFLW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSHUFLW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSHUFLW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[AMD Public Use]

446 PSHUFLW, VPSHUFLW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PSHUFD, (V)PSHUFHW, (V)PSHUFW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSHUFLW xmm1, xmm2/mem128, imm8 F2 0F 70 /r ib Copies packed 16-bit values from the low-

order quadword of xmm2 or mem128 to
the low-order quadword of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSHUFLW xmm1, xmm2/mem128, imm8 C4 RXB.01 X.1111.0.11 70 /r ib
VPSHUFLW ymm1, ymm2/mem256, imm8 C4 RXB.01 X.1111.1.11 70 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSIGNB, VPSIGNB 447

26568—Rev. 3.24—May 2020 AMD64 Technology

For each packed signed byte in the first source operand, evaluate the corresponding byte of the second
source operand and perform one of the following operations.
• When a byte of the second source is negative, write the two’s-complement of the corresponding

byte of the first source to the destination.
• When a byte of the second source is positive, copy the corresponding byte of the first source to the

destination.
• When a byte of the second source is zero, clear the corresponding byte of the destination.

There are legacy and extended forms of the instruction:
PSIGNB
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPSIGNB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSIGNB
VPSIGNB

Packed Sign
Byte

Form Subset Feature Flag
PSIGNB SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPSIGNB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSIGNB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

448 PSIGNB, VPSIGNB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PSIGNW, (V)PSIGND

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSIGNB xmm1, xmm2/mem128 66 0F 38 08 /r Perform operation based on evaluation of each packed

8-bit signed integer value in xmm2 or mem128.
Write 8-bit signed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSIGNB xmm1, xmm2, xmm2/mem128 C4 RXB.02 X.src1.0.01 08 /r
VPSIGNB ymm1, ymm2, ymm2/mem256 C4 RXB.02 X.src1.1.01 08 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSIGND, VPSIGND 449

26568—Rev. 3.24—May 2020 AMD64 Technology

For each packed signed doubleword in the first source operand, evaluate the corresponding double-
word of the second source operand and perform one of the following operations.
• When a doubleword of the second source is negative, write the two’s-complement of the

corresponding doubleword of the first source to the destination.
• When a doubleword of the second source is positive, copy the corresponding doubleword of the

first source to the destination.
• When a doubleword of the second source is zero, clear the corresponding doubleword of the

destination.

There are legacy and extended forms of the instruction:
PSIGND
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPSIGND
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSIGND
VPSIGND

Packed Sign
Doubleword

Form Subset Feature Flag
PSIGND SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPSIGND 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSIGND 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

450 PSIGND, VPSIGND Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PSIGNB, (V)PSIGNW

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSIGND xmm1, xmm2/mem128 66 0F 38 0A /r Perform operation based on evaluation of each packed

32-bit signed integer value in xmm2 or mem128.
Write 32-bit signed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSIGND xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 0A /r
VPSIGND ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 0A /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSIGNW, VPSIGNW 451

26568—Rev. 3.24—May 2020 AMD64 Technology

For each packed signed word in the first source operand, evaluate the corresponding word of the sec-
ond source operand and perform one of the following operations.
• When a word of the second source is negative, write the two’s-complement of the corresponding

word of the first source to the destination.
• When a word of the second source is positive, copy the corresponding word of the first source to

the destination.
• When a word of the second source is zero, clear the corresponding word of the destination.

There are legacy and extended forms of the instruction:
PSIGNW
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPSIGNW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSIGNW
VPSIGNW

Packed Sign
Word

Form Subset Feature Flag
PSIGNW SSSE3 CPUID Fn0000_0001_ECX[SSSE3] (bit 9)

VPSIGNW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSIGNW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

452 PSIGNW, VPSIGNW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PSIGNB, (V)PSIGND

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSIGNW xmm1, xmm2/mem128 66 0F 38 09 /r Perform operation based on evaluation of each packed

16-bit signed integer value in xmm2 or mem128.
Write 16-bit signed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSIGNW xmm1, xmm2, xmm3/mem128 C4 RXB.02 X.src1.0.01 09 /r
VPSIGNW ymm1, ymm2, ymm3/mem256 C4 RXB.02 X.src1.1.01 09 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSLLD, VPSLLD 453

26568—Rev. 3.24—May 2020 AMD64 Technology

Left-shifts each packed 32-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a second register, or a memory location. The shift
count is treated as an unsigned integer. When the shift count is provided by a register or memory loca-
tion, only bits [63:0] of the value are considered.
Low-order bits emptied by shifting are cleared. When the shift count is greater than 31, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:
PSLLD
There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.
VPSLLD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
There are two 128-bit encodings. These differ based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
There are two 256-bit encodings. These differ based on the type of count operand.
The first source operand is a YMM register. The shift count is specified by either a second XMM reg-
ister or a 128-bit memory location, or by an immediate 8-bit operand. The destination is a YMM reg-
ister. For the immediate operand encoding, the destination is specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSLLD
VPSLLD

Packed Shift Left Logical
Doublewords

Form Subset Feature Flag
PSLLD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSLLD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSLLD 256-bit AVX2 CPUID Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

454 PSLLD, VPSLLD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSLLD xmm1, xmm2/mem128 66 0F F2 /r Left-shifts packed doublewords in xmm1 as specified

by xmm2[63:0] or mem128[63:0].
PSLLD xmm, imm8 66 0F 72 /6 ib Left-shifts packed doublewords in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSLLD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 F2 /r
VPSLLD xmm1, xmm2, imm8 C4 RXB.01 X.dest.0.01 72 /6 ib
VPSLLD ymm1, ymm2, xmm3/mem128 C4 RXB.01 X.src1.1.01 F2 /r
VPSLLD ymm1, ymm2, imm8 C4 RXB.01 X.dest.1.01 72 /6 ib

[AMD Public Use]

Instruction Reference PSLLD, VPSLLD 455

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
When alignment checking enabled:
• 128-bit memory operand not 16-byte aligned.
• 256-bit memory operand not 32-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX and AVX2 exception
S — SSE exception

[AMD Public Use]

456 PSLLDQ, VPSLLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Left-shifts the one or each of the two double quadword values in the source operand the number of
bytes specified by an immediate byte operand and writes the shifted values to the destination.
The immediate byte operand supplies an unsigned shift count. Low-order bytes emptied by shifting
are cleared. When the shift value is greater than 15, the destination is cleared. For the 256-bit form of
the instruction, the shift count is applied to both the upper and the lower double quadword. Bytes
shifted out of the lower 128 bits are not shifted into the upper.

There are legacy and extended forms of the instruction:
PSLLDQ
The source XMM register is also the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.
VPSLLDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is an XMM register. The destination is an XMM register specified by VEX.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is a YMM register. The destination is a YMM register specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ, (V)PSRLQ,
(V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

PSLLDQ
VPSLLDQ

Packed Shift Left Logical
Double Quadword

Form Subset Feature Flag
PSLLDQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSLLDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSLLDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSLLDQ xmm, imm8 66 0F 73 /7 ib Left-shifts double quadword value in xmm1 as specified by imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSLLDQ xmm1, xmm2, imm8 C4 RXB.01 0.dest.0.01 73 /7 ib
VPSLLDQ ymm1, ymm2, imm8 C4 RXB.01 0.dest.1.01 73 /7 ib

[AMD Public Use]

Instruction Reference PSLLDQ, VPSLLDQ 457

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

458 PSLLQ, VPSLLQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Left-shifts each packed 64-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a second register, or a memory location. The shift
count is treated as an unsigned integer. When the shift count is provided by a register or memory loca-
tion, only bits [63:0] of the value are considered.
Low-order bits emptied by shifting are cleared. When the shift value is greater than 63, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:
PSLLQ
There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.
VPSLLQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
There are two 128-bit encodings. These differ based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
There are two 256-bit encodings. These differ based on the type of count operand.
The first source operand is a YMM register. The shift count is specified by either a second XMM reg-
ister or a 128-bit memory location, or by an immediate 8-bit operand. The destination is a YMM reg-
ister. For the immediate operand encoding, the destination is specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSLLQ
VPSLLQ

Packed Shift Left Logical
Quadwords

Form Subset Feature Flag
PSLLQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSLLQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSLLQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PSLLQ, VPSLLQ 459

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQLLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSLLQ xmm1, xmm2/mem128 66 0F F3 /r Left-shifts packed quadwords in xmm1 as specified by

xmm2[63:0] or mem128[63:0].
PSLLQ xmm, imm8 66 0F 73 /6 ib Left-shifts packed quadwords in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSLLQ xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 F3 /r
VPSLLQ xmm1, xmm2, imm8 C4 RXB.01 X.dest.0.01 73 /6 ib
VPSLLQ ymm1, ymm2, xmm3/mem128 C4 RXB.01 X.src1.1.01 F3 /r
VPSLLQ ymm1, ymm2, imm8 C4 RXB.01 X.dest.1.01 73 /6 ib

[AMD Public Use]

460 PSLLQ, VPSLLQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
When alignment checking enabled:
• 128-bit memory operand not 16-byte aligned.
• 256-bit memory operand not 32-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX and AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSLLW, VPSLLW 461

26568—Rev. 3.24—May 2020 AMD64 Technology

Left-shifts each packed 16-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a second register, or a memory location. The shift
count is treated as an unsigned integer. When the shift count is provided by a register or memory loca-
tion, only bits [63:0] of the value are considered.
Low-order bits emptied by shifting are cleared. When the shift count is greater than 15, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:
PSLLW
There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.
VPSLLW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
There are two 128-bit encodings. These differ based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
There are two 256-bit encodings. These differ based on the type of count operand.
The first source operand is a YMM register. The shift count is specified by either a second XMM reg-
ister or a 128-bit memory location, or by an immediate 8-bit operand. The destination is a YMM reg-
ister. For the immediate operand encoding, the destination is specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSLLW
VPSLLW

Packed Shift Left Logical
Words

Form Subset Feature Flag
PSLLW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSLLW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSLLW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

462 PSLLW, VPSLLW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSLLW xmm1, xmm2/mem128 66 0F F1 /r Left-shifts packed words in xmm1 as specified by

xmm2[63:0] or mem128[63:0].
PSLLW xmm, imm8 66 0F 71 /6 ib Left-shifts packed words in xmm as specified by imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSLLW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 F1 /r
VPSLLW xmm1, xmm2, imm8 C4 RXB.01 X.dest.0.01 71 /6 ib
VPSLLW ymm1, ymm2, xmm3/mem128 C4 RXB.01 X.src1.1.01 F1 /r
VPSLLW ymm1, ymm2, imm8 C4 RXB.01 X.dest.1.01 71 /6 ib

[AMD Public Use]

Instruction Reference PSLLW, VPSLLW 463

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
When alignment checking enabled:
• 128-bit memory operand not 16-byte aligned.
• 256-bit memory operand not 32-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX and AVX2 exception
S — SSE exception

[AMD Public Use]

464 PSRAD, VPSRAD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Right-shifts each packed 32-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a second register, or a memory location. The shift
count is treated as an unsigned integer. When the shift count is provided by a register or memory loca-
tion, only bits [63:0] of the value are considered.
High-order bits emptied by shifting are filled with the sign bit of the initial value. When the shift
value is greater than 31, each doubleword of the destination is filled with the sign bit of its initial
value.

There are legacy and extended forms of the instruction:
PSRAD
There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.
VPSRAD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
There are two 128-bit encodings. These differ based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
There are two 256-bit encodings. These differ based on the type of count operand.
The first source operand is a YMM register. The shift count is specified by either a second XMM reg-
ister or a 128-bit memory location, or by an immediate 8-bit operand. The destination is a YMM reg-
ister. For the immediate operand encoding, the destination is specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSRAD
VPSRAD

Packed Shift Right Arithmetic
Doublewords

Form Subset Feature Flag
PSRAD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSRAD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSRAD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PSRAD, VPSRAD 465

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSRAD xmm1, xmm2/mem128 66 0F E2 /r Right-shifts packed doublewords in xmm1 as specified

by xmm2[63:0] or mem128[63:0].
PSRAD xmm, imm8 66 0F 72 /4 ib Right-shifts packed doublewords in xmm as specified

by imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSRAD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 E2 /r
VPSRAD xmm1, xmm2, imm8 C4 RXB.01 X.dest.0.01 72 /4 ib
VPSRAD ymm1, ymm2, xmm3/mem128 C4 RXB.01 X.src1.1.01 E2 /r
VPSRAD ymm1, ymm2, imm8 C4 RXB.01 X.dest.1.01 72 /4 ib

[AMD Public Use]

466 PSRAD, VPSRAD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
When alignment checking enabled:
• 128-bit memory operand not 16-byte aligned.
• 256-bit memory operand not 32-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX and AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSRAW, VPSRAW 467

26568—Rev. 3.24—May 2020 AMD64 Technology

Right-shifts each packed 16-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a second register, or a memory location. The shift
count is treated as an unsigned integer. When the shift count is provided by a register or memory loca-
tion, only bits [63:0] of the value are considered.
High-order bits emptied by shifting are filled with the sign bit of the initial value. When the shift
value is greater than 16, each doubleword of the destination is filled with the sign bit of its initial
value.

There are legacy and extended forms of the instruction:
PSRAW
There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.
VPSRAW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
There are two 128-bit encodings. These differ based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
There are two 256-bit encodings. These differ based on the type of count operand.
The first source operand is a YMM register. The shift count is specified by either a second XMM reg-
ister or a 128-bit memory location, or by an immediate 8-bit operand. The destination is a YMM reg-
ister. For the immediate operand encoding, the destination is specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSRAW
VPSRAW

Packed Shift Right Arithmetic
Words

Form Subset Feature Flag
PSRAW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSRAW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSRAW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

468 PSRAW, VPSRAW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSRAW xmm1, xmm2/mem128 66 0F E1 /r Right-shifts packed words in xmm1 as specified by

xmm2[63:0] or mem128[63:0].
PSRAW xmm, imm8 66 0F 71 /4 ib Right-shifts packed words in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSRAW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 E1 /r
VPSRAW xmm1, xmm2, imm8 C4 RXB.01 X.dest.0.01 71 /4 ib
VPSRAW ymm1, ymm2, xmm3/mem128 C4 RXB.01 X.src1.1.01 E1 /r
VPSRAW ymm1, ymm2, imm8 C4 RXB.01 X.dest.1.01 71 /4 ib

[AMD Public Use]

Instruction Reference PSRAW, VPSRAW 469

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
When alignment checking enabled:
• 128-bit memory operand not 16-byte aligned.
• 256-bit memory operand not 32-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX and AVX2 exception
S — SSE exception

[AMD Public Use]

470 PSRLD, VPSRLD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Right-shifts each packed 32-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a second register, or a memory location. The shift
count is treated as an unsigned integer. When the shift count is provided by a register or memory loca-
tion, only bits [63:0] of the value are considered.
High-order bits emptied by shifting are cleared. When the shift value is greater than 31, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:

PSRLD
There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VPSRLD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
There are two 128-bit encodings. These differ based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
There are two 256-bit encodings. These differ based on the type of count operand.
The first source operand is a YMM register. The shift count is specified by either a second XMM reg-
ister or a 128-bit memory location, or by an immediate 8-bit operand. The destination is a YMM reg-
ister. For the immediate operand encoding, the destination is specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSRLD
VPSRLD

Packed Shift Right Logical
Doublewords

Form Subset Feature Flag
PSRLD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSRLD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSRLD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PSRLD, VPSRLD 471

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSRLD xmm1, xmm2/mem128 66 0F D2 /r Right-shifts packed doublewords in xmm1 as specified

by xmm2[63:0] or mem128[63:0].
PSRLD xmm, imm8 66 0F 72 /2 ib Right-shifts packed doublewords in xmm as specified

by imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSRLD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 D2 /r
VPSRLD xmm1, xmm2, imm8 C4 RXB.01 X.dest.0.01 72 /2 ib
VPSRLD ymm1, ymm2, xmm3/mem128 C4 RXB.01 X.src1.1.01 D2 /r
VPSRLD ymm1, ymm2, imm8 C4 RXB.01 X.dest.1.01 72 /2 ib

[AMD Public Use]

472 PSRLD, VPSRLD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
When alignment checking enabled:
• 128-bit memory operand not 16-byte aligned.
• 256-bit memory operand not 32-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX and AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSRLDQ, VPSRLDQ 473

26568—Rev. 3.24—May 2020 AMD64 Technology

Right-shifts one or each of two double quadword values in the source operand the number of bytes
specified by an immediate byte operand and writes the shifted values to the destination.
The immediate byte operand supplies an unsigned shift count. High-order bytes emptied by shifting
are cleared. When the shift value is greater than 15, the destination is cleared. For the 256-bit form of
the instruction, the shift count is applied to both the upper and the lower double quadword. Bytes
shifted out of the upper 128 bits are not shifted into the lower.

There are legacy and extended forms of the instruction:
PSRLDQ
The source XMM register is also the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.
VPSRLDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The source operand is an XMM register. The destination is an XMM register specified by VEX.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
The source operand is a YMM register. The destination is a YMM register specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PSRLDQ
VPSRLDQ

Packed Shift Right Logical
Double Quadword

Form Subset Feature Flag
PSRLDQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSRLDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSRLDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSRLDQ xmm, imm8 66 0F 73 /3 ib Right-shifts double quadword value in xmm1 as specified by

imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSRLDQ xmm1, xmm2, imm8 C4 RXB.01 X.dest.0.01 73 /3 ib
VPSRLDQ ymm1, ymm2, imm8 C4 RXB.01 X.dest.1.01 73 /3 ib

[AMD Public Use]

474 PSRLDQ, VPSRLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLQ,
(V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSRLQ, VPSRLQ 475

26568—Rev. 3.24—May 2020 AMD64 Technology

Right-shifts each packed 64-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a second register, or a memory location. The shift
count is treated as an unsigned integer. When the shift count is provided by a register or memory loca-
tion, only bits [63:0] of the value are considered.
High-order bits emptied by shifting are cleared. When the shift value is greater than 63, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:
PSRLQ
There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.
VPSRLQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
There are two 128-bit encodings. These differ based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
There are two 256-bit encodings. These differ based on the type of count operand.
The first source operand is a YMM register. The shift count is specified by either a second XMM reg-
ister or a 128-bit memory location, or by an immediate 8-bit operand. The destination is a YMM reg-
ister. For the immediate operand encoding, the destination is specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSRLQ
VPSRLQ

Packed Shift Right Logical
Quadwords

Form Subset Feature Flag
PSRLQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSRLQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSRLQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

476 PSRLQ, VPSRLQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSRLQ xmm1, xmm2/mem128 66 0F D3 /r Right-shifts packed quadwords in xmm1 as specified

by xmm2[63:0] or mem128[63:0].
PSRLQ xmm, imm8 66 0F 73 /2 ib Right-shifts packed quadwords in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSRLQ xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 D3 /r
VPSRLQ xmm1, xmm2, imm8 C4 RXB.01 X.dest.0.01 73 /2 ib
VPSRLQ ymm1, ymm2, xmm3/mem128 C4 RXB.01 X.src1.1.01 D3 /r
VPSRLQ ymm1, ymm2, imm8 C4 RXB.01 X.dest.1.01 73 /2 ib

[AMD Public Use]

Instruction Reference PSRLQ, VPSRLQ 477

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
When alignment checking enabled:
• 128-bit memory operand not 16-byte aligned.
• 256-bit memory operand not 32-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX and AVX2 exception
S — SSE exception

[AMD Public Use]

478 PSRLW, VPSRLW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Right-shifts each packed 16-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a second register, or a memory location. The shift
count is treated as an unsigned integer. When the shift count is provided by a register or memory loca-
tion, only bits [63:0] of the value are considered.
High-order bits emptied by shifting are cleared. When the shift value is greater than 15, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:
PSRLW
There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.
VPSRLW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
There are two 128-bit encodings. These differ based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
There are two 256-bit encodings. These differ based on the type of count operand.
The first source operand is a YMM register. The shift count is specified by either a second XMM reg-
ister or a 128-bit memory location, or by an immediate 8-bit operand. The destination is a YMM reg-
ister. For the immediate operand encoding, the destination is specified by VEX.vvvv.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

PSRLW
VPSRLW

Packed Shift Right Logical
Words

Form Subset Feature Flag
PSRLW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSRLW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSRLW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference PSRLW, VPSRLW 479

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLQ, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PSRLW xmm1, xmm2/mem128 66 0F D1 /r Right-shifts packed words in xmm1 as specified by

xmm2[63:0] or mem128[63:0].
PSRLW xmm, imm8 66 0F 71 /2 ib Right-shifts packed words in xmm as specified by

imm8.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPSRLW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 D1 /r
VPSRLW xmm1, xmm2, imm8 C4 RXB.01 X.dest.0.01 71 /2 ib
VPSRLW ymm1, ymm2, xmm3/mem128 C4 RXB.01 X.src1.1.01 D1 /r
VPSRLW ymm1, ymm2, imm8 C4 RXB.01 X.dest.1.01 71 /2 ib

[AMD Public Use]

480 PSRLW, VPSRLW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
When alignment checking enabled:
• 128-bit memory operand not 16-byte aligned.
• 256-bit memory operand not 32-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX and AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSUBB, VPSUBB 481

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts 16 or 32 packed 8-bit integer values in the second source operand from the corresponding
values in the first source operand and writes the integer differences to the corresponding bytes of the
destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PSUBB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPSUBB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PSUBB
VPSUBB

Packed Subtract
Bytes

Form Subset Feature Flag
PSUBB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSUBB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSUBB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSUBB xmm1, xmm2/mem128 66 0F F8 /r Subtracts 8-bit signed integer values in xmm2 or

mem128 from corresponding values in xmm1.
Writes differences to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 F8 /r
VPSUBB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 F8 /r

[AMD Public Use]

482 PSUBB, VPSUBB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSUBD, VPSUBD 483

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts four or eight packed 32-bit integer values in the second source operand from the corre-
sponding values in the first source operand and writes the integer differences to the corresponding
doubleword of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PSUBD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VSUBD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PSUBD
VPSUBD

Packed Subtract
Doublewords

Form Subset Feature Flag
PSUBD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSUBD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSUBD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSUBD xmm1, xmm2/mem128 66 0F FA /r Subtracts packed 32-bit integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 FA /r
VPSUBD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 FA /r

[AMD Public Use]

484 PSUBD, VPSUBD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PSUBB, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSUBQ, VPSUBQ 485

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts two or four packed 64-bit integer values in the second source operand from the correspond-
ing values in the first source operand and writes the differences to the corresponding quadword of the
destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PSUBQ
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VSUBQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PSUBQ
VPSUBQ

Packed Subtract
Quadword

Form Subset Feature Flag
PSUBQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSUBQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSUBQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSUBQ xmm1, xmm2/mem128 66 0F FB /r Subtracts packed 64-bit integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBQ xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 FB /r
VPSUBQ ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 FB /r

[AMD Public Use]

486 PSUBQ, VPSUBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSUBSB, VPSUBSB 487

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts 16 or 32 packed 8-bit signed integer value in the second source operand from the corre-
sponding values in the first source operand and writes the signed integer differences to the corre-
sponding byte of the destination.
For each packed value in the destination, if the value is larger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to
80h.

There are legacy and extended forms of the instruction:
PSUBSB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPSUBSB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PSUBSB
VPSUBSB

Packed Subtract Signed With Saturation
Bytes

Form Subset Feature Flag
PSUBSB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSUBSB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSUBSB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSUBSB xmm1, xmm2/mem128 66 0F E8 /r Subtracts packed 8-bit signed integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBSB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 E8 /r
VPSUBSB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 E8 /r

[AMD Public Use]

488 PSUBSB, VPSUBSB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSUBSW, VPSUBSW 489

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts eight or sixteen packed 16-bit signed integer values in the second source operand from the
corresponding values in the first source operand and writes the signed integer differences to the corre-
sponding word of the destination.
Positive differences greater than 7FFFh are saturated to 7FFFh; negative differences less than 8000h
are saturated to 8000h.

There are legacy and extended forms of the instruction:
PSUBSW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPSUBSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PSUBSW
VPSUBSW

Packed Subtract Signed With Saturation
Words

Form Subset Feature Flag
PSUBSW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSUBSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSUBSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSUBSW xmm1, xmm2/mem128 66 0F E9 /r Subtracts packed 16-bit signed integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 E9 /r
VPSUBSW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 E9 /r

[AMD Public Use]

490 PSUBSW, VPSUBSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSUBUSB, VPSUBUSB 491

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts 16 or 32 packed 8-bit unsigned integer value in the second source operand from the corre-
sponding values in the first source operand and writes the unsigned integer difference to the corre-
sponding byte of the destination.
Differences less than 00h are saturated to 00h.

There are legacy and extended forms of the instruction:

PSUBUSB
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VPSUBUSB
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PSUBUSB
VPSUBUSB

Packed Subtract Unsigned With Saturation
Bytes

Form Subset Feature Flag
PSUBUSB SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSUBUSB 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSUBUSB 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSUBUSB xmm1, xmm2/mem128 66 0F D8 /r Subtracts packed byte unsigned integer values in

xmm2 or mem128 from corresponding values in xmm1.
Writes the differences to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBUSB xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 D8 /r
VPSUBUSB ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 D8 /r

[AMD Public Use]

492 PSUBUSB, VPSUBUSB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSUBUSW, VPSUBUSW 493

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts eight or sixteen packed 16-bit unsigned integer value in the second source operand from the
corresponding values in the first source operand and writes the unsigned integer differences to the
corresponding word of the destination.
Differences less than 0000h are saturated to 0000h.

There are legacy and extended forms of the instruction:
PSUBUSW
The first source operand is an XMM register and the second source operand is an XMM register or
128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.
VPSUBUSW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PSUBUSW
VPSUBUSW

Packed Subtract Unsigned With Saturation
Words

Form Subset Feature Flag
PSUBUSW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSUBUSW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSUBUSW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSUBUSW xmm1, xmm2/mem128 66 0F D9 /r Subtracts packed 16-bit unsigned integer values in

xmm2 or mem128 from corresponding values in
xmm1. Writes the differences to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBUSW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 D9 /r
VPSUBUSW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 D9 /r

[AMD Public Use]

494 PSUBUSW, VPSUBUSW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PSUBW, VPSUBW 495

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts eight or sixteen packed 16-bit integer values in the second source operand from the corre-
sponding values in the first source operand and writes the integer differences to the corresponding
word of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PSUBW
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VPSUBW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

PSUBW
VPSUBW

Packed Subtract
Words

Form Subset Feature Flag
PSUBW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPSUBW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPSUBW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PSUBW xmm1, xmm2/mem128 66 0F F9 /r Subtracts packed 16-bit integer values in xmm2 or

mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 F9 /r
VPSUBW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 F9 /r

[AMD Public Use]

496 PSUBW, VPSUBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PTEST, VPTEST 497

26568—Rev. 3.24—May 2020 AMD64 Technology

First, performs a bitwise AND of the first source operand with the second source operand.
Sets rFLAGS.ZF when all bit operations = 0; else, clears ZF.
Second. performs a bitwise AND of the second source operand with the logical complement (NOT)
of the first source operand. Sets rFLAGS.CF when all bit operations = 0; else, clears CF.
Neither source operand is modified.

There are legacy and extended forms of the instruction:
PTEST
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.
VPTEST
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.
YMM Encoding
The first source operand is a YMM register. The second source operand is a YMM register or 256-bit
memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VTESTPD, VTESTPS

PTEST
VPTEST

 Packed Bit Test

Form Subset Feature Flag
PTEST SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPTEST AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
PTEST xmm1, xmm2/mem128 66 0F 38 17 /r Set ZF if bitwise AND of xmm2/m128 with xmm1 = 0;

else, clear ZF.
Set CF if bitwise AND of xmm2/m128 with NOTxmm1 = 0;
else, clear CF.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPTEST xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 17 /r
VPTEST ymm1, ymm2/mem256 C4 RXB.00010 X.1111.1.01 17 /r

[AMD Public Use]

498 PTEST, VPTEST Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected

MXCSR Flags Affected
None

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 M 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3 and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank. Undefined

flags are U.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference PUNPCKHBW, VPUNPCKHBW 499

26568—Rev. 3.24—May 2020 AMD64 Technology

Unpacks the 8 high-order bytes of each octword the first and second source operands and interleaves
the bytes as they are copied to the destination. The low-order bytes of each octword of the source
operands are ignored.
Bytes are interleaved in ascending order from the least-significant byte of the upper 8 bytes of each
octword of the source operands with bytes from the first source operand occupying the lower byte of
each pair copied to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest[7:0] = src1[71:64]
dest[15:8] = src2[71:64]
dest[23:16] = src1[79:72]
dest[31:24] = src2[79:72]
dest[39:32] = src1[87:80]
dest[47:40] = src2[87:80]
dest[55:48] = src1[95:88]
dest[63:56] = src2[95:88]
dest[71:64] = src1[103:96]
dest[79:72] = src2[103:96]
dest[87:80] = src1[111:104]
dest[95:88] = src2[111:104]
dest[103:96] = src1[119:112]
dest[111:104] = src2[119:112]
dest[119:112] = src1[127:120]
dest[127:120] = src2[127:120]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[135:128] = src1[199:192]
dest[143:136] = src2[199:192]
dest[151:144] = src1[207:200]
dest[159:152] = src2[207:200]
dest[167:160] = src1[215:208]
dest[175:168] = src2[215:208]
dest[183:176] = src1[223:216]
dest[191:184] = src2[223:216]
dest[199:192] = src1[231:224]
dest[207:200] = src2[231:224]
dest[215:208] = src1[239:232]
dest[223:216] = src2[239:232]
dest[231:224] = src1[247:240]
dest[239:232] = src2[247:240]
dest[247:240] = src1[255:248]
dest[255:248] = src2[255:248]

When the second source operand is all 0s, the destination effectively contains the 8 high-order bytes
from the first source operand or the 8 high-order bytes from both octwords of the first source operand
zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to unsigned
16-bit operands for subsequent processing that requires higher precision.

PUNPCKHBW
VPUNPCKHBW

Unpack and Interleave
High Bytes

[AMD Public Use]

500 PUNPCKHBW, VPUNPCKHBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

There are legacy and extended forms of the instruction:
PUNPCKHBW
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source operand is also the destination register. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPUNPCKHBW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

rFLAGS Affected
None

Form Subset Feature Flag
PUNPCKHBW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPUNPCKHBW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPUNPCKHBW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PUNPCKHBW xmm1, xmm2/mem128 66 0F 68 /r Unpacks and interleaves the high-order bytes of

xmm1 and xmm2 or mem128. Writes the bytes to
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKHBW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 68 /r
VPUNPCKHBW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 68 /r

[AMD Public Use]

Instruction Reference PUNPCKHBW, VPUNPCKHBW 501

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

502 PUNPCKHDQ, VPUNPCKHDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Unpacks the two high-order doublewords of each octword of the first and second source operands and
interleaves the doublewords as they are copied to the destination. The low-order doublewords of each
octword of the source operands are ignored.
Doublewords are interleaved in ascending order from the least-significant doubleword of the high
quadword of each octword with doublewords from the first source operand occupying the lower dou-
bleword of each pair copied to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest[31:0] = src1[95:64]
dest[63:32] = src2[95:64]
dest[95:64] = src1[127:96]
dest[127:96] = src2[127:96]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[159:128] = src1[223:192]
dest[191:160] = src2[223:192]
dest[223:192] = src1[255:224]
dest[255:224] = src2[255:224]

When the second source operand is all 0s, the destination effectively receives the 2 high-order dou-
blewords from the first source operand or the 2 high-order doublewords from both octwords of the
first source operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit
values to unsigned 64-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:
PUNPCKHDQ
The first source operand is an XMM register and the second source operand is an XMM register or
128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.
VPUNPCKHDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

PUNPCKHDQ
VPUNPCKHDQ

Unpack and Interleave
High Doublewords

[AMD Public Use]

Instruction Reference PUNPCKHDQ, VPUNPCKHDQ 503

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PUNPCKHDQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPUNPCKHDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPUNPCKHDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PUNPCKHDQ xmm1, xmm2/mem128 66 0F 6A /r Unpacks and interleaves the high-order doublewords

of xmm1 and xmm2 or mem128. Writes the
doublewords to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKHDQ xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 6A /r
VPUNPCKHDQ ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 6A /r

[AMD Public Use]

504 PUNPCKHDQ, VPUNPCKHDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PUNPCKHQDQ, VPUNPCKHQDQ 505

26568—Rev. 3.24—May 2020 AMD64 Technology

Unpacks the high-order quadword of each octword of the first and second source operands and inter-
leaves the quadwords as they are copied to the destination. The low-order quadword of each octword
of the source operands is ignored.
Quadwords are interleaved in ascending order with the high-order quadword from the first source
operand or each octword of the first source operand occupying the lower quadword of corresponding
octword of the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest[63:0] = src1[127:64]
dest[127:64] = src2[127:64]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[191:128] = src1[255:192]
dest[255:192] = src2[255:192]

When the second source operand is all 0s, the destination effectively receives the quadword from
upper half of the first source operand or the high-order quadwords from each octword of the first
source operand zero-extended to 128 bits. This operation is useful for expanding unsigned 64-bit val-
ues to unsigned 128-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:
PUNPCKHQDQ
The first source operand is an XMM register and the second source operand is an XMM register or
128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.
VPUNPCKHQDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

PUNPCKHQDQ
VPUNPCKHQDQ

Unpack and Interleave
High Quadwords

Form Subset Feature Flag
PUNPCKHQDQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPUNPCKHQDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPUNPCKHQDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

506 PUNPCKHQDQ, VPUNPCKHQDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHWD, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PUNPCKHQDQ xmm1, xmm2/mem128 66 0F 6D /r Unpacks and interleaves the high-order

quadwords of xmm1 and xmm2 or mem128.
Writes the bytes to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKHQDQ xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 6D /r
VPUNPCKHQDQ ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 6D /r

[AMD Public Use]

Instruction Reference PUNPCKHQDQ, VPUNPCKHQDQ 507

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

508 PUNPCKHWD, VPUNPCKHWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Unpacks the 4 high-order words of each octword of the first and second source operands and inter-
leaves the words as they are copied to the destination. The low-order words of each octword of the
source operands are ignored.
Words are interleaved in ascending order from the least-significant word of the high quadword of
each octword with words from the first source operand occupying the lower word of each pair copied
to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest[15:0] = src1[79:64]
dest[31:16] = src2[79:64]
dest[47:32] = src1[95:80]
dest[63:48] = src2[95:80]
dest[79:64] = src1[111:96]
dest[95:80] = src2[111:96]
dest[111:96] = src1[127:112]
dest[127:112] = src2[127:112]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[143:128] = src1[207:192]
dest[159:144] = src2[207:192]
dest[175:160] = src1[223:208]
dest[191:176] = src2[223:208]
dest[207:192] = src1[239:224]
dest[223:208] = src2[239:224]
dest[239:224] = src1[255:240]
dest[255:240] = src2[255:240]

When the second source operand is all 0s, the destination effectively receives the 4 high-order words
from the first source operand or the 4 high-order words from both octwords of the first source oper-
and zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values to
unsigned 32-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:
PUNPCKHWD
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source operand is also the destination register. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPUNPCKHWD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

PUNPCKHWD
VPUNPCKHWD

Unpack and Interleave
High Words

[AMD Public Use]

Instruction Reference PUNPCKHWD, VPUNPCKHWD 509

26568—Rev. 3.24—May 2020 AMD64 Technology

YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PUNPCKHWD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPUNPCKHWD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPUNPCKHWD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PUNPCKHWD xmm1, xmm2/mem128 66 0F 69 /r Unpacks and interleaves the high-order words of

xmm1 and xmm2 or mem128. Writes the words to
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKHWD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 69 /r
VPUNPCKHWD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 69 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

[AMD Public Use]

510 PUNPCKHWD, VPUNPCKHWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

[AMD Public Use]

Instruction Reference PUNPCKLBW, VPUNPCKLBW 511

26568—Rev. 3.24—May 2020 AMD64 Technology

Unpacks the 8 low-order bytes of each octword of the first and second source operands and inter-
leaves the bytes as they are copied to the destination. The high-order bytes of each octword are
ignored.
Bytes are interleaved in ascending order from the least-significant byte of source operands with bytes
from the first source operand occupying the lower byte of each pair copied to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest[7:0] = src1[7:0]
dest[15:8] = src2[7:0]
dest[23:16] = src1[15:8]
dest[31:24] = src2[15:8]
dest[39:32] = src1[23:16]
dest[47:40] = src2[23:16]
dest[55:48] = src1[31:24]
dest[63:56] = src2[31:24]
dest[71:64] = src1[39:32]
dest[79:72] = src2[39:32]
dest[87:80] = src1[47:40]
dest[95:88] = src2[47:40]
dest[103:96] = src1[55:48]
dest[111:104] = src2[55:48]
dest[119:112] = src1[63:56]
dest[127:120] = src2[63:56]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[135:128] = src1[135:128]
dest[143:136] = src2[135:128]
dest[151:144] = src1[143:136]
dest[159:152] = src2[143:136]
dest[167:160] = src1[151:144]
dest[175:168] = src2[151:144]
dest[183:176] = src1[159:152]
dest[191:184] = src2[159:152]
dest[199:192] = src1[167:160]
dest[207:200] = src2[167:160]
dest[215:208] = src1[175:168]
dest[223:216] = src2[175:168]
dest[231:224] = src1[183:176]
dest[239:232] = src2[183:176]
dest[247:240] = src1[191:184]
dest[255:248] = src2[191:184]

When the second source operand is all 0s, the destination effectively receives the eight low-order
bytes from the first source operand or the eight low-order bytes from both octwords of the first source
operand zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to
unsigned 16-bit operands for subsequent processing that requires higher precision.

PUNPCKLBW
VPUNPCKLBW

Unpack and Interleave
Low Bytes

[AMD Public Use]

512 PUNPCKLBW, VPUNPCKLBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

There are legacy and extended forms of the instruction:
PUNPCKLBW
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source operand is also the destination register. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPUNPCKLBW
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCK-
LDQ, (V)PUNPCKLQDQ, (V)PUNPCKLWD

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PUNPCKLBW SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPUNPCKLBW 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPUNPCKLBW 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PUNPCKLBW xmm1, xmm2/mem128 66 0F 60 /r Unpacks and interleaves the low-order bytes of

xmm1 and xmm2 or mem128. Writes the bytes to
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKLBW xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 60 /r
VPUNPCKLBW ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 60 /r

[AMD Public Use]

Instruction Reference PUNPCKLBW, VPUNPCKLBW 513

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

514 PUNPCKLDQ, VPUNPCKLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Unpacks the two low-order doublewords of each octword of the first and second source operands and
interleaves the doublewords as they are copied to the destination. The high-order doublewords of
each octword of the source operands are ignored.
Doublewords are interleaved in ascending order from the least-significant doubleword of the sources
with doublewords from the first source operand occupying the lower doubleword of each pair copied
to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest[31:0] = src1[31:0]
dest[63:32] = src2[31:0]
dest[95:64] = src1[63:32]
dest[127:96] = src2[63:32]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[159:128] = src1[159:128]
dest[191:160] = src2[159:128]
dest[223:192] = src1[191:160]
dest[255:224] = src2[191:160]

When the second source operand is all 0s, the destination effectively receives the two low-order dou-
blewords from the first source operand or the two low-order doublewords from both octwords of the
source operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit val-
ues to unsigned 64-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:
PUNPCKLDQ
The first source operand is an XMM register and the second source operand is an XMM register or
128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.
VPUNPCKLDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

PUNPCKLDQ
VPUNPCKLDQ

Unpack and Interleave
Low Doublewords

[AMD Public Use]

Instruction Reference PUNPCKLDQ, VPUNPCKLDQ 515

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PUNPCKHW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLBW,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PUNPCKLDQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPUNPCKLDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPUNPCKLDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PUNPCKLDQ xmm1, xmm2/mem128 66 0F 62 /r Unpacks and interleaves the low-order doublewords

of xmm1 and xmm2 or mem128. Writes the
doublewords to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKLDQ xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 62 /r
VPUNPCKLDQ ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 62 /r

[AMD Public Use]

516 PUNPCKLDQ, VPUNPCKLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PUNPCKLQDQ, VPUNPCKLQDQ 517

26568—Rev. 3.24—May 2020 AMD64 Technology

Unpacks the low-order quadword of each octword of the first and second source operands and inter-
leaves the quadwords as they are copied to the destination. The high-order quadword of each octword
of the source operands is ignored.
Quadwords are interleaved in ascending order from the least-significant quadword of the sources with
quadwords from the first source operand occupying the lower quadword of each pair copied to the
destination.
For the 128-bit form of the instruction, the following operations are performed:

dest[63:0] = src1[63:0]
dest[127:64] = src2[63:0]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[191:128] = src1[191:128]
dest[255:192] = src2[191:128]

When the second source operand is all 0s, the destination effectively receives the low-order quadword
from the first source operand or the low-order quadword of both octwords of the first source operand
zero-extended to 128 bits. This operation is useful for expanding unsigned 64-bit values to unsigned
128-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:
PUNPCKLQDQ
The first source operand is an XMM register and the second source operand is an XMM register or
128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.
VPUNPCKLQDQ
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

PUNPCKLQDQ
VPUNPCKLQDQ

Unpack and Interleave
Low Quadwords

Form Subset Feature Flag
PUNPCKLQDQ SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPUNPCKLQDQ 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPUNPCKLQDQ 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

518 PUNPCKLQDQ, VPUNPCKLQDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCK-
LBW, (V)PUNPCKLDQ, (V)PUNPCKLWD

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
PUNPCKLQDQ xmm1, xmm2/mem128 66 0F 6C /r Unpacks and interleaves the low-order

quadwords of xmm1 and xmm2 or mem128.
Writes the bytes to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKLQDQ xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 6C /r
VPUNPCKLQDQ ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 6C /r

[AMD Public Use]

Instruction Reference PUNPCKLQDQ, VPUNPCKLQDQ 519

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

520 PUNPCKLWD, VPUNPCKLWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Unpacks the four low-order words of each octword of the first and second source operands and inter-
leaves the words as they are copied to the destination. The high-order words of each octword of the
source operands are ignored.
Words are interleaved in ascending order from the least-significant word of the source operands with
words from the first source operand occupying the lower word of each pair copied to the destination.
For the 128-bit form of the instruction, the following operations are performed:

dest[15:0] = src1[15:0]
dest[31:16] = src2[15:0]
dest[47:32] = src1[31:16]
dest[63:48] = src2[31:16]
dest[79:64] = src1[47:32]
dest[95:80] = src2[47:32]
dest[111:96] = src1[63:48]
dest[127:112] = src2[63:48]

Additionally, for the 256-bit form of the instruction, the following operations are performed:
dest[143:128] = src1[143:128]
dest[159:144] = src2[143:128]
dest[175:160] = src1[159:144]
dest[191:176] = src2[159:144]
dest[207:192] = src1[175:160]
dest[223:208] = src2[175:160]
dest[239:224] = src1[191:176]
dest[255:240] = src2[191:176]

When the second source operand is all 0s, the destination effectively receives the 4 low-order words
from the first source operand or the 4 low-order words of each octword of the first source operand
zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values to unsigned
32-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:
PUNPCKLWD
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source operand is also the destination register. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
PUNPCKLWD
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

PUNPCKLWD
VPUNPCKLWD

Unpack and Interleave
Low Words

[AMD Public Use]

Instruction Reference PUNPCKLWD, VPUNPCKLWD 521

26568—Rev. 3.24—May 2020 AMD64 Technology

YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCK-
LBW, (V)PUNPCKLDQ, (V)PUNPCKLQDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
PUNPCKLWD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPUNPCKLWD 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPUNPCKLWD 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PUNPCKLWD xmm1, xmm2/mem128 66 0F 61 /r Unpacks and interleaves the low-order words of

xmm1 and xmm2 or mem128. Writes the words to
xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKLWD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 61 /r
VPUNPCKLWD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 61 /r

[AMD Public Use]

522 PUNPCKLWD, VPUNPCKLWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference PXOR, VPXOR 523

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs a bitwise XOR of the first and second source operands and writes the result to the destina-
tion. When either of a pair of corresponding bits in the first and second operands are set, the corre-
sponding bit of the destination is set; when both source bits are set or when both source bits are not
set, the destination bit is cleared.

There are legacy and extended forms of the instruction:
PXOR
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.
VPXOR
The extended form of the instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PAND, (V)PANDN, (V)POR

PXOR
VPXOR

Packed Exclusive OR

Form Subset Feature Flag
PXOR SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VPXOR 128-bit AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VPXOR 256-bit AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Opcode Description
PXOR xmm1, xmm2/mem128 66 0F EF /r Performs bitwise XOR of values in xmm1 and xmm2 or

mem128. Writes the result to xmm1
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPXOR xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 EF /r
VPXOR ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 EF /r

[AMD Public Use]

524 PXOR, VPXOR Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

Instruction Reference RCPPS, VRCPPS 525

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the approximate reciprocal of each packed single-precision floating-point value in the
source operand and writes the results to the corresponding doubleword of the destination.
MXCSR.RC as no effect on the result.
The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal. A source value that is
±zero or denormal returns an infinity of the source value sign. Results that underflow are changed to
signed zero. For both SNaN and QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:
RCPPS
Computes four reciprocals. The first source operand is an XMM register. The second source operand
is either an XMM register or a 128-bit memory location. The first source register is also the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VRCPPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Computes four reciprocals. The source operand is either an XMM register or a 128-bit memory loca-
tion. The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Computes eight reciprocals. The source operand is either a YMM register or a 256-bit memory loca-
tion. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

RCPPS
VRCPPS

Reciprocal
Packed Single-Precision Floating-Point

Form Subset Feature Flag
RCPPS SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VRCPPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
RCPPS xmm1, xmm2/mem128 0F 53 /r Computes reciprocals of packed single-precision floating-

point values in xmm1 or mem128. Writes result to xmm1
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VRCPPS xmm1, xmm2/mem128 C4 RXB.01 X.1111.0.00 53 /r
VRCPPS ymm1, ymm2/mem256 C4 RXB.01 X.1111.1.00 53 /r

[AMD Public Use]

526 RCPPS, VRCPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)RCPSS, (V)RSQRTPS, (V)RSQRTSS

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference RCPSS, VRCPSS 527

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the approximate reciprocal of the scalar single-precision floating-point value in a source
operand and writes the results to the low-order doubleword of the destination. MXCSR.RC as no
effect on the result.
The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal. A source value that is
±zero or denormal returns an infinity of the source value sign. Results that underflow are changed to
signed zero. For both SNaN and QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:
RCPSS
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [127:32] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.
VRCPSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand and the destination are XMM registers. The second source operand is either
an XMM register or a 32-bit memory location. Bits [31:0] of the destination contain the reciprocal;
bits [127:32] of the destination are copied from the first source register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)RCPPS, (V)RSQRTPS, (V)RSQRTSS

rFLAGS Affected
None

RCPSS
VRCPSS

Reciprocal
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
RCPSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VRCPSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
RCPSS xmm1, xmm2/mem32 F3 0F 53 /r Computes reciprocal of scalar single-precision floating-point

value in xmm1 or mem32. Writes the result to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VRCPSS xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.X.10 53 /r

[AMD Public Use]

528 RCPSS, VRCPSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ROUNDPD, VROUNDPD 529

26568—Rev. 3.24—May 2020 AMD64 Technology

Rounds two or four double-precision floating-point values as specified by an immediate byte oper-
and. Source values are rounded to integral values and written to the destination as double-precision
floating-point values.
SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.
The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

There are legacy and extended forms of the instruction:
ROUNDPD
Rounds two source values. The first source operand is an XMM register. The second source operand
is either an XMM register or a 128-bit memory location. There is a third 8-bit immediate operand.
The first source register is also the destination. Bits [255:128] of the YMM register that corresponds
to the destination are not affected.

ROUNDPD
VROUNDPD

Round
Packed Double-Precision Floating-Point

7 4 3 2 1 0
Reserved P O RC

Bits Mnemonic Description
[7:4] — Reserved
[3] P Precision Exception
[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description
0 Normal PE exception
1 PE field is not updated.

No precision exception is taken when unmasked.

Value Description
0 Use RC from immediate operand
1 Use RC from MXCSR

Value Description
00 Nearest
01 Downward (toward negative infinity)
10 Upward (toward positive infinity)
11 Truncated

[AMD Public Use]

530 ROUNDPD, VROUNDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

VROUNDPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Rounds two source values. The first source operand is an XMM register. The second source operand
is either an XMM register or a 128-bit memory location. There is a third 8-bit immediate operand.
The destination is a third XMM register. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Rounds four source values. The first source operand is a YMM register and the second source oper-
and is either a YMM register or a 256-bit memory location. There is a third 8-bit immediate operand.
The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS

rFLAGS Affected
None

MXCSR Flags Affected

Form Subset Feature Flag
PCMPEQQ SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VPCMPEQQ AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ROUNDPD xmm1, xmm2/mem128,
imm8

66 0F 3A 09 /r ib Rounds double-precision floating-point values
in xmm2 or mem128. Writes rounded double-
precision values to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VROUNDPD xmm1, xmm2/mem128, imm8 C4 RXB.03 X.1111.0.01 09 /r ib
VROUNDPD ymm1, xmm2/mem256, imm8 C4 RXB.03 X.1111.1.01 09 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference ROUNDPD, VROUNDPD 531

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

532 ROUNDPS, VROUNDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Rounds four or eight single-precision floating-point values as specified by an immediate byte oper-
and. Source values are rounded to integral values and written to the destination as single-precision
floating-point values.
SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.
The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

There are legacy and extended forms of the instruction:
ROUNDPS
Rounds four source values. The first source operand is an XMM register. The second source operand
is either an XMM register or a 128-bit memory location. There is a third 8-bit immediate operand.
The first source register is also the destination. Bits [255:128] of the YMM register that corresponds
to the destination are not affected.

ROUNDPS
VROUNDPS

Round
Packed Single-Precision Floating-Point

7 4 3 2 1 0
Reserved P O RC

Bits Mnemonic Description
[7:4] — Reserved
[3] P Precision Exception
[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description
0 Normal PE exception
1 PE field is not updated.

No precision exception is taken when unmasked.

Value Description
0 Use RC from immediate operand
1 Use RC from MXCSR

Value Description
00 Nearest
01 Downward (toward negative infinity)
10 Upward (toward positive infinity)
11 Truncated

[AMD Public Use]

Instruction Reference ROUNDPS, VROUNDPS 533

26568—Rev. 3.24—May 2020 AMD64 Technology

VROUNDPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Rounds four source values. The first source operand is an XMM register. The second source operand
is either an XMM register or a 128-bit memory location. There is a third 8-bit immediate operand.
The destination is a third XMM register. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Rounds eight source values. The first source operand is a YMM register and the second source oper-
and is either a YMM register or a 256-bit memory location. There is a third 8-bit immediate operand.
The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ROUNDPD, (V)ROUNDSD, (V)ROUNDSS

rFLAGS Affected
None

MXCSR Flags Affected

Form Subset Feature Flag
ROUNDPS SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VROUNDPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ROUNDPS xmm1, xmm2/mem128, imm8 66 0F 3A 08 /r ib Rounds single-precision floating-point

values in xmm2 or mem128. Writes
rounded single-precision values to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VROUNDPS xmm1, xmm2/mem128, imm8 C4 RXB.03 X.1111.0.01 08 /r ib
VROUNDPS ymm1, xmm2/mem256, imm8 C4 RXB.03 X.1111.1.01 08 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

534 ROUNDPS, VROUNDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference ROUNDSD, VROUNDSD 535

26568—Rev. 3.24—May 2020 AMD64 Technology

Rounds a scalar double-precision floating-point value as specified by an immediate byte operand.
Source values are rounded to integral values and written to the destination as double-precision float-
ing-point values.
SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.
The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

There are legacy and extended forms of the instruction:
ROUNDSD
The source operand is either an XMM register or a 64-bit memory location. When the source is an
XMM register, the value to be rounded must be in the low quadword. The destination is an XMM reg-
ister. There is a third 8-bit immediate operand. Bits [127:64] of the destination are not affected. Bits
[255:128] of the YMM register that corresponds to destination XMM register are not affected.

ROUNDSD
VROUNDSD

Round
Scalar Double-Precision

7 4 3 2 1 0
Reserved P O RC

Bits Mnemonic Description
[7:4] — Reserved
[3] P Precision Exception
[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description
0 Normal PE exception
1 PE field is not updated.

No precision exception is taken when unmasked.

Value Description
0 Use RC from immediate operand
1 Use RC from MXCSR

Value Description
00 Nearest
01 Downward (toward negative infinity)
10 Upward (toward positive infinity)
11 Truncated

[AMD Public Use]

536 ROUNDSD, VROUNDSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

VROUNDSD
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. The destination is a third XMM register. There is a fourth 8-bit immediate
operand. Bits [127:64] of the destination are copied from the first source operand. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSS

rFLAGS Affected
None

MXCSR Flags Affected

Form Subset Feature Flag
ROUNDSD SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VROUNDSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ROUNDSD xmm1, xmm2/mem64, imm8 66 0F 3A 0B /r ib Rounds a double-precision floating-point

value in xmm2[63:0] or mem64. Writes a
rounded double-precision value to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VROUNDSD xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.03 X.src1.X.01 0B /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference ROUNDSD, VROUNDSD 537

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

538 ROUNDSS, VROUNDSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Rounds a scalar single-precision floating-point value as specified by an immediate byte operand.
Source values are rounded to integral values and written to the destination as single-precision float-
ing-point values.
SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.
The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

There are legacy and extended forms of the instruction:
ROUNDSS
The source operand is either an XMM register or a 32-bit memory location. When the source is an
XMM register, the value to be rounded must be in the low doubleword. The destination is an XMM
register. There is a third 8-bit immediate operand. Bits [127:32] of the destination are not affected.
Bits [255:128] of the YMM register that corresponds to destination XMM register are not affected.

ROUNDSS
VROUNDSS

Round
Scalar Single-Precision

7 4 3 2 1 0
Reserved P O RC

Bits Mnemonic Description
[7:4] — Reserved
[3] P Precision Exception
[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description
0 Normal PE exception
1 PE field is not updated.

No precision exception is taken when unmasked.

Value Description
0 Use RC from immediate operand
1 Use RC from MXCSR

Value Description
00 Nearest
01 Downward (toward negative infinity)
10 Upward (toward positive infinity)
11 Truncated

[AMD Public Use]

Instruction Reference ROUNDSS, VROUNDSS 539

26568—Rev. 3.24—May 2020 AMD64 Technology

VROUNDSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. The destination is a third XMM register. There is a fourth 8-bit immediate
operand. Bits [127:32] of the destination are copied from the first source operand. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD

rFLAGS Affected
None

MXCSR Flags Affected

Form Subset Feature Flag
ROUNDSS SSE4.1 CPUID Fn0000_0001_ECX[SSE41] (bit 19)

VROUNDSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
ROUNDSS xmm1, xmm2/mem64, imm8 66 0F 3A 0A /r ib Rounds a single-precision floating-point

value in xmm2[63:0] or mem64. Writes a
rounded single-precision value to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VROUNDSS xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.03 X.src1.X.01 0A /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

540 ROUNDSS, VROUNDSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference RSQRTPS, VRSQRTPS 541

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the approximate reciprocal of the square root of each packed single-precision floating-
point value in the source operand and writes the results to the corresponding doublewords of the des-
tination. MXCSR.RC has no effect on the result.
The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal square root. A source
value that is ±zero or denormal returns an infinity of the source value sign. Negative source values
other than –zero and –denormal return a QNaN floating-point indefinite value. For both SNaN and
QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:
RSQRTPS
Computes four values. The first source operand is an XMM register. The second source operand is
either an XMM register or a 128-bit memory location. The first source register is also the destination.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VRSQRTPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Computes four values. The destination is an XMM register. The source operand is either an XMM
register or a 128-bit memory location. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Computes eight values. The destination is a YMM register. The source operand is either a YMM reg-
ister or a 256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

RSQRTPS
VRSQRTPS

Reciprocal Square Root
Packed Single-Precision Floating-Point

Form Subset Feature Flag
RSQRTPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VRSQRTPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
RSQRTPS xmm1, xmm2/mem128 0F 52 /r Computes reciprocals of square roots of packed single-

precision floating-point values in xmm1 or mem128.
Writes result to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VRSQRTPS xmm1, xmm2/mem128 C4 RXB.01 X.1111.0.00 52 /r
VRSQRTPS ymm1, ymm2/mem256 C4 RXB.01 X.1111.1.00 52 /r

[AMD Public Use]

542 RSQRTPS, VRSQRTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)RSQRTSS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSD, (V)SQRTSS

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference RSQRTSS, VRSQRTSS 543

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the approximate reciprocal of the square root of the scalar single-precision floating-point
value in a source operand and writes the result to the low-order doubleword of the destination.
MXCSR.RC as no effect on the result.
The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal square root. A source
value that is ±zero or denormal returns an infinity of the source value’s sign. Negative source values
other than –zero and –denormal return a QNaN floating-point indefinite value. For both SNaN and
QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:
RSQRTSS
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [127:32] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.
VRSQRTSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand and the destination are XMM registers. The second source operand is either
an XMM register or a 32-bit memory location. Bits [31:0] of the destination contain the reciprocal
square root of the single-precision floating-point value held in bits [31:0] of the second source oper-
and; bits [127:32] of the destination are copied from the first source register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)RSQRTPS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSD, (V)SQRTSS

RSQRTSS
VRSQRTSS

Reciprocal Square Root
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
RSQRTSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VRSQRTSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
RSQRTSS xmm1, xmm2/mem32 F3 0F 52 /r Computes reciprocal of square root of a scalar single-

precision floating-point value in xmm1 or mem32. Writes
result to xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VRSQRTSS xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.X.10 52 /r

[AMD Public Use]

544 RSQRTSS, VRSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference RSQRTSS, VRSQRTSS 545

26568—Rev. 3.24—May 2020 AMD64 Technology

Execute 4 rounds of a SHA1 operation using the 4 double words (A, B, C, D) from the first source
operand, and value E from the second operand. The lower two bits of the immediate are used to spec-
ify the function and constant appropriate for the current round of processing. The resulting (A, B, C,
D) is placed in the destination register which is the same as the first source register.
The following function is performed:

Related Instructions
SHA1NEXTE, SHA1MSG1, SHA1MSG2

SHA1RNDS4 Four Rounds of SHA1

Mnemonic Opcode Description
SHA1RNDS4 xmm1, xmm2/m128, imm8 0F 3A CC /r ib Executes 4 Rounds of SHA1

A SRC1[127:96];
B SRC1[95:64];
C SRC1[63:32];
D SRC1[31:0];

W0E SRC2[127:96];
W1 SRC2[95:64];
W2 SRC2[63:32];
W3 SRC2[31:0];

i=imm[1:0] which determines f_i and K_i

First Round operation:
A_1 f_ 0(B, C, D) + (A Rotate Left 5) +W0E +K_0;
B_1 A;
C_1 B Rotate Left 30;
D_1 C;
E_1 D;

FOR j = 1 to 3
{ A_(j +1) f_j(B_j, C_j, D_j) + (A_j Rotate Left 5) +Wj+ E_j +K_i;

B_(j+1) <- A_j;

C_(j +1) B_j Rotate Left 30;

D_(j +1) C_j;
E_(j +1) D_j;

}

DEST[127:96] A_4;
DEST[95:64] B_4;
DEST[63:32] C_4;
DEST[31:0] D_4;

[AMD Public Use]

546 RSQRTSS, VRSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exceptions Real Virtual
8086

Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
A A AVX instructions are only recognized in protected

mode
S S S CR0.EM=1 OR CR4.OSFXSR=0

A CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE]

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or

non-canonical.
General protection, #GP S S X Memory address exceeding data segment limit or

non-canonical.
X Null data segment used to reference memory

Alignment check, #AC S S S Memory operand not 16-byte aligned when
alignment checking enabled and MXCSR.MM = 1.

A Alignment checking enabled and 256-bit memory
operand not 32-byte aligned or 128-bit memory
operand not 16-byte aligned.

Page Fault, #PF S X A page fault resulted from the execution of the
instruction

X - SSE, AVX, and AVX2 exception
A - AVX, AVX2 exception
S - SSE exception

[AMD Public Use]

Instruction Reference RSQRTSS, VRSQRTSS 547

26568—Rev. 3.24—May 2020 AMD64 Technology

Calculate what the next E register values should be after 4 rounds of a SHA1 operation using the 4
double words from the second source operand, and value A from the first operand. The resulting E is
placed in the destination register which is the same as the first source register.

Related Instructions
SHA1RNDS4, SHA1MSG1, SHA1MSG2

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

SHA1NEXTE Calculate Next E SHA1

Mnemonic Opcode Description
SHA1NEXTE xmm1,xmm2/m128 0F 38 C8 /r Calculate Next E of SHA1

Exceptions Real Virtual
8086

Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
A A AVX instructions are only recognized in protected

mode
S S S CR0.EM=1 OR CR4.OSFXSR=0

A CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE]

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or

non-canonical.
General protection, #GP S S X Memory address exceeding data segment limit or

non-canonical.
X Null data segment used to reference memory

DEST[127:96] SRC2[127:96] + (SRC1[127:96] rotated left 30)
DEST[95:0] SRC2[95:0];

[AMD Public Use]

548 RSQRTSS, VRSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Alignment check, #AC S S S Memory operand not 16-byte aligned when
alignment checking enabled and MXCSR.MM = 1.

A Alignment checking enabled and 256-bit memory
operand not 32-byte aligned or 128-bit memory
operand not 16-byte aligned.

Page Fault, #PF S X A page fault resulted from the execution of the
instruction

X - SSE, AVX, and AVX2 exception
A - AVX, AVX2 exception
S - SSE exception

Exceptions Real Virtual
8086

Protected Cause of Exception

[AMD Public Use]

Instruction Reference RSQRTSS, VRSQRTSS 549

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs the 1st of two intermediate calculations necessary before doing the next four rounds of the
SHA1 message.

Related Instructions
SHA1RNDS4, SHA1NEXTE, SHA1MSG2

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

SHA1MSG1 Message Intermediate 1

Mnemonic Opcode Description
SHA1MSG1 xmm1, xmm2/m128 0F 38 C9 /r Calculate Message Intermediate 1

Exceptions Real Virtual
8086

Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
A A AVX instructions are only recognized in protected

mode
S S S CR0.EM=1 OR CR4.OSFXSR=0

A CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE]

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or

non-canonical.
General protection, #GP S S X Memory address exceeding data segment limit or

non-canonical.
X Null data segment used to reference memory

DEST[127:96] SRC1[63:32] XOR SRC1[127:96]
DEST[95:64] SRC1[31:0] XOR SRC1[95:64]
DEST[63:32] SRC2[127:96] XOR SRC1[63:32]
DEST[31:0] SRC2[95:64] XOR SRC1[31:0]

[AMD Public Use]

550 RSQRTSS, VRSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Alignment check, #AC S S S Memory operand not 16-byte aligned when
alignment checking enabled and MXCSR.MM = 1.

A Alignment checking enabled and 256-bit memory
operand not 32-byte aligned or 128-bit memory
operand not 16-byte aligned.

Page Fault, #PF S X A page fault resulted from the execution of the
instruction

X - SSE, AVX, and AVX2 exception
A - AVX, AVX2 exception
S - SSE exception

Exceptions Real Virtual
8086

Protected Cause of Exception

[AMD Public Use]

Instruction Reference RSQRTSS, VRSQRTSS 551

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs the 2nd of two intermediate calculations necessary before doing the next four rounds of the
SHA1 message.

Related Instructions
SHA1RNDS4, SHA1NEXTE, SHA1MSG1

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

SHA1MSG2 Message Calculation 2

Mnemonic Opcode Description
SHA1MSG2 xmm1, xmm2/m128 0F 38 CA /r CCalculate Message Intermediate 2

Exceptions Real Virtual
8086

Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
A A AVX instructions are only recognized in protected

mode
S S S CR0.EM=1 OR CR4.OSFXSR=0

A CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE]

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.

Temp[31:0] (SRC1[127:96] XOR SRC2[95:64]) Rotate Left 1

DEST[127:96] Temp[31:0]
DEST[95:64] (SRC1[95:64] XOR SRC2[63:32]) Rotate Left 1
DEST[63:32] (SRC1{63:32] XOR SRC2[31:0]) Rotate Left 1
DEST[31:0] (SRC1[31:0] XOR Temp[31:0]) Rotate Left 1

[AMD Public Use]

552 RSQRTSS, VRSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Stack, #SS S S X Memory address exceeding stack segment limit or
non-canonical.

General protection, #GP S S X Memory address exceeding data segment limit or
non-canonical.

X Null data segment used to reference memory
Alignment check, #AC S S S Memory operand not 16-byte aligned when

alignment checking enabled and MXCSR.MM = 1.
A Alignment checking enabled and 256-bit memory

operand not 32-byte aligned or 128-bit memory
operand not 16-byte aligned.

Page Fault, #PF S X A page fault resulted from the execution of the
instruction

X - SSE, AVX, and AVX2 exception
A - AVX, AVX2 exception
S - SSE exception

Exceptions Real Virtual
8086

Protected Cause of Exception

[AMD Public Use]

Instruction Reference RSQRTSS, VRSQRTSS 553

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs 2 rounds of SHA256 operation with the first operand holding the initial SHA256 state (C,
D, G, H), the second operand holding the initial SHA256 state (A, B, E, F), and the implicit operand
xmm0 holding a pre-computed sum of the next two double word round 2 message as well as the cor-
responding round constants. The resulting SHA256 state (A, B, E, F) is placed in the destination reg-
ister.

Related Instructions
SHA256MSG1, SHA256MSG2

rFLAGS Affected
None

MXCSR Flags Affected
None

SHA256RNDS2 Two Rounds of SHA256

Mnemonic Opcode Description
SHA256RNDS2xmm1, xmm2/m128, xmm0 0F 38 CB /r Execute 2 rounds of SHA256

A_0 SRC2[127:96];
B_0 SRC2[95:64];
C_0 SRC1[127:96];
D_0 SRC1[95:64];
E_0 SRC2[63:32];
F_0 SRC2[31:0];
G_0 SRC1[63:32];
H_0 SRC1[31:0];
K0 XMM0[31: 0];
K1 XMM0[63: 32];

FOR i = 0 to 1
{ A_(i +1) Ch (E_i, F_i, G_i) +Perm1(E_i) +K_i + H_i + Ma(A_i , B_i, C_i) +Perm0(A_i);

B_(i +1) A_i;
C_(i +1) B_i ;
D_(i +1) C_i;
E_(i +1) Ch (E_i, F_i, G_i) + Perm1(E_i) + K_i + H_i + D_i;
F_(i +1) E_i ;
G_(i +1) F_i;
H_(i +1) G_i;

}

DEST[127:96] A_2;
DEST[95:64] B_2;
DEST[63:32] E_2;
DEST[31:0] F_2;

[AMD Public Use]

554 RSQRTSS, VRSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exceptions Real Virtual
8086

Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
A A AVX instructions are only recognized in protected

mode
S S S CR0.EM=1 OR CR4.OSFXSR=0

A CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE]

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or

non-canonical.
General protection, #GP S S X Memory address exceeding data segment limit or

non-canonical.
X Null data segment used to reference memory

Alignment check, #AC S S S Memory operand not 16-byte aligned when
alignment checking enabled and MXCSR.MM = 1.

A Alignment checking enabled and 256-bit memory
operand not 32-byte aligned or 128-bit memory
operand not 16-byte aligned.

Page Fault, #PF S X A page fault resulted from the execution of the
instruction

X - SSE, AVX, and AVX2 exception
A - AVX, AVX2 exception
S - SSE exception

[AMD Public Use]

Instruction Reference RSQRTSS, VRSQRTSS 555

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs the 1st of two intermediate calculations necessary for the next four SHA256 message
dwords.

Related Instructions
SHA256RNDS2, SHA256MSG2

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

SHA256MSG1 Message Intermediate 1

Mnemonic Opcode Description
SHA256MSG1xmm1, xmm2/m128 0F 38 CC /r Calculate Message Intermediate 1

Exceptions Real Virtual
8086

Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
A A AVX instructions are only recognized in protected

mode
S S S CR0.EM=1 OR CR4.OSFXSR=0

A CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE]

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or

non-canonical.

DEST[127:96] SRC1[127:96] + Perm2(SRC2[31:0])
DEST[95:64] SRC1[95:64] + Perm2(SRC1[127:96])
DEST[63:32] SRC1[63:32] + Perm2(SRC1[95:64]
DEST[31:0] SRC1[31:0] + Perm2(SRC1[63:62])

[AMD Public Use]

556 RSQRTSS, VRSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

General protection, #GP S S X Memory address exceeding data segment limit or
non-canonical.

X Null data segment used to reference memory
Alignment check, #AC S S S Memory operand not 16-byte aligned when

alignment checking enabled and MXCSR.MM = 1.
A Alignment checking enabled and 256-bit memory

operand not 32-byte aligned or 128-bit memory
operand not 16-byte aligned.

Page Fault, #PF S X A page fault resulted from the execution of the
instruction

X - SSE, AVX, and AVX2 exception
A - AVX, AVX2 exception
S - SSE exception

Exceptions Real Virtual
8086

Protected Cause of Exception

[AMD Public Use]

Instruction Reference RSQRTSS, VRSQRTSS 557

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs the 2nd of two intermediate calculations necessary for the next four SHA256 message
dwords.

Related Instructions
SHA256RNDS2, SHA256MSG1

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

SHA256MSG2 Message Intermediate 2

Mnemonic Opcode Description
SHA256MSG1 xmm1, xmm2/m128 0F 38 CD /r Calculate Message Intermediate 2

Exceptions Real Virtual
8086

Protected Cause of Exception

Invalid opcode, #UD X X X Instruction not supported by CPUID
A A AVX instructions are only recognized in protected

mode
S S S CR0.EM=1 OR CR4.OSFXSR=0

A CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE]

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or

non-canonical.

Temp0 SRC1[31:0] + Perm3(SRC2[95:64])
Temp1 SRC1[63:32] + Perm3(SRC2[127:96])

DEST[127:96] SRC1[127:96] + Perm3(Temp1)
DEST[95:64] SRC1[95:64] + Perm3(Temp0)
DEST[63:32] SRC1[63:32] + Perm3(SRC2[127:96])
DEST[31:0] SRC1[31:0] + Perm3(SRC2[95:624])

[AMD Public Use]

558 RSQRTSS, VRSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

General protection, #GP S S X Memory address exceeding data segment limit or
non-canonical.

X Null data segment used to reference memory
Alignment check, #AC S S S Memory operand not 16-byte aligned when

alignment checking enabled and MXCSR.MM = 1.
A Alignment checking enabled and 256-bit memory

operand not 32-byte aligned or 128-bit memory
operand not 16-byte aligned.

Page Fault, #PF S X A page fault resulted from the execution of the
instruction

X - SSE, AVX, and AVX2 exception
A - AVX, AVX2 exception
S - SSE exception

Exceptions Real Virtual
8086

Protected Cause of Exception

[AMD Public Use]

Instruction Reference SHUFPD, VSHUFPD 559

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies packed double-precision floating-point values from either of two sources to quadwords in the
destination, as specified by bit fields of an immediate byte operand.
Each bit corresponds to a quadword destination. The 128-bit legacy and extended versions of the
instruction use bits [1:0]; the 256-bit extended version uses bits [3:0], as shown.

There are legacy and extended forms of the instruction:
SHUFPD
Shuffles four source values. The first source operand is an XMM register. The second source operand
is either an XMM register or a 128-bit memory location. There is a third 8-bit immediate operand.
The first source register is also the destination. Bits [255:128] of the YMM register that corresponds
to the destination are not affected.
VSHUFPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Shuffles four source values. The first source operand is an XMM register. The second source operand
is either an XMM register or a 128-bit memory location. The destination is a third XMM register.
There is a fourth 8-bit immediate operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Shuffles eight source values. The first source operand is a YMM register and the second source oper-
and is either a YMM register or a 256-bit memory location. The destination is a third YMM register.
There is a fourth 8-bit immediate operand.

SHUFPD
VSHUFPD

Shuffle
Packed Double-Precision Floating-Point

Destination
Quadword

Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Source 2
Bits Copied

Used by 128-bit encoding and 256-bit encoding
[63:0] [0] 0 [63:0] —

1 [127:64] —
[127:64] [1] 0 — [63:0]

1 —]127:64]
Used only by 256-bit encoding

[191:128] [2] 0 [191:128] —
1 [255:192] —

[255:192] [3] 0 — [191:128]
1 — [255:192]

[AMD Public Use]

560 SHUFPD, VSHUFPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)SHUFPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
SHUFPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VSHUFPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SHUFPD xmm1, xmm2/mem128, imm8 66 0F C6 /r ib Shuffles packed double-precision floating-

point values in xmm1 and xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VSHUFPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.01 X.src1.0.01 C6 /r
VSHUFPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.01 X.src1.1.01 C6 /r

[AMD Public Use]

Instruction Reference SHUFPD, VSHUFPD 561

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

562 SHUFPS, VSHUFPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies packed single-precision floating-point values from either of two sources to doublewords in the
destination, as specified by bit fields of an immediate byte operand.
Each bit field corresponds to a doubleword destination. The 128-bit legacy and extended versions of
the instruction use a single 128-bit destination; the 256-bit extended version performs duplicate oper-
ations on bits [127:0] and bits [255:128] of the source and destination.

SHUFPS
VSHUFPS

Shuffle
Packed Single-Precision Floating-Point

Destination
Doubleword

Immediate-Byte
Bit Field

Value of Bit
Field

Source 1
Bits Copied

Source 2
Bits Copied

[31:0] [1:0] 00 [31:0] —
01 [63:32] —
10 [95:64] —
11 [127:96] —

[63:32] [3:2] 00 [31:0] —
01 [63:32] —
10 [95:64] —
11 [127:96] —

[95:64] [5:4] 00 — [31:0]
01 — [63:32]
10 — [95:64]
11 — [127:96]

[127:96] [7:6] 00 — [31:0]
01 — [63:32]
10 — [95:64]
11 — [127:96]

Upper 128 bits of 256-bit source and destination used by 256-bit encoding
[159:128] [1:0] 00 [159:128] —

01 [191:160] —
10 [223:192] —
11 [255:224] —

[191:160] [3:2] 00 [159:128] —
01 [191:160] —
10 [223:192] —
11 [255:224] —

[223:192] [5:4] 00 — [159:128]
01 — [191:160]
10 — [223:192]
11 — [255:224]

[255:224] [7:6] 00 — [159:128]
01 — [191:160]
10 — [223:192]
11 — [255:224]

[AMD Public Use]

Instruction Reference SHUFPS, VSHUFPS 563

26568—Rev. 3.24—May 2020 AMD64 Technology

There are legacy and extended forms of the instruction:
SHUFPS
Shuffles eight source values. The first source operand is an XMM register. The second source oper-
and is either an XMM register or a 128-bit memory location. There is a third 8-bit immediate oper-
and. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.
VSHUFPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Shuffles eight source values. The first source operand is an XMM register. The second source oper-
and is either an XMM register or a 128-bit memory location. The destination is a third XMM register.
There is a fourth 8-bit immediate operand. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Shuffles 16 source values. The first source operand is a YMM register and the second source operand
is either a YMM register or a 256-bit memory location. The destination is a third YMM register.
There is a fourth 8-bit immediate operand.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)SHUFPD

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
SHUFPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VSHUFPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SHUFPS xmm1, xmm2/mem128, imm8 0F C6 /r ib Shuffles packed single-precision floating-

point values in xmm1 and xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VSHUFPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.01 X.src1.0.00 C6 /r
VSHUFPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.01 X.src1.1.00 C6 /r

[AMD Public Use]

564 SHUFPS, VSHUFPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference SQRTPD, VSQRTPD 565

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the square root of each packed double-precision floating-point value in a source operand
and writes the result to the corresponding quadword of the destination.
Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:
SQRTPD
Computes two values. The destination is an XMM register. The source operand is either an XMM
register or a 128-bit memory location. Bits [255:128] of the YMM register that corresponds to the
destination are not affected.
VSQRTPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Computes two values. The source operand is either an XMM register or a 128-bit memory location.
The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to the des-
tination are cleared.
YMM Encoding
Computes four values. The source operand is either a YMM register or a 256-bit memory location.
The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPS, (V)SQRTSD, (V)SQRTSS

SQRTPD
VSQRTPD

Square Root
Packed Double-Precision Floating-Point

Form Subset Feature Flag
SQRTPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VSQRTPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SQRTPD xmm1, xmm2/mem128 66 0F 51 /r Computes square roots of packed double-precision

floating-point values in xmm1 or mem128. Writes the
results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VSQRTPD xmm1, xmm2/mem128 C4 RXB.01 X.1111.0.01 51 /r
VSQRTPD ymm1, ymm2/mem256 C4 RXB.01 X.1111.1.01 51 /r

[AMD Public Use]

566 SQRTPD, VSQRTPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference SQRTPS, VSQRTPS 567

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the square root of each packed single-precision floating-point value in a source operand
and writes the result to the corresponding doubleword of the destination.
Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:
SQRTPS
Computes four values. The destination is an XMM register. The source operand is either an XMM
register or a 128-bit memory location. Bits [255:128] of the YMM register that corresponds to the
destination are not affected.
VSQRTPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Computes four values. The destination is an XMM register. The source operand is either an XMM
register or a 128-bit memory location. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Computes eight values. The destination is a YMM register. The source operand is either a YMM reg-
ister or a 256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPD, (V)SQRTSD, (V)SQRTSS

SQRTPS
VSQRTPS

Square Root
Packed Single-Precision Floating-Point

Form Subset Feature Flag
SQRTPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VSQRTPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SQRTPS xmm1, xmm2/mem128 0F 51 /r Computes square roots of packed single-precision

floating-point values in xmm1 or mem128. Writes the
results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VSQRTPS xmm1, xmm2/mem128 C4 RXB.01 X.1111.0.00 51 /r
VSQRTPS ymm1, ymm2/mem256 C4 RXB.01 X.1111.1.00 51 /r

[AMD Public Use]

568 SQRTPS, VSQRTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference SQRTSD, VSQRTSD 569

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the square root of a double-precision floating-point value and writes the result to the low
quadword of the destination. The three-operand form of the instruction also writes a copy of the upper
quadword of a second source operand to the upper quadword of the destination.
Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:
SQRTSD
The source operand is either an XMM register or a 64-bit memory location. When the source is an
XMM register, the source value must be in the low quadword. The destination is an XMM register.
Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that corresponds
to destination XMM register are not affected.
VSQRTSD
The extended form of the instruction has a single 128-bit encoding that requires three operands:

VSQRTSD xmm1, xmm2, xmm3/mem64

The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. When the second source is an XMM register, the source value must be in
the low quadword. The destination is a third XMM register. The square root of the second source
operand is written to bits [63:0] of the destination register. Bits [127:64] of the destination are copied
from the corresponding bits of the first source operand. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSS

SQRTSD
VSQRTSD

Square Root
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
SQRTSD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VSQRTSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SQRTSD xmm1, xmm2/mem64 F2 0F 51 /r Computes the square root of a double-precision floating-

point value in xmm1 or mem64. Writes the result to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VSQRTSD xmm1, xmm2, xmm3/mem64 C4 RXB.01 X.src1.X.11 51 /r

[AMD Public Use]

570 SQRTSD, VSQRTSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference SQRTSS, VSQRTSS 571

26568—Rev. 3.24—May 2020 AMD64 Technology

Computes the square root of a single-precision floating-point value and writes the result to the low
doubleword of the destination. The three-operand form of the instruction also writes a copy of the
three most significant doublewords of a second source operand to the upper 96 bits of the destination.
Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:
SQRTSS
The source operand is either an XMM register or a 32-bit memory location. When the source is an
XMM register, the source value must be in the low doubleword. The destination is an XMM register.
Bits [127:32] of the destination are not affected. Bits [255:128] of the YMM register that corresponds
to destination XMM register are not affected.
VSQRTSS
The extended form has a single 128-bit encoding that requires three operands:

VSQRTSS xmm1, xmm2, xmm3/mem64

The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. When the second source is an XMM register, the source value must be in
the low doubleword. The destination is a third XMM register. The square root of the second source
operand is written to bits [31:0] of the destination register. Bits [127:32] of the destination are copied
from the corresponding bits of the first source operand. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSD

SQRTSS
VSQRTSS

Square Root
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
SQRTSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VSQRTSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SQRTSS xmm1, xmm2/mem32 F3 0F 51 /r Computes square root of a single-precision floating-point

value in xmm1 or mem32. Writes the result to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VSQRTSS xmm1, xmm2, xmm3/mem64 C4 RXB.01 X.src1.X.10 51 /r

[AMD Public Use]

572 SQRTSS, VSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference STMXCSR, VSTMXCSR 573

26568—Rev. 3.24—May 2020 AMD64 Technology

Saves the content of the MXCSR extended control/status register to a 32-bit memory location.
Reserved bits are stored as zeroes. The MXCSR is described in “Registers” in Volume 1.
For both legacy STMXCSR and extended VSTMXCSR forms of the instruction, the source operand
is the MXCSR and the destination is a 32-bit memory location.
There is one encoding for each instruction form.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)LDMXCSR

rFLAGS Affected
None

MXCSR Flags Affected

STMXCSR
VSTMXCSR

Store MXCSR

Form Subset Feature Flag
STMXCSR SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VSTMXCSR AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
STMXCSR mem32 0F AE /3 Stores content of MXCSR in mem32.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VSTMXCSR mem32 C4 RXB.01 X.1111.0.00 AE /3

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M M M M M M M M M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

[AMD Public Use]

574 STMXCSR, VSTMXCSR Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.
S S S Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference SUBPD, VSUBPD 575

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts each packed double-precision floating-point value of the second source operand from the
corresponding value of the first source operand and writes the difference to the corresponding quad-
word of the destination.

There are legacy and extended forms of the instruction:
SUBPD
Subtracts two pairs of values. The first source operand is an XMM register. The second source oper-
and is either an XMM register or a 128-bit memory location. The first source register is also the desti-
nation. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VSUBPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Subtracts two pairs of values. The first source operand is an XMM register. The second source oper-
and is either an XMM register or a 128-bit memory location. The destination is a third XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Subtracts four pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)SUBPS, (V)SUBSD, (V)SUBSS

SUBPD
VSUBPD

Subtract
Packed Double-Precision Floating-Point

Form Subset Feature Flag
SUBPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VSUBPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SUBPD xmm1, xmm2/mem128 66 0F 5C /r Subtracts packed double-precision floating-point values in

xmm2 or mem128 from corresponding values of xmm1.
Writes differences to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 5C /r
VSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 5C /r

[AMD Public Use]

576 SUBPD, VSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference SUBPS, VSUBPS 577

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts each packed single-precision floating-point value of the second source operand from the
corresponding value of the first source operand and writes the difference to the corresponding quad-
word of the destination.

There are legacy and extended forms of the instruction:
SUBPS
Subtracts four pairs of values. The first source operand is an XMM register. The second source oper-
and is either an XMM register or a 128-bit memory location. The first source register is also the desti-
nation. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VSUBPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Subtracts four pairs of values. The first source operand is an XMM register. The second source oper-
and is either an XMM register or a 128-bit memory location. The destination is a third XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Subtracts eight pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)SUBPD, (V)SUBSD, (V)SUBSS

SUBPS
VSUBPS

Subtract
Packed Single-Precision Floating-Point

Form Subset Feature Flag
SUBPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VSUBPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SUBPS xmm1, xmm2/mem128 0F 5C /r Subtracts packed single-precision floating-point values in

xmm2 or mem128 from corresponding values of xmm1.
Writes differences to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5C /r
VSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5C /r

[AMD Public Use]

578 SUBPS, VSUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected
None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference SUBSD, VSUBSD 579

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts the double-precision floating-point value in the low-order quadword of the second source
operand from the corresponding value in the first source operand and writes the result to the low-
order quadword of the destination

There are legacy and extended forms of the instruction:
SUBSD
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding YMM register are not affected.
VSUBSD
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first
source operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)SUBPD, (V)SUBPS, (V)SUBSS

rFLAGS Affected
None

SUBSD
VSUBSD

Subtract
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
SUBSD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VSUBSD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SUBSD xmm1, xmm2/mem64 F2 0F 5C /r Subtracts low-order double-precision floating-point value in

xmm2 or mem64 from the corresponding value of xmm1.
Writes the difference to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VSUBSD xmm1, xmm2, xmm3/mem64 C4 RXB.01 X.src1.X.11 5C /r

[AMD Public Use]

580 SUBSD, VSUBSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference SUBSS, VSUBSS 581

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts the single-precision floating-point value in the low-order word of the second source oper-
and from the corresponding value in the first source operand and writes the result to the low-order
word of the destination

There are legacy and extended forms of the instruction:
SUBSS
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination register. Bits [127:32]
of the destination and bits [255:128] of the corresponding YMM register are not affected.
VSUBSS
The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source operand are copied to bits [127:32] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)SUBPD, (V)SUBPS, (V)SUBSD

rFLAGS Affected
None

SUBSS
VSUBSS

Subtract
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
SUBSS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VSUBSS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
SUBSS xmm1, xmm2/mem32 F3 0F 5C /r Subtracts a low-order single-precision floating-point value

in xmm2 or mem32 from the corresponding value of xmm1.
Writes the difference to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VSUBSS xmm1, xmm2, xmm3/mem32 C4 RXB.01 X.src1.X.10 5C /r

[AMD Public Use]

582 SUBSS, VSUBSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M
17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference UCOMISD, VUCOMISD 583

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs an unordered comparison of a double-precision floating-point value in the low-order 64 bits
of an XMM register with a double-precision floating-point value in the low-order 64 bits of an XMM
register or a 64-bit memory location.
The ZF, PF, and CF bits in the rFLAGS register reflect the result of the compare as follows.

The OF, AF, and SF bits in rFLAGS are cleared. If the instruction causes an unmasked SIMD float-
ing-point exception (#XF), the rFLAGS bits are not updated.
The result is unordered when one or both of the operand values is a NaN. UCOMISD signals a SIMD
floating-point invalid operation exception (#I) only when a source operand is an SNaN.
The legacy and extended forms of the instruction operate in the same way.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISS

UCOMISD
VUCOMISD

Unordered Compare
Scalar Double-Precision Floating-Point

Result of Compare ZF PF CF
Unordered 1 1 1

Greater Than 0 0 0
Less Than 0 0 1

Equal 1 0 0

Form Subset Feature Flag
UCOMISD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VUCOMISD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
UCOMISD xmm1, xmm2/mem64 66 0F 2E /r Compares scalar double-precision floating-point values

in xmm1 and xmm2 or mem64. Sets rFLAGS.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VUCOMISD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.X.01 2E /r

[AMD Public Use]

584 UCOMISD, VUCOMISD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 M 0 M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference UCOMISS, VUCOMISS 585

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs an unordered comparison of a single-precision floating-point value in the low-order 32 bits
of an XMM register with a single-precision floating-point value in the low-order 32 bits of an XMM
register or a 32-bit memory location.
The ZF, PF, and CF bits in the rFLAGS register reflect the result of the compare as follows.

The OF, AF, and SF bits in rFLAGS are cleared. If the instruction causes an unmasked SIMD float-
ing-point exception (#XF), the rFLAGS bits are not updated.
The result is unordered when one or both of the operand values is a NaN. UCOMISD signals a SIMD
floating-point invalid operation exception (#I) only when a source operand is an SNaN.
The legacy and extended forms of the instruction operate in the same way.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD

UCOMISS
VUCOMISS

Unordered Compare
Scalar Single-Precision Floating-Point

Result of Compare ZF PF CF
Unordered 1 1 1

Greater Than 0 0 0
Less Than 0 0 1

Equal 1 0 0

Form Subset Feature Flag
UCOMISS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VUCOMISS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
UCOMISS xmm1, xmm2/mem32 0F 2E /r Compares scalar single-precision floating-point values

in xmm1 and xmm2 or mem64. Sets rFLAGS.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VUCOMISS xmm1, xmm2/mem32 C4 RXB.01 X.1111.X.00 2E /r

[AMD Public Use]

586 UCOMISS, VUCOMISS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 0 M 0 M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference UNPCKHPD, VUNPCKHPD 587

26568—Rev. 3.24—May 2020 AMD64 Technology

Unpacks the high-order double-precision floating-point values of the first and second source oper-
ands and interleaves the values into the destination. Bits [63:0] of the source operands are ignored.
Values are interleaved in ascending order from the lsb of the sources and the destination. Bits
[127:64] of the first source are written to bits [63:0] of the destination; bits [127:64] of the second
source are written to bits [127:64] of the destination. For the 256-bit encoding, the process is repeated
for bits [255:192] of the sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:
UNPCKHPD
Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VUNPCKHPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Interleaves two pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

UNPCKHPD
VUNPCKHPD

Unpack High
Double-Precision Floating-Point

Form Subset Feature Flag
UNPCKHPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VUNPCKHPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
UNPCKHPD xmm1, xmm2/mem128 66 0F 15 /r Unpacks the high-order double-precision floating-

point values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VUNPCKHPD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 15 /r
VUNPCKHPD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 15 /r

[AMD Public Use]

588 UNPCKHPD, VUNPCKHPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference UNPCKHPS, VUNPCKHPS 589

26568—Rev. 3.24—May 2020 AMD64 Technology

Unpacks the high-order single-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [63:0] of the source operands are ignored.
Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [95:64]
of the first source are written to bits [31:0] of the destination; bits [95:64] of the second source are
written to bits [63:32] of the destination and so on, ending with bits [127:96] of the second source in
bits [127:96] of the destination. For the 256-bit encoding, the process continues for bits [255:192] of
the sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:
UNPCKHPS
Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VUNPCKHPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Interleaves four pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

UNPCKHPS
VUNPCKHPS

Unpack High
Single-Precision Floating-Point

Form Subset Feature Flag
UNPCKHPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VUNPCKHPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

590 UNPCKHPS, VUNPCKHPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)UNPCKHPD, (V)UNPCKLPD, (V)UNPCKLPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
UNPCKHPS xmm1, xmm2/mem128 0F 15 /r Unpacks the high-order single-precision floating-point

values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VUNPCKHPS xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.00 15 /r
VUNPCKHPS ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.00 15 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference UNPCKLPD, VUNPCKLPD 591

26568—Rev. 3.24—May 2020 AMD64 Technology

Unpacks the low-order double-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [127:64] of the source operands are ignored.
Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [63:0]
of the first source are written to bits [63:0] of the destination; bits [63:0] of the second source are writ-
ten to bits [127:64] of the destination. For the 256-bit encoding, the process is repeated for bits
[191:128] of the sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:
UNPCKLPD
Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VUNPCKLPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Interleaves two pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

UNPCKLPD
VUNPCKLPD

Unpack Low
Double-Precision Floating-Point

Form Subset Feature Flag
UNPCKLPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VUNPCKLPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
UNPCKLPD xmm1, xmm2/mem128 66 0F 14 /r Unpacks the low-order double-precision floating-point

values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VUNPCKLPD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 14 /r
VUNPCKLPD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 14 /r

[AMD Public Use]

592 UNPCKLPD, VUNPCKLPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
(V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference UNPCKLPS, VUNPCKLPS 593

26568—Rev. 3.24—May 2020 AMD64 Technology

Unpacks the low-order single-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [127:64] of the source operands are ignored.
Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [31:0]
of the first source are written to bits [31:0] of the destination; bits [31:0] of the second source are writ-
ten to bits [63:32] of the destination and so on, ending with bits [63:32] of the second source in bits
[127:96] of the destination. For the 256-bit encoding, the process continues for bits [191:128] of the
sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:
UNPCKLPS
Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VUNPCKLPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Interleaves four pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

UNPCKLPS
VUNPCKLPS

Unpack Low
Single-Precision Floating-Point

Form Subset Feature Flag
UNPCKLPS SSE1 CPUID Fn0000_0001_EDX[SSE] (bit 25)

VUNPCKLPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

594 UNPCKLPS, VUNPCKLPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
(V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Opcode Description
UNPCKLPS xmm1, xmm2/mem128 0F 14 /r Unpacks the high-order single-precision floating-point

values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VUNPCKLPS xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.00 14 /r
VUNPCKLPS ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.00 14 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

Instruction Reference VBROADCASTF128 595

26568—Rev. 3.24—May 2020 AMD64 Technology

Loads double-precision floating-point data from a 128-bit memory location and writes it to the two
128-bit elements of a YMM register
This extended-form instruction has a single 256-bit encoding.
The source operand is a 128-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VBROADCASTSD, VBROADCASTSS

rFLAGS Affected
None

MXCSR Flags Affected
None

VBROADCASTF128 Load With Broadcast
From 128-bit Memory Location

Form Subset Feature Flag
VBROADCASTF128 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VBROADCASTF128 ymm1, mem128 C4 RXB.02 0.1111.1.01 1A /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

[AMD Public Use]

596 VBROADCASTF128 Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

[AMD Public Use]

Instruction Reference VBROADCASTI128 597

26568—Rev. 3.24—May 2020 AMD64 Technology

Loads data from a 128-bit memory location and writes it to the two 128-bit elements of a YMM reg-
ister
There is a single form of this instruction:

VBROADCASTI128 dest, mem128

There is a single VEX.L = 1 encoding of this instruction.
The source operand is a 128-bit memory location. The destination is a YMM register.

Instruction Support

Instruction Encoding

Related Instructions
VBROADCASTF128, VEXTRACTF128, VEXTRACTI128, VINSERTF128, VINSERTI128

rFLAGS Affected
None

MXCSR Flags Affected
None

VBROADCASTI128 Load With Broadcast Integer
From 128-bit Memory Location

Form Subset Feature Flag
VBROADCASTI128 AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Encoding
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VBROADCASTI128 ymm1, mem128 C4 RXB.02 0.1111.1.01 5A /r

[AMD Public Use]

598 VBROADCASTI128 Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A Register-based source operand specified (MODRM.mod = 11b)
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

Instruction Reference VBROADCASTSD 599

26568—Rev. 3.24—May 2020 AMD64 Technology

Loads a double-precision floating-point value from a register or memory and writes it to the four 64-
bit elements of a YMM register
This extended-form instruction has a single 256-bit encoding.
The source operand is the lower half of an XMM register or a 64-bit memory location. The destina-
tion is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VBROADCASTF128, VBROADCASTSS

rFLAGS Affected
None

MXCSR Flags Affected
None

VBROADCASTSD Load With Broadcast Scalar Double

Form Subset Feature Flag
VBROADCASTSD ymm1, mem64 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

VBROADCASTSD ymm1, xmm AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VBROADCASTSD ymm1, xmm2/mem64 C4 RXB.02 0.1111.1.01 19 /r

[AMD Public Use]

600 VBROADCASTSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A Register-based source operand specified when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX, AVX2 exception.

[AMD Public Use]

Instruction Reference VBROADCASTSS 601

26568—Rev. 3.24—May 2020 AMD64 Technology

Loads a single-precision floating-point value from a register or memory and writes it to all 4 or 8 dou-
blewords of an XMM or YMM register.
This extended-form instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Copies the source operand to all four 32-bit elements of the destination.
The source operand is the least-significant 32 bits of an XMM register or a 32-bit memory location.
The destination is an XMM register.
YMM Encoding
Copies the source operand to all eight 32-bit elements of the destination.
The source operand is the least-significant 32 bits of an XMM register or a 32-bit memory location.
The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VBROADCASTF128, VBROADCASTSD

rFLAGS Affected
None

MXCSR Flags Affected
None

VBROADCASTSS Load With Broadcast Scalar Single

Form Subset Feature Flag
VBROADCASTSS mem32 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)
VBROADCASTSS xmm AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VBROADCASTSS xmm1, xmm2/mem32 C4 RXB.02 0.1111.0.01 18 /r
VBROADCASTSS ymm1, xmm2/mem32 C4 RXB.02 0.1111.1.01 18 /r

[AMD Public Use]

602 VBROADCASTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A MODRM.mod = 11b when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX, AVX2 exception.

[AMD Public Use]

Instruction Reference VCVTPH2PS 603

26568—Rev. 3.24—May 2020 AMD64 Technology

Converts packed 16-bit floating point values to single-precision floating point values.
A denormal source operand is converted to a normal result in the destination register. MXCSR.DAZ
is ignored and no MXCSR denormal exception is reported.
Because the full range of 16-bit floating-point encodings, including denormal encodings, can be rep-
resented exactly in single-precision format, rounding, inexact results, and denormalized results are
not applicable.
The operation of this instruction is illustrated in the following diagram.

This extended-form instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts four packed 16-bit floating-point values in the low-order 64 bits of an XMM register or in a
64-bit memory location to four packed single-precision floating-point values and writes the converted
values to an XMM destination register. When the result operand is written to the destination register,
the upper 128 bits of the corresponding YMM register are zeroed.

VCVTPH2PS Convert Packed 16-Bit Floating-Point to
Single-Precision Floating-Point

dest = xmm1

src = xmm2/mem64

095 63127 64 313296

063 16 15313248 47127 64

VCVTPH2PS
128-Bit

095 63127 64 313296128223 191255 192 159160224

0111 95 63127 16 1564 313248 4780 7996112

src = xmm2/

dest = ymm1

mem128

VCVTPH2PS
256-Bit

128255
0s

 convert
 convert

 convert
 convert

 convert convert
 convert

 convert

 convert
 convert

 convert
 convert

[AMD Public Use]

604 VCVTPH2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

YMM Encoding
Converts eight packed 16-bit floating-point values in the low-order 128 bits of a YMM register or in a
128-bit memory location to eight packed single-precision floating-point values and writes the con-
verted values to a YMM destination register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VCVTPS2PH

rFLAGS Affected
None

Form Subset Feature Flag
VCVTPH2PS F16C CPUID Fn0000_0001_ECX[F16C] (bit 29)

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPH2PS xmm1, xmm2/mem64 C4 RXB.02 0.1111.0.01 13 /r

VCVTPH2PS ymm1, xmm2/mem128 C4 RXB.02 0.1111.1.01 13 /r

[AMD Public Use]

Instruction Reference VCVTPH2PS 605

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F AVX instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE].

F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F VEX.W field = 1.
A VEX.vvvv ! = 1111b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Alignment check, #AC F Unaligned memory reference when alignment checking enabled.
Page fault, #PF F Instruction execution caused a page fault.
SIMD Floating-Point
Exception, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,

see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid-operation exception
(IE)

F A source operand was an SNaN value.
F Undefined operation.

Denormalized-operand
exception (DE) F A source operand was a denormal value.

Overflow exception (OE) F Rounded result too large to fit into the format of the destination operand.
Underflow exception (UE) F Rounded result too small to fit into the format of the destination operand.
Precision exception (PE) F A result could not be represented exactly in the destination format.
F — F16C exception.

[AMD Public Use]

606 VCVTPS2PH Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Converts packed single-precision floating-point values to packed 16-bit floating-point values and
writes the converted values to the destination register or to memory. An 8-bit immediate operand pro-
vides dynamic control of rounding.
The operation of this instruction is illustrated in the following diagram.

VCVTPS2PH Convert Packed Single-Precision Floating-Point
to 16-Bit Floating-Point

src = xmm2
095 63127 64 313296

063 16 15313248 47127 64
0s

imm8

dest = xmm1/mem64

VCVTPS2PH
128-Bit

src = ymm2
095 63127 64 313296128223 191255 192 159160224

0111 95 63127 161564 313248 4780 7996112
128255

0s

VCVTPS2PH

dest = xmm1/mem128

128255
0s

256-Bit

convert
convert

convert
convert

convert
convert

convert
convert

imm8 convert
convert

convert
convert

round

round

[AMD Public Use]

Instruction Reference VCVTPS2PH 607

26568—Rev. 3.24—May 2020 AMD64 Technology

The handling of rounding is controlled by fields in the immediate byte, as shown in the following
table.

MXCSR[FTZ] has no effect on this instruction. Values within the half-precision denormal range are
unconditionally converted to denormals.
This extended-form instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts four packed single-precision floating-point values in an XMM register to four packed 16-bit
floating-point values and writes the converted values to the low-order 64 bits of the destination XMM
register or to a 64-bit memory location. When the result is written to the destination XMM register,
the high-order 64 bits in the destination XMM register and the upper 128 bits of the corresponding
YMM register are cleared to 0s.
YMM Encoding
Converts eight packed single-precision floating-point values in a YMM register to eight packed 16-
bit floating-point values and writes the converted values to the low-order 128 bits of a YMM register
or to a 128-bit memory location. When the result is written to the destination YMM register, the high-
order 128 bits in the register are cleared to 0s.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Rounding Control with Immediate Byte Operand

Mnemonic

Rounding
Source

(RS)
Rounding Control

(RC)

Description NotesBit 2 1 0

Value

0

0 0 Nearest

Ignore MXCSR.RC.
0 1 Down

1 0 Up

1 1 Truncate

1 X X Use MXCSR.RC for
rounding.

Form Subset Feature Flag
VCVTPH2PH F16C CPUID Fn0000_0001_ECX[F16C] (bit 29)

[AMD Public Use]

608 VCVTPS2PH Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VCVTPH2PS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPS2PH xmm1/mem64, xmm2, imm8 C4 RXB.03 0.1111.0.01 1D /r /imm8

VCVTPS2PH xmm1/mem128, ymm2, imm8 C4 RXB.03 0.1111.1.01 1D /r /imm8

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VCVTPS2PH 609

26568—Rev. 3.24—May 2020 AMD64 Technology

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F AVX instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE].

F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F VEX.W field = 1.
A VEX.vvvv ! = 1111b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Alignment check, #AC F Unaligned memory reference when alignment checking enabled.
Page fault, #PF F Instruction execution caused a page fault.
SIMD Floating-Point
Exception, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,

see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid-operation exception
(IE)

F A source operand was an SNaN value.
F Undefined operation.

Denormalized-operand
exception (DE) F A source operand was a denormal value.

Overflow exception (OE) F Rounded result too large to fit into the format of the destination operand.
Underflow exception (UE) F Rounded result too small to fit into the format of the destination operand.
Precision exception (PE) F A result could not be represented exactly in the destination format.
F — F16C exception.

[AMD Public Use]

610 VEXTRACTF128 Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts 128 bits of packed data from a YMM register as specified by an immediate byte operand, and
writes it to either an XMM register or a 128-bit memory location.
Only bit [0] of the immediate operand is used. Operation is as follows.
• When imm8[0] = 0, copy bits [127:0] of the source to the destination.
• When imm8[0] = 1, copy bits [255:128] of the source to the destination.

This extended-form instruction has a single 256-bit encoding.
The source operand is a YMM register and the destination is either an XMM register or a 128-bit
memory location. There is a third immediate byte operand.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VBROADCASTF128, VINSERTF128

rFLAGS Affected
None

MXCSR Flags Affected
None

VEXTRACTF128 Extract
Packed Floating-Point Values

Form Subset Feature Flag
VEXTRACTF128 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VEXTRACTF128 xmm/mem128, ymm, imm8 C4 RXB.03 0.1111.1.01 19 /r ib

[AMD Public Use]

Instruction Reference VEXTRACTF128 611

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Write to a read-only data segment.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

612 VEXTRACTI128 Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Writes a selected 128-bit half of a YMM register to an XMM register or a 128-bit memory location
based on the value of bit 0 of an immediate byte.
There is a single form of this instruction:

VEXTRACTI128 dest, src, imm8

If imm8[0] = 0, the lower half of the source YMM register is selected; if imm8[0] = 1, the upper half
of the source register is selected.
There is a single VEX.L = 1 encoding of this instruction.
The source operand is a YMM register. The destination is either an XMM register or a 128-bit mem-
ory location. When the destination is a register, bits [255:128] of the YMM register that corresponds
to the destination are cleared.

Instruction Support

Instruction Encoding

Related Instructions
VBROADCASTF128, VBROADCASTI128, VEXTRACTF128, VINSERTF128, VINSERTI128

rFLAGS Affected
None

MXCSR Flags Affected
None

VEXTRACTI128 Extract 128-bit Integer

Form Subset Feature Flag
VEXTRACTI128 AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Encoding
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VEXTRACTI128 xmm1/mem128, ymm2, imm8 C4 RXB.03 0.1111.1.01 39 /r ib

[AMD Public Use]

Instruction Reference VEXTRACTI128 613

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

614 VFMADDPD, VFMADDnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point vectors and adds the unrounded product to a
third double-precision floating-point vector producing a precise result which is then rounded to dou-
ble-precision based on the mode specified by the MXCSR[RC] field. The rounded sum is written to
the destination register. The role of each of the source operands specified by the assembly language
prototypes given below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFMADDPD dest, src1, src2/mem, src3 // dest = (src1* src2/mem) + src3
VFMADDPD dest, src1, src2, src3/mem // dest = (src1* src2) + src3/mem

and three three-operand forms:
VFMADD132PD src1, src2, src3/mem // src1 = (src1* src3/mem) + src2
VFMADD213PD src1, src2, src3/mem // src1 = (src2* src1) + src3/mem
VFMADD231PD src1, src2, src3/mem // src1 = (src2* src3/mem) + src1

When VEX.L = 0, the vector size is 128 bits (two double-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (four double-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFMADDPD
VFMADD132PD
VFMADD213PD
VFMADD231PD

 Multiply and Add
Packed Double-Precision Floating-Point

Form Subset Feature Flag
VFMADDPD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMADDnnnPD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

Instruction Reference VFMADDPD, VFMADDnnnPD 615

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VFMADDPS, VFMADD132PS, VFMADD213PS, VFMADD231PS, VFMADDSD,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADDSS, VFMADD132SS,
VFMADD213SS, VFMADD231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 69 /r /is4
VFMADDPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 69 /r /is4
VFMADDPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 69 /r /is4
VFMADDPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 69 /r /is4
VFMADD132PD xmm0, xmm1, xmm2/m128 C4 RXB.02 1.src2.0.01 98 /r
VFMADD132PD ymm0, ymm1, ymm2/m256 C4 RXB.02 1.src2.1.01 98 /r
VFMADD213PD xmm0, xmm1, xmm2/m128 C4 RXB.02 1.src2.0.01 A8 /r
VFMADD213PD ymm0, ymm1, ymm2/m256 C4 RXB.02 1.src2.1.01 A8 /r
VFMADD231PD xmm0, xmm1, xmm2/m128 C4 RXB.02 1.src2.0.01 B8 /r
VFMADD231PD ymm0, ymm1, ymm2/m256 C4 RXB.02 1.src2.1.01 B8 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

616 VFMADDPD, VFMADDnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference VFMADDPS, VFMADDnnnPS 617

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point vectors and adds the unrounded product to a
third single-precision floating-point vector producing a precise result which is then rounded to single-
precision based on the mode specified by the MXCSR[RC] field. The rounded sum is written to the
destination register. The role of each of the source operands specified by the assembly language pro-
totypes given below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFMADDPS dest, src1, src2/mem, src3 // dest = (src1* src2/mem) + src3
VFMADDPS dest, src1, src2, src3/mem // dest = (src1* src2) + src3/mem

and three three-operand forms:
VFMADD132PS src1, src2, src3/mem // src1 = (src1* src3/mem) + src2
VFMADD213PS src1, src2, src3/mem // src1 = (src2* src1) + src3/mem
VFMADD231PS src1, src2, src3/mem // src1 = (src2* src3/mem) + src1

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFMADDPS
VFMADD132PS
VFMADD213PS
VFMADD231PS

 Multiply and Add
Packed Single-Precision Floating-Point

Form Subset Feature Flag
VFMADDPS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMADDnnnPS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

618 VFMADDPS, VFMADDnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VFMADDPD, VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADDSD,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADDSS, VFMADD132SS,
VFMADD213SS, VFMADD231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 68 /r /is4
VFMADDPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 68 /r /is4
VFMADDPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 68 /r /is4
VFMADDPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 68 /r /is4
VFMADD132PS xmm0, xmm1, xmm2/m128 C4 RXB.02 0.src2.0.01 98 /r
VFMADD132PS ymm0, ymm1, ymm2/m256 C4 RXB.02 0.src2.1.01 98 /r
VFMADD213PS xmm0, xmm1, xmm2/m128 C4 RXB.02 0.src2.0.01 A8 /r
VFMADD213PS ymm0, ymm1, ymm2/m256 C4 RXB.02 0.src2.1.01 A8 /r
VFMADD231PS xmm0, xmm1, xmm2/m128 C4 RXB.02 0.src2.0.01 B8 /r
VFMADD231PS ymm0, ymm1, ymm2/m256 C4 RXB.02 0.src2.1.01 B8 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VFMADDPS, VFMADDnnnPS 619

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

620 VFMADDSD, VFMADDnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point values and adds the unrounded product to a
third double-precision floating-point value producing a precise result which is then rounded to dou-
ble-precision based on the mode specified by the MXCSR[RC] field. The rounded sum is written to
the destination register. The role of each of the source operands specified by the assembly language
prototypes given below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMADDSD dest, src1, src2/mem64, src3 // dest = (src1* src2/mem64) + src3
VFMADDSD dest, src1, src2, src3/mem64 // dest = (src1* src2) + src3/mem64

and three three-operand forms:
VFMADD132SD src1, src2, src3/mem64 // src1 = (src1* src3/mem64) + src2
VFMADD213SD src1, src2, src3/mem64 // src1 = (src2* src1) + src3/mem64
VFMADD231SD src1, src2, src3/mem64 // src1 = (src2* src3/mem64) + src1

All 64-bit double-precision floating-point register-based operands are held in the lower quadword of
XMM registers. The result is written to the lower quadword of the destination register. For those
instructions that use a memory-based operand, one of the source operands is a 64-bit value read from
memory.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 64-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a 64-bit

memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a 64-bit memory location.
The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:64] of the destination and bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFMADDSD
VFMADD132SD
VFMADD213SD
VFMADD231SD

 Multiply and Add
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
VFMADDSD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMADDnnnSD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

Instruction Reference VFMADDSD, VFMADDnnnSD 621

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VFMADDPD, VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADDPS,
VFMADD132PS, VFMADD213PS, VFMADD231PS, VFMADDSS, VFMADD132SS,
VFMADD213SS, VFMADD231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDSD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.X.01 6B /r /is4
VFMADDSD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.X.01 6B /r /is4
VFMADD132SD xmm0, xmm1, xmm2/m128 C4 RXB.02 1.src2.X.01 99 /r
VFMADD213SD xmm0, xmm1, xmm2/m128 C4 RXB.02 1.src2.X.01 A9 /r
VFMADD231SD xmm0, xmm1, xmm2/m128 C4 RXB.02 1.src2.X.01 B9 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

622 VFMADDSD, VFMADDnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference VFMADDSS, VFMADDnnnSS 623

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point values and adds the unrounded product to a
third single-precision floating-point value producing a precise result which is then rounded to single-
precision based on the mode specified by the MXCSR[RC] field. The rounded sum is written to the
destination register. The role of each of the source operands specified by the assembly language pro-
totypes given below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMADDSS dest, src1, src2/mem32, src3 // dest = (src1* src2/mem32) + src3
VFMADDSS dest, src1, src2, src3/mem32 // dest = (src1* src2) + src3/mem32

and three three-operand forms:
VFMADD132SS src1, src2, src3/mem32 // src1 = (src1* src3/mem32) + src2
VFMADD213SS src1, src2, src3/mem32 // src1 = (src2* src1) + src3/mem32
VFMADD231SS src1, src2, src3/mem32 // src1 = (src2* src3/mem32) + src1

All 32-bit single-precision floating-point register-based operands are held in the lower doubleword of
XMM registers. The result is written to the low doubleword of the destination register. For those
instructions that use a memory-based operand, one of the source operands is a 32-bit value read from
memory.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 32-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a a register and the third source is either a register or a 32-

bit memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a 32-bit memory location.
The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:32] of the destination and bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFMADDSS
VFMADD132SS
VFMADD213SS
VFMADD231SS

Multiply and Add
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
VFMADDSS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMADDnnnSS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

624 VFMADDSS, VFMADDnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VFMADDPD, VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADDPS,
VFMADD132PS, VFMADD213PS, VFMADD231PS, VFMADDSD, VFMADD132SD,
VFMADD213SD, VFMADD231SD

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.03 0.src1.X.01 6A /r /is4
VFMADDSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.03 1.src1.X.01 6A /r /is4
VFMADD132SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 99 /r
VFMADD213SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 A9 /r
VFMADD231SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 B9 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VFMADDSS, VFMADDnnnSS 625

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

626 VFMADDSUBPD, VFMADDSUBnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point vectors, adds odd elements of the unrounded
product to odd elements of a third double-precision floating-point vector, and subtracts even elements
of the third floating point vector from even elements of unrounded product. The precise result of each
addition or subtraction is then rounded to double-precision based on the mode specified by the
MXCSR[RC] field and written to the corresponding element of the destination.
The role of each of the source operands specified by the assembly language prototypes given below is
reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMADDSUBPD dest, src1, src2/mem, src3 // destodd = (src1odd* src2odd/memodd) + src3odd
// desteven = (src1even * src2even /memeven) − src3even

VFMADDSUBPD dest, src1, src2, src3/mem // destodd = (src1odd* src2odd) + src3odd/memodd
// desteven = (src1even* src2even) − src3even/memeven

and three three-operand forms:
VFMADDSUB132PD src1, src2, src3/mem // src1odd = (src1odd * src3odd /memodd) + src2odd

// src1even = (src1even* src3even/memeven) − src2even
VFMADDSUB213PD src1, src2, src3/mem // src1odd = (src2odd * src1odd) + src3odd /memodd

// src1even = (src2even* src1even) − src3even/memeven
VFMADDSUB231PD src1, src2, src3/mem // src1odd = (src2odd * src3odd /memodd) + src1odd

// src1even = (src2even* src3even/memeven) − src1even

When VEX.L = 0, the vector size is 128 bits (two double-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (four double-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMADDSUBPD
VFMADDSUB132PD
VFMADDSUB213PD
VFMADDSUB231PD

Multiply with Alternating Add/Subtract
Packed Double-Precision Floating-Point

[AMD Public Use]

Instruction Reference VFMADDSUBPD, VFMADDSUBnnnPD 627

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VFMSUBADDPD, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD,
VFMADDSUBPS, VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PS, VFMSUB-
ADDPS, VFMSUBADD132PS, VFMSUBADD213PS, VFMSUBADD231PS

rFLAGS Affected
None

MXCSR Flags Affected

Form Subset Feature Flag
VFMADDSUBPD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMADDSUBnnnPD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 5D /r /is4
VFMADDSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 5D /r /is4
VFMADDSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 5D /r /is4
VFMADDSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 5D /r /is4
VFMADDSUB132PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 96 /r
VFMADDSUB132PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 96 /r
VFMADDSUB213PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 A6 /r
VFMADDSUB213PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 A6 /r
VFMADDSUB231PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 B6 /r
VFMADDSUB231PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 B6 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

628 VFMADDSUBPD, VFMADDSUBnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference VFMADDSUBPS, VFMADDSUBnnnPS 629

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point vectors, adds odd elements of the unrounded
product to odd elements of a third single-precision floating-point vector, and subtracts even elements
of the third floating point vector from even elements of unrounded product. The precise result of each
addition or subtraction is then rounded to single-precision based on the mode specified by the
MXCSR[RC] field and written to the corresponding element of the destination.
The role of each of the source operands specified by the assembly language prototypes given below is
reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMADDSUBPS dest, src1, src2/mem, src3 // destodd = (src1odd* src2odd/memodd) + src3odd
// desteven = (src1even * src2even /memeven) − src3even

VFMADDSUBPS dest, src1, src2, src3/mem // destodd = (src1odd* src2odd) + src3odd/memodd
// desteven = (src1even* src2even) − src3even/memeven

and three three-operand forms:
VFMADDSUB132PS src1, src2, src3/mem // src1odd = (src1odd * src3odd /memodd) + src2odd

// src1even = (src1even* src3even/memeven) − src2even
VFMADDSUB213PS src1, src2, src3/mem // src1odd = (src2odd * src1odd) + src3odd /memodd

// src1even = (src2even* src1even) − src3even/memeven
VFMADDSUB231PS src1, src2, src3/mem // src1odd = (src2odd * src3odd /memodd) + src1odd

// src1even = (src2even* src3even/memeven) − src1even

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMADDSUBPS
VFMADDSUB132PS
VFMADDSUB213PS
VFMADDSUB231PS

Multiply with Alternating Add/Subtract
Packed Single-Precision Floating-Point

[AMD Public Use]

630 VFMADDSUBPS, VFMADDSUBnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VFMADDSUBPD, VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFM-
SUBADDPD, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBAD-
DPS, VFMSUBADD132PS, VFMSUBADD213PS, VFMSUBADD231PS

rFLAGS Affected
None

MXCSR Flags Affected

Form Subset Feature Flag
VFMADDSUBPS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMADDSUBnnnPS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDSUBPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 5C /r /is4
VFMADDSUBPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 5C /r /is4
VFMADDSUBPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 5C /r /is4
VFMADDSUBPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 5C /r /is4
VFMADDSUB132PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 96 /r
VFMADDSUB132PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 96 /r
VFMADDSUB213PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 A6 /r
VFMADDSUB213PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 A6 /r
VFMADDSUB231PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 B6 /r
VFMADDSUB231PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 B6 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VFMADDSUBPS, VFMADDSUBnnnPS 631

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

632 VFMSUBADDPD, VFMSUBADDnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point vectors, adds even elements of the unrounded
product to even elements of a third double-precision floating-point vector, and subtracts odd elements
of the third floating point vector from odd elements of unrounded product. The precise result of each
addition or subtraction is then rounded to double-precision based on the mode specified by the
MXCSR[RC] field and written to the corresponding element of the destination.
The role of each of the source operands specified by the assembly language prototypes given below is
reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMSUBADDPD dest, src1, src2/mem, src3 // destodd = (src1odd* src2odd/memodd) − src3odd
// desteven = (src1even * src2even /memeven) + src3even

VFMSUBADDPD dest, src1, src2, src3/mem // destodd = (src1odd* src2odd) − src3odd/memodd
// desteven = (src1even* src2even) + src3even/memeven

and three three-operand forms:
VFMSUBADD132PD src1, src2, src3/mem // src1odd = (src1odd * src3odd /memodd) − src2odd

// src1even = (src1even* src3even/memeven) + src2even
VFMSUBADD213PD src1, src2, src3/mem // src1odd = (src2odd * src1odd) − src3odd /memodd

// src1even = (src2even* src1even) + src3even/memeven
VFMSUBADD231PD src1, src2, src3/mem // src1odd = (src2odd * src3odd /memodd) − src1odd

// src1even = (src2even* src3even/memeven) + src1even

For VEX.L = 0, vector size is 128 bits and register-based operands are held in XMM registers. For
VEX.L = 1, vector size is 256 bits and register-based operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source operand is either a register

or a memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

VFMSUBADDPD
VFMSUBADD132PD
VFMSUBADD213PD
VFMSUBADD231PD

Multiply with Alternating Subtract/Add
Packed Double-Precision Floating-Point

Form Subset Feature Flag
VFMSUBADDPD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMSUBADDnnnPD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

Instruction Reference VFMSUBADDPD, VFMSUBADDnnnPD 633

26568—Rev. 3.24—May 2020 AMD64 Technology

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VFMADDSUBPD, VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD,
VFMADDSUBPS, VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PS, VFMSUB-
ADDPS, VFMSUBADD132PS, VFMSUBADD213PS, VFMSUBADD231PS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBADDPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 5F /r /is4
VFMSUBADDPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 5F /r /is4
VFMSUBADDPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 5F /r /is4
VFMSUBADDPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 5F /r /is4
VFMSUBADD132PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 97 /r
VFMSUBADD132PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 97 /r
VFMSUBADD213PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 A7 /r
VFMSUBADD213PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 A7 /r
VFMSUBADD231PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 B7 /r
VFMSUBADD231PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 B7 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

634 VFMSUBADDPD, VFMSUBADDnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference VFMSUBADDPS, VFMSUBADDnnnPS 635

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point vectors, adds even elements of the unrounded
product to even elements of a third single-precision floating-point vector, and subtracts odd elements
of the third floating point vector from odd elements of unrounded product. The precise result of each
addition or subtraction is then rounded to single-precision based on the mode specified by the
MXCSR[RC] field and written to the corresponding element of the destination.
The role of each of the source operands specified by the assembly language prototypes given below is
reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMSUBADDPS dest, src1, src2/mem, src3 // destodd = (src1odd* src2odd/memodd) − src3odd
// desteven = (src1even * src2even /memeven) + src3even

VFMSUBADDPS dest, src1, src2, src3/mem // destodd = (src1odd* src2odd) − src3odd/memodd
// desteven = (src1even* src2even) + src3even/memeven

and three three-operand forms:
VFMSUBADD132PS src1, src2, src3/mem // src1odd = (src1odd * src3odd /memodd) − src2odd

// src1even = (src1even* src3even/memeven) + src2even
VFMSUBADD213PS src1, src2, src3/mem // src1odd = (src2odd * src1odd) − src3odd /memodd

// src1even = (src2even* src1even) + src3even/memeven
VFMSUBADD231PS src1, src2, src3/mem // src1odd = (src2odd * src3odd /memodd) − src1odd

// src1even = (src2even* src3even/memeven) + src1even

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMSUBADDPS
VFMSUBADD132PS
VFMSUBADD213PS
VFMSUBADD231PS

Multiply with Alternating Subtract/Add
Packed Single-Precision Floating-Point

[AMD Public Use]

636 VFMSUBADDPS, VFMSUBADDnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VFMADDSUBPD, VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD,
VFMADDSUBPS, VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PS, VFMSUB-
ADDPD, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD

rFLAGS Affected
None

MXCSR Flags Affected

Form Subset Feature Flag
VFMSUBADDPS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMSUBADDnnnPS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBADDPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 5E /r /is4
VFMSUBADDPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 5E /r /is4
VFMSUBADDPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 5E /r /is4
VFMSUBADDPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 5E /r /is4
VFMSUBADD132PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src2.0.01 97 /r
VFMSUBADD132PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src2.1.01 97 /r
VFMSUBADD213PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src2.0.01 A7 /r
VFMSUBADD213PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src2.1.01 A7 /r
VFMSUBADD231PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src2.0.01 B7 /r
VFMSUBADD231PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src2.1.01 B7 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VFMSUBADDPS, VFMSUBADDnnnPS 637

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

638 VFMSUBPD, VFMSUBnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point vectors and subtracts a third double-precision
floating-point vector from the unrounded product to produce a precise intermediate result. The inter-
mediate result is then rounded to double-precision based on the mode specified by the MXCSR[RC]
field and written to the destination register. The role of each of the source operands specified by the
assembly language prototypes given below is reflected in the vector equation in the comment on the
right.
There are two four-operand forms:

VFMSUBPD dest, src1, src2/mem, src3 // dest = (src1* src2/mem) − src3
VFMSUBPD dest, src1, src2, src3/mem // dest = (src1* src2) − src3/mem

and three three-operand forms:
VFMSUB132PD src1, src2, src3/mem // src1 = (src1* src3/mem) − src2
VFMSUB213PD src1, src2, src3/mem // src1 = (src2* src1) − src3/mem
VFMSUB231PD src1, src2, src3/mem // src1 = (src2* src3/mem) − src1

For VEX.L = 0, vector size is 128 bits and register-based operands are held in XMM registers. For
VEX.L = 1, vector size is 256 bits and register-based operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFMSUBPD
VFMSUB132PD
VFMSUB213PD
VFMSUB231PD

Multiply and Subtract
Packed Double-Precision Floating-Point

Form Subset Feature Flag
VFMSUBPD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMSUBnnnPD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

Instruction Reference VFMSUBPD, VFMSUBnnnPD 639

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VFMSUBPS, VFMSUB132PS, VFMSUB213PS, VFMSUB231PPS, VFMSUBSD, VFMSUB-
132SD, VFMSUB213SD, VFMSUB2P31SD, VFMSUBSS, VFMSUB132SS, VFMSUB213SS,
VFMSUBP231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 6D /r /is4
VFMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 6D /r /is4
VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 6D /r /is4
VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 6D /r /is4
VFMSUB132PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 9A /r
VFMSUB132PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 9A /r
VFMSUB213PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 AA /r
VFMSUB213PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 AA /r
VFMSUB231PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 BA /r
VFMSUB231PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 BA /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

640 VFMSUBPD, VFMSUBnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference VFMSUBPS, VFMSUBnnnPS 641

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point vectors and subtracts a third single-precision
floating-point vector from the unrounded product to produce a precise intermediate result. The inter-
mediate result is then rounded to single-precision based on the mode specified by the MXCSR[RC]
field and written to the destination register. The role of each of the source operands specified by the
assembly language prototypes given below is reflected in the vector equation in the comment on the
right.
There are two four-operand forms:

VFMSUBPS dest, src1, src2/mem, src3 // dest = (src1* src2/mem) − src3
VFMSUBPS dest, src1, src2, src3/mem // dest = (src1* src2) − src3/mem

and three three-operand forms:
VFMSUB132PS src1, src2, src3/mem // src1 = (src1* src3/mem) − src2
VFMSUB213PS src1, src2, src3/mem // src1 = (src2* src1) − src3/mem
VFMSUB231PS src1, src2, src3/mem // src1 = (src2* src3/mem) − src1

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFMSUBPS
VFMSUB132PS
VFMSUB213PS
VFMSUB231PS

Multiply and Subtract
Packed Single-Precision Floating-Point

Form Subset Feature Flag
VFMSUBPS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMSUBnnnPS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

642 VFMSUBPS, VFMSUBnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VFMSUBPD, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUBSD, VFMSUB-
132SD, VFMSUB213SD, VFMSUB231SD, VFMSUBSS, VFMSUB132SS, VFMSUB213SS,
VFMSUB231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 6C /r /is4
VFMSUBPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 6C /r /is4
VFMSUBPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 6C /r /is4
VFMSUBPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 6C /r /is4
VFMSUB132PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 9A /r
VFMSUB132PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 9A /r
VFMSUB213PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 AA /r
VFMSUB213PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 AA /r
VFMSUB231PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 BA /r
VFMSUB231PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 BA /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VFMSUBPS, VFMSUBnnnPS 643

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

644 VFMSUBSD, VFMSUBnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point values and subtracts a third double-precision
floating-point value from the unrounded product to produce a precise intermediate result. The inter-
mediate result is then rounded to double-precision based on the mode specified by the MXCSR[RC]
field and written to the destination register. The role of each of the source operands specified by the
assembly language prototypes given below is reflected in the vector equation in the comment on the
right.
There are two four-operand forms:

VFMSUBSD dest, src1, src2/mem, src3 // dest = (src1* src2/mem) − src3
VFMSUBSD dest, src1, src2, src3/mem // dest = (src1* src2) − src3/mem

and three three-operand forms:
VFMSUB132SD src1, src2, src3/mem // src1 = (src1* src3/mem) − src2
VFMSUB213SD src1, src2, src3/mem // src1 = (src2* src1) − src3/mem
VFMSUB231SD src1, src2, src3/mem // src1 = (src2* src3/mem) − src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 64-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is a register or 64-bit

memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:64] of the destination and bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFMSUBSD
VFMSUB132SD
VFMSUB213SD
VFMSUB231SD

Multiply and Subtract
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
VFMSUBSD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMSUBnnnSD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

Instruction Reference VFMSUBSD, VFMSUBnnnSD 645

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding
.

Related Instructions
VFMSUBPD, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUBPS, VFMSUB-
132PS, VFMSUB213PS, VFMSUB231PS, VFMSUBSS, VFMSUB132SS, VFMSUB213SS, VFM-
SUB231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.03 0.src1.X.01 6F /r /is4
VFMSUBSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.03 1.src1.X.01 6F /r /is4
VFMSUB132SD xmm1, xmm2, xmm3/mem64 C4 RXB.02 1.src2.X.01 9B /r
VFMSUB213SD xmm1, xmm2, xmm3/mem64 C4 RXB.02 1.src2.X.01 AB /r
VFMSUB231SD xmm1, xmm2, xmm3/mem64 C4 RXB.02 1.src2.X.01 BB /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

646 VFMSUBSD, VFMSUBnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference VFMSUBSS, VFMSUBnnnSS 647

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point values and subtracts a third single-precision
floating-point value from the unrounded product to produce a precise intermediate result. The inter-
mediate result is then rounded to single-precision based on the mode specified by the MXCSR[RC]
field and written to the destination register. The role of each of the source operands specified by the
assembly language prototypes given below is reflected in the vector equation in the comment on the
right.
There are two four-operand forms:

VFMSUBSS dest, src1, src2/mem, src3 // dest = (src1* src2/mem) − src3
VFMSUBSS dest, src1, src2, src3/mem // dest = (src1* src2) − src3/mem

and three three-operand forms:
VFMSUB132SS src1, src2, src3/mem // src1 = (src1* src3/mem) − src2
VFMSUB213SS src1, src2, src3/mem // src1 = (src2* src1) − src3/mem
VFMSUB231SS src1, src2, src3/mem // src1 = (src2* src3/mem) − src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 32-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is a register or 32-bit

memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:32] of the XMM register and bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFMSUBSS
VFMSUB132SS
VFMSUB213SS
VFMSUB231SS

Multiply and Subtract
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
VFMSUBSS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFMSUBnnnSS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

648 VFMSUBSS, VFMSUBnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding
.

Related Instructions
VFMSUBPD, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUBPS, VFMSUB-
132PS, VFMSUB213PS, VFMSUB231PS, VFMSUBSD, VFMSUB132SD, VFMSUB213SD,
VFMSUB231SD

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.03 0.src1.X.01 6E /r /is4
VFMSUBSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.03 1.src1.X.01 6E /r /is4
VFMSUB132SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 9B /r
VFMSUB213SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 AB /r
VFMSUB231SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 BB /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VFMSUBSS, VFMSUBnnnSS 649

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

650 FNMADDPD, FNMADDnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point vectors, negates the unrounded product, and
adds it to a third double-precision floating-point vector. The precise result is then rounded to double-
precision based on the mode specified by the MXCSR[RC] field and written to the destination regis-
ter. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFNMADDPD dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) + src3
VFNMADDPD dest, src1, src2, src3/mem // dest = −(src1* src2) + src3/mem

and three three-operand forms:
VFNMADD132PD src1, src2, src3/mem // src1 = −(src1* src3/mem) + src2
VFNMADD213PD src1, src2, src3/mem // src1 = −(src2* src1) + src3/mem
VFNMADD231PD src1, src2, src3/mem // src1 = −(src2* src3/mem) + src1

When VEX.L = 0, the vector size is 128 bits (two double-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (four double-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFNMADDPD
VFNMADD132PD
VFNMADD213PD
VFNMADD231PD

Negative Multiply and Add
Packed Double-Precision Floating-Point

Form Subset Feature Flag
VFNMADDPD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFNMADDnnnPD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

Instruction Reference FNMADDPD, FNMADDnnnPD 651

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VFNMADDPS, VFNMADD132PS, VFNMADD213PS, VFNMADD231PS, VFNMADDSD, VFN-
MADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADDSS, VFNMADD132SS, VFN-
MADD213SS, VFNMADD231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMADDPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 79 /r /is4
VFNMADDPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 79 /r /is4
VFNMADDPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 79 /r /is4
VFNMADDPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 79 /r /is4
VFNMADD132PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 9C /r
VFNMADD132PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 9C /r
VFNMADD213PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 AC /r
VFNMADD213PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 AC /r
VFNMADD231PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 BC /r
VFNMADD231PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 BC /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

652 FNMADDPD, FNMADDnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference FNMADDPS, FNMADDnnnPS 653

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point vectors, negates the unrounded product, and
adds it to a third single-precision floating-point vector. The precise result is then rounded to single-
precision based on the mode specified by the MXCSR[RC] field and written to the destination regis-
ter. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFNMADDPS dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) + src3
VFNMADDPS dest, src1, src2, src3/mem // dest = −(src1* src2) + src3/mem

and three three-operand forms:
VFNMADD132PS src1, src2, src3/mem // src1 = −(src1* src3/mem) + src2
VFNMADD213PS src1, src2, src3/mem // src1 = −(src2* src1) + src3/mem
VFNMADD231PS src1, src2, src3/mem // src1 = −(src2* src3/mem) + src1

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFNMADDPS
VFNMADD132PS
VFNMADD213PS
VFNMADD231PS

Negative Multiply and Add
Packed Single-Precision Floating-Point

Form Subset Feature Flag
VFNMADDPS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFNMADDnnnPS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

654 FNMADDPS, FNMADDnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VFNMADDPD, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADDSD,
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADDSS, VFNMADD132SS,
VFNMADD213SS, VFNMADD231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMADDPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 78 /r /is4
VFNMADDPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 78 /r /is4
VFNMADDPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 78 /r /is4
VFNMADDPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 78 /r /is4
VFNMADD132PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 9C / r
VFNMADD132PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 9C / r
VFNMADD213PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 AC / r
VFNMADD213PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 AC / r
VFNMADD231PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 BC / r
VFNMADD231PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 BC / r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference FNMADDPS, FNMADDnnnPS 655

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

656 VFNMADDSD, VFNMADDnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point values, negates the unrounded product, and
adds it to a third double-precision floating-point value. The precise result is then rounded to double-
precision based on the mode specified by the MXCSR[RC] field and written to the destination regis-
ter. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFNMADDSD dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) + src3
VFNMADDSD dest, src1, src2, src3/mem // dest = −(src1* src2) + src3/mem

and three three-operand forms:
VFNMADD132SD src1, src2, src3/mem // src1 = −(src1* src3/mem) + src2
VFNMADD213SD src1, src2, src3/mem // src1 = −(src2* src1) + src3/mem
VFNMADD231SD src1, src2, src3/mem // src1 = −(src2* src3/mem) + src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 64-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is a register or 64-bit

memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a 64-bit memory location.
The destination is an XMM register. When the result is written to the destination, bits [127:64] of the
XMM register and bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFNMADDSD
VFNMADD132SD
VFNMADD213SD
VFNMADD231SD

Negative Multiply and Add
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
VFNMADDSD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFNMADDnnnSD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

Instruction Reference VFNMADDSD, VFNMADDnnnSD 657

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VFNMADDPD, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADDPS,
VFNMADD132PS, VFNMADD213PS, VFNMADD231PS, VFNMADDSS, VFNMADD132SS,
VFNMADD213SS, VFNMADD231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMADDSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.03 0.src1.X.01 7B /r /is4
VFNMADDSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.03 1.src1.X.01 7B /r /is4
VFNMADD132SD xmm1, xmm2, xmm3/mem64 C4 RXB.02 1.src2.X.01 9D /r
VFNMADD213SD xmm1, xmm2, xmm3/mem64 C4 RXB.02 1.src2.X.01 AD /r
VFNMADD231SD xmm1, xmm2, xmm3/mem64 C4 RXB.02 1.src2.X.01 BD /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

658 VFNMADDSD, VFNMADDnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference VFNMADDSS, VFNMADDnnnSS 659

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point values, negates the unrounded product, and
adds it to a third single-precision floating-point value. The precise result is then rounded to single-
precision based on the mode specified by the MXCSR[RC] field and written to the destination regis-
ter. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFNMADDSS dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) + src3
VFNMADDSS dest, src1, src2, src3/mem // dest = −(src1* src2) + src3/mem

and three three-operand forms:
VFNMADD132SS src1, src2, src3/mem // src1 = −(src1* src3/mem) + src2
VFNMADD213SS src1, src2, src3/mem // src1 = −(src2* src1) + src3/mem
VFNMADD231SS src1, src2, src3/mem // src1 = −(src2* src3/mem) + src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 32-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is a register or 32-bit

memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a 32-bit memory location.
The destination is an XMM register. When the result is written to the destination, bits [127:32] of the
XMM register and bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFNMADDSS
VFNMADD132SS
VFNMADD213SS
VFNMADD231SS

Negative Multiply and Add
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
VFNMADDSS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFNMADDnnnSS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

660 VFNMADDSS, VFNMADDnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VFNMADDPD, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADDPS,
VFNMADD132PS, VFNMADD213PS, VFNMADD231PS, VFNMADDSS, VFNMADD132SS,
VFNMADD213SS, VFNMADD231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMADDSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.03 0.src1.X.01 7A /r /is4
VFNMADDSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.03 1.src1.X.01 7A /r /is4
VFNMADD132SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 9D /r
VFNMADD213SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 AD /r
VFNMADD231SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 BD /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VFNMADDSS, VFNMADDnnnSS 661

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

662 VFNMSUBPD, VFNMSUBnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point vectors, negates the unrounded product, and
subtracts a third double-precision floating-point vector from it. The precise result is then rounded to
double-precision based on the mode specified by the MXCSR[RC] field and written to the destination
register. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFNMSUBPD dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) − src3
VFNMSUBPD dest, src1, src2, src3/mem // dest = −(src1* src2) − src3/mem

and three three-operand forms:
VFNMSUB132PD src1, src2, src3/mem // src1 = −(src1* src3/mem) − src2
VFNMSUB213PD src1, src2, src3/mem // src1 = −(src2* src1) − src3/mem
VFNMSUB231PD src1, src2, src3/mem // src1 = −(src2* src3/mem) − src1

When VEX.L = 0, the vector size is 128 bits (two double-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (four double-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFNMSUBPD
VFNMSUB132PD
VFNMSUB213PD
VFNMSUB231PD

Negative Multiply and Subtract
Packed Double-Precision Floating-Point

Form Subset Feature Flag
VFNMSUBPD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFNMSUBnnnPD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

Instruction Reference VFNMSUBPD, VFNMSUBnnnPD 663

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VFNMSUBPS, VFNMSUB132PS, VFNMSUB213PS, VFNMSUB231PS, VFNMSUBSD, VFNM-
SUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUBSS, VFNMSUB132SS, VFNM-
SUB213SS, VFNMSUB231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 7D /r /is4
VFNMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 7D /r /is4
VFNMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 7D /r /is4
VFNMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 7D /r /is4
VFNMSUB132PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 9E /r
VFNMSUB132PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 9E /r
VFNMSUB213PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 AE /r
VFNMSUB213PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 AE /r
VFNMSUB231PD xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src2.0.01 BE /r
VFNMSUB231PD ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src2.1.01 BE /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

664 VFNMSUBPD, VFNMSUBnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference VFNMSUBPS, VFNMSUBnnnPS 665

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point vectors, negates the unrounded product, and
subtracts a third single-precision floating-point vector from it. The precise result is then rounded to
single-precision based on the mode specified by the MXCSR[RC] field and written to the destination
register. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFNMADDPS dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) − src3
VFNMADDPS dest, src1, src2, src3/mem // dest = −(src1* src2) − src3/mem

and three three-operand forms:
VFNMADD132PS src1, src2, src3/mem // src1 = −(src1* src3/mem) − src2
VFNMADD213PS src1, src2, src3/mem // src1 = −(src2* src1) − src3/mem
VFNMADD231PS src1, src2, src3/mem // src1 = −(src2* src3/mem) − src1

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a

memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFNMSUBPS
VFNMSUB132PS
VFNMSUB213PS
VFNMSUB231PS

Negative Multiply and Subtract
Packed Single-Precision Floating-Point

Form Subset Feature Flag
VFNMSUBPS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFNMSUBnnnPS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

666 VFNMSUBPS, VFNMSUBnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VFNMSUBPD, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUBSD,
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUBSS, VFNMSUB132SS,
VFNMSUB213SS, VFNMSUB231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMSUBPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src1.0.01 7C /r /is4
VFNMSUBPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src1.1.01 7C /r /is4
VFNMSUBPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src1.0.01 7C /r /is4
VFNMSUBPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src1.1.01 7C /r /is4
VFNMSUB132PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 9E /r
VFNMSUB132PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 9E /r
VFNMSUB213PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 AE /r
VFNMSUB213PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 AE /r
VFNMSUB231PS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src2.0.01 BE /r
VFNMSUB231PS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src2.1.01 BE /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VFNMSUBPS, VFNMSUBnnnPS 667

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

668 VFNMSUBSD, VFNMSUBnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Multiplies together two double-precision floating-point values, negates the unrounded product, and
subtracts a third double-precision floating-point value from it. The precise result is then rounded to
double-precision based on the mode specified by the MXCSR[RC] field and written to the destination
register. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFNMSUBSD dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) − src3
VFNMSUBSD dest, src1, src2, src3/mem // dest = −(src1* src2) − src3/mem

and three three-operand forms:
VFNMSUB132SD src1, src2, src3/mem // src1 = −(src1* src3/mem) − src2
VFNMSUB213SD src1, src2, src3/mem // src1 = −(src2* src1) − src3/mem
VFNMSUB231SD src1, src2, src3/mem // src1 = −(src2* src3/mem) − src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 64-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a 64-bit

memory location.
For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a 64-bit memory location.
The destination is an XMM register. Bits [127:64] of the destination XMM register and bits [255:128]
of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFNMSUBSD
VFNMSUB132SD
VFNMSUB213SD
VFNMSUB231SD

Negative Multiply and Subtract
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
VFNMSUBSD FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFNMSUBnnnSD FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

Instruction Reference VFNMSUBSD, VFNMSUBnnnSD 669

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VFNMSUBPD, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUBPS, VFNM-
SUB132PS, VFNMSUB213PS, VFNMSUB231PS, VFNMSUBSS, VFNMSUB132SS, VFNMSUB-
213SS, VFNMSUB231SS

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMSUBSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.03 0.src1.X.01 7F /r /is4
VFNMSUBSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.03 1.src1.X.01 7F /r /is4
VFNMSUB132SD xmm1, xmm2, xmm3/mem64 C4 RXB.02 1.src2.X.01 9F /r
VFNMSUB213SD xmm1, xmm2, xmm3/mem64 C4 RXB.02 1.src2.X.01 AF /r
VFNMSUB231SD xmm1, xmm2, xmm3/mem64 C4 RXB.02 1.src2.X.01 BF /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

670 VFNMSUBSD, VFNMSUBnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

Instruction Reference VFNMSUBSS, VFNMSUBnnnSS 671

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies together two single-precision floating-point values, negates the unrounded product, and
subtracts a third single-precision floating-point value from it. The precise result is then rounded to
single-precision based on the mode specified by the MXCSR[RC] field and written to the destination
register. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFNMSUBSS dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) − src3
VFNMSUBSS dest, src1, src2, src3/mem // dest = −(src1* src2) − src3/mem

and three three-operand forms:
VFNMSUB132SS src1, src2, src3/mem // src1 = −(src1* src3/mem) − src2
VFNMSUB213SS src1, src2, src3/mem // src1 = −(src2* src1) − src3/mem
VFNMSUB231SS src1, src2, src3/mem // src1 = −(src2* src3/mem) − src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 32-bit memory location and the third

source is a register.
• When VEX.W = 1, the second source is a register and the third source is either a register or a 32-bit

memory location.
For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a 32-bit memory location.
The destination is an XMM register. Bits[127:32] of the destination XMM register and bits [255:128]
of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VFNMSUBSS
VFNMSUB132SS
VFNMSUB213SS
VFNMSUB231SS

Negative Multiply and Subtract
Scalar Single-Precision Floating-Point

Form Subset Feature Flag
VFNMSUBSS FMA4 CPUID Fn8000_0001_ECX[FMA4] (bit 16)

VFNMSUBnnnSS FMA CPUID Fn0000_0001_ECX[FMA] (bit 12)

[AMD Public Use]

672 VFNMSUBSS, VFNMSUBnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VFNMSUBPD, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUBPS, VFNM-
SUB132PS, VFNMSUB213PS, VFNMSUB231PS, VFNMSUBSD, VFNMSUB132SD, VFNM-
SUB213SD, VFNMSUB231SD

rFLAGS Affected
None

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMSUBSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.03 0.src1.X.01 7E /r /is4
VFNMSUBSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.03 1.src1.X.01 7E /r /is4
VFNMSUB132SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 9F /r
VFNMSUB213SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 AF /r
VFNMSUB231SS xmm1, xmm2, xmm3/mem32 C4 RXB.02 0.src2.X.01 BF /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

[AMD Public Use]

Instruction Reference VFNMSUBSS, VFNMSUBnnnSS 673

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

674 VFRCZPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts the fractional portion of each double-precision floating-point value of either a source register
or a memory location and writes the resulting values to the corresponding elements of the destination.
The fractional results are precise.
• When XOP.L = 0, the source is either an XMM register or a 128-bit memory location.
• When XOP.L = 1, the source is a YMM register or 256-bit memory location.
When the destination is an XMM register, bits [255:128] of the corresponding YMM register are
cleared.
Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:
• When the operand is a zero.
• When the operand is a normal integer.
• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.
• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.
In the first three cases, when MXCSR.RC = 01b (round toward) the sign of the zero result is neg-
ative, and is otherwise positive.
In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS, VFRCZPS, VFRCZSS,
VFRCZSD

rFLAGS Affected
None

VFRCZPD Extract Fraction
Packed Double-Precision Floating-Point

Form Subset Feature Flag
VFRCZPD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VFRCZPD xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 81 /r
VFRCZPD ymm1, ymm2/mem256 8F RXB.09 0.1111.1.00 81 /r

[AMD Public Use]

Instruction Reference VFRCZPD 675

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

[AMD Public Use]

676 VFRCZPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts the fractional portion of each single-precision floating-point value of either a source register
or a memory location and writes the resulting values to the corresponding elements of the destination.
The fractional results are exact.
• When XOP.L = 0, the source is either an XMM register or a 128-bit memory location.
• When XOP.L = 1, the source is a YMM register or 256-bit memory location.
When the destination is an XMM register, bits [255:128] of the corresponding YMM register are
cleared.
Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:
• When the operand is a zero.
• When the operand is a normal integer.
• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.
• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.
In the first three cases, when MXCSR.RC = 01b (round toward) the sign of the zero result is neg-
ative, and is otherwise positive.
In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS, VFRCZPD, VFRCZSS,
VFRCZSD

rFLAGS Affected
None

VFRCZPS Extract Fraction
Packed Single-Precision Floating-Point

Form Subset Feature Flag
VFRCZPS XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VFRCZPS xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 80 /r
VFRCZPS ymm1, ymm2/mem256 8F RXB.09 0.1111.1.00 80 /r

[AMD Public Use]

Instruction Reference VFRCZPS 677

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

[AMD Public Use]

678 VFRCZSD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts the fractional portion of the double-precision floating-point value of either the low-order
quadword of an XMM register or a 64-bit memory location and writes the result to the low-order
quadword of the destination XMM register. The fractional results are precise.
When the result is written to the destination XMM register, bits [127:64] of the destination and bits
[255:128] of the corresponding YMM register are cleared.
Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:
• When the operand is a zero.
• When the operand is a normal integer.
• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.
• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.
In the first three cases, when MXCSR.RC = 01b (round toward) the sign of the zero result is neg-
ative, and is otherwise positive.
In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS, VFRCZPS, VFRCZPD,
VFRCZSS

rFLAGS Affected
None

VFRCZSD Extract Fraction
Scalar Double-Precision Floating-Point

Form Subset Feature Flag
VFRCZSD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VFRCZSD xmm1, xmm2/mem64 8F RXB.09 0.1111.0.00 83 /r

[AMD Public Use]

Instruction Reference VFRCZSD 679

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

[AMD Public Use]

680 VFRCZSS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Extracts the fractional portion of the single-precision floating-point value of the low-order double-
word of an XMM register or 32-bit memory location and writes the result in the low-order double-
word of the destination XMM register. The fractional results are precise.
When the result is written to the destination XMM register, bits [127:32] of the destination and bits
[255:128] of the corresponding YMM register are cleared.
Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:
• When the operand is a zero.
• When the operand is a normal integer.
• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.
• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.
In the first three cases, when MXCSR.RC = 01b (round toward) the sign of the zero result is neg-
ative, and is otherwise positive.
In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
ROUNDPD, ROUNDPS, ROUNDSD, ROUNDSS, VFRCZPS, VFRCZPD, VFRCZSD

rFLAGS Affected
None

VFRCZSS Extract Fraction
Scalar Single-Precision Floating Point

Form Subset Feature Flag
VFRCZSS XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VFRCZSS xmm1, xmm2/mem32 8F RXB.09 0.1111.0.00 82 /r

[AMD Public Use]

Instruction Reference VFRCZSS 681

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE
M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

[AMD Public Use]

682 VGATHERDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Conditionally loads double-precision (64-bit) values from memory using VSIB addressing with dou-
bleword indices.
The instruction is of the form:

VGATHERDPD dest, mem64[vm32x], mask

Loading of each element of the destination register is conditional based on the value of the corre-
sponding element of the mask operand. If the most-significant bit of the ith element of the mask is set,
the ith element of the destination is loaded from memory using the ith address of the array of effective
addresses calculated using VSIB addressing.
The index register is treated as an array of signed 32-bit values. Quadword elements of the destination
for which the corresponding mask element is zero are not affected by the operation. If no exceptions
occur, the mask register is set to zero.
Execution of the instruction can be suspended by an exception if the exception is triggered by an ele-
ment other than the rightmost element loaded. When this happens, the destination register and the
mask operand may be observed as partially updated. Elements that have been loaded will have their
mask elements set to zero. If any traps or faults are pending from elements that have been loaded,
they will be delivered in lieu of the exception; in this case, the RF flag is set so that an instruction
breakpoint is not re-triggered when the instruction execution is resumed.
See Section 1.3, “VSIB Addressing,” on page 6 for a discussion of the VSIB addressing mode.
There are 128-bit and 256-bit forms of this instruction.
XMM Encoding
The destination is an XMM register. The first source operand is up to two 64-bit values located in
memory. The second source operand (the mask) is an XMM register. The index vector is the two
low-order doublewords of an XMM register; the two high-order doublewords of the index register are
not used. Bits [255:128] of the YMM register that corresponds to the destination and bits [255:128] of
the YMM register that corresponds to the second source (mask) operand are cleared.
YMM Encoding
The destination is a YMM register. The first source operand is up to four 64-bit values located in
memory. The second source operand (the mask) is a YMM register. The index vector is the four dou-
blewords of an XMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VGATHERDPD Conditionally Gather Double-Precision
Floating-Point Values, Doubleword Indices

Form Subset Feature Flag
VGATHERDPD AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference VGATHERDPD 683

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VGATHERDPS, VGATHERQPD, VGATHERQPS, VPGATHERDD, VPGATHERDQ, VPGATH-
ERQD, VPGATHERQQ

rFLAGS Affected
RF

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VGATHERDPD xmm1, vm32x, xmm2 C4 RXB.02 1.src2.0.01 92 /r
VGATHERDPD ymm1, vm32x, ymm2 C4 RXB.02 1.src2.1.01 92 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.
A MODRM.mod = 11b
A MODRM.rm ! = 100b
A YMM/XMM registers specified for destination, mask, and index not unique.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

684 VGATHERDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Conditionally loads single-precision (32-bit) values from memory using VSIB addressing with dou-
bleword indices.
The instruction is of the form:

VGATHERDPS dest, mem32[vm32x/y], mask

Loading of each element of the destination register is conditional based on the value of the corre-
sponding element of the mask operand. If the most-significant bit of the ith element of the mask is set,
the ith element of the destination is loaded from memory using the ith address of the array of effective
addresses calculated using VSIB addressing.
The index register is treated as an array of signed 32-bit values. Doubleword elements of the destina-
tion for which the corresponding mask element is zero are not affected by the operation. If no excep-
tions occur, the mask register is set to zero.
Execution of the instruction can be suspended by an exception if the exception is triggered by an ele-
ment other than the rightmost element loaded. When this happens, the destination register and the
mask operand may be observed as partially updated. Elements that have been loaded will have their
mask elements set to zero. If any traps or faults are pending from elements that have been loaded,
they will be delivered in lieu of the exception; in this case, the RF flag is set so that an instruction
breakpoint is not re-triggered when the instruction execution is resumed.
See Section 1.3, “VSIB Addressing,” on page 6 for a discussion of the VSIB addressing mode.
There are 128-bit and 256-bit forms of this instruction.
XMM Encoding
The destination is an XMM register. The first source operand is up to four 32-bit values located in
memory. The second source operand (the mask) is an XMM register. The index vector is the four dou-
blewords of an XMM register. Bits [255:128] of the YMM register that corresponds to the destination
and bits [255:128] of the YMM register that corresponds to the second source (mask) operand are
cleared.
YMM Encoding
The destination is a YMM register. The first source operand is up to eight 32-bit values located in
memory. The second source operand (the mask) is a YMM register. The index vector is the eight dou-
blewords of a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VGATHERDPS Conditionally Gather Single-Precision
Floating-Point Values, Doubleword Indices

Form Subset Feature Flag
VGATHERDPS AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference VGATHERDPS 685

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VGATHERDPD, VGATHERQPD, VGATHERQPS, VPGATHERDD, VPGATHERDQ, VPGATH-
ERQD, VPGATHERQQ

rFLAGS Affected
RF

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VGATHERDPS xmm1, vm32x, xmm2 C4 RXB.02 0.src2.0.01 92 /r
VGATHERDPS ymm1, vm32y, ymm2 C4 RXB.02 0.src2.1.01 92 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.
A MODRM.mod = 11b
A MODRM.rm ! = 100b
A YMM/XMM registers specified for destination, mask, and index not unique.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

686 VGATHERQPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Conditionally loads double-precision (64-bit) values from memory using VSIB addressing with quad-
word indices.
The instruction is of the form:

VGATHERQPD dest, mem64[vm64x/y], mask

Loading of each element of the destination register is conditional based on the value of the corre-
sponding element of the mask operand. If the most-significant bit of the ith element of the mask is set,
the ith element of the destination is loaded from memory using the ith address of the array of effective
addresses calculated using VSIB addressing.
The index register is treated as an array of signed 64-bit values. Quadword elements of the destination
for which the corresponding mask element is zero are not affected by the operation. If no exceptions
occur, the mask register is set to zero.
Execution of the instruction can be suspended by an exception if the exception is triggered by an ele-
ment other than the rightmost element loaded. When this happens, the destination register and the
mask operand may be observed as partially updated. Elements that have been loaded will have their
mask elements set to zero. If any traps or faults are pending from elements that have been loaded,
they will be delivered in lieu of the exception; in this case, the RF flag is set so that an instruction
breakpoint is not re-triggered when the instruction execution is resumed.
See Section 1.3, “VSIB Addressing,” on page 6 for a discussion of the VSIB addressing mode.
There are 128-bit and 256-bit forms of this instruction.
XMM Encoding
The destination is an XMM register. The first source operand is up to two 64-bit values located in
memory. The second source operand (the mask) is an XMM register. The index vector is the two
quadwords of an XMM register. Bits [255:128] of the YMM register that corresponds to the destina-
tion and bits [255:128] of the YMM register that corresponds to the second source (mask) operand are
cleared.
YMM Encoding
The destination is a YMM register. The first source operand is up to four 64-bit values located in
memory. The second source operand (the mask) is a YMM register. The index vector is the four quad-
words of a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VGATHERQPD Conditionally Gather Double-Precision
Floating-Point Values, Quadword Indices

Form Subset Feature Flag
VGATHERQPD AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference VGATHERQPD 687

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VGATHERDPD, VGATHERDPS, VGATHERQPS, VPGATHERDD, VPGATHERDQ, VPGATH-
ERQD, VPGATHERQQ

rFLAGS Affected
RF

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VGATHERQPD xmm1, vm64x, xmm2 C4 RXB.02 1.src2.0.01 93 /r
VGATHERQPD ymm1, vm64y, ymm2 C4 RXB.02 1.src2.1.01 93 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.
A MODRM.mod = 11b
A MODRM.rm ! = 100b
A YMM/XMM registers specified for destination, mask, and index not unique.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

688 VGATHERQPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Conditionally loads single-precision (32-bit) values from memory using VSIB addressing with quad-
word indices.
The instruction is of the form:

VGATHERQPS dest, mem32[vm64x/y], mask

Loading of each element of the destination register is conditional based on the value of the corre-
sponding element of the mask operand. If the most-significant bit of the ith element of the mask is set,
the ith element of the destination is loaded from memory using the ith address of the array of effective
addresses calculated using VSIB addressing.
The index register is treated as an array of signed 64-bit values. Doubleword elements of the destina-
tion for which the corresponding mask element is zero are not affected by the operation. The upper
half of the destination is zeroed. If no exceptions occur, the mask register is set to zero.
Execution of the instruction can be suspended by an exception if the exception is triggered by an ele-
ment other than the rightmost element loaded. When this happens, the destination register and the
mask operand may be observed as partially updated. Elements that have been loaded will have their
mask elements set to zero. If any traps or faults are pending from elements that have been loaded,
they will be delivered in lieu of the exception; in this case, the RF flag is set so that an instruction
breakpoint is not re-triggered when the instruction execution is resumed.
See Section 1.3, “VSIB Addressing,” on page 6 for a discussion of the VSIB addressing mode.
There are 128-bit and 256-bit forms of this instruction.
XMM Encoding
The destination is an XMM register. The first source operand is up to two 32-bit values located in
memory. The second source operand (the mask) is an XMM register. Only the lower half of the mask
is used. The index vector is the two quadwords of an XMM register. Bits [255:64] of the YMM regis-
ter that corresponds to the destination and bits [255:64] of the YMM register that corresponds to the
second source (mask) operand are cleared.
YMM Encoding
The destination is an XMM register. The first source operand is up to four 32-bit values located in
memory. The second source operand (the mask) is an XMM register. The index vector is the four
quadwords of a YMM register. Bits [255:128] of the YMM register that corresponds to the destina-
tion and bits [255:128] of the YMM register that corresponds to the second source (mask) operand are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VGATHERQPS Conditionally Gather Single-Precision
Floating-Point Values, Quadword Indices

Form Subset Feature Flag
VGATHERQPS AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

Instruction Reference VGATHERQPS 689

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VGATHERDPD, VGATHERDPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATH-
ERQD, VPGATHERQQ

rFLAGS Affected
RF

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VGATHERQPS xmm1, vm64x, xmm2 C4 RXB.02 0.src2.0.01 93 /r
VGATHERQPS xmm1, vm64y, xmm2 C4 RXB.02 0.src2.1.01 93 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.
A MODRM.mod = 11b
A MODRM.rm ! = 100b
A YMM/XMM registers specified for destination, mask, and index not unique.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

690 VINSERTF128 Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Combines 128 bits of data from a YMM register with 128-bit packed-value data from an XMM regis-
ter or a 128-bit memory location, as specified by an immediate byte operand, and writes the combined
data to the destination.
Only bit [0] of the immediate operand is used. Operation is as follows.
• When imm8[0] = 0, copy bits [255:128] of the first source to bits [255:128] of the destination and

copy bits [127:0] of the second source to bits [127:0] of the destination.
• When imm8[0] = 1, copy bits [127:0] of the first source to bits [127:0] of the destination and copy

bits [127:0] of the second source to bits [255:128] of the destination.
This extended-form instruction has a single 256-bit encoding.
The first source operand is a YMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a YMM register. There is a third immediate byte oper-
and.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VBROADCASTF128, VBROADCASTI128, VEXTRACTF128, VEXTRACTI128, VINSERTI128

rFLAGS Affected
None

MXCSR Flags Affected
None

VINSERTF128 Insert Packed Floating-Point Values
128-bit

Form Subset Feature Flag
VINSERTF128 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VINSERTF128 ymm1, ymm2, xmm3/mem128, imm8 C4 RXB.03 0.src.1.01 18 /r ib

[AMD Public Use]

Instruction Reference VINSERTF128 691

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

692 VINSERTI128 Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Combines 128 bits of data from a YMM register with 128-bit packed-value data from an XMM regis-
ter or a 128-bit memory location, as specified by an immediate byte operand, and writes the combined
data to the destination.
Bit [0] of the immediate operand controls how the 128-bit values from the source operands are
merged into the destination. The operation is as follows.
• When imm8[0] = 0, copy bits [255:128] of the first source to bits [255:128] of the destination and

copy bits [127:0] of the second source to bits [127:0] of the destination.
• When imm8[0] = 1, copy bits [127:0] of the first source to bits [127:0] of the destination and copy

bits [127:0] of the second source to bits [255:128] of the destination.
This instruction has a single 256-bit encoding.
The first source operand is a YMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a YMM register. The immediate byte is encoded in the
instruction.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VBROADCASTF128, VBROADCASTI128, VEXTRACTF128, VEXTRACTI128, VINSERTF128

rFLAGS Affected
None

MXCSR Flags Affected
None

VINSERTI128 Insert Packed Integer Values
128-bit

Form Subset Feature Flag
VINSERTI128 AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VINSERTI128 ymm1, ymm2, xmm3/mem128, imm8 C4 RXB.03 0.src1.1.01 38 /r ib

[AMD Public Use]

Instruction Reference VINSERTI128 693

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

694 VMASKMOVPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves packed double-precision data elements from a source element to a destination element, as
specified by mask bits in a source operand. There are load and store versions of the instruction.
For loads, the data elements are in a source memory location; for stores the data elements are in a
source register. The mask bits are the most-significant bit of the corresponding data element of a
source register.
• For loads, when a mask bit = 1, the corresponding data element is copied from the source to the

same element of the destination; when a mask bit = 0, the corresponding element of the destination
is cleared.

• For stores, when a mask bit = 1, the corresponding data element is copied from the source to the
same element of the destination; when a mask bit = 0, the corresponding element of the destination
is not affected.

Exception and trap behavior for elements not selected for loading or storing from/to memory is
implementation dependent. For instance, a given implementation may signal a data breakpoint or a
page fault for quadwords that are zero-masked and not actually written.
XMM Encoding
There are load and store encodings.
• For loads, there are two 64-bit source data elements in a 128-bit memory location, the mask

operand is an XMM register, and the destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• For stores, there are two 64-bit source data elements in an XMM register, the mask operand is an
XMM register, and the destination is a 128-bit memory location.

YMM Encoding
There are load and store encodings.
• For loads, there are four 64-bit source data elements in a 256-bit memory location, the mask

operand is a YMM register, and the destination is a YMM register.
• For stores, there are four 64-bit source data elements in a YMM register, the mask operand is a

YMM register, and the destination is a 128-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VMASKMOVPD Masked Move
Packed Double-Precision

Form Subset Feature Flag
VMASKMOVPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference VMASKMOVPD 695

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VMASKMOVPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

Loads:
VMASKMOVPD xmm1, xmm2, mem128 C4 RXB.02 0.src1.0.01 2D /r
VMASKMOVPD ymm1, ymm2, mem256 C4 RXB.02 0.src1.1.01 2D /r
Stores:
VMASKMOVPD mem128, xmm1, xmm2 C4 RXB.02 0.src1.0.01 2F /r
VMASKMOVPD mem256, ymm1, ymm2 C4 RXB.02 0.src1.1.01 2F /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

S S X Write to a read-only data segment.
Page fault, #PF A Instruction execution caused a page fault.
A — AVX exception.

[AMD Public Use]

696 VMASKMOVPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves packed single-precision data elements from a source element to a destination element, as spec-
ified by mask bits in a source operand. There are load and store versions of the instruction.
For loads, the data elements are in a source memory location; for stores the data elements are in a
source register. The mask bits are the most-significant bits of the corresponding data element of a
source register.
• For loads, when a mask bit = 1, the corresponding data element is copied from the source to the

same element of the destination; when a mask bit = 0, the corresponding element of the destination
is cleared.

• For stores, when a mask bit = 1, the corresponding data element is copied from the source to the
same element of the destination; when a mask bit = 0, the corresponding element of the destination
is not affected.

Exception and trap behavior for elements not selected for loading or storing from/to memory is
implementation dependent. For instance, a given implementation may signal a data breakpoint or a
page fault for doublewords that are zero-masked and not actually written.
XMM Encoding
There are load and store encodings.
• For loads, there are four 32-bit source data elements in a 128-bit memory location, the mask

operand is an XMM register, and the destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• For stores, there are four 32-bit source data elements in an XMM register, the mask operand is an
XMM register, and the destination is a 128-bit memory location.

YMM Encoding
There are load and store encodings.
• For loads, there are eight 32-bit source data elements in a 256-bit memory location, the mask

operand is a YMM register, and the destination is a YMM register.
• For stores, there are eight 32-bit source data elements in a YMM register, the mask operand is a

YMM register, and the destination is a 128-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VMASKMOVPS Masked Move
Packed Single-Precision

Form Subset Feature Flag
VMASKMOVPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

[AMD Public Use]

Instruction Reference VMASKMOVPS 697

26568—Rev. 3.24—May 2020 AMD64 Technology

Instruction Encoding

Related Instructions
VMASKMOVPS

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

Loads:
VMASKMOVPS xmm1, xmm2, mem128 C4 RXB.02 0.src1.0.01 2C /r
VMASKMOVPS ymm1, ymm2, mem256 C4 RXB.02 0.src1.1.01 2C /r
Stores:
VMASKMOVPS mem128, xmm1, xmm2 C4 RXB.02 0.src1.0.01 2E /r
VMASKMOVPS mem256, ymm1, ymm2 C4 RXB.02 0.src1.1.01 2E /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

S S X Write to a read-only data segment.
Page fault, #PF A Instruction execution caused a page fault.
A — AVX exception.

[AMD Public Use]

698 VPBLENDD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies packed doublewords from either of two sources to a destination, as specified by an immediate
8-bit mask operand.
Each bit of the mask selects a doubleword from one of the source operands to be copied to the desti-
nation. The least-significant bit controls the selection of the doubleword to be copied to the lowest
doubleword of the destination. For each doubleword i of the destination:
• When mask bit [i] = 0, doubleword i of the first source operand is copied to the corresponding

doubleword of the destination.
• When mask bit [i] = 1, doubleword i of the second source operand is copied to the corresponding

doubleword of the destination.
VPBLENDD
The instruction has 128-bit and 256-bit encodings.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VBLENDW

rFLAGS Affected
None

VPBLENDD Blend
Packed Doublewords

Form Subset Feature Flag
VPBLENDD AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPBLENDD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.03 0.src1.0.01 02 /r /ib
VPBLENDD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.03 0.src1.1.01 02 /r /ib

[AMD Public Use]

Instruction Reference VPBLENDD 699

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

700 VPBROADCASTB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Loads a byte from a register or memory and writes it to all 16 or 32 bytes of an XMM or YMM regis-
ter.
This instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Copies the source operand to all 16 bytes of the destination.
The source operand is the least-significant 8 bits of an XMM register or an 8-bit memory location.
The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to the des-
tination are cleared.
YMM Encoding
Copies the source operand to all 32 bytes of the destination.
The source operand is the least-significant 8 bits of an XMM register or an 8-bit memory location.
The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPBROADCASTD, VPBROADCASTQ, VPBROADCASTW

rFLAGS Affected
None

MXCSR Flags Affected
None

VPBROADCASTB Broadcast Packed Byte

Form Subset Feature Flag
VPBROADCASTB AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPBROADCASTB xmm1, xmm2/mem8 C4 RXB.02 0.1111.0.01 78 /r
VPBROADCASTB ymm1, xmm2/mem8 C4 RXB.02 0.1111.1.01 78 /r

[AMD Public Use]

Instruction Reference VPBROADCASTB 701

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

702 VPBROADCASTD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Loads a doubleword from a register or memory and writes it to all 4 or 8 doublewords of an XMM or
YMM register.
This instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Copies the source operand to all 4 doublewords of the destination.
The source operand is the least-significant 32 bits of an XMM register or a 32-bit memory location.
The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to the des-
tination are cleared.
YMM Encoding
Copies the source operand to all 8 doublewords of the destination.
The source operand is the least-significant 32 bits of an XMM register or a 32-bit memory location.
The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPBROADCASTB, VPBROADCASTQ, VPBROADCASTW

rFLAGS Affected
None

MXCSR Flags Affected
None

VPBROADCASTD Broadcast Packed Doubleword

Form Subset Feature Flag
VPBROADCASTD AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPBROADCASTD xmm1, xmm2/mem32 C4 RXB.02 0.1111.0.01 58 /r
VPBROADCASTD ymm1, xmm2/mem32 C4 RXB.02 0.1111.1.01 58 /r

[AMD Public Use]

Instruction Reference VPBROADCASTD 703

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

704 VPBROADCASTQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Loads a quadword from a register or memory and writes it to all 2 or 4 quadwords of an XMM or
YMM register.
This instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Copies the source operand to both quadwords of the destination.
The source operand is the least-significant 64 bits of an XMM register or a 64-bit memory location.
The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to the des-
tination are cleared.
YMM Encoding
Copies the source operand to all 4 quadwords of the destination.
The source operand is the least-significant 64 bits of an XMM register or a 64-bit memory location.
The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPBROADCASTB, VPBROADCASTD, VPBROADCASTW

rFLAGS Affected
None

MXCSR Flags Affected
None

VPBROADCASTQ Broadcast Packed Quadword

Form Subset Feature Flag
VPBROADCASTQ AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPBROADCASTQ xmm1, xmm2/mem64 C4 RXB.02 0.1111.0.01 59 /r
VPBROADCASTQ ymm1, xmm2/mem64 C4 RXB.02 0.1111.1.01 59 /r

[AMD Public Use]

Instruction Reference VPBROADCASTQ 705

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

706 VPBROADCASTW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Loads a word from a register or memory and writes it to all 8 or 16 words of an XMM or YMM reg-
ister.
This instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Copies the source operand to all 8 words of the destination.
The source operand is the least-significant 16 bits of an XMM register or a 16-bit memory location.
The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to the des-
tination are cleared.
YMM Encoding
Copies the source operand to all 16 words of the destination.
The source operand is the least-significant 16 bits of an XMM register or a 16-bit memory location.
The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPBROADCASTB, VPBROADCASTD, VPBROADCASTQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPBROADCASTW Broadcast Packed Word

Form Subset Feature Flag
VPBROADCASTW AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPBROADCASTW xmm1, xmm2/mem16 C4 RXB.02 0.1111.0.01 79 /r
VPBROADCASTW ymm1, xmm2/mem16 C4 RXB.02 0.1111.1.01 79 /r

[AMD Public Use]

Instruction Reference VPBROADCASTW 707

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

708 VPCMOV Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Moves bits of either the first source or the second source to the corresponding positions in the destina-
tion, depending on the value of the corresponding bit of a third source.
When a bit of the third source = 1, the corresponding bit of the first source is moved to the destina-
tion; when a bit of the third source = 0, the corresponding bit of the second source is moved to the
destination.
This instruction directly implements the C-language ternary “?” operation on each source bit.
Arbitrary bit-granular predicates can be constructed by any number of methods, or loaded as con-
stants from memory. This instruction may use the results of any SSE instructions as the predicate in
the selector. VPCMPEQB (VPCMPGTB), VPCMPEQW (VPCMPGTW), VPCMPEQD (VPCMP-
GTD) and VPCMPEQQ (VPCMPGTQ) compare bytes, words, doublewords, quadwords and inte-
gers, respectively, and set the predicate in the destination to masks of 1s and 0s accordingly.
VCMPPS (VCMPSS) and VCMPPD (VCMPSD) compare word and doubleword floating-point
source values, respectively, and provide the predicate for the floating-point instructions.
There are four operands: VPCMOV dest, src1, src2, src3.
The first source (src1) is an XMM or YMM register specified by XOP.vvvv.
XOP.W and bits [7:4] of an immediate byte (imm8) configure src2 and src3:
• When XOP.W = 0, src2 is either a register or a memory location specified by ModRM.r/m and src3

is a register specified by imm8[7:4].
• When XOP.W = 1, src2 is a register specified by imm8[7:4] and src3 is either a register or a

memory location specified by ModRM.r/m.
The destination (dest) is either an XMM or a YMM register, as determined by XOP.L. When the des-
tination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPCOMUB, VPCOMUD, VPCOMUQ, VPCOMUW, VCMPPD, VCMPPS

VPCMOV Vector Conditional Move

Form Subset Feature Flag
VPCMOV XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCMOV xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 A2 /r ib
VPCMOV ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.08 0.src1.1.00 A2 /r ib
VPCMOV xmm1, xmm2, xmm3, xmm4/mem128 8F RXB.08 1.src1.0.00 A2 /r ib
VPCMOV ymm1, ymm2, ymm3, ymm4/mem256 8F RXB.08 1.src1.1.00 A2 /r ib

[AMD Public Use]

Instruction Reference VPCMOV 709

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

710 VPCOMB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares corresponding packed signed bytes in the first and second sources and writes the result of
each comparison in the corresponding byte of the destination. The result of each comparison is an 8-
bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMB dest, src1, src2, imm8
The destination (dest) is an XMM registers specified by ModRM.reg. When the comparison results
are written to the destination XMM register, bits [255:128] of the corresponding YMM register are
cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of the immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected
None

VPCOMB Compare Vector
Signed Bytes

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTB
001 Less Than or Equal VPCOMLEB
010 Greater Than VPCOMGTB
011 Greater Than or Equal VPCOMGEB
100 Equal VPCOMEQB
101 Not Equal VPCOMNEQB
110 False VPCOMFALSEB
111 True VPCOMTRUEB

Form Subset Feature Flag
VPCOMB XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMB xmm1, xmm2, xmm3/mem128, imm8 8F RXB.08 0.src1.0.00 CC /r ib

[AMD Public Use]

Instruction Reference VPCOMB 711

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

712 VPCOMD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares corresponding packed signed doublewords in the first and second sources and writes the
result of each comparison to the corresponding doubleword of the destination. The result of each
comparison is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMD dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results of the compar-
isons are written to the destination XMM register, bits [255:128] of the corresponding YMM register
are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMQ

rFLAGS Affected
None

VPCOMD Compare Vector
Signed Doublewords

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTD
001 Less Than or Equal VPCOMLED
010 Greater Than VPCOMGTD
011 Greater Than or Equal VPCOMGED
100 Equal VPCOMEQD
101 Not Equal VPCOMNEQD
110 False VPCOMFALSED
111 True VPCOMTRUED

Form Subset Feature Flag
VPCOMD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMD xmm1, xmm2, xmm3/mem128, imm8 8F RXB.08 0.src1.0.00 CE /r ib

[AMD Public Use]

Instruction Reference VPCOMD 713

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

714 VPCOMQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares corresponding packed signed quadwords in the first and second sources and writes the
result of each comparison to the corresponding quadword of the destination. The result of each com-
parison is a 64-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMQ dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the result is written to the
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD

rFLAGS Affected
None

VPCOMQ Compare Vector
Signed Quadwords

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTQ
001 Less Than or Equal VPCOMLEQ
010 Greater Than VPCOMGTQ
011 Greater Than or Equal VPCOMGEQ
100 Equal VPCOMEQQ
101 Not Equal VPCOMNEQQ
110 False VPCOMFALSEQ
111 True VPCOMTRUEQ

Form Subset Feature Flag
VPCOMQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMQ xmm1, xmm2, xmm3/mem128, imm8 8F RXB.08 0.src1.0.00 CF /r ib

[AMD Public Use]

Instruction Reference VPCOMQ 715

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

716 VPCOMUB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares corresponding packed unsigned bytes in the first and second sources and writes the result
of each comparison to the corresponding byte of the destination. The result of each comparison is an
8-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMUB dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the result is written to the
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected
None

VPCOMUB Compare Vector
Unsigned Bytes

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTUB
001 Less Than or Equal VPCOMLEUB
010 Greater Than VPCOMGTUB
011 Greater Than or Equal VPCOMGEUB
100 Equal VPCOMEQUB
101 Not Equal VPCOMNEQUB
110 False VPCOMFALSEUB
111 True VPCOMTRUEUB

Form Subset Feature Flag
VPCOMUB XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMUB xmm1, xmm2, xmm3/mem128, imm8 8F RXB.08 0.src1.0.00 EC /r ib

[AMD Public Use]

Instruction Reference VPCOMUB 717

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

718 VPCOMUD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares corresponding packed unsigned doublewords in the first and second sources and writes the
result of each comparison to the corresponding doubleword of the destination. The result of each
comparison is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMUD dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected
None

VPCOMUD Compare Vector
Unsigned Doublewords

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTUD
001 Less Than or Equal VPCOMLEUD
010 Greater Than VPCOMGTUD
011 Greater Than or Equal VPCOMGEUD
100 Equal VPCOMEQUD
101 Not Equal VPCOMNEQUD
110 False VPCOMFALSEUD
111 True VPCOMTRUEUD

Form Subset Feature Flag
VPCOMUD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMUD xmm1, xmm2, xmm3/mem128, imm8 8F RXB.08 0.src1.0.00 EE /r ib

[AMD Public Use]

Instruction Reference VPCOMUD 719

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

720 VPCOMUQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares corresponding packed unsigned quadwords in the first and second sources and writes the
result of each comparison to the corresponding quadword of the destination. The result of each com-
parison is a 64-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMUQ dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected
None

VPCOMUQ Compare Vector
Unsigned Quadwords

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTUQ
001 Less Than or Equal VPCOMLEUQ
010 Greater Than VPCOMGTUQ
011 Greater Than or Equal VPCOMGEUQ
100 Equal VPCOMEQUQ
101 Not Equal VPCOMNEQUQ
110 False VPCOMFALSEUQ
111 True VPCOMTRUEUQ

Form Subset Feature Flag
VPCOMUQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMUQ xmm1, xmm2, xmm3/mem128, imm8 8F RXB.08 0.src1.0.00 EF /r ib

[AMD Public Use]

Instruction Reference VPCOMUQ 721

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

722 VPCOMUW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares corresponding packed unsigned words in the first and second sources and writes the result
of each comparison to the corresponding word of the destination. The result of each comparison is a
16-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMUW dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPCOMUB, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected
None

VPCOMUW Compare Vector
Unsigned Words

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTUW
001 Less Than or Equal VPCOMLEUW
010 Greater Than VPCOMGTUW
011 Greater Than or Equal VPCOMGEUW
100 Equal VPCOMEQUW
101 Not Equal VPCOMNEQUW
110 False VPCOMFALSEUW
111 True VPCOMTRUEUW

Form Subset Feature Flag
VPCOMUW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMUW xmm1, xmm2, xmm3/mem128, imm8 8F RXB.08 0.src1.0.00 ED /r ib

[AMD Public Use]

Instruction Reference VPCOMUW 723

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

724 VPCOMW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Compares corresponding packed signed words in the first and second sources and writes the result of
each comparison in the corresponding word of the destination. The result of each comparison is a 16-
bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMW dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMD, VPCOMQ

rFLAGS Affected
None

VPCOMW Compare Vector
Signed Words

imm8[2:0] Comparison Mnemonic
000 Less Than VPCOMLTW
001 Less Than or Equal VPCOMLEW
010 Greater Than VPCOMGTW
011 Greater Than or Equal VPCOMGEW
100 Equal VPCOMEQW
101 Not Equal VPCOMNEQW
110 False VPCOMFALSEW
111 True VPCOMTRUEW

Form Subset Feature Flag
VPCOMW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMW xmm1, xmm2, xmm3/mem128, imm8 8F RXB.08 0.src1.0.00 CD /r ib

[AMD Public Use]

Instruction Reference VPCOMW 725

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

726 VPERM2F128 Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies 128 bits of floating-point data from a selected octword of two 256-bit source operands or zero
to each octword of a 256-bit destination, as specified by an immediate byte operand.
The immediate operand is encoded as follows.

This is a 256-bit extended-form instruction:
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VEXTRACTF128, VINSERTF128, VPERMILPD, VPERMILPS

rFLAGS Affected
None

VPERM2F128 Permute Floating-Point
128-bit

Destination Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Source 2
Bits Copied

[127:0] [1:0] 00 [127:0] —
01 [255:128] —
10 — [127:0]
11 — [255:128]

Setting imm8 [3] clears bits [127:0] of the destination; imm8 [2] is ignored.
[255:128] [5:4] 00 [127:0] —

01 [255:128] —
10 — [127:0]
11 — [255:128]

Setting imm8 [7] clears bits [255:128] of the destination; imm8 [6] is ignored.

Form Subset Feature Flag
VPERM2F128 AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPERM2F128 ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.03 0.src1.1.01 06 /r ib

[AMD Public Use]

Instruction Reference VPERM2F128 727

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

728 VPERM2I128 Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies 128 bits of integer data from a selected octword of two 256-bit source operands or zero to
each octword of a 256-bit destination, as specified by an immediate byte operand.
The immediate operand is encoded as follows.

This is a 256-bit extended-form instruction:
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register. Bits 2 and 6 of the immediate
byte are ignored.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VEXTRACTI128, VEXTRACTF128, VINSERTI128, VINSERTF128, VPERMILPD, VPERMILPS

rFLAGS Affected
None

VPERM2I128 Permute Integer
128-bit

Destination Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Source 2
Bits Copied

[127:0] [1:0] 00 [127:0] —
01 [255:128] —
10 — [127:0]
11 — [255:128]

Setting imm8 [3] clears bits [127:0] of the destination; imm8 [2] is ignored.
[255:128] [5:4] 00 [127:0] —

01 [255:128] —
10 — [127:0]
11 — [255:128]

Setting imm8 [7] clears bits [255:128] of the destination; imm8 [6] is ignored.

Form Subset Feature Flag
VPERM2I128 AVX2 CPUID Fn0000_0007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPERM2I128 ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.03 0.src1.1.01 46 /r ib

[AMD Public Use]

Instruction Reference VPERM2I128 729

26568—Rev. 3.24—May 2020 AMD64 Technology

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

730 VPERMD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies selected doublewords from a 256-bit value located either in memory or a YMM register to
specific doublewords of the destination YMM register. For each doubleword of the destination, selec-
tion of which doubleword to copy from the source is specified by a selector field in the corresponding
doubleword of a YMM register.
There is a single form of this instruction:

VPERMD dest, src1, src2

The first source operand provides eight 3-bit selectors, each selector occupying the least-significant
bits of a doubleword. Each selector specifies the index of the doubleword of the second source oper-
and to be copied to the destination. The doubleword in the destination that each selector controls is
based on its position within the first source operand.
The index value may be the same in multiple selectors. This results in multiple copies of the same
source doubleword being copied to the destination.
There is no 128-bit form of this instruction.
YMM Encoding
The destination is a YMM register. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location.

Instruction Support

Instruction Encoding

Related Instructions
VPERMQ, VPERMPD, VPERMPS

rFLAGS Affected
None

MXCSR Flags Affected
None

VPERMD Packed Permute Doubleword

Form Subset Feature Flag
VPERMD AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Encoding
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VPERMD ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src1.1.01 36 /r

[AMD Public Use]

Instruction Reference VPERMD 731

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
A A A CR0.EM = 1.
A A A CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L= 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A A A Lock prefix (F0h) preceding opcode.
Device not available, #NM A A A CR0.TS = 1.
Stack, #SS A A A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A A A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

732 VPERMIL2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies a selected quadword from one of two source operands to a selected quadword of the destina-
tion or clears the selected quadword of the destination. Values in a third source operand and an imme-
diate two-bit operand control the operation.
There are 128-bit and 256-bit versions of this instruction. Both versions have five operands:

VPERMIL2PD dest, src1, src2, src3, m2z.

The first four operands are either 128 bits or 256 bits wide, as determined by VEX.L. When the desti-
nation is an XMM register, bits [255:128] of the corresponding YMM register are cleared.
The third source operand is a selector that specifies how quadwords are copied or cleared in the desti-
nation. The selector contains one selector element for each quadword of the destination register.
Selector for 128-bit Instruction Form

The selector for the 128-bit instruction form is an octword composed of two quadword selector ele-
ments S0 and S1. S0 (the lower quadword) controls the value written to destination quadword 0 (bits
[63:0]) and S1 (the upper quadword) controls the destination quadword 1 (bits [127:64]).
Selector for 256-bit Instruction Form

The selector for the 256-bit instruction form is a double octword and adds two more selector elements
S2 and S3. S0 controls the value written to the destination quadword 0 (bits [63:0]), S1 controls the
destination quadword 1 (bits [127:64]), S2 controls the destination quadword 2 (bits [191:128]), and
S3 controls the destination quadword 3 (bits [255:192]).
The layout of each selector element is as follows:

The fields are defined as follows:

VPERMIL2PD Permute Two-Source
Double-Precision Floating-Point

127 64 63 0
S1 S0

255 192 191 128
S3 S2

127 64 63 0
S1 S0

63 4 3 2 1 0
Reserved, IGN M Sel

Bits Mnemonic Description
[63:4] — Reserved, IGN

[3] M Match
[2:1] Sel Select
[0] — Reserved, IGN

[AMD Public Use]

Instruction Reference VPERMIL2PD 733

26568—Rev. 3.24—May 2020 AMD64 Technology

• Sel — Select. Selects the source quadword to copy into the corresponding quadword of the
destination:

• M — Match bit. The combination of the Match bit in each selector element and the value of the
M2Z field determines if the Select field is overridden. This is described below.

m2z immediate operand
The fifth operand is m2z. The assembler uses this 2-bit value to encode the M2Z field in the instruc-
tion. M2Z occupies bits [1:0] of an immediate byte. Bits [7:4] of the same byte are used to select one
of 16 YMM/XMM registers. This dual use of the immediate byte is indicated in the instruction synop-
sis by the symbol “is5”.
The immediate byte is defined as follows.

Fields are defined as follows:
• SRS — Source Register Select. As with many other extended instructions, bits in the immediate

byte are used to select a source operand register. This field is set by the assembler based on the
operands listed in the instruction. See discussion in “src2 and src3 Operand Addressing” below.

• M2Z — Match to Zero. This field, combined with the M bit of the selector element, controls the
function of the Sel field as follows:

.

src2 and src3 Operand Addressing
In 64-bit mode, VEX.W and bits [7:4] of the immediate byte specify src2 and src3:

Sel Value Source Selected for Destination
Quadwords 0 and 1 (both forms)

Source Selected for Destination
Quadwords 2 and 3 (256-bit form)

00b src1[63:0] src1[191:128]
01b src1[127:64] src1[255:192]
10b src2[63:0] src2[191:128]
11b src2[127:64] src2[255:192]

7 4 3 2 1 0
SRS M2Z

Bits Mnemonic Description
[7:4] SRS Source Register Select
[3:2] — Reserved, IGN
[1:0] M2Z Match to Zero

M2Z Field Selector M Bit Value Loaded into Destination Quadword
0Xb X Source quadword selected by selector element Sel field.
10b 0 Source quadword selected by selector element Sel field.
10b 1 Zero
11b 0 Zero
11b 1 Source quadword selected by selector element Sel field.

[AMD Public Use]

734 VPERMIL2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

• When VEX.W = 0, src2 is either a register or a memory location specified by ModRM.r/m and
src3 is a register specified by bits [7:4] of the immediate byte.

• When VEX.W = 1, src2 is a register specified by bits [7:4] of the immediate byte and src3 is either
a register or a memory location specified by ModRM.r/m.

In non-64-bit mode, bit 7 is ignored.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

NOTE: VPERMIL2PD is encoded using the VEX prefix even though it is an XOP instruction.

Related Instructions
VPERM2F128, VPERMIL2PS, VPERMILPD, VPERMILPS, VPPERM

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
VPERMIL2PD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Encoding
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VPERMIL2PD xmm1, xmm2, xmm3/mem128, xmm4, m2z C4 RXB.03 0.src1.0.01 49 /r is5
VPERMIL2PD xmm1, xmm2, xmm3, xmm4/mem128, m2z C4 RXB.03 1.src1.0.01 49 /r is5
VPERMIL2PD ymm1, ymm2, ymm3/mem256, ymm4, m2z C4 RXB.03 0.src1.1.01 49 /r is5
VPERMIL2PD ymm1, ymm2, ymm3, ymm4/mem256, m2z C4 RXB.03 1.src1.1.01 49 /r is5

[AMD Public Use]

Instruction Reference VPERMIL2PD 735

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

736 VPERMIL2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies a selected doubleword from one of two source operands to a selected doubleword of the desti-
nation or clears the selected doubleword of the destination. Values in a third source operand and an
immediate two-bit operand control operation.
There are 128-bit and 256-bit versions of this instruction. Both versions have five operands:

VPERMIL2PS dest, src1, src2, src3, m2z

The first four operands are either 128 bits or 256 bits wide, as determined by VEX.L. When the desti-
nation is an XMM register, bits [255:128] of the corresponding YMM register are cleared.
The third source operand is a selector that specifies how doublewords are copied or cleared in the des-
tination. The selector contains one selector element for each doubleword of the destination register.
Selector for 128-bit Instruction Form

The selector for the 128-bit instruction form is an octword containing four selector elements S0–S3.
S0 controls the value written to the destination doubleword 0 (bits [31:0]), S1 controls the destination
doubleword 1 (bits [63:32]), S2 controls the destination doubleword 2 (bits [95:64]), and S3 controls
the destination doubleword 3 (bits [127:96]).
Selector for 256-bit Instruction Form

The selector for the 256-bit instruction form is a double octword and adds four more selector ele-
ments S4–S7. S4 controls the value written to the destination doubleword 4 (bits [159:128]), S5 con-
trols the destination doubleword 5 (bits [191:160]), S6 controls the destination doubleword 6 (bits
[223:192]), and S7 controls the destination doubleword 7 (bits [255:224]).
The layout of each selector element is as follows.

The fields are defined as follows:

VPERMIL2PS Permute Two-Source
Single-Precision Floating-Point

127 96 95 64 63 32 31 0
S3 S2 S1 S0

255 224 223 192 191 160 159 128
S7 S6 S5 S4

127 96 95 64 63 32 31 0
S3 S2 S1 S0

31 4 3 2 1 0
Reserved, IGN M Sel

Bits Mnemonic Description
[31:4] — Reserved, IGN

[3] M Match
[2:0] Sel Select

[AMD Public Use]

Instruction Reference VPERMIL2PS 737

26568—Rev. 3.24—May 2020 AMD64 Technology

• Sel — Select. Selects the source doubleword to copy into the corresponding doubleword of the
destination:

• M — Match. The combination of the M bit in each selector element and the value of the M2Z field
determines if the Sel field is overridden. This is described below.

m2z immediate operand
The fifth operand is m2z. The assembler uses this 2-bit value to encode the M2Z field in the instruc-
tion. M2Z occupies bits [1:0] of an immediate byte. Bits [7:4] of the same byte are used to select one
of 16 YMM/XMM registers. This dual use of the immediate byte is indicated in the instruction synop-
sis by the symbol “is5”.
The immediate byte is defined as follows.

Fields are defined as follows:
• SRS — Source Register Select. As with many other extended instructions, bits in the immediate

byte are used to select a source operand register. This field is set by the assembler based on the
operands listed in the instruction. See discussion in “src2 and src3 Operand Addressing” below.

• M2Z — Match to Zero. This field, combined with the M bit of the selector element, controls the
function of the Sel field as follows:

Sel Value Source Selected for Destination
Doublewords 0, 1, 2 and 3 (both forms)

Source Selected for Destination
Doublewords 4, 5, 6 and 7 (256-bit form)

000b src1[31:0] src1[159:128]
001b src1[63:32] src1[191:160]
010b src1[95:64] src1[223:192]
011b src1[127:96] src1[255:224]
100b src2[31:0] src2[159:128]
101b src2[63:32] src2[191:160]
110b src2[95:64] src2[223:192]
111b src2[127:96] src2[255:224]

7 4 3 2 1 0
SRS M2Z

Bits Mnemonic Description
[7:4] SRS Source Register Select
[3:2] — Reserved, IGN
[1:0] M2Z Match to Zero

M2Z Field Selector M Bit Value Loaded into Destination Doubleword
0Xb X Source doubleword selected by Sel field.
10b 0 Source doubleword selected by Sel field.

[AMD Public Use]

738 VPERMIL2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

src2 and src3 Operand Addressing
In 64-bit mode, VEX.W and bits [7:4] of the immediate byte specify src2 and src3:
• When VEX.W = 0, src2 is either a register or a memory location specified by ModRM.r/m and

src3 is a register specified by bits [7:4] of the immediate byte.
• When VEX.W = 1, src2 is a register specified by bits [7:4] of the immediate byte and src3 is either

a register or a memory location specified by ModRM.r/m.
In non-64-bit mode, bit 7 is ignored.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

NOTE: VPERMIL2PS is encoded using the VEX prefix even though it is an XOP instruction.

Related Instructions
VPERM2F128, VPERMIL2PD, VPERMILPD, VPERMILPS, VPPERM

rFLAGS Affected
None

MXCSR Flags Affected
None

10b 1 Zero
11b 0 Zero
11b 1 Source doubleword selected by Sel field.

Form Subset Feature Flag
VPERMIL2PS XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Encoding
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VPERMIL2PS xmm1, xmm2, xmm3/mem128, xmm4, m2z C4 RXB.03 0.src1.0.01 48 /r is5
VPERMIL2PS xmm1, xmm2, xmm3, xmm4/mem128, m2z C4 RXB.03 1.src1.0.01 48 /r is5
VPERMIL2PS ymm1, ymm2, ymm3/mem256, ymm4, m2z C4 RXB.03 0.src1.1.01 48 /r is5
VPERMIL2PS ymm1, ymm2, ymm3, ymm4/mem256, m2z C4 RXB.03 1.src1.1.01 48 /r is5

M2Z Field Selector M Bit Value Loaded into Destination Doubleword

[AMD Public Use]

Instruction Reference VPERMIL2PS 739

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

740 VPERMILPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Copies double-precision floating-point values from a source to a destination. Source and destination
can be selected in two ways. There are different encodings for each selection method.
Selection by bits in a source register or memory location:
Each quadword of the operand is defined as follows.

A bit selects source and destination. Only bit [1] is used; bits [63:2} and bit [0] are ignored. Setting
the bit selects the corresponding quadword element of the source and the destination.
Selection by bits in an immediate byte:
Each bit corresponds to a destination quadword. Only bits [3:2] and bits [1:0] are used; bits [7:4] are
ignored. Selections are defined as follows.

This extended-form instruction has both 128-bit and 256-bit encoding.
XMM Encoding
There are two encodings, one for each selection method:
• The first source operand is an XMM register. The second source operand is either an XMM

register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

• The first source operand is either an XMM register or a 128-bit memory location. The destination
is an XMM register. There is a third, immediate byte operand. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

YMM Encoding
There are two encodings, one for each selection method:

VPERMILPD Permute
Double-Precision

63 2 1 0
Sel

Destination
Quadword

Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Used by 128-bit encoding and 256-bit encoding
[63:0] [0] 0 [63:0]

1 [127:64]
[127:64] [1] 0 [63:0]

1 [127:64]
Used only by 256-bit encoding

[191:128] [2] 0 [191:128]
1 [255:192]

[255:192] [3] 0 [191:128]
1 [255:192]

[AMD Public Use]

Instruction Reference VPERMILPD 741

26568—Rev. 3.24—May 2020 AMD64 Technology

• The first source operand is a YMM register. The second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

• The first source operand is either a YMM register or a 256-bit memory location. The destination is
a YMM register. There is a third, immediate byte operand.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPERM2F128, VPERMIL2PD, VPERMIL2PS, VPERMILPS, VPPERM

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
VPERMILPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

Selection by source register or memory:
VPERMILPD xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src1.0.01 0D /r
VPERMILPD ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src1.1.01 0D /r
Selection by immediate byte operand:
VPERMILPD xmm1, xmm2/mem128, imm8 C4 RXB.03 0.1111.0.01 05 /r ib
VPERMILPD ymm1, ymm2/mem256, imm8 C4 RXB.03 0.1111.1.01 05 /r ib

[AMD Public Use]

742 VPERMILPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b (for versions with immediate byte operand only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

Instruction Reference VPERMILPS 743

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies single-precision floating-point values from a source to a destination. Source and destination
can be selected in two ways. There are different encodings for each selection method.
Selection by bit fields in a source register or memory location:
Each doubleword of the operand is defined as follows.

Each bit field corresponds to a destination doubleword. Bit values select a source doubleword. Only
bits [1:0] of each word are used; bits [31:2} are ignored. The 128-bit encoding uses four two-bit
fields; the 256-bit version uses eight two-bit fields. Field encoding is as follows.

VPERMILPS Permute
Single-Precision

31 2 1 0
Sel

Destination
Doubleword

Immediate Operand
Bit Field

Value of
Bit Field

Source
Bits Copied

[31:0] [1:0] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[63:32] [33:32] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[95:64] [65:64] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[127:96] [97:96] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[AMD Public Use]

744 VPERMILPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Selection by bit fields in an immediate byte:
Each bit field corresponds to a destination doubleword. For the 256-bit encoding, the fields specify
sources and destinations in both the upper and lower 128 bits of the register. Selections are defined as
follows.

Upper 128 bits of 256-bit source and destination used by 256-bit encoding
[159:128] [129:128] 00 [159:128]

01 [191:160]
10 [223:192]
11 [255:224]

[191:160] [161:160] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[223:192] [193:192] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[255:224] [225:224] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

Destination
Doubleword

Bit Field Value of Bit
Field

Source
Bits Copied

[31:0] [1:0] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[63:32] [3:2] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[95:64] [5:4] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[127:96] [7:6] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Destination
Doubleword

Immediate Operand
Bit Field

Value of
Bit Field

Source
Bits Copied

[AMD Public Use]

Instruction Reference VPERMILPS 745

26568—Rev. 3.24—May 2020 AMD64 Technology

This extended-form instruction has both 128-bit and 256-bit encodings:
XMM Encoding
There are two encodings, one for each selection method:
• The first source operand is an XMM register. The second source operand is either an XMM

register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

• The first source operand is either an XMM register or a 128-bit memory location. The destination
is an XMM register. There is a third, immediate byte operand. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

YMM Encoding
There are two encodings, one for each selection method:
• The first source operand is a YMM register. The second source operand is either a YMM register

or a 256-bit memory location. The destination is a third YMM register.
• The first source operand is either a YMM register or a 256-bit memory location. The destination is

a YMM register. There is a third, immediate byte operand.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Upper 128 bits of 256-bit source and destination used by 256-bit encoding
[159:128] [1:0] 00 [159:128]

01 [191:160]
10 [223:192]
11 [255:224]

[191:160] [3:2] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[223:192] [5:4] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[255:224] [7:6] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

Form Subset Feature Flag
VPERMILPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Destination
Doubleword

Bit Field Value of Bit
Field

Source
Bits Copied

[AMD Public Use]

746 VPERMILPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VPERM2F128, VPERMIL2PD, VPERMIL2PS, VPERMILPD, VPPERM

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

Selection by source register or memory:
VPERMILPS xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src1.0.01 0C /r
VPERMILPS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src1.1.01 0C /r
Selection by immediate byte operand:
VPERMILPS xmm1, xmm2/mem128, imm8 C4 RXB.03 0.1111.0.01 04 /r ib
VPERMILPS ymm1, ymm2/mem256, imm8 C4 RXB.03 0.1111.1.01 04 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b (for versions with immediate byte operand only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

Instruction Reference VPERMPD 747

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies selected quadwords from a 256-bit value located either in memory or a YMM register to spe-
cific quadwords of the destination. For each quadword of the destination, selection of which quad-
word to copy from the source is specified by a 2 bit selector field in an immediate byte.
There is a single form of this instruction:

VPERMPD dest, src, imm8

The selection of which quadword of the source operand to copy to each quadword of the destination
is specified by four 2-bit selector fields in the immediate byte. Bits [1:0] specify the index of the
quadword to be copied to the destination quadword 0. Bits [3:2] select the quadword to be copied to
quadword 1, bits [5:4] select the quadword to be copied to quadword 2, and bits [7:6] select the quad-
word to be copied to quadword 3.
The index value may be the same in multiple selectors. This results in multiple copies of the same
source quadword being copied to the destination.
There is no 128-bit form of this instruction.
YMM Encoding
The destination is a YMM register. The source operand is a YMM register or a 256-bit memory loca-
tion.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPERMD, VPERMQ, VPERMPS

rFLAGS Affected
None

MXCSR Flags Affected
None

VPERMPD Packed Permute
Double-Precision Floating-Point

Form Subset Feature Flag
VPERMPD AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Encoding
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VPERMPD ymm1, ymm2/mem256, imm8 C4 RXB.03 1.1111.1.01 01 /r ib

[AMD Public Use]

748 VPERMPD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
A A A CR0.EM = 1.
A A A CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L= 0.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A A A Lock prefix (F0h) preceding opcode.
Device not available, #NM A A A CR0.TS = 1.
Stack, #SS A A A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A A A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPERMPS 749

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies selected doublewords from a 256-bit value located either in memory or a YMM register to
specific doublewords of the destination YMM register. For each doubleword of the destination, selec-
tion of which doubleword to copy from the source is specified by a selector field in the corresponding
doubleword of a YMM register.
There is a single form of this instruction:

VPERMPS dest, src1, src2

The first source operand provides eight 3-bit selectors, each selector occupying the least-significant
bits of a doubleword. Each selector specifies the index of the doubleword of the second source oper-
and to be copied to the destination. The doubleword in the destination that each selector controls is
based on its position within the first source operand.
The index value may be the same in multiple selectors. This results in multiple copies of the same
source doubleword being copied to the destination.
There is no 128-bit form of this instruction.
YMM Encoding
The destination is a YMM register. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPERMD, VPERMQ, VPERMPD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPERMPS Packed Permute
Single-Precision Floating-Point

Form Subset Feature Flag
VPERMPS AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Encoding
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VPERMPS ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src1.1.01 16 /r

[AMD Public Use]

750 VPERMPS Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot
Invalid opcode, #UD A A A Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
A A A CR0.EM = 1.
A A A CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L= 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A A A Lock prefix (F0h) preceding opcode.
Device not available, #NM A A A CR0.TS = 1.
Stack, #SS A A A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A A A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPERMQ 751

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies selected quadwords from a 256-bit value located either in memory or a YMM register to spe-
cific quadwords of the destination. For each quadword of the destination, selection of which quad-
word to copy from the source is specified by a 2 bit selector field in an immediate byte.
There is a single form of this instruction:

VPERMQ dest, src, imm8

The selection of which quadword of the source operand to copy to each quadword of the destination
is specified by four 2-bit selector fields in the immediate byte. Bits [1:0] specify the index of the
quadword to be copied to the destination quadword 0. Bits [3:2] select the quadword to be copied to
quadword 1, bits [5:4] select the quadword to be copied to quadword 2, and bits [7:6] select the quad-
word to be copied to quadword 3.
The index value may be the same in multiple selectors. This results in multiple copies of the same
source quadword being copied to the destination.
There is no 128-bit form of this instruction.
YMM Encoding
The destination is a YMM register. The source operand is a YMM register or a 256-bit memory loca-
tion.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPERMD, VPERMPD, VPERMPS

rFLAGS Affected
None

MXCSR Flags Affected
None

VPERMQ Packed Permute Quadword

Form Subset Feature Flag
VPERMQ AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Encoding
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VPERMQ ymm1, ymm2/mem256, imm8 C4 RXB.03 1.1111.1.01 00 /r ib

[AMD Public Use]

752 VPERMQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
A A A CR0.EM = 1.
A A A CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L= 0.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A A A Lock prefix (F0h) preceding opcode.
Device not available, #NM A A A CR0.TS = 1.
Stack, #SS A A A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A A A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPGATHERDD 753

26568—Rev. 3.24—May 2020 AMD64 Technology

Conditionally loads doubleword values from memory using VSIB addressing with doubleword indi-
ces.
The instruction is of the form:

VPGATHERDD dest, mem32[vm32x/y], mask

The loading of each element of the destination register is conditional based on the value of the corre-
sponding element of the mask (second source operand). If the most-significant bit of the ith element
of the mask is set, the ith element of the destination is loaded from memory using the ith address of
the array of effective addresses calculated using VSIB addressing.
The index register is treated as an array of signed 32-bit values. Doubleword elements of the destina-
tion for which the corresponding mask element is zero are not affected by the operation. If no excep-
tions occur, the mask register is set to zero.
Execution of the instruction can be suspended by an exception if the exception is triggered by an ele-
ment other than the rightmost element loaded. When this happens, the destination register and the
mask operand may be observed as partially updated. Elements that have been loaded will have their
mask elements set to zero. If any traps or faults are pending from elements that have been loaded,
they will be delivered in lieu of the exception; in this case, the RF flag is set so that an instruction
breakpoint is not re-triggered when the instruction execution is resumed.
See Section 1.3, “VSIB Addressing,” on page 6 for a discussion of the VSIB addressing mode.
There are 128-bit and 256-bit forms of this instruction.
XMM Encoding
The destination is an XMM register. The first source operand is up to four 32-bit values located in
memory. The second source operand (the mask) is an XMM register. The index vector is the four dou-
blewords of an XMM register. Bits [255:128] of the YMM register that corresponds to the destination
and bits [255:128] of the YMM register that corresponds to the second source (mask) operand are
cleared.
YMM Encoding
The destination is a YMM register. The first source operand is up to eight 32-bit values located in
memory. The second source operand (the mask) is a YMM register. The index vector is the eight dou-
blewords of a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VPGATHERDD Conditionally Gather Doublewords,
Doubleword Indices

Form Subset Feature Flag
VPGATHERDD AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

754 VPGATHERDD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VGATHERDPD, VGATHERDPS, VGATHERQPD, VGATHERQPS, VPGATHERDQ, VPGATH-
ERQD, VPGATHERQQ

rFLAGS Affected
RF

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPGATHERDD xmm1, vm32x, xmm2 C4 RXB.02 0.src2.0.01 90 /r
VPGATHERDD ymm1, vm32y, ymm2 C4 RXB.02 0.src2.1.01 90 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.
A MODRM.mod = 11b
A MODRM.rm ! = 100b
A YMM/XMM registers specified for destination, mask, and index not unique.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPGATHERDQ 755

26568—Rev. 3.24—May 2020 AMD64 Technology

Conditionally loads quadword values from memory using VSIB addressing with doubleword indices.
The instruction is of the form:

VPGATHERDQ dest, mem64[vm32x], mask

The loading of each element of the destination register is conditional based on the value of the corre-
sponding element of the mask (second source operand). If the most-significant bit of the ith element
of the mask is set, the ith element of the destination is loaded from memory using the ith address of
the array of effective addresses calculated using VSIB addressing.
The index register is treated as an array of signed 32-bit values. Quadword elements of the destination
for which the corresponding mask element is zero are not affected by the operation. If no exceptions
occur, the mask register is set to zero.
Execution of the instruction can be suspended by an exception if the exception is triggered by an ele-
ment other than the rightmost element loaded. When this happens, the destination register and the
mask operand may be observed as partially updated. Elements that have been loaded will have their
mask elements set to zero. If any traps or faults are pending from elements that have been loaded,
they will be delivered in lieu of the exception; in this case, the RF flag is set so that an instruction
breakpoint is not re-triggered when the instruction execution is resumed.
See Section 1.3, “VSIB Addressing,” on page 6 for a discussion of the VSIB addressing mode.
There are 128-bit and 256-bit forms of this instruction.
XMM Encoding
The destination is an XMM register. The first source operand is up to two 64-bit values located in
memory. The second source operand (the mask) is an XMM register. The index vector is the two
low-order doublewords of an XMM register; the two high-order doublewords of the index register are
not used. Bits [255:128] of the YMM register that corresponds to the destination and bits [255:128] of
the YMM register that corresponds to the second source (mask) operand are cleared.
YMM Encoding
The destination is a YMM register. The first source operand is up to four 64-bit values located in
memory. The second source operand (the mask) is a YMM register. The index vector is the four dou-
blewords of an XMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VPGATHERDQ Conditionally Gather Quadwords,
Doubleword Indices

Form Subset Feature Flag
VPGATHERDQ AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

756 VPGATHERDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VGATHERDPD, VGATHERDPS, VGATHERQPD, VGATHERQPS, VPGATHERDD, VPGATH-
ERQD, VPGATHERQQ

rFLAGS Affected
RF

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPGATHERDQ xmm1, vm32x, xmm2 C4 RXB.02 1.src2.0.01 90 /r
VPGATHERDQ ymm1, vm32x, ymm2 C4 RXB.02 1.src2.1.01 90 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.
A MODRM.mod = 11b
A MODRM.rm ! = 100b
A YMM/XMM registers specified for destination, mask, and index not unique.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPGATHERQD 757

26568—Rev. 3.24—May 2020 AMD64 Technology

Conditionally loads doubleword values from memory using VSIB addressing with quadword indices.
The instruction is of the form:

VPGATHERQD dest, mem32[vm64x/y], mask

The loading of each element of the destination register is conditional based on the value of the corre-
sponding element of the mask (second source operand). If the most-significant bit of the ith element
of the mask is set, the ith element of the destination is loaded from memory using the ith address of
the array of effective addresses calculated using VSIB addressing.
The index register is treated as an array of signed 64-bit values. Doubleword elements of the destina-
tion for which the corresponding mask element is zero are not affected by the operation. If no excep-
tions occur, the mask register is set to zero.
Execution of the instruction can be suspended by an exception if the exception is triggered by an ele-
ment other than the rightmost element loaded. When this happens, the destination register and the
mask operand may be observed as partially updated. Elements that have been loaded will have their
mask elements set to zero. If any traps or faults are pending from elements that have been loaded,
they will be delivered in lieu of the exception; in this case, the RF flag is set so that an instruction
breakpoint is not re-triggered when the instruction execution is resumed.
See Section 1.3, “VSIB Addressing,” on page 6 for a discussion of the VSIB addressing mode.
There are 128-bit and 256-bit forms of this instruction.
XMM Encoding
The destination is an XMM register. The first source operand is up to two 32-bit values located in
memory. The second source operand (the mask) is an XMM register. The index vector is the two
quadwords of an XMM register. The upper half of the destination register and the mask register are
cleared. Bits [255:128] of the YMM register that corresponds to the destination and bits [255:128] of
the YMM register that corresponds to the mask register are cleared.
YMM Encoding
The destination is an XMM register. The first source operand is up to four 32-bit values located in
memory. The second source operand (the mask) is an XMM register. The index vector is the four
quadwords of a YMM register. Bits [255:128] of the YMM register that corresponds to the destina-
tion and bits [255:128] of the YMM register that corresponds to the mask register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VPGATHERQD Conditionally Gather Doublewords,
Quadword Indices

Form Subset Feature Flag
VPGATHERQD AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

758 VPGATHERQD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VGATHERDPD, VGATHERDPS, VGATHERQPD, VGATHERQPS, VPGATHERDD, VPGATH-
ERDQ, VPGATHERQQ

rFLAGS Affected
RF

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPGATHERQD xmm1, vm64x, xmm2 C4 RXB.02 0.src2.0.01 91 /r
VPGATHERQD xmm1, vm64y, xmm2 C4 RXB.02 0.src2.1.01 91 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.
A MODRM.mod = 11b
A MODRM.rm ! = 100b
A YMM/XMM registers specified for destination, mask, and index not unique.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPGATHERQQ 759

26568—Rev. 3.24—May 2020 AMD64 Technology

Conditionally loads quadword values from memory using VSIB addressing with quadword indices.
The instruction is of the form:

VPGATHERQQ dest, mem64[vm64x/y], mask

The loading of each element of the destination register is conditional based on the value of the corre-
sponding element of the mask (second source operand). If the most-significant bit of the ith element
of the mask is set, the ith element of the destination is loaded from memory using the ith address of
the array of effective addresses calculated using VSIB addressing.
The index register is treated as an array of signed 64-bit values. Quadword elements of the destination
for which the corresponding mask element is zero are not affected by the operation. If no exceptions
occur, the mask register is set to zero.
Execution of the instruction can be suspended by an exception if the exception is triggered by an ele-
ment other than the rightmost element loaded. When this happens, the destination register and the
mask operand may be observed as partially updated. Elements that have been loaded will have their
mask elements set to zero. If any traps or faults are pending from elements that have been loaded,
they will be delivered in lieu of the exception; in this case, the RF flag is set so that an instruction
breakpoint is not re-triggered when the instruction execution is resumed.
See Section 1.3, “VSIB Addressing,” on page 6 for a discussion of the VSIB addressing mode.
There are 128-bit and 256-bit forms of this instruction.
XMM Encoding
The destination is an XMM register. The first source operand is up to two 64-bit values located in
memory. The second source operand (the mask) is an XMM register. The index vector is the two
quadwords of an XMM register. Bits [255:128] of the YMM register that corresponds to the destina-
tion and bits [255:128] of the YMM register that corresponds to the second source (mask) operand are
cleared.
YMM Encoding
The destination is a YMM register. The first source operand is up to four 64-bit values located in
memory. The second source operand (the mask) is a YMM register. The index vector is the four quad-
words of a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VPGATHERQQ Conditionally Gather Quadwords,
Quadword Indices

Form Subset Feature Flag
VPGATHERQQ AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

760 VPGATHERQQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VGATHERDPD, VGATHERDPS, VGATHERQPD, VGATHERQPS, VPGATHERDD, VPGATH-
ERDQ, VPGATHERQD

rFLAGS Affected
RF

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPGATHERQQ xmm1, vm64x, xmm2 C4 RXB.02 1.src2.0.01 91 /r
VPGATHERQQ ymm1, vm64y, ymm2 C4 RXB.02 1.src2.1.01 91 /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.
A MODRM.mod = 11b
A MODRM.rm ! = 100b
A YMM/XMM registers specified for destination, mask, and index not unique.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPHADDBD 761

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds four sets of four 8-bit signed integer values of the source and packs the sign-extended sums into
the corresponding doubleword of the destination.
There are two operands: VPHADDBD dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDBW, VPHADDBQ, VPHADDWD, VPHADDWQ, VPHADDDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDBD Packed Horizontal Add
Signed Byte to Signed Doubleword

Form Subset Feature Flag
VPHADDBD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDBD xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 C2 /r

[AMD Public Use]

762 VPHADDBD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDBQ 763

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds two sets of eight 8-bit signed integer values of the source and packs the sign-extended sums into
the corresponding quadword of the destination.
There are two operands: VPHADDBQ dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDBW, VPHADDBD, VPHADDWD, VPHADDWQ, VPHADDDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDBQ Packed Horizontal Add
Signed Byte to Signed Quadword

Form Subset Feature Flag
VPHADDBQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDBQ xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 C3 /r

[AMD Public Use]

764 VPHADDBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDBW 765

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds each adjacent pair of 8-bit signed integer values of the source and packs the sign-extended 16-
bit integer result of each addition into the corresponding word element of the destination.
There are two operands: VPHADDBW dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDBD, VPHADDBQ, VPHADDWD, VPHADDWQ, VPHADDDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDBW Packed Horizontal Add
Signed Byte to Signed Word

Form Subset Feature Flag
VPHADDBW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDBW xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 C1 /r

[AMD Public Use]

766 VPHADDBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDDQ 767

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds each adjacent pair of signed doubleword integer values of the source and packs the sign-
extended sums into the corresponding quadword of the destination.
There are two operands: VPHADDDQ dest, src
The source is either an XMM register or a 128-bit memory location and the destination is an XMM
register. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDBW, VPHADDBD, VPHADDBQ, VPHADDWD, VPHADDWQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDDQ Packed Horizontal Add
Signed Doubleword to Signed Quadword

Form Subset Feature Flag
VPHADDDQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDDQ xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 CB /r

[AMD Public Use]

768 VPHADDDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDUBD 769

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds four sets of four 8-bit unsigned integer values of the source and packs the sums into the corre-
sponding doublewords of the destination.
There are two operands: VPHADDUBD dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDUBW, VPHADDUBQ, VPHADDUWD, VPHADDUWQ, VPHADDUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDUBD Packed Horizontal Add
Unsigned Byte to Doubleword

Form Subset Feature Flag
VPHADDUBD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUBD xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 D2 /r

[AMD Public Use]

770 VPHADDUBD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDUBQ 771

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds two sets of eight 8-bit unsigned integer values from the second source and packs the sums into
the corresponding quadword of the destination.
There are two operands: VPHADDUBQ dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. When the destination XMM register is written, bits [255:128] of the corresponding YMM
register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDUBW, VPHADDUBD, VPHADDUWD, VPHADDUWQ, VPHADDUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDUBQ Packed Horizontal Add
Unsigned Byte to Quadword

Form Subset Feature Flag
VPHADDUBQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUBQ xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 D3 /r

[AMD Public Use]

772 VPHADDUBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDUBW 773

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds each adjacent pair of 8-bit unsigned integer values of the source and packs the 16-bit integer
sums to the corresponding word of the destination.
There are two operands: VPHADDUBW dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDUBD, VPHADDUBQ, VPHADDUWD, VPHADDUWQ, VPHADDUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDUBW Packed Horizontal Add
Unsigned Byte to Word

Form Subset Feature Flag
VPHADDUBW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUBW xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 D1 /r

[AMD Public Use]

774 VPHADDUBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDUDQ 775

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds two adjacent pairs of 32-bit unsigned integer values of the source and packs the sums into the
corresponding quadword of the destination.
There are two operands: VPHADDUDQ dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDUBW, VPHADDUBD, VPHADDUBQ, VPHADDUWD, VPHADDUWQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDUDQ Packed Horizontal Add
Unsigned Doubleword to Quadword

Form Subset Feature Flag
VPHADDUDQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUDQ xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 DB /r

[AMD Public Use]

776 VPHADDUDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDUWD 777

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds four adjacent pairs of 16-bit unsigned integer values of the source and packs the sums into the
corresponding doubleword of the destination.
There are two operands: VPHADDUWD dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDUBW, VPHADDUBD, VPHADDUBQ, VPHADDUWQ, VPHADDUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDUWD Packed Horizontal Add
Unsigned Word to Doubleword

Form Subset Feature Flag
VPHADDUWD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUWD xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 D6 /r

[AMD Public Use]

778 VPHADDUWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDUWQ 779

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds two pairs of 16-bit unsigned integer values of the source and packs the sums into the corre-
sponding quadword element of the destination.
There are two operands: VPHADDUWQ dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDUBW, VPHADDUBD, VPHADDUBQ, VPHADDUWD, VPHADDUDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDUWQ Packed Horizontal Add
Unsigned Word to Quadword

Form Subset Feature Flag
VPHADDUWQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUWQ xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 D7 /r

[AMD Public Use]

780 VPHADDUWQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDWD 781

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds four adjacent pairs of 16-bit signed integer values of the source and packs the sign-extended
sums to the corresponding doubleword of the destination.
There are two operands: VPHADDWD dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDBW, VPHADDBD, VPHADDBQ, VPHADDWQ, VPHADDDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDWD Packed Horizontal Add
Signed Word to Signed Doubleword

Form Subset Feature Flag
VPHADDWD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDWD xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 C6 /r

[AMD Public Use]

782 VPHADDWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHADDWQ 783

26568—Rev. 3.24—May 2020 AMD64 Technology

Adds four successive pairs of 16-bit signed integer values of the source and packs the sign-extended
sums to the corresponding quadword of the destination.
There are two operands: VPHADDWQ dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHADDBW, VPHADDBD, VPHADDBQ, VPHADDWD, VPHADDDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHADDWQ Packed Horizontal Add
Signed Word to Signed Quadword

Form Subset Feature Flag
VPHADDWQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDWQ xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 C7 /r

[AMD Public Use]

784 VPHADDWQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHSUBBW 785

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts the most significant signed integer byte from the least significant signed integer byte of
each word element in the source and packs the sign-extended 16-bit integer differences into the desti-
nation.
There are two operands: VPHSUBBW dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. When the destination is written, bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHSUBWD, VPHSUBDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHSUBBW Packed Horizontal Subtract
Signed Byte to Signed Word

Form Subset Feature Flag
VPHSUBBW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHSUBBW xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 E1 /r

[AMD Public Use]

786 VPHSUBBW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHSUBDQ 787

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts the most significant signed integer doubleword from the least significant signed integer
doubleword of each quadword in the source and packs the sign-extended 64-bit integer differences
into the corresponding quadword element of the destination.
There are two operands: VPHSUBDQ dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. When the destination is written, bits [255:128] of the corresponding YMM register are
cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHSUBBW, VPHSUBWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHSUBDQ Packed Horizontal Subtract
Signed Doubleword to Signed Quadword

Form Subset Feature Flag
VPHSUBDQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHSUBDQ xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 E3 /r

[AMD Public Use]

788 VPHSUBDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPHSUBWD 789

26568—Rev. 3.24—May 2020 AMD64 Technology

Subtracts the most significant signed integer word from the least significant signed integer word of
each doubleword of the source and packs the sign-extended 32-bit integer differences into the destina-
tion.
There are two operands: VPHSUBWD dest, src
The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPHSUBBW, VPHSUBDQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPHSUBWD Packed Horizontal Subtract
Signed Word to Signed Doubleword

Form Subset Feature Flag
VPHSUBWD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPHSUBWD xmm1, xmm2/mem128 8F RXB.09 0.1111.0.00 E2 /r

[AMD Public Use]

790 VPHSUBWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSDD 791

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies each packed 32-bit signed integer value of the first source by the corresponding value of
the second source, adds the corresponding value of the third source to the 64-bit signed integer prod-
uct, and writes four 32-bit sums to the destination.
No saturation is performed on the sum. When the result of the multiplication causes non-zero values
to be set in the upper 32 bits of the 64-bit product, they are ignored. When the result of the add over-
flows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set). In both cases, only
the signed low-order 32 bits of the result are written to the destination.
There are four operands: VPMACSDD dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination is written,
bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When the third source designates the same XMM register as the destination, the XMM register
behaves as an accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSDD Packed Multiply Accumulate
Signed Doubleword to Signed Doubleword

Form Subset Feature Flag
VPMACSDD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSDD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 9E /r ib

[AMD Public Use]

792 VPMACSDD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSDQH 793

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies the second 32-bit signed integer value of the first source by the corresponding value of the
second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the fourth 32-bit signed integer value of the first
source by the fourth 32-bit signed integer value of the second source, then adds the high-order 64-bit
signed integer value of the third source to the 64-bit signed integer product. Writes two 64-bit sums to
the destination.
No saturation is performed on the sum. When the result of the add overflows, the carry is ignored
(neither the overflow nor carry bit in rFLAGS is set).
There are four operands: VPMACSDQH dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination is written,
bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field; the second source (src2)
is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the
third source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When the third source designates the same XMM register as the destination, the XMM register
behaves as an accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQL, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSDQH Packed Multiply Accumulate
Signed High Doubleword to Signed Quadword

Form Subset Feature Flag
VPMACSDQH XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSDQH xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src1.0.00 9F /r ib

[AMD Public Use]

794 VPMACSDQH Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSDQL 795

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies the low-order 32-bit signed integer value of the first source by the corresponding value of
the second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the third 32-bit signed integer value of the first
source by the corresponding value of the second source, then adds the high-order 64-bit signed inte-
ger value of the third source to the 64-bit signed integer product. Writes two 64-bit sums to the desti-
nation register.
No saturation is performed on the sum. When the result of the add overflows, the carry is ignored
(neither the overflow nor carry bit in rFLAGS is set). Only the low-order 64 bits of each result are
written to the destination.
There are four operands: VPMACSDQL dest, src1, src2, src3 dest = src1* src2 + src3
The destination is a YMM register specified by ModRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSDQL Packed Multiply Accumulate
Signed Low Doubleword to Signed Quadword

Form Subset Feature Flag
VPMACSDQL XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSDQL xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 97 /r ib

[AMD Public Use]

796 VPMACSDQL Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSSDD 797

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies each packed 32-bit signed integer value of the first source by the corresponding value of
the second source, then adds the corresponding packed 32-bit signed integer value of the third source
to each 64-bit signed integer product. Writes four saturated 32-bit sums to the destination.
Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 32-bit integer, it is saturated
to 7FFF_FFFFh, and when the value is smaller than the smallest signed 32-bit integer, it is saturated
to 8000_0000h.
There are four operands: VPMACSSDD dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination is written,
bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSSDD Packed Multiply Accumulate with Saturation
Signed Doubleword to Signed Doubleword

Form Subset Feature Flag
VPMACSSDD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSDD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 8E /r ib

[AMD Public Use]

798 VPMACSSDD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSSDQH 799

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies the second 32-bit signed integer value of the first source by the corresponding value of the
second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the fourth 32-bit signed integer value of the first
source by the corresponding value of the second source, then adds the high-order 64-bit signed inte-
ger value of the third source to the 64-bit signed integer product. Writes two saturated sums to the
destination.
Out of range results of the addition are saturated to fit into a signed 64-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 64-bit integer, it is saturated
to 7FFF_FFFF_FFFF_FFFFh, and when the value is smaller than the smallest signed 64-bit integer, it
is saturated to 8000_0000_0000_0000h.
There are four operands: VPMACSSDQH dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination XMM reg-
ister is written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSSDQH Packed Multiply Accumulate with Saturation
Signed High Doubleword to Signed Quadword

Form Subset Feature Flag
VPMACSSDQH XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSDQH xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 8F /r ib

[AMD Public Use]

800 VPMACSSDQH Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSSDQL 801

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies the low-order 32-bit signed integer value of the first source by the corresponding value of
the second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the third 32-bit signed integer value of the first
source by the third 32-bit signed integer value of the second source, then adds the high-order 64-bit
signed integer value of the third source to the 64-bit signed integer product. Writes two saturated
sums to the destination.
Out of range results of the addition are saturated to fit into a signed 64-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 64-bit integer, it is saturated
to 7FFF_FFFF_FFFF_FFFFh, and when the value is smaller than the smallest signed 64-bit integer, it
is saturated to 8000_0000_0000_0000h.
There are four operands: VPMACSSDQL dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) register is an XMM register specified by ModRM.reg. When the destination is
written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSSDQL Packed Multiply Accumulate with Saturation
Signed Low Doubleword to Signed Quadword

Form Subset Feature Flag
VPMACSSDQL XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSDQL xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 87 /r ib

[AMD Public Use]

802 VPMACSSDQL Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSSWD 803

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies the odd-numbered packed 16-bit signed integer values of the first source by the corre-
sponding values of the second source, then adds the corresponding packed 32-bit signed integer val-
ues of the third source to the 32-bit signed integer products. Writes four saturated sums to the
destination.
Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 32-bit integer, it is saturated
to 7FFF_FFFFh, and when the value is smaller than the smallest signed 32-bit integer, it is saturated
to 8000_0000h.
There are four operands:

VPMACSSWD dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) is an XMM register specified by ModRM.reg. When the destination XMM reg-
ister is written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field; the second source (src2)
is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the
third source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSWD, VPMACSSDD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSSWD Packed Multiply Accumulate with Saturation
Signed Word to Signed Doubleword

Form Subset Feature Flag
VPMACSSWD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 86 /r ib

[AMD Public Use]

804 VPMACSSWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSSWW 805

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies each packed 16-bit signed integer value of the first source by the corresponding packed 16-
bit signed integer value of the second source, then adds the corresponding packed 16-bit signed inte-
ger value of the third source to the 32-bit signed integer products. Writes eight saturated sums to the
destination.
Out of range results of the addition are saturated to fit into a signed 16-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 16-bit integer, it is saturated
to 7FFFh, and when the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.
There are four operands:

VPMACSSWW dest, src1, src2, src3 dest = src1* src2 + src3

The destination is an XMM register specified by ModRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte.
When src3 and dest designate the same XMM register, this register behaves as an accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL,VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSSWW Packed Multiply Accumulate with Saturation
Signed Word to Signed Word

Form Subset Feature Flag
VPMACSSWW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSWW xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 85 /r ib

[AMD Public Use]

806 VPMACSSWW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSWD 807

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies each odd-numbered packed 16-bit signed integer value of the first source by the corre-
sponding value of the second source, then adds the corresponding packed 32-bit signed integer value
of the third source to the 32-bit signed integer products. Writes four 32-bit results to the destination.
When the result of the add overflows, the carry is ignored (neither the overflow nor carry bit in
rFLAGS is set). Only the low-order 32 bits of the result are written to the destination.
There are four operands: VPMACSWD dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) register is an XMM register specified by ModRM.reg. When the destination
XMM register is written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSSDD, VPMACSDO, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSWD Packed Multiply Accumulate
Signed Word to Signed Doubleword

Form Subset Feature Flag
VPMACSWD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 96 /r ib

[AMD Public Use]

808 VPMACSWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMACSWW 809

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies each packed 16-bit signed integer value of the first source by the corresponding value of
the second source, then adds the corresponding packed 16-bit signed integer value of the third source
to each 32-bit signed integer product. Writes eight 16-bit results to the destination.
No saturation is performed on the sum. When the result of the multiplication causes non-zero values
to be set in the upper 16 bits of the 32 bit result, they are ignored. When the result of the add over-
flows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set). In both cases, only
the signed low-order 16 bits of the result are written to the destination.
There are four operands: VPMACSWW dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination XMM reg-
ister is written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMACSWW Packed Multiply Accumulate
Signed Word to Signed Word

Form Subset Feature Flag
VPMACSWW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSWW xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 95 /r ib

[AMD Public Use]

810 VPMACSWW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMADCSSWD 811

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies each packed 16-bit signed integer value of the first source by the corresponding value of
the second source, then adds the 32-bit signed integer products of the even-odd adjacent words. Each
resulting sum is then added to the corresponding packed 32-bit signed integer value of the third
source. Writes four 32-bit signed-integer results to the destination.
Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 32-bit integer, it is saturated
to 7FFF_FFFFh, and when the value is smaller than the smallest signed 32-bit integer, it is saturated
to 8000_0000h.
There are four operands: VPMADCSSWD dest, src1, src2, src3 dest = src1* src2 + src3
The destination is an XMM register specified by ModRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.
The first source is an XMM register specified by XOP.vvvv; the second source is either an XMM reg-
ister or a 128-bit memory location specified by the ModRM.r/m field; and the third source is an
XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMADCSSWD Packed Multiply Add Accumulate
with Saturation

Signed Word to Signed Doubleword

Form Subset Feature Flag
VPMADCSSWD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPMADCSSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 A6 /r ib

[AMD Public Use]

812 VPMADCSSWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMADCSWD 813

26568—Rev. 3.24—May 2020 AMD64 Technology

Multiplies each packed 16-bit signed integer value of the first source by the corresponding value of
the second source, then adds the 32-bit signed integer products of the even-odd adjacent words
together and adds the sums to the corresponding packed 32-bit signed integer values of the third
source. Writes four 32-bit sums to the destination.
No saturation is performed on the sum. When the result of the addition overflows, the carry is ignored
(neither the overflow nor carry bit in rFLAGS is set). Only the signed 32-bits of the result are written
to the destination.
There are four operands: VPMADCSWD dest, src1, src2, src3 dest = src1* src2 + src3
The destination is an XMM register specified by ModRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.
The first source is an XMM register specified by XOP.vvvv, the second source is either an XMM reg-
ister or a 128-bit memory location specified by the ModRM.r/m field; and the third source is an
XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPMADCSWD Packed Multiply Add Accumulate
Signed Word to Signed Doubleword

Form Subset Feature Flag
PMADCSWD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

PMADCSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 B6 /r ib

[AMD Public Use]

814 VPMADCSWD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPMASKMOVD 815

26568—Rev. 3.24—May 2020 AMD64 Technology

Moves packed doublewords from a second source operand to a destination, as specified by mask bits
in a first source operand. There are load and store versions of the instruction.
The mask bits are the most-significant bit of each doubleword in the first source operand (mask).
• For loads, when a mask bit = 1, the corresponding doubleword is copied from the source to the

same element of the destination; when a mask bit = 0, the corresponding element of the destination
is cleared.

• For stores, when a mask bit = 1, the corresponding doubleword is copied from the source to the
same element of the destination; when a mask bit = 0, the corresponding element of the destination
is not affected.

Exception and trap behavior for elements not selected for loading or storing from/to memory is
implementation dependent. For instance, a given implementation may signal a data breakpoint or a
page fault for doublewords that are zero-masked and not actually written.
This instruction provides no non-temporal access hint.

This instruction has both 128-bit and 256-bit forms:
XMM Encoding
There are load and store encodings.
• For loads, the four doublewords that make up the source operand are located in a 128-bit memory

location, the mask operand is an XMM register, and the destination is an XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

• For stores, the four doublewords that make up the source operand are located in an XMM register,
the mask operand is an XMM register, and the destination is a 128-bit memory location.

YMM Encoding
There are load and store encodings.
• For loads, the eight doublewords that make up the source operand are located in a 256-bit memory

location, the mask operand is a YMM register, and the destination is a YMM register.
• For stores, the eight doublewords that make up the source operand are located in a YMM register,

the mask operand is a YMM register, and the destination is a 256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VPMASKMOVD Masked Move
Packed Doubleword

Form Subset Feature Flag
VPMASKMOVD AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

816 VPMASKMOVD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VPMASKMOVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

Loads:
VPMASKMOVD xmm1, xmm2, mem128 C4 RXB.02 0.src1.0.01 8C /r
VPMASKMOVD ymm1, ymm2, mem256 C4 RXB.02 0.src1.1.01 8C /r
Stores:
VPMASKMOVD mem128, xmm1, xmm2 C4 RXB.02 0.src1.0.01 8E /r
VPMASKMOVD mem256, ymm1, ymm2 C4 RXB.02 0.src1.1.01 8E /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPMASKMOVQ 817

26568—Rev. 3.24—May 2020 AMD64 Technology

Moves packed quadwords from a second source operand to a destination, as specified by mask bits in
a first source operand. There are load and store versions of the instruction.
The mask bits are the most-significant bit of each quadword in the mask first source operand (mask).
• For loads, when a mask bit = 1, the corresponding quadword is copied from the source to the same

element of the destination; when a mask bit = 0, the corresponding element of the destination is
cleared.

• For stores, when a mask bit = 1, the corresponding quadword is copied from the source to the same
element of the destination; when a mask bit = 0, the corresponding element of the destination is not
affected.

Exception and trap behavior for elements not selected for loading or storing from/to memory is
implementation dependent. For instance, a given implementation may signal a data breakpoint or a
page fault for quadwords that are zero-masked and not actually written.
This instruction provides no non-temporal access hint.

This instruction has both 128-bit and 256-bit forms:
XMM Encoding
There are load and store encodings.
• For loads, the two quadwords that make up the source operand are located in a 128-bit memory

location, the mask operand is an XMM register, and the destination is an XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

• For stores, the two quadwords that make up the source operand are located in an XMM register, the
mask operand is an XMM register, and the destination is a 128-bit memory location.

YMM Encoding
There are load and store encodings.
• For loads, the four quadwords that make up the source operand are located in a 256-bit memory

location, the mask operand is a YMM register, and the destination is a YMM register.
• For stores, the four quadwords that make up the source operand are located in a YMM register, the

mask operand is a YMM register, and the destination is a 256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

VPMASKMOVQ Masked Move
Packed Quadword

Form Subset Feature Flag
VPMASKMOVQ AVX2 Fn0000_00007_EBX[AVX2]_x0 (bit 5)

[AMD Public Use]

818 VPMASKMOVQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Instruction Encoding

Related Instructions
VPMASKMOVD

rFLAGS Affected
None

MXCSR Flags Affected
None

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

Loads:
VPMASKMOVQ xmm1, xmm2, mem128 C4 RXB.02 1.src1.0.01 8C /r
VPMASKMOVQ ymm1, ymm2, mem256 C4 RXB.02 1.src1.1.01 8C /r
Stores:
VPMASKMOVQ mem128, xmm1, xmm2 C4 RXB.02 1.src1.0.01 8E /r
VPMASKMOVQ mem256, ymm1, ymm2 C4 RXB.02 1.src1.1.01 8E /r

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPPERM 819

26568—Rev. 3.24—May 2020 AMD64 Technology

Selects 16 of 32 packed bytes from two concatenated sources, applies a logical transformation to each
selected byte, then writes the byte to a specified position in the destination.
There are four operands: VPPERM dest, src1, src2, src3
The second (src2) and first (src1) sources are concatenated to form the 32-byte source.
The src1 operand is an XMM register specified by XOP.vvvv.
The third source (src3) contains 16 control bytes. Each control byte specifies the source byte and the
logical operation to perform on that byte. The order of the bytes in the destination is the same as that
of the control bytes in the src3.
For each byte of the 16-byte result, the corresponding src3 byte is used as follows:
• Bits [7:5] select a logical operation to perform on the selected byte.

• Bits [4:0] select a source byte to move from src2:src1.

XOP.W and an immediate byte (imm8) determine register configuration.
• When XOP.W = 0, src2 is either an XMM register or a 128-bit memory location specified by

ModRM.r/m and src3 is an XMM register specified by imm8[7:4].

VPPERM Packed Permute
Bytes

Bit Value Selected Operation
000 Source byte (no logical operation)
001 Invert source byte
010 Bit reverse of source byte
011 Bit reverse of inverted source byte
100 00h (zero-fill)
101 FFh (ones-fill)
110 Most significant bit of source byte replicated in all bit positions.
111 Invert most significant bit of source byte and replicate in all bit positions.

Bit
Value

Source
Byte

Bit
Value

Source
Byte

Bit
Value

Source
Byte

Bit
Value

Source
Byte

00000 src1[7:0] 01000 src1[71:64] 10000 src2[7:0] 11000 src2[71:64]
00001 src1[15:8] 01001 src1[79:72] 10001 src2[15:8] 11001 src2[79:72]
00010 src1[23:16] 01010 src1[87:80] 10010 src2[23:16] 11010 src2[87:80]
00011 src1[31:24] 01011 src1[95:88] 10011 src2[31:24] 11011 src2[95:88]
00100 src1[39:32] 01100 src1[103:96] 10100 src2[39:32] 11100 src2[103:96]
00101 src1[47:40] 01101 src1[111:104] 10101 src2[47:40] 11101 src2[111:104]
00110 src1[55:48] 01110 src1[119:112] 10110 src2[55:48] 11110 src2[119:112]
00111 src1[63:56] 01111 src1[127:120] 10111 src2[63:56] 11111 src2[127:120]

[AMD Public Use]

820 VPPERM Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

• When XOP.W = 1, src2 is an XMM register specified by imm8[7:4] and src3 is either an XMM
register or a 128-bit memory location specified by ModRM.r/m.

The destination (dest) is an XMM register specified by ModRM.reg. When the result is written to the
dest XMM register, bits [255:128] of the corresponding YMM register are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPSHUFHW, VPSHUFD, VPSHUFLW, VPSHUFW, VPERMIL2PS, VPERMIL2PD

rFLAGS Affected
None

MXCSR Flags Affected
None

Form Subset Feature Flag
VPPERM XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPPERM xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.08 0.src1.0.00 A3 /r ib
VPPERM xmm1, xmm2, xmm3, xmm4/mem128 8F RXB.08 1.src1.0.00 A3 /r ib

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPROTB 821

26568—Rev. 3.24—May 2020 AMD64 Technology

Rotates each byte of the source as specified by a count operand and writes the result to the corre-
sponding byte of the destination.
There are two versions of the instruction, one for each source of the count byte:
• VPROTB dest, src, fixed-count
• VPROTB dest, src, variable-count
For both versions of the instruction, the destination (dest) operand is an XMM register specified by
ModRM.reg.
The fixed-count version of the instruction rotates each byte of the source (src) the number of bits spec-
ified by the immediate fixed-count byte. All bytes are rotated the same amount. The source XMM
register or memory location is selected by the ModRM.r/m field.
The variable-count version of the instruction rotates each byte of the source the amount specified in
the corresponding byte element of the variable-count. Both src and variable-count are configured by
XOP.W.
• When XOP.W = 0, variable-count is an XMM register specified by XOP.vvvv and src is either an

XMM register or a 128-bit memory location specified by ModRM.r/m.
• When XOP.W = 1, variable-count is either an XMM register or a 128-bit memory location

specified by ModRM.r/m and src is an XMM register specified by XOP.vvvv.
When the count value is positive, bits are rotated to the left (toward the more significant bit posi-
tions). The bits rotated out left of the most significant bit are rotated back in at the right end (least-sig-
nificant bit) of the byte.
When the count value is negative, bits are rotated to the right (toward the least significant bit posi-
tions). The bits rotated to the right out of the least significant bit are rotated back in at the left end
(most-significant bit) of the byte.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

VPROTB Packed Rotate
Bytes

Form Subset Feature Flag
VPROTB XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.count.0.00 90 /r
VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 90 /r
VPROTB xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 C0 /r ib

[AMD Public Use]

822 VPROTB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
VPROTW, VPROTD, VPROTQ,VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPROTD 823

26568—Rev. 3.24—May 2020 AMD64 Technology

Rotates each doubleword of the source as specified by a count operand and writes the result to the
corresponding doubleword of the destination.
There are two versions of the instruction, one for each source of the count byte:
• VPROTD dest, src, fixed-count
• VPROTD dest, src, variable-count
For both versions of the instruction, the dest operand is an XMM register specified by ModRM.reg.
The fixed count version of the instruction rotates each doubleword of the source operand the number
of bits specified by the immediate fixed-count byte operand. All doublewords are rotated the same
amount. The src XMM register or memory location is selected by the ModRM.r/m field.
The variable count version of the instruction rotates each doubleword of the source by the amount
specified in the low order byte of the corresponding doubleword of the variable-count operand vector.
Both src and variable-count are configured by XOP.W.
• When XOP.W = 0, src is either an XMM register or a128-bit memory location specified by the

ModRM.r/m field and variable-count is an XMM register specified by XOP.vvvv.
• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an

XMM register or a 128-bit memory location specified by the ModRM.r/m field.
When the count value is positive, bits are rotated to the left (toward the more significant bit posi-
tions). The bits rotated out to the left of the most significant bit of each source doubleword operand
are rotated back in at the right end (least-significant bit) of the doubleword.
When the count value is negative, bits are rotated to the right (toward the least significant bit posi-
tions). The bits rotated to the right out of the least significant bit of each source doubleword operand
are rotated back in at the left end (most-significant bit) of the doubleword.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

VPROTD Packed Rotate
Doublewords

Form Subset Feature Flag
VPROTD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTD xmm1, xmm2/mem128, xmm3 8F RXB.09 0.count.0.00 92 /r
VPROTD xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 92 /r
VPROTD xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 C2 /r ib

[AMD Public Use]

824 VPROTD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
VPROTB, VPROTW, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPROTQ 825

26568—Rev. 3.24—May 2020 AMD64 Technology

Rotates each quadword of the source operand as specified by a count operand and writes the result to
the corresponding quadword of the destination.
There are two versions of the instruction, one for each source of the count byte:
• VPROTQ dest, src, fixed-count
• VPROTQ dest, src, variable-count
For both versions of the instruction, the dest operand is an XMM register specified by ModRM.reg.
The fixed count version of the instruction rotates each quadword in the source the number of bits
specified by the immediate fixed-count byte operand. All quadword elements of the source are rotated
the same amount. The src XMM register or memory location is selected by the ModRM.r/m field.
The variable count version of the instruction rotates each quadword of the source the amount speci-
fied ny the low order byte of the corresponding quadword of the variable-count operand.
Both src and variable-count are configured by XOP.W.
• When XOP.W = 0, src is either an XMM register or a 128-bit memory location specified by

ModRM.r/m and variable-count is an XMM register specified by XOP.vvvv.
• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an

XMM register or a128-bit memory location specified by ModRM.r/m.
When the count value is positive, bits are rotated to the left (toward the more significant bit positions)
of the operand element. The bits rotated out to the left of the most significant bit of the word element
are rotated back in at the right end (least-significant bit).
When the count value is negative, operand element bits are rotated to the right (toward the least sig-
nificant bit positions). The bits rotated to the right out of the least significant bit are rotated back in at
the left end (most-significant bit) of the word element.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

VPROTQ Packed Rotate
Quadwords

Form Subset Feature Flag
VPROTQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTQ xmm1, xmm2/mem128, xmm3 8F RXB.09 0.count.0.00 93 /r
VPROTQ xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 93 /r
VPROTQ xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 C3 /r ib

[AMD Public Use]

826 VPROTQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
VPROTB, VPROTW, VPROTD, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPROTW 827

26568—Rev. 3.24—May 2020 AMD64 Technology

Rotates each word of the source as specified by a count operand and writes the result to the corre-
sponding word of the destination.
There are two versions of the instruction, one for each source of the count byte:
• VPROTW dest, src, fixed-count
• VPROTW dest, src, variable-count
For both versions of the instruction, the dest operand is an XMM register specified by ModRM.reg.
The fixed count version of the instruction rotates each word of the source the number of bits specified
by the immediate fixed-count byte operand. All words of the source operand are rotated the same
amount. The src XMM register or memory location is selected by the ModRM.r/m field.
The variable count version of this instruction rotates each word of the source operand by the amount
specified in the low order byte of the corresponding word of the variable-count operand.
Both src and variable-count are configured by XOP.W.
• When XOP.W = 0, src is either an XMM register or a 128-bit memory location specified by

ModRM.r/m and variable-count is an XMM register specified by XOP.vvvv.
• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an

XMM register or a 128-bit memory location specified by ModRM.r/m.
When the count value is positive, bits are rotated to the left (toward the more significant bit posi-
tions). The bits rotated out to the left of the most significant bit of an element are rotated back in at the
right end (least-significant bit) of the word element.
When the count value is negative, bits are rotated to the right (toward the least significant bit posi-
tions) of the element. The bits rotated to the right out of the least significant bit of an element are
rotated back in at the left end (most-significant bit) of the word element.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

VPROTW Packed Rotate
Words

Form Subset Feature Flag
VPROTW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTW xmm1, xmm2/mem128, xmm3 8F RXB.09 0.count.0.00 91 /r
VPROTW xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 91 /r
VPROTW xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 C1 /r ib

[AMD Public Use]

828 VPROTW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Related Instructions
VPROTB, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPSHAB 829

26568—Rev. 3.24—May 2020 AMD64 Technology

Shifts each signed byte of the source as specified by a count byte and writes the result to the corre-
sponding byte of the destination.
The count bytes are 8-bit signed two's-complement values in the corresponding bytes of the count
operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the byte.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). The most significant bit (sign bit) is replicated and shifted in at the left end (most-significant
bit) of the byte.
There are three operands: VPSHAB dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a128-bit memory location specified by ModRM.r/m.
• When XOP.W = 1, count is either an XMM register or a 128-bit memory location specified by

ModRM.r/m and src is an XMM register specified by XOP.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPSHAB Packed Shift Arithmetic
Bytes

Form Subset Feature Flag
VPSHAB XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHAB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.count.0.00 98 /r
VPSHAB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 98 /r

[AMD Public Use]

830 VPSHAB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPSHAD 831

26568—Rev. 3.24—May 2020 AMD64 Technology

Shifts each signed doubleword of the source operand as specified by a count byte and writes the result
to the corresponding doubleword of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding doubleword of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the doubleword.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). The most significant bit (sign bit) is replicated and shifted in at the left end (most-significant
bit) of the doubleword.
There are three operands: VPSHAD dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

ModRM.r/m and src is an XMM register specified by XOP.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB,
VPSHAW, VPSHAQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPSHAD Packed Shift Arithmetic
Doublewords

Form Subset Feature Flag
VPSHAD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHAD xmm1, xmm2/mem128, xmm3 8F RXB.09 0.count.0.00 9A /r
VPSHAD xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 9A /r

[AMD Public Use]

832 VPSHAD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPSHAQ 833

26568—Rev. 3.24—May 2020 AMD64 Technology

Shifts each signed quadword of the source as specified by a count byte and writes the result to the cor-
responding quadword of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding quadword element of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the quadword.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). The most significant bit is replicated and shifted in at the left end (most-significant bit) of the
quadword.
The shift amount is stored in two’s-complement form. The count is modulo 64.
There are three operands: VPSHAQ dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

ModRM.r/m and src is an XMM register specified by XOP.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB,
VPSHAW, VPSHAD

VPSHAQ Packed Shift Arithmetic
Quadwords

Form Subset Feature Flag
VPSHAQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHAQ xmm1, xmm2/mem128, xmm3 8F RXB.09 0.count.0.00 9B /r
VPSHAQ xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 9B /r

[AMD Public Use]

834 VPSHAQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPSHAW 835

26568—Rev. 3.24—May 2020 AMD64 Technology

Shifts each signed word of the source as specified by a count byte and writes the result to the corre-
sponding word of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding word of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the word.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). The most significant bit (signed bit) is replicated and shifted in at the left end (most-significant
bit) of the word.
The shift amount is stored in two’s-complement form. The count is modulo 16.
There are three operands: VPSHAW dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

ModRM.r/m and src is an XMM register specified by XOP.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB,
VPSHAD, VPSHAQ

rFLAGS Affected
None

VPSHAW Packed Shift Arithmetic
Words

Form Subset Feature Flag
VPSHAW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHAW xmm1, xmm2/mem128, xmm3 8F RXB.09 0.count.0.00 99 /r
VPSHAW xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 99 /r

[AMD Public Use]

836 VPSHAW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPSHLB 837

26568—Rev. 3.24—May 2020 AMD64 Technology

Shifts each packed byte of the source as specified by a count byte and writes the result to the corre-
sponding byte of the destination.
The count bytes are 8-bit signed two's-complement values located in the corresponding byte element
of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the byte.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). Zeros are shifted in at the left end (most-significant bit) of the byte.
There are three operands: VPSHLB dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

ModRM.r/m and src is an XMM register specified by XOP.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPSHLB Packed Shift Logical
Bytes

Form Subset Feature Flag
VPSHLB XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHLB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.count.0.00 94 /r
VPSHLB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 94 /r

[AMD Public Use]

838 VPSHLB Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPSHLD 839

26568—Rev. 3.24—May 2020 AMD64 Technology

Shifts each doubleword of the source operand as specified by a count byte and writes the result to the
corresponding doubleword of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding doubleword element of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the doubleword.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). Zeros are shifted in at the left end (most-significant bit) of the doubleword.
The shift amount is stored in two’s-complement form. The count is modulo 32.
There are three operands: VPSHLD dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

ModRM.r/m and src is an XMM register specified by XOP.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected
None

VPSHLD Packed Shift Logical
Doublewords

Form Subset Feature Flag
VPSHLD XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHLD xmm1, xmm3/mem128, xmm2 8F RXB.09 0.count.0.00 96 /r
VPSHLD xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 96 /r

[AMD Public Use]

840 VPSHLD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPSHLQ 841

26568—Rev. 3.24—May 2020 AMD64 Technology

Shifts each quadwords of the source by as specified by a count byte and writes the result in the corre-
sponding quadword of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding quadword element of the count operand.
Bit 6 of the count byte is ignored.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the quadword.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). Zeros are shifted in at the left end (most-significant bit) of the quadword.
There are three operands: VPSHLQ dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

ModRM.r/m and src is an XMM register specified by XOP.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected
None

VPSHLQ Packed Shift Logical
Quadwords

Form Subset Feature Flag
VPSHLQ XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHLQ xmm1, xmm3/mem128, xmm2 8F RXB.09 0.count.0.00 97 /r
VPSHLQ xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 97 /r

[AMD Public Use]

842 VPSHLQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPSHLW 843

26568—Rev. 3.24—May 2020 AMD64 Technology

Shifts each word of the source operand as specified by a count byte and writes the result to the corre-
sponding word of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding word element of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the word.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). Zeros are shifted in at the left end (most-significant bit) of the word.
There are three operands: VPSHLW dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.
• When XOP.W = 1, count is either an XMM register or a memory location specified by

ModRM.r/m and src is an XMM register specified by XOP.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VPROTB, VPROLW, VPROTD, VPROTQ, VPSHLB, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPSHLW Packed Shift Logical
Words

Form Subset Feature Flag
VPSHLW XOP CPUID Fn8000_0001_ECX[XOP] (bit 11)

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHLW xmm1, xmm3/mem128, xmm2 8F RXB.09 0.count.0.00 95 /r
VPSHLW xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 95 /r

[AMD Public Use]

844 VPSHLW Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

Instruction Reference VPSLLVD 845

26568—Rev. 3.24—May 2020 AMD64 Technology

Left-shifts the bits of each doubleword in the first source operand by a count specified in the corre-
sponding doubleword of a second source operand and writes the shifted values to the destination.
The second source operand is treated as an array of unsigned 32-bit integers. Each integer specifies
the shift count of the corresponding doubleword of the first source operand. Each doubleword is
shifted independently.
Low-order bits emptied by shifting are cleared. High-order bits shifted out of each doubleword are
discarded. When the shift count for any doubleword is greater than 31, that doubleword is cleared in
the destination.
This instruction has 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The shift count array is specified by either a second
XMM register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The shift count array is specified by either a second
YMM register or a 256-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLQ, (V)PSRLW, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPSLLVD Variable Shift Left Logical
Doublewords

Form Subset Feature Flag
VPSLLVD AVX2 CPUID Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSLLVD xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src1.0.01 47 /r
VPSLLVD ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src1.1.01 47 /r

[AMD Public Use]

846 VPSLLVD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPSLLVQ 847

26568—Rev. 3.24—May 2020 AMD64 Technology

Left-shifts the bits of each quadword in the first source operand by a count specified in the corre-
sponding quadword of a second source operand and writes the shifted values to the destination.
The second source operand is treated as an array of unsigned 64-bit integers. Each integer specifies
the shift count of the corresponding quadword of the first source operand. Each quadword is shifted
independently.
Low-order bits emptied by shifting are cleared. High-order bits shifted out of each quadword are dis-
carded. When the shift count for any quadword is greater than 63, that quadword is cleared in the des-
tination.
This instruction has 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The shift count array is specified by either a second
XMM register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The shift count array is specified by either a second
YMM register or a 256-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLQ, (V)PSRLW, VPSLLVD, VPSRAVD, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPSLLVQ Variable Shift Left Logical
Quadwords

Form Subset Feature Flag
VPSLLVQ AVX2 CPUID Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSLLVQ xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src1.0.01 47 /r
VPSLLVQ ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src1.1.01 47 /r

[AMD Public Use]

848 VPSLLVQ Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPSRAVD 849

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs a right arithmetic shift of each signed 32-bit integer in the first source operand by a count
specified in the corresponding doubleword of a second source operand and writes the shifted values
to the destination.
The second source operand is treated as an array of unsigned 32-bit integers. Each integer specifies
the shift count of the corresponding doubleword of the first source operand. Each doubleword is
shifted independently.
A copy of the sign bit is shifted into the most-significant bit of the element on each right-shift. Low-
order bits shifted out of each element are discarded. If a doubleword contains a positive integer and
the shift count is greater than 31, that doubleword is cleared in the destination. If a doubleword con-
tains a negative integer and the shift count is greater than 31, that doubleword is set to -1 in the desti-
nation.
This instruction has 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The shift count array is specified by either a second
XMM register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The shift count array is specified by either a second
YMM register or a 256-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRLVD, VPSRLVQ

rFLAGS Affected
None

VPSRAVD Variable Shift Right Arithmetic
Doublewords

Form Subset Feature Flag
VPSRAVD AVX2 CPUID Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSRAVD xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src1.0.01 46 /r
VPSRAVD ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src1.1.01 46 /r

[AMD Public Use]

850 VPSRAVD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPSRLVD 851

26568—Rev. 3.24—May 2020 AMD64 Technology

Right-shifts each doubleword in the first source operand by a count specified in the corresponding
doubleword of a second source operand and writes the shifted values to the destination.
The second source operand is treated as an array of unsigned 32-bit integers. Each integer specifies
the shift count of the corresponding doubleword of the first source operand. Each doubleword is
shifted independently.
Zero is shifted into the most-significant bit of the element on each right-shift. Low-order bits shifted
out of each element are discarded. If the shift count for any doubleword is greater than 31, that dou-
bleword is cleared in the destination.
This instruction has 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The shift count array is specified by either a second
XMM register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The shift count array is specified by either a second
YMM register or a 256-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVQ

rFLAGS Affected
None

MXCSR Flags Affected
None

VPSRLVD Variable Shift Right Logical
Doublewords

Form Subset Feature Flag
VPSRLVD AVX2 CPUID Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSRLVD xmm1, xmm2, xmm3/mem128 C4 RXB.02 0.src1.0.01 45 /r
VPSRLVD ymm1, ymm2, ymm3/mem256 C4 RXB.02 0.src1.1.01 45 /r

[AMD Public Use]

852 VPSRLVD Instruction Reference

AMD64 Technology 26568—Rev. 3.24—May 2020

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VPSRLVQ 853

26568—Rev. 3.24—May 2020 AMD64 Technology

Right-shifts each quadword in the first source operand by a count specified in the corresponding
quadword of a second source operand and writes the shifted values to the destination.
The second source operand is treated as an array of unsigned 64-bit integers. Each integer specifies
the shift count of the corresponding quadword of the first source operand. Each quadword is shifted
independently.
Zero is shifted into the most-significant bit of the element on each right-shift. Low-order bits shifted
out of each element are discarded. If the shift count for any quadword is greater than 63, that quad-
word is cleared in the destination.
This instruction has 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The shift count array is specified by either a second
XMM register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register. The shift count array is specified by either a second
YMM register or a 256-bit memory location. The destination is a YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLQ, (V)PSRLW, VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD

rFLAGS Affected
None

MXCSR Flags Affected
None

VPSRLVQ Variable Shift Right Logical
Quadwords

Form Subset Feature Flag
VPSRLVQ AVX2 CPUID Fn0000_00007_EBX[AVX2]_x0 (bit 5)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VPSRLVQ xmm1, xmm2, xmm3/mem128 C4 RXB.02 1.src1.0.01 45 /r
VPSRLVQ ymm1, ymm2, ymm3/mem256 C4 RXB.02 1.src1.1.01 45 /r

[AMD Public Use]

Instruction Reference VPSRLVQ 854

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

Instruction Reference VTESTPD 855

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs two different logical operations on the sign bits of the first and second packed floating-point
operands and updates the ZF and CF flags based on the results.
First, performs a bitwise AND of the sign bits of each double-precision floating-point element of the
first source operand with the sign bits of the corresponding elements of the second source operand.
Sets rFLAGS.ZF when all bit operations = 0; else, clears ZF.
Second, performs a bitwise AND of the complements (NOT) of the sign bits of each double-precision
floating-point element of the first source with the sign bits of the corresponding elements of the sec-
ond source operand. Sets rFLAGS.CF when all bit operations = 0; else, clears CF.
Neither source operand is modified.
This extended-form instruction has both 128-bit and 256-bit encoding.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
PTEST, VTESTPS

VTESTPD Packed Bit Test

Form Subset Feature Flag
VTESTPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VTESTPD xmm1, xmm2/mem128 C4 RXB.02 0.1111.0.01 0F /r
VTESTPD ymm1, ymm2/mem256 C4 RXB.02 0.1111.1.01 0F /r

[AMD Public Use]

Instruction Reference VTESTPD 856

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected
None

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3 and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank. Undefined

flags are U.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
X X AVX instructions are only recognized in protected mode.
X X X CR0.EM = 1.
X X X CR4.OSFXSR = 0.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X VEX.W = 1.
X VEX.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X X X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF X X Instruction execution caused a page fault.
X — AVX exception

[AMD Public Use]

Instruction Reference VTESTPS 857

26568—Rev. 3.24—May 2020 AMD64 Technology

Performs two different logical operations on the sign bits of the first and second packed floating-point
operands and updates the ZF and CF flags based on the results.
First, performs a bitwise AND of the sign bits of each single-precision floating-point element of the
first source operand with the sign bits of the corresponding elements of the second source operand.
Sets rFLAGS.ZF when all bit operations = 0; else, clears ZF.
Second, performs a bitwise AND of the complements (NOT) of the sign bits of each single-precision
floating-point element of the first source with the sign bits of the corresponding elements of the sec-
ond source operand. Sets rFLAGS.CF when all bit operations = 0; else, clears CF.
Neither source operand is modified.
This extended-form instruction has both 128-bit and 256-bit encoding.
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.
YMM Encoding
The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
PTEST, VTESTPD

VTESTPS Packed Bit Test

Form Subset Feature Flag
VTESTPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VTESTPS xmm1, xmm2/mem128 C4 RXB.02 0.1111.0.01 0E /r
VTESTPS ymm1, ymm2/mem256 C4 RXB.02 0.1111.1.01 0E /r

[AMD Public Use]

858

AMD64 Technology 26568—Rev. 3.24—May 2020

rFLAGS Affected

MXCSR Flags Affected
None

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF
0 M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3 and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank. Undefined

flags are U.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
X X AVX instructions are only recognized in protected mode.
X X X CR0.EM = 1.
X X X CR4.OSFXSR = 0.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X VEX.W = 1.
X VEX.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X X X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF X X Instruction execution caused a page fault.
X — AVX exception

[AMD Public Use]

859

26568—Rev. 3.24—May 2020 AMD64 Technology

Clears all YMM registers.
In 64-bit mode, YMM0–15 are all cleared (set to all zeros). In legacy and compatibility modes, only
YMM0–7 are cleared. The contents of the MXCSR is unaffected.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VZEROUPPER

rFLAGS Affected
None

MXCSR Flags Affected
None

VZEROALL Zero
All YMM Registers

Form Subset Feature Flag
VZEROALL AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VZEROALL C4 RXB.01 X.1111.1.00 77

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
A — AVX exception.

[AMD Public Use]

860

AMD64 Technology 26568—Rev. 3.24—May 2020

Clears the upper octword of all YMM registers. The corresponding XMM registers (lower octword of
each YMM register) are not affected.
In 64-bit mode, the instruction operates on registers YMM0–15. In legacy and compatibility mode,
the instruction operates on YMM0–7. The contents of the MXCSR is unaffected.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
VZEROUPPER

rFLAGS Affected
None

MXCSR Flags Affected
None

VZEROUPPER Zero
All YMM Registers Upper

Form Subset Feature Flag
VZEROUPPER AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VZEROUPPER C4 RXB.01 X.1111.0.00 77

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
A — AVX exception.

[AMD Public Use]

861

26568—Rev. 3.24—May 2020 AMD64 Technology

Copies the content of the extended control register (XCR) specified by the ECX register into the
EDX:EAX register pair. The high-order 32 bits of the XCR are loaded into EDX and the low-order 32
bits are loaded into EAX. The corresponding high-order 32 bits of RAX and RDX are cleared.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality. See the XSAVE instruction descrip-
tion for more information.
Values returned to EDX:EAX in unimplemented bit locations are undefined.
Specifying a reserved or unimplemented XCR in ECX causes a general protection exception.
Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. If CPUID reports
support for ECX=1 (see table below), then the XGETBV instruction supports an ECX value of 1.
When ECX=1, XGETBV returns the logical and of XCR0 and the current value of the XINUSE state-
component bitmap.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
RDMSR, XSETBV

rFLAGS Affected
None

MXCSR Flags Affected
None

XGETBV Get Extended Control Register Value

Form Subset Feature Flag
XGETBV XSAVE/XRSTOR CPUID Fn0000_0001_ECX[XSAVE] (bit 26)
XGETBV ECX=1 support CPUID Fn0000_000D_EAX_x1[2] = 1

Mnemonic Opcode Description

XGETBV 0F 01 D0 Copies content of the XCR specified by ECX into
EDX:EAX.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X Lock prefix (F0h) preceding opcode.
X X X CR4.OSXSAVE = 0

General protection, #GP X X X ECX specifies a reserved or unimplemented XCR address.
X — exception generated

[AMD Public Use]

862

AMD64 Technology 26568—Rev. 3.24—May 2020

Performs bitwise XOR of two packed double-precision floating-point values in the first source oper-
and with the corresponding values of the second source operand and writes the results into the corre-
sponding elements of the destination.

There are legacy and extended forms of the instruction:
XORPD
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VXORPD
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPS

XORPD
VXORPD

XOR
Packed Double-Precision Floating-Point

Form Subset Feature Flag
XORPD SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VXORPD AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
XORPD xmm1, xmm2/mem128 66 0F 57 /r Performs bitwise XOR of two packed double-precision

floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VXORPD xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.01 57 /r
VXORPD ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.01 57 /r

[AMD Public Use]

863

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

864

AMD64 Technology 26568—Rev. 3.24—May 2020

Performs bitwise XOR of four packed single-precision floating-point values in the first source oper-
and with the corresponding values of the second source operand and writes the results into the corre-
sponding elements of the destination.

There are legacy and extended forms of the instruction:
XORPS
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.
VXORPS
The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD

XORPS
VXORPS

XOR
Packed Single-Precision Floating-Point

Form Subset Feature Flag
XORPS SSE2 CPUID Fn0000_0001_EDX[SSE2] (bit 26)

VXORPS AVX CPUID Fn0000_0001_ECX[AVX] (bit 28)

Mnemonic Opcode Description
XORPS xmm1, xmm2/mem128 66 0F 57 /r Performs bitwise XOR of four packed single-precision

floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VXORPS xmm1, xmm2, xmm3/mem128 C4 RXB.01 X.src1.0.00 57 /r
VXORPS ymm1, ymm2, ymm3/mem256 C4 RXB.01 X.src1.1.00 57 /r

[AMD Public Use]

865

26568—Rev. 3.24—May 2020 AMD64 Technology

rFLAGS Affected
None

MXCSR Flags Affected
None

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

866

AMD64 Technology 26568—Rev. 3.24—May 2020

Restores a partial or full processor state from memory.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality. See the descriptions of XSAVE and
XRSTOR instructions for basic operational details.
The XRSTOR instruction may operate on the buffer in standard form or a compact form. The com-
pact form is indicated in the memory buffer with XCOMP_BV[63]=1.
In either form, the instruction creates a Requested Feature Bit Map (RBFM) which is the logical AND
of EDX:EAX and XCR0. Then for each feature bit:
1. If RFBM = 0, XRSTOR does not update the component.
2. If RFBM = 1 but the corresponding XSTATE_BV bit is 0, the component is set to its reset state

without reading anything out of the buffer.
3. IF RFBM =1 and XSTATE_BV =1, the component state is read from the buffer.
4. XRSTOR loads an internal state value XRSTOR_INFO that can be used to further optimize a sub-

sequent XSAVEOPT or XSAVES. This reflects the current privilege level and virtualization mode
as well as the save area's base address and XCOMP_BV field.

5. If RFBM=1, the corresponding XINUSE bit is set to the state of XSTATE_BV.
For standard mode, MXCSR is loaded if RFBM[1]=1 or RFBM[2]=1. It is never initialized.
For compact mode, MXCSR is associated with RFBM[1].
In some generations, the FP error pointers were only restored if there was a Floating point error
logged. In newer generations, the FP error pointers are always restored. This is indicated by CPUID
Fn8000_0008_EBX[2].

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
XGETBV, XRSTORS, XSAVE, XSAVEC, XSAVES, XSETBV

rFLAGS Affected
None

MXCSR Flags Affected
None

XRSTOR Restore Extended States

Form Subset Feature Flag
XRSTOR XRSTOR CPUID Fn0000_00001_ECX[XSAVE] (bit 26)

Mnemonic Opcode Description

XRSTOR mem 0F AE /5 Restores user-specified processor state from memory.

[AMD Public Use]

867

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSXSAVE = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Any must be zero (MBZ) bits in the save area were set.
X X X Attempt to set reserved bits in MXCSR.
X X X XCOMP_BV[i] = 0 & XSTATE_BV[i] = 1
X X X XCOMP_BV[I] = 1 & XCR0[i] = 0
X X X Bytes 63:16 of header are non-zero

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

[AMD Public Use]

868

AMD64 Technology 26568—Rev. 3.24—May 2020

Restores processor state from memory.

XRSTORS is very similar to the XRSTOR instruction in compacted form with the following
differences:
1. XRSTORS must be executed at CPL=0
2. XRSTORS must read XCOMP_BV[63]=1, otherwise it will cause a #GP(0) exception
3. XRSTORS is able to restore state enabled from the IA32_XSS MSR.

All other behavior is the same as XRSTOR with the compact form.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see
Appendix E of Volume 3.

Instruction Encoding

Related Instructions
XGETBV, XRSTOR, XSAVE, XSAVEC, XSAVES, XSETBV

rFLAGS Affected
None

MXCSR Flags Affected
None

XRSTORS Restore extended states supervisor

Form Subset Feature Flag
XRSTOR XRSTOR CPUID Fn0000_00001_ECX_X1[XSAVES] (bit 3)

Mnemonic Opcode Description

XRSTOR mem 0F C7 /3 Saves user-specified processor state to memory

[AMD Public Use]

869

26568—Rev. 3.24—May 2020 AMD64 Technology

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSXSAVE = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Any must be zero (MBZ) bits in the save area were set.
X X X Attempt to set reserved bits in MXCSR.
X X X CPL <> 0
X X X (XSTATE_BV[i] & ~IA321_XSS[i]) = 1

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

[AMD Public Use]

870

AMD64 Technology 26568—Rev. 3.24—May 2020

Saves a user-defined subset of enabled processor state data to a specified memory address.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality.
The XSAVE/XRSTOR save area consists of a header section, and individual save areas for each pro-
cessor state component. A component is saved when both the corresponding bits in the mask operand
(EDX:EAX) and the XFEATURE_ENABLED_MASK (XCR0) register are set. This bit-wise logical
AND of EDX:EAX and XCR0 is known as the Requested Feature Bit Map (RFBM). A component is
not saved when its corresponding RFBM bit is zero.
Software can set any bit in EDX:EAX, regardless of whether the bit position in XCR0 is valid for the
processor. When the mask operand contains all 1's, all processor state components enabled in XCR0
are saved.
For each component saved, XSAVE sets the corresponding bit in the XSTATE_BV field of the save
area header. XSAVE does not clear XSTATE_BV bits or modify individual save areas for components
that are not saved. If a saved component is in the hardware-specified initialized state, XSAVE may
clear the corresponding XSTATE_BV bit instead of setting it. This optimization is implementation-
dependent.
The MXCSR register is saved if either of RFBM bits 0 or 1 are set to 1. If there is no floating point
error present, some generations would not write out any of the FP error pointers. On newer genera-
tions, these fields are written to zeros. This is indicated by CPUID Fn8000_0008_EBX[2].

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
XGETBV, XRSTOR, XSAVEOPT, XSETBV

rFLAGS Affected
None

MXCSR Flags Affected
None

XSAVE Save Extended States

Form Subset Feature Flag
XSAVE XSAVE/XRSTOR CPUID Fn0000_0001_ECX[XSAVE] (bit 26)

Mnemonic Opcode Description

XSAVE mem 0F AE /4 Saves user-specified processor state to memory.

[AMD Public Use]

871

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSXSAVE = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Attempt to write read-only memory.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

[AMD Public Use]

872

AMD64 Technology 26568—Rev. 3.24—May 2020

Saves a user-defined subset of enabled processor state data to a specified memory address, possibly in
a compacted form.

This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used to
manage processor states and provides compaction functionality for more efficient context switching.
See the XSAVE and XRSTOR instruction descriptions for basic operational details..

XSAVEC is very similar to XSAVE but provides the following alternate functionality:
1. XSAVEC differs from XSAVE by using the init optimization and compaction.
2. XSAVEC differs by only saving a component if its RFBM=1 and its XINUSE=1. XINUSE is a

means by which the processor determines whether the feature is in its Initial state.
3. XSAVEC never writes bytes 511:464 of the legacy XSAVE data structure.
4. XSAVEC calculates XSTATE_BV by performing the logical AND of the RFBM and XINUSE

bitmaps and writes it to the XSAVE area.
5. XSAVEC calculates XCOMP_BV as [63]=1 and 62:0 = RFBM, and writes it to the XSAVE area.
6. XSAVEC does not modify any other parts of the header except as indicated in 4 and 5.
7. XSAVEC uses the compacted format of the XSAVE extended region while saving state.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see
Appendix E of Volume 3.

Instruction Encoding

Related Instructions
XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVES, XSETBV

rFLAGS Affected
None

MXCSR Flags Affected
None

XSAVEC Save extended states in compacted form

Form Subset Feature Flag
XSAVE mem XSAVEC CPUID Fn0000_0000D_EAX_x1[XSAVEC] (bit 1)

Mnemonic Opcode Description

XSAVEOPT mem 0F C7 /4 Saves user-specified processor state to memory.

[AMD Public Use]

873

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSXSAVE = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Attempt to write read-only memory.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

[AMD Public Use]

874

AMD64 Technology 26568—Rev. 3.24—May 2020

Saves a user-defined subset of enabled processor state data to a specified memory address.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality. See the XSAVE and XRSTOR
instruction descriptions for basic operational details.
The XSAVE/XRSTOR save area consists of a header section, and individual save areas for each pro-
cessor state component. A component is saved when both the corresponding bits in the mask operand
(EDX:EAX) and the XFEATURE_ENABLED_MASK (XCR0) register are set. A component is not
saved when either of the corresponding bits in EDX:EAX or XCR0 is cleared.
Software can set any bit in EDX:EAX, regardless of whether the bit position in XCR0 is valid for the
processor. When the mask operand contains all 1's, all processor state components enabled in XCR0
are saved.
For each component saved, XSAVEOPT sets the corresponding bit in the XSTATE_BV field of the
save area header. XSAVEOPT does not clear XSTATE_BV bits or modify individual save areas for
components that are not saved. If a saved component is in the hardware-specified initialized state,
XSAVEOPT may clear the corresponding XSTATE_BV bit instead of setting it. This optimization is
implementation-dependent.
XSAVEOPT may provide other implementation-specific optimizations, such as the modified optimi-
zation described for XSAVES.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
XGETBV, XRSTOR, XSAVE, XSETBV

rFLAGS Affected
None

MXCSR Flags Affected
None

XSAVEOPT Save Extended States
Performance Optimized

Form Subset Feature Flag
XSAVEOPT XSAVEOPT CPUID Fn0000_0000D_EAX_x1[XSAVEOPT] (bit 0)

Mnemonic Opcode Description

XSAVEOPT mem 0F AE /6 Saves user-specified processor state to memory.

[AMD Public Use]

875

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSXSAVE = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Attempt to write read-only memory.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

[AMD Public Use]

876

AMD64 Technology 26568—Rev. 3.24—May 2020

Saves a user-defined subset of enabled processor state data to a specified memory address, possibly in
a compacted form.

This instruction and associated data structures extend the XSAVE/XRSTOR memory image used to
manage processor states and provides compaction functionality. See the XSAVE and XRSTOR
instruction descriptions for basic operational details.

The XSAVES is very similar to XSAVEC but provides the following alternate functionality:
1. XSAVES must be executed at CPL=0
2. XSAVES can save state enabled in the IA32_XSS MSR. The specific state elements saved are

determined by the logical AND of EDX:EAX with the logical OR of XCR0 with the IA32_XSS
MSR.

3. XSAVES can use the modified optimization to not save components, even if RFBM=1 and
XINUSE=1 for the stated component. If the component state has not been modified internally
since the last execution of XRSTOR or XRSTORS and the XRSTOR_INFO state (an execution
environment signature created by the last XRSTOR) matches the current execution state of this
XSAVES, the state save can be skipped.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSETBV

rFLAGS Affected
None

MXCSR Flags Affected
None

XSAVES Save Extended States Supervisor

Form Subset Feature Flag
XSAVES XSAVES CPUID Fn0000_0000D_EAX_x1[XSAVES] (bit 3)

Mnemonic Opcode Description

XSAVES mem 0F C7 /5 Saves user-specified processor state to memory

[AMD Public Use]

877

26568—Rev. 3.24—May 2020 AMD64 Technology

Exceptions
Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSXSAVE = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Attempt to write read-only memory.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

[AMD Public Use]

878

AMD64 Technology 26568—Rev. 3.24—May 2020

Writes the content of the EDX:EAX register pair into the extended control register (XCR) specified
by the ECX register. The high-order 32 bits of the XCR are loaded from EDX and the low-order 32
bits are loaded from EAX. The corresponding high-order 32 bits of RAX and RDX are ignored.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality. See the XSAVE instruction descrip-
tion for more information.
Currently, only the XFEATURE_ENABLED_MASK register (XCR0) is supported. Specifying a
reserved or unimplemented XCR in ECX causes a general protection exception (#GP).
Executing XSETBV at a privilege level other than 0 causes a general-protection exception. A general
protection exception also occurs when software attempts to write to reserved bits of an XCR.

Instruction Support

For more on using the CPUID instruction to obtain processor feature support information, see Appen-
dix E of Volume 3.

Instruction Encoding

Related Instructions
XGETBV, XRSTOR, XSAVE, XSAVEOPT

rFLAGS Affected
None

MXCSR Flags Affected
None

XSETBV Set Extended Control Register Value

Form Subset Feature Flag
XSETBV XSAVE/XRSTOR CPUID Fn0000_0001_ECX[XSAVE] (bit 26)

Mnemonic Opcode Description

XSETBV 0F 01 D1 Writes the content of the EDX:EAX register pair to
the XCR specified by the ECX register.

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X Instruction not supported, as indicated by CPUID feature identifier.
X X CR4.OSXSAVE = 0.
X X Lock prefix (F0h) preceding opcode.

General protection, #GP

X X CPL != 0.
X X ECX specifies a reserved or unimplemented XCR address.
X X Any must be zero (MBZ) bits in the XCR were set.
X X Setting XCR0[2:1] to 10b.
X X Writing 0 to XCR[0].

X — exception generated

[AMD Public Use]

879

26568—Rev. 3.24—May 2020 AMD64 Technology

[AMD Public Use]

880

AMD64 Technology 26568—Rev. 3.24—May 2020

[AMD Public Use]

879

26568—Rev. 3.24—May 2020 AMD64 Technology

3 Exception Summary
This chapter provides a ready reference to instruction exceptions. Table 3-1 shows instructions
grouped by exception class, with the extended and legacy instruction type (if applicable).

Hyperlinks in the table point to the exception tables which follow.

Table 3-1. Instructions By Exception Class
Mnemonic Extended Type Legacy Type

Class 1 — AVX / SSE Vector Aligned (VEX.vvvv != 1111)
MOVAPD VMOVAPD AVX SSE2
MOVAPS VMOVAPS AVX SSE
MOVDQA VMOVDQA AVX SSE2
MOVNTDQ VMOVNTDQ AVX SSE2
MOVNTPD VMOVNTPD AVX SSE2
MOVNTPS VMOVNTPS AVX SSE
Class 1X — SSE / AXV / AVX2 Vector (VEX.vvvv != 1111b or VEX.L=1 && !AVX2)
MOVNTDQA VMOVNTDQA AVX, AVX2 SSE4.1
Class 2 — AVX / SSE Vector (SIMD 111111)
DIVPD VDIVPD AVX SSE2
DIVPS VDIVPS AVX SSE
Class 2-1 — AVX / SSE Vector (SIMD 111011)
ADDPD VADDPD AVX SSE2
ADDPS VADDPS AVX SSE
ADDSUBPD VADDSUBPD AVX SSE2
ADDSUBPS VADDSUBPS AVX SSE
DPPS VDPPS AVX SSE4.1
HADDPD VHADDPD AVX SSE3
HADDPS VHADDPS AVX SSE3
HSUBPD VHSUBPD AVX SSE3
HSUBPS VHSUBPS AVX SSE3
SUBPD VSUBPD AVX SSE2
SUBPS VSUBPS AVX SSE
Class 2-2 — AVX / SSE Vector (SIMD 000011)
CMPPD VCMPPD AVX SSE2
CMPPS VCMPPS AVX SSE
MAXPD VMAXPD AVX SSE2
MAXPS VMAXPS AVX SSE
MINPD VMINPD AVX SSE2
MINPS VMINPS AVX SSE
MULPD VMULPD AVX SSE2
MULPS VMULPS AVX SSE
Class 2-3 — AVX / SSE Vector (SIMD 100001)
(unused) — —

[AMD Public Use]

880

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 2A — AVX / SSE Vector (SIMD 111111, VEX.L = 1)
(unused) — —
Class 2A-1 — AVX / SSE Vector (SIMD 111011, VEX.L = 1)
DPPD VDPPD AVX SSE4.1
Class 2B — AVX / SSE Vector (SIMD 111111, VEX.vvvv != 1111b)
(unused) — —
Class 2B-1 — AVX / SSE Vector (SIMD 100000, VEX.vvvv != 1111b)
CVTDQ2PS VCVTDQ2PS AVX SSE2
Class 2B-2 — AVX / SSE Vector (SIMD 100001, VEX.vvvv != 1111b)
CVTPD2DQ VCVTPD2DQ AVX SSE2
CVTPS2DQ VCVTPS2DQ AVX SSE2
CVTTPS2DQ VCVTTPS2DQ AVX SSE2
CVTTPD2DQ VCVTTPD2DQ AVX SSE2
ROUNDPD, VROUNDPD AVX SSE4.1
ROUNDPS, VROUNDPS AVX SSE4.1
Class 2B-3 — AVX / SSE Vector (SIMD 111011, VEX.vvvv != 1111b)
CVTPD2PS VCVTPD2PS AVX SSE2
Class 2B-4 — AVX / SSE Vector (SIMD 100011, VEX.vvvv != 1111b)
SQRTPD VSQRTPD AVX SSE2
SQRTPS VSQRTPS AVX SSE
Class 3 — AVX / SSE Scalar (SIMD 111111)
DIVSD VDIVSD AVX SSE2
DIVSS VDIVSS AVX SSE
Class 3-1 — AVX / SSE Scalar (SIMD 111011)
ADDSD VADDSD AVX SSE2
ADDSS VADDSS AVX SSE
CVTSD2SS VCVTSD2SS AVX SSE2
SUBSD VSUBSD AVX SSE2
SUBSS VSUBSS AVX SSE
Class 3-2 — AVX / SSE Scalar (SIMD 000011)
CMPSD VCMPSD AVX SSE2
CMPSS VCMPSS AVX SSE
CVTSS2SD VCVTSS2SD AVX SSE2
MAXSD VMAXSD AVX SSE2
MAXSS VMAXSS AVX SSE
MINSD VMINSD AVX SSE2
MINSS VMINSS AVX SSE
MULSD VMULSD AVX SSE2
MULSS VMULSS AVX SSE
UCOMISD VUCOMISD AVX SSE2
UCOMISS VUCOMISS AVX SSE

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

881

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 3-3 — AVX / SSE Scalar (SIMD 100000)
CVTSI2SD VCVTSI2SD AVX SSE2
CVTSI2SS VCVTSI2SS AVX SSE
Class 3-4 — AVX / SSE Scalar (SIMD 100001)
ROUNDSD, VROUNDSD AVX SSE4.1
ROUNDSS, VROUNDSS AVX SSE4.1
Class 3-5 — AVX / SSE Scalar (SIMD 100011)
SQRTSD VSQRTSD AVX SSE2
SQRTSS VSQRTSS AVX SSE
Class 3A — AVX / SSE Scalar (SIMD 111111, VEX.vvvv != 1111b)
(unused) — —
Class 3A-1 — AVX / SSE Scalar (SIMD 000011, VEX.vvvv != 1111b)
COMISD VCOMISD AVX SSE2
COMISS VCOMISS AVX SSE
CVTPS2PD VCVTPS2PD AVX SSE2
Class 3A-2 — AVX / SSE Scalar (SIMD 100001, VEX.vvvv != 1111b)
CVTSD2SI VCVTSD2SI AVX SSE2
CVTSS2SI VCVTSS2SI AVX SSE
CVTTSD2SI VCVTTSD2SI AVX SSE2
CVTTSS2SI VCVTTSS2SI AVX SSE
Class 4 — AVX / SSE Vector
AESDEC VAESDEC AVX AES
AESDECLAST VAESDECLAST AVX AES
AESENC VAESENC AVX AES
AESENCLAST VAESENCLAST AVX AES
AESIMC VAESIMC AVX AES
AESKEYGENASSIST VAESKEYGENASSIST AVX AES
ANDNPD VANDNPD AVX SSE2
ANDNPS VANDNPS AVX SSE
ANDPD VANDPD AVX SSE2
ANDPS VANDPS AVX SSE
BLENDPD VBLENDPD AVX SSE4.1
BLENDPS VBLENDPS AVX SSE4.1
ORPD VORPD AVX SSE2
ORPS VORPS AVX SSE
PCLMULQDQ VPCLMULQDQ AVX CLMUL
SHUFPD VSHUFPD AVX SSE2
SHUFPS VSHUFPS AVX SSE2
UNPCKHPD VUNPCKHPD AVX SSE2
UNPCKHPS VUNPCKHPS AVX SSE
UNPCKLPD VUNPCKLPD AVX SSE2
UNPCKLPS VUNPCKLPS AVX SSE

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

882

AMD64 Technology 26568—Rev. 3.24—May 2020

XORPD VXORPD AVX SSE2
XORPS VXORPS AVX SSE
Class 4A — AVX / SSE Vector (VEX.W = 1)
BLENDVPD VBLENDVPD AVX SSE4.1
BLENDVPS VBLENDVPS AVX SSE4.1
Class 4B — AVX / SSE Vector (VEX.L = 1)
(unused) — —
Class 4B-X — SSE / AVX / AVX2 (VEX.L = 1 && !AVX2)
MPSADBW VMPSADBW AVX, AVX2 SSE4.1
PACKSSDW VPACKSSDW AVX, AVX2 SSE2
PACKSSWB VPACKSSWB AVX, AVX2 SSE2
PACKUSDW VPACKUSDW AVX, AVX2 SSE4.1
PACKUSWB VPACKUSWB AVX, AVX2 SSE2
PADDB VPADDB AVX, AVX2 SSE2
PADDD VPADDD AVX, AVX2 SSE2
PADDQ VPADDQ AVX, AVX2 SSE2
PADDSB VPADDSB AVX, AVX2 SSE2
PADDSW VPADDSW AVX, AVX2 SSE2
PADDUSB VPADDUSB AVX, AVX2 SSE2
PADDUSW VPADDUSW AVX, AVX2 SSE2
PADDW VPADDW AVX, AVX2 SSE2
PALIGNR VPALIGNR AVX, AVX2 SSSE3
PAND VPAND AVX, AVX2 SSE2
PANDN VPANDN AVX, AVX2 SSE2
PAVGB VPAVGB AVX, AVX2 SSE
PAVGW VPAVGW AVX, AVX2 SSE
PBLENDW VPBLENDW AVX, AVX2 SSE4.1
PCMPEQB VPCMPEQB AVX, AVX2 SSE2
PCMPEQD VPCMPEQD AVX, AVX2 SSE2
PCMPEQQ VPCMPEQQ AVX, AVX2 SSE4.1
PCMPEQW VPCMPEQW AVX, AVX2 SSE2
PCMPGTB VPCMPGTB AVX, AVX2 SSE2
PCMPGTD VPCMPGTD AVX, AVX2 SSE2
PCMPGTQ VPCMPGTQ AVX, AVX2 SSE4.2
PCMPGTW VPCMPGTW AVX, AVX2 SSE2
PHADDD VPHADDD AVX, AVX2 SSSE3
PHADDSW VPHADDSW AVX, AVX2 SSSE3
PHADDW VPHADDW AVX, AVX2 SSSE3
PHSUBD VPHSUBD AVX, AVX2 SSSE3
PHSUBW VPHSUBW AVX, AVX2 SSSE3
PHSUBSW VPHSUBSW AVX, AVX2 SSSE3
PMADDUBSW VPMADDUBSW AVX, AVX2 SSSE3

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

883

26568—Rev. 3.24—May 2020 AMD64 Technology

PMADDWD VPMADDWD AVX, AVX2 SSE2
PMAXSB VPMAXSB AVX, AVX2 SSE4.1
PMAXSD VPMAXSD AVX, AVX2 SSE4.1
PMAXSW VPMAXSW AVX, AVX2 SSE
PMAXUB VPMAXUB AVX, AVX2 SSE
PMAXUD VPMAXUD AVX, AVX2 SSE4.1
PMAXUW VPMAXUW AVX, AVX2 SSE4.1
PMINSB VPMINSB AVX, AVX2 SSE4.1
PMINSD VPMINSD AVX, AVX2 SSE4.1
PMINSW VPMINSW AVX, AVX2 SSE
PMINUB VPMINUB AVX, AVX2 SSE
PMINUD VPMINUD AVX, AVX2 SSE4.1
PMINUW VPMINUW AVX, AVX2 SSE4.1
PMULDQ VPMULDQ AVX, AVX2 SSE4.1
PMULHRSW VPMULHRSW AVX, AVX2 SSSE3
PMULHUW VPMULHUW AVX, AVX2 SSE2
PMULHW VPMULHW AVX, AVX2 SSE2
PMULLD VPMULLD AVX, AVX2 SSE4.1
PMULLW VPMULLW AVX, AVX2 SSE2
PMULUDQ VPMULUDQ AVX, AVX2 SSE2
POR VPOR AVX, AVX2 SSE2
PSADBW VPSADBW AVX, AVX2 SSE
PSHUFB VPSHUFB AVX, AVX2 SSSE3
PSIGNB VPSIGNB AVX, AVX2 SSSE3
PSIGND VPSIGND AVX, AVX2 SSSE3
PSIGNW VPSIGNW AVX, AVX2 SSSE3
PSUBB VPSUBB AVX, AVX2 SSE2
PSUBD VPSUBD AVX, AVX2 SSE2
PSUBQ VPSUBQ AVX, AVX2 SSE2
PSUBSB VPSUBSB AVX, AVX2 SSE2
PSUBSW VPSUBSW AVX, AVX2 SSE2
PSUBUSB VPSUBUSB AVX, AVX2 SSE2
PSUBUSW VPSUBUSW AVX, AVX2 SSE2
PSUBW VPSUBW AVX, AVX2 SSE2
PUNPCKHBW VPUNPCKHBW AVX, AVX2 SSE2
PUNPCKHDQ VPUNPCKHDQ AVX, AVX2 SSE2
PUNPCKHQDQ VPUNPCKHQDQ AVX, AVX2 SSE2
PUNPCKHWD VPUNPCKHWD AVX, AVX2 SSE2
PUNPCKLBW VPUNPCKLBW AVX, AVX2 SSE2
PUNPCKLDQ VPUNPCKLDQ AVX, AVX2 SSE2
PUNPCKLQDQ VPUNPCKLQDQ AVX, AVX2 SSE2
PUNPCKLWD VPUNPCKLWD AVX, AVX2 SSE2

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

884

AMD64 Technology 26568—Rev. 3.24—May 2020

PXOR VPXOR AVX, AVX2 SSE2
Class 4C — AVX / SSE Vector (VEX.vvvv != 1111b)
MOVSHDUP VMOVSHDUP AVX SSE3
MOVSLDUP VMOVSLDUP AVX SSE3
PTEST VPTEST AVX SSE4.1
RCPPS VRCPPS AVX SSE
RSQRTPS VRSQRTPS AVX SSE
Class 4C-1 — AVX / SSE Vector (write to RO memory, VEX.vvvv != 1111b)
LDDQU VLDDQU AVX SSE3
MOVDQU VMOVDQU AVX SSE2
MOVUPD VMOVUPD AVX SSE2
MOVUPS VMOVUPS AVX SSE
Class 4D — AVX / SSE Vector (VEX.vvvv != 1111b, VEX.L = 1)
MASKMOVDQU VMASKMOVDQU AVX SSE2
PCMPESTRI VPCMPESTRI AVX SSE4.2
PCMPESTRM VPCMPESTRM AVX SSE4.2
PCMPISTRI VPCMPISTRI AVX SSE4.2
PCMPISTRM VPCMPISTRM AVX SSE4.2
PHMINPOSUW VPHMINPOSUW AVX SSE4.1
Class 4D-X — SSE / AVX / AVX2 Vector (VEX.vvvv != 1111b, (VEX.L = 1 && !AVX2))
PABSB VPABSB AVX, AVX2 SSSE3
PABSD VPABSD AVX, AVX2 SSSE3
PABSW VPABSW AVX, AVX2 SSSE3
PSHUFD VPSHUFD AVX, AVX2 SSE2
PSHUFHW VPSHUFHW AVX, AVX2 SSE2
PSHUFLW VPSHUFLW AVX, AVX2 SSE2
Class 4E — AVX / SSE Vector (VEX.W = 1, VEX.L = 1)
(unused) — —
Class 4E-X — SSE / AVX / AVX2 Vector (VEX.W = 1, (VEX.L = 1 && !AVX2))
PBLENDVB VPBLENDVB AVX SSE4.1
Class 4F — AVX / SSE (VEX.L = 1)
(unused) — —
Class 4F-X — SSE / AVX / AVX2 Vector (VEX.L = 1 && !AVX2)
PSLLD VPSLLD AVX, AVX2 SSE2
PSLLQ VPSLLQ AVX, AVX2 SSE2
PSLLW VPSLLW AVX, AVX2 SSE2
PSRAD VPSRAD AVX, AVX2 SSE2
PSRAW VPSRAW AVX, AVX2 SSE2
PSRLD VPSRLD AVX, AVX2 SSE2
PSRLQ VPSRLQ AVX, AVX2 SSE2
PSRLW VPSRLW AVX, AVX2 SSE2
Class 4G — AVX Vector (VEX.W = 1, VEX.vvvv != 1111b)

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

885

26568—Rev. 3.24—May 2020 AMD64 Technology

VTESTPD AVX —
VTESTPS AVX —
Class 4H — AVX, 256-bit only (VEX.L = 0; No SIMD Exceptions)
VPERMD AVX2 —
VPERMPS AVX2 —
Class 4H-1 — AVX2, 256-bit only (VEX.L = 0, VEX.vvvv != 1111b)
VPERMPD AVX2 —
VPERMQ AVX2 —
Class 4J — AVX2 (VEX.W = 1)
VPBLENDD AVX2 —
VPSRAVD AVX2 —
Class 4K — AVX2
VPMASKMOVD AVX2 —
VPMASKMOVQ AVX2 —
VPSLLVD AVX2 —
VPSLLVQ AVX2 —
VPSRLVD AVX2 —
VPSRLVQ AVX2 —
Class 5 — AVX / SSE Scalar
RCPSS VRCPSS AVX SSE
RSQRTSS VRSQRTSS AVX SSE
Class 5A — AVX / SSE Scalar (VEX.L = 1)
INSERTPS VINSERTPS AVX SSE4.1
Class 5B — AVX / SSE Scalar (VEX.vvvv != 1111b)
CVTDQ2PD VCVTDQ2PD AVX SSE2
MOVDDUP VMOVDDUP AVX SSE3
Class 5C — AVX /SSE Scalar (VEX.vvvv != 1111b, VEX.L = 1)
PINSRB VPINSRB AVX SSE4.1
PINSRD VPINSRD AVX SSE4.1
PINSRQ VPINSRQ AVX SSE4.1
PINSRW VPINSRW AVX SSE
Class 5C-X — SSE / AVX / AVX2 Scalar (VEX.vvvv != 1111b, (VEX.L = 1 && !AVX2))
PMOVSXBD VPMOVSXBD AVX, AVX2 SSE4.1
PMOVSXBQ VPMOVSXBQ AVX, AVX2 SSE4.1
PMOVSXBW VPMOVSXBW AVX, AVX2 SSE4.1
PMOVSXDQ VPMOVSXDQ AVX, AVX2 SSE4.1
PMOVSXWD VPMOVSXWD AVX, AVX2 SSE4.1
PMOVSXWQ VPMOVSXWQ AVX, AVX2 SSE4.1
PMOVZXBD VPMOVZXBD AVX, AVX2 SSE4.1
PMOVZXBQ VPMOVZXBQ AVX, AVX2 SSE4.1
PMOVZXBW VPMOVZXBW AVX, AVX2 SSE4.1
PMOVZXDQ VPMOVZXDQ AVX, AVX2 SSE4.1

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

886

AMD64 Technology 26568—Rev. 3.24—May 2020

PMOVZXWD VPMOVZXWD AVX, AVX2 SSE4.1
PMOVZXWQ VPMOVZXWQ AVX, AVX2 SSE4.1
Class 5C-1 — AVX / SSE Scalar (write to RO memory, VEX.vvvv != 1111b, VEX.L = 1)
EXTRACTPS VEXTRACTPS AVX SSE4.1
MOVD VMOVD AVX SSE2
MOVQ VMOVQ AVX SSE2
PEXTRB VPEXTRB AVX SSE4.1
PEXTRD VPEXTRD AVX SSE4.1
PEXTRQ VPEXTRQ AVX SSE4.1
PEXTRW VPEXTRW AVX SSE4.1
Class 5D — AVX / SSE Scalar (write to RO memory, VEX.vvvv != 1111b (variant))
MOVSD VMOVSD AVX SSE2
MOVSS VMOVSS AVX SSE
Class 5E — AVX / SSE Scalar (write to RO, VEX.vvvv != 1111b (variant), VEX.L = 1)
MOVHPD VMOVHPD AVX SSE2
MOVHPS VMOVHPS AVX SSE
MOVLPD VMOVLPD AVX SSE2
MOVLPS VMOVLPS AVX SSE
Class 6 — AVX Mixed Memory Argument
(unused) — —
Class 6A — AVX Mixed Memory Argument (VEX.W = 1)
(unused) — —
Class 6A-1 — AVX Mixed Memory Argument (write to RO memory, VEX.W = 1)
VMASKMOVPD AVX —
VMASKMOVPS AVX —
Class 6B — AVX Mixed Memory Argument (VEX.W = 1, VEX.L = 0)
VINSERTF128 AVX —
VINSERTI128 AVX2 —
VPERM2F128 AVX —
VPERM2I128 AVX2 —
Class 6B-1 — AVX Mixed Memory Argument (write to RO, VEX.W = 1, VEX.L = 0)
VEXTRACTF128 AVX —
Class 6C — AVX Mixed Memory Argument (VEX.W = 1, VEX.L = 0, VEX.vvvv != 1111b)
VBROADCASTF128 AVX —
VBROADCASTI128 AVX2 —
VEXTRACTI128 AVX2 —
Class 6C-X — AVX / AVX2 (W=1, vvvv!=1111b, L=0, (reg src op specified && !AVX2))
VBROADCASTSD AVX, AVX2 —
Class 6D — AVX Mixed Memory Argument (VEX.W = 1, VEX.vvvv != 1111b)
VPBROADCASTB AVX2 —
VPBROADCASTD AVX2 —
VPBROADCASTQ AVX2 —

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

887

26568—Rev. 3.24—May 2020 AMD64 Technology

VPBROADCASTW AVX2 —
Class 6D-X — AVX / AVX2 (W = 1, vvvv != 1111b, (ModRM.mod = 11b && !AVX2))
VBROADCASTSS AVX, AVX2 —
Class 6E — AVX Mixed Memory Argument (VEX.W = 1, VEX.vvvv != 1111b (variant))
VPERMILPD AVX —
VPERMILPS AVX —
Class 6F — AVX2 (VEX.W = 1, VEX.vvvv != 1111b, VEX.L = 0, ModRM.mod = 11b)
VBROADCASTI128 AVX2 —
Class 7 — AVX / SSE No Memory Argument
(unused) — —
Class 7A — AVX /SSE No Memory Argument (VEX.L = 1)
MOVHLPS VMOVHLPS AVX SSE
MOVLHPS VMOVLHPS AVX SSE
Class 7A-X SSE / AVX / AVX2 Vector (VEX.L = 1 && !AVX2)
PSLLDQ VPSLLDQ AVX, AVX2 SSE2
PSRLDQ VPSRLDQ AVX, AVX2 SSE2
Class 7B — AVX /SSE No Memory Argument (VEX.vvvv != 1111b)
MOVMSKPD VMOVMSKPD AVX SSE2
MOVMSKPS VMOVMSKPS AVX SSE
Class 7C — AVX / SSE No Memory Argument (VEX.vvvv != 1111b, VEX.L = 1)
(not used) — —
Class 7C-X SSE / AVX / AVX2 Vector (VEX.vvvv != 1111b, (VEX.L = 1 && !AVX2))
PMOVMSKB VPMOVMSKB AVX, AVX2 SSE2
Class 8 — AVX No Memory Argument (VEX.vvvv != 1111b, VEX.W = 1)
VZEROALL AVX —
VZEROUPPER AVX —
Class 9 — AVX 4-byte Argument (write to RO memory, VEX.vvvv != 1111b, VEX.L = 1)
STMXCSR VSTMXCSR AVX SSE
Class 9A — AVX 4-byte argument (reserved MBZ = 1, VEX.vvvv != 1111b, VEX.L = 1)
LDMXCSR VLDMXCSR AVX SSE

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

888

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 10 — XOP Base
VPCMOV XOP
VPCOMB XOP —
VPCOMD XOP —
VPCOMQ XOP —
VPCOMUB XOP —
VPCOMUD XOP —
VPCOMUQ XOP —
VPCOMUW XOP —
VPCOMW XOP —
VPERMIL2PS XOP —
VPERMIL2PD XOP —
Class 10A — XOP Base (XOP.L = 1)
VPPERM XOP —
VPSHAB XOP —
VPSHAD XOP —
VPSHAQ XOP —
VPSHAW XOP —
VPSHLB XOP —
VPSHLD XOP —
VPSHLQ XOP —
VPSHLW XOP —
Class 10B — XOP Base (XOP.W = 1, XOP.L = 1)
VPMACSDD XOP —
VPMACSDQH XOP —
VPMACSDQL XOP —
VPMACSSDD XOP —
VPMACSSDQH XOP —
VPMACSSDQL XOP —
VPMACSSWD XOP —
VPMACSSWW XOP —
VPMACSWD XOP —
VPMACSWW XOP —
VPMADCSSWD XOP —
VPMADCSWD XOP —
Class 10C — XOP Base (XOP.W = 1, XOP.vvvv != 1111b, XOP.L = 1)
VPHADDBD XOP —
VPHADDBQ XOP —
VPHADDBW XOP —
VPHADDD XOP —
VPHADDDQ XOP —
VPHADDUBD XOP —

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

889

26568—Rev. 3.24—May 2020 AMD64 Technology

VPHADDUBQ XOP —
VPHADDUBW XOP —
VPHADDUDQ XOP —
VPHADDUWD XOP —
VPHADDUWQ XOP —
VPHADDWD XOP —
VPHADDWQ XOP —
VPHSUBBW XOP —
VPHSUBDQ XOP —
VPHSUBWD XOP —
Class 10D — XOP Base (SIMD 110011, XOP.vvvv != 1111b, XOP.W = 1)
VFRCZPD XOP —
VFRCZPS XOP —
VFRCZSD XOP —
VFRCZSS XOP —
Class 10E — XOP Base (XOP.vvvv != 1111b (variant), XOP.L = 1)
VPROTB XOP —
VPROTD XOP —
VPROTQ XOP —
VPROTW XOP —
Class 11 — F16C Instructions
VCVTPH2PS F16C —
VCVTPS2PH F16C —
Class 12 — AVX2 VSID (ModRM.mod = 11b, ModRM.rm != 100b)
VGATHERDPD AVX2 —
VGATHERDPS AVX2 —
VGATHERQPD AVX2 —
VGATHERQPS AVX2 —
VPGATHERDD AVX2 —
VPGATHERDQ AVX2 —
VPGATHERQD AVX2 —
VPGATHERQQ AVX2 —
Class FMA-2 — FMA / FMA4 Vector (SIMD Exceptions PE, UE, OE, DE, IE)
VFMADDPD FMA4 —
VFMADDPS FMA4 —
VFMADDSUBPD FMA4 —
VFMADDSUBPS FMA4 —
VFMSUBADDPD FMA4 —
VFMSUBADDPS FMA4 —
VFMSUBPD FMA4 —
VFMSUBPS FMA4 —
VFNMADDPD FMA4 —

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

890

AMD64 Technology 26568—Rev. 3.24—May 2020

VFNMADDPS FMA4 —
VFNMSUBPD FMA4 —
VFNMSUBPS FMA4 —
Class FMA-3 — FMA / FMA4 Scalar (SIMD Exceptions PE, UE, OE, DE, IE)
VFMADDSD FMA4 —
VFMADDSS FMA4 —
VFMSUBSD FMA4 —
VFMSUBSS FMA4 —
VFNMADDSD FMA4 —
VFNMADDSS FMA4 —
VFNMSUBSD FMA4 —
VFNMSUBSS FMA4 —
Unique Cases
XGETBV — —
XRSTOR — —
XSAVE/XSAVEOPT — —
XSETBV — —

Table 3-1. Instructions By Exception Class (continued)
Mnemonic Extended Type Legacy Type

[AMD Public Use]

891

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 1 — AVX / SSE Vector Aligned (VEX.vvvv != 1111)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on a 16-byte boundary.
S S X Write to a read-only data segment.

A VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

892

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 1X — SSE / AXV / AVX2 Vector (VEX.vvvv != 1111b or VEX.L=1 && !AVX2)

Exceptions
Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on a 16-byte boundary.
S S X Write to a read-only data segment.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

893

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 2 — AVX / SSE Vector (SIMD 111111)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

894

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 2-1 — AVX / SSE Vector (SIMD 111011)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

895

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 2-2 — AVX / SSE Vector (SIMD 000011)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

896

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 2-3 — AVX / SSE Vector (SIMD 100001)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

897

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 2A — AVX / SSE Vector (SIMD 111111, VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

898

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 2A-1 — AVX / SSE Vector (SIMD 111011, VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

899

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 2B — AVX / SSE Vector (SIMD 111111, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

900

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 2B-1 — AVX / SSE Vector (SIMD 100000, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

901

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 2B-2 — AVX / SSE Vector (SIMD 100001, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

902

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 2B-3 — AVX / SSE Vector (SIMD 111011, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

903

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 2B-4 — AVX / SSE Vector (SIMD 100011, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

904

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 3 — AVX / SSE Scalar (SIMD 111111)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

905

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 3-1 — AVX / SSE Scalar (SIMD 111011)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

906

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 3-2 — AVX / SSE Scalar (SIMD 000011)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

907

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 3-3 — AVX / SSE Scalar (SIMD 100000)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

908

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 3-4 — AVX / SSE Scalar (SIMD 100001)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

909

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 3-5 — AVX / SSE Scalar (SIMD 100011)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

910

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 3A — AVX / SSE Scalar (SIMD 111111, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

911

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 3A-1 — AVX / SSE Scalar (SIMD 000011, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

912

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 3A-2 — AVX / SSE Scalar (SIMD 100001, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

913

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 4 — AVX / SSE Vector

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not 16-byte aligned and MXCSR.MM = 0.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

914

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 4A — AVX / SSE Vector (VEX.W = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

915

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 4B — AVX / SSE Vector (VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

916

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 4B-X — SSE / AVX / AVX2 (VEX.L = 1 && !AVX2)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

917

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 4C — AVX / SSE Vector (VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

918

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 4C-1 — AVX / SSE Vector (write to RO memory, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Alignment check, #AC S S X Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

919

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 4D — AVX / SSE Vector (VEX.vvvv != 1111b, VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

920

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 4D-X — SSE / AVX / AVX2 Vector (VEX.vvvv != 1111b, (VEX.L = 1 && !AVX2))

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

921

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 4E — AVX / SSE Vector (VEX.W = 1, VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

922

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 4E-X — SSE / AVX / AVX2 Vector (VEX.W = 1, (VEX.L = 1 && !AVX2))

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF S X Instruction execution caused a page fault.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

923

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 4F — AVX / SSE (VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

924

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 4F-X — SSE / AVX / AVX2 Vector (VEX.L = 1 && !AVX2)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC

S S S Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

A
When alignment checking enabled:
• 128-bit memory operand not 16-byte aligned.
• 256-bit memory operand not 32-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
X — AVX, AVX2, and SSE exception
A — AVX and AVX2 exception
S — SSE exception

[AMD Public Use]

925

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 4G — AVX Vector (VEX.W = 1, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
X X AVX instructions are only recognized in protected mode.
X X X CR0.EM = 1.
X X X CR4.OSFXSR = 0.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X VEX.W = 1.
X VEX.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X X X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Alignment check, #AC
S S S Memory operand not 16-byte aligned when alignment checking enabled

and MXCSR.MM = 1.
A Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF X X Instruction execution caused a page fault.
X — AVX exception

[AMD Public Use]

926

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 4H — AVX, 256-bit only (VEX.L = 0; No SIMD Exceptions)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot
Invalid opcode, #UD A A A Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
A A A CR0.EM = 1.
A A A CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE].

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L= 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A A A Lock prefix (F0h) preceding opcode.
Device not available, #NM A A A CR0.TS = 1.
Stack, #SS A A A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A A A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

927

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 4H-1 — AVX2, 256-bit only (VEX.L = 0, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
A A A CR0.EM = 1.
A A A CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L= 0.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A A A Lock prefix (F0h) preceding opcode.
Device not available, #NM A A A CR0.TS = 1.
Stack, #SS A A A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A A A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

928

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 4J — AVX2 (VEX.W = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

929

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 4K — AVX2

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

930

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 5 — AVX / SSE Scalar

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

931

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 5A — AVX / SSE Scalar (VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

932

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 5B — AVX / SSE Scalar (VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

933

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 5C — AVX /SSE Scalar (VEX.vvvv != 1111b, VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

934

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 5C-X — SSE / AVX / AVX2 Scalar (VEX.vvvv != 1111b, (VEX.L = 1 && !AVX2))

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

935

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 5C-1 — AVX / SSE Scalar (write to RO memory, VEX.vvvv != 1111b, VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

936

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 5D — AVX / SSE Scalar (write to RO memory, VEX.vvvv != 1111b (variant))

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination enoding only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

937

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 5E — AVX / SSE Scalar (write to RO, VEX.vvvv != 1111b (variant), VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

938

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 6 — AVX Mixed Memory Argument

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

939

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 6A — AVX Mixed Memory Argument (VEX.W = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

940

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 6A-1 — AVX Mixed Memory Argument (write to RO memory, VEX.W = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

S S X Write to a read-only data segment.
Page fault, #PF A Instruction execution caused a page fault.
A — AVX exception.

[AMD Public Use]

941

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 6B — AVX Mixed Memory Argument (VEX.W = 1, VEX.L = 0)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

942

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 6B-1 — AVX Mixed Memory Argument (write to RO, VEX.W = 1, VEX.L = 0)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Write to a read-only data segment.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Memory operand not 16-byte aligned when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

943

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 6C — AVX Mixed Memory Argument (VEX.W = 1, VEX.L = 0, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

944

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 6C-X — AVX / AVX2 (W=1, vvvv!=1111b, L=0, (reg src op specified && !AVX2))

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A Register-based source operand specified when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX, AVX2 exception.

[AMD Public Use]

945

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 6D — AVX Mixed Memory Argument (VEX.W = 1, VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

946

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 6D-X — AVX / AVX2 (W = 1, vvvv != 1111b, (ModRM.mod = 11b && !AVX2))

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A MODRM.mod = 11b when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX, AVX2 exception.

[AMD Public Use]

947

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 6E — AVX Mixed Memory Argument (VEX.W = 1, VEX.vvvv != 1111b (variant))

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b (for versions with immediate byte operand only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

948

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 6F — AVX2 (VEX.W = 1, VEX.vvvv != 1111b, VEX.L = 0, ModRM.mod = 11b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A Register-based source operand specified (MODRM.mod = 11b)
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.
Alignment check, #AC A Unaligned memory reference when alignment checking enabled.
A — AVX exception.

[AMD Public Use]

949

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 7 — AVX / SSE No Memory Argument
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

950

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 7A — AVX /SSE No Memory Argument (VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

951

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 7A-X SSE / AVX / AVX2 Vector (VEX.L = 1 && !AVX2)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.L = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — SSE, AVX, and AVX2 exception
A — AVX, AVX2 exception
S — SSE exception

[AMD Public Use]

952

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 7B — AVX /SSE No Memory Argument (VEX.vvvv != 1111b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

953

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 7C — AVX / SSE No Memory Argument (VEX.vvvv != 1111b, VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv field ! = 1111b.
A VEX.L field = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

954

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 7C-X SSE / AVX / AVX2 Vector (VEX.vvvv != 1111b, (VEX.L = 1 && !AVX2))

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv field ! = 1111b.
A VEX.L field = 1 when AVX2 not supported.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — SSE, AVX and AVX2 exception
A — AVX, AVX2exception
S — SSE exception

[AMD Public Use]

955

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 8 — AVX No Memory Argument (VEX.vvvv != 1111b, VEX.W = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
A — AVX exception.

[AMD Public Use]

956

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 9 — AVX 4-byte Argument (write to RO memory, VEX.vvvv != 1111b, VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.
S S S Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

957

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 9A — AVX 4-byte argument (reserved MBZ = 1, VEX.vvvv != 1111b, VEX.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Null data segment used to reference memory.
S S X Attempt to load non-zero values into reserved MXCSR bits

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference when alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

[AMD Public Use]

958

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 10 — XOP Base

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

959

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 10A — XOP Base (XOP.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

960

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 10B — XOP Base (XOP.W = 1, XOP.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

961

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 10C — XOP Base (XOP.W = 1, XOP.vvvv != 1111b, XOP.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

962

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 10D — XOP Base (SIMD 110011, XOP.vvvv != 1111b, XOP.W = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

[AMD Public Use]

963

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 10E — XOP Base (XOP.vvvv != 1111b (variant), XOP.L = 1)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XFEATURE_ENABLED_MASK[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC X Memory operand not 16-byte aligned when alignment checking enabled.
X — XOP exception

[AMD Public Use]

964

AMD64 Technology 26568—Rev. 3.24—May 2020

Class 11 — F16C Instructions

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F AVX instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID
Fn0000_0001_ECX[OSXSAVE].

F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F VEX.W field = 1.
A VEX.vvvv ! = 1111b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Alignment check, #AC F Unaligned memory reference when alignment checking enabled.
Page fault, #PF F Instruction execution caused a page fault.
SIMD Floating-Point
Exception, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,

see SIMD Floating-Point Exceptions below for details.
SIMD Floating-Point Exceptions

Invalid-operation exception
(IE)

F A source operand was an SNaN value.
F Undefined operation.

Denormalized-operand
exception (DE) F A source operand was a denormal value.

Overflow exception (OE) F Rounded result too large to fit into the format of the destination operand.
Underflow exception (UE) F Rounded result too small to fit into the format of the destination operand.
Precision exception (PE) F A result could not be represented exactly in the destination format.
F — F16C exception.

[AMD Public Use]

965

26568—Rev. 3.24—May 2020 AMD64 Technology

Class 12 — AVX2 VSID (ModRM.mod = 11b, ModRM.rm != 100b)

Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

A A A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.
A MODRM.mod = 11b
A MODRM.rm ! = 100b
A YMM/XMM registers specified for destination, mask, and index not unique.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Alignment check, #AC A
Alignment checking enabled and:
256-bit memory operand not 32-byte aligned or
128-bit memory operand not 16-byte aligned.

Page fault, #PF A A Instruction execution caused a page fault.
A — AVX2 exception

[AMD Public Use]

966

AMD64 Technology 26568—Rev. 3.24—May 2020

Class FMA-2 — FMA / FMA4 Vector (SIMD Exceptions PE, UE, OE, DE, IE)
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Memory operand not 16-byte aligned when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

967

26568—Rev. 3.24—May 2020 AMD64 Technology

Class FMA-3 — FMA / FMA4 Scalar (SIMD Exceptions PE, UE, OE, DE, IE)
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XFEATURE_ENABLED_MASK[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference when alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA, FMA4 exception

[AMD Public Use]

968

AMD64 Technology 26568—Rev. 3.24—May 2020

XGETBV
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X Lock prefix (F0h) preceding opcode.

General protection, #GP X X X ECX specifies a reserved or unimplemented XCR address.
X — exception generated

[AMD Public Use]

969

26568—Rev. 3.24—May 2020 AMD64 Technology

XRSTOR
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Any must be zero (MBZ) bits in the save area were set.
X X X Attempt to set reserved bits in MXCSR.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

[AMD Public Use]

970

AMD64 Technology 26568—Rev. 3.24—May 2020

XSAVE/XSAVEOPT
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Attempt to write read-only memory.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

[AMD Public Use]

971

26568—Rev. 3.24—May 2020 AMD64 Technology

XSETBV
Exceptions

Exception Mode Cause of ExceptionReal Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

General protection, #GP

X X X CPL != 0.
X X X ECX specifies a reserved or unimplemented XCR address.
X X X Any must be zero (MBZ) bits in the save area were set.
X X X Writing 0 to XCR0.

X — exception generated
Note:
In virtual mode, only #UD for Instruction not supported and #GP for CPL != 0 are supported.

[AMD Public Use]

972

AMD64 Technology 26568—Rev. 3.24—May 2020

[AMD Public Use]

973

26568—Rev. 3.24—May 2020 AMD64 Technology

Appendix A AES Instructions

This appendix gives background information concerning the use of the AES instruction subset in the
implementation of encryption compliant to the Advanced Encryption Standard (AES).

A.1 AES Overview
This section provides an overview of AMD64 instructions that support AES software implementation.

The U.S. National Institute of Standards and Technology has adopted the Rijndael algorithm, a block
cipher that processes 16-byte data blocks using a shared key of variable length, as the Advanced
Encryption Standard (AES). The standard is defined in Federal Information Processing Standards
Publication 197 (FIPS 197), Specification for the Advanced Encryption Standard (AES). There are
three versions of the algorithm, based on key widths of 16 (AES-128), 24 (AES-192), and 32 (AES-
256) bytes.

The following AMD64 instructions support AES implementation:

• AESDEC/VAESDEC and AESDECLAST/VAESDECLAST
Perform one round of AES decryption

• AESENC/VAESENC and AESENCLAST/VAESENCLAST
Perform one round of AES encryption

• AESIMC/VAESIMC
Perform the AES InvMixColumn transformation

- AESKEYGENASSIST/VAESKEYGENASSIST
Assist AES round key generation

- PCLMULQDQ, VPCLMULQDQ
Perform carry-less multiplication

See Chapter 2, “Instruction Reference” for detailed descriptions of the instructions.

A.2 Coding Conventions
This overview uses descriptive code that has the following basic characteristics.

• Syntax and notation based on the C language
• Four numerical data types:

- bool: The numbers 0 and 1, the values of the Boolean constants false and true
- nat: The infinite set of all natural numbers, including bool as a subtype
- int: The infinite set of all integers, including nat as a subtype
- rat: The infinite set of all rational numbers, including int as a subtype

[AMD Public Use]

974

AMD64 Technology 26568—Rev. 3.24—May 2020

• Standard logical and arithmetic operators
• Enumeration (enum) types, arrays, structures (struct), and union types
• Global and local variable and constant declarations, initializations, and assignments
• Standard control constructs (if, then, else, for, while, switch, break, and continue)
• Function subroutines
• Macro definitions (#define)

A.3 AES Data Structures
The AES instructions operate on 16-byte blocks of text called the state. Each block is represented as a
4 4 matrix of bytes which is assigned the Galois field matrix data type (GFMatrix). In the AMD64
implementation, the matrices are formatted as 16-byte vectors in XMM registers or 128-bit memory
locations. This overview represents each matrix as a sequence of 16 bytes in little-endian format (least
significant byte on the right and most significant byte on the left).

Figure A-1 shows a state block in 4 4 matrix representation.

Figure A-1. GFMatrix Representation of 16-byte Block

Figure A-2 shows the AMD64 AES format, with the corresponding mapping of FIPS 197 AES
“words” to operand bytes.

Figure A-2. GFMatrix to Operand Byte Mappings

A.4 Algebraic Preliminaries
AES operations are based on the Galois field GF = GF(28), of order 256, constructed by adjoining a
root of the irreducible polynomial

GFMatrix =

X3,0
X3,1
X3,2
X3,3

X2,0
X2,1
X2,2
X2,3

X1,0
X1,1
X1,2
X1,3

X0,0
X0,1
X0,2
X0,3

0715 81623243140 323948 47555663647172798087889596103104111112119120127

X3,0X3,1X3,2X3,3 X2,0X2,1X2,2X2,3 X1,0X1,1X1,2X1,3 X0,0X0,1X0,2X0,3

AES Word 0AES Word 1AES Word 2AES Word 3

XMM Register or 128-bit Memory Operand

[AMD Public Use]

975

26568—Rev. 3.24—May 2020 AMD64 Technology

p(X) = X8 + X4 + X3 + X + 1

to the field of two elements, 2. Equivalently, GF is the quotient field 2[X]/p(X) and thus may be
viewed as the set of all polynomials of degree less than 8 in 2[X] with the operations of addition and
multiplication modulo p(X). These operations may be implemented efficiently by exploiting the
mapping from 2[X] to the natural numbers given by

anXn + … + a1X+a0 2nan + … + 2a1 + a0 an … a1a0b

For example:

1 01h

X 02h

X2 04h

X4 + X3 + 1 19h

p(X) 11Bh

Thus, each element of GF is identified with a unique byte. This overview uses the data type GF256 as
an alias of nat, to identify variables that are to be thought of as elements of GF.

The operations of addition and multiplication in GF are denoted by and , respectively. Since 2 is
of characteristic 2, addition is simply the “exclusive or” operation:

x y = x^ y

In particular, every element of GF is its own additive inverse.

Multiplication in GF may be computed as a sequence of additions and multiplications by 2. Note that
this operation may be viewed as multiplication in 2[X] followed by a possible reduction modulo p(X).
Since 2 corresponds to the polynomial X and 11B corresponds to p(X), for any x GF,

Now, if y = b7…b1b0b, then

x y = 2 (…(2 (2 (b7 x) b6 x) b5 x) …b0.

This computation is performed by the GFMul() function.

A.4.1 Multiplication in the Field GF
The GFMul() function operates on GF256 elements in SRC1 and SRC2 and returns a GF256 matrix
in the destination.
GF256 GFMul(GF256 x, GF256 y) {
 nat sum = 0;

2 x =
x << 1

(x << 1) 11Bh

if x < 80h

if x 80h

[AMD Public Use]

976

AMD64 Technology 26568—Rev. 3.24—May 2020

 for (int i=7; i>=0; i--) {
 // Multiply sum by 2. This amounts to a shift followed
 // by reduction mod 0x11B:
 sum <<= 1;
 if (sum > 0xFF) {sum = sum ^ 0x11B;}
 // Add y[i]*x:
 if (y[i]) {sum = sum ^ x;}
 }
 return sum;
}

Because the multiplicative group GF* is of order 255, the inverse of an element x of GF may be
computed by repeated multiplication as x--1 = x254. A more efficient computation, however, is
performed by the GFInv() function as an application of Euclid’s greatest common divisor algorithm.
See Section A.11, “Computation of GFInv with Euclidean Greatest Common Divisor” for an analysis
of this computation and the GFInv() function.

The AES algorithms operate on the vector space GF4, of dimension 4 over GF, which is represented by
the array type GFWord. FIPS 197 refers to an object of this type as a word. This overview uses the
term GF word in order to avoid confusion with the AMD64 notion of a 16-bit word.

A GFMatrix is an array of four GF words, which are viewed as the rows of a 4 4 matrix over GF.

The field operation symbols and are used to denote addition and multiplication of matrices over
GF as well. The GFMatrixMul() function computes the product A B of 4 4 matrices.

A.4.2 Multiplication of 4x4 Matrices Over GF
, GFMatrix GFMatrixMul(GFMatrix a, GFMatrix b) {
 GFMatrix c;
 for (nat i=0; i<4; i++) {
 for (nat j=0; j<4; j++) {
 c[i][j] = 0;
 for (nat k=0; k<4; k++) {
 c[i][j] = c[i][j] ^ GFMul(a[i][k], b[k][j]);
 }
 }
 }
 return c;
}

A.5 AES Operations
The AES encryption and decryption procedures may be specified as follows, in terms of a set of basic
operations that are defined later in this section. See the alphabetic instruction reference for detailed
descriptions of the instructions that are used to implement the procedures.

Call the Encrypt or Decrypt procedure, which pass the same expanded key to the functions

TextBlock Cipher(TextBlock in, ExpandedKey w, nat Nk)

and

[AMD Public Use]

977

26568—Rev. 3.24—May 2020 AMD64 Technology

TextBlock InvCipher(TextBlock in, ExpandedKey w, nat Nk)

In both cases, the input text is converted by

GFMatrix Text2Matrix(TextBlock A)

to a matrix, which becomes the initial state of the process. This state is transformed through the
sequence of Nr + 1 rounds and ultimately converted back to a linear array by

TextBlock Matrix2Text(GFMatrix M).

In each round i, the round key Ki is extracted from the expanded key w and added to the state by

GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round).

Note that AddRoundKey does not explicitly construct Ki , but operates directly on the bytes of w.

The rounds of Cipher are numbered 0,…Nr . Let X be the initial state an an execution, i.e., the input in
matrix format, let Si be the state produced by round i, and let Y = SNr be the final state. Let , R , and C
denote the operations performed by SubBytes, ShiftRows, MixColumns, respectively. Then

The initial round is a simple addition:

Each of the next Nr + 1 rounds is a composition of four operations:

The MixColumns transformation is omitted from the final round:

Composing these expressions yields

Note that the rounds of InvCipher are numbered in reverse order, Nr ,…,0. If Ʃ’ and Y’ are the initial
and final states and S’i is the state following round i , then

for

[AMD Public Use]

978

AMD64 Technology 26568—Rev. 3.24—May 2020

Composing these expressions yields

In order to show that InvCipher is the inverse of Cipher, it is only necessary to combine these
expanded expressions by replacing X’ with Y and cancel inverse operations to yield Y’ = X.

A.5.1 Sequence of Operations
• Use predefined SBox and InvSBox matrices or initialize the matrices using the ComputeSBox

and ComputeInvSBox functions.
• Call the Encrypt or Decrypt procedure.
• For the Encrypt procedure:
1. Load the input TextBlock and CipherKey.
2. Expand the cipher key using the KeyExpansion function.
3. Call the Cipher function to perform the number of rounds determined by the cipher key length.
4. Perform round entry operations.

a. Convert input text block to state matrix using the Text2Matrix function.
b. Combine state and round key bytes by bitwise XOR using the AddRoundKey function.

5. Perform round iteration operations.
a. Replace each state byte with another by non-linear substitution using the SubBytes function.
b. Shift each row of the state cyclically using the ShiftRows function.
c. Combine the four bytes in each column of the state using the MixColumns function.
d. Perform AddRoundKey.

6. Perform round exit operations.
a. Perform SubBytes.
b. Perform ShiftRows.
c. Perform AddRoundKey.
d. Convert state matrix to output text block using the Matrix2Text function and return TextBlock.

• For the Decrypt procedure:
1. Load the input TextBlock and CipherKey.

for

[AMD Public Use]

979

26568—Rev. 3.24—May 2020 AMD64 Technology

2. Expand the cipher key using the KeyExpansion function.
3. Call the InvCipher function to perform the number of rounds determined by the cipher key

length.
4. Perform round entry operations.

a. Convert input text block to state matrix using the Text2Matrix function.
b. Combine state and round key bytes by bitwise XOR using the AddRoundKey function.

5. Perform round iteration operations.
a. Shift each row of the state cyclically using the InvShiftRows function.
b. Replace each state byte with another by non-linear substitution using the InvSubBytes function.
c. Perform AddRoundKey.
d. Combine the four bytes in each column of the state using the InvMixColumns function.

6. Perform round exit operations.
a. Perform InvShiftRows.
b. Perform InvSubBytes (InvSubWord).
c. Perform AddRoundKey.
d. Convert state matrix to output text block using the Matrix2Text function and return TextBlock.

A.6 Initializing the Sbox and InvSBox Matrices
The AES makes use of a bijective mapping : GF GF, which is encoded, along with its inverse
mapping, in the 16 16 arrays SBox (for encryption) and InvSBox (for decryption), as follows:

for all x G,

(x) = SBox[x[7:4], x[3:0]]

and

(x) = InvSBox[x[7:4], x[3:0]]

While the FIPS 197 standard defines the contents of the SBox[] and InvSbox [] matrices, the
matrices may also be initialized algebraically (and algorithmically) by means of the ComputeSBox()
and ComputeInvSBox() functions, discussed below.

The bijective mappings for encryption and decryption are computed by the SubByte() and
InvSubByte () functions, respectively:

SubByte() computation:
GF256 SubByte(GF256 x) {
 return SBox[x[7:4]][x[3:0]];
}

InvSubByte () computation:
GF256 InvSubByte(GF256 x) {
 return InvSBox[x[7:4]][x[3:0]];
}

[AMD Public Use]

980

AMD64 Technology 26568—Rev. 3.24—May 2020

A.6.1 Computation of SBox and InvSBox
Computation of SBox and InvSBox elements has a direct relationship to the cryptographic properties
of the AES, but not to the algorithms that use the tables. Readers who prefer to view as a primitive
operation may skip the remainder of this section.

The algorithmic definition of the bijective mapping is based on the consideration of GF as an
8-dimensional vector space over the subfield 2. Let be a linear operator on this vector space and let
M = [aij] be the matrix representation of with respect to the ordered basis {1, 2, 4, 10, 20, 40, 80}.
Then may be encoded concisely as an array of bytes A of dimension 8, each entry of which is the
concatenation of the corresponding row of M:

A[i] = ai8 ai7…ai0

This expression may be represented algorithmically by means of the ApplyLinearOp() function,
which applies a linear operator to an element of GF. The ApplyLinear Op() function is used in the
initialization of both the sBox[] and InvSBox[] matrices.
// The following function takes the array A representing a linear operator phi and
// an element x of G and returns phi(x):

GF256 ApplyLinearOp(GF256 A[8], GF256 x) {
 GF256 result = 0;
 for (nat i=0; i<8; i++) {
 bool sum = 0;
 for (nat j=0; j<8; j++) {
 sum = sum ^ (A[i][j] & x[j]);
 }
 result[i] = sum;
 }
 return result;
}

The definition of involves the linear operator with matrix

In this case,

A = {F1, E3, C7, 8F, 1F, 3E, 7C, F8}.

Initialization of SBox[]

The mapping : G G is defined by

[AMD Public Use]

981

26568—Rev. 3.24—May 2020 AMD64 Technology

(x) = (x–1) 63

This computation is performed by ComputeSBox().

ComputeSBox()

GF256[16][16] ComputeSBox() {
 GF256 result[16][16];
 GF256 A[8] = {0xF1, 0xE3, 0xC7, 0x8F, 0x1F, 0x3E, 0x7C, 0xF8};
 for (nat i=0; i<16; i++) {
 for (nat j=0; j<16; j++) {
 GF256 x = (i << 4) | j;
 result[i][j] = ApplyLinearOp(A, GFInv(x)) ^ 0x63;
 }
 }
 return result;
}

const GF256 SBox[16][16] = ComputeSBox();

Table A-1 shows the resulting SBox[], as defined in FIPS 197.

[AMD Public Use]

982

AMD64 Technology 26568—Rev. 3.24—May 2020

A.6.2 Initialization of InvSBox[]
A straightforward calculation confirms that the matrix M is nonsingular with inverse.

Thus, is invertible and –1 is encoded as the array

B = {A4, 49, 92, 25, 4A, 94, 29, 52}.

If y = (x), then

Table A-1. SBox Definition
S[3:0]

S[7:4]

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 a5

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

M–1 =

0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1

1
0
0
1
0
1
0
0

1
0
1
0
0
1
0
0

0
1
0
0
1
0
1
0

0
0
1
0
0
1
0
1

1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1

[AMD Public Use]

983

26568—Rev. 3.24—May 2020 AMD64 Technology

and is a permutation of GF with

-1(y) = (-1(y) 5)–1

This computation is performed by ComputeInvSBox().

ComputeInvSBox()

GF256[16][16] ComputeInvSBox() {
 GF256 result[16][16];
 GF256 B[8] = {0xA4, 0x49, 0x92, 0x25, 0x4A, 0x94, 0x29, 0x52};
 for (nat i=0; i<16; i++) {
 for (nat j=0; j<16; j++) {
 GF256 y = (i << 4) | j;
 result[i][j] = GFInv(ApplyLinearOp(B, y) ^ 0x5);
 }
 }
 return result;
}

const GF256 InvSBox[16][16] = ComputeInvSBox();

Table A-2 shows the resulting InvSBox[], as defined in the FIPS 197.

(-1((y) 5) –1= (-1(y 5))–1

= (-1(y –1

= (-1((x–1) –1

= x,

= (-1((x–1)–1

[AMD Public Use]

984

AMD64 Technology 26568—Rev. 3.24—May 2020

A.7 Encryption and Decryption
The AMD64 architecture implements the AES algorithm by means of an iterative function called a
round for both encryption and the inverse operation, decryption.

The top-level encryption and decryption procedures Encrypt() and Decrypt() set up the rounds and
invoke the functions that perform them. Each of the procedures takes two 128-bit binary arguments:

• input data — a 16-byte block of text stored in a source 128-bit XMM register
• cipher key — a 16-, 24-, or 32-byte cipher key stored in either a second 128-bit XMM register or

128-bit memory location

A.7.1 The Encrypt() and Decrypt() Procedures
TextBlock Encrypt(TextBlock in, CipherKey key, nat Nk) {
 return Cipher(in, ExpandKey(key, Nk), Nk);
}

TextBlock Decrypt(TextBlock in, CipherKey key, nat Nk) {
 return InvCipher(in, ExpandKey(key, Nk), Nk);

Table A-2. InvSBox Definition
S[3:0]

S[7:4]

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

[AMD Public Use]

985

26568—Rev. 3.24—May 2020 AMD64 Technology

}

The array types TextBlock and CipherKey are introduced to accommodate the text and key
parameters. The 16-, 24-, or 32-byte cipher keys correspond to AES-128, AES-192, or AES-256 key
sizes. The cipher key is logically partitioned into Nk = 4, 6, or 8 AES 32-bit words. Nk is passed as a
parameter to determine the AES version to be executed, and the number of rounds to be performed.

Both the Encrypt() and Decrypt() procedures invoke the ExpandKey() function to expand the
cipher key for use in round key generation. When key expansion is complete, either the Cipher() or
InvCipher() functions are invoked.

The Cipher() and InvCipher() functions are the key components of the encryption and decryption
process. See Section A.8, “The Cipher Function” and Section A.9, “The InvCipher Function” for
detailed information.

A.7.2 Round Sequences and Key Expansion
Encryption and decryption are performed in a sequence of rounds indexed by 0, …, Nr, where Nr is
determined by the number Nk of GF words in the cipher key. A key matrix called a round key is
generated for each round. The number of GF words required to form Nr + 1 round keys is equal to ,
4(Nr + 1). Table A-3 shows the relationship between cipher key length, round sequence length, and
round key length.

Expanded keys are generated from the cipher key by the ExpandKey() function, where the array type
ExpandedKey is defined to accommodate 60 words (the maximum required) corresponding to Nk = 8.

The ExpandKey() Function

ExpandedKey ExpandKey(CipherKey key, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 ExpandedKey w;

 // Copy key into first Nk rows of w:
 for (nat i=0; i<Nk; i++) {
 for (nat j=0; j<4; j++) {
 w[i][j] = key[4*i+j];
 }
 }

Table A-3. Cipher Key, Round Sequence, and Round Key Length
Nk Nr 4(Nr + 1)

4 10 44
6 12 52
8 14 60

[AMD Public Use]

986

AMD64 Technology 26568—Rev. 3.24—May 2020

 // Write next row of w:
 for (nat i=Nk; i<4*(Nr+1); i++) {

 // Encode preceding row:
 GFWord tmp = w[i-1];
 if (mod(i, Nk) == 0) {
 tmp = SubWord(RotWord(tmp));
 tmp[0] = tmp[0] ^ RCON[i/Nk];
 }
 else if ((Nk == 8) && (mod(i, Nk) == 4)) {
 tmp = SubWord(tmp);
 }

 // XOR tmp with w[i-Nk]:
 for (nat j=0; j<4; j++) {
 w[i][j] = w[i-Nk][j] ^ tmp[j];
 }
 }
 return w;
}

ExpandKey() begins by copying the input cipher key into the first Nk GF words of the expanded key
w. The remaining 4(Nr + 1) – Nk GF words are computed iteratively. For each i Nk, w[i] is derived
from the two GF words w[i – 1] and w[i – Nk]. In most cases, w[i] is simply the sum w[i – 1] w[i –
Nk]. There are two exceptions:

• If i is divisible by Nk, then before adding it to w[i – Nk], w[i – 1] is first rotated by one position to
the left by RotWord(), then transformed by the substitution SubWord(), and an element of the
array RCON is added to it.

RCON[11] = {00h, 01h, 02h, 04h, 08h, 10h, 20h, 40h, 80h, 1Bh, 36h}

• In the case Nk = 8, if i is divisible by 4 but not 8, then w[i – 1] is transformed by the substitution
SubWord().

The ith round key Ki comprises the four GF words w[4i], …, w[4i + 3]. More precisely, let Wi be the
matrix

W= {w[4i], w[4i + 1], w[4i + 2], w[4i + 3]}

Then Ki = Wi
t, the transpose of Wi. Thus, the entries of the array w are the columns of the round keys.

A.8 The Cipher Function
This function performs encryption. It converts the input text to matrix form, generates the round key
from the expanded key matrix, and iterates through the transforming functions the number of times
determined by encryption key size to produce a 128-bit binary cipher matrix. As a final step, it
converts the matrix to an output text block.

[AMD Public Use]

987

26568—Rev. 3.24—May 2020 AMD64 Technology

TextBlock Cipher(TextBlock in, ExpandedKey w, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 GFMatrix state = Text2Matrix(in);
 state = AddRoundKey(state, w, 0);
 for (nat round=1; round<Nr; round++) {
 state = SubBytes(state);
 state = ShiftRows(state);
 state = MixColumns(state);
 state = AddRoundKey(state, w, round);
 }
 state = SubBytes(state);
 state = ShiftRows(state);
 state = AddRoundKey(state, w, Nr);
 return Matrix2Text(state);
}

A.8.1 Text to Matrix Conversion
Prior to processing, the input text block must be converted to matrix form. The Text2Matrix()
function stores a TextBlock in a GFMatrix in column-major order as follows.
GFMatrix Text2Matrix(TextBlock A) {
 GFMatrix result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[i][j] = A[4*j+i];
 }
 }
 return result;
}

A.8.2 Cipher Transformations
The Cipher function employs the following transformations.

SubBytes() — Applies a non-linear substitution table (SBox) to each byte of the state.
SubWord() — Uses a non-linear substitution table (SBox) to produce a four-byte AES output
word from the four bytes of an AES input word.
ShiftRows() — Cyclically shifts the last three rows of the state by various offsets.
RotWord() — Rotates an AES (4-byte) word to the right.
MixColumns() — Mixes data in all the state columns independently to produce new columns.
AddRoundKey() — Extracts a 128-bit round key from the expanded key matrix and adds it to the
128-bit state using an XOR operation.

Inverses of SubBytes(), SubWord(), ShiftRows() and MixColumns() are used in decryption. See
Section A.9, “The InvCipher Function” for more information.

[AMD Public Use]

988

AMD64 Technology 26568—Rev. 3.24—May 2020

SubBytes() Function

Performs a byte substitution operation using the invertible substitution table (SBox) to convert input
text to an intermediate encryption state.
GFMatrix SubBytes(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = SubWord(M[i]);
 }
 return result;
}

SubWord() Function

Applies SubBytes to each element of a vector or a matrix:
GFWord SubWord(GFWord x) {
 GFWord result;
 for (nat i=0; i<4; i++) {
 result[i] = SubByte(x[i]);
 }
 return result;
}

ShiftRows() Function

Cyclically shifts the last three rows of the state by various offsets.
GFMatrix ShiftRows(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = RotateLeft(M[i], -i);
 }
 return result;

RotWord() Function

Performs byte-wise cyclic permutation of a 32-bit AES word.
GFWord RotWord(GFWord x)
{ return RotateLeft(x, 1); }

MixColumns() Function

Performs a byte-oriented column-by-column matrix multiplication

M C M , where C is the predefined fixed matrix

C =

2
1
1
3

3
2
1
1

1
3
2
1

1
1
3
2

[AMD Public Use]

989

26568—Rev. 3.24—May 2020 AMD64 Technology

The function is implemented as follows:
GFMatrix MixColumns(GFMatrix M) {
 GFMatrix C = {
 {0x02,0x03,0x01,0x01},
 {0x01,0x02,0x03,0x01},
 {0x01,0x01,0x02,0x03},
 {0x03,0x01,0x01,0x02}
 };
 return GFMatrixMul(C, M);
}

AddRoundKey() Function

Extracts the round key from the expanded key and adds it to the state using a bitwise XOR operation.
GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round) {
 GFMatrix result = state;
 for (nat i=0; i<4; i++) {
 for (nat j=0; j<4; j++) {
 result[i][j] = result[i][j] ^ w[4*round+j][i];
 }
 }
 return result;
}

A.8.3 Matrix to Text Conversion
After processing, the output matrix must be converted to a text block. The Matrix2Text() function
converts a GFMatrix in column-major order to a TextBlock as follows.
TextBlock Matrix2Text(GFMatrix M) {
 TextBlock result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[4*j+i] = M[i][j];
 }
 }
 return result;
}

A.9 The InvCipher Function
This function performs decryption. It iterates through the round function the number of times
determined by encryption key size and produces a 128-bit block of text as output.
TextBlock InvCipher(TextBlock in, ExpandedKey w, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 GFMatrix state = Text2Matrix(in);
 state = AddRoundKey(state, w, Nr);
 for (nat round=Nr-1; round>0; round--) {
 state = InvShiftRows(state);
 state = InvSubBytes(state);

[AMD Public Use]

990

AMD64 Technology 26568—Rev. 3.24—May 2020

 state = AddRoundKey(state, w, round);
 state = InvMixColumns(state);
 }
 state = InvShiftRows(state);
 state = InvSubBytes(state);
 state = AddRoundKey(state, w, 0);
 return Matrix2Text(state);
}

A.9.1 Text to Matrix Conversion
Prior to processing, the input text block must be converted to matrix form. The Text2Matrix()
function stores a TextBlock in a GFMatrix in column-major order as follows.
GFMatrix Text2Matrix(TextBlock A) {
 GFMatrix result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[i][j] = A[4*j+i];
 }
 }
 return result;
}

A.9.2 InvCypher Transformations
The following functions are used in decryption:

InvShiftRows() — The inverse of ShiftRows().
InvSubBytes() — The inverse of SubBytes().
InvSubWord() — The inverse of SubWord().
InvMixColumns() — The inverse of MixColumns().
AddRoundKey() — Is its own inverse.

Decryption is the inverse of encryption and is accomplished by means of the inverses of the,
SubBytes(), SubWord(), ShiftRows() and MixColumns() transformations used in encryption.

SubWord(), SubBytes(), and ShiftRows() are injective. This is also the case with MixColumns().
A simple computation shows that C is invertible with

InvShiftRows() Function

The inverse of ShiftRows().
GFMatrix InvShiftRows(GFMatrix M) {
 GFMatrix result;

C–1 =

E
9
D
B

B
E
9
D

D
B
E
9

9
D
B
E

[AMD Public Use]

991

26568—Rev. 3.24—May 2020 AMD64 Technology

 for (nat i=0; i<4; i++) {
 result[i] = RotateLeft(M[i], -i);
 }
 return result;

InvSubBytes() Function

The inverse of SubBytes().
GFMatrix InvSubBytes(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = InvSubWord(M[i]);
 }
 return result;
}

InvSubWord() Function

The inverse of SubWord(), InvSubBytes() applied to each element of a vector or a matrix.
GFWord InvSubWord(GFWord x) {
 GFWord result;
 for (nat i=0; i<4; i++) {
 result[i] = InvSubByte(x[i]);
 }
 return result;
}

InvMixColumns() Function

The inverse of the MixColumns() function. Multiplies by the inverse of the predefined fixed matrix,
C, C–1, as discussed previously.
GFMatrix InvMixColumns(GFMatrix M) {
 GFMatrix D = {
 {0x0e,0x0b,0x0d,0x09},
 {0x09,0x0e,0x0b,0x0d},
 {0x0d,0x09,0x0e,0x0b},
 {0x0b,0x0d,0x09,0x0e}
 };
 return GFMatrixMul(D, M);
}

AddRoundKey() Function

Extracts the round key from the expanded key and adds it to the state using a bitwise XOR operation.
GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round) {
 GFMatrix result = state;
 for (nat i=0; i<4; i++) {
 for (nat j=0; j<4; j++) {
 result[i][j] = result[i][j] ^ w[4*round+j][i];
 }
 }
 return result;

[AMD Public Use]

992

AMD64 Technology 26568—Rev. 3.24—May 2020

}

A.9.3 Matrix to Text Conversion
After processing, the output matrix must be converted to a text block. The Matrix2Text() function
converts a GFMatrix in column-major order to a TextBlock as follows.
TextBlock Matrix2Text(GFMatrix M) {
 TextBlock result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[4*j+i] = M[i][j];
 }
 }
 return result;
}

A.10 An Alternative Decryption Procedure
This section outlines an alternative decrypting procedure,

TextBlock EqDecrypt(TextBlock in, CipherKey key, nat Nk):

TextBlock EqDecrypt(TextBlock in, CipherKey key, nat Nk) {
 return EqInvCipher(in, MixRoundKeys(ExpandKey(key, Nk), Nk), Nk);
}

The procedure is based on a variation of InvCipher,

TextBlock EqInvCipher(TextBlock in, ExpandedKey w, nat Nk):

TextBlock EqInvCipher(TextBlock in, ExpandedKey dw, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 GFMatrix state = Text2Matrix(in);
 state = AddRoundKey(state, dw, Nr);
 for (nat round=Nr-1; round>0; round--) {
 state = InvSubBytes(state);
 state = InvShiftRows(state);
 state = InvMixColumns(state);
 state = AddRoundKey(state, dw, round);
 }
 state = InvSubBytes(state);
 state = InvShiftRows(state);
 state = AddRoundKey(state, dw, 0);
 return Matrix2Text(state);
}

The variant structure more closely resembles that of Cipher. This requires a modification of the
expanded key generated by ExpandKey,

ExpandedKey MixRoundKeys(ExpandedKey w, nat Nk):

[AMD Public Use]

993

26568—Rev. 3.24—May 2020 AMD64 Technology

ExpandedKey MixRoundKeys(ExpandedKey w, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 ExpandedKey result;
 GFMatrix roundKey;
 for (nat round=0; round<Nr+1; round++) {
 for (nat i=0; i<4; i++) {
 roundKey[i] = w[4*round+i];
 }
 if ((round > 0) && (round < Nr)) {
 roundKey = InvMixRows(roundKey);
 }
 for (nat i=0; i<4; i++) {
 result[4*round+i] = roundKey[i];
 }
 }
 return result;
}

The transformation MixRoundKeys leaves K0 and KNr unchanged, but for i = 1,…,Nr – 1, it replaces
Wi with the matrix product Wi Q, where

The effect of this is to replace Ki with

for i = 1,…,Nr – 1.

The equivalence of EqDecrypt and Decrypt follows from two properties of the basic operations:

C is a linear transformation and therefore, so is C–1;

Ʃ and R commute, and hence so do Ʃ–1 and R–1, for if

then

[AMD Public Use]

994

AMD64 Technology 26568—Rev. 3.24—May 2020

Now let X’’ and Y’’ be the initial and final states of an execution of EqDecrypt and let S’’i be the state
following round i . Suppose X’’ = X’. Appealing to the definitions of EqDecrypt and EqInvCipher,
we have

and for i = Nr – 1,…,1, by induction,

Finally,

A.11 Computation of GFInv with Euclidean Greatest
Common Divisor
Note that the operations performed by GFInv() are in the ring 2[X] rather than the quotient field GF.

The initial values of the variables x1 and x2 are the inputs x and 11b, the latter representing the
polynomial p(X). The variables a1 and a2 are initialized to 1 and 0.

=

=

=

=

=

=

=

=

=

[AMD Public Use]

995

26568—Rev. 3.24—May 2020 AMD64 Technology

On each iteration of the loop, a multiple of the lesser of x1 and x2 is added to the other. If x1 ≤ x2, then
the values of x2 and a2 are adjusted as follows:

x2 x2 2s x1

a2 a2 2s a1

where s is the difference in the exponents (i.e., degrees) of x1 and x2 . In the remaining case, x1 and a1
are similarly adjusted. This step is repeated until either x1 = 0 or x2 = 0.

We make the following observations:

• On each iteration, the value added to xi has the same exponent as xi, and hence the sum has lesser
exponent. Therefore, termination is guaranteed.

• Since p(X) is irreducible and x is of smaller degree than p(X), the initial values of x1 and x2 have no
non-trivial common factor. This property is clearly preserved by each step.

• Initially,

x1 a1 x = x x = 0

and

x2 a2 x = 11b 0 = 11b

are both divisible by 11b. This property is also invariant, since, for example, the above assignments
result in

x2 a2 x (x2 2s x1) (a2 2s a1) x = (x2 a2 x) 2s (x1 a1 x).

Now suppose that the loop terminates with x2 = 0. Then x1 has no non-trivial factor and, hence, x1 = 1.
Thus, 1 a1 x is divisible by 11b. Since the final result y is derived by reducing a1 modulo 11b, it
follows that 1 y x is also divisible by 11b and, hence, in the quotient field GF, 1 + y x = 0,
which implies y x = 1.

The computation of the multiplicative inverse utilizing Euclid’s algorithm is as follows:

[AMD Public Use]

996

AMD64 Technology 26568—Rev. 3.24—May 2020

// Computation of multiplicative inverse based on Euclid's algorithm:

GF256 GFInv(GF256 x) {
 if (x == 0) {
 return 0;
 }
 // Initialization:
 nat x1 = x;
 nat x2 = 0x11B; // the irreducible polynomial p(X)
 nat a1 = 1;
 nat a2 = 0;
 nat shift; // difference in exponents
 while ((x1 != 0) && (x2!= 0)) {

 // Termination is guaranteed, since either x1 or x2 decreases on each iteration.
 // We have the following loop invariants, viewing natural numbers as elements of
 // the polynomial ring Z2[X]:
 // (1) x1 and x2 have no common divisor other than 1.
 // (2) x1 ^ GFMul(a1, x) and x2 ^ GFMul(a2, x) are both divisible by p(X).

 if (x1 <= x2) {
 shift = expo(x2) - expo(x1);
 x2 = x2 ^ (x1 << shift);
 a2 = a2 ^ (a1 << shift);
 }
 else {
 shift = expo(x1) - expo(x2);
 x1 = x1 ^ (x2 << shift);
 a1 = a1 ^ (a2 << shift);
 }
 }
 nat y;

 // Since either x1 or x2 is 0, it follows from (1) above that the other is 1.

 if (x1 == 1) { // x2 == 0
 y = a1;
 }
 else if (x2 == 1) { // x1 == 0
 y = a2;
 }
 else {
 assert(false);
 }

 // Now it follows from (2) that GFMul(y, x) ^ 1 is divisible by 0x11b.
 // We need only reduce y modulo 0x11b:

 nat e = expo(y);
 while (e >= 8) {
 y = y ^ (0x11B << (e - 8));
 e = expo(y);
 }
 return y;
}

[AMD Public Use]

997

26568—Rev. 3.24—May 2020 AMD64 Technology

Numeric
128-bit media instruction....................................... xxix
16-bit mode.. xxix
256-bit media instruction....................................... xxix
32-bit mode.. xxix
64-bit media instructions xxix
64-bit mode.. xxix

A
absolute displacement .. xxx
ADDPD.. 23
ADDPS... 25
Address space identifier ... xxx
Address space identifier (ASID).............................. xxx
ADDSD.. 27
ADDSS... 29
ADDSUBPD... 31
ADDSUBPS.. 33
Advanced Encryption Standard (AES).............. xxx, 973

data structures .. 974
decryption... 976, 984, 992
encryption... 976, 984
Euclidean common divisor 994
InvSbox ... 979
operations .. 978
Sbox.. 979

AESDEC .. 35
AESDECLAST ... 37
AESENC .. 39
AESENCLAST ... 41
AESIMC... 43
AESKEYGENASSIST... 45
ANDNPD ... 47
ANDNPS.. 49
ANDPD.. 51
ANDPS... 53
ASID .. xxx
AVX ... xxx

B
biased exponent ... xxx
BLENDPD.. 55
BLENDPS .. 57
BLENDVPD ... 59
BLENDVPS.. 61
byte .. xxx

C
clear.. xxx
cleared .. xxx
CMPPD .. 63
CMPPS ... 67
CMPSD .. 71
CMPSS ... 75
COMISD... 79
COMISS ... 82
commit.. xxx
compatibility mode .. xxx
Current privilege level (CPL).................................. xxx
CVTDQ2PD.. 84
CVTDQ2PS .. 86
CVTPD2DQ.. 88
CVTPD2PS ... 90
CVTPS2DQ .. 92
CVTPS2PD... 94
CVTSD2SI.. 96
CVTSD2SS ... 99
CVTSI2SD.. 101
CVTSI2SS .. 104
CVTSS2SD ... 107
CVTSS2SI .. 109
CVTTPD2DQ.. 112
CVTTPS2DQ .. 115
CVTTSD2SI.. 117
CVTTSS2SI .. 120

D
Definitions ... xxix
direct referencing ... xxx
displacement.. xxx
DIVPD.. 123
DIVPS .. 125
DIVSD.. 127
DIVSS .. 129
double quadword .. xxxi
doubleword .. xxxi
DPPD.. 131
DPPS .. 134

E
effective address size... xxxi
effective operand size .. xxxi
element .. xxxi
endian order.. xxxix

Index

[AMD Public Use]

998

AMD64 Technology 26568—Rev. 3.24—May 2020

exception ... xxxi
exponent ... xxx
extended SSE ... xxxi
extended-register prefix....................................... xxxiv
EXTRQ .. 139

F
flush .. xxxi
FMA.. xxxi
FMA4.. xxxi
four-operand instruction ... 6

G
General notation ... xxviii
Global descriptor table (GDT) xxxi
Global interrupt flag (GIF) xxxii

H
HADDPD ... 141
HADDPS.. 143
HSUBPD .. 146
HSUBPS... 149

I
IGN .. xxxii
immediate operands ... 4
indirect ... xxxii
INSERTPS.. 152
INSERTQ ... 154
instructions

AES .. xxx
Interrupt descriptor table (IDT) xxxii
Interrupt redirection bitmap (IRB)......................... xxxii
Interrupt stack table (IST)..................................... xxxii
Interrupt vector table (IVT) xxxii

L
LDDQU.. 156
LDMXCSR... 158
least significant byte ... xxxiii
least-significant bit.. xxxiii
legacy mode .. xxxii
legacy x86... xxxii
little endian .. xxxix
Local descriptor table (LDT) xxxii
long mode ... xxxii
LSB... xxxiii
lsb ... xxxiii

M
main memory ... xxxiii

mask .. xxxiii
MASKMOVDQU.. 160
MAXPD.. 162
MAXPS .. 165
MAXSD.. 168
MAXSS .. 170
memory.. xxxiii
MINPD ... 172
MINPS.. 175
MINSD ... 178
MINSS.. 180
modes

32-bit .. xxix
64-bit .. xxix
compatibility .. xxx
legacy .. xxxii
long ... xxxii
protected ... xxxiv
real ... xxxiv
virtual-8086... xxxvi

most significant bit.. xxxiii
most significant byte ... xxxiii
MOVAPD.. 182
MOVAPS .. 184
MOVD.. 186
MOVDDUP .. 188
MOVDQA .. 190
MOVDQU .. 192
MOVHLPS ... 194
MOVHPD ... 196
MOVHPS.. 198
MOVLHPS ... 200
MOVLPD ... 202
MOVLPS .. 204
MOVMSKPD.. 206
MOVMSKPS .. 208
MOVNTDQ .. 210
MOVNTDQA.. 212
MOVNTPD... 214
MOVNTPS ... 216
MOVNTSD... 218
MOVNTSS ... 220
MOVQ.. 222
MOVSD.. 224
MOVSHDUP .. 226
MOVSLDUP... 228
MOVSS .. 230
MOVUPD ... 232
MOVUPS.. 234
MPSADBW .. 236
MSB .. xxxiii
msb.. xxxiii

[AMD Public Use]

999

26568—Rev. 3.24—May 2020 AMD64 Technology

MULPD.. 241
MULPS .. 243
MULSD.. 245
MULSS .. 247
Must be zero (MBZ) ... xxxiii

N
Notation

conventions... xxviii
register ... xxxvi

O
octword.. xxxiii
offset ... xxxiii
operands

immediate .. 4
ORPD... 249
ORPS ... 251
overflow .. xxxiii

P
PABSB ... 253
PABSD ... 255
PABSW .. 257
packed ... xxxiii
PACKSSDW ... 259
PACKSSWB ... 261
PACKUSDW .. 263
PACKUSWB... 265
PADDB... 267
PADDD .. 269
PADDQ .. 271
PADDSB... 273
PADDSW.. 275
PADDUSB.. 277
PADDUSW... 279
PADDW.. 281
PALIGNR ... 283
PAND... 285
PANDN .. 287
PAVGB ... 289
PAVGW .. 291
PBLENDVB ... 293
PBLENDW... 295
PCLMULQDQ.. 297
PCMPEQB.. 299
PCMPEQD ... 301
PCMPEQQ ... 303
PCMPEQW... 305
PCMPESTRI... 307
PCMPESTRM... 310
PCMPGTB.. 313

PCMPGTD.. 315
PCMPGTQ.. 317
PCMPGTW... 319
PCMPISTRI .. 321
PCMPISTRM.. 324
PEXTRB... 327
PEXTRD... 329
PEXTRQ... 331
PEXTRW .. 333
PHADDD.. 335
PHADDSW... 337
PHADDUBD... 768
PHADDW... 340
PHMINPOSUW .. 343
PHSUBD .. 345
PHSUBSW.. 347
PHSUBW.. 350
Physical address extension (PAE)......................... xxxiii
physical memory... xxxiv
PINSRB .. 353
PINSRD.. 356
PINSRQ.. 358
PINSRW ... 360
PMADDUBSW ... 362
PMADDWD.. 365
PMAXSB.. 367
PMAXSD.. 369
PMAXSW... 371
PMAXUB ... 373
PMAXUD ... 375
PMAXUW .. 377
PMINSB ... 379
PMINSD ... 381
PMINSW .. 383
PMINUB... 385
PMINUD .. 387
PMINUW.. 389
PMOVMSKB.. 391
PMOVSXBD... 393
PMOVSXBQ... 395
PMOVSXBW.. 397
PMOVSXDQ .. 399
PMOVSXWD.. 401
PMOVSXWQ.. 403
PMOVZXBD .. 405
PMOVZXBQ .. 407
PMOVZXBW.. 409
PMOVZXDQ .. 411
PMOVZXWD ... 413
PMOVZXWQ ... 415
PMULDQ ... 417

[AMD Public Use]

1000

AMD64 Technology 26568—Rev. 3.24—May 2020

PMULHRSW.. 419
PMULHUW.. 421
PMULHW .. 423
PMULLD.. 425
PMULLW ... 427
PMULUDQ... 429
POR ... 431
probe ... xxxiv
protected mode ... xxxiv
PSADBW ... 433
PSHUFB... 435
PSHUFD... 437
PSHUFHW ... 440
PSHUFLW.. 443
PSIGNB.. 446
PSIGND ... 448
PSIGNW... 450
PSLLD ... 452
PSLLDQ... 455
PSLLQ ... 457
PSLLW... 460
PSRAD... 463
PSRAW .. 466
PSRLD ... 469
PSRLDQ... 472
PSRLQ ... 474
PSRLW... 477
PSUBB ... 480
PSUBD... 482
PSUBQ... 484
PSUBSB... 486
PSUBSW.. 488
PSUBUSB .. 490
PSUBUSW ... 492
PSUBW .. 494
PTEST.. 496
PUNPCKHBW.. 498
PUNPCKHDQ .. 501
PUNPCKHQDQ.. 504
PUNPCKHWD.. 507
PUNPCKLBW .. 510
PUNPCKLDQ... 513
PUNPCKLQDQ .. 516
PUNPCKLWD .. 519
PXOR... 522

Q
quadword ... xxxiv

R
RCPPS.. 524

RCPSS.. 526
Read as zero (RAZ)... xxxiv
real address mode. See real mode
real mode ... xxxiv
Register extension prefix (REX)........................... xxxiv
Register notation... xxxvi
relative... xxxiv
Relative instruction pointer (RIP) xxxiv
reserved ... xxxiv
revision history ... xxiii
RIP-relative addressing.. xxxiv
Rip-relative addressing .. xxxiv
ROUNDPD ... 528
ROUNDSD ... 534
ROUNDSS.. 537
ROUNDTPS.. 531
RSQRTPS ... 540
RSQRTSS ... 542

S
SBZ ... xxxiv
scalar .. xxxv
set... xxxv
SHUFPD... 558
SHUFPS ... 561
Single instruction multiple data (SIMD)................. xxxv
SQRTPD ... 564
SQRTPS.. 566
SQRTSD ... 568
SQRTSS.. 570
SSE... xxxv
SSE Instructions

legacy .. xxxii
SSE instructions

AVX .. xxx
SSE1... xxxv
SSE2... xxxv
SSE3... xxxv
SSE4.1 .. xxxv
SSE4.2 .. xxxv
SSE4A .. xxxv
SSSE3... xxxv
sticky bit ... xxxv
STMXCSR.. 572
Streaming SIMD Extensions xxxv
string compare instructions 10
string comparison... 10
SUBPD ... 574
SUBPS.. 576
SUBSD ... 578
SUBSS.. 580

[AMD Public Use]

1001

26568—Rev. 3.24—May 2020 AMD64 Technology

T
Task state segment (TSS)...................................... xxxv
Terminology... xxix
three-operand instruction.. 5
two-operand instruction.. 4

U
UCOMISD.. 582
UCOMISS .. 584
underflow... xxxvi
UNPCKHPD... 586
UNPCKHPS.. 588
UNPCKLPD ... 590
UNPCKLPS.. 592

V
VADDPD.. 23
VADDPS .. 25
VADDSD.. 27
VADDSUBPD... 31
VADDSUBPS ... 33
VADSS ... 29
VAESDEC .. 35
VAESDECLAST ... 37
VAESENC .. 39
VAESENCLAST ... 41
VAESIMC... 43
VAESKEYGENASSIST .. 45
VANDNPD ... 47
VANDNPS.. 49
VANDPD.. 51
VANDPS .. 53
VBLENDPD ... 55
VBLENDPS.. 57
VBLENDVPD... 59
VBLENDVPS ... 61
VBROADCASTF128 .. 594
VBROADCASTI128 ... 596
VBROADCASTSD ... 598
VBROADCASTSS.. 600
VCMPPD.. 63
VCMPPS .. 67
VCMPSD.. 71
VCMPSS .. 75
VCOMISD.. 79
VCOMISS .. 82
VCVTDQ2PD... 84
VCVTDQ2PS.. 86
VCVTPD2DQ... 88
VCVTPD2PS .. 90
VCVTPH2PS .. 602

VCVTPS2DQ.. 92
VCVTPS2PD .. 94
VCVTPS2PH .. 605
VCVTSD2SI ... 96
VCVTSD2SS .. 99
VCVTSI2SD ... 101
VCVTSI2SS.. 104
VCVTSS2SD .. 107
VCVTSS2SI.. 109
VCVTTPD2DQ... 112
VCVTTPS2DQ.. 115
VCVTTSD2SI ... 117
VCVTTSS2SI.. 120
VDIVPD ... 123
VDIVPS.. 125
VDIVSD ... 127
VDIVSS.. 129
VDPPD... 131
VDPPS ... 134
vector... xxxvi
VEX prefix... xxxvi
VEXTRACT128.. 609
VEXTRACTI128... 611
VFMADD132PD... 613
VFMADD132PS.. 616
VFMADD132SD... 619
VFMADD132SS.. 622
VFMADD213PD... 613
VFMADD213PS.. 616
VFMADD213SD... 619
VFMADD213SS.. 622
VFMADD231PD... 613
VFMADD231PS.. 616
VFMADD231SD... 619
VFMADD231SS.. 622
VFMADDPD .. 613
VFMADDPS... 616
VFMADDSD .. 619
VFMADDSS... 622
VFMADDSUB132PD.. 625
VFMADDSUB132PS .. 628
VFMADDSUB213PD.. 625
VFMADDSUB213PS .. 628
VFMADDSUB231PD.. 625
VFMADDSUB231PS .. 628
VFMADDSUBPD ... 625
VFMADDSUBPS.. 628
VFMSUB132PD.. 637
VFMSUB132PS .. 640
VFMSUB132SD.. 643
VFMSUB132SS .. 646

[AMD Public Use]

1002

AMD64 Technology 26568—Rev. 3.24—May 2020

VFMSUB213PD ... 637
VFMSUB213PS .. 640
VFMSUB213SD ... 643
VFMSUB213SS .. 646
VFMSUB231PD ... 637
VFMSUB231PS .. 640
VFMSUB231SD ... 643
VFMSUB231SS .. 646
VFMSUBADD132PD.. 631
VFMSUBADD132PS .. 634
VFMSUBADD213PD.. 631
VFMSUBADD213PS .. 634
VFMSUBADD231PD.. 631
VFMSUBADD231PS .. 634
VFMSUBADDPD ... 631
VFMSUBADDPS.. 634
VFMSUBPD... 637
VFMSUBPS.. 640
VFMSUBSD... 643
VFMSUBSS.. 646
VFNMADD132PD .. 649
VFNMADD132PS... 652
VFNMADD132SS... 658
VFNMADD213PD .. 649
VFNMADD213PS... 652
VFNMADD213SS... 658
VFNMADD231PD .. 649
VFNMADD231PS... 652
VFNMADD231SS... 658
VFNMADDPD.. 649
VFNMADDPS .. 652
VFNMADDSD.. 655
VFNMADDSS .. 658
VFNMSUB132PD... 661
VFNMSUB132PS ... 664
VFNMSUB132SD... 667
VFNMSUB132SS ... 670
VFNMSUB213PD... 661
VFNMSUB213PS ... 664
VFNMSUB213SD... 667
VFNMSUB213SS ... 670
VFNMSUB231PD... 661
VFNMSUB231PS ... 664
VFNMSUB231SD... 667
VFNMSUB231SS ... 670
VFNMSUBPD .. 661
VFNMSUBPS... 664
VFNMSUBSD .. 667
VFNMSUBSS... 670
VFRCZPD .. 673
VFRCZPS... 675

VFRCZSD .. 677
VFRCZSS ... 679
VGATHERDPD... 681
VGATHERDPS ... 683
VGATHERQPD... 685
VGATHERQPS ... 687
VHADDPD ... 141
VHADDPS.. 143
VHSUBPD.. 146
VHSUBPS .. 149
VINSERTF128 .. 689
VINSERTI128 ... 691
VINSERTPS.. 152
Virtual machine control block (VMCB) xxxvi
Virtual machine monitor (VMM).......................... xxxvi
virtual-8086 mode... xxxvi
VLDDQU ... 156
VLDMXCSR... 158
VMASKMOVDQU ... 160
VMASKMOVPD... 693
VMASKMOVPS ... 695
VMAXPD ... 162
VMAXPS.. 165
VMAXSD ... 168
VMAXSS.. 170
VMINPD .. 172
VMINPS ... 175
VMINSD .. 178
VMINSS ... 180
VMOVAPS ... 184
VMOVD ... 186
VMOVDDUP.. 188
VMOVDQA.. 190
VMOVDQU.. 192
VMOVHLPS... 194
VMOVHPD .. 196
VMOVHPS... 198
VMOVLHPS... 200
VMOVLPD... 202
VMOVLPS ... 204
VMOVMSKPD ... 206
VMOVMSKPS.. 208
VMOVNTDQ.. 210
VMOVNTDQA... 212
VMOVNTPD .. 214
VMOVNTPS... 216
VMOVQ ... 222
VMOVSD ... 224
VMOVSHDUP.. 226
VMOVSLDUP .. 228
VMOVSS.. 230

[AMD Public Use]

1003

26568—Rev. 3.24—May 2020 AMD64 Technology

VMOVUPD .. 232
VMOVUPS... 234
VMPSADBW.. 236
VMULPD ... 241
VMULPS.. 243
VMULSD ... 245
VMULSS.. 247
VORPD .. 249
VORPS... 251
VPABSB... 253
VPABSD... 255
VPABSW.. 257
VPACKSSDW .. 259
VPACKSSWB... 261
VPACKUSDW.. 263
VPACKUSWB .. 265
VPADDD.. 269
VPADDQ.. 271
VPADDSB.. 273
VPADDSW... 275
VPADDUSB ... 277
VPADDUSW .. 279
VPADDW... 281
VPALIGNR... 283
VPAND .. 285
VPANDN.. 287
VPAVGB .. 289
VPAVGW ... 291
VPBLENDD ... 697
VPBLENDVB... 293
VPBLENDW .. 295
VPBROADCASTB ... 699
VPBROADCASTD ... 701
VPBROADCASTQ ... 703
VPBROADCASTW .. 705
VPCLMULQDQ ... 297
VPCMOV ... 707
VPCMPEQB... 299
VPCMPEQD... 301
VPCMPEQQ... 303
VPCMPEQW.. 305
VPCMPESTRI .. 307
VPCMPESTRM .. 310
VPCMPGTB... 313
VPCMPGTD... 315
VPCMPGTQ... 317
VPCMPGTW.. 319
VPCMPISTRI ... 321
VPCMPISTRM ... 324
VPCOMB ... 709
VPCOMD ... 711

VPCOMQ ... 713
VPCOMUB... 715
VPCOMUD... 717
VPCOMUQ... 719
VPCOMUW.. 721
VPCOMW .. 723
VPERM2F128 ... 725
VPERM2I128.. 727
VPERMD.. 729
VPERMIL2PD .. 731
VPERMIL2PS ... 735
VPERMILPD .. 739
VPERMILPS... 742
VPERMPD.. 746
VPERMPS .. 748
VPERMQ.. 750
VPEXTRB .. 327
VPEXTRD .. 329
VPEXTRQ .. 331
VPEXTRW ... 333
VPGATHERDD... 752
VPGATHERDQ... 754
VPGATHERQD... 756
VPGATHERQQ... 758
VPHADDBD... 760
VPHADDBQ... 762
VPHADDBW.. 764
VPHADDD ... 335
VPHADDDQ .. 766
VPHADDSW .. 337
VPHADDUBQ.. 770
VPHADDUBW ... 772
VPHADDUDQ.. 774
VPHADDUWD... 776
VPHADDUWQ... 778
VPHADDW .. 340
VPHADDWD.. 780
VPHADDWQ.. 782
VPHMINPOSUW.. 343
VPHSUBBW... 784
VPHSUBD.. 345
VPHSUBDQ ... 786
VPHSUBSW... 347
VPHSUBW... 350
VPHSUBWD .. 788
VPINSRB ... 353
VPINSRD ... 356
VPINSRQ ... 358
VPINSRW... 360
VPMACSDD... 790
VPMACSDQH.. 792

[AMD Public Use]

1004

AMD64 Technology 26568—Rev. 3.24—May 2020

VPMACSDQL .. 794
VPMACSSDD .. 796
VPMACSSDQL .. 800
VPMACSSQH .. 798
VPMACSSWD.. 802
VPMACSSWW... 804
VPMACSWD.. 806
VPMACSWW... 808
VPMADCSSWD... 810
VPMADCSWD... 812
VPMADDUBSW .. 362
VPMADDWD... 365
VPMASKMOVD .. 814
VPMASKMOVQ .. 816
VPMAXSB... 367
VPMAXSD... 369
VPMAXSW.. 371
VPMAXUB .. 373
VPMAXUD .. 375
VPMAXUW ... 377
VPMINSB .. 379
VPMINSD .. 381
VPMINSW ... 383
VPMINUB.. 385
VPMINUD.. 387
VPMINUW... 389
VPMOVMSKB ... 391
VPMOVSXBD.. 393
VPMOVSXBQ.. 395
VPMOVSXBW... 397
VPMOVSXDQ.. 399
VPMOVSXWD... 401
VPMOVSXWQ... 403
VPMOVZXBD.. 405
VPMOVZXBQ.. 407
VPMOVZXBW... 409
VPMOVZXDQ ... 411
VPMOVZXWD... 413
VPMOVZXWQ... 415
VPMULDQ... 417
VPMULHRSW ... 419
VPMULHUW ... 421
VPMULHW.. 423
VPMULLD ... 425
VPMULLW .. 427
VPMULUDQ.. 429
VPOR... 431
VPPERM.. 818
VPROTB .. 820
VPROTD.. 822
VPROTQ.. 824

VPROTW ... 826
VPSADBW... 433
VPSHAB .. 828
VPSHAD .. 830
VPSHAQ .. 832
VPSHAW.. 834
VPSHLB... 836
VPSHLD... 838
VPSHLQ... 840
VPSHLW .. 842
VPSHUFB .. 435
VPSHUFD .. 437
VPSHUFHW... 440
VPSHUFLW ... 443
VPSIGNB ... 446
VPSIGND ... 448
VPSIGNW .. 450
VPSLLD ... 452
VPSLLDQ .. 455
VPSLLQ ... 457
VPSLLVD... 844
VPSLLVQ... 846
VPSLLW... 460
VPSRAD .. 463
VPSRAVD .. 848
VPSRAW.. 466
VPSRLD... 469
VPSRLDQ .. 472
VPSRLQ... 474
VPSRLVD... 850
VPSRLVQ... 852
VPSRLW .. 477
VPSUBB... 480
VPSUBD .. 482
VPSUBQ .. 484
VPSUBSB... 486
VPSUBSW.. 488
VPSUBUSB.. 490
VPSUBUSW... 492
VPSUBW.. 494
VPTEST ... 496
VPUNPCKHBW ... 498
VPUNPCKHDQ.. 501
VPUNPCKHQDQ ... 504
VPUNPCKHWD ... 507
VPUNPCKLBW.. 510
VPUNPCKLDQ .. 513
VPUNPCKLQDQ.. 516
VPUNPCKLWD.. 519
VPXOR .. 522
VRCPPS ... 524

[AMD Public Use]

1005

26568—Rev. 3.24—May 2020 AMD64 Technology

VRCPSS ... 526
VROUNDPD .. 528
VROUNDPS... 531
VROUNDSD .. 534
VROUNDSS... 537
VRSQRTPS .. 540
VRSQRTSS .. 542
VSHUFPD.. 558
VSHUFPS... 561
VSQRTPD .. 564
VSQRTPS... 566
VSQRTSD .. 568
VSQRTSS... 570
VSTMXCSR... 572
VSUBPD .. 574
VSUBPS... 576
VSUBSD .. 578
VSUBSS... 580
VTESTPD... 854
VTESTPS ... 856
VUCOMISD ... 582
VUCOMISS.. 584
VUNPCKHPD .. 586
VUNPCKHPS... 588
VUNPCKLPD... 590
VUNPCKLPS ... 592
VXORPD.. 861
VXORPS .. 863
VZEROALL ... 858
VZEROUPPER ... 859

W
word .. xxxvi

X
x86 .. xxxvi
XGETBV.. 860
XOP instructions... xxxvi
XOP prefix... xxxvi
XORPD .. 861
XORPS... 863
XRSTOR .. 865
XSAVE... 869
XSAVEOPT .. 873
XSETBV .. 877

[AMD Public Use]

Advanced Micro Devices

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 5:
64-Bit Media and

x87 Floating-Point
Instructions

Publication No. Revision Date
26569 3.13 May 2013

[AMD Public Use]

AMD64 Technology 26569—Rev. 3.13—May 2013

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, and 3DNow! are trademarks,
and AMD-K6 is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2002–2013 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

[AMD Public Use]

Contents iii

26569—Rev. 3.13—May 2013 AMD64 Technology

Contents

Contents . iii

Figures. ix

Tables . xi

Revision History . xiii

Preface. xv
About This Book. xv
Audience . xv
Organization . xv
Conventions and Definitions . xvi
Related Documents . xxviii

1 64-Bit Media Instruction Reference. .1
CVTPD2PI. 3
CVTPI2PD. 6
CVTPI2PS . 8
CVTPS2PI . 10
CVTTPD2PI . 12
CVTTPS2PI. 15
EMMS . 17
FEMMS . 18
FRSTOR . 20
FSAVE
(FNSAVE) . 22
FXRSTOR . 24
FXSAVE . 26
MASKMOVQ . 28
MOVD . 31
MOVDQ2Q . 34
MOVNTQ . 36
MOVQ . 38
MOVQ2DQ . 40
PACKSSDW . 42
PACKSSWB . 44
PACKUSWB . 46
PADDB . 48
PADDD . 50
PADDQ . 52
PADDSB . 54
PADDSW. 56
PADDUSB . 58
PADDUSW . 60
PADDW . 62

[AMD Public Use]

iv Contents

AMD64 Technology 26569—Rev. 3.13—May 2013

PAND. 64
PANDN . 66
PAVGB. 68
PAVGUSB . 70
PAVGW . 72
PCMPEQB. 74
PCMPEQD . 76
PCMPEQW . 78
PCMPGTB. 80
PCMPGTD . 82
PCMPGTW . 84
PEXTRW . 86
PF2ID. 88
PF2IW . 90
PFACC. 92
PFADD. 94
PFCMPEQ . 96
PFCMPGE . 98
PFCMPGT . 101
PFMAX . 103
PFMIN . 105
PFMUL . 107
PFNACC . 109
PFPNACC . 112
PFRCP . 115
PFRCPIT1 . 118
PFRCPIT2 . 121
PFRSQIT1 . 124
PFRSQRT . 127
PFSUB . 130
PFSUBR . 132
PI2FD. 134
PI2FW . 136
PINSRW . 138
PMADDWD . 140
PMAXSW . 142
PMAXUB . 144
PMINSW . 146
PMINUB . 148
PMOVMSKB . 150
PMULHRW . 152
PMULHUW. 154
PMULHW . 156
PMULLW . 158
PMULUDQ . 160
POR . 162
PSADBW. 164

[AMD Public Use]

Contents v

26569—Rev. 3.13—May 2013 AMD64 Technology

PSHUFW . 166
PSLLD . 169
PSLLQ . 171
PSLLW. 173
PSRAD . 175
PSRAW . 177
PSRLD. 179
PSRLQ. 181
PSRLW . 183
PSUBB. 185
PSUBD . 187
PSUBQ . 189
PSUBSB . 191
PSUBSW . 193
PSUBUSB . 195
PSUBUSW . 197
PSUBW . 199
PSWAPD . 201
PUNPCKHBW . 203
PUNPCKHDQ. 205
PUNPCKHWD . 207
PUNPCKLBW. 209
PUNPCKLDQ . 211
PUNPCKLWD. 213
PXOR. 215

2 x87 Floating-Point Instruction Reference .217
F2XM1. 219
FABS . 221
FADD
FADDP
FIADD . 223
FBLD . 226
FBSTP . 228
FCHS . 230
FCLEX
(FNCLEX) . 231
FCMOVcc . 233
FCOM
FCOMP
FCOMPP . 235
FCOMI
FCOMIP . 238
FCOS . 240
FDECSTP . 242
FDIV
FDIVP
FIDIV. 244

[AMD Public Use]

vi Contents

AMD64 Technology 26569—Rev. 3.13—May 2013

FDIVR
FDIVRP
FIDIVR . 247
FFREE . 250
FICOM
FICOMP . 251
FILD . 253
FINCSTP . 255
FINIT
FNINIT . 257
FIST
FISTP. 259
FISTTP . 262
FLD . 264
FLD1 . 266
FLDCW . 267
FLDENV . 269
FLDL2E. 271
FLDL2T. 272
FLDLG2 . 273
FLDLN2 . 274
FLDPI . 275
FLDZ . 276
FMUL
FMULP
FIMUL. 277
FNOP . 280
FPATAN. 281
FPREM . 283
FPREM1 . 285
FPTAN. 287
FRNDINT . 289
FRSTOR . 291
FSAVE
FNSAVE . 293
FSCALE . 295
FSIN. 297
FSINCOS. 299
FSQRT . 301
FST
FSTP . 303
FSTCW
(FNSTCW) . 305
FSTENV
(FNSTENV). 307
FSTSW
(FNSTSW). 309

[AMD Public Use]

Contents vii

26569—Rev. 3.13—May 2013 AMD64 Technology

FSUB
FSUBP
FISUB . 311
FSUBR
FSUBRP
FISUBR . 314
FTST . 317
FUCOM
FUCOMP
FUCOMPP. 318
FUCOMI
FUCOMIP . 320
FWAIT
(WAIT). 322
FXAM . 323
FXCH. 325
FXRSTOR . 326
FXSAVE . 328
FXTRACT . 330
FYL2X. 332
FYL2XP1. 334

Appendix A Recommended Substitutions for 3DNow!™ Instructions 337

Index . 339

[AMD Public Use]

viii Contents

AMD64 Technology 26569—Rev. 3.13—May 2013

[AMD Public Use]

Figures ix

26569—Rev. 3.13—May 2013 AMD64 Technology

Figures
Figure 1-1. Diagram Conventions for 64-Bit Media Instructions . 1

[AMD Public Use]

x Figures

AMD64 Technology 26569—Rev. 3.13—May 2013

[AMD Public Use]

Tables xi

26569—Rev. 3.13—May 2013 AMD64 Technology

Tables
Table 1-1. Immediate-Byte Operand Encoding for 64-Bit PEXTRW . 86
Table 1-2. Numeric Range for PF2ID Results . 89
Table 1-3. Numeric Range for PF2IW Results . 91
Table 1-4. Numeric Range for PFACC Results . 93
Table 1-5. Numeric Range for the PFADD Results . 95
Table 1-6. Numeric Range for the PFCMPEQ Instruction . 97
Table 1-7. Numeric Range for the PFCMPGE Instruction . 99
Table 1-8. Numeric Range for the PFCMPGT Instruction . 102
Table 1-9. Numeric Range for the PFMAX Instruction. 104
Table 1-10. Numeric Range for the PFMIN Instruction . 106
Table 1-11. Numeric Range for the PFMUL Instruction . 108
Table 1-12. Numeric Range of PFNACC Results . 110
Table 1-13. Numeric Range of PFPNACC Result (Low Result) . 113
Table 1-14. Numeric Range of PFPNACC Result (High Result) . 113
Table 1-15. Numeric Range for the PFRCP Result . 116
Table 1-16. Numeric Range for the PFRCP Result . 128
Table 1-17. Numeric Range for the PFSUB Results . 131
Table 1-18. Numeric Range for the PFSUBR Results . 133
Table 1-19. Immediate-Byte Operand Encoding for 64-Bit PINSRW. 138
Table 1-20. Immediate-Byte Operand Encoding for PSHUFW. 167
Table 2-1. Storing Numbers as Integers . 259
Table 2-2. Storing Numbers as Integers . 262
Table 2-3. Computing Arctangent of Numbers . 281

[AMD Public Use]

xii Tables

AMD64 Technology 26569—Rev. 3.13—May 2013

[AMD Public Use]

Revision History xiii

26569—Rev. 3.13—May 2013 AMD64 Technology

Revision History

Date Revision Description

May 2013 3.13
Corrected CPUID function and feature bit called out in text for
FXSAVE/FXRSTOR optimization. Made other corrections and
clarifications related to the specification of feature bits.

March 2012 3.12 Clarified exception and trap behavior for MASKMOVQ

December
2009 3.11

Revised FCOM, FCOMP, FCOMPP and FCOMI, FCOMIP instruction
pages.
Corrected exception tables for FPREM and FPREM1.

April 2009 3.10 Revised FCOM, FCOMP, FCOMPP description. Corrected FISTTP
exception table.

September
2007 3.09 Added minor clarifications and corrected typographical and

formatting errors.

July 2007 3.08

Added misaligned access support to applicable instructions.
Deprecated 3DNow!™ instructions. Added Appendix
A, ”Recommended Substitutions for 3DNow!™ Instructions,” on
page 337.
Added minor clarifications and corrected typographical and
formatting errors.

September
2006 3.07 Added minor clarifications and corrected typographical and

formatting errors.

December
2005 3.06 Added minor clarifications and corrected typographical and

formatting errors.

December
2004 3.05

Added FISTTP instruction (SSE3). Updated CPUID information in
exception tables. Corrected several typographical and formatting
errors.

September
2003 3.04

Clarified x87 condition codes for FPREM and FPREM1 instructions.
Corrected tables of numeric ranges for results of PF2ID and PF2IW
instructions.

April 2003 3.03
Corrected numerous typos and stylistic errors. Corrected description
of FYL2XP1 instruction. Clarified the description of the FXRSTOR
instruction.

[AMD Public Use]

xiv Revision History

AMD64 Technology 26569—Rev. 3.13—May 2013

[AMD Public Use]

Preface xv

26569—Rev. 3.13—May 2013 AMD64 Technology

Preface

About This Book
This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience
This volume (Volume 5) is intended for all programmers writing application or system software for a
processor that implements the AMD64 processor architecture.

Organization
Volumes 3, 4, and 5 describe the AMD64 instruction set in detail. Together, they cover each
instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

• General-purpose instructions
• System instructions
• 128-bit and 256-bit media instructions (Streaming SIMD Extensions – SSE)
• 64-bit media instructions (MMX™)
• x87 floating-point instructions

A number of instructions belong to—and are described identically in—multiple instruction subsets.

This volume describes the 64-bit media and x87 floating-point instructions. The index at the end cross-
references topics within this volume. For other topics relating to the AMD64 architecture, and for
information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

[AMD Public Use]

xvi Preface

AMD64 Technology 26569—Rev. 3.13—May 2013

Conventions and Definitions
The following section Notational Conventions describes notational conventions used in this volume
and in the remaining volumes of this AMD64 Architecture Programmer’s Manual. This is followed by
a Definitions section which lists a number of terms used in the manual along with their technical
definitions. Finally, the Registers section lists the registers which are a part of the application
programming model.

Notational Conventions

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value—in this example, a 4-bit value.

F0EA_0B02h
A hexadecimal value. Underscore characters may be inserted to improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]
Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “_RRR” notation is followed by
“_xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CR0–CR4
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0[PE]
Notation for referring to a field within a register—in this case, the PE field of the CR0 register.

CR0[PE] = 1
The PE field of the CR0 register is set (contains the value 1).

[AMD Public Use]

Preface xvii

26569—Rev. 3.13—May 2013 AMD64 Technology

EFER[LME] = 0
The LME field of the EFER register is cleared (contains a value of 0).

DS:SI
A far pointer or logical address. The real address or segment descriptor specified by the segment
register (DS in this example) is combined with the offset contained in the second register (SI in this
example) to form a real or virtual address.

RFLAGS[13:12]
A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents” on page xxviii for descriptions of the legacy x86 architecture.

128-bit media instructions
Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instructions
Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions
Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX and 3DNow!™ instruction sets and their extensions, with some additional instructions from
the SSE1 and SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute
Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

[AMD Public Use]

xviii Preface

AMD64 Technology 26569—Rev. 3.13—May 2013

AES
Advance Encryption Standard (AES) algorithm acceleration instructions; part of Streaming SIMD
Extensions (SSE).

ASID
Address space identifier.

AVX
Extension of the SSE instruction set supporting 256-bit vector (packed) operands. See Streaming
SIMD Extensions.

biased exponent
The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct
Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement
A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

[AMD Public Use]

Preface xix

26569—Rev. 3.13—May 2013 AMD64 Technology

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size
The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except SSE
floating-point exceptions and x87 floating-point exceptions, control is transferred to the handler
(or service routine) for that exception, as defined by the exception’s vector. For floating-point
exceptions defined by the IEEE 754 standard, there are both masked and unmasked responses.
When unmasked, the exception handler is called, and when masked, a default response is provided
instead of calling the handler.

extended SSE
Enhanced set of SIMD instructions supporting 256-bit vector data types and allowing the
specification of up to four operands. A subset of the Streaming SIMD Extensions (SSE). Includes
the AVX, FMA, FMA4, and XOP instructions. Compare legacy SSE.

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

FMA4
Fused Multiply Add, four operand. Part of the extended SSE instruction set.

FMA
Fused Multiply Add. Part of the extended SSE instruction set.

GDT
Global descriptor table.

[AMD Public Use]

xx Preface

AMD64 Technology 26569—Rev. 3.13—May 2013

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN
Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on page xxviii for descriptions of the
legacy x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

legacy SSE
A subset of the Streaming SIMD Extensions (SSE) composed of the SSE1, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, and SSE4A instruction sets. Compare extended SSE.

long mode
An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

[AMD Public Use]

Preface xxi

26569—Rev. 3.13—May 2013 AMD64 Technology

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs. See reserved.

memory
Unless otherwise specified, main memory.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
Those instructions that operate simultaneously on multiple elements within a vector data type.
Comprises the 256-bit media instructions, 128-bit media instructions, and 64-bit media
instructions.

octword
Same as double quadword.

offset
Same as displacement.

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

[AMD Public Use]

xxii Preface

AMD64 Technology 26569—Rev. 3.13—May 2013

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. (See reserved)

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.
To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.
If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.
Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX
An instruction encoding prefix that specifies a 64-bit operand size and provides access to
additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

[AMD Public Use]

Preface xxiii

26569—Rev. 3.13—May 2013 AMD64 Technology

SBZ
Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

scalar
An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD
Single instruction, multiple data. See vector.

Streaming SIMD Extensions (SSE)
Instructions that operate on scalar or vector (packed) integer and floating point numbers. The SSE
instruction set comprises the legacy SSE and extended SSE instruction sets.

SSE1
Original SSE instruction set. Includes instructions that operate on vector operands in both the
MMX and the XMM registers.

SSE2
Extensions to the SSE instruction set.

SSE3
Further extensions to the SSE instruction set.

SSSE3
Further extensions to the SSE instruction set.

SSE4.1
Further extensions to the SSE instruction set.

SSE4.2
Further extensions to the SSE instruction set.

SSE4A
A minor extension to the SSE instruction set adding the instructions EXTRQ, INSERTQ,
MOVNTSS, and MOVNTSD.

[AMD Public Use]

xxiv Preface

AMD64 Technology 26569—Rev. 3.13—May 2013

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the media instructions support vectors as operands. Vectors are also called packed or
SIMD (single-instruction multiple-data) operands.
(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

VEX
An instruction encoding escape prefix that opens a new extended instruction encoding space,
specifies a 64-bit operand size, and provides access to additional registers. See XOP prefix.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

XOP instructions
Part of the extended SSE instruction set using the XOP prefix. See Streaming SIMD Extensions.

XOP prefix
Extended instruction identifier prefix, used by XOP instructions allowing the specification of up to
four operands and 128 or 256-bit operand widths.

[AMD Public Use]

Preface xxv

26569—Rev. 3.13—May 2013 AMD64 Technology

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

EBP
Extended base pointer register.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

[AMD Public Use]

xxvi Preface

AMD64 Technology 26569—Rev. 3.13—May 2013

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

[AMD Public Use]

Preface xxvii

26569—Rev. 3.13—May 2013 AMD64 Technology

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register (CR8), a new register introduced in the AMD64 architecture to speed
interrupt management.

TR
Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

[AMD Public Use]

xxviii Preface

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.
• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood

Cliffs, NJ, 1991.
• AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
• AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.
• AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.
• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New

York, 1995.
• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,

1992.
• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,

Macmillan Publishing Co., New York, 1994.
• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,

Prentice-Hall, Englewood Cliffs, NJ, 1995.
• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.
• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest

McGraw-Hill, 1993.
• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.
• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and

Technologies, Inc., San Jose, 1992.
• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.
• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,

1995.
• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.
• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,

TX, 1996.
• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.
• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,

NY, 1991.
• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New

York, 1991.
• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.
• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,

San Mateo, CA, 1996.
• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

[AMD Public Use]

Preface xxix

26569—Rev. 3.13—May 2013 AMD64 Technology

• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.
• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel

Pentium, Oxford University Press, New York, 1999.
• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &

Sons, New York, 1987.
• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.
• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium III,

www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.
• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,

Redmond, WA, 1993.
• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.
• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,

New York, 1993.
• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite

class, 1992.
• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.
• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson

Corporation, 1995.

[AMD Public Use]

xxx Preface

AMD64 Technology 26569—Rev. 3.13—May 2013

• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
• Web sites and newsgroups:

- www.amd.com
- news.comp.arch
- news.comp.lang.asm.x86
- news.intel.microprocessors
- news.microsoft

[AMD Public Use]

64-Bit Media 1
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

1 64-Bit Media Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the 64-bit media instructions. These instructions operate on data located in the
64-bit MMX registers. Most of the instructions operate in parallel on sets of packed elements called
vectors, although some operate on scalars. The instructions define both integer and floating-point
operations, and include the legacy MMX™ instructions, the 3DNow!™ instructions, and the AMD
extensions to the MMX and 3DNow! instruction sets.

Each instruction that performs a vector (packed) operation is illustrated with a diagram. Figure 1-1 on
page 1 shows the conventions used in these diagrams. The particular diagram shows the PSLLW
(packed shift left logical words) instruction.

Figure 1-1. Diagram Conventions for 64-Bit Media Instructions

Gray areas in diagrams indicate unmodified operand bits.

shift left

mmx1 mmx2/mem64

shift left

. .

. .
63 04748 15163132

. .

63 04748 15163132

513-324.eps

Ellipses indicate that the operation
is repeated for each element of the
source vectors. In this case, there are
4 elements in each source vector, so
the operation is performed 4 times,
in parallel.

Arrowheads coming from a source operand
indicate that the source operand provides
a control function. In this case, the second
source operand specifies the number of bits
to shift, and the first source operand specifies
the data to be shifted.

Arrowheads going to a source operand
indicate the writing of the result. In this
case, the result is written to the first source
operand, which is also the destination operand.

First Source Operand
(and Destination Operand) Second Source Operand

Operation. In this case,
a bitwise shift-left.

File name of
this figure (for
documentation
control)

[AMD Public Use]

2 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Like the 128-bit media instructions, many of the 64-bit instructions independently and simultaneously
perform a single operation on multiple elements of a vector and are thus classified as single-
instruction, multiple-data (SIMD) instructions. A few 64-bit media instructions convert operands in
MMX registers to operands in GPR, XMM, or x87 registers (or vice versa), or save or restore MMX
state, or reset x87state.

Hardware support of the MMX instruction set and specific optional extensions can be determined by
testing specific bits of the value returned in EDX by the CPUID instruction. If a specific bit is set in the
return value, the feature is supported on the processor. The following lists the CPUID function
numbers and feature bits indicating support for these features:

• MMX Instructions, indicated by EDX[23] returned by CPUID function 0000_0001h and function
8000_0001h.

• AMD Extensions to MMX Instructions, indicated by EDX[22] of CPUID function 8000_0001h.
• SSE1, indicated by EDX[25] of CPUID function 0000_0001h.
• SSE2, indicated by EDX[26] of CPUID function 0000_0001h.
• AMD 3DNow! Instructions, indicated by EDX[31] of CPUID function 8000_0001h.
• AMD Extensions to 3DNow! Instructions, indicated by EDX[30] of CPUID function 8000_0001h.
• FXSAVE and FXRSTOR, indicated by EDX[24] of CPUID function 0000_0001h and function

8000_0001h.

The 64-bit media instructions can be used in legacy mode or long mode. Their use in long mode is
available if the following CPUID function return bit is set:

• Long Mode, indicated by EDX[29] of CPUID function 8000_0001h.

For more information on using the CPUID instruction, see the instruction description in Volume 3.

Compilation of 64-bit media programs for execution in 64-bit mode offers four primary advantages:
access to the eight extended, 64-bit general-purpose registers (for a register set consisting of
GPR0–GPR15), access to the eight extended XMM registers (for a register set consisting of
XMM0–XMM15), access to the 64-bit virtual address space, and access to the RIP-relative addressing
mode.

For further information, see:

• “64-Bit Media Programming” in Volume 1.
• “Summary of Registers and Data Types” in Volume 3.
• “Notation” in Volume 3.
• “Instruction Prefixes” in Volume 3.

[AMD Public Use]

64-Bit Media CVTPD2PI 3
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed 32-bit signed integer values and writes the converted values in an MMX
register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPD2PI instruction is an SSE2 instruction. Support for this instruction set is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1. Support for misaligned 16-byte memory accesses is indicated
by CPUID Fn8000_0001_ECX[MisAlignSse] = 1.

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

CVTPD2PI Convert Packed Double-Precision Floating-Point to
Packed Doubleword Integers

Mnemonic Opcode Description

CVTPD2PI mmx, xmm2/mem128 66 0F 2D /r
Converts packed double-precision floating-point
values in an XMM register or 128-bit memory location
to packed doubleword integers values in the
destination MMX register.

cvtpd2pi.eps

127 63 0643132

xmm/mem128mmx

convert
convert

63 0

[AMD Public Use]

4 CVTPD2PI 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM = 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM = 1.

x87 floating-point
exception pending, #MF X X X An exception is pending due to an x87 floating-point

instruction.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

[AMD Public Use]

64-Bit Media CVTPD2PI 5
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

6 CVTPI2PD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit memory location to
two double-precision floating-point values and writes the converted values in an XMM register.

The CVTPI2PD instruction is an SSE2 instruction. Supprt for this instruction set is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

None

CVTPI2PD Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point

Mnemonic Opcode Description

CVTPI2PD xmm, mmx/mem64 66 0F 2A /r
Converts two packed doubleword integer values in an
MMX register or 64-bit memory location to two packed
double-precision floating-point values in the destination
XMM register.

cvtpi2pd.eps

127 63 064 3132

mmx/mem64xmm

convert
convert

63 0

[AMD Public Use]

64-Bit Media CVTPI2PD 7
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed
while alignment checking was enabled.

[AMD Public Use]

8 CVTPI2PS 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit memory location to
two single-precision floating-point values and writes the converted values in the low-order 64 bits of
an XMM register. The high-order 64 bits of the XMM register are not modified.

The CVTPI2PS instruction is an SSE1 instruction. Supprt for this instruction set is indicated by
CPUID Fn0000_0001_EDX[SSE] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Related Instructions

CVTDQ2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

MXCSR Flags Affected

CVTPI2PS Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point

Mnemonic Opcode Description

CVTPI2PS xmm, mmx/mem64 0F 2A /r
Converts packed doubleword integer values in an MMX
register or 64-bit memory location to single-precision
floating-point values in the destination XMM register.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

cvtpi2ps.eps

3132

mmx/mem64xmm

convert
convert

63 0127 63 064 3132

[AMD Public Use]

64-Bit Media CVTPI2PS 9
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X
There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0. See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions
Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

[AMD Public Use]

10 CVTPS2PI 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts two packed single-precision floating-point values in the low-order 64 bits of an XMM
register or a 64-bit memory location to two packed 32-bit signed integers and writes the converted
values in an MMX register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPS2PI instruction is an SSE1 instruction. Supprt for this instruction set is indicated by
CPUID Fn0000_0001_EDX[SSE] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTSI2SS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

CVTPS2PI Convert Packed Single-Precision Floating-Point to
Packed Doubleword Integers

Mnemonic Opcode Description

CVTPS2PI mmx,
xmm/mem64 0F 2D /r

Converts packed single-precision floating-point values in an
XMM register or 64-bit memory location to packed
doubleword integers in the destination MMX register.

cvtps2pi.eps

xmm/mem64mmx

convert
convert

127 63 064 3132313263 0

[AMD Public Use]

64-Bit Media CVTPS2PI 11
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment
limit or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed
while alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

[AMD Public Use]

12 CVTTPD2PI 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed 32-bit signed integer values and writes the converted values in an MMX
register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPD2PI instruction is an SSE2 instruction. Supprt for this instruction set is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1. Support for misaligned 16-byte memory accesses is indicated
by CPUID Fn8000_0001_ECX[MisAlignSse] = 1.

See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ,
CVTTSD2SI

rFLAGS Affected

None

CVTTPD2PI Convert Packed Double-Precision Floating-Point to
Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPD2PI mmx, xmm/mem128 66 0F 2C /r

Converts packed double-precision floating-point
values in an XMM register or 128-bit memory location
to packed doubleword integer values in the
destination MMX register. Inexact results are
truncated.

cvttpd2pi.eps

127 63 0643132

xmm/mem128mmx

convert
convert

63 0

[AMD Public Use]

64-Bit Media CVTTPD2PI 13
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM = 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM = 1.

x87 floating-point
exception pending, #MF X X X An exception is pending due to an x87 floating-point

instruction.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

[AMD Public Use]

14 CVTTPD2PI 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

64-Bit Media CVTTPS2PI 15
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Converts two packed single-precision floating-point values in the low-order 64 bits of an XMM
register or a 64-bit memory location to two packed 32-bit signed integer values and writes the
converted values in an MMX register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPS2PI instruction is an SSE1 instruction. Supprt for this instruction set is indicated by
CPUID Fn0000_0001_EDX[SSE] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ,
CVTTSS2SI

rFLAGS Affected

None

CVTTPS2PI Convert Packed Single-Precision Floating-Point to
Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPS2PI mmx, xmm/mem64 0F 2C /r
Converts packed single-precision floating-point values in
an XMM register or 64-bit memory location to doubleword
integer values in the destination MMX register. Inexact
results are truncated.

cvttps2pi.eps

xmm/mem64mmx

convert
convert

127 63 064 3132313263 0

[AMD Public Use]

16 CVTTPS2PI 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE1 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

[AMD Public Use]

64-Bit Media EMMS 17
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Clears the MMX state by setting the state of the x87 stack registers to empty (tag-bit encoding of all 1s
for all MMX registers) indicating that the contents of the registers are available for a new procedure,
such as an x87 floating-point procedure. This setting of the tag bits is referred to as “clearing the MMX
state”.

Because the MMX registers and tag word are shared with the x87 floating-point instructions, software
should execute an EMMS instruction to clear the MMX state before executing code that includes x87
floating-point instructions.

The functions of the EMMS and FEMMS instructions are identical.

For details about the setting of x87 tag bits, see “Media and x87 Processor State” in Volume 2.

The EMMS instruction is an MMX™ instruction. Support for the MMX instruction subset is indicated
by CPUID Fn0000_0001_EDX[MMX] = 1 or CPUID Fn8000_0001_EDX[MMX] = 1. See “CPUID”
in Volume 3 for more information about the CPUID instruction.

Related Instructions

FEMMS (a 3DNow! instruction)

rFLAGS Affected

None

Exceptions

EMMS Exit Multimedia State

Mnemonic Opcode Description

EMMS 0F 77 Clears the MMX state.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.
x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

[AMD Public Use]

18 FEMMS 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Clears the MMX state by setting the state of the x87 stack registers to empty (tag-bit encoding of all 1s
for all MMX registers) indicating that the contents of the registers are available for a new procedure,
such as an x87 floating-point procedure. This setting of the tag bits is referred to as “clearing the MMX
state”.

Because the MMX registers and tag word are shared with the x87 floating-point instructions, software
should execute an EMMS or FEMMS instruction to clear the MMX state before executing code that
includes x87 floating-point instructions.

The functions of the FEMMS and EMMS instructions are identical. The FEMMS instruction is
supported for backward-compatibility with certain AMD processors. Software that must be both
compatible with both AMD and non-AMD processors should use the EMMS instruction.

FEMMS is a 3DNow! instruction. Support for this instruction subset is indicated by CPUID
Fn8000_0001_EDX[3DNow] = 1. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

For details about the setting of x87 tag bits, see “Media and x87 Processor State” in Volume 2.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

EMMS

Related Instructions

EMMS

rFLAGS Affected

None

FEMMS Fast Exit Multimedia State

Mnemonic Opcode Description

FEMMS 0F 0E Clears MMX state.

[AMD Public Use]

64-Bit Media FEMMS 19
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not
supported, as indicated by CPUID
Fn8000_0001_EDX[3DNow] = 0.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.
x87 floating-point exception
pending, #MF X X X An unmasked x87 floating-point exception was

pending.

[AMD Public Use]

20 FRSTOR 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Restores the complete x87 state from memory starting at the specified address, as stored by a previous
call to FNSAVE. The x87 state occupies 94 or 108 bytes of memory depending on whether the
processor is operating in real or protected mode and whether the operand-size attribute is 16-bit or 32-
bit. Because the MMX registers are mapped onto the low 64 bits of the x87 floating-point registers,
this operation also restores the MMX state.

If FRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or FNCLEX
instruction to clear the exception flags in the x87 status word before storing that environment.

For details about the memory image restored by FRSTOR, see “Media and x87 Processor State” in
Volume 2.

Related Instructions

FSAVE, FNSAVE, FXSAVE, FXRSTOR

rFLAGS Affected

None

x87 Condition Code

FRSTOR Floating-Point Restore x87 and MMX™ State

Mnemonic Opcode Description

FRSTOR
mem94/108env DD /4 Load the x87 state from mem94/108env.

x87 Condition Code Value Description

C0 M Loaded from memory.

C1 M Loaded from memory.

C2 M Loaded from memory.

C3 M Loaded from memory.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

64-Bit Media FRSTOR 21
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

22 FSAVE (FNSAVE) 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Stores the complete x87 state to memory starting at the specified address and reinitializes the x87 state.
The x87 state requires 94 or 108 bytes of memory, depending upon whether the processor is operating
in real or protected mode and whether the operand-size attribute is 16-bit or 32-bit. Because the MMX
registers are mapped onto the low 64 bits of the x87 floating-point registers, this operation also saves
the MMX state. For details about the memory image saved by FNSAVE, see “Media and x87
Processor State” in Volume 2.

The FNSAVE instruction does not wait for pending unmasked x87 floating-point exceptions to be
processed. Processor interrupts should be disabled before using this instruction.

Assemblers usually provide an FSAVE macro that expands into the instruction sequence:
WAIT ; Opcode 9B
FNSAVE destination ; Opcode DD /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNSAVE instruction then stores the x87 state to the specified destination.

Related Instructions

FRSTOR, FXSAVE, FXRSTOR

rFLAGS Affected

None

x87 Condition Code

FSAVE
(FNSAVE)

Floating-Point Save x87 and MMX™ State

Mnemonic Opcode Description

FNSAVE
mem94/108env DD /6

Copy the x87 state to mem94/108env without checking for
pending floating-point exceptions, then reinitialize the x87
state.

FSAVE mem94/108env 9B DD /6
Copy the x87 state to mem94/108env after checking for
pending floating-point exceptions, then reinitialize the x87
state.

x87 Condition Code Value Description

C0 0

C1 0

C2 0

C3 0

[AMD Public Use]

64-Bit Media FSAVE (FNSAVE) 23
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

24 FXRSTOR 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Restores the XMM, MMX, and x87 state. The data loaded from memory is the state information
previously saved using the FXSAVE instruction. Restoring data with FXRSTOR that had been
previously saved with an FSAVE (rather than FXSAVE) instruction results in an incorrect restoration.

If FXRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

If the restored MXCSR register contains a set bit in an exception status flag, and the corresponding
exception mask bit is cleared (indicating an unmasked exception), loading the MXCSR register does
not cause a SIMD floating-point exception (#XF).

FXRSTOR does not restore the x87 error pointers (last instruction pointer, last data pointer, and last
opcode), except when FXRSTOR sets FSW.ES=1 after recomputing it from the error mask bits in
FCW and error status bits in FSW.

The architecture supports two 512-bit memory formats for FXRSTOR, a 64-bit format that loads
XMM0-XMM15, and a 32-bit legacy format that loads only XMM0-XMM7. If FXRSTOR is
executed in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-
bit format is used, if the operand-size is 64-bit, FXRSTOR loads the x87 pointer registers as offset64,
otherwise it loads them as sel:offset32. For details about the memory format used by FXRSTOR, see
"Saving Media and x87 Processor State" in Volume 2. For details about the memory image restored by
FXRSTOR, see “Saving Media and x87 Execution Unit State” in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXRSTOR does not restore the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is restored
whether fast-FXSAVE/FXRSTOR is enabled or not.

Suppo r t f o r t he f a s t -FXSAVE/FXRSTOR fea tu r e i s i nd i ca t ed by CPUID
Fn8000_0001_EDX[FFXSR] = 1.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, the saved
image of XMM0–XMM15 and MXCSR is not loaded into the processor. A general-protection
exception occurs if the FXRSTOR instruction attempts to load non-zero values into reserved MXCSR
bits. Software can use MXCSR_MASK to determine which bits of MXCSR are reserved. For details
on the MXCSR_MASK, see “SSE, MMX, and x87 Programming” in Volume 2.

Support for this instruction is implementation-specific. CPUID Fn8000_0001_EDX[FXSR] = 1 or
CPUID Fn0000_0001_EDX[FXSR] = 1 indicates support for the FXSAVE and FXRSTOR
instructions. See “CPUID” in Volume 3 for more information about the CPUID instruction.
.

FXRSTOR Restore XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXRSTOR mem512env 0F AE /1 Restores XMM, MMX™, and x87 state from 512-byte
memory location.

[AMD Public Use]

64-Bit Media FXRSTOR 25
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

FWAIT, FXSAVE

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank. Shaded fields are reserved.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X
The FXSAVE/FXRSTOR instructions are not
supported, as indicated by EDX[FXSR] = 0, returned
by CPUID Fn0000_0001 or CPUID Fn8000_0001.

Device not available,
#NM

X X X The emulate bit (EM) of CR0 was set to 1.
X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit,
or was non-canonical.

General protection, #GP

X X X A memory address exceeded the data segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary.

X X X Ones were written to the reserved bits in MXCSR.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

26 FXSAVE 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Saves the XMM, MMX, and x87 state. A memory location that is not aligned on a 16-byte boundary
causes a general-protection exception.

Unlike FSAVE and FNSAVE, FXSAVE does not alter the x87 tag bits. The contents of the saved
MMX/x87 data registers are retained, thus indicating that the registers may be valid (or whatever other
value the x87 tag bits indicated prior to the save). To invalidate the contents of the MMX/x87 data
registers after FXSAVE, software must execute an FINIT instruction. Also, FXSAVE (like FNSAVE)
does not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction can be
used for this purpose.

FXSAVE does not save the x87 pointer registers (last instruction pointer, last data pointer, and last
opcode), except in the relatively rare cases in which the exception-summary (ES) bit in the x87 status
word is set to 1, indicating that an unmasked x87 exception has occurred.

The architecture supports two 512-bit memory formats for FXSAVE, a 64-bit format that saves
XMM0-XMM15, and a 32-bit legacy format that saves only XMM0-XMM7. If FXSAVE is executed
in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-bit format is
used, if the operand-size is 64-bit, FXSAVE saves the x87 pointer registers as offset64, otherwise it
saves them as sel:offset32. For more details about the memory format used by FXSAVE, see “Saving
Media and x87 Execution Unit State” in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE does not save the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is saved whether
fast-FXSAVE/FXRSTOR is enabled or not.

Suppo r t f o r t he f a s t -FXSAVE/FXRSTOR fea tu r e i s i nd i ca t ed by CPUID
Fn8000_0001_EDX[FFXSR] = 1.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, FXSAVE
does not save the image of XMM0–XMM15 or MXCSR. For details about the CR4.OSFXSR bit, see
“FXSAVE/FXRSTOR Support (OSFXSR) Bit” in Volume 2.

Support for this instruction is implementation-specific. CPUID Fn8000_0001_EDX[FXSR] = 1 or
CPUID Fn0000_0001_EDX[FXSR] = 1 indicates support for the FXSAVE and FXRSTOR
instructions. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

FINIT, FNSAVE, FRSTOR, FSAVE, FXRSTOR, LDMXCSR, STMXCSR

FXSAVE Save XMM, MMX, and x87 State

Mnemonic Opcode Description

FXSAVE mem512env 0F AE /0 Saves XMM, MMX, and x87 state to 512-byte memory
location.

[AMD Public Use]

64-Bit Media FXSAVE 27
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X
The FXSAVE/FXRSTOR instructions are not
supported, as indicated by EDX[FXSR] = 0, returned
by CPUID Fn0000_0001 or CPUID Fn8000_0001.

Device not available,
#NM

X X X The emulate bit (EM) of CR0 was set to 1.
X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit,
or was non-canonical.

General protection, #GP

X X X A memory address exceeded the data segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

28 MASKMOVQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Stores bytes from the first source operand, as selected by the second source operand, to a memory
location specified in the DS:rDI registers (except that DS is ignored in 64-bit mode). The first source
operand is an MMX register, and the second source operand is another MMX register. The most-
significant bit (msb) of each byte in the second source operand specifies the store (1 = store, 0 = no
store) of the corresponding byte of the first source operand.

Exception and trap behavior for the elements not selected for storage to memory are implementation
dependent. For instance, a given implementation may signal a data breakpoint or a page fault for bytes
that are zero-masked and not actually written.

MASKMOVQ implicitly uses weakly-ordered, write-combining buffering for the data, as described in
“Buffering and Combining Memory Writes” in Volume 2. If the stored data is shared by multiple
processors, this instruction should be used together with a fence instruction in order to ensure data
coherency (refer to “Cache and TLB Management” in Volume 2).

The MASKMOVQ instruction is an AMD extension to MMX™ instruction set and is an SSE1
instruction. Support for AMD extensions to the MMX instruction subset is indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 1. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

MASKMOVQ Masked Move Quadword

Mnemonic Opcode Description

MASKMOVQ mmx1, mmx2 0F F7 /r
Store bytes from an MMX register, selected by the most-
significant bit of the corresponding byte in another MMX
register, to DS:rDI.

[AMD Public Use]

64-Bit Media MASKMOVQ 29
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

MASKMOVDQU

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

The SSE1 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE] = 0 and the AMD
extensions to the MMX™ instruction set are not
supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

select

maskmovq.eps

select

store address
Memory

DS:rDI

mmx1 mmx2

.

63 0

.

.

015233139475563 7

[AMD Public Use]

30 MASKMOVQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

64-Bit Media MOVD 31
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Moves a 32-bit or 64-bit value in one of the following ways:

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 or 64 bits
of an XMM register, with zero-extension to 128 bits

• from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose register or
memory location

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 bits (with
zero-extension to 64 bits) or the full 64 bits of an MMX register

• from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit general-purpose
register or memory location.

The MOVD instruction is a member of both the MMX and the SSE2 instruction sets. The presence of
this instruction set is indicated by EDX[MMX] = 1 returned by CPUID Fn0000_0001 or
CPUID Fn8000_0001. See “CPUID” in Volume 3 for more information about the CPUID instruction.

The following diagrams illustrate the operation of the MOVD instruction.

MOVD Move Doubleword or Quadword

Mnemonic Opcode Description

MOVD mmx, reg/mem32 0F 6E /r Move 32-bit value from a general-purpose register or
32-bit memory location to an MMX register.

MOVD mmx, reg/mem64 0F 6E /r Move 64-bit value from a general-purpose register or
64-bit memory location to an MMX register.

MOVD reg/mem32, mmx 0F 7E /r Move 32-bit value from an MMX register to a 32-bit
general-purpose register or memory location.

MOVD reg/mem64, mmx 0F 7E /r Move 64-bit value from an MMX register to a 64-bit
general-purpose register or memory location.

[AMD Public Use]

32 MOVD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

movd.eps

with REX prefix

All operations
are "copy"

with REX prefix

reg/mem64xmm

63 0

63 0

127 63 064

127 63 064

reg/mem64 xmm

0

031

reg/mem32xmm

reg/mem32 xmm

127 0313231 0

127 31 032

0

0

reg/mem64mmx

reg/mem64 mmx

0

with REX prefix

with REX prefix

63 063 0

63 063 0

0310

reg/mem32mmx

reg/mem32 mmx

31 0

313263 0

313263 0

0

[AMD Public Use]

64-Bit Media MOVD 33
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Description

Invalid opcode, #UD

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0 returned by CPUID
function 0000_0001h or 8000_0001h.

X X X The SSE2 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The instruction used XMM registers while
CR4.OSFXSR=0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X The destination operand was in a non-writable
segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

34 MOVDQ2Q 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Moves the low-order 64-bit value in an XMM register to a 64-bit MMX register.

The MOVDQ2Q instruction is an SSE2 instruction. Support for this instruction subset is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

MOVDQ2Q Move Quadword to Quadword

Mnemonic Opcode Description

MOVDQ2Q mmx, xmm F2 0F D6 /r Moves low-order 64-bit value from an XMM register to the
destination MMX register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X The emulate bit (EM) of CR0 was set to 1.

X X X The SSE2 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE2] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

movdq2q.eps

mmx xmm

copy

63 0 127 63 064

[AMD Public Use]

64-Bit Media MOVDQ2Q 35
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

General protection,
#GP X X X The destination operand was in non-writable segment.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

36 MOVNTQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Stores a 64-bit MMX register value into a 64-bit memory location. This instruction indicates to the
processor that the data is non-temporal, and is unlikely to be used again soon. The processor treats the
store as a write-combining (WC) memory write, which minimizes cache pollution. The exact method
by which cache pollution is minimized depends on the hardware implementation of the instruction.
For further information, see “Memory Optimization” in Volume 1.

MOVNTQ is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE instruction to force strong memory ordering of MOVNTQ with respect to
other stores.

MOVNTQ implicitly uses weakly-ordered, write-combining buffering for the data, as described in
“Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple
processors, this instruction should be used together with a fence instruction in order to ensure data
coherency (refer to “Cache and TLB Management” in Volume 2).

The MOVNTQ instruction is a member of both the AMD MMX extensions and the SSE1 instruction
sets. Support for the SSE1 instruction subset is indicated by CPUID Fn0000_0001_EDX[SSE] = 1.
Support for AMD’s extensions to the MMX instruction subset is indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 1. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS

MOVNTQ Move Non-Temporal Quadword

Mnemonic Opcode Description

MOVNTQ mem64, mmx 0F E7 /r Stores a 64-bit MMX register value into a 64-bit memory
location, minimizing cache pollution.

movntq.eps

0

mmxmem64

copy

63 063

[AMD Public Use]

64-Bit Media MOVNTQ 37
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE] = 0 and the AMD
extensions to the MMX™ instruction set are not
supported, as indicated by
CPUID Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X The destination operand was in a non-writable
segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

38 MOVQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Moves a 64-bit value:

• from an MMX register or 64-bit memory location to another MMX register, or
• from an MMX register to another MMX register or 64-bit memory location.

The MOVQ instruction is an MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ2DQ

rFLAGS Affected

None

MOVQ Move Quadword

Mnemonic Opcode Description

MOVQ mmx1, mmx2/mem64 0F 6F /r Moves 64-bit value from an MMX register or memory
location to an MMX register.

MOVQ mmx1/mem64, mmx2 0F 7F /r Moves 64-bit value from an MMX register to an MMX
register or memory location.

movq-64.eps

copy

mmx1 mmx2/mem64

0 63 063 0

copy

mmx1/mem64 mmx2

0 63 063 0

[AMD Public Use]

64-Bit Media MOVQ 39
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeds the stack segment limit or
is non-canonical.

General protection,
#GP

X X X A memory address exceeded the stack segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

40 MOVQ2DQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Moves a 64-bit value from an MMX register to the low-order 64 bits of an XMM register, with zero-
extension to 128 bits.

The MOVQ2DQ instruction is an SSE2 instruction. Support for this instruction subset is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

MOVQ2DQ Move Quadword to Quadword

Mnemonic Opcode Description

MOVQ2DQ xmm, mmx F3 0F D6 /r Moves 64-bit value from an MMX register to an XMM register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X The SSE2 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE2] = 0.

127 63 064

xmm mmx

copy

63 0

movq2dq.eps

0

[AMD Public Use]

64-Bit Media MOVQ2DQ 41
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

42 PACKSSDW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts each 32-bit signed integer in the first and second source operands to a 16-bit signed integer
and packs the converted values into words in the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit
memory location.

Converted values from the first source operand are packed into the low-order words of the destination,
and the converted values from the second source operand are packed into the high-order words of the
destination.

For each packed value in the destination, if the value is larger than the largest signed 16-bit integer, it is
saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.

The PACKSSDW instruction is an MMX™ instruction. Support for this instruction subset is indicated
by EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PACKSSWB, PACKUSWB

PACKSSDW Pack with Saturation Signed Doubleword to Word

Mnemonic Opcode Description

PACKSSDW mmx1, mmx2/mem64 0F 6B /r
Packs 32-bit signed integers in an MMX register
and another MMX register or 64-bit memory
location into 16-bit signed integers in an MMX
register.

packssdw-64.eps

convertconvert convert convert

63 04748 15163132

mmx1 mmx2/mem64

63 0313263 03132

[AMD Public Use]

64-Bit Media PACKSSDW 43
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

44 PACKSSWB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts each 16-bit signed integer in the first and second source operands to an 8-bit signed integer
and packs the converted values into bytes in the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit
memory location.

Converted values from the first source operand are packed into the low-order bytes of the destination,
and the converted values from the second source operand are packed into the high-order bytes of the
destination.

For each packed value in the destination, if the value is larger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to 80h.

The PACKSSWB instruction is an MMX instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PACKSSDW, PACKUSWB

rFLAGS Affected

None

PACKSSWB Pack with Saturation Signed Word to Byte

Mnemonic Opcode Description

PACKSSWB mmx1, mmx2/mem64 0F 63 /r
Packs 16-bit signed integers in an MMX register
and another MMX register or 64-bit memory
location into 8-bit signed integers in an MMX
register.

packsswb-64.eps

. .. .

....

63 03132

convertconvert convert convert

mmx1 mmx2/mem64

63 031324748 151663 031324748 1516

[AMD Public Use]

64-Bit Media PACKSSWB 45
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

46 PACKUSWB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts each 16-bit signed integer in the first and second source operands to an 8-bit unsigned integer
and packs the converted values into bytes in the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit
memory location.

Converted values from the first source operand are packed into the low-order bytes of the destination,
and the converted values from the second source operand are packed into the high-order bytes of the
destination.

For each packed value in the destination, if the value is larger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

The PACKUSWB instruction is an MMX™ instruction. Support for this instruction subset is indicated
by EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PACKSSDW, PACKSSWB

PACKUSWB Pack with Saturation Signed Word to Unsigned
Byte

Mnemonic Opcode Description

PACKUSWB mmx1, mmx2/mem64 0F 67 /r
Packs 16-bit signed integers in an MMX register
and another MMX register or 64-bit memory
location into 8-bit unsigned integers in an MMX
register.

63 031324748 151663 031324748 1516

. .. .

....

63 03132

convertconvert convert convert

mmx1 mmx2/mem64

packuswb-64.eps

[AMD Public Use]

64-Bit Media PACKUSWB 47
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

48 PADDB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds each packed 8-bit integer value in the first source operand to the corresponding packed 8-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
byte of the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The PADDB instruction operates on both signed and unsigned integers. If the result overflows, the
carry is ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of
each result are written in the destination.

The PADDB instruction is an MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDB Packed Add Bytes

Mnemonic Opcode Description

PADDB mmx1, mmx2/mem64 0F FC /r
Adds packed byte integer values in an MMX register
and another MMX register or 64-bit memory location
and writes the result in the destination MMX register.

paddb-64.eps

add

63 0 63 0

mmx1 mmx2/mem64

add

.

.

.

[AMD Public Use]

64-Bit Media PADDB 49
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

50 PADDD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds each packed 32-bit integer value in the first source operand to the corresponding packed 32-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
doubleword of the destination (first source). The first source/destination operand is an MMX register
and the second source operand is another MMX register or 64-bit memory location.

The PADDD instruction operates on both signed and unsigned integers. If the result overflows, the
carry is ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of
each result are written in the destination.

The PADDD instruction is an MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PADDB, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDD Packed Add Doublewords

Mnemonic Opcode Description

PADDD mmx1, mmx2/mem64 0F FE /r
Adds packed 32-bit integer values in an MMX register
and another MMX register or 64-bit memory location and
writes the result in the destination MMX register.

paddd-64.eps

add

mmx1 mmx2/mem64

add

63 0313263 03132

[AMD Public Use]

64-Bit Media PADDD 51
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

52 PADDQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds each packed 64-bit integer value in the first source operand to the corresponding packed 64-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
quadword of the destination (first source). The first source/destination operand is an MMX register
and the second source operand is another MMX register or 64-bit memory location.

The PADDQ instruction operates on both signed and unsigned integers. If the result overflows, the
carry is ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of
each result are written in the destination.

The PADDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID Fn0000_0001_EDX[SSE2] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Related Instructions

PADDB, PADDD, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDQ Packed Add Quadwords

Mnemonic Opcode Description

PADDQ mmx1, mmx2/mem64 0F D4 /r
Adds 64-bit integer value in an MMX register and
another MMX register or 64-bit memory location and
writes the result in the destination MMX register.

paddq-64.eps

mmx1 mmx2/mem64

add

63 063 0

[AMD Public Use]

64-Bit Media PADDQ 53
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X The emulate bit (EM) of CR0 was set to 1.

X X X The SSE2 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE2] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

54 PADDSB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds each packed 8-bit signed integer value in the first source operand to the corresponding packed 8-
bit signed integer in the second source operand and writes the signed integer result of each addition in
the corresponding byte of the destination (first source). The first source/destination operand is an
MMX register and the second source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest representable signed 8-
bit integer, it is saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is
saturated to 80h.

The PADDSB instruction is an MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PADDB, PADDD, PADDQ, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDSB Packed Add Signed with Saturation Bytes

Mnemonic Opcode Description

PADDSB mmx1, mmx2/mem64 0F EC /r
Adds packed byte signed integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

saturate
saturate

paddsb-64.eps

add

63 0 63 0

mmx1 mmx2/mem64

add

.

.

.

[AMD Public Use]

64-Bit Media PADDSB 55
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

56 PADDSW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds each packed 16-bit signed integer value in the first source operand to the corresponding packed
16-bit signed integer in the second source operand and writes the signed integer result of each addition
in the corresponding word of the destination (first source). The first source/destination operand is an
MMX register and the second source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest representable signed 16-
bit integer, it is saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it
is saturated to 8000h.

The PADDSW instruction is an MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDSW Packed Add Signed with Saturation Words

Mnemonic Opcode Description

PADDSW mmx1, mmx2/mem64 0F ED /r
Adds packed 16-bit signed integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

add

add

saturate

saturate

paddsw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

64-Bit Media PADDSW 57
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

58 PADDUSB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds each packed 8-bit unsigned integer value in the first source operand to the corresponding packed
8-bit unsigned integer in the second source operand and writes the unsigned integer result of each
addition in the corresponding byte of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit
memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

The PADDUSB instruction is an MMX™ instruction. Support for this instruction subset is indicated
by EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSW, PADDW

rFLAGS Affected

None

PADDUSB Packed Add Unsigned with Saturation Bytes

Mnemonic Opcode Description

PADDUSB mmx1, mmx2/mem64 0F DC /r
Adds packed byte unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the
destination MMX register.

saturate

saturate

paddusb-64.eps

add

63 0 63 0

mmx1 mmx2/mem64

add

.

.

.

[AMD Public Use]

64-Bit Media PADDUSB 59
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

60 PADDUSW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds each packed 16-bit unsigned integer value in the first source operand to the corresponding
packed 16-bit unsigned integer in the second source operand and writes the unsigned integer result of
each addition in the corresponding word of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit
memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 16-bit integer,
it is saturated to FFFFh, and if the value is smaller than the smallest unsigned 16-bit integer, it is
saturated to 0000h.

The PADDUSW instruction is an MMX™ instruction. Support for this instruction subset is indicated
by EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDW

rFLAGS Affected

None

PADDUSW Packed Add Unsigned with Saturation Words

Mnemonic Opcode Description

PADDUSW mmx1, mmx2/mem64 0F DD /r
Adds packed 16-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes result in the destination
MMX register.

add

add

saturate
saturate

paddusw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

64-Bit Media PADDUSW 61
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

62 PADDW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds each packed 16-bit integer value in the first source operand to the corresponding packed 16-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
word of the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of the
result are written in the destination.

The PADDW instruction is an MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW

rFLAGS Affected

None

PADDW Packed Add Words

Mnemonic Opcode Description

PADDW mmx1, mmx2/mem64 0F FD /r
Adds packed 16-bit integer values in an MMX register
and another MMX register or 64-bit memory location
and writes the result in the destination MMX register.

paddw-64.eps

add

add

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

64-Bit Media PADDW 63
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64 PAND 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Performs a bitwise logical AND of the values in the first and second source operands and writes the
result in the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The PAND instruction is an MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PANDN, POR, PXOR

rFLAGS Affected

None

PAND Packed Logical Bitwise AND

Mnemonic Opcode Description

PAND mmx1, mmx2/mem64 0F DB /r
Performs bitwise logical AND of values in an MMX
register and in another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

pand-64.eps

mmx1 mmx2/mem64

AND

0 63 063 0

[AMD Public Use]

64-Bit Media PAND 65
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

66 PANDN 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Performs a bitwise logical AND of the value in the second source operand and the one’s complement
of the value in the first source operand and writes the result in the destination (first source). The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

The PANDN instruction is an MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, as returned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PAND, POR, PXOR

rFLAGS Affected

None

PANDN Packed Logical Bitwise AND NOT

Mnemonic Opcode Description

PANDN mmx1, mmx2/mem64 0F DF /r
Performs bitwise logical AND NOT of values in an MMX
register and in another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

pandn-64.eps

AND

invert

mmx1 mmx2/mem64

0 63 063 0

[AMD Public Use]

64-Bit Media PANDN 67
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

68 PAVGB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Computes the rounded average of each packed unsigned 8-bit integer value in the first source operand
and the corresponding packed 8-bit unsigned integer in the second source operand and writes each
average in the corresponding byte of the destination (first source). The average is computed by adding
each pair of operands, adding 1 to the 9-bit temporary sum, and then right-shifting the temporary sum
by one bit position. The destination and source operands are an MMX register and another MMX
register or 64-bit memory location.

The PAVGB instruction is a member of both the AMD MMX™ extensions and the SSE1 instruction
sets. Support for the SSE1 instruction subset is indicated by CPUID Fn0000_0001_EDX[SSE] = 1.
Support for AMD’s extensions to the MMX instruction subset is indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 1. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PAVGW

rFLAGS Affected

None

PAVGB Packed Average Unsigned Bytes

Mnemonic Opcode Description

PAVGB mmx1, mmx2/mem64 0F E0 /r
Averages packed 8-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the
destination MMX register.

pavgb-64.eps

average

63 0 63 0

mmx1 mmx2/mem64

average

.

.

.

[AMD Public Use]

64-Bit Media PAVGB 69
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0;
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by
CPUID Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

70 PAVGUSB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Computes the rounded-up average of each packed unsigned 8-bit integer value in the first source
operand and the corresponding packed 8-bit unsigned integer in the second source operand and writes
each average in the corresponding byte of the destination (first source). The average is computed by
adding each pair of operands, adding 1 to the 9-bit temporary sum, and then right-shifting the
temporary sum by one bit position. The first source/destination operand is an MMX register. The
second source operand is another MMX register or 64-bit memory location.

The PAVGUSB instruction performs a function identical to the 64-bit version of the PAVGB
instruction, although the two instructions have different opcodes. PAVGUSB is a 3DNow! instruction.
It is useful for pixel averaging in MPEG-2 motion compensation and video scaling operations.

The PAVGUSB instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by a CPUID feature bit. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

PAVGB

PAVGUSB Packed Average Unsigned Bytes

Mnemonic Opcode Description

PAVGUSB mmx1, mmx2/mem64 0F 0F /r BF
Averages packed 8-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the destination
MMX register.

[AMD Public Use]

64-Bit Media PAVGUSB 71
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

None

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

pavgusb.eps

mmx1 mmx2/mem64

average

average

63 0

.

63 0

.

[AMD Public Use]

72 PAVGW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Computes the rounded average of each packed unsigned 16-bit integer value in the first source
operand and the corresponding packed 16-bit unsigned integer in the second source operand and writes
each average in the corresponding word of the destination (first source). The average is computed by
adding each pair of operands, adding 1 to the 17-bit temporary sum, and then right-shifting the
temporary sum by one bit position. The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The PAVGW instruction is a member of both the AMD MMX™ extensions and the SSE1 instruction
sets. Support for the SSE1 instruction subset is indicated by CPUID Fn0000_0001_EDX[SSE] = 1.
Support for AMD’s extensions to the MMX instruction subset is indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 1. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PAVGB

rFLAGS Affected

None

PAVGW Packed Average Unsigned Words

Mnemonic Opcode Description

PAVGW mmx1, mmx2/mem64 0F E3 /r
Averages packed 16-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the
destination MMX register.

pavgw-64.eps

average

average

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

64-Bit Media PAVGW 73
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0;
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by
CPUID Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

74 PCMPEQB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares corresponding packed bytes in the first and second source operands and writes the result of
each compare in the corresponding byte of the destination (first source). For each pair of bytes, if the
values are equal, the result is all 1s. If the values are not equal, the result is all 0s. The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

The PCMPEQB instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPEQB Packed Compare Equal Bytes

Mnemonic Opcode Description

PCMPEQB mmx1, mmx2/mem64 0F 74 /r Compares packed bytes in an MMX register and an
MMX register or 64-bit memory location.

pcmpeqb-64.eps

compare

63 0 63 0

mmx1 mmx2/mem64

compare
.

.

.

all 1s or 0s

all 1s or 0s

[AMD Public Use]

64-Bit Media PCMPEQB 75
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

76 PCMPEQD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares corresponding packed 32-bit values in the first and second source operands and writes the
result of each compare in the corresponding 32 bits of the destination (first source). For each pair of
doublewords, if the values are equal, the result is all 1s. If the values are not equal, the result is all 0s.
The first source/destination operand is an MMX register and the second source operand is another
MMX register or 64-bit memory location.

The PCMPEQD instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PCMPEQB, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPEQD Packed Compare Equal Doublewords

Mnemonic Opcode Description

PCMPEQD mmx1, mmx2/mem64 0F 76 /r Compares packed doublewords in an MMX register
and an MMX register or 64-bit memory location.

pcmpeqd-64.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

[AMD Public Use]

64-Bit Media PCMPEQD 77
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

78 PCMPEQW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares corresponding packed 16-bit values in the first and second source operands and writes the
result of each compare in the corresponding 16 bits of the destination (first source). For each pair of
words, if the values are equal, the result is all 1s. If the values are not equal, the result is all 0s. The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

The PCMPEQW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PCMPEQB, PCMPEQD, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPEQW Packed Compare Equal Words

Mnemonic Opcode Description

PCMPEQW mmx1, mmx2/mem64 0F 75 /r Compares packed 16-bit values in an MMX register
and an MMX register or 64-bit memory location.

compare

mmx1 mmx2/mem64

compare

all 1s or 0s

all 1s or 0s
pcmpeqw-64.eps

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

64-Bit Media PCMPEQW 79
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

80 PCMPGTB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares corresponding packed signed bytes in the first and second source operands and writes the
result of each compare in the corresponding byte of the destination (first source). For each pair of
bytes, if the value in the first source operand is greater than the value in the second source operand, the
result is all 1s. If the value in the first source operand is less than or equal to the value in the second
source operand, the result is all 0s. The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The PCMPGTB instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPGTB Packed Compare Greater Than Signed Bytes

Mnemonic Opcode Description

PCMPGTB mmx1, mmx2/mem64 0F 64 /r Compares packed signed bytes in an MMX register
and an MMX register or 64-bit memory location.

pcmpgtb-64.eps

compare

63 0 63 0

mmx1 mmx2/mem64

compare
.

.

.

all 1s or 0s
all 1s or 0s

[AMD Public Use]

64-Bit Media PCMPGTB 81
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

82 PCMPGTD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares corresponding packed signed 32-bit values in the first and second source operands and
writes the result of each compare in the corresponding 32 bits of the destination (first source). For each
pair of doublewords, if the value in the first source operand is greater than the value in the second
source operand, the result is all 1s. If the value in the first source operand is less than or equal to the
value in the second source operand, the result is all 0s. The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory location.

The PCMPGTD instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTW

rFLAGS Affected

None

PCMPGTD Packed Compare Greater Than Signed
Doublewords

Mnemonic Opcode Description

PCMPGTD mmx1, mmx2/mem64 0F 66 /r
Compares packed signed 32-bit values in an MMX
register and an MMX register or 64-bit memory
location.

pcmpgtd-64.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s

all 1s or 0s

63 0313263 03132

[AMD Public Use]

64-Bit Media PCMPGTD 83
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

84 PCMPGTW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares corresponding packed signed 16-bit values in the first and second source operands and
writes the result of each compare in the corresponding 16 bits of the destination (first source). For each
pair of words, if the value in the first source operand is greater than the value in the second source
operand, the result is all 1s. If the value in the first source operand is less than or equal to the value in
the second source operand, the result is all 0s. The first source/destination operand is an MMX register
and the second source operand is another MMX register or 64-bit memory location.

The PCMPGTW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD

rFLAGS Affected

None

PCMPGTW Packed Compare Greater Than Signed Words

Mnemonic Opcode Description

PCMPGTW mmx1, mmx2/mem64 0F 65 /r
Compares packed signed 16-bit values in an MMX
register and an MMX register or 64-bit memory
location.

63 04748 15163132

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

pcmpgtw-64.eps

....

..
63 04748 15163132

[AMD Public Use]

64-Bit Media PCMPGTW 85
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

86 PEXTRW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Extracts a 16-bit value from an MMX register, as selected by the immediate byte operand (as shown in
Table 1-1) and writes it to the low-order word of a 32-bit general-purpose register, with zero-extension
to 32 bits.

The PEXTRW instruction is a member of both the AMD MMX™ extensions and the SSE1 instruction
set. Support for the SSE1 instruction subset is indicated by CPUID Fn0000_0001_EDX[SSE] = 1.
Support for AMD’s extensions to the MMX instruction subset is indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 1. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PINSRW

rFLAGS Affected

PEXTRW Extract Packed Word

Mnemonic Opcode Description

PEXTRW reg32, mmx, imm8 0F C5 /r ib
Extracts a 16-bit value from an MMX register and
writes it to low-order 16 bits of a general-purpose
register.

Table 1-1. Immediate-Byte Operand Encoding for 64-Bit PEXTRW
Immediate-Byte

Bit Field Value of Bit Field Source Bits Extracted

1–0

0 15–0
1 31–16
2 47–32
3 63–48

pextrw-64.eps

reg32 mmx

imm8
7 0

mux

063 4748 15163132015

0

31

[AMD Public Use]

64-Bit Media PEXTRW 87
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0;
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by
CPUID Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

[AMD Public Use]

88 PF2ID 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts two packed single-precision floating-point values in an MMX register or a 64-bit memory
location to two packed 32-bit signed integer values and writes the converted values in another MMX
register. If the result of the conversion is an inexact value, the value is truncated (rounded toward
zero). The numeric range for source and destination operands is shown in Table 1-2 on page 89.

The PF2ID instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

CVTTPS2DQ

PF2ID Packed Floating-Point to Integer Doubleword
Converson

Mnemonic Opcode Description

PF2ID mmx1,
mmx2/mem64

0F 0F /r
1D

Converts packed single-precision floating-point values in an
MMX register or memory location to a doubleword integer value
in the destination MMX register.

pf2id.eps

mmx1 mmx2/mem64

convert
convert

63 0313263 03132

[AMD Public Use]

64-Bit Media PF2ID 89
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PF2IW, PI2FD, PI2FW

rFLAGS Affected

None

Exceptions

Table 1-2. Numeric Range for PF2ID Results
Source 2 Source 1 and Destination

0 0
Normal, abs(Source 2) < 1 0

Normal, –231 < Source 2 <= –1

Normal, 1 <= Source 2 < 231

Round to zero (Source 2)

Round to zero (Source 2)

Normal, Source 2 >= 231 7FFF_FFFFh

Normal, Source 2 <= –231 8000_0000h

Unsupported Undefined

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

90 PF2IW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts two packed single-precision floating-point values in an MMX register or a 64-bit memory
location to two packed 16-bit signed integer values, sign-extended to 32 bits, and writes the converted
values in another MMX register. If the result of the conversion is an inexact value, the value is
truncated (rounded toward zero). The numeric range for source and destination operands is shown in
Table 1-3 on page 91. Arguments outside the range representable by signed 16-bit integers are
saturated to the largest and smallest 16-bit integer, depending on their sign.

The PF2IW instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information
about the CPUID instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

CVTTPS2DQ

PF2IW Packed Floating-Point to Integer Word Conversion

Mnemonic Opcode Description

PF2IW mmx1,
mmx2/mem64

0F 0F /r
1C

Converts packed single-precision floating-point values in an
MMX register or memory location to word integer values in the
destination MMX register.

pf2iw.eps

mmx1 mmx2/mem64

convert
convert

63 0313263 03132

ss

[AMD Public Use]

64-Bit Media PF2IW 91
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PF2ID, PI2FD, PI2FW

rFLAGS Affected

None

Exceptions

Table 1-3. Numeric Range for PF2IW Results
Source 2 Source 1 and Destination

0 0
Normal, abs(Source 2) < 1 0

Normal, –215 < Source 2 <= –1

Normal, 1 <= Source 2 < 215

Round to zero (Source 2)

Round to zero (Source 2)

Normal, Source 2 >= 215 0000_7FFFh

Normal, Source 2 <= –215 FFFF_8000h

Unsupported Undefined

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD extensions to 3DNow!™ are not supported,
as indicated by
CPUID Fn8000_0001_EDX[3DNowExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

92 PFACC 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds the two single-precision floating-point values in the first source operand and adds the two single-
precision values in the second source operand and writes the two results to the low-order and high-
order doubleword, respectively, of the destination (first source). The first source/destination operand is
an MMX register. The second source operand is another MMX register or 64-bit memory location.

The PFACC instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

HADDPS

The numeric range for operands is shown in Table 1-4 on page 93.

PFACC Packed Floating-Point Accumulate

Mnemonic Opcode Description

PFACC mmx1, mmx2/mem64 0F 0F /r
AE

Accumulates packed single-precision floating-point values in
an MMX register or 64-bit memory location and another MMX
register and writes each result in the destination MMX
register.

pfacc.eps

mmx1 mmx2/mem64

addadd

63 0313263 03132

[AMD Public Use]

64-Bit Media PFACC 93
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PFADD, PFNACC, PFPNACC

rFLAGS Affected

None

Exceptions

Table 1-4. Numeric Range for PFACC Results

Source Operand
High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 High Operand High Operand
Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign of the result is the logical AND of the signs of the low and high operands.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero

with the sign of the operand (low or high) that is larger in magnitude. If the infinitely precise result is
exactly zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of
the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

94 PFADD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Adds each packed single-precision floating-point value in the first source operand to the
corresponding packed single-precision floating-point value in the second operand and writes the result
of each addition in the corresponding doubleword of the destination (first source). The first
source/destination operand is an MMX register. The second source operand is another MMX register
or 64-bit memory location. The numeric range for operands is shown in Table 1-5 on page 95.

The PFADD instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

ADDPS

PFADD Packed Floating-Point Add

Mnemonic Opcode Description

PFADD mmx1, mmx2/mem64 0F 0F /r
9E

Adds two packed single-precision floating-point values in an
MMX register or 64-bit memory location and another MMX
register and writes each result in the destination MMX
register.

pfadd.eps

add

mmx1 mmx2/mem64

add

63 0313263 03132

[AMD Public Use]

64-Bit Media PFADD 95
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PFACC, PFNACC, PFPNACC

rFLAGS Affected

None

Exceptions

Table 1-5. Numeric Range for the PFADD Results

Source Operand
Most-Significant Doubleword

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 Source 2 Source 2
Normal Source 1 Normal, +/– 02 Undefined

Unsupported3 Source 1 Undefined Undefined
Note:

1. The sign of the result is the logical AND of the signs of the source operands.
2. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero

with the sign of the source operand that is larger in magnitude. If the infinitely precise result is exactly
zero, the result is zero with the sign of source 1. If the absolute value of the infinitely precise result is
greater than or equal to 2128, the result is the largest normal number with the sign of source 1.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

96 PFCMPEQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding doubleword of the destination (first source).
For each pair of floating-point values, if the values are equal, the result is all 1s. If the values are not
equal, the result is all 0s. The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location. The numeric range for operands is shown
in Table 1-6 on page 97.

The PFCMPEQ instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

CMPSS

PFCMPEQ Packed Floating-Point Compare Equal

Mnemonic Opcode Description

PFCMPEQ mmx1, mmx2/mem64 0F 0F /r B0
Compares two pairs of packed single-precision floating-
point values in an MMX register and an MMX register or
64-bit memory location.

pfcmpeq.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

[AMD Public Use]

64-Bit Media PFCMPEQ 97
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PFCMPGE, PFCMPGT

rFLAGS Affected

None

Exceptions

Table 1-6. Numeric Range for the PFCMPEQ Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 FFFF_FFFFh1 0000_0000h 0000_0000h

Normal 0000_0000h 0000_0000h or
FFFF_FFFFh2 0000_0000h

Unsupported3 0000_0000h 0000_0000h Undefined
Note:

1. Positive zero is equal to negative zero.
2. The result is FFFF_FFFFh if source 1 and source 2 have identical signs, exponents, and mantissas.

Otherwise, the result is 0000_0000h.
3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

98 PFCMPGE 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding doubleword of the destination (first source).
For each pair of floating-point values, if the value in the first source operand is greater than or equal to
the value in the second source operand, the result is all 1s. If the value in the first source operand is less
than the value in the second source operand, the result is all 0s. The first source/destination operand is
an MMX register. The second source operand is another MMX register or 64-bit memory location.
The numeric range for operands is shown in Table 1-7 on page 99.

The PFCMPGE instruction is a 3DNow!™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

CMPPS

PFCMPGE Packed Floating-Point Compare Greater or Equal

Mnemonic Opcode Description

PFCMPGE mmx1,
mmx2/mem64 0F 0F /r 90

Compares two pairs of packed single-precision floating-
point values in an MMX register and an MMX register or
64-bit memory location.

pfcmpge.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

[AMD Public Use]

64-Bit Media PFCMPGE 99
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PFCMPEQ, PFCMPGT

rFLAGS Affected

None

Exceptions

Table 1-7. Numeric Range for the PFCMPGE Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 FFFF_FFFFh1 0000_0000h,
FFFF_FFFFh2 Undefined

Normal
0000_0000h,

FFFF_FFFFh3
0000_0000h,

FFFF_FFFFh4 Undefined

Unsupported5 Undefined Undefined Undefined

Note:
1. Positive zero is equal to negative zero.
2. The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
3. The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
4. The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative

and source 1 is smaller than or equal in magnitude to source 2, or if source 1 and source 2 are both
positive and source 1 is greater than or equal in magnitude to source 2. The result is 0000_0000h in all
other cases.

5. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

100 PFCMPGE 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

64-Bit Media PFCMPGT 101
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding doubleword of the destination (first source).
For each pair of floating-point values, if the value in the first source operand is greater than the value in
the second source operand, the result is all 1s. If the value in the first source operand is less than or
equal to the value in the second source operand, the result is all 0s. The first source/destination operand
is an MMX register. The second source operand is another MMX register or 64-bit memory location.
The numeric range for operands is shown in Table 1-8 on page 102.

The PFCMPGT instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

CMPPS

PFCMPGT Packed Floating-Point Compare Greater Than

Mnemonic Opcode Description

PFCMPGT mmx1,
mmx2/mem64 0F 0F /r A0

Compares two pairs of packed single-precision floating-
point values in an MMX register and an MMX register or
64-bit memory location.

pfcmpgt.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

[AMD Public Use]

102 PFCMPGT 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

PFCMPEQ, PFCMPGE

rFLAGS Affected

None

Exceptions

Table 1-8. Numeric Range for the PFCMPGT Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 0000_0000h 0000_0000h,
FFFF_FFFFh1 Undefined

Normal
0000_0000h,

FFFF_FFFFh2
0000_0000h,

FFFF_FFFFh3 Undefined

Unsupported4 Undefined Undefined Undefined

Note:
1. The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
2. The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
3. The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative

and source 1 is smaller in magnitude than source 2, or if source 1 and source 2 are positive and source
1 is greater in magnitude than source 2. The result is 0000_0000h in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by ECPUID Fn8000_0001_EDX[3DNow]
= 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PFMAX 103
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the maximum of the two values for each comparison in the corresponding doubleword of the
destination (first source). The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location.

Any operation with a zero and a negative number returns positive zero. An operation consisting of two
zeros returns positive zero. If either source operand is an undefined value, the result is undefined. The
numeric range for source and destination operands is shown in Table 1-9 on page 104.

The PFMAX instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

MAXPS

PFMAX Packed Single-Precision Floating-Point Maximum

Mnemonic Opcode Description

PFMAX mmx1, mmx2/mem64 0F 0F /r
A4

Compares two pairs of packed single-precision values in an
MMX register and another MMX register or 64-bit memory
location and writes the maximum value of each comparison
in the destination MMX register.

pfmax.eps

maximum

mmx1 mmx2/mem64

maximum

63 0313263 03132

[AMD Public Use]

104 PFMAX 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

PFMIN

rFLAGS Affected

None

Exceptions

Table 1-9. Numeric Range for the PFMAX Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +01 Undefined
Normal Source 1, +02 Source 1/Source 23 Undefined

Unsupported4 Undefined Undefined Undefined

Note:
1. The result is source 2, if source 2 is positive. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is positive. Otherwise, the result is positive zero.
3. The result is source 1, if source 1 is positive and source 2 is negative. The result is source 1, if both are

positive and source 1 is greater in magnitude than source 2. The result is source 1, if both are negative
and source 1 is lesser in magnitude than source 2. The result is source 2 in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PFMIN 105
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the minimum of the two values for each comparison in the corresponding doubleword of the
destination (first source). The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location.

Any operation with a zero and a positive number returns positive zero. An operation consisting of two
zeros returns positive zero. If either source operand is an undefined value, the result is undefined. The
numeric range for source and destination operands is shown in Table 1-10 on page 106.

The PFMIN instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

MINPS

PFMIN Packed Single-Precision Floating-Point Minimum

Mnemonic Opcode Description

PFMIN mmx1, mmx2/mem64 0F 0F /r
94

Compares two pairs of packed single-precision values in an
MMX register and another MMX register or 64-bit memory
location and writes the minimum value of each comparison in
the destination MMX register.

pfmin.eps

minimum

mmx1 mmx2/mem64

minimum

63 0313263 03132

[AMD Public Use]

106 PFMIN 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

PFMAX

rFLAGS Affected

None

Exceptions

Table 1-10. Numeric Range for the PFMIN Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +01 Undefined
Normal Source 1, +02 Source 1/Source 23 Undefined

Unsupported4 Undefined Undefined Undefined

Note:
1. The result is source 2, if source 2 is negative. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is negative. Otherwise, the result is positive zero.
3. The result is source 1, if source 1 is negative and source 2 is positive. The result is source 1, if both are

negative and source 1 is greater in magnitude than source 2. The result is source 1, if both are positive
and source 1 is lesser in magnitude than source 2. The result is source 2 in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PFMUL 107
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Multiplies each of the two packed single-precision floating-point values in the first source operand by
the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each multiplication in the corresponding doubleword of the destination (first
source). The numeric range for source and destination operands is shown in Table 1-11 on page 108.
The first source/destination operand is an MMX register. The second source operand is another MMX
register or 64-bit memory location.

The PFMUL instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

MULPS

PFMUL Packed Floating-Point Multiply

Mnemonic Opcode Description

PFMUL mmx1, mmx2/mem64 0F 0F /r
B4

Multiplies packed single-precision floating-point values in an
MMX register and another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

pfmul.eps

multiply

mmx1 mmx2/mem64

multiply

63 0313263 03132

[AMD Public Use]

108 PFMUL 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

None

rFLAGS Affected

None

Exceptions

Table 1-11. Numeric Range for the PFMUL Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 +/– 01 +/– 01

Normal +/– 01 Normal, +/– 02 Undefined

Unsupported3 +/– 01 Undefined Undefined

Note:
1. The sign of the result is the exclusive-OR of the signs of the source operands.
2. If the absolute value of the result is less than 2–126, the result is zero with the sign being the exclusive-

OR of the signs of the source operands. If the absolute value of the product is greater than or equal to
2128, the result is the largest normal number with the sign being the exclusive-OR of the signs of the
source operands.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PFNACC 109
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts the first source operand’s high-order single-precision floating-point value from its low-order
single-precision floating-point value, subtracts the second source operand’s high-order single-
precision floating-point value from its low-order single-precision floating-point value, and writes each
result to the low-order or high-order doubleword, respectively, of the destination (first source). The
first source/destination operand is an MMX register. The second source operand is another MMX
register or 64-bit memory location.

The numeric range for operands is shown in Table 1-12 on page 110.

The PFNACC instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID Fn8000_0001_EDX[3DNowExt] =1. See “CPUID” in Volume 3
for more information about the CPUID instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

HSUBPS

PFNACC Packed Floating-Point Negative Accumulate

Mnemonic Opcode Description

PFNACC mmx1, mmx2/mem64 0F 0F /r
8A

Subtracts the packed single-precision floating-point values
in an MMX register or 64-bit memory location and another
MMX register and writes each value in the destination MMX
register.

pfnacc.eps

mmx1 mmx2/mem64

subtractsubtract

63 0313263 03132

[AMD Public Use]

110 PFNACC 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

PFSUB, PFACC, PFPNACC

rFLAGS Affected

None

Exceptions

Table 1-12. Numeric Range of PFNACC Results

Source Operand
High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 - High Operand - High Operand
Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the sign of the low operand and the inverse of the sign of the high operand.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero.

If the low operand is larger in magnitude than the high operand, the sign of this zero is the same as the
sign of the low operand, else it is the inverse of the sign of the high operand. If the infinitely precise result
is exactly zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of
the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD extensions to 3DNow!™ are not supported,
as indicated by
CPUID Fn8000_0001_EDX[3DNowExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

64-Bit Media PFNACC 111
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

112 PFPNACC 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Subtracts the first source operand’s high-order single-precision floating-point value from its low-order
single-precision floating-point value, adds the two single-precision values in the second source
operand, and writes each result to the low-order or high-order doubleword, respectively, of the
destination (first source). The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location.

The numeric range for operands is shown in Table 1-13 (for the low result) and Table 1-14 (for the
high result), both on page 113.

The PFPNACC instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information
about the CPUID instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

ADDSUBPS

PFPNACC Packed Floating-Point Positive-Negative
Accumulate

Mnemonic Opcode Description

PFPNACC mmx1,
mmx2/mem64

0F 0F /r
8E

Subtracts the packed single-precision floating-point values
in an MMX register, adds the packed single-precision
floating-point values in another MMX register or 64-bit
memory location, and writes each value in the destination
MMX register.

pfpnacc.eps

mmx1 mmx2/mem64

addsubtract

63 0313263 03132

[AMD Public Use]

64-Bit Media PFPNACC 113
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PFADD, PFSUB, PFACC, PFNACC

rFLAGS Affected

None

Table 1-13. Numeric Range of PFPNACC Result (Low Result)

Source Operand
High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 - High Operand - High Operand
Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the sign of the low operand and the inverse of the sign of the high operand.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero.

If the low operand is larger in magnitude than the high operand, the sign of this zero is the same as the
sign of the low operand, else it is the inverse of the sign of the high operand. If the infinitely precise result
is exactly zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of
the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Table 1-14. Numeric Range of PFPNACC Result (High Result)

Source Operand
High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 High Operand High Operand
Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the signs of the low and high operands.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is zero with

the sign of the operand (low or high) that is larger in magnitude. If the infinitely precise result is exactly
zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely precise
result is greater than or equal to 2128, the result is the largest normal number with the sign of the low
operand.

5. “Unsupported” means that the exponent is all ones (1s).

[AMD Public Use]

114 PFPNACC 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD extensions to 3DNow!™ are not supported,
as indicated by
CPUID Fn8000_0001_EDX[3DNowExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PFRCP 115
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Computes the approximate reciprocal of the single-precision floating-point value in the low-order 32
bits of an MMX register or 64-bit memory location and writes the result in both doublewords of
another MMX register. The result is accurate to 14 bits.

The PFRCP result can be forwarded to the Newton-Raphson iteration step 1 (PFRCPIT1) and Newton-
Raphson iteration step 2 (PFRCPIT2) instructions to increase the accuracy of the reciprocal. The first
stage of this refinement in accuracy (PFRCPIT1) requires that the input and output of the previously
executed PFRCP instruction be used as input to the PFRCPIT1 instruction.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

PFRCP(x) returns 0 for x >= 2-126. The numeric range for operands is shown in Table 1-15 on
page 116.

The PFRCP instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

RCPSS

PFRCP Floating-Point Reciprocal Approximation

Mnemonic Opcode Description

PFRCP mmx1, mmx2/mem64 0F 0F /r
96

Computes approximate reciprocal of single-precision
floating-point value in an MMX register or 64-bit memory
location and writes the result in both doublewords of the
destination MMX register.

[AMD Public Use]

116 PFRCP 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Examples

The general Newton-Raphson recurrence for the reciprocal 1/b is:
Zi +1 ← Zi • (2 – b • Zi)

The following code sequence shows the computation of a/b:
X0 = PFRCP(b)
X1 = PFRCPIT1(b, X0)
X2 = PFRCPIT2(X1, X0)
q = PFMUL(a, X2)

The 24-bit final reciprocal value is X2. The quotient is formed in the last step by multiplying the
reciprocal by the dividend a.

Related Instructions

PFRCPIT1, PFRCPIT2

rFLAGS Affected

None

Table 1-15. Numeric Range for the PFRCP Result
Operand Source 1 and Destination

Source 2

0 +/– Maximum Normal1

Normal Normal, +/– 02

Unsupported3 Undefined

Note:
1. The result has the same sign as the source operand.
2. If the absolute value of the result is less than 2–126, the result is zero with the sign being the sign of the

source operand. Otherwise, the result is a normal with the sign being the same sign as the source
operand.

3. “Unsupported” means that the exponent is all ones (1s).

pfrcp.eps

mmx2/mem64mmx1

approximate
reciprocal

63 03132313263 0

[AMD Public Use]

64-Bit Media PFRCP 117
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

118 PFRCPIT1 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Performs the first step in the Newton-Raphson iteration to refine the reciprocal approximation
produced by the PFRCP instruction. The first source/destination operand is an MMX register
containing the results of two previous PFRCP instructions, and the second source operand is another
MMX register or 64-bit memory location containing the source operands from the same PFRCP
instructions.

This instruction is only defined for those combinations of operands such that the first source operand
(mmx1) is the approximate reciprocal of the second source operand (mmx2/mem64), and thus the
range of the product, mmx1 * mmx2/mem64, is (0.5, 2). The initial approximation of an operand is
accurate to about 12 bits, and the length of the operand itself is 24 bits, so the product of these two
operands is greater than 24 bits. PFRCPIT1 applies the one's complement of the product and rounds
the result to 32 bits. It then compresses the result to fit into 24 bits by removing the 8 redundant most-
significant bits after the hidden integer bit.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

The PFRCPIT1 instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

PFRCP

PFRCPIT1 Packed Floating-Point Reciprocal Iteration 1

Mnemonic Opcode Description

PFRCPIT1 mmx1,
mmx2/mem64

0F 0F /r
A6

Refine approximate reciprocal of result from previous
PFRCP instruction.

[AMD Public Use]

64-Bit Media PFRCPIT1 119
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Operation
mmx1[31:0] = Compress (2 - mmx1[31:0] * (mmx2/mem64[31:0]) - 231);
mmx1[63:32] = Compress (2 - mmx1[63:32] * (mmx2/mem64[63:32]) - 231);

where:

“Compress” means discard the 8 redundant most-significant bits after the hidden integer bit.

Examples

The general Newton-Raphson recurrence for the reciprocal 1/b is:
Zi +1 ← Zi • (2 – b • Zi)

The following code sequence computes a 24-bit approximation to a/b with one Newton-Raphson
iteration:
X0 = PFRCP(b)
X1 = PFRCPIT1(b, X0)
X2 = PFRCPIT2(X1, X0)
q = PFMUL(a, X2)

a/b is formed in the last step by multiplying the reciprocal approximation by a.

Related Instructions

PFRCP, PFRCPIT2

rFLAGS Affected

None

pfrcpit1.eps

Newton-
Raphson
reciprocal

step 1
Newton-
Raphson
reciprocal

step 1

mmx1 mmx2/mem64

63 0313263 03132

PFRCP SourcePFRCP Result PFRCP SourcePFRCP Result

[AMD Public Use]

120 PFRCPIT1 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PFRCPIT2 121
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Performs the second and final step in the Newton-Raphson iteration to refine the reciprocal
approximation produced by the PFRCP instruction or the reciprocal square-root approximation
produced by the PFSQRT instruction. PFRCPIT2 takes two paired elements in each source operand.
These paired elements are the results of a PFRCP and PFRCPIT1 instruction sequence or of a
PFRSQRT and PFRSQIT1 instruction sequence. The first source/destination operand is an MMX
register that contains the PFRCPIT1 or PFRSQIT1 results and the second source operand is another
MMX register or 64-bit memory location that contains the PFRCP or PFRSQRT results.

The PFRCPIT2 instruction expands the compressed PFRCPIT1 or PFRSQIT1 results from 24 to 32
bits and multiplies them by their respective source operands. An optimal correction factor is added to
the product, which is then rounded to 24 bits.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

The PFRCPIT2 instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

PFRCP

PFRCPIT2 Packed Floating-Point Reciprocal or Reciprocal
Square Root Iteration 2

Mnemonic Opcode Description

PFRCPIT2 mmx1, mmx2/mem64 0F 0F /r
B6

Refines approximate reciprocal result from previous
PFRCP and PFRCPIT1 instructions or from previous
PFRSQRT and PFRSQIT1 instructions.

[AMD Public Use]

122 PFRCPIT2 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Operation
mmx1[31:0] = Expand(mmx1[31:0]) * mmx2/mem64[31:0];
mmx1[63:32] = Expand(mmx1[63:32]) * mmx2/mem64[63:32];

where:

“Expand” means convert a 24-bit significand to a 32-bit significand according to the following rule:
temp[31:0] = {1’b1, 8{mmx1[22]}, mmx1[22:0]};

Examples

The general Newton-Raphson recurrence for the reciprocal 1/b is:
Zi +1 ← Zi • (2 – b • Zi)

The following code sequence computes a 24-bit approximation to a/b with one Newton-Raphson
iteration:
X0 = PFRCP(b)
X1 = PFRCPIT1(b, X0)
X2 = PFRCPIT2(X1, X0)
q = PFMUL(a, X2)

a/b is formed in the last step by multiplying the reciprocal approximation by a.

Related Instructions

PFRCP, PFRCPIT1, PFRSQRT, PFRSQIT1

rFLAGS Affected

None

pfrcpit2.eps

Newton-
Raphson
reciprocal

step 2
Newton-
Raphson
reciprocal

step 2

mmx1 mmx2/mem64

63 0313263 03132

Reciprocal ResultIteration-1 Result Reciprocal ResultIteration-1 Result

[AMD Public Use]

64-Bit Media PFRCPIT2 123
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

124 PFRSQIT1 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Performs the first step in the Newton-Raphson iteration to refine the reciprocal square-root
approximation produced by the PFSQRT instruction. The first source/destination operand is an MMX
register containing the result from a previous PFRSQRT instruction, and the second source operand is
another MMX register or 64-bit memory location containing the source operand from the same
PFRSQRT instruction.

This instruction is only defined for those combinations of operands such that the first source operand
(mmx1) is the approximate reciprocal of the second source operand (mmx2/mem64), and thus the
range of the product, mmx1 * mmx2/mem64, is (0.5, 2). The length of both operands is 24 bits, so the
product of these two operands is greater than 24 bits. The product is normalized and then rounded to 32
bits. The one's complement of the result is applied, a 1 is added as the most-significant bit, and the
result re-normalized. The result is then compressed to fit into 24 bits by removing 8 redundant most-
significant bits after the hidden integer bit, and the exponent is reduced by 1 to account for the division
by 2.

The PFRSQIT1 instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

PFRSQRT

PFRSQIT1 Packed Floating-Point Reciprocal Square Root
Iteration 1

Mnemonic Opcode Description

PFRSQIT1 mmx1,
mmx2/mem64

0F 0F /r
A7

Refines reciprocal square root approximation of previous
PFRSQRT instruction.

[AMD Public Use]

64-Bit Media PFRSQIT1 125
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Operation
mmx1[31:0] = Compress ((3 - mmx1[31:0] * (mmx2/mem64[31:0]) - 231)/2);
mmx1[63:32] = Compress ((3 - mmx1[63:32] * (mmx2/mem64[63:32]) - 231)/2);

where:

“Compress” means discard the 8 redundant most-significant bits after the hidden integer bit.

Examples

The following code sequence shows how the PFRSQRT and PFMUL instructions can be used to
compute a = 1/sqrt (b):
X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
a = PFRCPIT2(X2,X0)

Related Instructions

PFRCPIT2, PFRSQRT

rFLAGS Affected

None

pfrsqit1.eps

Newton-
Raphson
reciprocal

square root
step 1Newton-

Raphson
reciprocal

square root
step 1

mmx1 mmx2/mem64

63 0313263 03132

PFSQRT SourcePFSQRT Result PFSQRT SourcePFSQRT Result

[AMD Public Use]

126 PFRSQIT1 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PFRSQRT 127
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Computes the approximate reciprocal square root of the single-precision floating-point value in the
low-order 32 bits of an MMX register or 64-bit memory location and writes the result in each
doubleword of another MMX register. The source operand is single-precision with a 24-bit
significand, and the result is accurate to 15 bits. Negative operands are treated as positive operands for
purposes of reciprocal square-root computation, with the sign of the result the same as the sign of the
source operand.

This instruction can be used together with the PFRSQIT1 and PFRCPIT2 instructions to increase
accuracy. The first stage of this refinement in accuracy (PFRSQIT1) requires that the input and output
of the previously executed PFRSQRT instruction be used as input to the PFRSQIT1 instruction.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

The PFRSQRT instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

The numeric range for operands is shown in Table 1-16 on page 128.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

RSQRTSS

PFRSQRT Packed Floating-Point Reciprocal Square Root
Approximation

Mnemonic Opcode Description

PFRSQRT mmx1,
mmx2/mem64

0F 0F /r
97

Computes approximate reciprocal square root of a packed
single-precision floating-point value.

[AMD Public Use]

128 PFRSQRT 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Examples

The following code sequence shows how the PFRSQRT and PFMUL instructions can be used to
compute a = 1/sqrt (b):
X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
a = PFRCPIT2(X2,X0)

Related Instructions

PFRCPIT2, PFRSQIT1

rFLAGS Affected

None

Table 1-16. Numeric Range for the PFRCP Result
Operand Source 1 and Destination

Source 2

0 +/– Maximum Normal1

Normal Normal1

Unsupported2 Undefined1

Note:
1. The result has the same sign as the source operand.
2. “Unsupported” means that the exponent is all ones (1s).

pfrsqrt.eps

xmm2/mem64mmx1

reciprocal
square root

63 03132313263 0

[AMD Public Use]

64-Bit Media PFRSQRT 129
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

130 PFSUB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Subtracts each packed single-precision floating-point value in the second source operand from the
corresponding packed single-precision floating-point value in the first source operand and writes the
result of each subtraction in the corresponding doubleword of the destination (first source). The first
source/destination operand is an MMX register. The second source operand is another MMX register
or 64-bit memory location. The numeric range for operands is shown in Table 1-17 on page 131.

The PFSUB instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

SUBPS

PFSUB Packed Floating-Point Subtract

Mnemonic Opcode Description

PFSUB mmx1, mmx2/mem64 0F 0F /r
9A

Subtracts packed single-precision floating-point values in
an MMX register or 64-bit memory location from packed
single-precision floating-point values in another MMX
register and writes the result in the destination MMX
register.

pfsub.eps

mmx1 mmx2/mem64

subtract

subtract

63 0313263 03132

[AMD Public Use]

64-Bit Media PFSUB 131
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PFSUBR

rFLAGS Affected

None

Exceptions

Table 1-17. Numeric Range for the PFSUB Results

Source Operand
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 - Source 2 - Source 2
Normal Source 1 Normal, +/– 02 Undefined

Unsupported3 Source 1 Undefined Undefined

Note:
1. The sign of the result is the logical AND of the sign of source 1 and the inverse of the sign of source 2.
2. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero.

If the source operand that is larger in magnitude is source 1, the sign of this zero is the same as the sign
of source 1, else it is the inverse of the sign of source 2. If the infinitely precise result is exactly zero, the
result is zero with the sign of source 1. If the absolute value of the infinitely precise result is greater than
or equal to 2128, the result is the largest normal number with the sign of source 1.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

132 PFSUBR 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Subtracts each packed single-precision floating-point value in the first source operand from the
corresponding packed single-precision floating-point value in the second source operand and writes
the result of each subtraction in the corresponding dword of the destination (first source). The first
source/destination operand is an MMX register. The second source operand is another MMX register
or 64-bit memory location. The numeric range for operands is shown in Table 1-18 on page 133.

The PFSUBR instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

SUBPS

PFSUBR Packed Floating-Point Subtract Reverse

Mnemonic Opcode Description

PFSUBR mmx1, mmx2/mem64 0F 0F /r
AA

Subtracts packed single-precision floating-point values in
an MMX register from packed single-precision floating-
point values in another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

pfsubr.eps

mmx1 mmx2/mem64

subtract

subtract

63 0313263 03132

[AMD Public Use]

64-Bit Media PFSUBR 133
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PFSUB

rFLAGS Affected

None

Exceptions

Table 1-18. Numeric Range for the PFSUBR Results

Source Operand
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 Source 2 Source 2
Normal - Source 1 Normal, +/– 02 Undefined

Unsupported3 - Source 1 Undefined Undefined

Note:
1. The sign is the logical AND of the sign of source 2 and the inverse of the sign of source 1.
2. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero.

If the source operand that is larger in magnitude is source 2, the sign of this zero is the same as the sign
of source 2, else it is the inverse of the sign of source 1. If the infinitely precise result is exactly zero, the
result is zero with the sign of source 2. If the absolute value of the infinitely precise result is greater than
or equal to 2128, the result is the largest normal number with the sign of source 2.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by ECPUID Fn8000_0001_EDX[3DNow]
= 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

134 PI2FD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit memory location to
two packed single-precision floating-point values and writes the converted values in another MMX
register. If the result of the conversion is an inexact value, the value is truncated (rounded toward
zero).

The PI2FD instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 337.

Recommended Instruction Substitution

CVTDQ2PS

Related Instructions

PF2ID, PF2IW, PI2FW

rFLAGS Affected

None

PI2FD Packed Integer to Floating-Point Doubleword
Conversion

Mnemonic Opcode Description

PI2FD mmx1,
mmx2/mem64

0F 0F /r
0D

Converts packed doubleword integers in an MMX register or 64-
bit memory location to single-precision floating-point values in
the destination MMX register. Inexact results are truncated.

pi2fd.eps

mmx1 mmx2/mem64

convert

convert

63 0313263 03132

[AMD Public Use]

64-Bit Media PI2FD 135
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

136 PI2FW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts two packed 16-bit signed integer values in an MMX register or a 64-bit memory location to
two packed single-precision floating-point values and writes the converted values in another MMX
register.

The PI2FW instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information
about the CPUID instruction.

Related Instructions

PF2ID, PF2IW, PI2FD

PI2FW Packed Integer to Floating-Point Word Conversion

Mnemonic Opcode Description

PI2FW mmx1,
mmx2/mem64

0F 0F /r
0C

Converts packed 16-bit integers in an MMX register or 64-bit
memory location to packed single-precision floating-point
values in the destination MMX register.

pi2fw.eps

mmx1 mmx2/mem64

convert

convert

63 03132 63 04748 15163132

[AMD Public Use]

64-Bit Media PI2FW 137
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD extensions to 3DNow!™ are not supported,
as indicated by
CPUID Fn8000_0001_EDX[3DNowExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

138 PINSRW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Inserts a 16-bit value from the low-order word of a 32-bit general purpose register or a 16-bit memory
location into an MMX register. The location in the destination register is selected by the immediate
byte operand, a shown in Table 1-19. The other words in the destination register operand are not
modified.

The PINSRW instruction is an AMD extension to MMX™ instruction set and is an SSE1 instruction.
The presence of this instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

Related Instructions

PEXTRW

rFLAGS Affected

None

PINSRW Packed Insert Word

Mnemonic Opcode Description

PINSRW mmx, reg32/mem16,
imm8 0F C4 /r ib

Inserts a 16-bit value from a general-purpose
register or memory location into an MMX
register.

Table 1-19. Immediate-Byte Operand Encoding for 64-Bit PINSRW
Immediate-Byte

Bit Field Value of Bit Field Destination Bits Filled

1–0

0 15–0
1 31–16
2 47–32
3 63–48

select word position for insert
pinsrw-64.eps

reg32/mem16mmx

imm8
7 0

01563 04748 15163132 31

[AMD Public Use]

64-Bit Media PINSRW 139
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

140 PMADDWD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Multiplies each packed 16-bit signed value in the first source operand by the corresponding packed 16-
bit signed value in the second source operand, adds the adjacent intermediate 32-bit results of each
multiplication (for example, the multiplication results for the adjacent bit fields 63–48 and 47–32, and
31–16 and 15–0), and writes the 32-bit result of each addition in the corresponding doubleword of the
destination (first source). The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

If all four of the 16-bit source operands used to produce a 32-bit multiply-add result have the value
8000h, the 32-bit result is 8000_0000h, which is not the correct 32-bit signed result.

The PMADDWD instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PMULHUW, PMULHW, PMULLW, PMULUDQ

rFLAGS Affected

PMADDWD Packed Multiply Words and Add Doublewords

Mnemonic Opcode Description

PMADDWD mmx1, mmx2/mem64 0F F5 /r
Multiplies four packed 16-bit signed values in an
MMX register and another MMX register or 64-bit
memory location, adds intermediate results, and
writes the result in the destination MMX register.

mmx1 mmx2/mem64

pmaddwd-64.eps

multiply

multiply

add

multiply

multiply

add

63 03132

63 04748 15163132 63 04748 15163132

[AMD Public Use]

64-Bit Media PMADDWD 141
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

142 PMAXSW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares each of the packed 16-bit signed integer values in the first source operand with the
corresponding packed 16-bit signed integer value in the second source operand and writes the
maximum of the two values for each comparison in the corresponding word of the destination (first
source). The first source/destination and second source operands are an MMX register and an MMX
register or 64-bit memory location.

The PMAXSW instruction is an AMD extension to MMX™ instruction set and is an SSE1 instruction.
The presence of this instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

Related Instructions

PMAXUB, PMINSW, PMINUB

rFLAGS Affected

None

PMAXSW Packed Maximum Signed Words

Mnemonic Opcode Description

PMAXSW mmx1, mmx2/mem64 0F EE /r
Compares packed signed 16-bit integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the maximum value of each compare
in destination MMX register.

pmaxsw-64.eps

maximum

maximum

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

64-Bit Media PMAXSW 143
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

144 PMAXUB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares each of the packed 8-bit unsigned integer values in the first source operand with the
corresponding packed 8-bit unsigned integer value in the second source operand and writes the
maximum of the two values for each comparison in the corresponding byte of the destination (first
source). The first source/destination and second source operands are an MMX register and an MMX
register or 64-bit memory location.

The PMAXUB instruction is an AMD extension to MMX™ instruction set and is an SSE1 instruction.
The presence of this instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

Related Instructions

PMAXSW, PMINSW, PMINUB

rFLAGS Affected

None

PMAXUB Packed Maximum Unsigned Bytes

Mnemonic Opcode Description

PMAXUB mmx1, mmx2/mem64 0F DE /r
Compares packed unsigned 8-bit integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the maximum value of each
compare in the destination MMX register.

pmaxub-64.eps

maximum

63 0 63 0

mmx1 mmx2/mem64

maximum

.

.

.

[AMD Public Use]

64-Bit Media PMAXUB 145
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

146 PMINSW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares each of the packed 16-bit signed integer values in the first source operand with the
corresponding packed 16-bit signed integer value in the second source operand and writes the
minimum of the two values for each comparison in the corresponding word of the destination (first
source). The first source/destination and second source operands are an MMX register and an MMX
register or 64-bit memory location.

The PMINSW instruction is an AMD extension to MMX™ instruction set and is an SSE1 instruction.
The presence of this instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

Related Instructions

PMAXSW, PMAXUB, PMINUB

rFLAGS Affected

None

PMINSW Packed Minimum Signed Words

Mnemonic Opcode Description

PMINSW mmx1, mmx2/mem64 0F EA /r
Compares packed signed 16-bit integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the minimum value of each
compare in the destination MMX register.

pminsw-64.eps

minimum

minimum

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

64-Bit Media PMINSW 147
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

148 PMINUB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares each of the packed 8-bit unsigned integer values in the first source operand with the
corresponding packed 8-bit unsigned integer value in the second source operand and writes the
minimum of the two values for each comparison in the corresponding byte of the destination (first
source). The first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

The PMINUB instruction is an AMD extension to MMX™ instruction set and is an SSE1 instruction.
The presence of this instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

Related Instructions

PMAXSW, PMAXUB, PMINSW

rFLAGS Affected

None

PMINUB Packed Minimum Unsigned Bytes

Mnemonic Opcode Description

PMINUB mmx1, mmx2/mem64 0F DA /r
Compares packed unsigned 8-bit integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the minimum value of each
comparison in the destination MMX register.

pminub-64.eps

minimum

63 0 63 0

mmx1 mmx2/mem64

minimum

.

.

.

[AMD Public Use]

64-Bit Media PMINUB 149
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

150 PMOVMSKB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Moves the most-significant bit of each byte in the source operand in bitwise order to the low order byte
of the destination operand. The upper 24 bits of the destination operand are cleared to zeros. The
destination operand is a 32-bit general-purpose register and the source operand is an MMX register.

The PMOVMSKB instruction is an AMD extension to MMX™ instruction set and is an SSE1
instruction. The presence of this instruction set is indicated by CPUID feature bits. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

MOVMSKPD, MOVMSKPS

rFLAGS Affected

None

PMOVMSKB Packed Move Mask Byte

Mnemonic Opcode Description

PMOVMSKB reg32, mmx 0F D7 /r Moves most-significant bit of each byte in an MMX register
to the low-order byte of a 32-bit general-purpose register.

reg32

pmovmskb-64.eps

mmx

..

015233139475563 7

copy
copy

07

0

.
31

[AMD Public Use]

64-Bit Media PMOVMSKB 151
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE] = 0 and the AMD
extensions to the MMX™ instruction set are not
supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

[AMD Public Use]

152 PMULHRW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Multiplies each of the four packed 16-bit signed integer values in the first source operand by the
corresponding packed 16-bit integer value in the second source operand, adds 8000h to the lower 16
bits of the intermediate 32-bit result of each multiplication, and writes the high-order 16 bits of each
result in the corresponding word of the destination (first source). The addition of 8000h results in the
rounding of the result, providing a numerically more accurate result than the PMULHW instruction,
which truncates the result. The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location.

The PMULHRW instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

None

rFLAGS Affected

None

PMULHRW Packed Multiply High Rounded Word

Mnemonic Opcode Description

PMULHRW mmx1, mmx2/mem64 0F 0F /r
B7

Multiply 16-bit signed integer values in an MMX register
and another MMX register or 64-bit memory location and
write rounded result in the destination MMX register.

multiply

mmx1 mmx2/mem64

multiply

round

round

pmulhrw.eps

31324748 151663 031324748 151663 0

..

..

..

[AMD Public Use]

64-Bit Media PMULHRW 153
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

154 PMULHUW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Multiplies each packed unsigned 16-bit values in the first source operand by the corresponding packed
unsigned word in the second source operand and writes the high-order 16 bits of each intermediate 32-
bit result in the corresponding word of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit
memory location.

The PMULHUW instruction is an AMD extension to MMX™ instruction set and is an SSE1
instruction. The presence of this instruction set is indicated by CPUID feature bits. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Related Instructions

PMADDWD, PMULHW, PMULLW, PMULUDQ

rFLAGS Affected

None

PMULHUW Packed Multiply High Unsigned Word

Mnemonic Opcode Description

PMULHUW mmx1, mmx2/mem64 0F E4 /r

Multiplies packed 16-bit values in an MMX register
by the packed 16-bit values in another MMX register
or 64-bit memory location and writes the high-order
16 bits of each result in the destination MMX
register.

pmulhuw-64.eps

multiply

mmx1 mmx2/mem64

multiply

..

63 04748 15163132

..

..
63 04748 15163132

[AMD Public Use]

64-Bit Media PMULHUW 155
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

156 PMULHW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer in the second source operand and writes the high-order 16 bits of the
intermediate 32-bit result of each multiplication in the corresponding word of the destination (first
source). The first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

The PMULHW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PMADDWD, PMULHUW, PMULLW, PMULUDQ

rFLAGS Affected

None

PMULHW Packed Multiply High Signed Word

Mnemonic Opcode Description

PMULHW mmx1, mmx2/mem64 0F E5 /r
Multiplies packed 16-bit signed integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the high-order 16 bits of
each result in the destination MMX register.

pmulhw-64.eps

multiply

mmx1 mmx2/mem64

multiply

..

63 04748 15163132

..

..
63 04748 15163132

[AMD Public Use]

64-Bit Media PMULHW 157
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

158 PMULLW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer in the second source operand and writes the low-order 16 bits of the
intermediate 32-bit result of each multiplication in the corresponding word of the destination (first
source). The first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

The PMULLW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULUDQ

rFLAGS Affected

None

PMULLW Packed Multiply Low Signed Word

Mnemonic Opcode Description

PMULLW mmx1, mmx2/mem64 0F D5 /r
Multiplies packed 16-bit signed integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the low-order 16 bits of
each result in the destination MMX register.

pmullw-64.eps

multiply

mmx1 mmx2/mem64

multiply

..

63 04748 15163132

..

..
63 04748 15163132

[AMD Public Use]

64-Bit Media PMULLW 159
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

160 PMULUDQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Multiplies two 32-bit unsigned integer values in the low-order doubleword of the first and second
source operands and writes the 64-bit result in the destination (first source). The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

The PMULUDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULLW

rFLAGS Affected

None

PMULUDQ Packed Multiply Unsigned Doubleword and Store
Quadword

Mnemonic Opcode Description

PMULUDQ mmx1, mmx2/mem64 0F F4 /r
Multiplies low-order 32-bit unsigned integer value in
an MMX register and another MMX register or 64-bit
memory location and writes the 64-bit result in the
destination MMX register.

pmuludq-64.eps

mmx1 mmx2/mem64

multiply

63 0313263 03132

[AMD Public Use]

64-Bit Media PMULUDQ 161
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X The emulate bit (EM) of CR0 was set to 1.

X X X The SSE2 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE2] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

162 POR 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Performs a bitwise logical OR of the values in the first and second source operands and writes the
result in the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The POR instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PAND, PANDN, PXOR

rFLAGS Affected

None

POR Packed Logical Bitwise OR

Mnemonic Opcode Description

POR mmx1, mmx2/mem64 0F EB /r
Performs bitwise logical OR of values in an MMX register
and in another MMX register or 64-bit memory location and
writes the result in the destination MMX register.

por-64.eps

mmx1 mmx2/mem64

OR

0 63 063 0

[AMD Public Use]

64-Bit Media POR 163
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

164 PSADBW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Computes the absolute differences of eight corresponding packed 8-bit unsigned integers in the first
and second source operands and writes the unsigned 16-bit integer result of the sum of the eight
differences in a word in the destination (first source). The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory location. The result
is stored in the low-order word of the destination operand, and the remaining bytes in the destination
are cleared to all 0s.

The PSADBW instruction is an AMD extension to MMX™ instruction set and is an SSE1 instruction.
The presence of this instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

rFLAGS Affected

None

PSADBW Packed Sum of Absolute Differences of Bytes Into
a Word

Mnemonic Opcode Description

PSADBW mmx1, mmx2/mem64 0F F6 /r

Compute the sum of the absolute differences of
packed 8-bit unsigned integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the 16-bit unsigned integer result in
the destination MMX register.

psadbw-64.eps

mmx1 mmx2/mem64

absolute
difference

absolute
difference

63 063 0

63 015

0

.

add 8
pairs

[AMD Public Use]

64-Bit Media PSADBW 165
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

166 PSHUFW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Moves any one of the four packed words in an MMX register or 64-bit memory location to a specified
word location in another MMX register. In each case, the selection of the value of the destination word
is determined by a two-bit field in the immediate-byte operand, with bits 0 and 1 selecting the contents
of the low-order word, bits 2 and 3 selecting the second word, bits 4 and 5 selecting the third word, and
bits 6 and 7 selecting the high-order word. Refer to Table 1-20 on page 167. A word in the source
operand may be copied to more than one word in the destination.

The PSHUFW instruction is an AMD extension to MMX™ instruction set and is an SSE1 instruction.
The presence of this instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

PSHUFW Packed Shuffle Words

Mnemonic Opcode Description

PSHUFW mmx1, mmx2/mem64,
imm8 0F 70 /r ib

Shuffles packed 16-bit values in an MMX
register or 64-bit memory location and puts the
result in another XMM register.

pshufw.eps

mmx1 mmx2/mem64

imm8
7 0

mux
mux

mux
mux

063 4748 15163132063 4748 15163132

[AMD Public Use]

64-Bit Media PSHUFW 167
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

PSHUFD, PSHUFHW, PSHUFLW

rFLAGS Affected

None

Table 1-20. Immediate-Byte Operand Encoding for PSHUFW

Destination Bits Filled
Immediate-Byte

Bit Field Value of Bit Field Source Bits Moved

15–0 1–0

0 15–0
1 31–16
2 47–32
3 63–48

31–16 3–2

0 15–0
1 31–16
2 47–32
3 63–48

47–32 5–4

0 15–0
1 31–16
2 47–32
3 63–48

63–48 7–6

0 15–0
1 31–16
2 47–32
3 63–48

[AMD Public Use]

168 PSHUFW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0
and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSLLD 169
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Left-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or
• an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 31, the destination is cleared to all 0s.

The PSLLD instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

PSLLD Packed Shift Left Logical Doublewords

Mnemonic Opcode Description

PSLLD mmx1, mmx2/mem64 0F F2 /r
Left-shifts packed doublewords in an MMX register
by the amount specified in an MMX register or 64-bit
memory location.

PSLLD mmx, imm8 0F 72 /6 ib Left-shifts packed doublewords in an MMX register
by the amount specified in an immediate byte value.

pslld-64.eps

shift left

mmx1 mmx2/mem64

shift left

mmx imm8

63 063 03132

shift left

shift left

63 03132 7 0

[AMD Public Use]

170 PSLLD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSLLQ 171
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Left-shifts each 64-bit value in the first source operand by the number of bits specified in the second
source operand and writes each shifted value in the corresponding quadword of the destination (first
source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or
• an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 63, the destination is cleared to all 0s.

The PSLLQ instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSLLD, PSLLDQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

PSLLQ Packed Shift Left Logical Quadwords

Mnemonic Opcode Description

PSLLQ mmx1, mmx2/mem64 0F F3 /r
Left-shifts quadword in an MMX register by the
amount specified in an MMX register or 64-bit
memory location.

PSLLQ mmx, imm8 0F 73 /6 ib Left-shifts quadword in an MMX register by the
amount specified in an immediate byte value.

mmx1 mmx2/mem64

shift left

psllq-64.eps

mmx imm8

63 063 0

shift left

63 0 7 0

[AMD Public Use]

172 PSLLQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSLLW 173
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Left-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding word of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or
• an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 15, the destination is cleared to all 0s.

The PSLLW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

PSLLW Packed Shift Left Logical Words

Mnemonic Opcode Description

PSLLW mmx1, mmx2/mem64 0F F1 /r
Left-shifts packed words in an MMX register by the
amount specified in an MMX register or 64-bit
memory location.

PSLLW mmx, imm8 0F 71 /6 ib Left-shifts packed words in an MMX register by the
amount specified in an immediate byte value.

psllw-64.eps

shift left

mmx1 mmx2/mem64

shift left

mmx imm8

shift left

shift left

. .

. .
7 063 04748 15163132

. .

. .
63 04748 15163132 63 0

[AMD Public Use]

174 PSLLW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSRAD 175
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Right-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or
• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are filled with the sign bit of the
doubleword’s initial value. If the shift value is greater than 31, each doubleword in the destination is
filled with the sign bit of the doubleword’s initial value.

The PSRAD instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

PSRAD Packed Shift Right Arithmetic Doublewords

Mnemonic Opcode Description

PSRAD mmx1, mmx2/mem64 0F E2 /r
Right-shifts packed doublewords in an MMX register
by the amount specified in an MMX register or 64-bit
memory location.

PSRAD mmx, imm8 0F 72 /4 ib Right-shifts packed doublewords in an MMX register
by the amount specified in an immediate byte value.

psrad-64.eps

shift right

mmx1 mmx2/mem64

shift right

mmx imm8

63 03132

shift right

shift right

63 03132 7 0

63 0

[AMD Public Use]

176 PSRAD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSRAW 177
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Right-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding word of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or
• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are filled with the sign bit of the word’s
initial value. If the shift value is greater than 15, each word in the destination is filled with the sign bit
of the word’s initial value.

The PSRAW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

PSRAW Packed Shift Right Arithmetic Words

Mnemonic Opcode Description

PSRAW mmx1, mmx2/mem64 0F E1 /r
Right-shifts packed words in an MMX register by the
amount specified in an MMX register or 64-bit
memory location.

PSRAW mmx, imm8 0F 71 /4 ib Right-shifts packed words in an MMX register by the
amount specified in an immediate byte value.

psraw-64.eps

shift right
arithmetic

mmx1 mmx2/mem64

shift right
arithmetic

mmx imm8

shift right
arithmetic

shift right
arithmetic

. .

. .

. .

7 063 04748 15163132

. .

63 04748 15163132 63 0

[AMD Public Use]

178 PSRAW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSRLD 179
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Right-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or
• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 31, the destination is cleared to 0.

The PSRLD instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

PSRLD Packed Shift Right Logical Doublewords

Mnemonic Opcode Description

PSRLD mmx1, mmx2/mem64 0F D2 /r
Right-shifts packed doublewords in an MMX register
by the amount specified in an MMX register or 64-bit
memory location.

PSRLD mmx, imm8 0F 72 /2 ib Right-shifts packed doublewords in an MMX register
by the amount specified in an immediate byte value.

psrld-64.eps

shift right

mmx1 mmx2/mem64

shift right

mmx imm8

63 03132

shift right

shift right

63 03132 7 0

63 0

[AMD Public Use]

180 PSRLD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSRLQ 181
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Right-shifts each 64-bit value in the first source operand by the number of bits specified in the second
source operand and writes each shifted value in the corresponding quadword of the destination (first
source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or
• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 63, the destination is cleared to 0.

The PSRLQ instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLW

PSRLQ Packed Shift Right Logical Quadwords

Mnemonic Opcode Description

PSRLQ mmx1, mmx2/mem64 0F D3 /r
Right-shifts quadword in an MMX register by the
amount specified in an MMX register or 64-bit memory
location.

PSRLQ mmx, imm8 0F 73 /2 ib Right-shifts quadword in an MMX register by the
amount specified in an immediate byte value.

psrlq-64.eps

7 0

mmx1 mmx2/mem64

shift right

mmx imm8

63 063 0

shift right

63 0

[AMD Public Use]

182 PSRLQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSRLW 183
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Right-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second operand and writes each shifted value in the corresponding word of the destination (first
source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or
• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 15, the destination is cleared to 0.

The PSRLW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

PSRLW Packed Shift Right Logical Words

Mnemonic Opcode Description

PSRLW mmx1, mmx2/mem64 0F D1 /r
Right-shifts packed words in an MMX register by the
amount specified in an MMX register or 64-bit
memory location.

PSRLW mmx, imm8 0F 71 /2 ib Right-shifts packed words in an MMX register by the
amount specified in an immediate byte value.

psrlw-64.eps

shift right

mmx1 mmx2/mem64

shift right

mmx imm8

shift right

shift right

. .

. .

. .

7 063 04748 15163132

. .

63 04748 15163132 63 0

[AMD Public Use]

184 PSRLW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSUBB 185
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts each packed 8-bit integer value in the second source operand from the corresponding packed
8-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding byte of the destination (first source). The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written in the destination.

The PSUBB instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBB Packed Subtract Bytes

Mnemonic Opcode Description

PSUBB mmx1, mmx2/mem64 0F F8 /r
Subtracts packed byte integer values in an MMX register
or 64-bit memory location from packed byte integer
values in another MMX register and writes the result in
the destination MMX register.

psubb-64.eps

subtract

63 0 63 0

mmx1 mmx2/mem64

subtract

.

.

.

[AMD Public Use]

186 PSUBB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSUBD 187
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts each packed 32-bit integer value in the second source operand from the corresponding
packed 32-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding doubleword of the destination (first source). The first source/destination operand is an
MMX register and the second source operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written in the destination.

The PSUBD instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSUBB, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBD Packed Subtract Doublewords

Mnemonic Opcode Description

PSUBD mmx1, mmx2/mem64 0F FA /r
Subtracts packed 32-bit integer values in an MMX
register or 64-bit memory location from packed 32-bit
integer values in another MMX register and writes the
result in the destination MMX register.

psubd-64.eps

subtract

mmx1 mmx2/mem64

subtract

63 0313263 03132

[AMD Public Use]

188 PSUBD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSUBQ 189
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts each packed 64-bit integer value in the second source operand from the corresponding
packed 64-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding quadword of the destination (first source). The first source/destination and source
operands are an MMX register and another MMX register or 64-bit memory location.

The PSUBQ instruction is an SSE2 instruction; check the status of EDX bit 26 returned by CPUID
function 0000_0001h. See “CPUID” in Volume 3 for more information about the CPUID instruction.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written in the destination.

Related Instructions

PSUBB, PSUBD, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBQ Packed Subtract Quadword

Mnemonic Opcode Description

PSUBQ mmx1, mmx2/mem64 0F FB /r
Subtracts packed 64-bit integer values in an MMX
register or 64-bit memory location from packed 64-bit
integer values in another MMX register and writes the
result in the destination MMX register.

psubq-64.eps

mmx1 mmx2/mem64

subtract

63 063 0

[AMD Public Use]

190 PSUBQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X The emulate bit (EM) of CR0 was set to 1.

X X X The SSE2 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE2] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSUBSB 191
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts each packed 8-bit signed integer value in the second source operand from the corresponding
packed 8-bit signed integer in the first source operand and writes the signed integer result of each
subtraction in the corresponding byte of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit
memory location.

For each packed value in the destination, if the value is larger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to 80h.

The PSUBBSB instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBSB Packed Subtract Signed With Saturation Bytes

Mnemonic Opcode Description

PSUBSB mmx1, mmx2/mem64 0F E8 /r
Subtracts packed byte signed integer values in an
MMX register or 64-bit memory location from packed
byte integer values in another MMX register and writes
the result in the destination MMX register.

saturate

saturate

psubsb-64.eps

subtract

63 0 63 0

mmx1 mmx2/mem64

subtract

.

.

.

[AMD Public Use]

192 PSUBSB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSUBSW 193
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts each packed 16-bit signed integer value in the second source operand from the
corresponding packed 16-bit signed integer in the first source operand and writes the signed integer
result of each subtraction in the corresponding word of the destination (first source). The first
source/destination and source operands are an MMX register and another MMX register or 64-bit
memory location.

For each packed value in the destination, if the value is larger than the largest signed 16-bit integer, it is
saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.

The PSUBSW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBSW Packed Subtract Signed With Saturation Words

Mnemonic Opcode Description

PSUBSW mmx1, mmx2/mem64 0F E9 /r
Subtracts packed 16-bit signed integer values in an
MMX register or 64-bit memory location from packed
16-bit integer values in another MMX register and
writes the result in the destination MMX register.

subtract

subtract

saturate

saturate

psubsw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

194 PSUBSW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSUBUSB 195
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts each packed 8-bit unsigned integer value in the second source operand from the
corresponding packed 8-bit unsigned integer in the first source operand and writes the unsigned
integer result of each subtraction in the corresponding byte of the destination (first source). The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

The PSUBUSB instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBUSB Packed Subtract Unsigned and Saturate Bytes

Mnemonic Opcode Description

PSUBUSB mmx1, mmx2/mem64 0F D8 /r
Subtracts packed byte unsigned integer values in an
MMX register or 64-bit memory location from packed
byte integer values in another MMX register and
writes the result in the destination MMX register.

saturate
saturate

psubusb-64.eps

subtract

63 0 63 0

mmx1 mmx2/mem64

subtract

.

.

.

[AMD Public Use]

196 PSUBUSB 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSUBUSW 197
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts each packed 16-bit unsigned integer value in the second source operand from the
corresponding packed 16-bit unsigned integer in the first source operand and writes the unsigned
integer result of each subtraction in the corresponding word of the destination (first source). The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 16-bit integer,
it is saturated to FFFFh, and if the value is smaller than the smallest unsigned 16-bit integer, it is
saturated to 0000h.

The PSUBUSW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBW

rFLAGS Affected

None

PSUBUSW Packed Subtract Unsigned and Saturate Words

Mnemonic Opcode Description

PSUBUSW mmx1, mmx2/mem64 0F D9 /r
Subtracts packed 16-bit unsigned integer values in
an MMX register or 64-bit memory location from
packed 16-bit integer values in another MMX register
and writes the result in the destination MMX register.

subtract

subtract

saturate
saturate

psubusw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

198 PSUBUSW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSUBW 199
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts each packed 16-bit integer value in the second source operand from the corresponding
packed 16-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding word of the destination (first source). The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of the
result are written in the destination.

The PSUBW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW

rFLAGS Affected

None

PSUBW Packed Subtract Words

Mnemonic Opcode Description

PSUBW mmx1, mmx2/mem64 0F F9 /r
Subtracts packed 16-bit integer values in an MMX
register or 64-bit memory location from packed 16-bit
integer values in another MMX register and writes the
result in the destination MMX register.

psubw-64.eps

subtract
subtract

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

[AMD Public Use]

200 PSUBW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PSWAPD 201
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Swaps (reverses) the two packed 32-bit values in the source operand and writes each swapped value in
the corresponding doubleword of the destination. The source operand is an MMX register or 64-bit
memory location. The destination is another MMX register.

The PSWAPD instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information
about the CPUID instruction.

Related Instructions

None

rFLAGS Affected

None

PSWAPD Packed Swap Doubleword

Mnemonic Opcode Description

PSWAPD mmx1, mmx2/mem64 0F 0F /r BB
Swaps packed 32-bit values in an MMX register or 64-
bit memory location and writes each value in the
destination MMX register.

pswapd.eps

mmx1 mmx2/mem64

copy copy

63 03132

63 03132

63 03132

[AMD Public Use]

202 PSWAPD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD Extensions to 3DNow!™ are not supported,
as indicated by
CPUID Fn8000_0001_EDX[3DNowExt] = 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PUNPCKHBW 203
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Unpacks the high-order bytes from the first and second source operands and packs them into
interleaved-byte words in the destination (first source). The low-order bytes of the source operands are
ignored. The first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

If the second source operand is all 0s, the destination contains the bytes from the first source operand
zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to unsigned 16-
bit operands for subsequent processing that requires higher precision.

The PUNPCKHBW instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PUNPCKHDQ, PUNP CKHQDQ, PUNPCK HWD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKHBW Unpack and Interleave High Bytes

Mnemonic Opcode Description

PUNPCKHBW mmx1,
mmx2/mem64 0F 68 /r

Unpacks the four high-order bytes in an MMX register
and another MMX register or 64-bit memory location
and packs them into interleaved bytes in the
destination MMX register.

punpckhbw-64.eps

313263 0313263 0

copy

. .. .

. . . .

63 03132

mmx1 mmx2/mem64

copy copycopy

[AMD Public Use]

204 PUNPCKHBW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PUNPCKHDQ 205
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Unpacks the high-order doublewords from the first and second source operands and packs them into
interleaved-doubleword quadwords in the destination (first source). The low-order doublewords of the
source operands are ignored. The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from the first source
operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit values to
unsigned 64-bit operands for subsequent processing that requires higher precision.

The PUNPCKHDQ instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PUNPCKHBW, PUNPCKHQDQ, PUNPC KHWD, PUNPCKL BW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKHDQ Unpack and Interleave High Doublewords

Mnemonic Opcode Description

PUNPCKHDQ mmx1,
mmx2/mem64 0F 6A /r

Unpacks the high-order doubleword in an MMX register
and another MMX register or 64-bit memory location
and packs them into interleaved doublewords in the
destination MMX register.

punpckhdq-64.eps

copy

mmx1 mmx2/mem64

63 03132

63 03132

63 03132

copy

[AMD Public Use]

206 PUNPCKHDQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PUNPCKHWD 207
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Unpacks the high-order words from the first and second source operands and packs them into
interleaved-word doublewords in the destination (first source). The low-order words of the source
operands are ignored. The first source/destination operand is an MMX register and the second source
operand is another MMX register or 64-bit memory location.

If the second source operand is all 0s, the destination contains the words from the first source operand
zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values to unsigned 32-
bit operands for subsequent processing that requires higher precision.

The PUNPCKHWD instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKLBW, PUNPCKLDQ, PUNPCKLQDQ,
PUNPCKLWD

rFLAGS Affected

None

PUNPCKHWD Unpack and Interleave High Words

Mnemonic Opcode Description

PUNPCKHWD mmx1,
mmx2/mem64 0F 69 /r

Unpacks two high-order words in an MMX register
and another MMX register or 64-bit memory
location and packs them into interleaved words in
the destination MMX register.

punpckhwd-64.eps63 04748 15163132

63 4748 3132 063 4748 3132 0

copy

mmx1 mmx2/mem64

copy copycopy

[AMD Public Use]

208 PUNPCKHWD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PUNPCKLBW 209
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Unpacks the low-order bytes from the first and second source operands and packs them into
interleaved-byte words in the destination (first source). The high-order bytes of the source operands
are ignored. The first source/destination operand is an MMX register and the second source operand is
another MMX register or 32-bit memory location.

If the second source operand is all 0s, the destination contains the bytes from the first source operand
zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to unsigned 16-
bit operands for subsequent processing that requires higher precision.

The PUNPCKLBW instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PUNPCKHBW, PUNPCKHDQ, P UNPC KHQDQ, PUNPCKHWD, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKLBW Unpack and Interleave Low Bytes

Mnemonic Opcode Description

PUNPCKLBW mmx1, mmx2/mem32 0F 60 /r
Unpacks the four low-order bytes in an MMX
register and another MMX register or 32-bit
memory location and packs them into interleaved
bytes in the destination MMX register.

punpcklbw-64.eps

313263 0313263 0

. .. .

. . . .

63 03132

mmx1 mmx2/mem64

copycopy copycopy

[AMD Public Use]

210 PUNPCKLBW 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PUNPCKLDQ 211
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Unpacks the low-order doublewords from the first and second source operands and packs them into
interleaved-doubleword quadwords in the destination (first source). The high-order doublewords of
the source operands are ignored. The first source/destination operand is an MMX register and the
second source operand is another MMX register or 32-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from the first source
operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit values to
unsigned 64-bit operands for subsequent processing that requires higher precision.

The PUNPCKLDQ instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PUNPC KHBW, PUNPCKHDQ, PUNPCK HQDQ, PUNPCKHWD, PUNPCKLBW,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKLDQ Unpack and Interleave Low Doublewords

Mnemonic Opcode Description

PUNPCKLDQ mmx1,
mmx2/mem32 0F 62 /r

Unpacks the low-order doubleword in an MMX register
and another MMX register or 32-bit memory location
and packs them into interleaved doublewords in the
destination MMX register.

punpckldq-64.eps

copy

mmx1 mmx2/mem64

63 03132

63 03132

63 03132

copy

[AMD Public Use]

212 PUNPCKLDQ 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PUNPCKLWD 213
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Unpacks the low-order words from the first and second source operands and packs them into
interleaved-word doublewords in the destination (first source). The high-order words of the source
operands are ignored. The first source/destination operand is an MMX register and the second source
operand is another MMX register or 32-bit memory location.

If the second source operand is all 0s, the destination contains the words from the first source operand
zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values to unsigned 32-
bit operands for subsequent processing that requires higher precision.

The PUNPCKLWD instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ

rFLAGS Affected

None

PUNPCKLWD Unpack and Interleave Low Words

Mnemonic Opcode Description

PUNPCKLWD mmx1, mmx2/mem32 0F 61 /r
Unpacks the two low-order words in an MMX
register and another MMX register or 32-bit memory
location and packs them into interleaved words in
the destination MMX register.

punpcklwd-64.eps63 04748 15163132

63 15163132 063 15163132 0

mmx1 mmx2/mem64

copycopycopy copy

[AMD Public Use]

214 PUNPCKLWD 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

64-Bit Media PXOR 215
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Performs a bitwise exclusive OR of the values in the first and second source operands and writes the
result in the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The PXOR instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

PAND, PANDN, POR

rFLAGS Affected

None

PXOR Packed Logical Bitwise Exclusive OR

Mnemonic Opcode Description

PXOR mmx1, mmx2/mem64 0F EF /r
Performs bitwise logical XOR of values in an MMX register
and in another MMX register or 64-bit memory location
and writes the result in the destination MMX register.

pxor-64.eps

mmx1 mmx2/mem64

XOR

0 63 063 0

[AMD Public Use]

216 PXOR 64-Bit Media
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

[AMD Public Use]

x87 Floating-Point 217
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

2 x87 Floating-Point Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, condition codes, affected flags, and
possible exceptions generated by the x87 floating-point instructions. The x87 floating-point
instructions are used in legacy floating-point applications. Most of these instructions load, store, or
operate on data located in the x87 ST(0)–ST(7) stack registers (the FPR0–FPR7 physical registers).
The remaining instructions within this category are used to manage the x87 floating-point
environment.

The AMD64 architecture requires support of the x87 floating-point instruction subset including the
floating-point conditional moves and the FCOMI(P) and FUCOMI(P) instructions. On compliant
processor implementations both the FPU and the CMOV feature flags are set. These are indicated by
EDX[FPU] (bit 0) and EDX[CMOV] (bit 15) respectively returned by CPUID Fn0000_0001 or
CPUID Fn8000_0001.

This is augmented by instructions that are members of the MMX, 3DNow!™, SSE3, and FXSR
subsets. Support for the following instructions is implemenation-specific:

• EMMS, which is an MMX instruction. Support for this instruction is indicated by
CPUID Fn0000_0001_EDX[MMX] = 1 or CPUID Fn8000_0001_EDX[MMX] = 1.

• FEMMS, which is a 3DNow!™ instruction. Support for this instruction is indicated by
CPUID Fn8000_0001_EDX[3DNow] = 1.

• FISTTP, which is an SSE3 instruction. Support for this instruction is indicated by
CPUID Fn0000_0001_ECX[SSE3] = 1.

• FXSAVE / FXRSTOR. Support for these instructions is indicated by
CPUID Fn8000_0001_EDX[FXSR] = 1 or CPUID Fn0000_0001_EDX[FXSR] = 1

EMMS and FEMMS are described in Chapter 1, “64-Bit Media Instruction Reference”, on page 1.

The x87 instructions can be used in legacy mode or long mode. Their use in long mode is available if
the following feature bit is set:

• Long Mode, as indicated by CPUID Fn8000_0001_EDX[LM] = 1.

Compilation of x87 media programs for execution in 64-bit mode offers two primary advantages:
access to the 64-bit virtual address space and access to the RIP-relative addressing mode.

For further information about the x87 floating-point instructions and register resources, see:

• “x87 Floating-Point Programming” in Volume 1.
• “SSE, MMX, and x87 Programming” in Volume 2.
• “Summary of Registers and Data Types” in Volume 3.
• “Notation” in Volume 3.
• “Instruction Prefixes” in Volume 3.

[AMD Public Use]

218 x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

For information on using the CPUID instruction, see the instruction description in Volume 3.

[AMD Public Use]

x87 Floating-Point F2XM1 219
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Raises 2 to the power specified by the value in ST(0), subtracts 1, and stores the result in ST(0). The
source value must be in the range –1.0 to +1.0. The result is undefined for source values outside this
range.

This instruction, when used in conjunction with the FYL2X instruction, can be applied to calculate
z = xy by taking advantage of the log property xy = 2y*log

2
x.

Related Instructions

FYL2X, FYL2XP1

rFLAGS Affected

None

x87 Condition Code

F2XM1 Floating-Point Compute 2x–1

Mnemonic Opcode Description

F2XM1 D9 F0 Replace ST(0) with (2ST(0) – 1).

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

220 F2XM1 x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) were set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

x87 Floating-Point FABS 221
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Converts the value in ST(0) to its absolute value by clearing the sign bit. The resulting value depends
upon the type of number used as the source value:

This operation applies even if the value in ST(0) is negative zero or negative infinity.

Related Instructions

FPREM, FRNDINT, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

FABS Floating-Point Absolute Value

Source Value (ST(0)) Result (ST(0))
-∞ +∞

-FiniteReal +FiniteReal
-0 +0
+0 +0

+FiniteReal +FiniteReal
+∞ +∞

NaN NaN

Mnemonic Opcode Description

FABS D9 E1 Replace ST(0) with its absolute value.

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

222 FABS x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

[AMD Public Use]

x87 Floating-Point FADDx 223
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Adds two values and stores the result in a floating-point register. If two operands are specified, the
values are in ST(0) and another floating-point register and the instruction stores the result in the first
register specified. If one operand is specified, the instruction adds the 32-bit or 64-bit value in the
specified memory location to the value in ST(0).

The FADDP instruction adds the value in ST(0) to the value in another floating-point register and pops
the register stack. If two operands are specified, the first operand is the other register. If no operand is
specified, then the other register is ST(1).

The FIADD instruction reads a 16-bit or 32-bit signed integer value from the specified memory
location, converts it to double-extended-real format, and adds it to the value in ST(0).

Related Instructions

None

rFLAGS Affected

None

FADD
FADDP
FIADD

Floating-Point Add

Mnemonic Opcode Description

FADD ST(0),ST(i) D8 C0+i Replace ST(0) with ST(0) + ST(i).

FADD ST(i),ST(0) DC C0+i Replace ST(i) with ST(0) + ST(i).

FADD mem32real D8 /0 Replace ST(0) with ST(0) + mem32real.

FADD mem64real DC /0 Replace ST(0) with ST(0) + mem64real.

FADDP DE C1 Replace ST(1) with ST(0) + ST(1), and pop the x87 register stack.

FADDP ST(i),ST(0) DE C0+i Replace ST(i) with ST(0) + ST(i), and pop the x87 register stack.

FIADD mem16int DE /0 Replace ST(0) with ST(0) + mem16int.

FIADD mem32int DA /0 Replace ST(0) with ST(0) + mem32int.

[AMD Public Use]

224 FADDx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X +infinity was added to –infinity.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

[AMD Public Use]

x87 Floating-Point FADDx 225
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

226 FBLD x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts a 10-byte packed BCD value in memory into double-extended-precision format, and pushes
the result onto the x87 stack. In the process, it preserves the sign of the source value.

The packed BCD digits should be in the range 0 to 9. Attempting to load invalid digits (Ah through Fh)
produces undefined results.

Related Instructions

FBSTP

rFLAGS Affected

None

x87 Condition Code

FBLD Floating-Point Load Binary-Coded Decimal

Mnemonic Opcode Description

FBLD mem80dec DF /4 Convert a packed BCD value to floating-point and push the
result onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
1 x87 stack overflow, if an x87 register stack fault was detected.

0 If no other flags are set.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

x87 Floating-Point FBLD 227
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

[AMD Public Use]

228 FBSTP x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts the value in ST(0) to an 18-digit packed BCD integer, stores the result in the specified
memory location, and pops the register stack. It rounds a non-integral value to an integer value,
depending on the rounding mode specified by the RC field of the x87 control word.

The operand specifies the memory address of the first byte of the resulting 10-byte value.

Related Instructions

FBLD

rFLAGS Affected

None

x87 Condition Code

FBSTP Floating-Point Store Binary-Coded Decimal and
Pop

Mnemonic Opcode Description

FBSTP mem80dec DF /6 Convert the floating-point value in ST(0) to BCD, store the result in
mem80, and pop the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

x87 Floating-Point FBSTP 229
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN value,
±infinity or an unsupported format.

X X X A source operand was too large to fit in the destination
format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

230 FCHS x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compliments the sign bit of ST(0), changing the value from negative to positive or vice versa. This
operation applies to positive and negative floating point values, as well as –0 and +0, NaNs, and +∞
and –∞.

Related Instructions

FABS, FPREM, FRNDINT, FXTRACT

rFLAGS Affected

None

x87 Condition Code

Exceptions

FCHS Floating-Point Change Sign

Mnemonic Opcode Description

FCHS D9 E0 Reverse the sign bit of ST(0).

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

[AMD Public Use]

x87 Floating-Point FCLEX (FNCLEX) 231
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Clears the following flags in the x87 status word:

• Floating-point exception flags (PE, UE, OE, ZE, DE, and IE)
• Stack fault flag (SF)
• Exception summary status flag (ES)
• Busy flag (B)

It leaves the four condition-code bits undefined. It does not check for possible floating-point
exceptions before clearing the flags.

Assemblers usually provide an FCLEX macro that expands into the instruction sequence
WAIT ; Opcode 9B
FNCLEX destination ; Opcode DB E2

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNCLEX instruction then clears all the relevant x87 exception flags.

Related Instructions

WAIT

rFLAGS Affected

None

x87 Condition Code

FCLEX
(FNCLEX)

Floating-Point Clear Flags

Mnemonic Opcode Description

FCLEX 9B DB E2 Perform a WAIT (9B) to check for pending floating-point
exceptions, and then clear the floating-point exception flags.

FNCLEX DB E2 Clear the floating-point flags without checking for pending
unmasked floating-point exceptions.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

232 FCLEX (FNCLEX) x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

[AMD Public Use]

x87 Floating-Point FCMOVcc 233
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Tests the flags in the rFLAGS register and, depending upon the values encountered, moves the value in
another stack register to ST(0).

This set of instructions includes the mnemonics FCMOVB, FCMOVBE, FCMOVE, FCMOVNB,
FCMOVNBE, FCMOVNE, FCMOVNU, and FCMOVU.

Support for the FCMOVcc instruction is indicated when both EDX[FPU] (bit 0) and EDX[CMOV]
(bit 15) are set, as returned by either CPUID function 0000_0001h or function 8000_0001h.

Related Instructions

None

rFLAGS Affected

None

x87 Condition Code

FCMOVcc Floating-Point Conditional Move

Mnemonic Opcode Description

FCMOVB ST(0),ST(i) DA C0+i Move the contents of ST(i) into ST(0) if below (CF = 1).

FCMOVBE ST(0),ST(i) DA D0+i Move the contents of ST(i) into ST(0) if below or equal (CF =
1 or ZF = 1).

FCMOVE ST(0),ST(i) DA C8+i Move the contents of ST(i) into ST(0) if equal (ZF = 1).

FCMOVNB ST(0),ST(i) DB C0+i Move the contents of ST(i) into ST(0) if not below (CF = 0).

FCMOVNBE ST(0),ST(i) DB D0+i Move the contents of ST(i) into ST(0) if not below or equal
(CF = 0 and ZF = 0).

FCMOVNE ST(0),ST(i) DB C8+i Move the contents of ST(i) into ST(0) if not equal (ZF = 0).

FCMOVNU ST(0),ST(i) DB D8+i Move the contents of ST(i) into ST(0) if not unordered (PF =
0).

FCMOVU ST(0),ST(i) DA D8+i Move the contents of ST(i) into ST(0) if unordered (PF = 1).

x87 Condition Code Value Description

C0 U

C1 0 x87 stack underflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

234 FCMOVcc x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X

The Conditional Move instructions are not supported, as
indicated by EDX[FPU] and EDX[CMOV] returned by CPUID
Fn0000_0001 or Fn8000_0001.

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the control

register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

[AMD Public Use]

x87 Floating-Point FCOMx 235
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Compares the specified value to the value in ST(0) and sets the C0, C2, and C3 condition code flags in
the x87 status word as shown in the x87 Condition Code table below. The specified value can be in a
floating-point register or a memory location.

The no-operand version compares the value in ST(1) with the value in ST(0).

The comparison operation ignores the sign of zero (–0.0 = +0.0).

After performing the comparison operation, the FCOMP instruction pops the x87 register stack and
the FCOMPP instruction pops the x87 register stack twice.

If either or both of the compared values is a NaN or is in an unsupported format, the FCOMx
instruction sets the invalid-operation exception (IE) bit in the x87 status word to 1, and sets the
condition flags to 'unordered.'

The FUCOMx instructions perform the same operations as the FCOMx instructions, but do not set the
IE bit for QNaNs.

FCOM
FCOMP
FCOMPP

Floating-Point Compare

Mnemonic Opcode Description

FCOM D8 D1 Compare the contents of ST(0) to the contents of ST(1) and
set condition flags to reflect the results of the comparison.

FCOM ST(i) D8 D0+i Compare the contents of ST(0) to the contents of ST(i) and
set condition flags to reflect the results of the comparison.

FCOM mem32real D8 /2
Compare the contents of ST(0) to the contents of
mem32real and set condition flags to reflect the results of
the comparison.

FCOM mem64real DC /2
Compare the contents of ST(0) to the contents of
mem64real and set condition flags to reflect the results of
the comparison.

FCOMP D8 D9
Compare the contents of ST(0) to the contents of ST(1), set
condition flags to reflect the results of the comparison, and
pop the x87 register stack.

FCOMP ST(i) D8 D8+i
Compare the contents of ST(0) to the contents of ST(i), set
condition flags to reflect the results of the comparison, and
pop the x87 register stack.

FCOMP mem32real D8 /3
Compare the contents of ST(0) to the contents of
mem32real, set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

[AMD Public Use]

236 FCOMx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

x87 Condition Code

Exceptions

FCOMP mem64real DC /3
Compare the contents of ST(0) to the contents of
mem64real, set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

FCOMPP DE D9
Compare the contents of ST(0) to the contents of ST(1), set
condition flags to reflect the results of the comparison, and
pop the x87 register stack twice.

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > source

0 0 0 1 ST(0) < source

1 0 0 0 ST(0) = source

1 1 0 1 Operands were unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value, a QNaN value, or

an unsupported format.

[AMD Public Use]

x87 Floating-Point FCOMx 237
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

238 FCOMIx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares the value in ST(0) with the value in another floating-point register and sets the zero flag
(ZF), parity flag (PF), and carry flag (CF) in the rFLAGS register based on the result as shown in the
table in the x87 Condition Code section.

The comparison operation ignores the sign of zero (–0.0 = +0.0).

After performing the comparison operation, FCOMIP pops the x87 register stack.

If either or both of the compared values is a NaN or is in an unsupported format, the FCOMIx
instruction sets the invalid-operation exception (IE) bit in the x87 status word to 1 and sets the flags to
“unordered.”

The FUCOMIx instructions perform the same operations as the FCOMIx instructions, but do not set
the IE bit for QNaNs.

Support for the FCOMIx instruction can be determined by executing either CPUID Fn0000_0001 or
CPUID Fn8000_0001. Support is indicated when both EDX[FPU] (bit 0) and EDX[CMOV] (bit 15)
are set.

Related Instructions

FCOM, FCOMPP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

FCOMI
FCOMIP

Floating-Point Compare and Set Flags

Mnemonic Opcode Description

FCOMI ST(0),ST(i) DB F0+i Compare the contents of ST(0) with the contents of ST(i)
and set status flags to reflect the results of the comparison.

FCOMIP ST(0),ST(i) DF F0+i
Compare the contents of ST(0) with the contents of ST(i),
set status flags to reflect the results of the comparison, and
pop the x87 register stack.

ZF PF CF Compare Result

0 0 0 ST(0) > source

0 0 1 ST(0) < source

1 0 0 ST(0) = source

1 1 1 Operands were unordered

[AMD Public Use]

x87 Floating-Point FCOMIx 239
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0

C1 0 x87 stack underflow, if an x87 register stack fault was detected.

C2

C3

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X
The conditional move instructions are not supported, as
indicated by EDX[FPU] and EDX[CMOV] returned by
CPUID Fn0000_0001 or Fn8000_0001.

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value, a QNaN value, or

an unsupported format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

[AMD Public Use]

240 FCOS x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Computes the cosine of the radian value in ST(0) and stores the result in ST(0).

If the radian value lies outside the valid range of –263 to +263 radians, the instruction sets the C2 flag in
the x87 status word to 1 to indicate the value is out of range and does not change the value in ST(0).

Related Instructions

FPTAN, FPATAN, FSIN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

FCOS Floating-Point Cosine

Mnemonic Opcode Description

FCOS D9 FF Replace ST(0) with the cosine of ST(0).

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

x87 Floating-Point FCOS 241
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

242 FDECSTP x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Decrements the top-of-stack pointer (TOP) field of the x87 status word. If the TOP field contains 0, it
is set to 7. In other words, this instruction rotates the stack by one position.

Related Instructions

FINCSTP

rFLAGS Affected

None

x87 Condition Code

FDECSTP Floating-Point Decrement Stack-Top Pointer

Mnemonic Opcode Description

FDECSTP D9 F6 Decrement the TOP field in the x87 status word.

Data Register

Before FDECSTP After FDECSTP

Value Stack Pointer Stack Pointer Value

7 num1 ST(7) ST(0) num1

6 num2 ST(6) ST(7) num2

5 num3 ST(5) ST(6) num3

4 num4 ST(4) ST(5) num4

3 num5 ST(3) ST(4) num5

2 num6 ST(2) ST(3) num6

1 num7 ST(1) ST(2) num7

0 num8 ST(0) ST(1) num8

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

x87 Floating-Point FDECSTP 243
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

244 FDIVx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Divides the value in a floating-point register by the value in another register or a memory location and
stores the result in the register containing the dividend. For the FDIV and FDIVP instructions, the
divisor value in memory can be stored in single-precision or double-precision floating-point format.

If only one operand is specified, the instruction divides the value in ST(0) by the value in the specified
memory location.

If no operands are specified, the FDIVP instruction divides the value in ST(1) by the value in ST(0),
stores the result in ST(1), and pops the x87 register stack.

The FIDIV instruction converts a divisor in word integer or short integer format to double-extended-
precision floating-point format before performing the division. It treats an integer 0 as +0.

If the zero-divide exception is not masked (ZM bit cleared to 0 in the x87 control word) and the
operation causes a zero-divide exception (sets the ZE bit in the x87 status word to 1), the operation
stores no result. If the zero-divide exception is masked (ZM bit set to 1), a zero-divide exception
causes ±∞ to be stored.

The sign of the operands, even if one of the operands is 0, determines the sign of the result.

Related Instructions

FDIVR, FDIVRP, FIDIVR

rFLAGS Affected

None

FDIV
FDIVP
FIDIV

Floating-Point Divide

Mnemonic Opcode Description

FDIV ST(0),ST(i) D8 F0+i Replace ST(0) with ST(0)/ST(i).

FDIV ST(i),ST(0) DC F8+i Replace ST(i) with ST(i)/ST(0).

FDIV mem32real D8 /6 Replace ST(0) with ST(0)/mem32real.

FDIV mem64real DC /6 Replace ST(0) with ST(0)/mem64real.

FDIVP DE F9 Replace ST(1) with ST(1)/ST(0), and pop the x87 register
stack.

FDIVP ST(i),ST(0) DE F8+i Replace ST(i) with ST(i)/ST(0), and pop the x87 register
stack.

FIDIV mem16int DE /6 Replace ST(0) with ST(0)/mem16int.

FIDIV mem32int DA /6 Replace ST(0) with ST(0)/mem32int.

[AMD Public Use]

x87 Floating-Point FDIVx 245
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ±infinity was divided by ±infinity.
X X X ±zero was divided by ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Zero-divide
exception (ZE) X X X A non-zero value was divided by ±zero.

[AMD Public Use]

246 FDIVx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.
Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

x87 Floating-Point FDIVRx 247
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Divides a value in a floating-point register or a memory location by the value in a floating-point
register and stores the result in the register containing the divisor. For the FDIVR and FDIVRP
instructions, a dividend value in memory can be stored in single-precision or double-precision
floating-point format.

If one operand is specified, the instruction divides the value at the specified memory location by the
value in ST(0). If two operands are specified, it divides the value in ST(0) by the value in another x87
stack register or vice versa.

The FIDIVR instruction converts a dividend in word integer or short integer format to double-
extended-precision format before performing the division.

The FDIVRP instruction pops the x87 register stack after performing the division operation. If no
operand is specified, the FDIVRP instruction divides the value in ST(0) by the value in ST(1).

If the zero-divide exception is not masked (ZM bit cleared to 0 in the x87 control word) and the
operation causes a zero-divide exception (sets the ZE bit in the x87 status word to 1), the operation
stores no result. If the zero-divide exception is masked (ZM bit set to 1), a zero-divide exception
causes ±∞ to be stored.

The sign of the operands, even if one of the operands is 0, determines the sign of the result.

Related Instructions

FDIV, FDIVP, FIDIV

FDIVR
FDIVRP
FIDIVR

Floating-Point Divide Reverse

Mnemonic Opcode Description

FDIVR ST(0),ST(i) D8 F8+i Replace ST(0) with ST(i)/ST(0).

FDIVR ST(i), ST(0) DC F0+i Replace ST(i) with ST(0)/ST(i).

FDIVR mem32real D8 /7 Replace ST(0) with mem32real/ST(0).

FDIVR mem64real DC /7 Replace ST(0) with mem64real/ST(0).

FDIVRP DE F1 Replace ST(1) with ST(0)/ST(1), and pop the x87 register
stack.

FDIVRP ST(i), ST(0) DE F0 +i Replace ST(i) with ST(0)/ST(i), and pop the x87 register
stack.

FIDIVR mem16int DE /7 Replace ST(0) with mem16int/ST(0).

FIDIVR mem32int DA /7 Replace ST(0) with mem32int/ST(0).

[AMD Public Use]

248 FDIVRx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or is
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or is
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ±infinity was divided by ±infinity.
X X X ±zero was divided by ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

[AMD Public Use]

x87 Floating-Point FDIVRx 249
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Zero-divide
exception (ZE) X X X A non-zero value was divided by ±zero.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.
Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

250 FFREE x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Frees the specified x87 stack register by marking its tag register entry as empty. The instruction does
not affect the contents of the freed register or the top-of-stack pointer (TOP).

Related Instructions

FLD, FST, FSTP

rFLAGS Affected

None

x87 Condition Code

Exceptions

FFREE Floating-Point Free Register

Mnemonic Opcode Description

FFREE ST(i) DD C0+i Set the tag for x87 stack register i to empty (11b).

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

x87 Floating-Point FICOMx 251
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Converts a 16-bit or 32-bit signed integer value to double-extended-precision format, compares it to
the value in ST(0), and sets the C0, C2, and C3 condition code flags in the x87 status word to reflect
the results.

The comparison operation ignores the sign of zero (–0.0 = +0.0).

After performing the comparison operation, the FICOMP instruction pops the x87 register stack.

If ST(0) is a NaN or is in an unsupported format, the instruction sets the condition flags to
“unordered.”

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

FICOM
FICOMP

Floating-Point Integer Compare

Mnemonic Opcode Description

FICOM mem16int DE /2
Convert the contents of mem16int to double-extended-
precision format, compare the result to the contents of
ST(0), and set condition flags to reflect the results of the
comparison.

FICOM mem32int DA /2
Convert the contents of mem32int to double-extended-
precision format, compare the result to the contents of
ST(0), and set condition flags to reflect the results of the
comparison.

FICOMP mem16int DE /3
Convert the contents of mem16int to double-extended-
precision format, compare the result to the contents of
ST(0), set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

FICOMP mem32int DA /3
Convert the contents of mem32int to double-extended-
precision format, compare the result to the contents of
ST(0), set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

[AMD Public Use]

252 FICOMx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > source

0 0 0 1 ST(0) < source

1 0 0 0 ST(0) = source

1 1 0 1 Operands were unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value, a QNaN value, or

an unsupported format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

[AMD Public Use]

x87 Floating-Point FILD 253
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Converts a signed-integer in memory to double-extended-precision format and pushes the value onto
the x87 register stack. The value can be a 16-bit, 32-bit, or 64- bit integer value. Signed values from
memory can always be represented exactly in x87 registers without rounding.

Related Instructions

FLD, FST, FSTP, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

FILD Floating-Point Load Integer

Mnemonic Opcode Description

FILD mem16int DF /0 Push the contents of mem16int onto the x87 register stack.

FILD mem32int DB /0 Push the contents of mem32int onto the x87 register stack.

FILD mem64int DF /5 Push the contents of mem64int onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No stack overflow.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

254 FILD x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

[AMD Public Use]

x87 Floating-Point FINCSTP 255
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Increments the top-of-stack pointer (TOP) field of the x87 status word. If the TOP field contains 7, it is
cleared to 0. In other words, this instruction rotates the stack by one position.

Related Instructions

FDECSTP

rFLAGS Affected

None

x87 Condition Code

FINCSTP Floating-Point Increment Stack-Top Pointer

Mnemonic Opcode Description

FINCSTP D9 F7 Increment the TOP field in the x87 status word.

Data Register

Before FINCSTP After FINCSTP

Value Stack Pointer Stack Pointer Value

7 num1 ST(7) ST(6) num1

6 num2 ST(6) ST(5) num2

5 num3 ST(5) ST(4) num3

4 num4 ST(4) ST(3) num4

3 num5 ST(3) ST(2) num5

2 num6 ST(2) ST(1) num6

1 num7 ST(1) ST(0) num7

0 num8 ST(0) ST(7) num8

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

256 FINCSTP x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

x87 Floating-Point FINIT (FNINIT) 257
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Sets the x87 control word register, status word register, tag word register, instruction pointer, and data
pointer to their default states as follows:

• Sets the x87 control word to 037Fh—round to nearest (RC = 00b); double-extended-precision (PC
= 11b); all exceptions masked (PM, UM, OM, ZM, DM, and IM all set to 1).

• Clears all bits in the x87 status word (TOP is set to 0, which maps ST(0) onto FPR0).
• Marks all x87 stack registers as empty (11b) in the x87 tag register.
• Clears the instruction pointer and the data pointer.

These instructions do not actually zero out the x87 stack registers.

Assemblers usually provide an FINIT macro that expands into the instruction sequence
WAIT ; Opcode 9B
FNINIT destination ; Opcode DB E3

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNINIT instruction then resets the x87 environment to its default state.

Related Instructions

FWAIT, WAIT

rFLAGS Affected

None

FINIT
FNINIT

Floating-Point Initialize

Mnemonic Opcode Description

FINIT 9B DB E3 Perform a WAIT (9B) to check for pending floating-point
exceptions and then initialize the x87 unit.

FNINIT DB E3 Initialize the x87 unit without checking for unmasked
floating-point exceptions.

[AMD Public Use]

258 FINIT (FNINIT) x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 0

C1 0

C2 0

C3 0

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

[AMD Public Use]

x87 Floating-Point FISTx 259
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Converts the value in ST(0) to a signed integer, rounds it if necessary, and copies it to the specified
memory location. The rounding control (RC) field of the x87 control word determines the type of
rounding used.

The FIST instruction supports 16-bit and 32-bit values. The FISTP instructions supports 16-bit, 32-bit,
and 64-bit values.

The FISTP instruction pops the stack after storing the rounded value in memory.

If the value is too large for the destination location, is a NaN, or is in an unsupported format, the
instruction sets the invalid-operation exception (IE) bit in the x87 status word to 1. Then, if the
exception is masked (IM bit set to 1 in the x87 control word), the instruction stores the integer
indefinite value. If the exception is unmasked (IM bit cleared to 0), the instruction does not store the
value.

Table 2-1 shows the results of storing various types of numbers as integers.

FIST
FISTP

Floating-Point Integer Store

Mnemonic Opcode Description

FIST mem16int DF /2 Convert the contents of ST(0) to integer and store the result
in mem16int.

FIST mem32int DB /2 Convert the contents of ST(0) to integer and store the result
in mem32int.

FISTP mem16int DF /3 Convert the contents of ST(0) to integer, store the result in
mem16int, and pop the x87 register stack.

FISTP mem32int DB /3 Convert the contents of ST(0) to integer, store the result in
mem32int, and pop the x87 register stack.

FISTP mem64int DF /7 Convert the contents of ST(0) to integer, store the result in
mem64int, and pop the x87 register stack.

Table 2-1. Storing Numbers as Integers

ST(0) DEST
-∞ Invalid-operation (IE) exception

–Finite-real < –1 –Integer (Invalid-operation (IE) exception if the integer is too large for the
destination)

–1 < –Finite-real< –0 0 or –1, depending on the rounding mode
-0 0
+0 0
+0 < +Finite-real < +1 0 or +1, depending on the rounding mode

[AMD Public Use]

260 FISTx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Related Instructions

FLD, FST, FSTP, FILD, FBLD, FBSTP, FISTTP

rFLAGS Affected

None

x87 Condition Code

+Finite-real > +1 +Integer (Invalid-operation (IE) exception if the integer is too large for the
destination)

+∞ Invalid-operation (IE) exception
NaN Invalid-operation (IE) exception

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Table 2-1. Storing Numbers as Integers (continued)

ST(0) DEST

[AMD Public Use]

x87 Floating-Point FISTx 261
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X The source operand was too large for the destination
format.

X X X A source operand was an SNaN value, a QNaN value,
+-infinity, or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

262 FISTTP x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Converts a floating-point value in ST(0) to an integer by truncating the fractional part of the number
and storing the integer result to the memory address specified by the destination operand. FISTTP then
pops the floating point register stack. The FISTTP instruction ignores the rounding mode specified by
the x87 control word.

The FISTTP instruction applies to 16-bit, 32-bit, and 64-bit operands.

The FISTTP instruction is an SSE3 instruction. Support for this instruction subset is indicated by
CPUID Fn0000_0001_ECX[SSE3] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Table 2-2 shows the results of storing various types of numbers as integers.

Related Instructions

FLD, FST, FSTP, FILD, FBLD, FBSTP, FISTP

rFLAGS Affected

None

FISTTP Floating Point Integer Truncate and Store

Mnemonic Opcode Description

FISTTP mem16int DF /1
Store the truncated floating-point value in ST(0) in
memory location mem16int and pop the floating-point
register stack.

FISTTP mem32int DB /1
Store the truncated floating-point value in ST(0) in
memory location mem32int and pop the floating-point
register stack.

FISTTP mem64int DD /1
Store the truncated floating-point value in ST(0) in
memory location mem64int and pop the floating-point
register stack.

Table 2-2. Storing Numbers as Integers

ST(0) DESTINATION
-∞ Invalid-operation (IE) exception
–Finite-real ≤ –1 –Integer (Invalid-operation (IE) exception if the integer is too large for the destination)
-1 < Finite-real < +1 0
+Finite-real ≥ +1 +Integer (Invalid-operation (IE) exception if the integer is too large for the destination)
+∞ Invalid-operation (IE) exception
NaN Invalid-operation (IE) exception

[AMD Public Use]

x87 Floating-Point FISTTP 263
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value* Description

C0 U

C1 0
x87 stack underflow, if an x87 register stack fault was detected.

FP number is rounded down (always done since the instruction forces
truncate mode).

C2 U

C3 U

Note: *A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

#UD X X X The SSE3 instructions are not supported, as indicated by
CPUID Fn0000_0001_ECX[SSE3] = 0.

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X The source operand was too large for the destination
format.

X X X A source operand was an SNaN value, a QNaN value,+-
infinity, or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

264 FLD x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Pushes a value in memory or in a floating-point register onto the register stack. If in memory, the value
can be a single-precision, double-precision, or double-extended-precision floating-point value. The
operation converts a single-precision or double-precision value to double-extended-precision format
before pushing it onto the stack.

Related Instructions

FFREE, FST, FSTP, FILD, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

FLD Floating-Point Load

Mnemonic Opcode Description

FLD ST(i) D9 C0+i Push the contents of ST(i) onto the x87 register stack.

FLD mem32real D9 /0 Push the contents of mem32real onto the x87 register stack.

FLD mem64real DD /0 Push the contents of mem64real onto the x87 register stack.

FLD mem80real DB /5 Push the contents of mem80real onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 No x87 stack fault.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

x87 Floating-Point FLD 265
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.
X X X A source operand was in an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Denormalized-
operand exception
(DE)

X X X
A source operand was a denormal value. This exception
does not occur if the source operand was in double-
extended-precision format.

[AMD Public Use]

266 FLD1 x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Pushes the floating-point value +1.0 onto the register stack.

Related Instructions

FLD, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLD1 Floating-Point Load +1.0

Mnemonic Opcode Description

FLD1 D9 E8 Push +1.0 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

[AMD Public Use]

x87 Floating-Point FLDCW 267
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Loads a 16-bit value from the specified memory location into the x87 control word. If the new x87
control word unmasks any pending floating point exceptions, then they are handled upon execution of
the next x87 floating-point or 64-bit media instruction.

To avoid generating exceptions when loading a new control word, use the FCLEX or FNCLEX
instruction to clear any pending exceptions.

Related Instructions

FSTCW, FNSTCW, FSTSW, FNSTSW, FSTENV, FNSTENV, FLDENV, FCLEX, FNCLEX

rFLAGS Affected

None

x87 Condition Code

FLDCW Floating-Point Load x87 Control Word

Mnemonic Opcode Description

FLDCW mem2env D9 /5 Load the contents of mem2env into the x87 control word.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

268 FLDCW x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

x87 Floating-Point FLDENV 269
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Restores the x87 environment from memory starting at the specified address. The x87 environment
consists of the x87 control, status, and tag word registers, the last non-control x87 instruction pointer,
the last x87 data pointer, and the opcode of the last completed non-control x87 instruction.

The FLDENV instruction takes a memory operand that specifies the starting address of either a 14-
byte or 28-byte area in memory. The 14-byte operand is required for a 16-bit operand-size; the 28-byte
memory area is required for both 32-bit and 64-bit operand sizes. The layout of the saved x87
environment within the specified memory area depends on whether the processor is operating in
protected or real mode. See “Media and x87 Processor State” in Volume 2 for details on how this
instruction loads the x87 environment from memory. (Because FSTENV does not save the full 64-bit
data and instruction pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than
FSTENV/FLDENV.)

The environment to be loaded is typically stored by a previous FNSTENV or FSTENV instruction.
The FLDENV instruction should be executed in the same operating mode as the instruction that stored
the x87 environment.

If FLDENV results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or FNCLEX
instruction to clear the exception flags in the x87 status word before storing that environment.

Related Instructions

FSTENV, FNSTENV, FCLEX, FNCLEX

rFLAGS Affected

None

FLDENV Floating-Point Load x87 Environment

Mnemonic Opcode Description

FLDENV
mem14/28env D9 /4 Load the complete contents of the x87 environment from

mem14/28env.

[AMD Public Use]

270 FLDENV x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Loaded from memory.

C1 M Loaded from memory.

C2 M Loaded from memory.

C3 M Loaded from memory.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

x87 Floating-Point FLDL2E 271
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Pushes log2e onto the x87 register stack. The value in ST(0) is the result, in double-extended-precision
format, of rounding an internal 66-bit constant according to the setting of the RC field in the x87
control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDL2E Floating-Point Load Log2 e

Mnemonic Opcode Description

FLDL2E D9 EA Push log2e onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

[AMD Public Use]

272 FLDL2T x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Pushes log2 10 onto the x87 register stack. The value in ST(0) is the result, in double-extended-
precision format, of rounding an internal 66-bit constant according to the setting of the RC field in the
x87 control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDL2T Floating-Point Load Log2 10

Mnemonic Opcode Description

FLDL2T D9 E9 Push log210 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

[AMD Public Use]

x87 Floating-Point FLDLG2 273
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Pushes log10 2 onto the x87 register stack. The value in ST(0) is the result, in double-extended-
precision format, of rounding an internal 66-bit constant according to the setting of the RC field in the
x87 control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDLG2 Floating-Point Load Log10 2

Mnemonic Opcode Description

FLDLG2 D9 EC Push log102 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

[AMD Public Use]

274 FLDLN2 x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Pushes loge2 onto the x87 register stack. The value in ST(0) is the result, in double-extended-precision
format, of rounding an internal 66-bit constant according to the setting of the RC field in the x87
control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLG2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDLN2 Floating-Point Load Ln 2

Mnemonic Opcode Description

FLDLN2 D9 ED Push loge2 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

[AMD Public Use]

x87 Floating-Point FLDPI 275
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Pushes π onto the x87 register stack. The value in ST(0) is the result, in double-extended-precision
format, of rounding an internal 66-bit constant according to the setting of the RC field in the x87
control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDPI Floating-Point Load Pi

Mnemonic Opcode Description

FLDPI D9 EB Push π onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

[AMD Public Use]

276 FLDZ x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Pushes +0.0 onto the x87 register stack.

Related Instructions

FLD, FLD1, FLDPI, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDZ Floating-Point Load +0.0

Mnemonic Opcode Description

FLDZ D9 EE Push zero onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

[AMD Public Use]

x87 Floating-Point FMULx 277
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Multiplies the value in a floating-point register by the value in a memory location or another stack
register and stores the result in the first register. The instruction converts a single-precision or double-
precision value in memory to double-extended-precision format before multiplying.

If one operand is specified, the instruction multiplies the value in the ST(0) register by the value in the
specified memory location and stores the result in the ST(0) register.

If two operands are specified, the instruction multiplies the value in the ST(0) register by the value in
another specified floating-point register and stores the result in the register specified in the first
operand.

The FMULP instruction pops the x87 stack after storing the product. The no-operand version of the
FMULP instruction multiplies the value in the ST(1) register by the value in the ST(0) register and
stores the product in the ST(1) register.

The FIMUL instruction converts a short-integer or word-integer value in memory to double-extended-
precision format, multiplies it by the value in ST(0), and stores the product in ST(0).

Related Instructions

None

rFLAGS Affected

None

FMUL
FMULP
FIMUL

Floating-Point Multiply

Mnemonic Opcode Description

FMUL ST(0),ST(i) D8 C8+i Replace ST(0) with ST(0) ∗ ST(i).

FMUL ST(i),ST(0) DC C8+i Replace ST(i) with ST(0) ∗ ST(i).

FMUL mem32real D8 /1 Replace ST(0) with mem32real ∗ ST(0).

FMUL mem64real DC /1 Replace ST(0) with mem64real ∗ ST(0).

FMULP DE C9 Replace ST(1) with ST(0) ∗ ST(1), and pop the x87 register
stack.

FMULP ST(i),ST(0) DE C8+i Replace ST(i) with ST(0) ∗ ST(i), and pop the x87 register
stack.

FIMUL mem16int DE /1 Replace ST(0) with mem16int ∗ ST(0).

FIMUL mem32int DA /1 Replace ST(0) with mem32int ∗ ST(0).

[AMD Public Use]

278 FMULx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ±infinity was multiplied by ±zero.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

[AMD Public Use]

x87 Floating-Point FMULx 279
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

280 FNOP x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Performs no operation. This instruction affects only the rIP register. It does not otherwise affect the
processor context.

Related Instructions

FWAIT, NOP

rFLAGS Affected

None

x87 Condition Code

None

Exceptions

FNOP Floating-Point No Operation

Mnemonic Opcode Description

FNOP D9 D0 Perform no operation.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

x87 Floating-Point FPATAN 281
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Computes the arctangent of the ordinate (Y) in ST(1) divided by the abscissa (X) in ST(0), which is the
angle in radians between the X axis and the radius vector from the origin to the point (X, Y). It then
stores the result in ST(1) and pops the x87 register stack. The resulting value has the same sign as the
ordinate value and a magnitude less than or equal to π.

There is no restriction on the range of values that FPATAN can accept. Table 2-3 shows the results
obtained when computing the arctangent of various classes of numbers, assuming that underflow does
not occur:

Related Instructions

FCOS, FPTAN, FSIN, FSINCOS

rFLAGS Affected

None

FPATAN Floating-Point Partial Arctangent

Table 2-3. Computing Arctangent of Numbers
X (ST(0))

–∞ –Finite –0 +0 +Finite +∞ NaN

Y (ST(1))

–∞ –3π/4 –π/2 –π/2 –π/2 –π/2 –π/4 NaN

–Finite –π –π to –π/2 –π/2 –π/2 –π/2 to –0 —0 NaN
–0 –π –π –π –0 –0 —0 NaN
+0 +π +π +π +0 +0 +0 NaN

+Finite +π +π to +π/2 +π/2 +π/2 +π/2 to +0 +0 NaN

+∞ +3π/4 +π/2 +π/2 +π/2 +π/2 +π/4 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Mnemonic Opcode Description

FPATAN D9 F3 Compute arctan(ST(1)/ST(0)), store the result in ST(1), and
pop the x87 register stack.

[AMD Public Use]

282 FPATAN x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

x87 Floating-Point FPREM 283
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Computes the exact remainder obtained by dividing the value in ST(0) by that in ST(1), and stores the
result in ST(0). It computes the remainder by an iterative subtract-and-shift long division algorithm in
which one quotient bit is calculated in each iteration.

If the exponent difference between ST(0) and ST(1) is less than 64, the instruction computes all integer
bits of the quotient, guaranteeing that the remainder is less in magnitude than the divisor in ST(1). If
the exponent difference is equal to or greater than 64, it computes only the subset of integer quotient
bits numbering between 32 and 63, returns a partial remainder, and sets the C2 condition code bit to 1.

FPREM is supported for software that was written for early x87 coprocessors. Unlike the FPREM1
instruction, FPREM does not compute the partial remainder as specified in IEEE Standard 754.

Action
ExpDiff = Exponent(ST(0)) - Exponent(ST(1))
IF (ExpDiff < 0)
{
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = 0
}
ELSIF (ExpDiff < 64)
{
 Quotient = Truncate(ST(0)/ST(1))
 ST(0) = ST(0) - (ST(1) * Quotient)
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = Quotient mod 8
}
ELSE
{
 N = 32 + (ExpDiff mod 32)
 Quotient = Truncate ((ST(0)/ST(1))/2^(ExpDiff-N))
 ST(0) = ST(0) - (ST(1) * Quotient * 2^(ExpDiff-N))
 SW.C2 = 1
 {SW.C0, SW.C3, SW.C1} = 0
}

Related Instructions

FPREM1, FABS, FRNDINT, FXTRACT, FCHS

rFLAGS Affected

None

FPREM Floating-Point Partial Remainder

Mnemonic Opcode Description

FPREM D9 F8 Compute the remainder of the division of ST(0) by ST(1) and
store the result in ST(0).

[AMD Public Use]

284 FPREM x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Set equal to the value of bit 2 of the quotient.

C1
0 x87 stack underflow, if an x87 register stack fault was detected.

M Set equal to the value of bit 0 of the quotient, if there was no fault.

C2
0 FPREM generated the partial remainder.

1 The source operands differed by more than a factor of 264, so the result
is incomplete.

C3 M Set equal to the value of bit 1 of the quotient.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the control

register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ST(0) was ±infinity.
X X X ST(1) was ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

[AMD Public Use]

x87 Floating-Point FPREM1 285
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Computes the IEEE Standard 754 remainder obtained by dividing the value in ST(0) by that in ST(1),
and stores the result in ST(0). Unlike FPREM, it rounds the integer quotient to the nearest even integer
and returns the remainder corresponding to the back multiply of the rounded quotient.

If the exponent difference between ST(0) and ST(1) is less than 64, the instruction computes all integer
as well as additional fractional bits of the quotient to do the rounding. The remainder returned is a
complete remainder and is less than or equal to one half of the magnitude of the divisor. If the exponent
difference is equal to or greater than 64, it computes only the subset of integer quotient bits numbering
between 32 and 63, returns the partial remainder, and sets the C2 condition code bit to 1.

Rounding control has no effect. FPREM1 results are exact.

Action

ExpDiff = Exponent(ST(0)) - Exponent(ST(1))
IF (ExpDiff < 0)
{
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = 0
}
ELSIF (ExpDiff < 64)
{
 Quotient = Integer obtained by rounding (ST(0)/ST(1))
 to nearest even integer
 ST(0) = ST(0) - (ST(1) * Quotient)
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = Quotient mod 8
}
ELSE
{
 N = 32 + (ExpDiff mod 32)
 Quotient = Truncate ((ST(0)/ST(1))/2^(ExpDiff-N))
 ST(0) = ST(0) - (ST(1) * Quotient * 2^(ExpDiff-N))
 SW.C2 = 1
 {SW.C0, SW.C3, SW.C1} = 0
}

Related Instructions

FPREM, FABS, FRNDINT, FXTRACT, FCHS

FPREM1 Floating-Point Partial Remainder

Mnemonic Opcode Description

FPREM1 D9 F5 Compute the IEEE standard 754 remainder of the division of
ST(0) by ST(1) and store the result in ST(0).

[AMD Public Use]

286 FPREM1 x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Set equal to the value of bit 2 of the quotient.

C1
0 x87 stack underflow, if an x87 register stack fault was detected.

M Set equal to the value of the bit 0 of the quotient, if there was no fault.

C2
0 FPREM1 generated the partial remainder.

1 The source operands differed by more than a factor of 264, so the result
is incomplete.

C3 M Set equal to the value of bit 1 of the quotient.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ST(0) was ±infinity.
X X X ST(1) was ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

[AMD Public Use]

x87 Floating-Point FPTAN 287
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Computes the tangent of the radian value in ST(0), stores the result in ST(0), and pushes a value of 1.0
onto the x87 register stack.

The source value must be between –263 and +263 radians. If the source value lies outside the specified
range, the instruction sets the C2 bit of the x87 status word to 1 and does not change the value in ST(0).

Related Instructions

FCOS, FPATAN, FSIN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

FPTAN Floating-Point Partial Tangent

Mnemonic Opcode Description

FPTAN D9 F2 Replace ST(0) with the tangent of ST(0), then push 1.0 onto
the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

288 FPTAN x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the control

register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X A source operand was ±infinity
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.
Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

x87 Floating-Point FRNDINT 289
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Rounds the value in ST(0) to an integer, depending on the setting of the rounding control (RC) field of
the x87 control word, and stores the result in ST(0).

If the initial value in ST(0) is ∞, the instruction does not change ST(0). If the value in ST(0) is not an
integer, it sets the precision exception (PE) bit of the x87 status word to 1.

Related Instructions

FABS, FPREM, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

FRNDINT Floating-Point Round to Integer

Mnemonic Opcode Description

FRNDINT D9 FC Round the contents of ST(0) to an integer.

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

290 FRNDINT x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Precision exception
(PE) X X X The source operand was not an integral value.

[AMD Public Use]

x87 Floating-Point FRSTOR 291
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Restores the complete x87 state from memory starting at the specified address, as stored by a previous
call to F(N)SAVE.

The FRSTOR instruction takes a memory operand that specifies the starting address of either a 94-byte
or 108-byte area in memory. The 94-byte operand is required for a 16-bit operand-size; the 108-byte
memory area is required for both 32-bit and 64-bit operand sizes. The layout of the saved x87 state
within the specified memory area depends on whether the processor is operating in protected or real
mode. See “Media and x87 Processor State” in Volume 2 for details on how this instruction stores the
x87 environment in memory. (Because FSAVE does not save the full 64-bit data and instruction
pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than FSAVE/FRSTOR.)

Because the MMX registers are mapped onto the low 64 bits of the x87 floating-point registers, this
operation also restores the MMX state.

If FRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or FNCLEX
instruction to clear the exception flags in the x87 status word before storing that environment.

For details about the memory image restored by FRSTOR, see “Media and x87 Processor State” in
Volume 2.

Related Instructions

FSAVE, FNSAVE, FXSAVE, FXRSTOR

rFLAGS Affected

None

FRSTOR Floating-Point Restore x87 and MMX™ State

Mnemonic Opcode Description

FRSTOR
mem94/108env DD /4 Load the x87 state from mem94/108env.

[AMD Public Use]

292 FRSTOR x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Loaded from memory.

C1 M Loaded from memory.

C2 M Loaded from memory.

C3 M Loaded from memory.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

x87 Floating-Point FSAVE (FNSAVE) 293
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Stores the complete x87 state to memory starting at the specified address and reinitializes the x87 state.

The FSAVE instruction takes a memory operand that specifies the starting address of either a 94-byte
or 108-byte area in memory. The 94-byte operand is required for a 16-bit operand-size; the 108-byte
memory area is required for both 32-bit and 64-bit operand sizes. The layout of the saved x87 state
within the specified memory area depends on whether the processor is operating in protected or real
mode. See “Media and x87 Processor State” in Volume 2 for details on how this instruction stores the
x87 environment in memory. (Because FSAVE does not save the full 64-bit data and instruction
pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than FSAVE/FRSTOR.)

Because the MMX registers are mapped onto the low 64 bits of the x87 floating-point registers, this
operation also saves the MMX state.

The FNSAVE instruction does not wait for pending unmasked x87 floating-point exceptions to be
processed.

Assemblers usually provide an FSAVE macro that expands into the instruction sequence
WAIT ; Opcode 9B
FNSAVE destination ; Opcode DD /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNSAVE instruction then stores the x87 state to the specified destination.

Related Instructions

FRSTOR, FXSAVE, FXRSTOR

rFLAGS Affected

None

FSAVE
FNSAVE

Floating-Point Save x87 and MMX™ State

Mnemonic Opcode Description

FSAVE mem94/108env 9B DD /6
Copy the x87 state to mem94/108env after checking for
pending floating-point exceptions, then reinitialize the x87
state.

FNSAVE
mem94/108env DD /6

Copy the x87 state to mem94/108env without checking for
pending floating-point exceptions, then reinitialize the x87
state.

[AMD Public Use]

294 FSAVE (FNSAVE) x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 0

C1 0

C2 0

C3 0

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

x87 Floating-Point FSCALE 295
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Multiplies the floating-point value in ST(0) by 2 to the power of the integer portion of the floating-
point value in ST(1).

This instruction provides an efficient method of multiplying (or dividing) by integral powers of 2
because, typically, it simply adds the integer value to the exponent of the value in ST(0), leaving the
significand unaffected. However, if the value in ST(0) is a denormal value, the mantissa is also
modified and the result may end up being a normalized number. Likewise, if overflow or underflow
results from a scale operation, the mantissa of the resulting value will be different from that of the
source.

The FSCALE instruction performs the reverse operation to that of the FXTRACT instruction.

Related Instructions

FSQRT, FPREM, FPREM1, FRNDINT, FXTRACT, FABS, FCHS

rFLAGS Affected

None

x87 Condition Code

FSCALE Floating-Point Scale

Mnemonic Opcode Description

FSCALE D9 FD Replace ST(0) with ST(0) ∗ 2rndint(ST(1))

x87 Condition Code Value Description

C0 U Undefined.

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U Undefined.

C3 U Undefined

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

296 FSCALE x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.
Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

x87 Floating-Point FSIN 297
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Computes the sine of the radian value in ST(0) and stores the result in ST(0).

The source value must be in the range –263 to +263 radians. If the value lies outside this range, the
instruction sets the C2 bit in the x87 status word to 1 and does not change the value in ST(0).

Related Instructions

FCOS, FPATAN, FPTAN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

FSIN Floating-Point Sine

Mnemonic Opcode Description

FSIN D9 FE Replace ST(0) with the sine of ST(0).

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

298 FSIN x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X A source operand was ±infinity.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

x87 Floating-Point FSINCOS 299
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Computes the sine and cosine of the value in ST(0), stores the sine in ST(0), and pushes the cosine onto
the x87 register stack. The source value must be in the range –263 to +263 radians.

If the source operand is outside this range, the instruction sets the C2 bit in the x87 status word to 1 and
does not change the value in ST(0).

Related Instructions

FCOS, FPATAN, FPTAN, FSIN

rFLAGS Affected

None

x87 Condition Code

FSINCOS Floating-Point Sine and Cosine

Mnemonic Opcode Description

FSINCOS D9 FB Replace ST(0) with the sine of ST(0), then push the cosine
of ST(0) onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 Result in ST(1) was rounded down, if a precision exception was
detected.

1 Result in ST(1) was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

300 FSINCOS x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the control

register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X A source operand was ±infinity.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

x87 Floating-Point FSQRT 301
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Computes the square root of the value in ST(0) and stores the result in ST(0). Taking the square root of
+infinity returns +infinity.

Related Instructions

FSCALE, FPREM, FPREM1, FRNDINT, FXTRACT, FABS, FCHS

rFLAGS Affected

None

x87 Condition Code

FSQRT Floating-Point Square Root

Mnemonic Opcode Description

FSQRT D9 FA Replace ST(0) with the square root of ST(0).

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

302 FSQRT x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X A source operand was a negative value (not including -
zero).

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

x87 Floating-Point FSTx 303
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Copies the value in ST(0) to the specified floating-point register or memory location.

The FSTP instruction pops the x87 stack after copying the value. The instruction FSTP ST(0) is the
same as popping the stack with no data transfer.

If the specified destination is a single-precision or double-precision memory location, the instruction
converts the value to the appropriate precision format. It does this by rounding the significand of the
source value as specified by the rounding mode determined by the RC field of the x87 control word
and then converting to the format of destination. It also converts the exponent to the width and bias of
the destination format.

If the value is too large for the destination format, the instruction sets the overflow exception (OE) bit
of the x87 status word. Then, if the overflow exception is unmasked (OM bit cleared to 0 in the x87
control word), the instruction does not perform the store.

If the value is a denormal value, the instruction sets the underflow exception (UE) bit in the x87 status
word.

If the value is ±0, ±∞, or a NaN, the instruction truncates the least significant bits of the significand and
exponent to fit the destination location.

Related Instructions

FFREE, FLD, FILD, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

FST
FSTP

Floating-Point Store Stack Top

Mnemonic Opcode Description

FST ST(i) DD D0+i Copy the contents of ST(0) to ST(i).

FST mem32real D9 /2 Copy the contents of ST(0) to mem32real.

FST mem64real DD /2 Copy the contents of ST(0) to mem64real.

FSTP ST(i) DD D8+i Copy the contents of ST(0) to ST(i) and pop the x87 register stack.

FSTP mem32real D9 /3 Copy the contents of ST(0) to mem32real and pop the x87 register stack

FSTP mem64real DD /3 Copy the contents of ST(0) to mem64real and pop the x87 register stack.

FSTP mem80real DB /7 Copy the contents of ST(0) to mem80real and pop the x87 register stack.

[AMD Public Use]

304 FSTx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.
Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

[AMD Public Use]

x87 Floating-Point FSTCW (FNSTCW) 305
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Stores the x87 control word in the specified 2-byte memory location. The FNSTCW instruction does
not check for possible floating-point exceptions before copying the image of the x87 status register.

Assemblers usually provide an FSTCW macro that expands into the instruction sequence:
WAIT ; Opcode 9B
FNSTCW destination ; Opcode D9 /7

The WAIT (9Bh) instruction checks for pending x87 exception and calls an exception handler, if
necessary. The FNSTCW instruction then stores the state of the x87 control register to the desired
destination.

Related Instructions

FSTSW, FNSTSW, FSTENV, FNSTENV

rFLAGS Affected

None

x87 Condition Code

FSTCW
(FNSTCW)

Floating-Point Store Control Word

Mnemonic Opcode Description

FSTCW mem2env 9B D9 /7 Perform a WAIT (9B) to check for pending floating-point
exceptions, then copy the x87 control word to mem2env.

FNSTCW mem2env D9 /7 Copy the x87 control word to mem2env without checking for
floating-point exceptions.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

306 FSTCW (FNSTCW) x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

x87 Floating-Point FSTENV (FNSTENV) 307
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Stores the current x87 environment to memory starting at the specified address, and then masks all
floating-point exceptions. The x87 environment consists of the x87 control, status, and tag word
registers, the last non-control x87 instruction pointer, the last x87 data pointer, and the opcode of the
last completed non-control x87 instruction.

The FSTENV instruction takes a memory operand that specifies the start of either a 14-byte or 28-byte
area in memory. The 14-byte operand is required for a 16-bit operand-size; the 28-byte memory area is
required for both 32-bit and 64-bit operand sizes. The layout of the saved x87 environment within the
specified memory area depends on whether the processor is operating in protected or real mode. See
“Media and x87 Processor State” in Volume 2 for details on how this instruction stores the x87
environment in memory. (Because FLDENV/FSTENV do not save the full 64-bit data and instruction
pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than FLDENV/FSTENV.)

The FNSTENV instruction does not check for possible floating-point exceptions before storing the
environment.

Assemblers usually provide an FSTENV macro that expands into the instruction sequence
WAIT ; Opcode 9B
FNSTENV destination ; Opcode D9 /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler if
necessary. The FNSTENV instruction then stores the state of the x87 environment to the specified
destination.

Exception handlers often use these instructions because they provide access to the x87 instruction and
data pointers. An exception handler typically saves the environment on the stack. The instructions
mask all floating-point exceptions after saving the environment to prevent those exceptions from
interrupting the exception handler.

Related Instructions

FLDENV, FSTSW, FNSTSW, FSTCW, FNSTCW

FSTENV
(FNSTENV)

Floating-Point Store Environment

Mnemonic Opcode Description

FSTENV
mem14/28env 9B D9 /6

Perform a WAIT (9B) to check for pending floating-point
exceptions, then copy the x87 environment to mem14/28env
and mask the floating-point exceptions.

FNSTENV
mem14/28env D9 /6

Copy the x87 environment to mem14/28env without
checking for pending floating-point exceptions, and mask
the exceptions.

[AMD Public Use]

308 FSTENV (FNSTENV) x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

x87 Floating-Point FSTSW (FNSTSW) 309
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Stores the current state of the x87 status word register in either the AX register or a specified two-byte
memory location. The image of the status word placed in the AX register always reflects the result
after the execution of the previous x87 instruction.

The AX form of the instruction is useful for performing conditional branching operations based on the
values of x87 condition flags.

The FNSTSW instruction does not check for possible floating-point exceptions before storing the x87
status word.

Assemblers usually provide an FSTSW macro that expands into the instruction sequence:
WAIT ; Opcode 9B
FNSTSW destination ; Opcode DD /7 or DF E0

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler if
necessary. The FNSTSW instruction then stores the state of the x87 status register to the desired
destination.

Related Instructions

FSTCW, FNSTCW, FSTENV, FNSTENV

rFLAGS Affected

None

FSTSW
(FNSTSW)

Floating-Point Store Status Word

Mnemonic Opcode Description

FSTSW AX 9B DF E0 Perform a WAIT (9B) to check for pending floating-point
exceptions, then copy the x87 status word to the AX register.

FSTSW mem2env 9B DD /7 Perform a WAIT (9B) to check for pending floating-point
exceptions, then copy the x87 status word to mem12byte.

FNSTSW AX DF E0 Copy the x87 status word to the AX register without
checking for pending floating-point exceptions.

FNSTSW mem2env DD /7 Copy the x87 status word to mem12byte without checking
for pending floating-point exceptions.

[AMD Public Use]

310 FSTSW (FNSTSW) x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

[AMD Public Use]

x87 Floating-Point FSUBx 311
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Subtracts the value in a floating-point register or memory location from the value in another register
and stores the result in that register.

If no operands are specified, the instruction subtracts the value in ST(0) from that in ST(1) and stores
the result in ST(1).

If one operand is specified, it subtracts a floating-point or integer value in memory from the contents
of ST(0) and stores the result in ST(0).

If two operands are specified, it subtracts the value in ST(0) from the value in another floating-point
register or vice versa.

The FSUBP instruction pops the x87 register stack after performing the subtraction.

The no-operand version of the instruction always pops the register stack. In some assemblers, the
mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instruction converts a signed integer value to double-extended-precision format before
performing the subtraction.

Related Instructions

FSUBRP, FISUBR, FSUBR

rFLAGS Affected

None

FSUB
FSUBP
FISUB

Floating-Point Subtract

Mnemonic Opcode Description

FSUB ST(0),ST(i) D8 E0+i Replace ST(0) with ST(0) – ST(i).

FSUB ST(i),ST(0) DC E8+i Replace ST(i) with ST(i) – ST(0).

FSUB mem32real D8 /4 Replace ST(0) with ST(0) – mem32real.

FSUB mem64real DC /4 Replace ST(0) with ST(0) – mem64real.

FSUBP DE E9 Replace ST(1) with ST(1) – ST(0) and pop the x87 register
stack.

FSUBP ST(i),ST(0) DE E8+i Replace ST(i) with ST(i) – ST(0), and pop the x87 register
stack.

FISUB mem16int DE /4 Replace ST(0) with ST(0) – mem16int.

FISUB mem32int DA /4 Replace ST(0) with ST(0) – mem32int.

[AMD Public Use]

312 FSUBx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X +infinity was subtracted from +infinity.
X X X –infinity was subtracted from –infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

[AMD Public Use]

x87 Floating-Point FSUBx 313
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

314 FSUBRx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Subtracts the value in a floating-point register from the value in another register or a memory location,
and stores the result in the first specified register. Values in memory can be in single-precision or
double-precision floating-point, word integer, or short integer format.

If one operand is specified, the instruction subtracts the value in ST(0) from the value in memory and
stores the result in ST(0).

If two operands are specified, it subtracts the value in ST(0) from the value in another floating-point
register or vice versa.

The FSUBRP instruction pops the x87 register stack after performing the subtraction.

The no-operand version of the instruction always pops the register stack. In some assemblers, the
mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instruction converts a signed integer operand to double-extended-precision format
before performing the subtraction.

The FSUBR instructions perform the reverse operations of the FSUB instructions.

Related Instructions

FSUB, FSUBP, FISUB

rFLAGS Affected

None

FSUBR
FSUBRP
FISUBR

Floating-Point Subtract Reverse

Mnemonic Opcode Description

FSUBR ST(0),ST(i) D8 E8+i Replace ST(0) with ST(i) - ST(0).

FSUBR ST(i),ST(0) DC E0+i Replace ST(i) with ST(0) - ST(i).

FSUBR mem32real D8 /5 Replace ST(0) with mem32real - ST(0).

FSUBR mem64real DC /5 Replace ST(0) with mem64real - ST(0).

FSUBRP DE E1 Replace ST(1) with ST(0) - ST(1) and pop x87 stack.

FSUBRP ST(i),ST(0) DE E0+i Replace ST(i) with ST(0) - ST(i) and pop x87 stack.

FISUBR mem16int DE /5 Replace ST(0) with mem16int - ST(0).

FISUBR mem32int DA /5 Replace ST(0) with mem32int - ST(0).

[AMD Public Use]

x87 Floating-Point FSUBRx 315
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X +infinity was subtracted from +infinity.
X X X –infinity was subtracted from –infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

[AMD Public Use]

316 FSUBRx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

[AMD Public Use]

x87 Floating-Point FTST 317
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Compares the value in ST(0) with 0.0, and sets the condition code flags in the x87 status word as
shown in the x87 Condition Code table below. The instruction ignores the sign distinction between
–0.0 and +0.0.

Related Instructions

FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FUCOMI, FUCOMIP, FUCOM,
FUCOMP, FUCOMPP, FXAM

rFLAGS Affected

None

x87 Condition Code

Exceptions

FTST Floating-Point Test with Zero

Mnemonic Opcode Description

FTST D9 E4 Compare ST(0) to 0.0.

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > 0.0

0 0 0 1 ST(0) < 0.0

1 0 0 0 ST(0) = 0.0

1 1 0 1 ST(0) was unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was a SNaN value, a QNaN value, or an

unsupported format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

[AMD Public Use]

318 FUCOMx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares the value in ST(0) to the value in another x87 register, and sets the condition codes in the
x87 status word as shown in the x87 Condition Code table below.

If no source operand is specified, the instruction compares the value in ST(0) to that in ST(1).

After making the comparison, the FUCOMP instruction pops the x87 stack register and the
FUCOMPP instruction pops the x87 stack register twice.

The instruction carries out the same comparison operation as the FCOM instructions, but sets the
invalid-operation exception (IE) bit in the x87 status word to 1 when either or both operands are an
SNaN or are in an unsupported format. If either or both operands is a QNaN, it sets the condition code
flags to unordered, but does not set the IE bit. The FCOM instructions, on the other hand, raise an IE
exception when either or both of the operands are a NaN value or are in an unsupported format.

Support for the FCOM(P(P)) instruction can be determined by executing either CPUID function
0000_0001h or CPUID function 8000_0001. Support is indicated when both the EDX[FPU] (bit 0)
and EDX[CMOV] (bit 15) feature flags are set.

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

FUCOM
FUCOMP
FUCOMPP

Floating-Point Unordered Compare

Mnemonic Opcode Description

FUCOM DD E1 Compare ST(0) to ST(1) and set condition code flags to
reflect the results of the comparison.

FUCOM ST(i) DD E0+i Compare ST(0) to ST(i) and set condition code flags to
reflect the results of the comparison.

FUCOMP DD E9
Compare ST(0) to ST(1), set condition code flags to reflect
the results of the comparison, and pop the x87 register
stack.

FUCOMP ST(i) DD E8+i
Compare ST(0) to ST(i), set condition code flags to reflect
the results of the comparison, and pop the x87 register
stack.

FUCOMPP DA E9
Compare ST(0) to ST(1), set condition code flags to reflect
the results of the comparison, and pop the x87 register stack
twice.

[AMD Public Use]

x87 Floating-Point FUCOMx 319
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

x87 Condition Code

Exceptions

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > source

0 0 0 1 ST(0) < source

1 0 0 0 ST(0) = source

1 1 0 1 Operands were unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

[AMD Public Use]

320 FUCOMIx x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Compares the contents of ST(0) with the contents of another floating-point register, and sets the zero
flag (ZF), parity flag (PF), and carry flag (CF) as shown in the rFLAGS Affected table below.

Unlike FCOMI and FCOMIP, the FUCOMI and FUCOMIP instructions do not set the invalid-
operation exception (IE) bit in the x87 status word for QNaNs.

After completing the comparison, FUCOMIP pops the x87 register stack.

Support for the FCOMI(P) instruction can be determined by executing either CPUID function
0000_0001h or CPUID function 8000_0001. Support is indicated when both the EDX[FPU] (bit 0)
and EDX[CMOV] (bit 15) feature flags are set.

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOM, FUCOMP, FUCOMPP,
FXAM

rFLAGS Affected

x87 Condition Code

FUCOMI
FUCOMIP

Floating-Point Unordered Compare and Set
eFLAGS

Mnemonic Opcode Description

FUCOMI ST(0),ST(i) DB E8+i Compare ST(0) to ST(i) and set eFLAGS to reflect the result
of the comparison.

FUCOMIP ST(0),ST(i) DF E8+i Compare ST(0) to ST(i), set eFLAGS to reflect the result of
the comparison, and pop the x87 register stack.

ZF PF CF Compare Result

0 0 0 ST(0) > source

0 0 1 ST(0) < source

1 0 0 ST(0) = source

1 1 1 Operands were unordered

x87 Condition Code Value Description

C0

C1 0

[AMD Public Use]

x87 Floating-Point FUCOMIx 321
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

C2

C3

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X
The conditional move instructions are not supported, as
indicated by EDX[FPU] and EDX[CMOV] returned by
CPUID function 0000_0001h or 8000_0001h.

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

x87 Condition Code Value Description

[AMD Public Use]

322 FWAIT (WAIT) x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Forces the processor to test for pending unmasked floating-point exceptions before proceeding.

If there is a pending floating-point exception and CR0.NE = 1, a numeric exception (#MF) is
generated. If there is a pending floating-point exception and CR0.NE = 0, FWAIT asserts the FERR
output signal, then waits for an external interrupt.

This instruction is useful for insuring that unmasked floating-point exceptions are handled before
altering the results of a floating point instruction.

FWAIT and WAIT are synonyms for the same opcode.

Related Instructions

None

rFLAGS Affected

None

x87 Condition Code

Exceptions

FWAIT
(WAIT)

Wait for Unmasked x87 Floating-Point
Exceptions

Mnemonic Opcode Description

FWAIT 9B Check for any pending floating-point exceptions.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The monitor coprocessor bit (MP) and the task switch bit

(TS) of the control register (CR0) were both set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

x87 Floating-Point FXAM 323
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Examines the value in ST(0) and sets the C0, C2, and C3 condition code flags in the x87 status word as
shown in the x87 Condition Code table below to indicate whether the value is a NaN, infinity, zero,
empty, denormal, normal finite, or unsupported value. The instruction also sets the C1 flag to indicate
the sign of the value in ST(0) (0 = positive, 1 = negative).

Related Instructions

FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOM, FUCOMI,
FUCOMIP, FUCOMP, FUCOMPP

rFLAGS Affected

None

x87 Condition Code

FXAM Floating-Point Examine

Mnemonic Opcode Description

FXAM D9 E5 Characterize the number in the ST(0) register.

C3 C2 C1 C0 Meaning

0 0 0 0 +unsupported
format

0 0 0 1 +NaN

0 0 1 0 –unsupported
format

0 0 1 1 –NaN

0 1 0 0 +normal

0 1 0 1 +infinity

0 1 1 0 –normal

0 1 1 1 –infinity

1 0 0 0 +0

1 0 0 1 +empty

1 0 1 0 –0

1 0 1 1 –empty

1 1 0 0 +denormal

1 1 1 0 –denormal

[AMD Public Use]

324 FXAM x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

[AMD Public Use]

x87 Floating-Point FXCH 325
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exchanges the value in ST(0) with the value in any other x87 register. If no operand is specified, the
instruction exchanges the values in ST(0) and ST(1).

Use this instruction to move a value from an x87 register to ST(0) for subsequent processing by a
floating-point instruction that can only operate on ST(0).

Related Instructions

FLD, FST, FSTP

rFLAGS Affected

None

x87 Condition Code

Exceptions

FXCH Floating-Point Exchange

Mnemonic Opcode Description

FXCH D9 C9 Exchange the contents of ST(0) and ST(1).

FXCH ST(i) D9 C8+i Exchange the contents of ST(0) and ST(i).

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

[AMD Public Use]

326 FXRSTOR x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Restores the XMM, MMX, and x87 state. The data loaded from memory is the state information
previously saved using the FXSAVE instruction. Restoring data with FXRSTOR that had been
previously saved with an FSAVE (rather than FXSAVE) instruction results in an incorrect restoration.

If FXRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

If the restored MXCSR register contains a set bit in an exception status flag, and the corresponding
exception mask bit is cleared (indicating an unmasked exception), loading the MXCSR register from
memory does not cause a SIMD floating-point exception (#XF).

FXRSTOR does not restore the x87 error pointers (last instruction pointer, last data pointer, and last
opcode), except when FXRSTOR sets FSW.ES=1 after recomputing it from the error mask bits in
FCW and error status bits in FSW.

The architecture supports two 512-bit memory formats for FXRSTOR, a 64-bit format that loads
XMM0-XMM15, and a 32-bit legacy format that loads only XMM0-XMM7. If FXRSTOR is
executed in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-
bit format is used, if the operand-size is 64-bit, FXRSTOR loads the x87 pointer registers as offset64,
otherwise it loads them as sel:offset32. For details about the memory format used by FXRSTOR, see
"Saving Media and x87 Processor State" in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXRSTOR does not restore the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is restored
whether fast-FXSAVE/FXRSTOR is enabled or not.

Suppo r t f o r t he f a s t -FXSAVE/FXRSTOR fea tu r e i s i nd i ca t ed by CPUID
Fn8000_0001_EDX[FFXSR] = 1.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, the saved
image of XMM0–XMM15 and MXCSR is not loaded into the processor. A general-protection
exception occurs if the FXRSTOR instruction attempts to load non-zero values into reserved MXCSR
bits. Software can use MXCSR_MASK to determine which bits of MXCSR are reserved. For details
on the MXCSR_MASK, see “SSE, MMX, and x87 Programming” in Volume 2.

Support for this instruction is implementation-specific. CPUID Fn8000_0001_EDX[FXSR] = 1 or
CPUID Fn0000_0001_EDX[FXSR] = 1 indicates support for the FXSAVE and FXRSTOR
instructions. See “CPUID” in Volume 3 for more information about the CPUID instruction.
.

FXRSTOR Restore XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXRSTOR mem512env 0F AE /1 Restores XMM, MMX™, and x87 state from 512-byte
memory location.

[AMD Public Use]

x87 Floating-Point FXRSTOR 327
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Related Instructions

FWAIT, FXSAVE

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank. Shaded fields are reserved.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The FXSAVE/FXRSTOR instructions are not
supported, as indicated by EDX[FXSR] = 0 returned
by CPUID Fn0000_0001 or Fn8000_0001.

X X X The emulate bit (EM) of CR0 was set to 1.
Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit,
or was non-canonical.

General protection, #GP

X X X A memory address exceeded the data segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary.

X X X Ones were written to the reserved bits in MXCSR.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

328 FXSAVE x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Saves the XMM, MMX, and x87 state. A memory location that is not aligned on a 16-byte boundary
causes a general-protection exception.

Unlike FSAVE and FNSAVE, FXSAVE does not alter the x87 tag bits. The contents of the saved
MMX/x87 data registers are retained, thus indicating that the registers may be valid (or whatever other
value the x87 tag bits indicated prior to the save). To invalidate the contents of the MMX/x87 data
registers after FXSAVE, software must execute an FINIT instruction. Also, FXSAVE (like FNSAVE)
does not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction can be
used for this purpose.

FXSAVE does not save the x87 pointer registers (last instruction pointer, last data pointer, and last
opcode), except in the relatively rare cases in which the exception-summary (ES) bit in the x87 status
word is set to 1, indicating that an unmasked x87 exception has occurred.

The architecture supports two 512-bit memory formats for FXSAVE, a 64-bit format that saves
XMM0-XMM15, and a 32-bit legacy format that saves only XMM0-XMM7. If FXSAVE is executed
in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-bit format is
used, if the operand-size is 64-bit, FXSAVE saves the x87 pointer registers as offset64, otherwise it
saves them as sel:offset32. For more details about the memory format used by FXSAVE, see “Saving
Media and x87 Execution Unit State” in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE does not save the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is saved whether
fast-FXSAVE/FXRSTOR is enabled or not. Support for the fast-FXSAVE/FXRSTOR feature is
indicated by CPUID Fn8000_0001_EDX[FFXSR] = 1.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, FXSAVE
does not save the image of XMM0–XMM15 or MXCSR. For details about the CR4.OSFXSR bit, see
“FXSAVE and FXRSTOR Instructions” in Volume 2.

Support for this instruction is implementation-specific. CPUID Fn8000_0001_EDX[FXSR] = 1 or
CPUID Fn0000_0001_EDX[FXSR] = 1 indicates support for the FXSAVE and FXRSTOR
instructions. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Related Instructions

FINIT, FNSAVE, FRSTOR, FSAVE, FXRSTOR, LDMXCSR, STMXCSR

rFLAGS Affected

None

FXSAVE Save XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXSAVE mem512env 0F AE /0 Saves XMM, MMX™, and x87 state to 512-byte
memory location.

[AMD Public Use]

x87 Floating-Point FXSAVE 329
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The FXSAVE/FXRSTOR instructions are not
supported, as indicated by EDX[FXSR] = 0 returned
by CPUID Fn0000_0001 or Fn8000_0001.

X X X The emulate bit (EM) of CR0 was set to 1.
Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit,
or was non-canonical.

General protection, #GP

X X X A memory address exceeded the data segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

X X X The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

[AMD Public Use]

330 FXTRACT x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Extracts the exponent and significand portions of the floating-point value in ST(0), stores the exponent
in ST(0), and then pushes the significand onto the x87 register stack. After this operation, the new
ST(0) contains a real number with the sign and value of the original significand and an exponent of
3FFFh (biased value for true exponent of zero), and ST(1) contains a real number that is the value of
the original value’s true (unbiased) exponent.

The FXTRACT instruction is useful for converting a double-extended-precision number to its decimal
representation.

If the zero-divide-exception mask (ZM) bit of the x87 control word is set to 1 and the source value is
±0, then the instruction stores ±zero in ST(0) and an exponent value of –∞ in register ST(1).

Related Instructions

FABS, FPREM, FRNDINT, FCHS

rFLAGS Affected

None

x87 Condition Code

FXTRACT Floating-Point Extract Exponent and Significand

Mnemonic Opcode Description

FXTRACT D9 F4
Extract the exponent and significand of ST(0), store the
exponent in ST(0), and push the significand onto the x87
register stack.

x87 Condition Code Value Description

C0 U

C1
0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

x87 Floating-Point FXTRACT 331
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.
Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Zero-divide
exception (ZE) X X X The source operand was ±zero.

[AMD Public Use]

332 FYL2X x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Computes (ST(1) ∗ log2(ST(0))), stores the result in ST(1), and pops the x87 register stack. The value
in ST(0) must be greater than zero.

If the zero-divide-exception mask (ZM) bit in the x87 control word is set to 1 and ST(0) contains
±zero, the instruction returns ∞ with the opposite sign of the value in register ST(1).

Related Instructions

FYL2XP1, F2XM1

rFLAGS Affected

None

x87 Condition Code

FYL2X Floating-Point y ∗ Log2 (x)

Mnemonic Opcode Description

FYL2X D9 F1 Replace ST(1) with ST(1) ∗ log2(ST(0)), then pop the x87
register stack.

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

x87 Floating-Point FYL2X 333
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X The source operand in ST(0) was a negative finite value
(not -zero).

X X X The source operand in ST(0) was +1 and the source
operand in ST(1) was ±infinity.

X X X The source operand in ST(0) was -infinity.

X X X The source operand in ST(0) was ±zero or ±infinity and the
source operand in ST(1) was ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Zero-divide
exception (ZE) X X X The source operand in ST(0) was ±zero and the source

operand in ST(1) was a finite value.
Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.
Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

334 FYL2XP1 x87 Floating-Point
Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in ST(1), and pops the x87 register stack. The
value in ST(0) must be in the range sqrt(1/2)–1 to sqrt(2)-1.

Related Instructions

FYL2X, F2XM1

rFLAGS Affected

None

x87 Condition Code

FYL2XP1 Floating-Point y ∗ Log2 (x+1)

Mnemonic Opcode Description

FYL2XP1 D9 F9 Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0), then pop the
x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

[AMD Public Use]

x87 Floating-Point FYL2XP1 335
Instruction Reference

26569—Rev. 3.13—May 2013 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.
x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN or unsupported format.

X X X The source operand in ST(0) was ±0 and the source
operand in ST(1) was ±infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.
Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.
Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

[AMD Public Use]

336 x87 Floating-Point Instruction Reference

AMD64 Technology 26569—Rev. 3.13—May 2013

[AMD Public Use]

Recommended Substitutions for 3DNow!™ Instructions 337

26569—Rev. 3.13—May 2013 AMD64 Technology

Appendix A Recommended Substitutions for
3DNow!™ Instructions

Table A-1 lists the deprecated 3DNow!™ instructions and the recommended substitutions.

Table A-1. Substitutions for 3DNow!™ Instructions
64-Bit 3DNow!™

Instruction
128-Bit SSE
Instruction

64-Bit MMX™
Instruction Notes

FEMMS N/A EMMS (MMX)

PAVGUSB PAVGB PAVGB
SSE and MMX™ instructions round according to the
current rounding mode; 3DNow!™ instructions always
round up.

PF2ID CVTTPS2DQ

PF2IW CVTTPS2DQ may be used if 16-bit result is not
necessary.

PFACC HADDPS

PFADD ADDPS

PFCMPEQ CMPPS

PFCMPGE CMPPS

PFCMPGT CMPPS

PFMAX MAXPS MAXPS may return -0.0.
PFMIN MINPS MINPS may return -0.0.
PFMUL MULPS

PFNACC HSUBPS

PFPNACC ADDSUBPS ADDSUBPS expects arguments in different positions
from PFPNACC.

PFRCP RCPSS may be used in conjunction with the Newton-
Raphson algorithm.

PFRCPIT1 See PFRCP.
PFRCPIT2 See PFRCP.
PFRSQIT1 See PFRSQRT.

PFRSQRT RSQRTSS may be used in conjunction with the
Newton-Raphson algorithm.

PFSUB SUBPS

PFSUBR SUBPS may be used.

PI2FD CVTDQ2PS SSE instructions round according to the current
rounding mode; 3DNow! instructions always truncate.

PI2FW

PMULHRW PMULHW may be used if rounding is not necessary.
PSWAPD PSHUFD

[AMD Public Use]

338 Recommended Substitutions for 3DNow!™ Instructions

AMD64 Technology 26569—Rev. 3.13—May 2013

[AMD Public Use]

Index 339

26569—Rev. 3.13—May 2013 AMD64 Technology

Numerics
16-bit mode... xvii
32-bit mode... xvii
64-bit mode... xvii

A
addressing

RIP-relative ... xxii
AES... xviii
ASID ... xviii

B
biased exponent .. xviii

C
commit .. xviii
compatibility mode ... xviii
condition codes

x87.. 217
CVTPD2PI.. 3
CVTPI2PD.. 6
CVTPI2PS .. 8
CVTPS2PI .. 10
CVTTPD2PI ... 12
CVTTPS2PI .. 15

D
direct referencing.. xviii
displacements ... xviii
double quadword .. xix
doubleword .. xix

E
eAX–eSP register .. xxv
effective address size... xix
effective operand size.. xix
eFLAGS register.. xxv
eIP register .. xxv
element .. xix
EMMS.. 17
endian order .. xxvii
exceptions .. xix
exponent .. xviii
extended SSE ... xix

AES ... xviii
AVX... xviii
FMA .. xix
FMA4... xix

XOP ... xxiv

F
F2XM1 ... 219
FABS.. 221
FADD ... 223
FADDP ... 223
FBLD.. 226
FBSTP .. 228
FCHS.. 230
FCMOVcc... 233
FCOM .. 235
FCOMI ... 238
FCOMIP ... 238
FCOMP .. 235
FCOMPP .. 235
FCOS.. 240
FDECSTP ... 242
FDIV .. 244
FDIVP .. 244
FDIVR.. 247
FDIVRP.. 247
FEMMS .. 18
FFREE.. 250
FIADD.. 223
FICOM ... 251
FICOMP ... 251
FIDIV ... 244
FIDIVR... 247
FILD... 253
FIMUL ... 277
FINCSTP .. 255
FINIT.. 257
FIST ... 259
FISTP ... 259
FISTTP ... 262
FISUB .. 311
FISUBR .. 314
FLD.. 264
FLD1 .. 266
FLDCW .. 267
FLDENV .. 269
FLDL2E.. 271
FLDL2T.. 271
FLDLG2 ... 273
FLDLN2 ... 274
FLDPI... 275
FLDZ.. 276

Index

[AMD Public Use]

340 Index

AMD64 Technology 26569—Rev. 3.13—May 2013

flush .. xix
FMUL .. 277
FMULP .. 277
FNINIT... 257
FNOP ... 280
FNSAVE.. 22, 293
FNSTCW.. 305
FNSTENV .. 307
FNSTSW .. 309
FPATAN ... 281
FPREM... 283
FPREM1... 285
FPTAN ... 287
FRNDINT... 289
FRSTOR.. 20, 291
FSAVE... 22, 293
FSCALE ... 295
FSIN... 297
FSINCOS.. 299
FSQRT ... 301
FST .. 303
FSTCW .. 305
FSTENV... 307
FSTP .. 303
FSTSW... 309
FSUB ... 311
FSUBP ... 311
FSUBR ... 314
FSUBRP ... 314
FTST .. 317
FUCOM.. 318
FUCOMI .. 320
FUCOMIP .. 320
FUCOMP.. 318
FUCOMPP.. 318
FWAIT ... 322
FXAM .. 323
FXCH... 325
FXRSTOR ... 24, 326
FXSAVE.. 26, 328
FXTRACT .. 330
FYL2X ... 332
FYL2XP1 ... 334

I
IGN .. xx
indirect ... xx
instructions

3DNow!... 2
3DNow! Extensions.. 2
3DNow!™ ... 1
64-bit media... 1

FXSAVE/FXRSTOR... 2
MMX .. 2
MMX Extensions.. 2
SSE1 ... 2
SSE2 ... 2
x87 .. 217

L
legacy mode .. xx
legacy SSE .. xx
legacy x86 ... xx
long mode ... xx
LSB ... xxi
lsb.. xxi

M
mask .. xxi
MASKMOVQ ... 28
MBZ.. xxi
media instructions

128-bit ... xvii
256-bit ... xvii
64-bit ... xvii

memory
physical ... xxii

modes
compatibility ... xviii
legacy .. xx
long ... xx
protected .. xxii
real .. xxii
virtual-8086... xxiv

MOVD.. 31
MOVDQ2Q... 34
MOVNTQ... 36
MOVQ.. 38
MOVQ2DQ... 40
MSB .. xxi
msb.. xxi
MSR .. xxvi

O
octword.. xxi
offset.. xxi
overflow... xxi

P
packed.. xxi
PACKSSDW ... 42
PACKSSWB.. 44
PACKUSWB... 46
PADDB... 48
PADDD... 50

[AMD Public Use]

Index 341

26569—Rev. 3.13—May 2013 AMD64 Technology

PADDQ .. 52
PADDSB... 54
PADDSW.. 56
PADDUSB.. 58
PADDUSW... 60
PADDW.. 62
PAE .. xxii
PAND ... 64
PANDN .. 66
PAVGB ... 68
PAVGUSB .. 70
PAVGW .. 72
PCMPEQB.. 74
PCMPEQD ... 76
PCMPEQW... 78
PCMPGTB.. 80
PCMPGTD ... 82
PCMPGTW... 84
PEXTRW.. 86
PF2ID... 88
PF2IW .. 90
PFACC ... 92
PFADD... 94
PFCMPEQ .. 96
PFCMPGE .. 98
PFCMPGT .. 101
PFMAX .. 103
PFMIN ... 105
PFMUL .. 107
PFNACC .. 109
PFPNACC .. 112
PFRCP.. 115
PFRCPIT1 .. 118
PFRCPIT2 .. 121
PFRSQIT1 .. 124
PFRSQRT ... 127
PFSUB ... 130
PFSUBR ... 132
physical memory ... xxii
PI2FD... 134
PI2FW .. 136
PINSRW ... 138
PMADDWD ... 140
PMAXSW... 142
PMAXUB ... 144
PMINSW .. 146
PMINUB .. 148
PMOVMSKB.. 150
PMULHRW .. 152
PMULHUW.. 154
PMULHW .. 156

PMULLW ... 158
PMULUDQ... 160
POR.. 162
probe... xxii
processor modes

16-bit ... xvii
32-bit ... xvii
64-bit ... xvii

protected mode .. xxii
PSADBW.. 164
PSHUFW .. 166
PSLLD.. 169
PSLLQ.. 171
PSLLW ... 173
PSRAD ... 175
PSRAW... 177
PSRLD ... 179
PSRLQ ... 181
PSRLW... 183
PSUBB ... 185
PSUBD ... 187
PSUBQ ... 189
PSUBSB ... 191
PSUBSW .. 193
PSUBUSB... 195
PSUBUSW.. 197
PSUBW .. 199
PSWAPD .. 201
PUNPCKHBW.. 203
PUNPCKHDQ... 205
PUNPCKHWD.. 207
PUNPCKLBW .. 209
PUNPCKLDQ ... 211
PUNPCKLWD .. 213
PXOR ... 215

Q
quadword .. xxii

R
r8–r15 .. xxvi
rAX–rSP .. xxvi
RAZ.. xxii
real address mode. See real mode
real mode .. xxii
registers

eAX–eSP ... xxv
eFLAGS .. xxv
eIP... xxv
r8–r15... xxvi
rAX–rSP ... xxvi
rFLAGS... xxvii

[AMD Public Use]

342 Index

AMD64 Technology 26569—Rev. 3.13—May 2013

rIP... xxvii
relative.. xxii
reserved .. xxii
revision history... xiii
REX ... xxii
rFLAGS register .. xxvii
rIP register .. xxvii
RIP-relative addressing .. xxii

S
SBZ... xxiii
scalar ... xxiii
set.. xxiii
SIB.. xxiii
SIMD .. xxiii
SSE Instructions ... xxiii

extended ... xix
legacy.. xx

SSE instructions
AES ... xviii
AVX... xviii
FMA .. xix
FMA4... xix
SSE1 .. xxiii
SSE2 .. xxiii
SSE3 .. xxiii
SSE4.1 ... xxiii
SSE4.2 ... xxiii
SSE4A.. xxiii
SSSE3 .. xxiii
XOP ... xxiv

sticky bits... xxiv
Streaming SIMD Extensions (SSE) xxiii

T
TSS ... xxiv

U
underflow... xxiv

V
vector .. xxiv
virtual-8086 mode... xxiv

W
WAIT ... 322

X
XOP

Instructions ... xxiv
Prefix ... xxiv

[AMD Public Use]

	AMD64 Architecture Programmer's Manual Volumes 1-5 (40332)
	Volume 1:
Application Programming (24592)
	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Conventions and Definitions
	Notational Conventions
	Definitions
	Registers
	Endian Order

	Related Documents

	1 Overview of the AMD64 Architecture
	1.1 Introduction
	1.1.1 AMD64 Features
	1.1.2 Registers
	1.1.3 Instruction Set
	1.1.4 Media Instructions
	1.1.5 Floating-Point Instructions

	1.2 Modes of Operation
	1.2.1 Long Mode
	1.2.2 64-Bit Mode
	1.2.3 Compatibility Mode
	1.2.4 Legacy Mode

	2 Memory Model
	2.1 Memory Organization
	2.1.1 Virtual Memory
	2.1.2 Segment Registers
	2.1.3 Physical Memory
	2.1.4 Memory Management

	2.2 Memory Addressing
	2.2.1 Byte Ordering
	2.2.2 64-Bit Canonical Addresses
	2.2.3 Effective Addresses
	2.2.4 Address-Size Prefix
	2.2.5 RIP-Relative Addressing

	2.3 Pointers
	2.3.1 Near and Far Pointers

	2.4 Stack Operation
	2.5 Instruction Pointer

	3 General-Purpose Programming
	3.1 Registers
	3.1.1 Legacy Registers
	3.1.2 64-Bit-Mode Registers
	3.1.3 Implicit Uses of GPRs
	3.1.4 Flags Register
	3.1.5 Instruction Pointer Register

	3.2 Operands
	3.2.1 Fundamental Data Types
	3.2.2 General-Purpose Instruction Data types
	3.2.3 Operand Sizes and Overrides
	3.2.4 Operand Addressing
	3.2.5 Data Alignment

	3.3 Instruction Summary
	3.3.1 Syntax
	3.3.2 Data Transfer
	3.3.3 Data Conversion
	3.3.4 Load Segment Registers
	3.3.5 Load Effective Address
	3.3.6 Arithmetic
	3.3.7 Rotate and Shift
	3.3.8 Bit Manipulation
	3.3.9 Compare and Test
	3.3.10 Logical
	3.3.11 String
	3.3.12 Control Transfer
	3.3.13 Flags
	3.3.14 Input/Output
	3.3.15 Semaphores
	3.3.16 Processor Information
	3.3.17 Cache and Memory Management
	3.3.18 No Operation
	3.3.19 System Calls
	3.3.20 Application-Targeted Accelerator Instructions

	3.4 General Rules for Instructions in 64-Bit Mode
	3.4.1 Address Size
	3.4.2 Canonical Address Format
	3.4.3 Branch-Displacement Size
	3.4.4 Operand Size
	3.4.5 High 32 Bits
	3.4.6 Invalid and Reassigned Instructions
	3.4.7 Instructions with 64-Bit Default Operand Size

	3.5 Instruction Prefixes
	3.5.1 Legacy Prefixes
	3.5.2 REX Prefixes
	3.5.3 VEX and XOP Prefixes

	3.6 Feature Detection
	3.6.1 Feature Detection in a Virtualized Environment

	3.7 Control Transfers
	3.7.1 Overview
	3.7.2 Privilege Levels
	3.7.3 Procedure Stack
	3.7.4 Jumps
	3.7.5 Procedure Calls
	3.7.6 Returning from Procedures
	3.7.7 System Calls
	3.7.8 General Considerations for Branching
	3.7.9 Branching in 64-Bit Mode
	3.7.10 Interrupts and Exceptions

	3.8 Input/Output
	3.8.1 I/O Addressing
	3.8.2 I/O Ordering
	3.8.3 Protected-Mode I/O

	3.9 Memory Optimization
	3.9.1 Accessing Memory
	3.9.2 Forcing Memory Order
	3.9.3 Caches
	3.9.4 Cache Operation
	3.9.5 Cache Pollution
	3.9.6 Cache-Control Instructions

	3.10 Performance Considerations
	3.10.1 Use Large Operand Sizes
	3.10.2 Use Short Instructions
	3.10.3 Align Data
	3.10.4 Avoid Branches
	3.10.5 Prefetch Data
	3.10.6 Keep Common Operands in Registers
	3.10.7 Avoid True Dependencies
	3.10.8 Avoid Store-to-Load Dependencies
	3.10.9 Optimize Stack Allocation
	3.10.10 Consider Repeat-Prefix Setup Time
	3.10.11 Replace GPR with Media Instructions
	3.10.12 Organize Data in Memory Blocks

	4 Streaming SIMD Extensions Media and Scientific Programming
	4.1 Overview
	4.1.1 Capabilities
	4.1.2 Origins
	4.1.3 Compatibility

	4.2 Registers
	4.2.1 SSE Registers
	4.2.2 MXCSR Register
	4.2.3 Other Data Registers
	4.2.4 Effect on rFLAGS Register

	4.3 Operands
	4.3.1 Operand Addressing
	4.3.2 Data Alignment
	4.3.3 SSE Instruction Data Types
	4.3.4 Operand Sizes and Overrides

	4.4 Vector Operations
	4.4.1 Integer Vector Operations
	4.4.2 Floating-Point Vector Operations

	4.5 Instruction Overview
	4.5.1 Instruction Syntax
	4.5.2 Mnemonics
	4.5.3 Move Operations
	4.5.4 Data Conversion and Reordering
	4.5.5 Matrix and Special Arithmetic Operations
	4.5.6 Branch Removal

	4.6 Instruction Summary—Integer Instructions
	4.6.1 Data Transfer
	4.6.2 Data Conversion
	4.6.3 Data Reordering
	4.6.4 Arithmetic
	4.6.5 Enhanced Media
	4.6.6 Shift and Rotate
	4.6.7 Compare
	4.6.8 Logical
	4.6.9 Save and Restore State

	4.7 Instruction Summary—Floating-Point Instructions
	4.7.1 Data Transfer
	4.7.2 Data Conversion
	4.7.3 Data Reordering
	4.7.4 Arithmetic
	4.7.5 Fused Multiply-Add Instructions
	4.7.6 Compare
	4.7.7 Logical

	4.8 Instruction Prefixes
	4.8.1 Supported Prefixes

	4.9 Feature Detection
	4.10 Exceptions
	4.10.1 General-Purpose Exceptions
	4.10.2 SIMD Floating-Point Exception Causes
	4.10.3 SIMD Floating-Point Exception Priority
	4.10.4 SIMD Floating-Point Exception Masking

	4.11 Saving, Clearing, and Passing State
	4.11.1 Saving and Restoring State
	4.11.2 Parameter Passing
	4.11.3 Accessing Operands in MMX™ Registers

	4.12 Performance Considerations
	4.12.1 Use Small Operand Sizes
	4.12.2 Reorganize Data for Parallel Operations
	4.12.3 Remove Branches
	4.12.4 Use Streaming Loads and Stores
	4.12.5 Align Data
	4.12.6 Organize Data for Cacheability
	4.12.7 Prefetch Data
	4.12.8 Use SSE Code for Moving Data
	4.12.9 Retain Intermediate Results in SSE Registers
	4.12.10 Replace GPR Code with SSE Code.
	4.12.11 Replace x87 Code with SSE Code

	5 64-Bit Media Programming
	5.1 Origins
	5.2 Compatibility
	5.3 Capabilities
	5.3.1 Parallel Operations
	5.3.2 Data Conversion and Reordering
	5.3.3 Matrix Operations
	5.3.4 Saturation
	5.3.5 Branch Removal
	5.3.6 Floating-Point (3DNow!™) Vector Operations

	5.4 Registers
	5.4.1 MMX™ Registers
	5.4.2 Other Registers

	5.5 Operands
	5.5.1 Data Types
	5.5.2 Operand Sizes and Overrides
	5.5.3 Operand Addressing
	5.5.4 Data Alignment
	5.5.5 Integer Data Types
	5.5.6 Floating-Point Data Types

	5.6 Instruction Summary—Integer Instructions
	5.6.1 Syntax
	5.6.2 Exit Media State
	5.6.3 Data Transfer
	5.6.4 Data Conversion
	5.6.5 Data Reordering
	5.6.6 Arithmetic
	5.6.7 Shift
	5.6.8 Compare
	5.6.9 Logical
	5.6.10 Save and Restore State

	5.7 Instruction Summary—Floating-Point Instructions
	5.7.1 Syntax
	5.7.2 Data Conversion
	5.7.3 Arithmetic
	5.7.4 Compare

	5.8 Instruction Effects on Flags
	5.9 Instruction Prefixes
	5.9.1 Supported Prefixes
	5.9.2 Special-Use and Reserved Prefixes
	5.9.3 Prefixes That Cause Exceptions

	5.10 Feature Detection
	5.11 Exceptions
	5.11.1 General-Purpose Exceptions
	5.11.2 x87 Floating-Point Exceptions (#MF)

	5.12 Actions Taken on Executing 64-Bit Media Instructions
	5.13 Mixing Media Code with x87 Code
	5.13.1 Mixing Code
	5.13.2 Clearing MMX™ State

	5.14 State-Saving
	5.14.1 Saving and Restoring State
	5.14.2 State-Saving Instructions

	5.15 Performance Considerations
	5.15.1 Use Small Operand Sizes
	5.15.2 Reorganize Data for Parallel Operations
	5.15.3 Remove Branches
	5.15.4 Align Data
	5.15.5 Organize Data for Cacheability
	5.15.6 Prefetch Data
	5.15.7 Retain Intermediate Results in MMX™ Registers

	6 x87 Floating-Point Programming
	6.1 Overview
	6.1.1 Capabilities
	6.1.2 Origins
	6.1.3 Compatibility

	6.2 Registers
	6.2.1 x87 Data Registers
	6.2.2 x87 Status Word Register (FSW)
	6.2.3 x87 Control Word Register (FCW)
	6.2.4 x87 Tag Word Register (FTW)
	6.2.5 Pointers and Opcode State
	6.2.6 x87 Environment
	6.2.7 Floating-Point Emulation (CR0.EM)

	6.3 Operands
	6.3.1 Operand Addressing
	6.3.2 Data Types
	6.3.3 Number Representation
	6.3.4 Number Encodings
	6.3.5 Precision
	6.3.6 Rounding

	6.4 Instruction Summary
	6.4.1 Syntax
	6.4.2 Data Transfer and Conversion
	6.4.3 Load Constants
	6.4.4 Arithmetic
	6.4.5 Transcendental Functions
	6.4.6 Compare and Test
	6.4.7 Stack Management
	6.4.8 No Operation
	6.4.9 Control

	6.5 Instruction Effects on rFLAGS
	6.6 Instruction Prefixes
	6.7 Feature Detection
	6.8 Exceptions
	6.8.1 General-Purpose Exceptions
	6.8.2 x87 Floating-Point Exception Causes
	6.8.3 x87 Floating-Point Exception Priority
	6.8.4 x87 Floating-Point Exception Masking

	6.9 State-Saving
	6.9.1 State-Saving Instructions

	6.10 Performance Considerations
	6.10.1 Replace x87 Code with 128-Bit Media Code
	6.10.2 Use FCOMI-FCMOVx Branching
	6.10.3 Use FSINCOS Instead of FSIN and FCOS
	6.10.4 Break Up Dependency Chains

	Index

	Volume 2: System Programming (24593)
	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Conventions and Definitions
	Notational Conventions
	Definitions
	Registers
	Endian Order

	Related Documents

	1 System-Programming Overview
	1.1 Memory Model
	1.1.1 Memory Addressing
	1.1.2 Memory Organization
	1.1.3 Canonical Address Form

	1.2 Memory Management
	1.2.1 Segmentation
	1.2.2 Paging
	1.2.3 Mixing Segmentation and Paging
	1.2.4 Real Addressing

	1.3 Operating Modes
	1.3.1 Long Mode
	1.3.2 64-Bit Mode
	1.3.3 Compatibility Mode
	1.3.4 Legacy Modes
	1.3.5 System Management Mode (SMM)

	1.4 System Registers
	1.5 System-Data Structures
	1.6 Interrupts
	1.7 Additional System-Programming Facilities
	1.7.1 Hardware Multitasking
	1.7.2 Machine Check
	1.7.3 Software Debugging
	1.7.4 Performance Monitoring

	2 x86 and AMD64 Architecture Differences
	2.1 Operating Modes
	2.1.1 Long Mode
	2.1.2 Legacy Mode
	2.1.3 System-Management Mode

	2.2 Memory Model
	2.2.1 Memory Addressing
	2.2.2 Page Translation
	2.2.3 Segmentation

	2.3 Protection Checks
	2.4 Registers
	2.4.1 General-Purpose Registers
	2.4.2 YMM/XMM Registers
	2.4.3 Flags Register
	2.4.4 Instruction Pointer
	2.4.5 Stack Pointer
	2.4.6 Control Registers
	2.4.7 Debug Registers
	2.4.8 Extended Feature Register (EFER)
	2.4.9 Memory Type Range Registers (MTRRs)
	2.4.10 Other Model-Specific Registers (MSRs)

	2.5 Instruction Set
	2.5.1 REX Prefixes
	2.5.2 Segment-Override Prefixes in 64-Bit Mode
	2.5.3 Operands and Results
	2.5.4 Address Calculations
	2.5.5 Instructions that Reference RSP
	2.5.6 Branches
	2.5.7 NOP Instruction
	2.5.8 Single-Byte INC and DEC Instructions
	2.5.9 MOVSXD Instruction
	2.5.10 Invalid Instructions
	2.5.11 Reassigned Opcodes
	2.5.12 FXSAVE and FXRSTOR Instructions

	2.6 Interrupts and Exceptions
	2.6.1 Interrupt Descriptor Table
	2.6.2 Stack Frame Pushes
	2.6.3 Stack Switching
	2.6.4 IRET Instruction
	2.6.5 Task-Priority Register (CR8)
	2.6.6 New Exception Conditions

	2.7 Hardware Task Switching
	2.8 Long-Mode vs. Legacy-Mode Differences

	3 System Resources
	3.1 System-Control Registers
	3.1.1 CR0 Register
	3.1.2 CR2 and CR3 Registers
	3.1.3 CR4 Register
	3.1.4 Additional Control Registers in 64-Bit-Mode
	3.1.5 CR8 (Task Priority Register, TPR)
	3.1.6 RFLAGS Register
	3.1.7 Extended Feature Enable Register (EFER)
	3.1.8 Extended Control Registers (XCRn)

	3.2 Model-Specific Registers (MSRs)
	3.2.1 System Configuration Register (SYSCFG)
	3.2.2 System-Linkage Registers
	3.2.3 Memory-Typing Registers
	3.2.4 Debug-Extension Registers
	3.2.5 Performance-Monitoring Registers
	3.2.6 Machine-Check Registers
	3.2.7 Shadow Stack Registers
	3.2.8 Extended State Save MSRs
	3.2.9 Speculation Control MSRs
	3.2.10 Hardware Configuration Register (HWCR)

	3.3 Processor Feature Identification

	4 Segmented Virtual Memory
	4.1 Real Mode Segmentation
	4.2 Virtual-8086 Mode Segmentation
	4.3 Protected Mode Segmented-Memory Models
	4.3.1 Multi-Segmented Model
	4.3.2 Flat-Memory Model
	4.3.3 Segmentation in 64-Bit Mode

	4.4 Segmentation Data Structures and Registers
	4.5 Segment Selectors and Registers
	4.5.1 Segment Selectors
	4.5.2 Segment Registers
	4.5.3 Segment Registers in 64-Bit Mode

	4.6 Descriptor Tables
	4.6.1 Global Descriptor Table
	4.6.2 Global Descriptor-Table Register
	4.6.3 Local Descriptor Table
	4.6.4 Local Descriptor-Table Register
	4.6.5 Interrupt Descriptor Table
	4.6.6 Interrupt Descriptor-Table Register

	4.7 Legacy Segment Descriptors
	4.7.1 Descriptor Format
	4.7.2 Code-Segment Descriptors
	4.7.3 Data-Segment Descriptors
	4.7.4 System Descriptors
	4.7.5 Gate Descriptors

	4.8 Long-Mode Segment Descriptors
	4.8.1 Code-Segment Descriptors
	4.8.2 Data-Segment Descriptors
	4.8.3 System Descriptors
	4.8.4 Gate Descriptors
	4.8.5 Long Mode Descriptor Summary

	4.9 Segment-Protection Overview
	4.9.1 Privilege-Level Concept
	4.9.2 Privilege-Level Types

	4.10 Data-Access Privilege Checks
	4.10.1 Accessing Data Segments
	4.10.2 Accessing Stack Segments

	4.11 Control-Transfer Privilege Checks
	4.11.1 Direct Control Transfers
	4.11.2 Control Transfers Through Call Gates
	4.11.3 Return Control Transfers

	4.12 Limit Checks
	4.12.1 Determining Limit Violations
	4.12.2 Data Limit Checks in 64-bit Mode

	4.13 Type Checks
	4.13.1 Type Checks in Legacy and Compatibility Modes
	4.13.2 Long Mode Type Check Differences

	5 Page Translation and Protection
	5.1 Page Translation Overview
	5.1.1 Page-Translation Options
	5.1.2 Page-Translation Enable (PG) Bit
	5.1.3 Physical-Address Extensions (PAE) Bit
	5.1.4 Page-Size Extensions (PSE) Bit
	5.1.5 Page-Directory Page Size (PS) Bit

	5.2 Legacy-Mode Page Translation
	5.2.1 CR3 Register
	5.2.2 Normal (Non-PAE) Paging
	5.2.3 PAE Paging

	5.3 Long-Mode Page Translation
	5.3.1 Canonical Address Form
	5.3.2 CR3
	5.3.3 4-Kbyte Page Translation
	5.3.4 2-Mbyte Page Translation
	5.3.5 1-Gbyte Page Translation

	5.4 Page-Translation-Table Entry Fields
	5.4.1 Field Definitions
	5.4.2 Notes on Accessed and Dirty Bits

	5.5 Translation-Lookaside Buffer (TLB)
	5.5.1 Process Context Identifier
	5.5.2 Global Pages
	5.5.3 TLB Management

	5.6 Page-Protection Checks
	5.6.1 User/Supervisor (U/S) Bit
	5.6.2 Read/Write (R/W) Bit
	5.6.3 No Execute (NX) Bit
	5.6.4 Write Protect (CR0.WP) Bit
	5.6.5 Supervisor-Mode Execution Prevention (CR4.SMEP) Bit
	5.6.6 Supervisor-Mode Access Prevention(CR4.SMAP) Bit
	5.6.7 Memory Protection Keys (MPK) Bit

	5.7 Shadow Stack Protection
	5.7.1 Shadow Stack Accesses
	5.7.2 Shadow Stack Pages
	5.7.3 Shadow Stack Protection Checks

	5.8 Protection Across Paging Hierarchy
	5.8.1 Access to User Pages when CR0.WP=1

	5.9 Effects of Segment Protection

	6 System Instructions
	6.1 Fast System Call and Return
	6.1.1 SYSCALL and SYSRET
	6.1.2 SYSENTER and SYSEXIT (Legacy Mode Only)
	6.1.3 SWAPGS Instruction

	6.2 System Status and Control
	6.2.1 Processor Feature Identification (CPUID)
	6.2.2 Accessing Control Registers
	6.2.3 Accessing the RFLAGS Register
	6.2.4 Accessing Debug Registers
	6.2.5 Accessing Model-Specific Registers

	6.3 Segment Register and Descriptor Register Access
	6.3.1 Accessing Segment Registers
	6.3.2 Accessing Segment Register Hidden State
	6.3.3 Accessing Descriptor-Table Registers

	6.4 Protection Checking
	6.4.1 Checking Access Rights
	6.4.2 Checking Segment Limits
	6.4.3 Checking Read/Write Rights
	6.4.4 Adjusting Access Rights

	6.5 Processor Halt
	6.6 Cache and TLB Management
	6.6.1 Cache Management
	6.6.2 TLB Invalidation

	6.7 Shadow Stack Management

	7 Memory System
	7.1 Single-Processor Memory Access Ordering
	7.1.1 Read Ordering
	7.1.2 Write Ordering
	7.1.3 Read/Write Barriers

	7.2 Multiprocessor Memory Access Ordering
	7.3 Memory Coherency and Protocol
	7.3.1 Special Coherency Considerations
	7.3.2 Access Atomicity

	7.4 Memory Types
	7.4.1 Instruction Fetching from Uncacheable Memory
	7.4.2 Memory Barrier Interaction with Memory Types

	7.5 Buffering and Combining Memory Writes
	7.5.1 Write Buffering
	7.5.2 Write Combining

	7.6 Memory Caches
	7.6.1 Cache Organization and Operation
	7.6.2 Cache Control Mechanisms
	7.6.3 Cache and Memory Management Instructions
	7.6.4 Serializing Instructions
	7.6.5 Cache and Processor Topology

	7.7 Memory-Type Range Registers
	7.7.1 MTRR Type Fields
	7.7.2 MTRRs
	7.7.3 Using MTRRs
	7.7.4 MTRRs and Page Cache Controls
	7.7.5 MTRRs in Multi-Processing Environments

	7.8 Page-Attribute Table Mechanism
	7.8.1 PAT Register
	7.8.2 PAT Indexing
	7.8.3 Identifying PAT Support
	7.8.4 PAT Accesses
	7.8.5 Combined Effect of MTRRs and PAT
	7.8.6 PATs in Multi-Processing Environments
	7.8.7 Changing Memory Type

	7.9 Memory-Mapped I/O
	7.9.1 Extended Fixed-Range MTRR Type-Field Encodings
	7.9.2 IORRs
	7.9.3 IORR Overlapping
	7.9.4 Top of Memory

	7.10 Secure Memory Encryption
	7.10.1 Determining Support for Secure Memory Encryption
	7.10.2 Enabling Memory Encryption Extensions
	7.10.3 Supported Operating Modes
	7.10.4 Page Table Support
	7.10.5 I/O Accesses
	7.10.6 Restrictions
	7.10.7 SMM Interaction
	7.10.8 Encrypt-in-Place

	8 Exceptions and Interrupts
	8.1 General Characteristics
	8.1.1 Precision
	8.1.2 Instruction Restart
	8.1.3 Types of Exceptions
	8.1.4 Masking External Interrupts
	8.1.5 Masking Floating-Point and Media Instructions
	8.1.6 Disabling Exceptions

	8.2 Vectors
	8.2.1 #DE—Divide-by-Zero-Error Exception (Vector 0)
	8.2.2 #DB—Debug Exception (Vector 1)
	8.2.3 NMI—Non-Maskable-Interrupt Exception (Vector 2)
	8.2.4 #BP—Breakpoint Exception (Vector 3)
	8.2.5 #OF—Overflow Exception (Vector 4)
	8.2.6 #BR—Bound-Range Exception (Vector 5)
	8.2.7 #UD—Invalid-Opcode Exception (Vector 6)
	8.2.8 #NM—Device-Not-Available Exception (Vector 7)
	8.2.9 #DF—Double-Fault Exception (Vector 8)
	8.2.10 Coprocessor-Segment-Overrun Exception (Vector 9)
	8.2.11 #TS—Invalid-TSS Exception (Vector 10)
	8.2.12 #NP—Segment-Not-Present Exception (Vector 11)
	8.2.13 #SS—Stack Exception (Vector 12)
	8.2.14 #GP—General-Protection Exception (Vector 13)
	8.2.15 #PF—Page-Fault Exception (Vector 14)
	8.2.16 #MF—x87 Floating-Point Exception-Pending (Vector 16)
	8.2.17 #AC—Alignment-Check Exception (Vector 17)
	8.2.18 #MC—Machine-Check Exception (Vector 18)
	8.2.19 #XF—SIMD Floating-Point Exception (Vector 19)
	8.2.20 #CP—Control-Protection Exception (Vector 21)
	8.2.21 #HV—Hypervisor Injection Exception (Vector 28)
	8.2.22 #VC—VMM Communication Exception (Vector 29)
	8.2.23 #SX—Security Exception (Vector 30)
	8.2.24 User-Defined Interrupts (Vectors 32–255)

	8.3 Exceptions During a Task Switch
	8.4 Error Codes
	8.4.1 Selector-Error Code
	8.4.2 Page-Fault Error Code
	8.4.3 Control-Protection Error Code

	8.5 Priorities
	8.5.1 Floating-Point Exception Priorities
	8.5.2 External Interrupt Priorities

	8.6 Real-Mode Interrupt Control Transfers
	8.7 Legacy Protected-Mode Interrupt Control Transfers
	8.7.1 Locating the Interrupt Handler
	8.7.2 Interrupt To Same Privilege
	8.7.3 Interrupt To Higher Privilege
	8.7.4 Privilege Checks
	8.7.5 Returning From Interrupt Procedures
	8.7.6 Shadow Stack Support for Interrupts and Exceptions

	8.8 Virtual-8086 Mode Interrupt Control Transfers
	8.8.1 Protected-Mode Handler Control Transfer
	8.8.2 Virtual-8086 Handler Control Transfer

	8.9 Long-Mode Interrupt Control Transfers
	8.9.1 Interrupt Gates and Trap Gates
	8.9.2 Locating the Interrupt Handler
	8.9.3 Interrupt Stack Frame
	8.9.4 Interrupt-Stack Table
	8.9.5 Returning From Interrupt Procedures

	8.10 Virtual Interrupts
	8.10.1 Virtual-8086 Mode Extensions
	8.10.2 Protected Mode Virtual Interrupts
	8.10.3 Effect of Instructions that Modify EFLAGS.IF

	9 Machine Check Architecture
	9.1 Introduction
	9.1.1 Reliability, Availability, and Serviceability
	9.1.2 Error Detection, Logging, and Reporting
	9.1.3 Error Recovery

	9.2 Determining Machine-Check Architecture Support
	9.3 Machine Check Architecture MSRs
	9.3.1 Global Status and Control Registers
	9.3.2 Error-Reporting Register Banks

	9.4 Initializing the Machine-Check Mechanism
	9.5 Using MCA Features
	9.5.1 Determining the Scope of Detected Errors
	9.5.2 Handling Machine Check Exceptions
	9.5.3 Reporting Corrected Errors

	10 System-Management Mode
	10.1 SMM Differences
	10.2 SMM Resources
	10.2.1 SMRAM
	10.2.2 SMBASE Register
	10.2.3 SMRAM State-Save Area
	10.2.4 SMM-Revision Identifier
	10.2.5 SMRAM Protected Areas

	10.3 Using SMM
	10.3.1 System-Management Interrupt (SMI)
	10.3.2 SMM Operating-Environment
	10.3.3 Exceptions and Interrupts
	10.3.4 Invalidating the Caches
	10.3.5 Saving Additional Processor State
	10.3.6 Operating in Protected Mode and Long Mode
	10.3.7 Auto-Halt Restart
	10.3.8 I/O Instruction Restart
	10.3.9 SMM Page Configuration Lock

	10.4 Leaving SMM
	10.5 Multiprocessor Considerations

	11 SSE, MMX, and x87 Programming
	11.1 Overview of System-Software Considerations
	11.2 Determining Media and x87 Feature Support
	11.3 Enabling SSE Instructions
	11.3.1 Enabling Legacy SSE Instruction Execution
	11.3.2 Enabling Extended SSE Instruction Execution
	11.3.3 SIMD Floating-Point Exception Handling

	11.4 Media and x87 Processor State
	11.4.1 SSE Execution Unit State
	11.4.2 MMX Execution Unit State
	11.4.3 x87 Execution Unit State
	11.4.4 Saving Media and x87 Execution Unit State

	11.5 XSAVE/XRSTOR Instructions
	11.5.1 CPUID Enhancements
	11.5.2 XFEATURE_ENABLED_MASK
	11.5.3 Extended Save Area
	11.5.4 Instruction Functions
	11.5.5 YMM States and Supported Operating Modes
	11.5.6 Extended SSE Execution State Management
	11.5.7 Saving Processor State
	11.5.8 Restoring Processor State
	11.5.9 MXCSR State Management
	11.5.10 Mode-Specific XSAVE/XRSTOR State Management

	12 Task Management
	12.1 Hardware Multitasking Overview
	12.2 Task-Management Resources
	12.2.1 TSS Selector
	12.2.2 TSS Descriptor
	12.2.3 Task Register
	12.2.4 Legacy Task-State Segment
	12.2.5 64-Bit Task State Segment
	12.2.6 Task Gate Descriptor (Legacy Mode Only)

	12.3 Hardware Task-Management in Legacy Mode
	12.3.1 Task Memory-Mapping
	12.3.2 Switching Tasks
	12.3.3 Task Switches Using Task Gates
	12.3.4 Nesting Tasks

	13 Software Debug and Performance Resources
	13.1 Software-Debug Resources
	13.1.1 Debug Registers
	13.1.2 Setting Breakpoints
	13.1.3 Using Breakpoints
	13.1.4 Single Stepping
	13.1.5 Breakpoint Instruction (INT3)
	13.1.6 Control-Transfer Breakpoint Features
	13.1.7 Debug Breakpoint Address Masking

	13.2 Performance Monitoring Counters
	13.2.1 Performance Counter MSRs
	13.2.2 Detecting Hardware Support for Performance Counters
	13.2.3 Using Performance Counters
	13.2.4 Time-Stamp Counter

	13.3 Instruction-Based Sampling
	13.3.1 IBS Fetch Sampling
	13.3.2 IBS Fetch Sampling Registers
	13.3.3 IBS Execution Sampling
	13.3.4 IBS Execution Sampling Registers

	13.4 Lightweight Profiling
	13.4.1 Overview
	13.4.2 Events and Event Records
	13.4.3 Detecting LWP
	13.4.4 LWP Registers
	13.4.5 LWP Instructions
	13.4.6 LWP Control Block
	13.4.7 XSAVE/XRSTOR
	13.4.8 Implementation Notes

	14 Processor Initialization and Long Mode Activation
	14.1 Processor Initialization
	14.1.1 Built-In Self Test (BIST)
	14.1.2 Clock Multiplier Selection
	14.1.3 Processor Initialization State
	14.1.4 Multiple Processor Initialization
	14.1.5 Fetching the First Instruction

	14.2 Hardware Configuration
	14.2.1 Processor Implementation Information
	14.2.2 Enabling Internal Caches
	14.2.3 Initializing Media and x87 Processor State
	14.2.4 Model-Specific Initialization

	14.3 Initializing Real Mode
	14.4 Initializing Protected Mode
	14.5 Initializing Long Mode
	14.6 Enabling and Activating Long Mode
	14.6.1 Activating Long Mode
	14.6.2 Consistency Checks
	14.6.3 Updating System Descriptor Table References
	14.6.4 Relocating Page-Translation Tables

	14.7 Leaving Long Mode
	14.8 Long-Mode Initialization Example

	15 Secure Virtual Machine
	15.1 The Virtual Machine Monitor
	15.2 SVM Hardware Overview
	15.2.1 Virtualization Support
	15.2.2 Guest Mode
	15.2.3 External Access Protection
	15.2.4 Interrupt Support
	15.2.5 Restartable Instructions
	15.2.6 Security Support

	15.3 SVM Processor and Platform Extensions
	15.4 Enabling SVM
	15.5 VMRUN Instruction
	15.5.1 Basic Operation
	15.5.2 VMSAVE and VMLOAD Instructions

	15.6 #VMEXIT
	15.7 Intercept Operation
	15.7.1 State Saved on Exit
	15.7.2 Intercepts During IDT Interrupt Delivery
	15.7.3 EXITINTINFO Pseudo-Code

	15.8 Decode Assists
	15.8.1 MOV CRx/DRx Intercepts
	15.8.2 INTn Intercepts
	15.8.3 INVLPG and INVLPGA Intercepts
	15.8.4 Nested and intercepted #PF

	15.9 Instruction Intercepts
	15.10 IOIO Intercepts
	15.10.1 I/O Permissions Map
	15.10.2 IN and OUT Behavior
	15.10.3 (REP) OUTS and INS

	15.11 MSR Intercepts
	15.12 Exception Intercepts
	15.12.1 #DE (Divide By Zero)
	15.12.2 #DB (Debug)
	15.12.3 Vector 2 (Reserved)
	15.12.4 #BP (Breakpoint)
	15.12.5 #OF (Overflow)
	15.12.6 #BR (Bound-Range)
	15.12.7 #UD (Invalid Opcode)
	15.12.8 #NM (Device-Not-Available)
	15.12.9 #DF (Double Fault)
	15.12.10 Vector 9 (Reserved)
	15.12.11 #TS (Invalid TSS)
	15.12.12 #NP (Segment Not Present)
	15.12.13 #SS (Stack Fault)
	15.12.14 #GP (General Protection)
	15.12.15 #PF (Page Fault)
	15.12.16 #MF (X87 Floating Point)
	15.12.17 #AC (Alignment Check)
	15.12.18 #MC (Machine Check)
	15.12.19 #XF (SIMD Floating Point)
	15.12.20 #SX (Security Exception)
	15.12.21 #CP (Control Protection)

	15.13 Interrupt Intercepts
	15.13.1 INTR Intercept
	15.13.2 NMI Intercept
	15.13.3 SMI Intercept
	15.13.4 INIT Intercept
	15.13.5 Virtual Interrupt Intercept

	15.14 Miscellaneous Intercepts
	15.14.1 Task Switch Intercept
	15.14.2 Ferr_Freeze Intercept
	15.14.3 Shutdown Intercept
	15.14.4 Pause Intercept Filtering

	15.15 VMCB State Caching
	15.15.1 VMCB Clean Bits
	15.15.2 Guidelines for Clearing VMCB Clean Bits
	15.15.3 VMCB Clean Field

	15.16 TLB Control
	15.16.1 TLB Flush
	15.16.2 Invalidate Page, Alternate ASID

	15.17 Global Interrupt Flag, STGI and CLGI Instructions
	15.18 VMMCALL Instruction
	15.19 Paged Real Mode
	15.20 Event Injection
	15.21 Interrupt and Local APIC Support
	15.21.1 Physical (INTR) Interrupt Masking in EFLAGS
	15.21.2 Virtualizing APIC.TPR
	15.21.3 TPR Access in 32-Bit Mode
	15.21.4 Injecting Virtual (INTR) Interrupts
	15.21.5 Interrupt Shadows
	15.21.6 Virtual Interrupt Intercept
	15.21.7 Interrupt Masking in Local APIC
	15.21.8 INIT Support
	15.21.9 NMI Support

	15.22 SMM Support
	15.22.1 Sources of SMI
	15.22.2 Response to SMI
	15.22.3 Containerizing Platform SMM

	15.23 Last Branch Record Virtualization
	15.23.1 Hardware Acceleration for LBR Virtualization
	15.23.2 LBR Virtualization CPUID Feature Detection

	15.24 External Access Protection
	15.24.1 Device IDs and Protection Domains
	15.24.2 Device Exclusion Vector (DEV)
	15.24.3 Access Checking
	15.24.4 DEV Capability Block
	15.24.5 DEV Register Access Mechanism
	15.24.6 DEV Control and Status Registers
	15.24.7 Unauthorized Access Logging
	15.24.8 Secure Initialization Support

	15.25 Nested Paging
	15.25.1 Traditional Paging versus Nested Paging
	15.25.2 Replicated State
	15.25.3 Enabling Nested Paging
	15.25.4 Nested Paging and VMRUN/#VMEXIT
	15.25.5 Nested Table Walk
	15.25.6 Nested versus Guest Page Faults, Fault Ordering
	15.25.7 Combining Nested and Guest Attributes
	15.25.8 Combining Memory Types, MTRRs
	15.25.9 Page Splintering
	15.25.10 Legacy PAE Mode
	15.25.11 A20 Masking
	15.25.12 Detecting Nested Paging Support
	15.25.13 Guest Mode Execute Trap Extension
	15.25.14 Supervisor Shadow Stacks

	15.26 Security
	15.27 Secure Startup with SKINIT
	15.27.1 Secure Loader
	15.27.2 Secure Loader Image
	15.27.3 Secure Loader Block
	15.27.4 Trusted Platform Module
	15.27.5 System Interface, Memory Controller and I/O Hub Logic
	15.27.6 SKINIT Operation
	15.27.7 SL Abort
	15.27.8 Secure Multiprocessor Initialization

	15.28 Security Exception (#SX)
	15.29 Advanced Virtual Interrupt Controller
	15.29.1 Introduction
	15.29.2 Local APIC Register Virtualization
	15.29.3 AVIC Backing Page
	15.29.4 VMCB Changes in Support of AVIC
	15.29.5 AVIC Memory Data Structures
	15.29.6 Interrupt Delivery
	15.29.7 CPUID Feature Bits for AVIC
	15.29.8 New Processor Mechanisms
	15.29.9 New Exit Codes for AVIC

	15.30 SVM Related MSRs
	15.30.1 VM_CR MSR (C001_0114h)
	15.30.2 IGNNE MSR (C001_0115h)
	15.30.3 SMM_CTL MSR (C001_0116h)
	15.30.4 VM_HSAVE_PA MSR (C001_0117h)
	15.30.5 TSC Ratio MSR (C000_0104h)

	15.31 SVM-Lock
	15.31.1 SVM_KEY MSR (C001_0118h)

	15.32 SMM-Lock
	15.32.1 SmmLock Bit — HWCR[0]
	15.32.2 SMM_KEY MSR (C001_0119h)

	15.33 Nested Virtualization
	15.33.1 VMSAVE and VMLOAD Virtualization
	15.33.2 Virtual GIF (VGIF)

	15.34 Secure Encrypted Virtualization
	15.34.1 Determining Support for SEV
	15.34.2 Key Management
	15.34.3 Enabling SEV
	15.34.4 Supported Operating Modes
	15.34.5 SEV Encryption Behavior
	15.34.6 Page Table Support
	15.34.7 Restrictions
	15.34.8 SEV Interaction with SME
	15.34.9 Page Flush MSR
	15.34.10 SEV_STATUS MSR
	15.34.11 Virtual Transparent Encryption (VTE)

	15.35 Encrypted State (SEV-ES)
	15.35.1 Determining Support for SEV-ES
	15.35.2 Enabling SEV-ES
	15.35.3 SEV-ES Overview
	15.35.4 Types of Exits
	15.35.5 #VC Exception
	15.35.6 VMGExit
	15.35.7 GHCB
	15.35.8 VMRUN
	15.35.9 Automatic Exits
	15.35.10 Control Register Write Traps
	15.35.11 Interaction with SMI and #MC

	15.36 Secure Nested Paging (SEV-SNP)
	15.36.1 Determining Support for SEV-SNP
	15.36.2 Enabling SEV-SNP
	15.36.3 Reverse Map Table
	15.36.4 Initializing the RMP
	15.36.5 Hypervisor RMP Management
	15.36.6 Page Validation
	15.36.7 Virtual Machine Privilege Levels
	15.36.8 Virtual Top-of-Memory
	15.36.9 Reflect #VC
	15.36.10 RMP and VMPL Access Checks
	15.36.11 Large Page Management
	15.36.12 Running SNP-Active Virtual Machines
	15.36.13 Debug Registers
	15.36.14 Memory Types
	15.36.15 TLB management
	15.36.16 Interrupt Injection Restrictions
	15.36.17 Side-Channel Protection

	15.37 SPEC_CTRL Hypervisor Model

	16 Advanced Programmable Interrupt Controller (APIC)
	16.1 Sources of Interrupts to the Local APIC
	16.2 Interrupt Control
	16.3 Local APIC
	16.3.1 Local APIC Enable
	16.3.2 APIC Registers
	16.3.3 Local APIC ID
	16.3.4 APIC Version Register
	16.3.5 Extended APIC Feature Register
	16.3.6 Extended APIC Control Register

	16.4 Local Interrupts
	16.4.1 APIC Timer Interrupt
	16.4.2 Local Interrupts LINT0 and LINT1
	16.4.3 Performance Monitor Counter Interrupts
	16.4.4 Thermal Sensor Interrupts
	16.4.5 Extended Interrupts
	16.4.6 APIC Error Interrupts
	16.4.7 Spurious Interrupts

	16.5 Interprocessor Interrupts (IPI)
	16.6 Local APIC Handling of Interrupts
	16.6.1 Receiving System and IPI Interrupts
	16.6.2 Lowest Priority Messages and Arbitration
	16.6.3 Accepting System and IPI Interrupts
	16.6.4 Selecting and Handling Interrupts

	16.7 SVM Support for Interrupts and the Local APIC
	16.7.1 Specific End of Interrupt Register
	16.7.2 Interrupt Enable Register

	16.8 x2APIC Mode
	16.8.1 x2APIC Terminology

	16.9 Detecting and Enabling x2APIC Mode
	16.9.1 Enabling x2APIC Mode

	16.10 x2APIC Initialization
	16.11 Accessing x2APIC Register
	16.11.1 x2APIC Register Address Space
	16.11.2 WRMSR / RDMSR serialization for x2APIC Register
	16.11.3 Reserved Bit Checking in x2APIC Mode

	16.12 x2APIC_ID
	16.13 x2APIC Interrupt Command Register (ICR) Operations
	16.14 Logical Destination Register
	16.15 Self_IPI Register

	17 Hardware Performance Monitoring and Control
	17.1 P-State Control
	17.2 Core Performance Boost
	17.3 Determining Processor Effective Frequency
	17.3.1 Actual Performance Frequency Clock Count (APERF)
	17.3.2 Maximum Performance Frequency Clock Count (MPERF)
	17.3.3 APERF Read-only (AperfReadOnly)
	17.3.4 MPERF Read-only (MperfReadOnly)

	17.4 Processor Feedback Interface
	17.5 Processor Core Power Reporting
	17.5.1 Processor Facilities
	17.5.2 Software Algorithm

	18 Shadow Stacks
	18.1 Shadow Stack Overview
	18.1.1 Detecting and Enabling Shadow Stack Support

	18.2 The Shadow Stack Pointer
	18.3 Shadow Stack Operation for CALL (near) and RET (near)
	18.4 Shadow Stack Operation for Far Transfers
	18.5 Far Transfer to the Same Privilege Level
	18.6 Far Transfer to Different Privilege Level
	18.6.1 Shadow Stack Switching
	18.6.2 Handling CS, LIP and SSP on Privilege Transistions
	18.6.3 Supervisor Shadow Stack Token
	18.6.4 Shadow Stack Token Validation for Inter-privilege CALL (far) and Interrupts/Exceptions
	18.6.5 Shadow Stack Token Validation for Inter-privilege RET and IRET

	18.7 Shadow Stack Operation for SYSCALL and SYSRET
	18.8 Shadow Stack Operation for Task Switches
	18.9 Restricting Speculative Execution of RET targets
	18.10 Shadow Stack Switching Using RSTORSSP
	18.11 Shadow Stack Management Instructions
	18.12 Shadow Stack MSRs
	18.13 XSAVE/XRSTOR

	Appendix A MSR Cross-Reference
	A.1 MSR Cross-Reference by MSR Address
	A.2 System-Software MSRs
	A.3 Memory-Typing MSRs
	A.4 Machine-Check MSRs
	A.5 Software-Debug MSRs
	A.6 Performance-Monitoring MSRs
	A.7 Secure Virtual Machine MSRs
	A.8 System Management Mode MSRs
	A.9 CPUID Name MSR Cross-Reference
	A.10 Shadow Stack MSRs
	A.11 Speculation Control MSRs

	Appendix B Layout of VMCB
	Appendix C SVM Intercept Exit Codes
	Appendix D SMM Containerization
	D.1 SMM Containerization Pseudocode

	Appendix E OS-Visible Workarounds
	E.1 Erratum Process Overview

	Index

	Volume 3: General-Volume 3: General-Purpose and System (24594)
	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Conventions and Definitions
	The following section Notational Conventions describes notational conventions used in this volume and in the remaining volumes of this AMD64 Architecture Programmer’s Manual. This is followed by a Definitions section which lists a number of terms u...
	Definitions
	Registers
	Endian Order

	Related Documents

	1 Instruction Encoding
	1.1 Instruction Encoding Overview
	1.1.1 Encoding Syntax
	1.1.2 Representation in Memory

	1.2 Instruction Prefixes
	1.2.1 Summary of Legacy Prefixes
	1.2.2 Operand-Size Override Prefix
	1.2.3 Address-Size Override Prefix
	1.2.4 Segment-Override Prefixes
	1.2.5 Lock Prefix
	1.2.6 Repeat Prefixes
	1.2.7 REX Prefix
	1.2.8 VEX and XOP Prefixes

	1.3 Opcode
	1.4 ModRM and SIB Bytes
	1.4.1 ModRM Byte Format
	1.4.2 SIB Byte Format
	1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes
	1.4.4 Operand Addressing in 64-bit Mode

	1.5 Displacement Bytes
	1.6 Immediate Bytes
	1.7 RIP-Relative Addressing
	1.7.1 Encoding
	1.7.2 REX Prefix and RIP-Relative Addressing
	1.7.3 Address-Size Prefix and RIP-Relative Addressing

	1.8 Encoding Considerations Using REX
	1.8.1 Byte-Register Addressing
	1.8.2 Special Encodings for Registers

	1.9 Encoding Using the VEX and XOP Prefixes
	1.9.1 Three-Byte Escape Sequences
	1.9.2 Two-Byte Escape Sequence

	2 Instruction Overview
	2.1 Instruction Groups
	2.2 Reference-Page Format
	2.3 Summary of Registers and Data Types
	2.3.1 General-Purpose Instructions
	2.3.2 System Instructions
	2.3.3 SSE Instructions
	2.3.4 64-Bit Media Instructions
	2.3.5 x87 Floating-Point Instructions

	2.4 Summary of Exceptions
	2.5 Notation
	2.5.1 Mnemonic Syntax
	2.5.2 Opcode Syntax
	2.5.3 Pseudocode Definition

	3 General-Purpose Instruction Reference
	AAA
	AAD
	AAM
	AAS
	ADC
	ADCX
	ADD
	ADOX
	AND
	ANDN
	BEXTR (register form)
	BEXTR (immediate form)
	BLCFILL
	BLCI
	BLCIC
	BLCMSK
	BLCS
	BLSFILL
	BLSI
	BLSIC
	BLSMSK
	BLSR
	BOUND
	BSF
	BSR
	BSWAP
	BT
	BTC
	BTR
	BTS
	BZHI
	CALL (Near)
	CALL (Far)
	CBW CWDE CDQE
	CWD CDQ CQO
	CLC
	CLD
	CLFLUSH
	CLFLUSHOPT
	CLZERO
	CMC
	CMOVcc
	CMP
	CMPS CMPSB CMPSW CMPSD CMPSQ
	CMPXCHG
	CMPXCHG8B CMPXCHG16B
	CPUID
	Testing for the CPUID Instruction
	Standard Function 0 and Extended Function 8000_0000h

	CRC32
	DAA
	DAS
	DEC
	DIV
	ENTER
	IDIV
	IMUL
	IN
	INC
	INS INSB INSW INSD
	INT
	INTO
	Jcc
	JCXZ JECXZ JRCXZ
	JMP (Near)
	JMP (Far)
	LAHF
	LDS LES LFS LGS LSS
	LEA
	LEAVE
	LFENCE
	LLWPCB
	LODS LODSB LODSW LODSD LODSQ
	LOOP LOOPE LOOPNE LOOPNZ LOOPZ
	LWPINS
	LWPVAL
	LZCNT
	MCOMMIT
	MFENCE
	MONITORX
	MOV
	MOVBE
	Instruction Encoding

	MOVD
	MOVMSKPD
	MOVMSKPS
	MOVNTI
	MOVS MOVSB MOVSW MOVSD MOVSQ
	MOVSX
	MOVSXD
	MOVZX
	MUL
	MULX
	MWAITX
	NEG
	NOP
	NOT
	OR
	OUT
	OUTS OUTSB OUTSW OUTSD
	PAUSE
	PDEP
	PEXT
	POP
	POPA POPAD
	POPCNT
	POPF POPFD POPFQ
	PREFETCH PREFETCHW
	PREFETCHlevel
	PUSH
	PUSHA PUSHAD
	PUSHF PUSHFD PUSHFQ
	RCL
	RCR
	RDFSBASE RDGSBASE
	RDPID
	RDPRU
	RDRAND
	RDSEED
	RET (Near)
	RET (Far)
	ROL
	ROR
	RORX
	SAHF
	SAL SHL
	SAR
	SARX
	SBB
	SCAS SCASB SCASW SCASD SCASQ
	SETcc
	SFENCE
	SHL
	SHLD
	SHLX
	SHR
	SHRD
	SHRX
	SLWPCB
	STC
	STD
	STOS STOSB STOSW STOSD STOSQ
	SUB
	T1MSKC
	TEST
	TZCNT
	TZMSK
	UD0, UD1, UD2
	WRFSBASE WRGSBASE
	XADD
	XCHG
	XLAT
	XLATB
	XOR

	4 System Instruction Reference
	ARPL
	CLAC
	CLGI
	CLI
	CLTS
	CLRSSBSY
	HLT
	INCSSP
	INT 3
	INVD
	INVLPG
	INVLPGA
	INVLPGB
	INVPCID
	IRET IRETD IRETQ
	LAR
	LGDT
	LIDT
	LLDT
	LMSW
	LSL
	LTR
	MONITOR
	MOV CRn
	MOV DRn
	MWAIT
	PSMASH
	PVALIDATE
	RDMSR
	RDPKRU
	RDPMC
	RDSSP
	RDTSC
	RDTSCP
	RMPADJUST
	RMPUPDATE
	RSM
	RSTORSSP
	SAVEPREVSSP
	SETSSBSY
	SGDT
	SIDT
	SKINIT
	SLDT
	SMSW
	STAC
	STI
	STGI
	STR
	SWAPGS
	SYSCALL
	SYSENTER
	SYSEXIT
	SYSRET
	TLBSYNC
	VERR
	VERW
	VMLOAD
	VMMCALL
	VMGEXIT
	VMRUN
	VMSAVE
	WBINVD
	WBNOINVD
	WRMSR
	WRPKRU
	WRSS
	WRUSS

	Appendix A Opcode and Operand Encodings
	A.1 Opcode Maps
	A.1.1 Legacy Opcode Maps
	Primary Opcode Map
	Secondary Opcode Map
	rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc Instructions
	Encoding Extensions Using the ModRM Byte
	Secondary Opcode Map, ModRM Extensions for Opcode 01h
	0F_38h and 0F_3Ah Opcode Maps

	A.1.2 3DNow!™ Opcodes
	A.1.3 x87 Encodings
	A.1.4 rFLAGS Condition Codes for x87 Opcodes
	A.1.5 Extended Instruction Opcode Maps
	VEX Opcode Maps
	XOP Opcode Maps

	A.2 Operand Encodings
	A.2.1 ModRM Operand References
	16-Bit Register and Memory References
	Register and Memory References for 32-Bit and 64-Bit Addressing

	A.2.2 SIB Operand References

	Appendix B General-Purpose Instructions in 64-Bit Mode
	B.1 General Rules for 64-Bit Mode
	B.2 Operation and Operand Size in 64-Bit Mode
	B.3 Invalid and Reassigned Instructions in 64-Bit Mode
	B.4 Instructions with 64-Bit Default Operand Size
	B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode
	B.6 NOP in 64-Bit Mode
	B.7 Segment Override Prefixes in 64-Bit Mode

	Appendix C Differences Between Long Mode and Legacy Mode
	Appendix D Instruction Subsets and CPUID Feature Flags
	D.1 Instruction Set Overview
	D.2 CPUID Feature Flags Related to Instruction Support

	Appendix E Obtaining Processor Information Via the CPUID Instruction
	E.1 Special Notational Conventions
	E.2 Standard and Extended Function Numbers
	E.3 Standard Feature Function Numbers
	E.3.1 Function 0h—Maximum Standard Function Number and Vendor String
	E.3.2 Function 1h—Processor and Processor Feature Identifiers
	E.3.3 Functions 2h–4h—Reserved
	E.3.4 Function 5h—Monitor and MWait Features
	E.3.5 Function 6h—Power Management Related Features
	E.3.6 Function 7h—Structured Extended Feature Identifiers
	E.3.7 Functions 8h–Ah—Reserved
	E.3.8 Function Bh — Extended Topology Enumeration
	E.3.9 Function Ch—Reserved
	E.3.10 Function Dh—Processor Extended State Enumeration
	E.3.11 Functions 4000_0000h–4000_FFh—Reserved for Hypervisor Use

	E.4 Extended Feature Function Numbers
	E.4.1 Function 8000_0000h—Maximum Extended Function Number and Vendor String
	E.4.2 Function 8000_0001h—Extended Processor and Processor Feature Identifiers
	E.4.3 Functions 8000_0002h–8000_0004h—Extended Processor Name String
	E.4.4 Function 8000_0005h—L1 Cache and TLB Information
	E.4.5 Function 8000_0006h—L2 Cache and TLB and L3 Cache Information
	E.4.6 Function 8000_0007h—Processor Power Management and RAS Capabilities
	E.4.7 Function 8000_0008h—Processor Capacity Parameters and Extended Feature Identification
	E.4.8 Function 8000_0009h—Reserved
	E.4.9 Function 8000_000Ah—SVM Features
	E.4.10 Functions 8000_000Bh–8000_0018h—Reserved
	E.4.11 Function 8000_0019h—TLB Characteristics for 1GB pages
	E.4.12 Function 8000_001Ah—Instruction Optimizations
	E.4.13 Function 8000_001Bh—Instruction-Based Sampling Capabilities
	E.4.14 Function 8000_001Ch—Lightweight Profiling Capabilities
	E.4.15 Function 8000_001Dh—Cache Topology Information
	E.4.16 Function 8000_001Eh—Processor Topology Information
	E.4.17 Function 8000_001Fh—Encrypted Memory Capabilities
	E.4.18 Function 8000_0020—Reserved
	E.4.19 Function 8000_0021—Extended Feature Identification 2

	E.5 Multiple Processor Calculation
	E.5.1 Legacy Method
	E.5.2 Extended Method (Recommended)

	Appendix F Instruction Effects on RFLAGS
	Index

	Volume 4:
128-Bit and 256-Bit
Media Instructions: (26568)
	AMD64 ArchitectureProgrammer’s ManualVolume 4:128-Bit and 256-BitMedia Instructions
	Contents
	Figures
	Tables
	Revision History
	Preface
	1 Introduction
	1.1 Syntax and Notation
	1.2 Extended Instruction Encoding
	1.2.1 Immediate Byte Usage Unique to the SSE instructions
	1.2.2 Instruction Format Examples

	1.3 VSIB Addressing
	1.3.1 Effective Address Array Computation
	1.3.2 Notational Conventions Related to VSIB Addressing Mode
	1.3.3 Memory Ordering and Exception Behavior

	1.4 Enabling SSE Instruction Execution
	1.5 String Compare Instructions
	1.5.1 Source Data Format
	1.5.2 Comparison Type
	1.5.3 Comparison Summary Bit Vector
	1.5.4 Intermediate Result Post-processing
	1.5.5 Output Option Selection
	1.5.6 Affect on Flags

	2 Instruction Reference
	ADDPD VADDPD
	ADDPS VADDPS
	ADDSD VADDSD
	ADDSS VADDSS
	ADDSUBPD VADDSUBPD
	ADDSUBPS VADDSUBPS
	AESDEC VAESDEC
	AESDECLAST VAESDECLAST
	AESENC VAESENC
	AESENCLAST VAESENCLAST
	AESIMC VAESIMC
	AESKEYGENASSIST VAESKEYGENASSIST
	ANDNPD VANDNPD
	ANDNPS VANDNPS
	ANDPD VANDPD
	ANDPS VANDPS
	BLENDPD VBLENDPD
	BLENDPS VBLENDPS
	BLENDVPD VBLENDVPD
	BLENDVPS VBLENDVPS
	CMPPD VCMPPD
	CMPPS VCMPPS
	CMPSD VCMPSD
	CMPSS VCMPSS
	COMISD VCOMISD
	COMISS VCOMISS
	CVTDQ2PD VCVTDQ2PD
	CVTDQ2PS VCVTDQ2PS
	CVTPD2DQ VCVTPD2DQ
	CVTPD2PS VCVTPD2PS
	CVTPS2DQ VCVTPS2DQ
	CVTPS2PD VCVTPS2PD
	CVTSD2SI VCVTSD2SI
	CVTSD2SS VCVTSD2SS
	CVTSI2SD VCVTSI2SD
	CVTSI2SS VCVTSI2SS
	CVTSS2SD VCVTSS2SD
	CVTSS2SI VCVTSS2SI
	CVTTPD2DQ VCVTTPD2DQ
	CVTTPS2DQ VCVTTPS2DQ
	CVTTSD2SI VCVTTSD2SI
	CVTTSS2SI VCVTTSS2SI
	DIVPD VDIVPD
	DIVPS VDIVPS
	DIVSD VDIVSD
	DIVSS VDIVSS
	DPPD VDPPD
	DPPS VDPPS
	EXTRACTPS VEXTRACTPS
	EXTRQ
	HADDPD VHADDPD
	HADDPS VHADDPS
	HSUBPD VHSUBPD
	HSUBPS VHSUBPS
	INSERTPS VINSERTPS
	INSERTQ
	LDDQU VLDDQU
	LDMXCSR VLDMXCSR
	MASKMOVDQU VMASKMOVDQU
	MAXPD VMAXPD
	MAXPS VMAXPS
	MAXSD VMAXSD
	MAXSS VMAXSS
	MINPD VMINPD
	MINPS VMINPS
	MINSD VMINSD
	MINSS VMINSS
	MOVAPD VMOVAPD
	MOVAPS VMOVAPS
	MOVD VMOVD
	MOVDDUP VMOVDDUP
	MOVDQA VMOVDQA
	MOVDQU VMOVDQU
	MOVHLPS VMOVHLPS
	MOVHPD VMOVHPD
	MOVHPS VMOVHPS
	MOVLHPS VMOVLHPS
	MOVLPD VMOVLPD
	MOVLPS VMOVLPS
	MOVMSKPD VMOVMSKPD
	MOVMSKPS VMOVMSKPS
	MOVNTDQ VMOVNTDQ
	MOVNTDQA VMOVNTDQA
	MOVNTPD VMOVNTPD
	MOVNTPS VMOVNTPS
	MOVNTSD
	MOVNTSS
	MOVQ VMOVQ
	MOVSD VMOVSD
	MOVSHDUP VMOVSHDUP
	MOVSLDUP VMOVSLDUP
	MOVSS VMOVSS
	MOVUPD VMOVUPD
	MOVUPS VMOVUPS
	MPSADBW VMPSADBW
	MULPD VMULPD
	MULPS VMULPS
	MULSD VMULSD
	MULSS VMULSS
	ORPD VORPD
	ORPS VORPS
	PABSB VPABSB
	PABSD VPABSD
	PABSW VPABSW
	PACKSSDW VPACKSSDW
	PACKSSWB VPACKSSWB
	PACKUSDW VPACKUSDW
	PACKUSWB VPACKUSWB
	PADDB VPADDB
	PADDD VPADDD
	PADDQ VPADDQ
	PADDSB VPADDSB
	PADDSW VPADDSW
	PADDUSB VPADDUSB
	PADDUSW VPADDUSW
	PADDW VPADDW
	PALIGNR VPALIGNR
	PAND VPAND
	PANDN VPANDN
	PAVGB VPAVGB
	PAVGW VPAVGW
	PBLENDVB VPBLENDVB
	PBLENDW VPBLENDW
	PCLMULQDQ VPCLMULQDQ
	PCMPEQB VPCMPEQB
	PCMPEQD VPCMPEQD
	PCMPEQQ VPCMPEQQ
	PCMPEQW VPCMPEQW
	PCMPESTRI VPCMPESTRI
	PCMPESTRM VPCMPESTRM
	PCMPGTB VPCMPGTB
	PCMPGTD VPCMPGTD
	PCMPGTQ VPCMPGTQ
	PCMPGTW VPCMPGTW
	PCMPISTRI VPCMPISTRI
	PCMPISTRM VPCMPISTRM
	PEXTRB VPEXTRB
	PEXTRD VPEXTRD
	PEXTRQ VPEXTRQ
	PEXTRW VPEXTRW
	PHADDD VPHADDD
	PHADDSW VPHADDSW
	PHADDW VPHADDW
	PHMINPOSUW VPHMINPOSUW
	PHSUBD VPHSUBD
	PHSUBSW VPHSUBSW
	PHSUBW VPHSUBW
	PINSRB VPINSRB
	PINSRD VPINSRD
	PINSRQ VPINSRQ
	PINSRW VPINSRW
	PMADDUBSW VPMADDUBSW
	PMADDWD VPMADDWD
	PMAXSB VPMAXSB
	PMAXSD VPMAXSD
	PMAXSW VPMAXSW
	PMAXUB VPMAXUB
	PMAXUD VPMAXUD
	PMAXUW VPMAXUW
	PMINSB VPMINSB
	PMINSD VPMINSD
	PMINSW VPMINSW
	PMINUB VPMINUB
	PMINUD VPMINUD
	PMINUW VPMINUW
	PMOVMSKB VPMOVMSKB
	PMOVSXBD VPMOVSXBD
	PMOVSXBQ VPMOVSXBQ
	PMOVSXBW VPMOVSXBW
	PMOVSXDQ VPMOVSXDQ
	PMOVSXWD VPMOVSXWD
	PMOVSXWQ VPMOVSXWQ
	PMOVZXBD VPMOVZXBD
	PMOVZXBQ VPMOVZXBQ
	PMOVZXBW VPMOVZXBW
	PMOVZXDQ VPMOVZXDQ
	PMOVZXWD VPMOVZXWD
	PMOVZXWQ VPMOVZXWQ
	PMULDQ VPMULDQ
	PMULHRSW VPMULHRSW
	PMULHUW VPMULHUW
	PMULHW VPMULHW
	PMULLD VPMULLD
	PMULLW VPMULLW
	PMULUDQ VPMULUDQ
	POR VPOR
	PSADBW VPSADBW
	PSHUFB VPSHUFB
	PSHUFD VPSHUFD
	PSHUFHW VPSHUFHW
	PSHUFLW VPSHUFLW
	PSIGNB VPSIGNB
	PSIGND VPSIGND
	PSIGNW VPSIGNW
	PSLLD VPSLLD
	PSLLDQ VPSLLDQ
	PSLLQ VPSLLQ
	PSLLW VPSLLW
	PSRAD VPSRAD
	PSRAW VPSRAW
	PSRLD VPSRLD
	PSRLDQ VPSRLDQ
	PSRLQ VPSRLQ
	PSRLW VPSRLW
	PSUBB VPSUBB
	PSUBD VPSUBD
	PSUBQ VPSUBQ
	PSUBSB VPSUBSB
	PSUBSW VPSUBSW
	PSUBUSB VPSUBUSB
	PSUBUSW VPSUBUSW
	PSUBW VPSUBW
	PTEST VPTEST
	PUNPCKHBW VPUNPCKHBW
	PUNPCKHDQ VPUNPCKHDQ
	PUNPCKHQDQ VPUNPCKHQDQ
	PUNPCKHWD VPUNPCKHWD
	PUNPCKLBW VPUNPCKLBW
	PUNPCKLDQ VPUNPCKLDQ
	PUNPCKLQDQ VPUNPCKLQDQ
	PUNPCKLWD VPUNPCKLWD
	PXOR VPXOR
	RCPPS VRCPPS
	RCPSS VRCPSS
	ROUNDPD VROUNDPD
	ROUNDPS VROUNDPS
	ROUNDSD VROUNDSD
	ROUNDSS VROUNDSS
	RSQRTPS VRSQRTPS
	RSQRTSS VRSQRTSS
	SHA1RNDS4
	SHA1NEXTE
	SHA1MSG1
	SHA1MSG2
	SHA256RNDS2
	SHA256MSG1
	SHA256MSG2
	SHUFPD VSHUFPD
	SHUFPS VSHUFPS
	SQRTPD VSQRTPD
	SQRTPS VSQRTPS
	SQRTSD VSQRTSD
	SQRTSS VSQRTSS
	STMXCSR VSTMXCSR
	SUBPD VSUBPD
	SUBPS VSUBPS
	SUBSD VSUBSD
	SUBSS VSUBSS
	UCOMISD VUCOMISD
	UCOMISS VUCOMISS
	UNPCKHPD VUNPCKHPD
	UNPCKHPS VUNPCKHPS
	UNPCKLPD VUNPCKLPD
	UNPCKLPS VUNPCKLPS
	VBROADCASTF128
	VBROADCASTI128
	VBROADCASTSD
	VBROADCASTSS
	VCVTPH2PS
	VCVTPS2PH
	VEXTRACTF128
	VEXTRACTI128
	VFMADDPD VFMADD132PD VFMADD213PD VFMADD231PD
	VFMADDPS VFMADD132PS VFMADD213PS VFMADD231PS
	VFMADDSD VFMADD132SD VFMADD213SD VFMADD231SD
	VFMADDSS VFMADD132SS VFMADD213SS VFMADD231SS
	VFMADDSUBPD VFMADDSUB132PD VFMADDSUB213PD VFMADDSUB231PD
	VFMADDSUBPS VFMADDSUB132PS VFMADDSUB213PS VFMADDSUB231PS
	VFMSUBADDPD VFMSUBADD132PD VFMSUBADD213PD VFMSUBADD231PD
	VFMSUBADDPS VFMSUBADD132PS VFMSUBADD213PS VFMSUBADD231PS
	VFMSUBPD VFMSUB132PD VFMSUB213PD VFMSUB231PD
	VFMSUBPS VFMSUB132PS VFMSUB213PS VFMSUB231PS
	VFMSUBSD VFMSUB132SD VFMSUB213SD VFMSUB231SD
	VFMSUBSS VFMSUB132SS VFMSUB213SS VFMSUB231SS
	VFNMADDPD VFNMADD132PD VFNMADD213PD VFNMADD231PD
	VFNMADDPS VFNMADD132PS VFNMADD213PS VFNMADD231PS
	VFNMADDSD VFNMADD132SD VFNMADD213SD VFNMADD231SD
	VFNMADDSS VFNMADD132SS VFNMADD213SS VFNMADD231SS
	VFNMSUBPD VFNMSUB132PD VFNMSUB213PD VFNMSUB231PD
	VFNMSUBPS VFNMSUB132PS VFNMSUB213PS VFNMSUB231PS
	VFNMSUBSD VFNMSUB132SD VFNMSUB213SD VFNMSUB231SD
	VFNMSUBSS VFNMSUB132SS VFNMSUB213SS VFNMSUB231SS
	VFRCZPD
	VFRCZPS
	VFRCZSD
	VFRCZSS
	VGATHERDPD
	VGATHERDPS
	VGATHERQPD
	VGATHERQPS
	VINSERTF128
	VINSERTI128
	VMASKMOVPD
	VMASKMOVPS
	VPBLENDD
	VPBROADCASTB
	VPBROADCASTD
	VPBROADCASTQ
	VPBROADCASTW
	VPCMOV
	VPCOMB
	VPCOMD
	VPCOMQ
	VPCOMUB
	VPCOMUD
	VPCOMUQ
	VPCOMUW
	VPCOMW
	VPERM2F128
	VPERM2I128
	VPERMD
	VPERMIL2PD
	VPERMIL2PS
	VPERMILPD
	VPERMILPS
	VPERMPD
	VPERMPS
	VPERMQ
	VPGATHERDD
	VPGATHERDQ
	VPGATHERQD
	VPGATHERQQ
	VPHADDBD
	VPHADDBQ
	VPHADDBW
	VPHADDDQ
	VPHADDUBD
	VPHADDUBQ
	VPHADDUBW
	VPHADDUDQ
	VPHADDUWD
	VPHADDUWQ
	VPHADDWD
	VPHADDWQ
	VPHSUBBW
	VPHSUBDQ
	VPHSUBWD
	VPMACSDD
	VPMACSDQH
	VPMACSDQL
	VPMACSSDD
	VPMACSSDQH
	VPMACSSDQL
	VPMACSSWD
	VPMACSSWW
	VPMACSWD
	VPMACSWW
	VPMADCSSWD
	VPMADCSWD
	VPMASKMOVD
	VPMASKMOVQ
	VPPERM
	VPROTB
	VPROTD
	VPROTQ
	VPROTW
	VPSHAB
	VPSHAD
	VPSHAQ
	VPSHAW
	VPSHLB
	VPSHLD
	VPSHLQ
	VPSHLW
	VPSLLVD
	VPSLLVQ
	VPSRAVD
	VPSRLVD
	VPSRLVQ
	VTESTPD
	VTESTPS
	VZEROALL
	VZEROUPPER
	XGETBV
	XORPD VXORPD
	XORPS VXORPS
	XRSTOR
	XRSTORS
	XSAVE
	XSAVEC
	XSAVEOPT
	XSAVES
	XSETBV

	3 Exception Summary
	Appendix A AES Instructions
	A.1 AES Overview
	A.2 Coding Conventions
	A.3 AES Data Structures
	A.4 Algebraic Preliminaries
	A.5 AES Operations
	A.6 Initializing the Sbox and InvSBox Matrices
	A.7 Encryption and Decryption
	A.8 The Cipher Function
	A.9 The InvCipher Function
	A.10 An Alternative Decryption Procedure
	A.11 Computation of GFInv with Euclidean Greatest Common Divisor

	Index

	Volume 5: 64-Bit Media and x87 Floating-Point Instructions (26569)
	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Conventions and Definitions
	Notational Conventions
	Definitions
	Registers
	Endian Order

	Related Documents

	1 64-Bit Media Instruction Reference
	CVTPD2PI
	CVTPI2PD
	CVTPI2PS
	CVTPS2PI
	CVTTPD2PI
	CVTTPS2PI
	EMMS
	FEMMS
	FRSTOR
	FSAVE (FNSAVE)
	FXRSTOR
	FXSAVE
	MASKMOVQ
	MOVD
	MOVDQ2Q
	MOVNTQ
	MOVQ
	MOVQ2DQ
	PACKSSDW
	PACKSSWB
	PACKUSWB
	PADDB
	PADDD
	PADDQ
	PADDSB
	PADDSW
	PADDUSB
	PADDUSW
	PADDW
	PAND
	PANDN
	PAVGB
	PAVGUSB
	PAVGW
	PCMPEQB
	PCMPEQD
	PCMPEQW
	PCMPGTB
	PCMPGTD
	PCMPGTW
	PEXTRW
	PF2ID
	PF2IW
	PFACC
	PFADD
	PFCMPEQ
	PFCMPGE
	PFCMPGT
	PFMAX
	PFMIN
	PFMUL
	PFNACC
	PFPNACC
	PFRCP
	PFRCPIT1
	PFRCPIT2
	PFRSQIT1
	PFRSQRT
	PFSUB
	PFSUBR
	PI2FD
	PI2FW
	PINSRW
	PMADDWD
	PMAXSW
	PMAXUB
	PMINSW
	PMINUB
	PMOVMSKB
	PMULHRW
	PMULHUW
	PMULHW
	PMULLW
	PMULUDQ
	POR
	PSADBW
	PSHUFW
	PSLLD
	PSLLQ
	PSLLW
	PSRAD
	PSRAW
	PSRLD
	PSRLQ
	PSRLW
	PSUBB
	PSUBD
	PSUBQ
	PSUBSB
	PSUBSW
	PSUBUSB
	PSUBUSW
	PSUBW
	PSWAPD
	PUNPCKHBW
	PUNPCKHDQ
	PUNPCKHWD
	PUNPCKLBW
	PUNPCKLDQ
	PUNPCKLWD
	PXOR

	2 x87 Floating-Point Instruction Reference
	F2XM1
	FABS
	FADD FADDP FIADD
	FBLD
	FBSTP
	FCHS
	FCLEX (FNCLEX)
	FCMOVcc
	FCOM FCOMP FCOMPP
	FCOMI FCOMIP
	FCOS
	FDECSTP
	FDIV FDIVP FIDIV
	FDIVR FDIVRP FIDIVR
	FFREE
	FICOM FICOMP
	FILD
	FINCSTP
	FINIT FNINIT
	FIST FISTP
	FISTTP
	FLD
	FLD1
	FLDCW
	FLDENV
	FLDL2E
	FLDL2T
	FLDLG2
	FLDLN2
	FLDPI
	FLDZ
	FMUL FMULP FIMUL
	FNOP
	FPATAN
	FPREM
	FPREM1
	FPTAN
	FRNDINT
	FRSTOR
	FSAVE FNSAVE
	FSCALE
	FSIN
	FSINCOS
	FSQRT
	FST FSTP
	FSTCW (FNSTCW)
	FSTENV (FNSTENV)
	FSTSW (FNSTSW)
	FSUB FSUBP FISUB
	FSUBR FSUBRP FISUBR
	FTST
	FUCOM FUCOMP FUCOMPP
	FUCOMI FUCOMIP
	FWAIT (WAIT)
	FXAM
	FXCH
	FXRSTOR
	FXSAVE
	FXTRACT
	FYL2X
	FYL2XP1

	Appendix A Recommended Substitutions for 3DNow!™ Instructions
	Index

