
Advanced Micro Devices

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 5:
64-Bit Media and

x87 Floating-Point
Instructions

Publication No. Revision Date

26569 3.08 July 2007

AMD64 Technology 26569—Rev. 3.08—July 2007

Trademarks

AMD, the AMD arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, and 3DNow! are trademarks,
and AMD-K6 is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

Windows NT is a registered trademark of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2002–2007 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

Contents i

26569—Rev. 3.08—July 2007 AMD64 Technology

Contents

Revision History . xi

Preface. xiii
About This Book. xiii
Audience . xiii
Contact Information . xiii
Organization . xiii
Definitions . xiv
Related Documents . xxiv

1 64-Bit Media Instruction Reference. .1
CVTPD2PI. 3
CVTPI2PD. 6
CVTPI2PS . 8
CVTPS2PI . 10
CVTTPD2PI . 12
CVTTPS2PI. 15
EMMS . 17
FEMMS . 18
FRSTOR . 20
FSAVE
(FNSAVE) . 22
FXRSTOR . 24
FXSAVE . 26
MASKMOVQ . 28
MOVD . 31
MOVDQ2Q . 34
MOVNTQ . 35
MOVQ . 37
MOVQ2DQ . 39
PACKSSDW . 40
PACKSSWB . 42
PACKUSWB . 44
PADDB . 46
PADDD . 48
PADDQ . 50
PADDSB . 52
PADDSW. 54
PADDUSB . 56
PADDUSW . 58
PADDW . 60
PAND. 62
PANDN . 64
PAVGB. 66
PAVGUSB . 68

ii Contents

AMD64 Technology 26569—Rev. 3.08—July 2007

PAVGW . 70
PCMPEQB. 72
PCMPEQD . 74
PCMPEQW . 76
PCMPGTB. 78
PCMPGTD . 80
PCMPGTW . 82
PEXTRW . 84
PF2ID. 86
PF2IW . 88
PFACC . 90
PFADD. 92
PFCMPEQ . 95
PFCMPGE . 97
PFCMPGT . 100
PFMAX . 102
PFMIN . 104
PFMUL . 106
PFNACC . 108
PFPNACC . 111
PFRCP . 114
PFRCPIT1 . 117
PFRCPIT2 . 120
PFRSQIT1 . 123
PFRSQRT . 126
PFSUB . 129
PFSUBR . 131
PI2FD. 133
PI2FW . 135
PINSRW . 137
PMADDWD . 139
PMAXSW . 141
PMAXUB . 143
PMINSW . 145
PMINUB . 147
PMOVMSKB. 149
PMULHRW . 151
PMULHUW. 153
PMULHW . 155
PMULLW . 157
PMULUDQ . 159
POR . 161
PSADBW. 163
PSHUFW . 165
PSLLD . 168
PSLLQ . 170
PSLLW. 172

Contents iii

26569—Rev. 3.08—July 2007 AMD64 Technology

PSRAD . 174
PSRAW . 176
PSRLD. 178
PSRLQ. 180
PSRLW . 182
PSUBB. 184
PSUBD . 186
PSUBQ . 188
PSUBSB . 190
PSUBSW . 192
PSUBUSB . 194
PSUBUSW . 196
PSUBW . 198
PSWAPD . 200
PUNPCKHBW . 202
PUNPCKHDQ. 204
PUNPCKHWD . 206
PUNPCKLBW. 208
PUNPCKLDQ . 210
PUNPCKLWD. 212
PXOR. 214

2 x87 Floating-Point Instruction Reference .217
F2XM1. 218
FABS . 220
FADD
FADDP
FIADD . 222
FBLD . 225
FBSTP . 227
FCHS . 229
FCLEX
(FNCLEX) . 230
FCMOVcc . 232
FCOM
FCOMP
FCOMPP . 234
FCOMI
FCOMIP . 237
FCOS . 239
FDECSTP . 241
FDIV
FDIVP
FIDIV. 243
FDIVR
FDIVRP
FIDIVR . 246
FFREE . 249

iv Contents

AMD64 Technology 26569—Rev. 3.08—July 2007

FICOM
FICOMP . 250
FILD . 252
FINCSTP . 254
FINIT
FNINIT . 256
FIST
FISTP. 258
FISTTP . 261
FLD . 263
FLD1 . 265
FLDCW . 266
FLDENV . 268
FLDL2E. 270
FLDL2T. 271
FLDLG2 . 272
FLDLN2 . 273
FLDPI . 274
FLDZ . 275
FMUL
FMULP
FIMUL. 276
FNOP . 279
FPATAN. 280
FPREM . 282
FPREM1 . 284
FPTAN . 286
FRNDINT . 288
FRSTOR . 290
FSAVE
FNSAVE . 292
FSCALE . 294
FSIN. 296
FSINCOS. 298
FSQRT . 300
FST
FSTP . 302
FSTCW
(FNSTCW) . 304
FSTENV
(FNSTENV). 306
FSTSW
(FNSTSW). 308
FSUB
FSUBP
FISUB . 310

Contents v

26569—Rev. 3.08—July 2007 AMD64 Technology

FSUBR
FSUBRP
FISUBR . 313
FTST . 316
FUCOM
FUCOMP
FUCOMPP. 317
FUCOMI
FUCOMIP . 319
FWAIT
(WAIT). 321
FXAM . 322
FXCH. 324
FXRSTOR . 325
FXSAVE . 327
FXTRACT . 329
FYL2X. 331
FYL2XP1. 333

Index . 337

vi Contents

AMD64 Technology 26569—Rev. 3.08—July 2007

Figures vii

26569—Rev. 3.08—July 2007 AMD64 Technology

Figures

Figure 1-1. Diagram Conventions for 64-Bit Media Instructions . 1

viii Figures

AMD64 Technology 26569—Rev. 3.08—July 2007

Tables ix

26569—Rev. 3.08—July 2007 AMD64 Technology

Tables

Table 1-1. Immediate-Byte Operand Encoding for 64-Bit PEXTRW . 84

Table 1-2. Numeric Range for PF2ID Results . 86

Table 1-3. Numeric Range for PF2IW Results . 88

Table 1-4. Numeric Range for PFACC Results . 91

Table 1-5. Numeric Range for the PFADD Results . 93

Table 1-6. Numeric Range for the PFCMPEQ Instruction . 96

Table 1-7. Numeric Range for the PFCMPGE Instruction . 98

Table 1-8. Numeric Range for the PFCMPGT Instruction . 101

Table 1-9. Numeric Range for the PFMAX Instruction. 103

Table 1-10. Numeric Range for the PFMIN Instruction . 105

Table 1-11. Numeric Range for the PFMUL Instruction . 107

Table 1-12. Numeric Range of PFNACC Results . 109

Table 1-13. Numeric Range of PFPNACC Result (Low Result) . 112

Table 1-14. Numeric Range of PFPNACC Result (High Result) . 112

Table 1-15. Numeric Range for the PFRCP Result . 115

Table 1-16. Numeric Range for the PFRCP Result . 127

Table 1-17. Numeric Range for the PFSUB Results . 130

Table 1-18. Numeric Range for the PFSUBR Results . 132

Table 1-19. Immediate-Byte Operand Encoding for 64-Bit PINSRW. 137

Table 1-20. Immediate-Byte Operand Encoding for PSHUFW. 166

Table 2-1. Storing Numbers as Integers . 258

Table 2-2. Storing Numbers as Integers . 261

Table 2-3. Computing Arctangent of Numbers . 280

x Tables

AMD64 Technology 26569—Rev. 3.08—July 2007

Revision History xi

26569—Rev. 3.08—July 2007 AMD64 Technology

Revision History

Date Revision Description

July 2007 3.08

Added misaligned access support to applicable instructions.

Deprecated 3DNow!™ instructions. Added Appendix
A, ”Recommended Substitutions for 3DNow!™ Instructions,” on
page 335.
Added minor clarifications and corrected typographical and
formatting errors.

September
2006

3.07
Added minor clarifications and corrected typographical and
formatting errors.

December
2005

3.06
Added minor clarifications and corrected typographical and
formatting errors.

December
2004

3.05
Added FISTTP instruction (SSE3). Updated CPUID information in
exception tables. Corrected several typographical and formatting
errors.

September
2003

3.04
Clarified x87 condition codes for FPREM and FPREM1 instructions.
Corrected tables of numeric ranges for results of PF2ID and PF2IW
instructions.

April 2003 3.03
Corrected numerous typos and stylistic errors. Corrected description
of FYL2XP1 instruction. Clarified the description of the FXRSTOR
instruction.

xii Revision History

AMD64 Technology 26569—Rev. 3.08—July 2007

Preface xiii

26569—Rev. 3.08—July 2007 AMD64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience

This volume (Volume 5) is intended for all programmers writing application or system software for a
processor that implements the x86-64 architecture.

Contact Information

To submit questions or comments concerning this document, contact our technical documentation staff
at AMD64.Feedback@amd.com.

Organization

Volumes 3, 4, and 5 describe the AMD64 architecture’s instruction set in detail. Together, they cover
each instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

• General-purpose instructions

• System instructions

• 128-bit media instructions

• 64-bit media instructions

• x87 floating-point instructions

Several instructions belong to—and are described identically in—multiple instruction subsets.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

xiv Preface

AMD64 Technology 26569—Rev. 3.08—July 2007

This volume describes the 64-bit media and x87 floating-point instructions. The index at the end cross-
references topics within this volume. For other topics relating to the AMD64 architecture, and for
information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents” on page xxiv for descriptions of the legacy x86 architecture.

Terms and Notation

In addition to the notation described below, “Opcode-Syntax Notation” in Volume 3 describes notation
relating specifically to opcodes.

1011b
A binary value—in this example, a 4-bit value.

F0EAh
A hexadecimal value—in this example a 2-byte value.

[1,2)
A range that includes the left-most value (in this case, 1) but excludes the right-most value (in this
case, 2).

7–4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

128-bit media instructions
Instructions that use the 128-bit XMM registers. These are a combination of the SSE and SSE2
instruction sets.

64-bit media instructions
Instructions that use the 64-bit MMX registers. These are primarily a combination of MMX™ and
3DNow!™ instruction sets, with some additional instructions from the SSE and SSE2 instruction
sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

Preface xv

26569—Rev. 3.08—July 2007 AMD64 Technology

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP) with error code of 0.

absolute
Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

ASID
Address space identifier.

biased exponent
The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

CR0–CR4
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0.PE = 1
Notation indicating that the PE bit of the CR0 register has a value of 1.

direct
Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

xvi Preface

AMD64 Technology 26569—Rev. 3.08—July 2007

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement
A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI
The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER.LME = 0
Notation indicating that the LME bit of the EFER register has a value of 0.

effective address size
The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

FF /0
Notation indicating that FF is the first byte of an opcode, and a subfield in the second byte has a
value of 0.

Preface xvii

26569—Rev. 3.08—July 2007 AMD64 Technology

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on page xxiv for descriptions of the legacy
x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

long mode
An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

xviii Preface

AMD64 Technology 26569—Rev. 3.08—July 2007

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory
Unless otherwise specified, main memory.

ModRM
A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
A combination of 128-bit media instructions and 64-bit media instructions.

octword
Same as double quadword.

offset
Same as displacement.

Preface xix

26569—Rev. 3.08—July 2007 AMD64 Technology

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ or IGN (see definitions).

Software must not depend on the state of a reserved field, nor upon the ability of such fields to
return to a previously written state.

If a reserved field is not marked with one of the above qualifiers, software must not change the state
of that field; it must reload that field with the same values returned from a prior read.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

xx Preface

AMD64 Technology 26569—Rev. 3.08—July 2007

REX
An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD
Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3
Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SIMD (single-instruction multiple-data) operands.

Preface xxi

26569—Rev. 3.08—July 2007 AMD64 Technology

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

xxii Preface

AMD64 Technology 26569—Rev. 3.08—July 2007

EBP
Extended base pointer register.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

Preface xxiii

26569—Rev. 3.08—July 2007 AMD64 Technology

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

xxiv Preface

AMD64 Technology 26569—Rev. 3.08—July 2007

SS
Stack segment register.

TPR
Task priority register (CR8), a new register introduced in the AMD64 architecture to speed
interrupt management.

TR
Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.

• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

• AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.

• AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

• AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.

• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.

• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Preface xxv

26569—Rev. 3.08—July 2007 AMD64 Technology

• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.

xxvi Preface

AMD64 Technology 26569—Rev. 3.08—July 2007

• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium III,
www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.

• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.

• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.

• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.

• Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

Instruction Reference 1

26569—Rev. 3.08—July 2007 AMD64 Technology

1 64-Bit Media Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the 64-bit media instructions. These instructions operate on data located in the
64-bit MMX registers. Most of the instructions operate in parallel on sets of packed elements called
vectors, although some operate on scalars. The instructions define both integer and floating-point
operations, and include the legacy MMX™ instructions, the 3DNow!™ instructions, and the AMD
extensions to the MMX and 3DNow! instruction sets.

Each instruction that performs a vector (packed) operation is illustrated with a diagram. Figure 1-1 on
page 1 shows the conventions used in these diagrams. The particular diagram shows the PSLLW
(packed shift left logical words) instruction.

Figure 1-1. Diagram Conventions for 64-Bit Media Instructions

Gray areas in diagrams indicate unmodified operand bits.

shift left

mmx1 mmx2/mem64

shift left

. .

. .
63 04748 15163132

. .

63 04748 15163132

513-324.eps

Ellipses indicate that the operation
is repeated for each element of the
source vectors. In this case, there are
4 elements in each source vector, so
the operation is performed 4 times,
in parallel.

Arrowheads coming from a source operand
indicate that the source operand provides
a control function. In this case, the second
source operand specifies the number of bits
to shift, and the first source operand specifies
the data to be shifted.

Arrowheads going to a source operand
indicate the writing of the result. In this
case, the result is written to the first source
operand, which is also the destination operand.

First Source Operand
(and Destination Operand) Second Source Operand

Operation. In this case,
a bitwise shift-left.

File name of
this figure (for
documentation
control)

2 Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Like the 128-bit media instructions, many of the 64-bit instructions independently and simultaneously
perform a single operation on multiple elements of a vector and are thus classified as single-
instruction, multiple-data (SIMD) instructions. A few 64-bit media instructions convert operands in
MMX registers to operands in GPR, XMM, or x87 registers (or vice versa), or save or restore MMX
state, or reset x87state.

Hardware support for a specific 64-bit media instruction depends on the presence of at least one of the
following CPUID functions:

• MMX Instructions, indicated by bit 23 of CPUID function 0000_0001h and function 8000_0001h.

• AMD Extensions to MMX Instructions, indicated by bit 22 of CPUID function 8000_0001h.

• SSE, indicated by bit 25 of CPUID function 0000_0001h.

• SSE2, indicated by bit 26 of CPUID function 0000_0001h.

• AMD 3DNow! Instructions, indicated by bit 31 of CPUID function 8000_0001h.

• AMD Extensions to 3DNow! Instructions, indicated by bit 30 of CPUID function 8000_0001h.

• FXSAVE and FXRSTOR, indicated by bit 24 of CPUID function 0000_0001h and function
8000_0001h.

The 64-bit media instructions can be used in legacy mode or long mode. Their use in long mode is
available if the following CPUID function is set:

• Long Mode, indicated by bit 29 of CPUID function 8000_0001h.

Compilation of 64-bit media programs for execution in 64-bit mode offers four primary advantages:
access to the eight extended, 64-bit general-purpose registers (for a register set consisting of
GPR0–GPR15), access to the eight extended XMM registers (for a register set consisting of
XMM0–XMM15), access to the 64-bit virtual address space, and access to the RIP-relative addressing
mode.

For further information, see:

• “64-Bit Media Programming” in Volume 1.

• “Summary of Registers and Data Types” in Volume 3.

• “Notation” in Volume 3.

• “Instruction Prefixes” in Volume 3.

Instruction Reference CVTPD2PI 3

26569—Rev. 3.08—July 2007 AMD64 Technology

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed 32-bit signed integer values and writes the converted values in an MMX
register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPD2PI instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.) Support for misaligned 16-byte memory accesses is
indicated by CPUID feature bit ECX[7] of function 8000_0001h.

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

CVTPD2PI Convert Packed Double-Precision Floating-Point to
Packed Doubleword Integers

Mnemonic Opcode Description

CVTPD2PI mmx, xmm2/mem128 66 0F 2D /r

Converts packed double-precision floating-point
values in an XMM register or 128-bit memory location
to packed doubleword integers values in the
destination MMX register.

cvtpd2pi.eps

127 63 0643132

xmm/mem128mmx

convert
convert

63 0

4 CVTPD2PI Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM = 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM = 1.

x87 floating-point
exception pending, #MF X X X An exception is pending due to an x87 floating-point

instruction.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

Instruction Reference CVTPD2PI 5

26569—Rev. 3.08—July 2007 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

6 CVTPI2PD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit memory location to
two double-precision floating-point values and writes the converted values in an XMM register.

The CVTPI2PD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

None

CVTPI2PD Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point

Mnemonic Opcode Description

CVTPI2PD xmm, mmx/mem64 66 0F 2A /r

Converts two packed doubleword integer values in an
MMX register or 64-bit memory location to two packed
double-precision floating-point values in the destination
XMM register.

cvtpi2pd.eps

127 63 064 3132

mmx/mem64xmm

convert
convert

63 0

Instruction Reference CVTPI2PD 7

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed
while alignment checking was enabled.

8 CVTPI2PS Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit memory location to
two single-precision floating-point values and writes the converted values in the low-order 64 bits of
an XMM register. The high-order 64 bits of the XMM register are not modified.

The CVTPI2PS instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

MXCSR Flags Affected

CVTPI2PS Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point

Mnemonic Opcode Description

CVTPI2PS xmm, mmx/mem64 0F 2A /r
Converts packed doubleword integer values in an MMX
register or 64-bit memory location to single-precision
floating-point values in the destination XMM register.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

cvtpi2ps.eps

3132

mmx/mem64xmm

convert
convert

63 0127 63 064 3132

Instruction Reference CVTPI2PS 9

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

10 CVTPS2PI Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts two packed single-precision floating-point values in the low-order 64 bits of an XMM
register or a 64-bit memory location to two packed 32-bit signed integers and writes the converted
values in an MMX register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPS2PI instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTSI2SS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

CVTPS2PI Convert Packed Single-Precision Floating-Point to
Packed Doubleword Integers

Mnemonic Opcode Description

CVTPS2PI mmx,
xmm/mem64 0F 2D /r

Converts packed single-precision floating-point values in an
XMM register or 64-bit memory location to packed
doubleword integers in the destination MMX register.

cvtps2pi.eps

xmm/mem64mmx

convert
convert

127 63 064 3132313263 0

Instruction Reference CVTPS2PI 11

26569—Rev. 3.08—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed
while alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

12 CVTTPD2PI Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed 32-bit signed integer values and writes the converted values in an MMX
register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPD2PI instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.) Support for misaligned 16-byte memory accesses is
indicated by CPUID feature bit ECX[7] of function 8000_0001h.

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ,
CVTTSD2SI

rFLAGS Affected

None

CVTTPD2PI Convert Packed Double-Precision Floating-Point to
Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPD2PI mmx, xmm/mem128 66 0F 2C /r

Converts packed double-precision floating-point
values in an XMM register or 128-bit memory location
to packed doubleword integer values in the
destination MMX register. Inexact results are
truncated.

cvttpd2pi.eps

127 63 0643132

xmm/mem128mmx

convert
convert

63 0

Instruction Reference CVTTPD2PI 13

26569—Rev. 3.08—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM = 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM = 1.

x87 floating-point
exception pending, #MF X X X An exception is pending due to an x87 floating-point

instruction.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

14 CVTTPD2PI Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN value,
or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference CVTTPS2PI 15

26569—Rev. 3.08—July 2007 AMD64 Technology

Converts two packed single-precision floating-point values in the low-order 64 bits of an XMM
register or a 64-bit memory location to two packed 32-bit signed integer values and writes the
converted values in an MMX register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPS2PI instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ,
CVTTSS2SI

rFLAGS Affected

None

CVTTPS2PI Convert Packed Single-Precision Floating-Point to
Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPS2PI mmx, xmm/mem64 0F 2C /r

Converts packed single-precision floating-point values in
an XMM register or 64-bit memory location to doubleword
integer values in the destination MMX register. Inexact
results are truncated.

cvttps2pi.eps

xmm/mem64mmx

convert
convert

127 63 064 3132313263 0

16 CVTTPS2PI Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN value,
or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Instruction Reference EMMS 17

26569—Rev. 3.08—July 2007 AMD64 Technology

Clears the MMX state by setting the state of the x87 stack registers to empty (tag-bit encoding of all 1s
for all MMX registers) indicating that the contents of the registers are available for a new procedure,
such as an x87 floating-point procedure. This setting of the tag bits is referred to as “clearing the MMX
state”.

Because the MMX registers and tag word are shared with the x87 floating-point instructions, software
should execute an EMMS instruction to clear the MMX state before executing code that includes x87
floating-point instructions.

The functions of the EMMS and FEMMS instructions are identical.

For details about the setting of x87 tag bits, see “Media and x87 Processor State” in Volume 2.

The EMMS instruction is an MMX™ instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

FEMMS (a 3DNow! instruction)

rFLAGS Affected

None

Exceptions

EMMS Exit Multimedia State

Mnemonic Opcode Description

EMMS 0F 77 Clears the MMX state.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

18 FEMMS Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Clears the MMX state by setting the state of the x87 stack registers to empty (tag-bit encoding of all 1s
for all MMX registers) indicating that the contents of the registers are available for a new procedure,
such as an x87 floating-point procedure. This setting of the tag bits is referred to as “clearing the MMX
state”.

Because the MMX registers and tag word are shared with the x87 floating-point instructions, software
should execute an EMMS or FEMMS instruction to clear the MMX state before executing code that
includes x87 floating-point instructions.

FEMMS is a 3DNow! instruction. The functions of the FEMMS and EMMS instructions are identical.
The FEMMS instruction is supported for backward-compatibility with certain AMD processors.
Software that must be both compatible with both AMD and non-AMD processors should use the
EMMS instruction. Check the status of EDX bit 31 returned by CPUID function 8000_0001h to verify
that the processor supports this function. (See “CPUID” in Volume 3.)

For details about the setting of x87 tag bits, see “Media and x87 Processor State” in Volume 2.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

EMMS

Related Instructions

EMMS

rFLAGS Affected

None

Exceptions

FEMMS Fast Exit Multimedia State

Mnemonic Opcode Description

FEMMS 0F 0E Clears MMX state.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not
supported, as indicated by EDX bit 31 in CPUID
function 8000_0001h.

Instruction Reference FEMMS 19

26569—Rev. 3.08—July 2007 AMD64 Technology

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point exception
pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Exception Real
Virtual
8086 Protected Cause of Exception

20 FRSTOR Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Restores the complete x87 state from memory starting at the specified address, as stored by a previous
call to FNSAVE. The x87 state occupies 94 or 108 bytes of memory depending on whether the
processor is operating in real or protected mode and whether the operand-size attribute is 16-bit or 32-
bit. Because the MMX registers are mapped onto the low 64 bits of the x87 floating-point registers,
this operation also restores the MMX state.

If FRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or FNCLEX
instruction to clear the exception flags in the x87 status word before storing that environment.

For details about the memory image restored by FRSTOR, see “Media and x87 Processor State” in
Volume 2.

Related Instructions

FSAVE, FNSAVE, FXSAVE, FXRSTOR

rFLAGS Affected

None

x87 Condition Code

FRSTOR Floating-Point Restore x87 and MMX™ State

Mnemonic Opcode Description

FRSTOR
mem94/108env DD /4 Load the x87 state from mem94/108env.

x87 Condition Code Value Description

C0 M Loaded from memory.

C1 M Loaded from memory.

C2 M Loaded from memory.

C3 M Loaded from memory.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FRSTOR 21

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

22 FSAVE (FNSAVE) Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Stores the complete x87 state to memory starting at the specified address and reinitializes the x87 state.
The x87 state requires 94 or 108 bytes of memory, depending upon whether the processor is operating
in real or protected mode and whether the operand-size attribute is 16-bit or 32-bit. Because the MMX
registers are mapped onto the low 64 bits of the x87 floating-point registers, this operation also saves
the MMX state. For details about the memory image saved by FNSAVE, see “Media and x87
Processor State” in Volume 2.

The FNSAVE instruction does not wait for pending unmasked x87 floating-point exceptions to be
processed. Processor interrupts should be disabled before using this instruction.

Assemblers usually provide an FSAVE macro that expands into the instruction sequence:

WAIT ; Opcode 9B
FNSAVE destination ; Opcode DD /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNSAVE instruction then stores the x87 state to the specified destination.

Related Instructions

FRSTOR, FXSAVE, FXRSTOR

rFLAGS Affected

None

x87 Condition Code

FSAVE
(FNSAVE)

Floating-Point Save x87 and MMX State

Mnemonic Opcode Description

FNSAVE
mem94/108env DD /6

Copy the x87 state to mem94/108env without checking for
pending floating-point exceptions, then reinitialize the x87
state.

FSAVE mem94/108env 9B DD /6
Copy the x87 state to mem94/108env after checking for
pending floating-point exceptions, then reinitialize the x87
state.

x87 Condition Code Value Description

C0 0

C1 0

C2 0

C3 0

Instruction Reference FSAVE (FNSAVE) 23

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

24 FXRSTOR Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Restores the XMM, MMX, and x87 state. The data loaded from memory is the state information
previously saved using the FXSAVE instruction. Restoring data with FXRSTOR that had been
previously saved with an FSAVE (rather than FXSAVE) instruction results in an incorrect restoration.

If FXRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

If the restored MXCSR register contains a set bit in an exception status flag, and the corresponding
exception mask bit is cleared (indicating an unmasked exception), loading the MXCSR register does
not cause a SIMD floating-point exception (#XF).

FXRSTOR does not restore the x87 error pointers (last instruction pointer, last data pointer, and last
opcode), except in the relatively rare cases in which the exception-summary (ES) bit in the x87 status
word is set to 1, indicating that an unmasked x87 exception has occurred.

The architecture supports two 512-bit memory formats for FXRSTOR, a 64-bit format that loads
XMM0-XMM15, and a 32-bit legacy format that loads only XMM0-XMM7. If FXRSTOR is executed
in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-bit format
is used, if the operand-size is 64-bit, FXRSTOR loads the x87 pointer registers as offset64, otherwise it
loads them as sel:offset32. For details about the memory format used by FXRSTOR, see "Saving
Media and x87 Processor State" in Volume 2. For details about the memory image restored by
FXRSTOR, see “Saving Media and x87 Processor State” in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXRSTOR does not restore the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is restored
whether fast-FXSAVE/FXRSTOR is enabled or not. Software can check EDX bit 24 returned by
CPUID function 0000_0001h or function 8000_0001h to determine whether the fast-
FXSAVE/FXRSTOR feature is available. (See “CPUID” in Volume 3.)

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, the saved
image of XMM0–XMM15 and MXCSR is not loaded into the processor. A general-protection
exception occurs if the FXRSTOR instruction attempts to load non-zero values into reserved MXCSR
bits. Software can use MXCSR_MASK to determine which bits of MXCSR are reserved. For details
on the MXCSR_MASK, see “128-Bit, 64-Bit, and x87 Programming” in Volume 2.
.

Related Instructions

FWAIT, FXSAVE

FXRSTOR Restore XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXRSTOR mem512env 0F AE /1 Restores XMM, MMX™, and x87 state from 512-byte
memory location.

Instruction Reference FXRSTOR 25

26569—Rev. 3.08—July 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank. Shaded fields are reserved.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The FXSAVE/FXRSTOR instructions are not
supported, as indicated by EDX bit 24 of CPUID
function 0000_0001h or function 8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit,
or was non-canonical.

General protection, #GP

X X X A memory address exceeded the data segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary.

X X X Ones were written to the reserved bits in MXCSR.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

26 FXSAVE Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Saves the XMM, MMX, and x87 state. A memory location that is not aligned on a 16-byte boundary
causes a general-protection exception.

Unlike FSAVE and FNSAVE, FXSAVE does not alter the x87 tag bits. The contents of the saved
MMX/x87 data registers are retained, thus indicating that the registers may be valid (or whatever other
value the x87 tag bits indicated prior to the save). To invalidate the contents of the MMX/x87 data
registers after FXSAVE, software must execute an FINIT instruction. Also, FXSAVE (like FNSAVE)
does not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction can be
used for this purpose.

FXSAVE does not save the x87 pointer registers (last instruction pointer, last data pointer, and last
opcode), except in the relatively rare cases in which the exception-summary (ES) bit in the x87 status
word is set to 1, indicating that an unmasked x87 exception has occurred.

The architecture supports two 512-bit memory formats for FXSAVE, a 64-bit format that saves
XMM0-XMM15, and a 32-bit legacy format that saves only XMM0-XMM7. If FXSAVE is executed
in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-bit format is
used, if the operand-size is 64-bit, FXSAVE saves the x87 pointer registers as offset64, otherwise it
saves them as sel:offset32. For more details about the memory format used by FXSAVE, see “Saving
Media and x87 Processor State” in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE does not save the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is saved whether
fast-FXSAVE/FXRSTOR is enabled or not. Software can check EDX bit 24 returned by CPUID
function 0000_0001h or function 8000_0001h to determine whether the fast-FXSAVE/FXRSTOR
feature is available. (See “CPUID” in Volume 3.)

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, FXSAVE
does not save the image of XMM0–XMM15 or MXCSR. For details about the CR4.OSFXSR bit, see
“FXSAVE/FXRSTOR Support (OSFXSR) Bit” in Volume 2.

Related Instructions

FINIT, FNSAVE, FRSTOR, FSAVE, FXRSTOR, LDMXCSR, STMXCSR

rFLAGS Affected

None

FXSAVE Save XMM, MMX, and x87 State

Mnemonic Opcode Description

FXSAVE mem512env 0F AE /0 Saves XMM, MMX, and x87 state to 512-byte memory
location.

Instruction Reference FXSAVE 27

26569—Rev. 3.08—July 2007 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The FXSAVE/FXRSTOR instructions are not
supported, as indicated by bit 24 of CPUID function
0000_0001h or function 8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit,
or was non-canonical.

General protection, #GP

X X X A memory address exceeded the data segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

28 MASKMOVQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Stores bytes from the first source operand, as selected by the second source operand, to a memory
location specified in the DS:rDI registers (except that DS is ignored in 64-bit mode). The first source
operand is an MMX register, and the second source operand is another MMX register. The most-
significant bit (msb) of each byte in the second source operand specifies the store (1 = store, 0 = no
store) of the corresponding byte of the first source operand.

A mask value of all 0s results in the following behavior:

• No data is written to memory.

• Page faults and exceptions associated with memory addressing are not guaranteed to be generated
in all implementations.

• Data breakpoints are not guaranteed to be generated in all implementations (although code
breakpoints are guaranteed).

MASKMOVQ implicitly uses weakly-ordered, write-combining buffering for the data, as described in
“Buffering and Combining Memory Writes” in Volume 2. If the stored data is shared by multiple
processors, this instruction should be used together with a fence instruction in order to ensure data
coherency (refer to “Cache and TLB Management” in Volume 2).

The MASKMOVQ instruction is an AMD extension to MMX™ instruction set and is an SSE
instruction. The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in
Volume 3.)

MASKMOVQ Masked Move Quadword

Mnemonic Opcode Description

MASKMOVQ mmx1, mmx2 0F F7 /r
Store bytes from an MMX register, selected by the most-
significant bit of the corresponding byte in another MMX
register, to DS:rDI.

Instruction Reference MASKMOVQ 29

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

MASKMOVDQU

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and the
AMD extensions to the MMX™ instruction set are not
supported, as indicated by EDX bit 22 of CPUID
function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

select

maskmovq.eps

select

store address
Memory

DS:rDI

mmx1 mmx2

.

63 0

.

.

015233139475563 7

30 MASKMOVQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference MOVD 31

26569—Rev. 3.08—July 2007 AMD64 Technology

Moves a 32-bit or 64-bit value in one of the following ways:

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 or 64 bits
of an XMM register, with zero-extension to 128 bits

• from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose register or
memory location

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 bits (with
zero-extension to 64 bits) or the full 64 bits of an MMX register

• from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit general-purpose
register or memory location.

The MOVD instruction is a member of both the MMX and the SSE2 instruction sets. The presence of
this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

The following diagrams illustrate the operation of the MOVD instruction.

MOVD Move Doubleword or Quadword

Mnemonic Opcode Description

MOVD mmx, reg/mem32 0F 6E /r Move 32-bit value from a general-purpose register or
32-bit memory location to an MMX register.

MOVD mmx, reg/mem64 0F 6E /r Move 64-bit value from a general-purpose register or
64-bit memory location to an MMX register.

MOVD reg/mem32, mmx 0F 7E /r Move 32-bit value from an MMX register to a 32-bit
general-purpose register or memory location.

MOVD reg/mem64, mmx 0F 7E /r Move 64-bit value from an MMX register to a 64-bit
general-purpose register or memory location.

32 MOVD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

movd.eps

with REX prefix

All operations
are "copy"

with REX prefix

reg/mem64xmm

63 0

63 0

127 63 064

127 63 064

reg/mem64 xmm

0

031

reg/mem32xmm

reg/mem32 xmm

127 0313231 0

127 31 032

0

0

reg/mem64mmx

reg/mem64 mmx

0

with REX prefix

with REX prefix

63 063 0

63 063 0

0310

reg/mem32mmx

reg/mem32 mmx

31 0

313263 0

313263 0

0

Instruction Reference MOVD 33

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Description

Invalid opcode, #UD

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 of CPUID function
0000_0001h.

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The instruction used XMM registers while
CR4.OSFXSR=0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X The destination operand was in a non-writable
segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

34 MOVDQ2Q Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Moves the low-order 64-bit value in an XMM register to a 64-bit MMX register.

The MOVDQ2Q instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

MOVDQ2Q Move Quadword to Quadword

Mnemonic Opcode Description

MOVDQ2Q mmx, xmm F2 0F D6 /r Moves low-order 64-bit value from an XMM register to the
destination MMX register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X The emulate bit (EM) of CR0 was set to 1.

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 in CPUID function 0000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

General protection,
#GP X X X The destination operand was in non-writable segment.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

movdq2q.eps

mmx xmm

copy

63 0 127 63 064

Instruction Reference MOVNTQ 35

26569—Rev. 3.08—July 2007 AMD64 Technology

Stores a 64-bit MMX register value into a 64-bit memory location. This instruction indicates to the
processor that the data is non-temporal, and is unlikely to be used again soon. The processor treats the
store as a write-combining (WC) memory write, which minimizes cache pollution. The exact method
by which cache pollution is minimized depends on the hardware implementation of the instruction. For
further information, see “Memory Optimization” in Volume 1.

MOVNTQ is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE instruction to force strong memory ordering of MOVNTQ with respect to
other stores.

MOVNTQ implicitly uses weakly-ordered, write-combining buffering for the data, as described in
“Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple
processors, this instruction should be used together with a fence instruction in order to ensure data
coherency (refer to “Cache and TLB Management” in Volume 2).

The MOVD instruction is a member of both the AMD MMX extensions and the SSE instruction sets.
The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS

MOVNTQ Move Non-Temporal Quadword

Mnemonic Opcode Description

MOVNTQ mem64, mmx 0F E7 /r Stores a 64-bit MMX register value into a 64-bit memory
location, minimizing cache pollution.

movntq.eps

0

mmxmem64

copy

63 063

36 MOVNTQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and the
AMD extensions to the MMX™ instruction set are not
supported, as indicated by EDX bit 22 of CPUID
function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X The destination operand was in a non-writable
segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference MOVQ 37

26569—Rev. 3.08—July 2007 AMD64 Technology

Moves a 64-bit value:

• from an MMX register or 64-bit memory location to another MMX register, or

• from an MMX register to another MMX register or 64-bit memory location.

The MOVQ instruction is an MMX™ instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ2DQ

rFLAGS Affected

None

MOVQ Move Quadword

Mnemonic Opcode Description

MOVQ mmx1, mmx2/mem64 0F 6F /r Moves 64-bit value from an MMX register or memory
location to an MMX register.

MOVQ mmx1/mem64, mmx2 0F 7F /r Moves 64-bit value from an MMX register to an MMX
register or memory location.

movq-64.eps

copy

mmx1 mmx2/mem64

0 63 063 0

copy

mmx1/mem64 mmx2

0 63 063 0

38 MOVQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by bit 23 in CPUID function 0000_0001h or
function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeds the stack segment limit or
is non-canonical.

General protection,
#GP

X X X A memory address exceeded the stack segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference MOVQ2DQ 39

26569—Rev. 3.08—July 2007 AMD64 Technology

Moves a 64-bit value from an MMX register to the low-order 64 bits of an XMM register, with zero-
extension to 128 bits.

The MOVQ2DQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

MOVQ2DQ Move Quadword to Quadword

Mnemonic Opcode Description

MOVQ2DQ xmm, mmx F3 0F D6 /r Moves 64-bit value from an MMX register to an XMM register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X The SSE2 instructions are not supported, as indicated
by bit 26 in CPUID function 0000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

127 63 064

xmm mmx

copy

63 0

movq2dq.eps

0

40 PACKSSDW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts each 32-bit signed integer in the first and second source operands to a 16-bit signed integer
and packs the converted values into words in the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit memory
location.

Converted values from the first source operand are packed into the low-order words of the destination,
and the converted values from the second source operand are packed into the high-order words of the
destination.

For each packed value in the destination, if the value is larger than the largest signed 16-bit integer, it is
saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.

The PACKSSDW instruction is an MMX™ instruction. The presence of this instruction set is
indicated by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PACKSSWB, PACKUSWB

PACKSSDW Pack with Saturation Signed Doubleword to Word

Mnemonic Opcode Description

PACKSSDW mmx1, mmx2/mem64 0F 6B /r

Packs 32-bit signed integers in an MMX register
and another MMX register or 64-bit memory
location into 16-bit signed integers in an MMX
register.

packssdw-64.eps

convertconvert convert convert

63 04748 15163132

mmx1 mmx2/mem64

63 0313263 03132

Instruction Reference PACKSSDW 41

26569—Rev. 3.08—July 2007 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

42 PACKSSWB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts each 16-bit signed integer in the first and second source operands to an 8-bit signed integer
and packs the converted values into bytes in the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit memory
location.

Converted values from the first source operand are packed into the low-order bytes of the destination,
and the converted values from the second source operand are packed into the high-order bytes of the
destination.

For each packed value in the destination, if the value is larger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to 80h.

The PACKSSWB instruction is an MMX instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PACKSSDW, PACKUSWB

rFLAGS Affected

None

PACKSSWB Pack with Saturation Signed Word to Byte

Mnemonic Opcode Description

PACKSSWB mmx1, mmx2/mem64 0F 63 /r

Packs 16-bit signed integers in an MMX register
and another MMX register or 64-bit memory
location into 8-bit signed integers in an MMX
register.

packsswb-64.eps

. .. .

....

63 03132

convertconvert convert convert

mmx1 mmx2/mem64

63 031324748 151663 031324748 1516

Instruction Reference PACKSSWB 43

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

44 PACKUSWB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts each 16-bit signed integer in the first and second source operands to an 8-bit unsigned integer
and packs the converted values into bytes in the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit memory
location.

Converted values from the first source operand are packed into the low-order bytes of the destination,
and the converted values from the second source operand are packed into the high-order bytes of the
destination.

For each packed value in the destination, if the value is larger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

The PACKUSWB instruction is an MMX™ instruction. The presence of this instruction set is
indicated by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PACKSSDW, PACKSSWB

PACKUSWB Pack with Saturation Signed Word to Unsigned
Byte

Mnemonic Opcode Description

PACKUSWB mmx1, mmx2/mem64 0F 67 /r

Packs 16-bit signed integers in an MMX register
and another MMX register or 64-bit memory
location into 8-bit unsigned integers in an MMX
register.

63 031324748 151663 031324748 1516

. .. .

....

63 03132

convertconvert convert convert

mmx1 mmx2/mem64

packuswb-64.eps

Instruction Reference PACKUSWB 45

26569—Rev. 3.08—July 2007 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

46 PADDB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds each packed 8-bit integer value in the first source operand to the corresponding packed 8-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
byte of the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The PADDB instruction operates on both signed and unsigned integers. If the result overflows, the
carry is ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of
each result are written in the destination.

The PADDB instruction is an MMX™ instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDB Packed Add Bytes

Mnemonic Opcode Description

PADDB mmx1, mmx2/mem64 0F FC /r
Adds packed byte integer values in an MMX register
and another MMX register or 64-bit memory location
and writes the result in the destination MMX register.

paddb-64.eps

add

63 0 63 0

mmx1 mmx2/mem64

add

.

.

.

Instruction Reference PADDB 47

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

48 PADDD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds each packed 32-bit integer value in the first source operand to the corresponding packed 32-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
doubleword of the destination (first source). The first source/destination operand is an MMX register
and the second source operand is another MMX register or 64-bit memory location.

The PADDD instruction operates on both signed and unsigned integers. If the result overflows, the
carry is ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of
each result are written in the destination.

The PADDD instruction is an MMX™ instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PADDB, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDD Packed Add Doublewords

Mnemonic Opcode Description

PADDD mmx1, mmx2/mem64 0F FE /r
Adds packed 32-bit integer values in an MMX register
and another MMX register or 64-bit memory location and
writes the result in the destination MMX register.

paddd-64.eps

add

mmx1 mmx2/mem64

add

63 0313263 03132

Instruction Reference PADDD 49

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

50 PADDQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds each packed 64-bit integer value in the first source operand to the corresponding packed 64-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
quadword of the destination (first source). The first source/destination operand is an MMX register
and the second source operand is another MMX register or 64-bit memory location.

The PADDQ instruction operates on both signed and unsigned integers. If the result overflows, the
carry is ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of
each result are written in the destination.

The PADDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PADDB, PADDD, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDQ Packed Add Quadwords

Mnemonic Opcode Description

PADDQ mmx1, mmx2/mem64 0F D4 /r
Adds 64-bit integer value in an MMX register and
another MMX register or 64-bit memory location and
writes the result in the destination MMX register.

paddq-64.eps

mmx1 mmx2/mem64

add

63 063 0

Instruction Reference PADDQ 51

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

52 PADDSB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds each packed 8-bit signed integer value in the first source operand to the corresponding packed 8-
bit signed integer in the second source operand and writes the signed integer result of each addition in
the corresponding byte of the destination (first source). The first source/destination operand is an
MMX register and the second source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest representable signed 8-
bit integer, it is saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is
saturated to 80h.

The PADDSB instruction is an MMX™ instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PADDB, PADDD, PADDQ, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDSB Packed Add Signed with Saturation Bytes

Mnemonic Opcode Description

PADDSB mmx1, mmx2/mem64 0F EC /r

Adds packed byte signed integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

saturate
saturate

paddsb-64.eps

add

63 0 63 0

mmx1 mmx2/mem64

add

.

.

.

Instruction Reference PADDSB 53

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

54 PADDSW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds each packed 16-bit signed integer value in the first source operand to the corresponding packed
16-bit signed integer in the second source operand and writes the signed integer result of each addition
in the corresponding word of the destination (first source). The first source/destination operand is an
MMX register and the second source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest representable signed 16-
bit integer, it is saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it
is saturated to 8000h.

The PADDSW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDSW Packed Add Signed with Saturation Words

Mnemonic Opcode Description

PADDSW mmx1, mmx2/mem64 0F ED /r

Adds packed 16-bit signed integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

add

add

saturate

saturate

paddsw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

Instruction Reference PADDSW 55

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

56 PADDUSB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds each packed 8-bit unsigned integer value in the first source operand to the corresponding packed
8-bit unsigned integer in the second source operand and writes the unsigned integer result of each
addition in the corresponding byte of the destination (first source). The first source/destination operand
is an MMX register and the second source operand is another MMX register or 64-bit memory
location.

For each packed value in the destination, if the value is larger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

The PADDUSB instruction is an MMX™ instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSW, PADDW

rFLAGS Affected

None

PADDUSB Packed Add Unsigned with Saturation Bytes

Mnemonic Opcode Description

PADDUSB mmx1, mmx2/mem64 0F DC /r

Adds packed byte unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the
destination MMX register.

saturate

saturate

paddusb-64.eps

add

63 0 63 0

mmx1 mmx2/mem64

add

.

.

.

Instruction Reference PADDUSB 57

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

58 PADDUSW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds each packed 16-bit unsigned integer value in the first source operand to the corresponding
packed 16-bit unsigned integer in the second source operand and writes the unsigned integer result of
each addition in the corresponding word of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit memory
location.

For each packed value in the destination, if the value is larger than the largest unsigned 16-bit integer,
it is saturated to FFFFh, and if the value is smaller than the smallest unsigned 16-bit integer, it is
saturated to 0000h.

The PADDUSW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDW

rFLAGS Affected

None

PADDUSW Packed Add Unsigned with Saturation Words

Mnemonic Opcode Description

PADDUSW mmx1, mmx2/mem64 0F DD /r

Adds packed 16-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes result in the destination
MMX register.

add

add

saturate
saturate

paddusw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

Instruction Reference PADDUSW 59

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

60 PADDW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds each packed 16-bit integer value in the first source operand to the corresponding packed 16-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
word of the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of the
result are written in the destination.

The PADDW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW

rFLAGS Affected

None

PADDW Packed Add Words

Mnemonic Opcode Description

PADDW mmx1, mmx2/mem64 0F FD /r
Adds packed 16-bit integer values in an MMX register
and another MMX register or 64-bit memory location
and writes the result in the destination MMX register.

paddw-64.eps

add

add

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

Instruction Reference PADDW 61

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

62 PAND Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Performs a bitwise logical AND of the values in the first and second source operands and writes the
result in the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The PAND instruction is an MMX™ instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PANDN, POR, PXOR

rFLAGS Affected

None

PAND Packed Logical Bitwise AND

Mnemonic Opcode Description

PAND mmx1, mmx2/mem64 0F DB /r

Performs bitwise logical AND of values in an MMX
register and in another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

pand-64.eps

mmx1 mmx2/mem64

AND

0 63 063 0

Instruction Reference PAND 63

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function 0000_0001h
or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

64 PANDN Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Performs a bitwise logical AND of the value in the second source operand and the one’s complement
of the value in the first source operand and writes the result in the destination (first source). The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

The PANDN instruction is an MMX™ instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PAND, POR, PXOR

rFLAGS Affected

None

PANDN Packed Logical Bitwise AND NOT

Mnemonic Opcode Description

PANDN mmx1, mmx2/mem64 0F DF /r

Performs bitwise logical AND NOT of values in an MMX
register and in another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

pandn-64.eps

AND

invert

mmx1 mmx2/mem64

0 63 063 0

Instruction Reference PANDN 65

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function 0000_0001h
or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

66 PAVGB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the rounded average of each packed unsigned 8-bit integer value in the first source operand
and the corresponding packed 8-bit unsigned integer in the second source operand and writes each
average in the corresponding byte of the destination (first source). The average is computed by adding
each pair of operands, adding 1 to the 9-bit temporary sum, and then right-shifting the temporary sum
by one bit position. The destination and source operands are an MMX register and another MMX
register or 64-bit memory location.

The PAVGB instruction is a member of both the AMD MMX™ extensions and the SSE instruction
sets. The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume
3.)

Related Instructions

PAVGW

rFLAGS Affected

None

PAVGB Packed Average Unsigned Bytes

Mnemonic Opcode Description

PAVGB mmx1, mmx2/mem64 0F E0 /r

Averages packed 8-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the
destination MMX register.

pavgb-64.eps

average

63 0 63 0

mmx1 mmx2/mem64

average

.

.

.

Instruction Reference PAVGB 67

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by bit 25 in CPUID function 0000_0001h; and the
AMD extensions to the MMX™ instruction set are not
supported, as indicated by bit 22 of CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

68 PAVGUSB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the rounded-up average of each packed unsigned 8-bit integer value in the first source
operand and the corresponding packed 8-bit unsigned integer in the second source operand and writes
each average in the corresponding byte of the destination (first source). The average is computed by
adding each pair of operands, adding 1 to the 9-bit temporary sum, and then right-shifting the
temporary sum by one bit position. The first source/destination operand is an MMX register. The
second source operand is another MMX register or 64-bit memory location.

The PAVGUSB instruction performs a function identical to the 64-bit version of the PAVGB
instruction, although the two instructions have different opcodes. PAVGUSB is a 3DNow! instruction.
It is useful for pixel averaging in MPEG-2 motion compensation and video scaling operations.

The PAVGUSB instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by a CPUID feature bit. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

PAVGB

PAVGUSB Packed Average Unsigned Bytes

Mnemonic Opcode Description

PAVGUSB mmx1, mmx2/mem64 0F 0F /r BF

Averages packed 8-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the destination
MMX register.

pavgusb.eps

mmx1 mmx2/mem64

average

average

63 0

.

63 0

.

Instruction Reference PAVGUSB 69

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

None

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X The emulate bit (EM) of CR0 was set to 1.

X X X The AMD 3DNow!™ instructions are not supported,
as indicated by bit 31 in CPUID function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

70 PAVGW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the rounded average of each packed unsigned 16-bit integer value in the first source operand
and the corresponding packed 16-bit unsigned integer in the second source operand and writes each
average in the corresponding word of the destination (first source). The average is computed by adding
each pair of operands, adding 1 to the 17-bit temporary sum, and then right-shifting the temporary sum
by one bit position. The first source/destination operand is an MMX register and the second source
operand is another MMX register or 64-bit memory location.

The PAVGW instruction is a member of both the AMD MMX™ extensions and the SSE instruction
sets. The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume
3.)

Related Instructions

PAVGB

rFLAGS Affected

None

PAVGW Packed Average Unsigned Words

Mnemonic Opcode Description

PAVGW mmx1, mmx2/mem64 0F E3 /r

Averages packed 16-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the
destination MMX register.

pavgw-64.eps

average

average

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

Instruction Reference PAVGW 71

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to the MMX™ instruction set are
not supported, as indicated by EDX bit 22 of CPUID
function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

72 PCMPEQB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares corresponding packed bytes in the first and second source operands and writes the result of
each compare in the corresponding byte of the destination (first source). For each pair of bytes, if the
values are equal, the result is all 1s. If the values are not equal, the result is all 0s. The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

The PCMPEQB instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPEQB Packed Compare Equal Bytes

Mnemonic Opcode Description

PCMPEQB mmx1, mmx2/mem64 0F 74 /r Compares packed bytes in an MMX register and an
MMX register or 64-bit memory location.

pcmpeqb-64.eps

compare

63 0 63 0

mmx1 mmx2/mem64

compare
.

.

.

all 1s or 0s

all 1s or 0s

Instruction Reference PCMPEQB 73

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by bit 23 in CPUID function 0000_0001h or
function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

74 PCMPEQD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares corresponding packed 32-bit values in the first and second source operands and writes the
result of each compare in the corresponding 32 bits of the destination (first source). For each pair of
doublewords, if the values are equal, the result is all 1s. If the values are not equal, the result is all 0s.
The first source/destination operand is an MMX register and the second source operand is another
MMX register or 64-bit memory location.

The PCMPEQD instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPEQD Packed Compare Equal Doublewords

Mnemonic Opcode Description

PCMPEQD mmx1, mmx2/mem64 0F 76 /r Compares packed doublewords in an MMX register
and an MMX register or 64-bit memory location.

pcmpeqd-64.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

Instruction Reference PCMPEQD 75

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

76 PCMPEQW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares corresponding packed 16-bit values in the first and second source operands and writes the
result of each compare in the corresponding 16 bits of the destination (first source). For each pair of
words, if the values are equal, the result is all 1s. If the values are not equal, the result is all 0s. The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

The PCMPEQW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQD, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPEQW Packed Compare Equal Words

Mnemonic Opcode Description

PCMPEQW mmx1, mmx2/mem64 0F 75 /r Compares packed 16-bit values in an MMX register
and an MMX register or 64-bit memory location.

compare

mmx1 mmx2/mem64

compare

all 1s or 0s

all 1s or 0s
pcmpeqw-64.eps

....

..
63 04748 1516313263 04748 15163132

Instruction Reference PCMPEQW 77

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

78 PCMPGTB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares corresponding packed signed bytes in the first and second source operands and writes the
result of each compare in the corresponding byte of the destination (first source). For each pair of
bytes, if the value in the first source operand is greater than the value in the second source operand, the
result is all 1s. If the value in the first source operand is less than or equal to the value in the second
source operand, the result is all 0s. The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The PCMPGTB instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPGTB Packed Compare Greater Than Signed Bytes

Mnemonic Opcode Description

PCMPGTB mmx1, mmx2/mem64 0F 64 /r Compares packed signed bytes in an MMX register
and an MMX register or 64-bit memory location.

pcmpgtb-64.eps

compare

63 0 63 0

mmx1 mmx2/mem64

compare
.

.

.

all 1s or 0s
all 1s or 0s

Instruction Reference PCMPGTB 79

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

80 PCMPGTD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares corresponding packed signed 32-bit values in the first and second source operands and
writes the result of each compare in the corresponding 32 bits of the destination (first source). For each
pair of doublewords, if the value in the first source operand is greater than the value in the second
source operand, the result is all 1s. If the value in the first source operand is less than or equal to the
value in the second source operand, the result is all 0s. The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory location.

The PCMPGTD instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTW

rFLAGS Affected

None

PCMPGTD Packed Compare Greater Than Signed
Doublewords

Mnemonic Opcode Description

PCMPGTD mmx1, mmx2/mem64 0F 66 /r
Compares packed signed 32-bit values in an MMX
register and an MMX register or 64-bit memory
location.

pcmpgtd-64.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s

all 1s or 0s

63 0313263 03132

Instruction Reference PCMPGTD 81

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

82 PCMPGTW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares corresponding packed signed 16-bit values in the first and second source operands and
writes the result of each compare in the corresponding 16 bits of the destination (first source). For each
pair of words, if the value in the first source operand is greater than the value in the second source
operand, the result is all 1s. If the value in the first source operand is less than or equal to the value in
the second source operand, the result is all 0s. The first source/destination operand is an MMX register
and the second source operand is another MMX register or 64-bit memory location.

The PCMPGTW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD

rFLAGS Affected

None

PCMPGTW Packed Compare Greater Than Signed Words

Mnemonic Opcode Description

PCMPGTW mmx1, mmx2/mem64 0F 65 /r
Compares packed signed 16-bit values in an MMX
register and an MMX register or 64-bit memory
location.

63 04748 15163132

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

pcmpgtw-64.eps

....

..
63 04748 15163132

Instruction Reference PCMPGTW 83

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

84 PEXTRW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Extracts a 16-bit value from an MMX register, as selected by the immediate byte operand (as shown in
Table 1-1) and writes it to the low-order word of a 32-bit general-purpose register, with zero-extension
to 32 bits.

The PEXTRW instruction is a member of both the AMD MMX™ extensions and the SSE instruction
set. The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume
3.)

Related Instructions

PINSRW

rFLAGS Affected

None

PEXTRW Extract Packed Word

Mnemonic Opcode Description

PEXTRW reg32, mmx, imm8 0F C5 /r ib
Extracts a 16-bit value from an MMX register and
writes it to low-order 16 bits of a general-purpose
register.

Table 1-1. Immediate-Byte Operand Encoding for 64-Bit PEXTRW

Immediate-Byte
Bit Field Value of Bit Field Source Bits Extracted

1–0

0 15–0

1 31–16

2 47–32

3 63–48

pextrw-64.eps

reg32 mmx

imm8
7 0

mux

063 4748 15163132015

0

31

Instruction Reference PEXTRW 85

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to the MMX™ instruction set are
not supported, as indicated by EDX bit 22 of CPUID
function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

86 PF2ID Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts two packed single-precision floating-point values in an MMX register or a 64-bit memory
location to two packed 32-bit signed integer values and writes the converted values in another MMX
register. If the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
The numeric range for source and destination operands is shown in Table 1-2.

The PF2ID instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

CVTTPS2DQ

PF2ID Packed Floating-Point to Integer Doubleword
Converson

Mnemonic Opcode Description

PF2ID mmx1,
mmx2/mem64

0F 0F /r
1D

Converts packed single-precision floating-point values in an
MMX register or memory location to a doubleword integer value
in the destination MMX register.

Table 1-2. Numeric Range for PF2ID Results

Source 2 Source 1 and Destination

0 0

Normal, abs(Source 2) < 1 0

Normal, –231 < Source 2 <= –1

Normal, 1 <= Source 2 < 231

Round to zero (Source 2)

Round to zero (Source 2)

pf2id.eps

mmx1 mmx2/mem64

convert
convert

63 0313263 03132

Instruction Reference PF2ID 87

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PF2IW, PI2FD, PI2FW

rFLAGS Affected

None

Exceptions

Normal, Source 2 >= 231 7FFF_FFFFh

Normal, Source 2 <= –231 8000_0000h

Unsupported Undefined

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Table 1-2. Numeric Range for PF2ID Results

Source 2 Source 1 and Destination

88 PF2IW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts two packed single-precision floating-point values in an MMX register or a 64-bit memory
location to two packed 16-bit signed integer values, sign-extended to 32 bits, and writes the converted
values in another MMX register. If the result of the conversion is an inexact value, the value is
truncated (rounded toward zero). The numeric range for source and destination operands is shown in
Table 1-3 on page 88. Arguments outside the range representable by signed 16-bit integers are
saturated to the largest and smallest 16-bit integer, depending on their sign.

The PF2IW instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

CVTTPS2DQ

PF2IW Packed Floating-Point to Integer Word Conversion

Mnemonic Opcode Description

PF2IW mmx1,
mmx2/mem64

0F 0F /r
1C

Converts packed single-precision floating-point values in an
MMX register or memory location to word integer values in the
destination MMX register.

Table 1-3. Numeric Range for PF2IW Results

Source 2 Source 1 and Destination

0 0

Normal, abs(Source 2) < 1 0

Normal, –215 < Source 2 <= –1

Normal, 1 <= Source 2 < 215

Round to zero (Source 2)

Round to zero (Source 2)

pf2iw.eps

mmx1 mmx2/mem64

convert
convert

63 0313263 03132

ss

Instruction Reference PF2IW 89

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PF2ID, PI2FD, PI2FW

rFLAGS Affected

None

Exceptions

Normal, Source 2 >= 215 0000_7FFFh

Normal, Source 2 <= –215 FFFF_8000h

Unsupported Undefined

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD extensions to 3DNow!™ are not supported,
as indicated by EDX bit 30 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Table 1-3. Numeric Range for PF2IW Results

Source 2 Source 1 and Destination

90 PFACC Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds the two single-precision floating-point values in the first source operand and adds the two single-
precision values in the second source operand and writes the two results to the low-order and high-
order doubleword, respectively, of the destination (first source). The first source/destination operand is
an MMX register. The second source operand is another MMX register or 64-bit memory location.

The PFACC instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

HADDPS

The numeric range for operands is shown in Table 1-4 on page 91.

PFACC Packed Floating-Point Accumulate

Mnemonic Opcode Description

PFACC mmx1, mmx2/mem64 0F 0F /r
AE

Accumulates packed single-precision floating-point values in
an MMX register or 64-bit memory location and another MMX
register and writes each result in the destination MMX
register.

pfacc.eps

mmx1 mmx2/mem64

addadd

63 0313263 03132

Instruction Reference PFACC 91

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PFADD, PFNACC, PFPNACC

rFLAGS Affected

None

Exceptions

Table 1-4. Numeric Range for PFACC Results

Source Operand

High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 High Operand High Operand

Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign of the result is the logical AND of the signs of the low and high operands.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero

with the sign of the operand (low or high) that is larger in magnitude. If the infinitely precise result is
exactly zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of
the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

92 PFADD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds each packed single-precision floating-point value in the first source operand to the
corresponding packed single-precision floating-point value in the second operand and writes the result
of each addition in the corresponding doubleword of the destination (first source). The first
source/destination operand is an MMX register. The second source operand is another MMX register
or 64-bit memory location. The numeric range for operands is shown in Table 1-5 on page 93.

The PFADD instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

ADDPS

PFADD Packed Floating-Point Add

Mnemonic Opcode Description

PFADD mmx1, mmx2/mem64 0F 0F /r
9E

Adds two packed single-precision floating-point values in an
MMX register or 64-bit memory location and another MMX
register and writes each result in the destination MMX
register.

pfadd.eps

add

mmx1 mmx2/mem64

add

63 0313263 03132

Instruction Reference PFADD 93

26569—Rev. 3.08—July 2007 AMD64 Technology

Table 1-5. Numeric Range for the PFADD Results

Source Operand

Most-Significant Doubleword

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 Source 2 Source 2

Normal Source 1 Normal, +/– 02 Undefined

Unsupported3 Source 1 Undefined Undefined

Note:
1. The sign of the result is the logical AND of the signs of the source operands.
2. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero

with the sign of the source operand that is larger in magnitude. If the infinitely precise result is exactly
zero, the result is zero with the sign of source 1. If the absolute value of the infinitely precise result is
greater than or equal to 2128, the result is the largest normal number with the sign of source 1.

3. “Unsupported” means that the exponent is all ones (1s).

94 PFADD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Related Instructions

PFACC, PFNACC, PFPNACC

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PFCMPEQ 95

26569—Rev. 3.08—July 2007 AMD64 Technology

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding doubleword of the destination (first source).
For each pair of floating-point values, if the values are equal, the result is all 1s. If the values are not
equal, the result is all 0s. The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location. The numeric range for operands is shown
in Table 1-6 on page 96.

The PFCMPEQ instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

CMPSS

PFCMPEQ Packed Floating-Point Compare Equal

Mnemonic Opcode Description

PFCMPEQ mmx1, mmx2/mem64 0F 0F /r B0
Compares two pairs of packed single-precision floating-
point values in an MMX register and an MMX register or
64-bit memory location.

pfcmpeq.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

96 PFCMPEQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Related Instructions

PFCMPGE, PFCMPGT

rFLAGS Affected

None

Exceptions

Table 1-6. Numeric Range for the PFCMPEQ Instruction

Operand Value

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 FFFF_FFFFh1 0000_0000h 0000_0000h

Normal
0000_0000h 0000_0000h or

FFFF_FFFFh2 0000_0000h

Unsupported3 0000_0000h 0000_0000h Undefined

Note:
1. Positive zero is equal to negative zero.
2. The result is FFFF_FFFFh if source 1 and source 2 have identical signs, exponents, and mantissas.

Otherwise, the result is 0000_0000h.
3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PFCMPGE 97

26569—Rev. 3.08—July 2007 AMD64 Technology

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding doubleword of the destination (first source).
For each pair of floating-point values, if the value in the first source operand is greater than or equal to
the value in the second source operand, the result is all 1s. If the value in the first source operand is less
than the value in the second source operand, the result is all 0s. The first source/destination operand is
an MMX register. The second source operand is another MMX register or 64-bit memory location. The
numeric range for operands is shown in Table 1-7 on page 98.

The PFCMPGE instruction is a 3DNow!™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

CMPPS

PFCMPGE Packed Floating-Point Compare Greater or Equal

Mnemonic Opcode Description

PFCMPGE mmx1,
mmx2/mem64 0F 0F /r 90

Compares two pairs of packed single-precision floating-
point values in an MMX register and an MMX register or
64-bit memory location.

pfcmpge.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

98 PFCMPGE Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Related Instructions

PFCMPEQ, PFCMPGT

rFLAGS Affected

None

Exceptions

Table 1-7. Numeric Range for the PFCMPGE Instruction

Operand Value

Source 2

0 Normal Unsupported

Source 1 and
Destination

0
FFFF_FFFFh1 0000_0000h,

FFFF_FFFFh2 Undefined

Normal
0000_0000h,

FFFF_FFFFh3
0000_0000h,

FFFF_FFFFh4 Undefined

Unsupported5 Undefined Undefined Undefined

Note:
1. Positive zero is equal to negative zero.
2. The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
3. The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
4. The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative

and source 1 is smaller than or equal in magnitude to source 2, or if source 1 and source 2 are both
positive and source 1 is greater than or equal in magnitude to source 2. The result is 0000_0000h in all
other cases.

5. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Instruction Reference PFCMPGE 99

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

100 PFCMPGT Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding doubleword of the destination (first source).
For each pair of floating-point values, if the value in the first source operand is greater than the value in
the second source operand, the result is all 1s. If the value in the first source operand is less than or
equal to the value in the second source operand, the result is all 0s. The first source/destination operand
is an MMX register. The second source operand is another MMX register or 64-bit memory location.
The numeric range for operands is shown in Table 1-8 on page 101.

The PFCMPGT instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

CMPPS

PFCMPGT Packed Floating-Point Compare Greater Than

Mnemonic Opcode Description

PFCMPGT mmx1,
mmx2/mem64 0F 0F /r A0

Compares two pairs of packed single-precision floating-
point values in an MMX register and an MMX register or
64-bit memory location.

pfcmpgt.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

Instruction Reference PFCMPGT 101

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PFCMPEQ, PFCMPGE

rFLAGS Affected

None

Exceptions

Table 1-8. Numeric Range for the PFCMPGT Instruction

Operand Value

Source 2

0 Normal Unsupported

Source 1 and
Destination

0
0000_0000h

0000_0000h,
FFFF_FFFFh1 Undefined

Normal
0000_0000h,

FFFF_FFFFh2
0000_0000h,

FFFF_FFFFh3 Undefined

Unsupported4 Undefined Undefined Undefined

Note:
1. The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
2. The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
3. The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative

and source 1 is smaller in magnitude than source 2, or if source 1 and source 2 are positive and source
1 is greater in magnitude than source 2. The result is 0000_0000h in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X The emulate bit (EM) of CR0 was set to 1.

X X X The AMD 3DNow!™ instructions are not supported,
as indicated by bit 31 in CPUID function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

102 PFMAX Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the maximum of the two values for each comparison in the corresponding doubleword of the
destination (first source). The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location.

Any operation with a zero and a negative number returns positive zero. An operation consisting of two
zeros returns positive zero. If either source operand is an undefined value, the result is undefined. The
numeric range for source and destination operands is shown in Table 1-9 on page 103.

The PFMAX instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

MAXPS

PFMAX Packed Single-Precision Floating-Point Maximum

Mnemonic Opcode Description

PFMAX mmx1, mmx2/mem64 0F 0F /r
A4

Compares two pairs of packed single-precision values in an
MMX register and another MMX register or 64-bit memory
location and writes the maximum value of each comparison
in the destination MMX register.

pfmax.eps

maximum

mmx1 mmx2/mem64

maximum

63 0313263 03132

Instruction Reference PFMAX 103

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PFMIN

rFLAGS Affected

None

Exceptions

Table 1-9. Numeric Range for the PFMAX Instruction

Operand Value

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +01 Undefined

Normal Source 1, +02 Source 1/Source 23 Undefined

Unsupported4 Undefined Undefined Undefined

Note:
1. The result is source 2, if source 2 is positive. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is positive. Otherwise, the result is positive zero.
3. The result is source 1, if source 1 is positive and source 2 is negative. The result is source 1, if both are

positive and source 1 is greater in magnitude than source 2. The result is source 1, if both are negative
and source 1 is lesser in magnitude than source 2. The result is source 2 in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

104 PFMIN Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the minimum of the two values for each comparison in the corresponding doubleword of the
destination (first source). The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location.

Any operation with a zero and a positive number returns positive zero. An operation consisting of two
zeros returns positive zero. If either source operand is an undefined value, the result is undefined. The
numeric range for source and destination operands is shown in Table 1-10 on page 105.

The PFMIN instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

MINPS

PFMIN Packed Single-Precision Floating-Point Minimum

Mnemonic Opcode Description

PFMIN mmx1, mmx2/mem64 0F 0F /r
94

Compares two pairs of packed single-precision values in an
MMX register and another MMX register or 64-bit memory
location and writes the minimum value of each comparison in
the destination MMX register.

pfmin.eps

minimum

mmx1 mmx2/mem64

minimum

63 0313263 03132

Instruction Reference PFMIN 105

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PFMAX

rFLAGS Affected

None

Exceptions

Table 1-10. Numeric Range for the PFMIN Instruction

Operand Value

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +01 Undefined

Normal Source 1, +02 Source 1/Source 23 Undefined

Unsupported4 Undefined Undefined Undefined

Note:
1. The result is source 2, if source 2 is negative. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is negative. Otherwise, the result is positive zero.
3. The result is source 1, if source 1 is negative and source 2 is positive. The result is source 1, if both are

negative and source 1 is greater in magnitude than source 2. The result is source 1, if both are positive
and source 1 is lesser in magnitude than source 2. The result is source 2 in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

106 PFMUL Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Multiplies each of the two packed single-precision floating-point values in the first source operand by
the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each multiplication in the corresponding doubleword of the destination (first
source). The numeric range for source and destination operands is shown in Table 1-11 on page 107.
The first source/destination operand is an MMX register. The second source operand is another MMX
register or 64-bit memory location.

The PFMUL instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

MULPS

PFMUL Packed Floating-Point Multiply

Mnemonic Opcode Description

PFMUL mmx1, mmx2/mem64 0F 0F /r
B4

Multiplies packed single-precision floating-point values in an
MMX register and another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

pfmul.eps

multiply

mmx1 mmx2/mem64

multiply

63 0313263 03132

Instruction Reference PFMUL 107

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

None

rFLAGS Affected

None

Exceptions

Table 1-11. Numeric Range for the PFMUL Instruction

Operand Value

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 +/– 01 +/– 01

Normal +/– 01 Normal, +/– 02 Undefined

Unsupported3 +/– 01 Undefined Undefined

Note:
1. The sign of the result is the exclusive-OR of the signs of the source operands.
2. If the absolute value of the result is less then 2–126, the result is zero with the sign being the exclusive-

OR of the signs of the source operands. If the absolute value of the product is greater than or equal to
2128, the result is the largest normal number with the sign being the exclusive-OR of the signs of the
source operands.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

108 PFNACC Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts the first source operand’s high-order single-precision floating-point value from its low-order
single-precision floating-point value, subtracts the second source operand’s high-order single-
precision floating-point value from its low-order single-precision floating-point value, and writes each
result to the low-order or high-order doubleword, respectively, of the destination (first source). The
first source/destination operand is an MMX register. The second source operand is another MMX
register or 64-bit memory location.

The numeric range for operands is shown in Table 1-12 on page 109.

The PFNACC instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

HSUBPS

PFNACC Packed Floating-Point Negative Accumulate

Mnemonic Opcode Description

PFNACC mmx1, mmx2/mem64 0F 0F /r
8A

Subtracts the packed single-precision floating-point values
in an MMX register or 64-bit memory location and another
MMX register and writes each value in the destination MMX
register.

pfnacc.eps

mmx1 mmx2/mem64

subtractsubtract

63 0313263 03132

Instruction Reference PFNACC 109

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PFSUB, PFACC, PFPNACC

rFLAGS Affected

None

Exceptions

Table 1-12. Numeric Range of PFNACC Results

Source Operand

High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 - High Operand - High Operand

Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the sign of the low operand and the inverse of the sign of the high operand.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero.

If the low operand is larger in magnitude than the high operand, the sign of this zero is the same as the
sign of the low operand, else it is the inverse of the sign of the high operand. If the infinitely precise result
is exactly zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of
the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD extensions to 3DNow!™ are not supported,
as indicated by EDX bit 30 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

110 PFNACC Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PFPNACC 111

26569—Rev. 3.08—July 2007 AMD64 Technology

Subtracts the first source operand’s high-order single-precision floating-point value from its low-order
single-precision floating-point value, adds the two single-precision values in the second source
operand, and writes each result to the low-order or high-order doubleword, respectively, of the
destination (first source). The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location.

The numeric range for operands is shown in Table 1-13 (for the low result) and Table 1-14 (for the high
result), both on page 112.

The PFPNACC instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

ADDSUBPS

PFPNACC Packed Floating-Point Positive-Negative
Accumulate

Mnemonic Opcode Description

PFPNACC mmx1,
mmx2/mem64

0F 0F /r
8E

Subtracts the packed single-precision floating-point values
in an MMX register, adds the packed single-precision
floating-point values in another MMX register or 64-bit
memory location, and writes each value in the destination
MMX register.

pfpnacc.eps

mmx1 mmx2/mem64

addsubtract

63 0313263 03132

112 PFPNACC Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Related Instructions

PFADD, PFSUB, PFACC, PFNACC

rFLAGS Affected

None

Table 1-13. Numeric Range of PFPNACC Result (Low Result)

Source Operand

High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 - High Operand - High Operand

Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the sign of the low operand and the inverse of the sign of the high operand.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero.

If the low operand is larger in magnitude than the high operand, the sign of this zero is the same as the
sign of the low operand, else it is the inverse of the sign of the high operand. If the infinitely precise result
is exactly zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of
the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Table 1-14. Numeric Range of PFPNACC Result (High Result)

Source Operand

High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 High Operand High Operand

Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the signs of the low and high operands.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is zero with

the sign of the operand (low or high) that is larger in magnitude. If the infinitely precise result is exactly
zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely precise result
is greater than or equal to 2128, the result is the largest normal number with the sign of the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Instruction Reference PFPNACC 113

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD extensions to 3DNow!™ are not supported,
as indicated by EDX bit 30 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

114 PFRCP Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the approximate reciprocal of the single-precision floating-point value in the low-order 32
bits of an MMX register or 64-bit memory location and writes the result in both doublewords of
another MMX register. The result is accurate to 14 bits.

The PFRCP result can be forwarded to the Newton-Raphson iteration step 1 (PFRCPIT1) and Newton-
Raphson iteration step 2 (PFRCPIT2) instructions to increase the accuracy of the reciprocal. The first
stage of this refinement in accuracy (PFRCPIT1) requires that the input and output of the previously
executed PFRCP instruction be used as input to the PFRCPIT1 instruction.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

PFRCP(x) returns 0 for x >= 2-126. The numeric range for operands is shown in Table 1-15.

The PFRCP instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

RCPSS

PFRCP Floating-Point Reciprocal Approximation

Mnemonic Opcode Description

PFRCP mmx1, mmx2/mem64 0F 0F /r
96

Computes approximate reciprocal of single-precision
floating-point value in an MMX register or 64-bit memory
location and writes the result in both doublewords of the
destination MMX register.

pfrcp.eps

mmx2/mem64mmx1

approximate
reciprocal

63 03132313263 0

Instruction Reference PFRCP 115

26569—Rev. 3.08—July 2007 AMD64 Technology

Examples

The general Newton-Raphson recurrence for the reciprocal 1/b is:

Zi +1 ← Zi • (2 – b • Zi)

The following code sequence shows the computation of a/b:

X0 = PFRCP(b)
X1 = PFRCPIT1(b, X0)
X2 = PFRCPIT2(X1, X0)
q = PFMUL(a, X2)

The 24-bit final reciprocal value is X2. The quotient is formed in the last step by multiplying the
reciprocal by the dividend a.

Related Instructions

PFRCPIT1, PFRCPIT2

rFLAGS Affected

None

Table 1-15. Numeric Range for the PFRCP Result

Operand Source 1 and Destination

Source 2

0 +/– Maximum Normal1

Normal Normal, +/– 02

Unsupported3 Undefined

Note:
1. The result has the same sign as the source operand.
2. If the absolute value of the result is less then 2–126, the result is zero with the sign being the sign of the

source operand. Otherwise, the result is a normal with the sign being the same sign as the source
operand.

3. “Unsupported” means that the exponent is all ones (1s).

116 PFRCP Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PFRCPIT1 117

26569—Rev. 3.08—July 2007 AMD64 Technology

Performs the first step in the Newton-Raphson iteration to refine the reciprocal approximation
produced by the PFRCP instruction. The first source/destination operand is an MMX register
containing the results of two previous PFRCP instructions, and the second source operand is another
MMX register or 64-bit memory location containing the source operands from the same PFRCP
instructions.

This instruction is only defined for those combinations of operands such that the first source operand
(mmx1) is the approximate reciprocal of the second source operand (mmx2/mem64), and thus the
range of the product, mmx1 * mmx2/mem64, is (0.5, 2). The initial approximation of an operand is
accurate to about 12 bits, and the length of the operand itself is 24 bits, so the product of these two
operands is greater than 24 bits. PFRCPIT1 applies the one's complement of the product and rounds
the result to 32 bits. It then compresses the result to fit into 24 bits by removing the 8 redundant most-
significant bits after the hidden integer bit.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

The PFRCPIT1 instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

PFRCP

PFRCPIT1 Packed Floating-Point Reciprocal Iteration 1

Mnemonic Opcode Description

PFRCPIT1 mmx1,
mmx2/mem64

0F 0F /r
A6

Refine approximate reciprocal of result from previous
PFRCP instruction.

118 PFRCPIT1 Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Operation
mmx1[31:0] = Compress (2 - mmx1[31:0] * (mmx2/mem64[31:0]) - 231);
mmx1[63:32] = Compress (2 - mmx1[63:32] * (mmx2/mem64[63:32]) - 231);

where:

“Compress” means discard the 8 redundant most-significant bits after the hidden integer bit.

Examples

The general Newton-Raphson recurrence for the reciprocal 1/b is:

Zi +1 ← Zi • (2 – b • Zi)

The following code sequence computes a 24-bit approximation to a/b with one Newton-Raphson
iteration:

X0 = PFRCP(b)
X1 = PFRCPIT1(b, X0)
X2 = PFRCPIT2(X1, X0)
q = PFMUL(a, X2)

a/b is formed in the last step by multiplying the reciprocal approximation by a.

Related Instructions

PFRCP, PFRCPIT2

rFLAGS Affected

None

pfrcpit1.eps

Newton-
Raphson
reciprocal

step 1
Newton-
Raphson
reciprocal

step 1

mmx1 mmx2/mem64

63 0313263 03132

PFRCP SourcePFRCP Result PFRCP SourcePFRCP Result

Instruction Reference PFRCPIT1 119

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

120 PFRCPIT2 Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Performs the second and final step in the Newton-Raphson iteration to refine the reciprocal
approximation produced by the PFRCP instruction or the reciprocal square-root approximation
produced by the PFSQRT instruction. PFRCPIT2 takes two paired elements in each source operand.
These paired elements are the results of a PFRCP and PFRCPIT1 instruction sequence or of a
PFRSQRT and PFRSQIT1 instruction sequence. The first source/destination operand is an MMX
register that contains the PFRCPIT1 or PFRSQIT1 results and the second source operand is another
MMX register or 64-bit memory location that contains the PFRCP or PFRSQRT results.

The PFRCPIT2 instruction expands the compressed PFRCPIT1 or PFRSQIT1 results from 24 to 32
bits and multiplies them by their respective source operands. An optimal correction factor is added to
the product, which is then rounded to 24 bits.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

The PFRCPIT2 instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

PFRCP

PFRCPIT2 Packed Floating-Point Reciprocal or Reciprocal
Square Root Iteration 2

Mnemonic Opcode Description

PFRCPIT2 mmx1, mmx2/mem64 0F 0F /r
B6

Refines approximate reciprocal result from previous
PFRCP and PFRCPIT1 instructions or from previous
PFRSQRT and PFRSQIT1 instructions.

Instruction Reference PFRCPIT2 121

26569—Rev. 3.08—July 2007 AMD64 Technology

Operation
mmx1[31:0] = Expand(mmx1[31:0]) * mmx2/mem64[31:0];
mmx1[63:32] = Expand(mmx1[63:32]) * mmx2/mem64[63:32];

where:

“Expand” means convert a 24-bit significand to a 32-bit significand according to the following rule:

temp[31:0] = {1’b1, 8{mmx1[22]}, mmx1[22:0]};

Examples

The general Newton-Raphson recurrence for the reciprocal 1/b is:

Zi +1 ← Zi • (2 – b • Zi)

The following code sequence computes a 24-bit approximation to a/b with one Newton-Raphson
iteration:

X0 = PFRCP(b)
X1 = PFRCPIT1(b, X0)
X2 = PFRCPIT2(X1, X0)
q = PFMUL(a, X2)

a/b is formed in the last step by multiplying the reciprocal approximation by a.

Related Instructions

PFRCP, PFRCPIT1, PFRSQRT, PFRSQIT1

rFLAGS Affected

None

pfrcpit2.eps

Newton-
Raphson
reciprocal

step 2
Newton-
Raphson
reciprocal

step 2

mmx1 mmx2/mem64

63 0313263 03132

Reciprocal ResultIteration-1 Result Reciprocal ResultIteration-1 Result

122 PFRCPIT2 Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PFRSQIT1 123

26569—Rev. 3.08—July 2007 AMD64 Technology

Performs the first step in the Newton-Raphson iteration to refine the reciprocal square-root
approximation produced by the PFSQRT instruction. The first source/destination operand is an MMX
register containing the result from a previous PFRSQRT instruction, and the second source operand is
another MMX register or 64-bit memory location containing the source operand from the same
PFRSQRT instruction.

This instruction is only defined for those combinations of operands such that the first source operand
(mmx1) is the approximate reciprocal of the second source operand (mmx2/mem64), and thus the
range of the product, mmx1 * mmx2/mem64, is (0.5, 2). The length of both operands is 24 bits, so the
product of these two operands is greater than 24 bits. The product is normalized and then rounded to 32
bits. The one's complement of the result is applied, a 1 is added as the most-significant bit, and the
result re-normalized. The result is then compressed to fit into 24 bits by removing 8 redundant most-
significant bits after the hidden integer bit, and the exponent is reduced by 1 to account for the division
by 2.

The PFRSQIT1 instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

PFRSQRT

PFRSQIT1 Packed Floating-Point Reciprocal Square Root
Iteration 1

Mnemonic Opcode Description

PFRSQIT1 mmx1,
mmx2/mem64

0F 0F /r
A7

Refines reciprocal square root approximation of previous
PFRSQRT instruction.

124 PFRSQIT1 Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Operation
mmx1[31:0] = Compress ((3 - mmx1[31:0] * (mmx2/mem64[31:0]) - 231)/2);
mmx1[63:32] = Compress ((3 - mmx1[63:32] * (mmx2/mem64[63:32]) - 231)/2);

where:

“Compress” means discard the 8 redundant most-significant bits after the hidden integer bit.

Examples

The following code sequence shows how the PFRSQRT and PFMUL instructions can be used to
compute a = 1/sqrt (b):

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
a = PFRCPIT2(X2,X0)

Related Instructions

PFRCPIT2, PFRSQRT

rFLAGS Affected

None

pfrsqit1.eps

Newton-
Raphson
reciprocal

square root
step 1Newton-

Raphson
reciprocal

square root
step 1

mmx1 mmx2/mem64

63 0313263 03132

PFSQRT SourcePFSQRT Result PFSQRT SourcePFSQRT Result

Instruction Reference PFRSQIT1 125

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

126 PFRSQRT Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the approximate reciprocal square root of the single-precision floating-point value in the
low-order 32 bits of an MMX register or 64-bit memory location and writes the result in each
doubleword of another MMX register. The source operand is single-precision with a 24-bit
significand, and the result is accurate to 15 bits. Negative operands are treated as positive operands for
purposes of reciprocal square-root computation, with the sign of the result the same as the sign of the
source operand.

This instruction can be used together with the PFRSQIT1 and PFRCPIT2 instructions to increase
accuracy. The first stage of this refinement in accuracy (PFRSQIT1) requires that the input and output
of the previously executed PFRSQRT instruction be used as input to the PFRSQIT1 instruction.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

The PFRSQRT instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

The numeric range for operands is shown in Table 1-16 on page 127.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

RSQRTSS

PFRSQRT Packed Floating-Point Reciprocal Square Root
Approximation

Mnemonic Opcode Description

PFRSQRT mmx1,
mmx2/mem64

0F 0F /r
97

Computes approximate reciprocal square root of a packed
single-precision floating-point value.

Instruction Reference PFRSQRT 127

26569—Rev. 3.08—July 2007 AMD64 Technology

Examples

The following code sequence shows how the PFRSQRT and PFMUL instructions can be used to
compute a = 1/sqrt (b):

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
a = PFRCPIT2(X2,X0)

Related Instructions

PFRCPIT2, PFRSQIT1

rFLAGS Affected

None

Table 1-16. Numeric Range for the PFRCP Result

Operand Source 1 and Destination

Source 2

0 +/– Maximum Normal1

Normal Normal1

Unsupported2 Undefined1

Note:
1. The result has the same sign as the source operand.
2. “Unsupported” means that the exponent is all ones (1s).

pfrsqrt.eps

xmm2/mem64mmx1

reciprocal
square root

63 03132313263 0

128 PFRSQRT Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PFSUB 129

26569—Rev. 3.08—July 2007 AMD64 Technology

Subtracts each packed single-precision floating-point value in the second source operand from the
corresponding packed single-precision floating-point value in the first source operand and writes the
result of each subtraction in the corresponding doubleword of the destination (first source). The first
source/destination operand is an MMX register. The second source operand is another MMX register
or 64-bit memory location. The numeric range for operands is shown in Table 1-17 on page 130.

The PFSUB instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

SUBPS

PFSUB Packed Floating-Point Subtract

Mnemonic Opcode Description

PFSUB mmx1, mmx2/mem64 0F 0F /r
9A

Subtracts packed single-precision floating-point values in
an MMX register or 64-bit memory location from packed
single-precision floating-point values in another MMX
register and writes the result in the destination MMX
register.

pfsub.eps

mmx1 mmx2/mem64

subtract

subtract

63 0313263 03132

130 PFSUB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Related Instructions

PFSUBR

rFLAGS Affected

None

Exceptions

Table 1-17. Numeric Range for the PFSUB Results

Source Operand

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 - Source 2 - Source 2

Normal Source 1 Normal, +/– 02 Undefined

Unsupported3 Source 1 Undefined Undefined

Note:
1. The sign of the result is the logical AND of the sign of source 1 and the inverse of the sign of source 2.
2. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero.

If the source operand that is larger in magnitude is source 1, the sign of this zero is the same as the sign
of source 1, else it is the inverse of the sign of source 2. If the infinitely precise result is exactly zero, the
result is zero with the sign of source 1. If the absolute value of the infinitely precise result is greater than
or equal to 2128, the result is the largest normal number with the sign of source 1.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PFSUBR 131

26569—Rev. 3.08—July 2007 AMD64 Technology

Subtracts each packed single-precision floating-point value in the first source operand from the
corresponding packed single-precision floating-point value in the second source operand and writes
the result of each subtraction in the corresponding dword of the destination (first source). The first
source/destination operand is an MMX register. The second source operand is another MMX register
or 64-bit memory location. The numeric range for operands is shown in Table 1-18 on page 132.

The PFSUBR instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

SUBPS

PFSUBR Packed Floating-Point Subtract Reverse

Mnemonic Opcode Description

PFSUBR mmx1, mmx2/mem64 0F 0F /r
AA

Subtracts packed single-precision floating-point values in
an MMX register from packed single-precision floating-
point values in another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

pfsubr.eps

mmx1 mmx2/mem64

subtract

subtract

63 0313263 03132

132 PFSUBR Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Related Instructions

PFSUB

rFLAGS Affected

None

Exceptions

Table 1-18. Numeric Range for the PFSUBR Results

Source Operand

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 Source 2 Source 2

Normal - Source 1 Normal, +/– 02 Undefined

Unsupported3 - Source 1 Undefined Undefined

Note:
1. The sign is the logical AND of the sign of source 2 and the inverse of the sign of source 1.
2. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero.

If the source operand that is larger in magnitude is source 2, the sign of this zero is the same as the sign
of source 2, else it is the inverse of the sign of source 1. If the infinitely precise result is exactly zero, the
result is zero with the sign of source 2. If the absolute value of the infinitely precise result is greater than
or equal to 2128, the result is the largest normal number with the sign of source 2.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PI2FD 133

26569—Rev. 3.08—July 2007 AMD64 Technology

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit memory location to
two packed single-precision floating-point values and writes the converted values in another MMX
register. If the result of the conversion is an inexact value, the value is truncated (rounded toward zero).

The PI2FD instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow!™ Instructions” on
page 335.

Recommended Instruction Substitution

CVTDQ2PS

Related Instructions

PF2ID, PF2IW, PI2FW

rFLAGS Affected

None

PI2FD Packed Integer to Floating-Point Doubleword
Conversion

Mnemonic Opcode Description

PI2FD mmx1,
mmx2/mem64

0F 0F /r
0D

Converts packed doubleword integers in an MMX register or 64-
bit memory location to single-precision floating-point values in
the destination MMX register. Inexact results are truncated.

pi2fd.eps

mmx1 mmx2/mem64

convert

convert

63 0313263 03132

134 PI2FD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PI2FW 135

26569—Rev. 3.08—July 2007 AMD64 Technology

Converts two packed 16-bit signed integer values in an MMX register or a 64-bit memory location to
two packed single-precision floating-point values and writes the converted values in another MMX
register.

The PI2FW instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PF2ID, PF2IW, PI2FD

PI2FW Packed Integer to Floating-Point Word Conversion

Mnemonic Opcode Description

PI2FW mmx1,
mmx2/mem64

0F 0F /r
0C

Converts packed 16-bit integers in an MMX register or 64-bit
memory location to packed single-precision floating-point
values in the destination MMX register.

pi2fw.eps

mmx1 mmx2/mem64

convert

convert

63 03132 63 04748 15163132

136 PI2FW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD extensions to 3DNow!™ are not supported,
as indicated by EDX bit 30 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PINSRW 137

26569—Rev. 3.08—July 2007 AMD64 Technology

Inserts a 16-bit value from the low-order word of a 32-bit general purpose register or a 16-bit memory
location into an MMX register. The location in the destination register is selected by the immediate
byte operand, a shown in Table 1-19. The other words in the destination register operand are not
modified.

The PINSRW instruction is an AMD extension to MMX™ instruction set and is an SSE instruction.
The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PEXTRW

rFLAGS Affected

None

PINSRW Packed Insert Word

Mnemonic Opcode Description

PINSRW mmx, reg32/mem16,
imm8 0F C4 /r ib

Inserts a 16-bit value from a general-purpose
register or memory location into an MMX
register.

Table 1-19. Immediate-Byte Operand Encoding for 64-Bit PINSRW

Immediate-Byte
Bit Field Value of Bit Field Destination Bits Filled

1–0

0 15–0

1 31–16

2 47–32

3 63–48

select word position for insert
pinsrw-64.eps

reg32/mem16mmx

imm8
7 0

01563 04748 15163132 31

138 PINSRW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to the MMX™ instruction set are
not supported, as indicated by EDX bit 22 of CPUID
function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMADDWD 139

26569—Rev. 3.08—July 2007 AMD64 Technology

Multiplies each packed 16-bit signed value in the first source operand by the corresponding packed 16-
bit signed value in the second source operand, adds the adjacent intermediate 32-bit results of each
multiplication (for example, the multiplication results for the adjacent bit fields 63–48 and 47–32, and
31–16 and 15–0), and writes the 32-bit result of each addition in the corresponding doubleword of the
destination (first source). The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

If all four of the 16-bit source operands used to produce a 32-bit multiply-add result have the value
8000h, the 32-bit result is 8000_0000h, which is not the correct 32-bit signed result.

The PMADDWD instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PMULHUW, PMULHW, PMULLW, PMULUDQ

rFLAGS Affected

None

PMADDWD Packed Multiply Words and Add Doublewords

Mnemonic Opcode Description

PMADDWD mmx1, mmx2/mem64 0F F5 /r

Multiplies four packed 16-bit signed values in an
MMX register and another MMX register or 64-bit
memory location, adds intermediate results, and
writes the result in the destination MMX register.

mmx1 mmx2/mem64

pmaddwd-64.eps

multiply

multiply

add

multiply

multiply

add

63 03132

63 04748 15163132 63 04748 15163132

140 PMADDWD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMAXSW 141

26569—Rev. 3.08—July 2007 AMD64 Technology

Compares each of the packed 16-bit signed integer values in the first source operand with the
corresponding packed 16-bit signed integer value in the second source operand and writes the
maximum of the two values for each comparison in the corresponding word of the destination (first
source). The first source/destination and second source operands are an MMX register and an MMX
register or 64-bit memory location.

The PMAXSW instruction is an AMD extension to MMX™ instruction set and is an SSE instruction.
The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PMAXUB, PMINSW, PMINUB

rFLAGS Affected

None

PMAXSW Packed Maximum Signed Words

Mnemonic Opcode Description

PMAXSW mmx1, mmx2/mem64 0F EE /r

Compares packed signed 16-bit integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the maximum value of each compare
in destination MMX register.

pmaxsw-64.eps

maximum

maximum

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

142 PMAXSW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to MMX are not supported, as
indicated by EDX bit 22 of CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMAXUB 143

26569—Rev. 3.08—July 2007 AMD64 Technology

Compares each of the packed 8-bit unsigned integer values in the first source operand with the
corresponding packed 8-bit unsigned integer value in the second source operand and writes the
maximum of the two values for each comparison in the corresponding byte of the destination (first
source). The first source/destination and second source operands are an MMX register and an MMX
register or 64-bit memory location.

The PMAXUB instruction is an AMD extension to MMX™ instruction set and is an SSE instruction.
The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PMAXSW, PMINSW, PMINUB

rFLAGS Affected

None

PMAXUB Packed Maximum Unsigned Bytes

Mnemonic Opcode Description

PMAXUB mmx1, mmx2/mem64 0F DE /r

Compares packed unsigned 8-bit integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the maximum value of each
compare in the destination MMX register.

pmaxub-64.eps

maximum

63 0 63 0

mmx1 mmx2/mem64

maximum

.

.

.

144 PMAXUB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to MMX are not supported, as
indicated by EDX bit 22 of CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMINSW 145

26569—Rev. 3.08—July 2007 AMD64 Technology

Compares each of the packed 16-bit signed integer values in the first source operand with the
corresponding packed 16-bit signed integer value in the second source operand and writes the
minimum of the two values for each comparison in the corresponding word of the destination (first
source). The first source/destination and second source operands are an MMX register and an MMX
register or 64-bit memory location.

The PMINSW instruction is an AMD extension to MMX™ instruction set and is an SSE instruction.
The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PMAXSW, PMAXUB, PMINUB

rFLAGS Affected

None

PMINSW Packed Minimum Signed Words

Mnemonic Opcode Description

PMINSW mmx1, mmx2/mem64 0F EA /r

Compares packed signed 16-bit integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the minimum value of each
compare in the destination MMX register.

pminsw-64.eps

minimum

minimum

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

146 PMINSW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to MMX are not supported, as
indicated by EDX bit 22 of CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMINUB 147

26569—Rev. 3.08—July 2007 AMD64 Technology

Compares each of the packed 8-bit unsigned integer values in the first source operand with the
corresponding packed 8-bit unsigned integer value in the second source operand and writes the
minimum of the two values for each comparison in the corresponding byte of the destination (first
source). The first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

The PMINUB instruction is an AMD extension to MMX™ instruction set and is an SSE instruction.
The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PMAXSW, PMAXUB, PMINSW

rFLAGS Affected

None

PMINUB Packed Minimum Unsigned Bytes

Mnemonic Opcode Description

PMINUB mmx1, mmx2/mem64 0F DA /r

Compares packed unsigned 8-bit integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the minimum value of each
comparison in the destination MMX register.

pminub-64.eps

minimum

63 0 63 0

mmx1 mmx2/mem64

minimum

.

.

.

148 PMINUB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to MMX are not supported, as
indicated by EDX bit 22 of CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMOVMSKB 149

26569—Rev. 3.08—July 2007 AMD64 Technology

Moves the most-significant bit of each byte in the source operand in bitwise order to the low order byte
of the destination operand. The upper 24 bits of the destination operand are cleared to zeros. The
destination operand is a 32-bit general-purpose register and the source operand is an MMX register.

The PMOVMSKB instruction is an AMD extension to MMX™ instruction set and is an SSE
instruction. The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in
Volume 3.)

Related Instructions

MOVMSKPD, MOVMSKPS

rFLAGS Affected

None

PMOVMSKB Packed Move Mask Byte

Mnemonic Opcode Description

PMOVMSKB reg32, mmx 0F D7 /r Moves most-significant bit of each byte in an MMX register
to the low-order byte of a 32-bit general-purpose register.

reg32

pmovmskb-64.eps

mmx

..

015233139475563 7

copy
copy

07

0

.
31

150 PMOVMSKB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated by
EDX bit 25 in CPUID function 0000_0001h; and the
AMD extensions to MMX are not supported, as
indicated by EDX bit 22 of CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

Instruction Reference PMULHRW 151

26569—Rev. 3.08—July 2007 AMD64 Technology

Multiplies each of the four packed 16-bit signed integer values in the first source operand by the
corresponding packed 16-bit integer value in the second source operand, adds 8000h to the lower 16
bits of the intermediate 32-bit result of each multiplication, and writes the high-order 16 bits of each
result in the corresponding word of the destination (first source). The addition of 8000h results in the
rounding of the result, providing a numerically more accurate result than the PMULHW instruction,
which truncates the result. The first source/destination operand is an MMX register. The second source
operand is another MMX register or 64-bit memory location.

The PMULHRW instruction is an AMD 3DNow!™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

None

rFLAGS Affected

None

PMULHRW Packed Multiply High Rounded Word

Mnemonic Opcode Description

PMULHRW mmx1, mmx2/mem64 0F 0F /r
B7

Multiply 16-bit signed integer values in an MMX register
and another MMX register or 64-bit memory location and
write rounded result in the destination MMX register.

multiply

mmx1 mmx2/mem64

multiply

round

round

pmulhrw.eps

31324748 151663 031324748 151663 0

..

..

..

152 PMULHRW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD 3DNow!™ instructions are not supported,
as indicated by EDX bit 31 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMULHUW 153

26569—Rev. 3.08—July 2007 AMD64 Technology

Multiplies each packed unsigned 16-bit values in the first source operand by the corresponding packed
unsigned word in the second source operand and writes the high-order 16 bits of each intermediate 32-
bit result in the corresponding word of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit memory
location.

The PMULHUW instruction is an AMD extension to MMX™ instruction set and is an SSE
instruction. The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in
Volume 3.)

Related Instructions

PMADDWD, PMULHW, PMULLW, PMULUDQ

rFLAGS Affected

None

PMULHUW Packed Multiply High Unsigned Word

Mnemonic Opcode Description

PMULHUW mmx1, mmx2/mem64 0F E4 /r

Multiplies packed 16-bit values in an MMX register
by the packed 16-bit values in another MMX register
or 64-bit memory location and writes the high-order
16 bits of each result in the destination MMX
register.

pmulhuw-64.eps

multiply

mmx1 mmx2/mem64

multiply

..

63 04748 15163132

..

..
63 04748 15163132

154 PMULHUW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to MMX are not supported, as
indicated by EDX bit 22 of CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMULHW 155

26569—Rev. 3.08—July 2007 AMD64 Technology

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer in the second source operand and writes the high-order 16 bits of the
intermediate 32-bit result of each multiplication in the corresponding word of the destination (first
source). The first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

The PMULHW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PMADDWD, PMULHUW, PMULLW, PMULUDQ

rFLAGS Affected

None

PMULHW Packed Multiply High Signed Word

Mnemonic Opcode Description

PMULHW mmx1, mmx2/mem64 0F E5 /r

Multiplies packed 16-bit signed integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the high-order 16 bits of
each result in the destination MMX register.

pmulhw-64.eps

multiply

mmx1 mmx2/mem64

multiply

..

63 04748 15163132

..

..
63 04748 15163132

156 PMULHW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMULLW 157

26569—Rev. 3.08—July 2007 AMD64 Technology

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer in the second source operand and writes the low-order 16 bits of the
intermediate 32-bit result of each multiplication in the corresponding word of the destination (first
source). The first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

The PMULLW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULUDQ

rFLAGS Affected

None

PMULLW Packed Multiply Low Signed Word

Mnemonic Opcode Description

PMULLW mmx1, mmx2/mem64 0F D5 /r

Multiplies packed 16-bit signed integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the low-order 16 bits of
each result in the destination MMX register.

pmullw-64.eps

multiply

mmx1 mmx2/mem64

multiply

..

63 04748 15163132

..

..
63 04748 15163132

158 PMULLW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PMULUDQ 159

26569—Rev. 3.08—July 2007 AMD64 Technology

Multiplies two 32-bit unsigned integer values in the low-order doubleword of the first and second
source operands and writes the 64-bit result in the destination (first source). The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

The PMULUDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULLW

rFLAGS Affected

None

PMULUDQ Packed Multiply Unsigned Doubleword and Store
Quadword

Mnemonic Opcode Description

PMULUDQ mmx1, mmx2/mem64 0F F4 /r

Multiplies low-order 32-bit unsigned integer value in
an MMX register and another MMX register or 64-bit
memory location and writes the 64-bit result in the
destination MMX register.

pmuludq-64.eps

mmx1 mmx2/mem64

multiply

63 0313263 03132

160 PMULUDQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 in CPUID function
0000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference POR 161

26569—Rev. 3.08—July 2007 AMD64 Technology

Performs a bitwise logical OR of the values in the first and second source operands and writes the
result in the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The POR instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PAND, PANDN, PXOR

rFLAGS Affected

None

POR Packed Logical Bitwise OR

Mnemonic Opcode Description

POR mmx1, mmx2/mem64 0F EB /r
Performs bitwise logical OR of values in an MMX register
and in another MMX register or 64-bit memory location and
writes the result in the destination MMX register.

por-64.eps

mmx1 mmx2/mem64

OR

0 63 063 0

162 POR Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function 0000_0001h
or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PSADBW 163

26569—Rev. 3.08—July 2007 AMD64 Technology

Computes the absolute differences of eight corresponding packed 8-bit unsigned integers in the first
and second source operands and writes the unsigned 16-bit integer result of the sum of the eight
differences in a word in the destination (first source). The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory location. The result
is stored in the low-order word of the destination operand, and the remaining bytes in the destination
are cleared to all 0s.

The PSADBW instruction is an AMD extension to MMX™ instruction set and is an SSE instruction.
The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

rFLAGS Affected

None

PSADBW Packed Sum of Absolute Differences of Bytes Into
a Word

Mnemonic Opcode Description

PSADBW mmx1, mmx2/mem64 0F F6 /r

Compute the sum of the absolute differences of
packed 8-bit unsigned integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the 16-bit unsigned integer result in
the destination MMX register.

psadbw-64.eps

mmx1 mmx2/mem64

absolute
difference

absolute
difference

63 063 0

63 015

0

.

add 8
pairs

164 PSADBW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to MMX are not supported, as
indicated by EDX bit 22 of CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference PSHUFW 165

26569—Rev. 3.08—July 2007 AMD64 Technology

Moves any one of the four packed words in an MMX register or 64-bit memory location to a specified
word location in another MMX register. In each case, the selection of the value of the destination word
is determined by a two-bit field in the immediate-byte operand, with bits 0 and 1 selecting the contents
of the low-order word, bits 2 and 3 selecting the second word, bits 4 and 5 selecting the third word, and
bits 6 and 7 selecting the high-order word. Refer to Table 1-20 on page 166. A word in the source
operand may be copied to more than one word in the destination.

The PSHUFW instruction is an AMD extension to MMX™ instruction set and is an SSE instruction.
The presence of this instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

PSHUFW Packed Shuffle Words

Mnemonic Opcode Description

PSHUFW mmx1, mmx2/mem64,
imm8 0F 70 /r ib

Shuffles packed 16-bit values in an MMX
register or 64-bit memory location and puts the
result in another XMM register.

pshufw.eps

mmx1 mmx2/mem64

imm8
7 0

mux
mux

mux
mux

063 4748 15163132063 4748 15163132

166 PSHUFW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Related Instructions

PSHUFD, PSHUFHW, PSHUFLW

rFLAGS Affected

None

Table 1-20. Immediate-Byte Operand Encoding for PSHUFW

Destination Bits Filled
Immediate-Byte

Bit Field Value of Bit Field Source Bits Moved

15–0 1–0

0 15–0

1 31–16

2 47–32

3 63–48

31–16 3–2

0 15–0

1 31–16

2 47–32

3 63–48

47–32 5–4

0 15–0

1 31–16

2 47–32

3 63–48

63–48 7–6

0 15–0

1 31–16

2 47–32

3 63–48

Instruction Reference PSHUFW 167

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h; and
the AMD extensions to MMX are not supported, as
indicated by EDX bit 22 of CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

168 PSLLD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Left-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or

• an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 31, the destination is cleared to all 0s.

The PSLLD instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

PSLLD Packed Shift Left Logical Doublewords

Mnemonic Opcode Description

PSLLD mmx1, mmx2/mem64 0F F2 /r
Left-shifts packed doublewords in an MMX register
by the amount specified in an MMX register or 64-bit
memory location.

PSLLD mmx, imm8 0F 72 /6 ib Left-shifts packed doublewords in an MMX register
by the amount specified in an immediate byte value.

pslld-64.eps

shift left

mmx1 mmx2/mem64

shift left

mmx imm8

63 063 03132

shift left

shift left

63 03132 7 0

Instruction Reference PSLLD 169

26569—Rev. 3.08—July 2007 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

170 PSLLQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Left-shifts each 64-bit value in the first source operand by the number of bits specified in the second
source operand and writes each shifted value in the corresponding quadword of the destination (first
source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or

• an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 63, the destination is cleared to all 0s.

The PSLLQ instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSLLD, PSLLDQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

PSLLQ Packed Shift Left Logical Quadwords

Mnemonic Opcode Description

PSLLQ mmx1, mmx2/mem64 0F F3 /r
Left-shifts quadword in an MMX register by the
amount specified in an MMX register or 64-bit
memory location.

PSLLQ mmx, imm8 0F 73 /6 ib Left-shifts quadword in an MMX register by the
amount specified in an immediate byte value.

mmx1 mmx2/mem64

shift left

psllq-64.eps

mmx imm8

63 063 0

shift left

63 0 7 0

Instruction Reference PSLLQ 171

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

172 PSLLW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Left-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding word of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or

• an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 15, the destination is cleared to all 0s.

The PSLLW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

PSLLW Packed Shift Left Logical Words

Mnemonic Opcode Description

PSLLW mmx1, mmx2/mem64 0F F1 /r
Left-shifts packed words in an MMX register by the
amount specified in an MMX register or 64-bit
memory location.

PSLLW mmx, imm8 0F 71 /6 ib Left-shifts packed words in an MMX register by the
amount specified in an immediate byte value.

psllw-64.eps

shift left

mmx1 mmx2/mem64

shift left

mmx imm8

shift left

shift left

. .

. .
7 063 04748 15163132

. .

. .
63 04748 15163132 63 0

Instruction Reference PSLLW 173

26569—Rev. 3.08—July 2007 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

174 PSRAD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Right-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or

• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are filled with the sign bit of the
doubleword’s initial value. If the shift value is greater than 31, each doubleword in the destination is
filled with the sign bit of the doubleword’s initial value.

The PSRAD instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

PSRAD Packed Shift Right Arithmetic Doublewords

Mnemonic Opcode Description

PSRAD mmx1, mmx2/mem64 0F E2 /r
Right-shifts packed doublewords in an MMX register
by the amount specified in an MMX register or 64-bit
memory location.

PSRAD mmx, imm8 0F 72 /4 ib Right-shifts packed doublewords in an MMX register
by the amount specified in an immediate byte value.

psrad-64.eps

shift right

mmx1 mmx2/mem64

shift right

mmx imm8

63 03132

shift right

shift right

63 03132 7 0

63 0

Instruction Reference PSRAD 175

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

176 PSRAW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Right-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding word of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or

• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are filled with the sign bit of the word’s
initial value. If the shift value is greater than 15, each word in the destination is filled with the sign bit
of the word’s initial value.

The PSRAW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

PSRAW Packed Shift Right Arithmetic Words

Mnemonic Opcode Description

PSRAW mmx1, mmx2/mem64 0F E1 /r
Right-shifts packed words in an MMX register by the
amount specified in an MMX register or 64-bit
memory location.

PSRAW mmx, imm8 0F 71 /4 ib Right-shifts packed words in an MMX register by the
amount specified in an immediate byte value.

psraw-64.eps

shift right
arithmetic

mmx1 mmx2/mem64

shift right
arithmetic

mmx imm8

shift right
arithmetic

shift right
arithmetic

. .

. .

. .

7 063 04748 15163132

. .

63 04748 15163132 63 0

Instruction Reference PSRAW 177

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

178 PSRLD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Right-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or

• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 31, the destination is cleared to 0.

The PSRLD instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

PSRLD Packed Shift Right Logical Doublewords

Mnemonic Opcode Description

PSRLD mmx1, mmx2/mem64 0F D2 /r
Right-shifts packed doublewords in an MMX register
by the amount specified in an MMX register or 64-bit
memory location.

PSRLD mmx, imm8 0F 72 /2 ib Right-shifts packed doublewords in an MMX register
by the amount specified in an immediate byte value.

psrld-64.eps

shift right

mmx1 mmx2/mem64

shift right

mmx imm8

63 03132

shift right

shift right

63 03132 7 0

63 0

Instruction Reference PSRLD 179

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

180 PSRLQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Right-shifts each 64-bit value in the first source operand by the number of bits specified in the second
source operand and writes each shifted value in the corresponding quadword of the destination (first
source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or

• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 63, the destination is cleared to 0.

The PSRLQ instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLW

PSRLQ Packed Shift Right Logical Quadwords

Mnemonic Opcode Description

PSRLQ mmx1, mmx2/mem64 0F D3 /r
Right-shifts quadword in an MMX register by the
amount specified in an MMX register or 64-bit memory
location.

PSRLQ mmx, imm8 0F 73 /2 ib Right-shifts quadword in an MMX register by the
amount specified in an immediate byte value.

psrlq-64.eps

7 0

mmx1 mmx2/mem64

shift right

mmx imm8

63 063 0

shift right

63 0

Instruction Reference PSRLQ 181

26569—Rev. 3.08—July 2007 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

182 PSRLW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Right-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second operand and writes each shifted value in the corresponding word of the destination (first
source). The first source/destination and second source operands are:

• an MMX register and another MMX register or 64-bit memory location, or

• an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 15, the destination is cleared to 0.

The PSRLW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

PSRLW Packed Shift Right Logical Words

Mnemonic Opcode Description

PSRLW mmx1, mmx2/mem64 0F D1 /r
Right-shifts packed words in an MMX register by the
amount specified in an MMX register or 64-bit
memory location.

PSRLW mmx, imm8 0F 71 /2 ib Right-shifts packed words in an MMX register by the
amount specified in an immediate byte value.

psrlw-64.eps

shift right

mmx1 mmx2/mem64

shift right

mmx imm8

shift right

shift right

. .

. .

. .

7 063 04748 15163132

. .

63 04748 15163132 63 0

Instruction Reference PSRLW 183

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

184 PSUBB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts each packed 8-bit integer value in the second source operand from the corresponding packed
8-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding byte of the destination (first source). The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written in the destination.

The PSUBB instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBB Packed Subtract Bytes

Mnemonic Opcode Description

PSUBB mmx1, mmx2/mem64 0F F8 /r

Subtracts packed byte integer values in an MMX register
or 64-bit memory location from packed byte integer
values in another MMX register and writes the result in
the destination MMX register.

psubb-64.eps

subtract

63 0 63 0

mmx1 mmx2/mem64

subtract

.

.

.

Instruction Reference PSUBB 185

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

186 PSUBD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts each packed 32-bit integer value in the second source operand from the corresponding
packed 32-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding doubleword of the destination (first source). The first source/destination operand is an
MMX register and the second source operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written in the destination.

The PSUBD instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBD Packed Subtract Doublewords

Mnemonic Opcode Description

PSUBD mmx1, mmx2/mem64 0F FA /r

Subtracts packed 32-bit integer values in an MMX
register or 64-bit memory location from packed 32-bit
integer values in another MMX register and writes the
result in the destination MMX register.

psubd-64.eps

subtract

mmx1 mmx2/mem64

subtract

63 0313263 03132

Instruction Reference PSUBD 187

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

188 PSUBQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts each packed 64-bit integer value in the second source operand from the corresponding
packed 64-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding quadword of the destination (first source). The first source/destination and source
operands are an MMX register and another MMX register or 64-bit memory location.

The PSUBQ instruction is an SSE2 instruction; check the status of EDX bit 26 returned by CPUID
function 0000_0001h. (See “CPUID” in Volume 3.)

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written in the destination.

Related Instructions

PSUBB, PSUBD, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBQ Packed Subtract Quadword

Mnemonic Opcode Description

PSUBQ mmx1, mmx2/mem64 0F FB /r

Subtracts packed 64-bit integer values in an MMX
register or 64-bit memory location from packed 64-bit
integer values in another MMX register and writes the
result in the destination MMX register.

psubq-64.eps

mmx1 mmx2/mem64

subtract

63 063 0

Instruction Reference PSUBQ 189

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 in CPUID function
0000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

190 PSUBSB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts each packed 8-bit signed integer value in the second source operand from the corresponding
packed 8-bit signed integer in the first source operand and writes the signed integer result of each
subtraction in the corresponding byte of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register or 64-bit memory
location.

For each packed value in the destination, if the value is larger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to 80h.

The PSUBBSB instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBSB Packed Subtract Signed With Saturation Bytes

Mnemonic Opcode Description

PSUBSB mmx1, mmx2/mem64 0F E8 /r

Subtracts packed byte signed integer values in an
MMX register or 64-bit memory location from packed
byte integer values in another MMX register and writes
the result in the destination MMX register.

saturate

saturate

psubsb-64.eps

subtract

63 0 63 0

mmx1 mmx2/mem64

subtract

.

.

.

Instruction Reference PSUBSB 191

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

192 PSUBSW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts each packed 16-bit signed integer value in the second source operand from the
corresponding packed 16-bit signed integer in the first source operand and writes the signed integer
result of each subtraction in the corresponding word of the destination (first source). The first
source/destination and source operands are an MMX register and another MMX register or 64-bit
memory location.

For each packed value in the destination, if the value is larger than the largest signed 16-bit integer, it is
saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.

The PSUBSW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBSW Packed Subtract Signed With Saturation Words

Mnemonic Opcode Description

PSUBSW mmx1, mmx2/mem64 0F E9 /r

Subtracts packed 16-bit signed integer values in an
MMX register or 64-bit memory location from packed
16-bit integer values in another MMX register and
writes the result in the destination MMX register.

subtract

subtract

saturate

saturate

psubsw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

Instruction Reference PSUBSW 193

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

194 PSUBUSB Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts each packed 8-bit unsigned integer value in the second source operand from the
corresponding packed 8-bit unsigned integer in the first source operand and writes the unsigned integer
result of each subtraction in the corresponding byte of the destination (first source). The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

The PSUBUSB instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBUSB Packed Subtract Unsigned and Saturate Bytes

Mnemonic Opcode Description

PSUBUSB mmx1, mmx2/mem64 0F D8 /r

Subtracts packed byte unsigned integer values in an
MMX register or 64-bit memory location from packed
byte integer values in another MMX register and
writes the result in the destination MMX register.

saturate
saturate

psubusb-64.eps

subtract

63 0 63 0

mmx1 mmx2/mem64

subtract

.

.

.

Instruction Reference PSUBUSB 195

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

196 PSUBUSW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts each packed 16-bit unsigned integer value in the second source operand from the
corresponding packed 16-bit unsigned integer in the first source operand and writes the unsigned
integer result of each subtraction in the corresponding word of the destination (first source). The first
source/destination operand is an MMX register and the second source operand is another MMX
register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 16-bit integer,
it is saturated to FFFFh, and if the value is smaller than the smallest unsigned 16-bit integer, it is
saturated to 0000h.

The PSUBUSW instruction is an MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBW

rFLAGS Affected

None

PSUBUSW Packed Subtract Unsigned and Saturate Words

Mnemonic Opcode Description

PSUBUSW mmx1, mmx2/mem64 0F D9 /r

Subtracts packed 16-bit unsigned integer values in
an MMX register or 64-bit memory location from
packed 16-bit integer values in another MMX register
and writes the result in the destination MMX register.

subtract

subtract

saturate
saturate

psubusw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

Instruction Reference PSUBUSW 197

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

198 PSUBW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts each packed 16-bit integer value in the second source operand from the corresponding
packed 16-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding word of the destination (first source). The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of the
result are written in the destination.

The PSUBW instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW

rFLAGS Affected

None

PSUBW Packed Subtract Words

Mnemonic Opcode Description

PSUBW mmx1, mmx2/mem64 0F F9 /r

Subtracts packed 16-bit integer values in an MMX
register or 64-bit memory location from packed 16-bit
integer values in another MMX register and writes the
result in the destination MMX register.

psubw-64.eps

subtract
subtract

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

Instruction Reference PSUBW 199

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

200 PSWAPD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Swaps (reverses) the two packed 32-bit values in the source operand and writes each swapped value in
the corresponding doubleword of the destination. The source operand is an MMX register or 64-bit
memory location. The destination is another MMX register.

The PSWAPD instruction is an extension to the AMD 3DNow!™ instruction set. The presence of this
instruction set is indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

None

rFLAGS Affected

None

PSWAPD Packed Swap Doubleword

Mnemonic Opcode Description

PSWAPD mmx1, mmx2/mem64 0F 0F /r BB
Swaps packed 32-bit values in an MMX register or 64-
bit memory location and writes each value in the
destination MMX register.

pswapd.eps

mmx1 mmx2/mem64

copy copy

63 03132

63 03132

63 03132

Instruction Reference PSWAPD 201

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The AMD Extensions to 3DNow!™ are not supported,
as indicated by EDX bit 30 in CPUID function
8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

202 PUNPCKHBW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Unpacks the high-order bytes from the first and second source operands and packs them into
interleaved-byte words in the destination (first source). The low-order bytes of the source operands are
ignored. The first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

If the second source operand is all 0s, the destination contains the bytes from the first source operand
zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to unsigned 16-
bit operands for subsequent processing that requires higher precision.

The PUNPCKHBW instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHDQ, PUNP CKHQDQ, PUNPCKH WD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKHBW Unpack and Interleave High Bytes

Mnemonic Opcode Description

PUNPCKHBW mmx1,
mmx2/mem64 0F 68 /r

Unpacks the four high-order bytes in an MMX register
and another MMX register or 64-bit memory location
and packs them into interleaved bytes in the
destination MMX register.

punpckhbw-64.eps

313263 0313263 0

copy

. .. .

. . . .

63 03132

mmx1 mmx2/mem64

copy copycopy

Instruction Reference PUNPCKHBW 203

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

204 PUNPCKHDQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Unpacks the high-order doublewords from the first and second source operands and packs them into
interleaved-doubleword quadwords in the destination (first source). The low-order doublewords of the
source operands are ignored. The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from the first source
operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit values to
unsigned 64-bit operands for subsequent processing that requires higher precision.

The PUNPCKHDQ instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHQDQ, PUNPCKHWD, PUNPCKL BW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKHDQ Unpack and Interleave High Doublewords

Mnemonic Opcode Description

PUNPCKHDQ mmx1,
mmx2/mem64 0F 6A /r

Unpacks the high-order doubleword in an MMX register
and another MMX register or 64-bit memory location
and packs them into interleaved doublewords in the
destination MMX register.

punpckhdq-64.eps

copy

mmx1 mmx2/mem64

63 03132

63 03132

63 03132

copy

Instruction Reference PUNPCKHDQ 205

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

206 PUNPCKHWD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Unpacks the high-order words from the first and second source operands and packs them into
interleaved-word doublewords in the destination (first source). The low-order words of the source
operands are ignored. The first source/destination operand is an MMX register and the second source
operand is another MMX register or 64-bit memory location.

If the second source operand is all 0s, the destination contains the words from the first source operand
zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values to unsigned 32-
bit operands for subsequent processing that requires higher precision.

The PUNPCKHWD instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKLBW, PUNPCKLDQ, PUNPCKLQDQ,
PUNPCKLWD

rFLAGS Affected

None

PUNPCKHWD Unpack and Interleave High Words

Mnemonic Opcode Description

PUNPCKHWD mmx1,
mmx2/mem64 0F 69 /r

Unpacks two high-order words in an MMX register
and another MMX register or 64-bit memory
location and packs them into interleaved words in
the destination MMX register.

punpckhwd-64.eps63 04748 15163132

63 4748 3132 063 4748 3132 0

copy

mmx1 mmx2/mem64

copy copycopy

Instruction Reference PUNPCKHWD 207

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

208 PUNPCKLBW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Unpacks the low-order bytes from the first and second source operands and packs them into
interleaved-byte words in the destination (first source). The high-order bytes of the source operands
are ignored. The first source/destination operand is an MMX register and the second source operand is
another MMX register or 32-bit memory location.

If the second source operand is all 0s, the destination contains the bytes from the first source operand
zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to unsigned 16-
bit operands for subsequent processing that requires higher precision.

The PUNPCKLBW instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, P UNPCKHQ DQ, PUNPCKHWD, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKLBW Unpack and Interleave Low Bytes

Mnemonic Opcode Description

PUNPCKLBW mmx1, mmx2/mem32 0F 60 /r

Unpacks the four low-order bytes in an MMX
register and another MMX register or 32-bit
memory location and packs them into interleaved
bytes in the destination MMX register.

punpcklbw-64.eps

313263 0313263 0

. .. .

. . . .

63 03132

mmx1 mmx2/mem64

copycopy copycopy

Instruction Reference PUNPCKLBW 209

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

210 PUNPCKLDQ Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Unpacks the low-order doublewords from the first and second source operands and packs them into
interleaved-doubleword quadwords in the destination (first source). The high-order doublewords of
the source operands are ignored. The first source/destination operand is an MMX register and the
second source operand is another MMX register or 32-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from the first source
operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit values to
unsigned 64-bit operands for subsequent processing that requires higher precision.

The PUNPCKLDQ instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKH QDQ, PUNPCKHWD , PUNPCKLBW,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKLDQ Unpack and Interleave Low Doublewords

Mnemonic Opcode Description

PUNPCKLDQ mmx1,
mmx2/mem32 0F 62 /r

Unpacks the low-order doubleword in an MMX register
and another MMX register or 32-bit memory location
and packs them into interleaved doublewords in the
destination MMX register.

punpckldq-64.eps

copy

mmx1 mmx2/mem64

63 03132

63 03132

63 03132

copy

64-Bit Media Instruction Reference 211

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

212 64-Bit Media Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Unpacks the low-order words from the first and second source operands and packs them into
interleaved-word doublewords in the destination (first source). The high-order words of the source
operands are ignored. The first source/destination operand is an MMX register and the second source
operand is another MMX register or 32-bit memory location.

If the second source operand is all 0s, the destination contains the words from the first source operand
zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values to unsigned 32-
bit operands for subsequent processing that requires higher precision.

The PUNPCKLWD instruction is an MMX™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ

rFLAGS Affected

None

PUNPCKLWD Unpack and Interleave Low Words

Mnemonic Opcode Description

PUNPCKLWD mmx1, mmx2/mem32 0F 61 /r

Unpacks the two low-order words in an MMX
register and another MMX register or 32-bit
memory location and packs them into interleaved
words in the destination MMX register.

punpcklwd-64.eps63 04748 15163132

63 15163132 063 15163132 0

mmx1 mmx2/mem64

copycopycopy copy

64-Bit Media Instruction Reference 213

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was

pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

214 64-Bit Media Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Performs a bitwise exclusive OR of the values in the first and second source operands and writes the
result in the destination (first source). The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

The PXOR instruction is an MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. (See “CPUID” in Volume 3.)

Related Instructions

PAND, PANDN, POR

rFLAGS Affected

None

PXOR Packed Logical Bitwise Exclusive OR

Mnemonic Opcode Description

PXOR mmx1, mmx2/mem64 0F EF /r
Performs bitwise logical XOR of values in an MMX register
and in another MMX register or 64-bit memory location
and writes the result in the destination MMX register.

pxor-64.eps

mmx1 mmx2/mem64

XOR

0 63 063 0

64-Bit Media Instruction Reference 215

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 in CPUID function 0000_0001h
or function 8000_0001h.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was
pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

216 64-Bit Media Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Instruction Reference 217

26569—Rev. 3.08—July 2007 AMD64 Technology

2 x87 Floating-Point Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, condition codes, affected flags, and
possible exceptions generated by the x87 floating-point instructions. The x87 floating-point
instructions are used in legacy floating-point applications. Most of these instructions load, store, or
operate on data located in the x87 ST(0)–ST(7) stack registers (the FPR0–FPR7 physical registers).
The remaining instructions within this category are used to manage the x87 floating-point
environment.

A given hardware implementation of the AMD64 architecture supports the x87 floating-point
instructions if the following CPUID functions are set:

• On-Chip Floating-Point Unit, indicated by bit 0 of CPUID function 0000_0001h and function
8000_0001h.

• CMOVcc (conditional moves), FCOMI(P) and FUCOMI(P), indicated by bit 15 of CPUID
function 0000_0001h and function 8000_0001h. A 1 in this bit indicates support for x87 floating-
point conditional moves (FCMOVcc) whenever the On-Chip Floating-Point Unit bit (bit 0) is also
1.

The x87 instructions can be used in legacy mode or long mode. Their use in long mode is available if
the following CPUID function bit is set to 1:

• Long Mode, indicated by bit 29 of CPUID function 8000_0001h.

Compilation of x87 media programs for execution in 64-bit mode offers two primary advantages:
access to the 64-bit virtual address space and access to the RIP-relative addressing mode.

For further information about the x87 floating-point instructions and register resources, see:

• “x87 Floating-Point Programming” in Volume 1.

• “128-Bit, 64-Bit, and x87 Programming” in Volume 2.

• “Summary of Registers and Data Types” in Volume 3.

• “Notation” in Volume 3.

• “Instruction Prefixes” in Volume 3.

218 F2XM1 Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Raises 2 to the power specified by the value in ST(0), subtracts 1, and stores the result in ST(0). The
source value must be in the range –1.0 to +1.0. The result is undefined for source values outside this
range.

This instruction, when used in conjunction with the FYL2X instruction, can be applied to calculate
z = xy by taking advantage of the log property xy = 2y*log

2
x.

Related Instructions

FYL2X, FYL2XP1

rFLAGS Affected

None

x87 Condition Code

F2XM1 Floating-Point Compute 2x–1

Mnemonic Opcode Description

F2XM1 D9 F0 Replace ST(0) with (2ST(0) – 1).

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference F2XM1 219

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) were set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

220 FABS Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts the value in ST(0) to its absolute value by clearing the sign bit. The resulting value depends
upon the type of number used as the source value:

This operation applies even if the value in ST(0) is negative zero or negative infinity.

Related Instructions

FPREM, FRNDINT, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

FABS Floating-Point Absolute Value

Source Value (ST(0)) Result (ST(0))
-∞ +∞

-FiniteReal +FiniteReal

-0 +0

+0 +0

+FiniteReal +FiniteReal

+∞ +∞
NaN NaN

Mnemonic Opcode Description

FABS D9 E1 Replace ST(0) with its absolute value.

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FABS 221

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

222 FADDx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Adds two values and stores the result in a floating-point register. If two operands are specified, the
values are in ST(0) and another floating-point register and the instruction stores the result in the first
register specified. If one operand is specified, the instruction adds the 32-bit or 64-bit value in the
specified memory location to the value in ST(0).

The FADDP instruction adds the value in ST(0) to the value in another floating-point register and pops
the register stack. If two operands are specified, the first operand is the other register. If no operand is
specified, then the other register is ST(1).

The FIADD instruction reads a 16-bit or 32-bit signed integer value from the specified memory
location, converts it to double-extended-real format, and adds it to the value in ST(0).

Related Instructions

None

rFLAGS Affected

None

FADD
FADDP
FIADD

Floating-Point Add

Mnemonic Opcode Description

FADD ST(0),ST(i) D8 C0+i Replace ST(0) with ST(0) + ST(i).

FADD ST(i),ST(0) DC C0+i Replace ST(i) with ST(0) + ST(i).

FADD mem32real D8 /0 Replace ST(0) with ST(0) + mem32real.

FADD mem64real DC /0 Replace ST(0) with ST(0) + mem64real.

FADDP DE C1 Replace ST(1) with ST(0) + ST(1), and pop the x87 register stack.

FADDP ST(i),ST(0) DE C0+i Replace ST(i) with ST(0) + ST(i), and pop the x87 register stack.

FIADD mem16int DE /0 Replace ST(0) with ST(0) + mem16int.

FIADD mem32int DA /0 Replace ST(0) with ST(0) + mem32int.

Instruction Reference FADDx 223

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X +infinity was added to –infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

224 FADDx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference FBLD 225

26569—Rev. 3.08—July 2007 AMD64 Technology

Converts a 10-byte packed BCD value in memory into double-extended-precision format, and pushes
the result onto the x87 stack. In the process, it preserves the sign of the source value.

The packed BCD digits should be in the range 0 to 9. Attempting to load invalid digits (Ah through Fh)
produces undefined results.

Related Instructions

FBSTP

rFLAGS Affected

None

x87 Condition Code

FBLD Floating-Point Load Binary-Coded Decimal

Mnemonic Opcode Description

FBLD mem80dec DF /4 Convert a packed BCD value to floating-point and push the
result onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
1 x87 stack overflow, if an x87 register stack fault was detected.

0 If no other flags are set.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

226 FBLD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

Instruction Reference FBSTP 227

26569—Rev. 3.08—July 2007 AMD64 Technology

Converts the value in ST(0) to an 18-digit packed BCD integer, stores the result in the specified
memory location, and pops the register stack. It rounds a non-integral value to an integer value,
depending on the rounding mode specified by the RC field of the x87 control word.

The operand specifies the memory address of the first byte of the resulting 10-byte value.

Related Instructions

FBLD

rFLAGS Affected

None

x87 Condition Code

FBSTP Floating-Point Store Binary-Coded Decimal and
Pop

Mnemonic Opcode Description

FBSTP mem80dec DF /6 Convert the floating-point value in ST(0) to BCD, store the result in
mem80, and pop the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

228 FBSTP Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN value,
±infinity or an unsupported format.

X X X A source operand was too large to fit in the destination
format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Instruction Reference FCHS 229

26569—Rev. 3.08—July 2007 AMD64 Technology

Compliments the sign bit of ST(0), changing the value from negative to positive or vice versa. This
operation applies to positive and negative floating point values, as well as –0 and +0, NaNs, and +∞
and –∞.

Related Instructions

FABS, FPREM, FRNDINT, FXTRACT

rFLAGS Affected

None

x87 Condition Code

Exceptions

FCHS Floating-Point Change Sign

Mnemonic Opcode Description

FCHS D9 E0 Reverse the sign bit of ST(0).

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

230 FCLEX (FNCLEX) Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Clears the following flags in the x87 status word:

• Floating-point exception flags (PE, UE, OE, ZE, DE, and IE)

• Stack fault flag (SF)

• Exception summary status flag (ES)

• Busy flag (B)

It leaves the four condition-code bits undefined. It does not check for possible floating-point
exceptions before clearing the flags.

Assemblers usually provide an FCLEX macro that expands into the instruction sequence

WAIT ; Opcode 9B
FNCLEX destination ; Opcode DB E2

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNCLEX instruction then clears all the relevant x87 exception flags.

Related Instructions

WAIT

rFLAGS Affected

None

x87 Condition Code

FCLEX
(FNCLEX)

Floating-Point Clear Flags

Mnemonic Opcode Description

FCLEX 9B DB E2 Perform a WAIT (9B) to check for pending floating-point
exceptions, and then clear the floating-point exception flags.

FNCLEX DB E2 Clear the floating-point flags without checking for pending
unmasked floating-point exceptions.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FCLEX (FNCLEX) 231

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

232 FCMOVcc Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Tests the flags in the rFLAGS register and, depending upon the values encountered, moves the value in
another stack register to ST(0).

This set of instructions includes the mnemonics FCMOVB, FCMOVBE, FCMOVE, FCMOVNB,
FCMOVNBE, FCMOVNE, FCMOVNU, and FCMOVU.

Support for the FCMOVcc instruction is indicated when both EDX bit 0 (FPU) and ECX bit 15
(CMOV) are set to 1, as returned by either CPUID function 0000_0001h or function 8000_0001h.

Related Instructions

None

rFLAGS Affected

None

x87 Condition Code

FCMOVcc Floating-Point Conditional Move

Mnemonic Opcode Description

FCMOVB ST(0),ST(i) DA C0+i Move the contents of ST(i) into ST(0) if below (CF = 1).

FCMOVBE ST(0),ST(i) DA D0+i Move the contents of ST(i) into ST(0) if below or equal (CF =
1 or ZF = 1).

FCMOVE ST(0),ST(i) DA C8+i Move the contents of ST(i) into ST(0) if equal (ZF = 1).

FCMOVNB ST(0),ST(i) DB C0+i Move the contents of ST(i) into ST(0) if not below (CF = 0).

FCMOVNBE ST(0),ST(i) DB D0+i Move the contents of ST(i) into ST(0) if not below or equal
(CF = 0 and ZF = 0).

FCMOVNE ST(0),ST(i) DB C8+i Move the contents of ST(i) into ST(0) if not equal (ZF = 0).

FCMOVNU ST(0),ST(i) DB D8+i Move the contents of ST(i) into ST(0) if not unordered (PF =
0).

FCMOVU ST(0),ST(i) DA D8+i Move the contents of ST(i) into ST(0) if unordered (PF = 1).

x87 Condition Code Value Description

C0 U

C1 0 x87 stack underflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FCMOVcc 233

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X
The Conditional Move instructions are not supported, as
indicated by EDX bit 0 and EDX bit 15 in CPUID function
0000_0001h or function 8000_0001h.

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the control

register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

234 FCOMx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares the specified value to the value in ST(0) and sets the C0, C2, and C3 condition code flags in
the x87 status word as shown in the x87 Condition Code table below. The specified value can be in a
floating-point register or a memory location.

The no-operand version compares the value in ST(1) with the value in ST(0).

The comparison operation ignores the sign of zero (–0.0 = +0.0).

After performing the comparison operation, the FCOMP instruction pops the x87 register stack and
the FCOMPP instruction pops the x87 register stack twice.

If either or both of the compared values is a NaN or is in an unsupported format, the FCOMx
instruction sets the invalid-operation exception (IE) bit in the x87 status word to 1. Then, if the
exception is masked (IM bit set to 1 in the x87 control word), the instruction sets the condition flags to
“unordered.” If the exception is unmasked (IM bit cleared to 0), the instruction does not set the
condition code flags.

The FUCOMx instructions perform the same operations as the FCOMx instructions, but do not set the
IE bit for QNaNs.

FCOM
FCOMP
FCOMPP

Floating-Point Compare

Mnemonic Opcode Description

FCOM D8 D1 Compare the contents of ST(0) to the contents of ST(1) and
set condition flags to reflect the results of the comparison.

FCOM ST(i) D8 D0+i Compare the contents of ST(0) to the contents of ST(i) and
set condition flags to reflect the results of the comparison.

FCOM mem32real D8 /2
Compare the contents of ST(0) to the contents of
mem32real and set condition flags to reflect the results of
the comparison.

FCOM mem64real DC /2
Compare the contents of ST(0) to the contents of
mem64real and set condition flags to reflect the results of
the comparison.

FCOMP D8 D9
Compare the contents of ST(0) to the contents of ST(1), set
condition flags to reflect the results of the comparison, and
pop the x87 register stack.

FCOMP ST(i) D8 D8+i
Compare the contents of ST(0) to the contents of ST(i), set
condition flags to reflect the results of the comparison, and
pop the x87 register stack.

FCOMP mem32real D8 /3
Compare the contents of ST(0) to the contents of
mem32real, set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

Instruction Reference FCOMx 235

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

x87 Condition Code

Exceptions

FCOMP mem64real DC /3
Compare the contents of ST(0) to the contents of
mem64real, set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

FCOMPP DE D9
Compare the contents of ST(0) to the contents of ST(1), set
condition flags to reflect the results of the comparison, and
pop the x87 register stack twice.

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > source

0 0 0 1 ST(0) < source

1 0 0 0 ST(0) = source

1 1 0 1 Operands were unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value, a QNaN value, or

an unsupported format.

236 FCOMx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference FCOMIx 237

26569—Rev. 3.08—July 2007 AMD64 Technology

Compares the value in ST(0) with the value in another floating-point register and sets the zero flag
(ZF), parity flag (PF), and carry flag (CF) in the rFLAGS register based on the result as shown in the
table in the x87 Condition Code section.

The comparison operation ignores the sign of zero (–0.0 = +0.0).

After performing the comparison operation, FCOMIP pops the x87 register stack.

If either or both of the compared values is a NaN or is in an unsupported format, the FCOMIx
instruction sets the invalid-operation exception (IE) bit in the x87 status word to 1. Then, if the
exception is masked (IM bit set to 1 in the x87 control word), the instruction sets the flags to
“unordered.” If the exception is unmasked (IM bit cleared to 0), the instruction does not set the flags.

The FUCOMIx instructions perform the same operations as the FCOMIx instructions, but do not set
the IE bit for QNaNs.

Support for the FCOMIx instruction is indicated by EDX bit 0 (FPU) and EDX bit 15 (CMOV) as
returned by either CPUID function 0000_0001h or CPUID function 8000_0001h.

Related Instructions

FCOM, FCOMPP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

FCOMI
FCOMIP

Floating-Point Compare and Set Flags

Mnemonic Opcode Description

FCOMI ST(0),ST(i) DB F0+i Compare the contents of ST(0) with the contents of ST(i)
and set status flags to reflect the results of the comparison.

FCOMIP ST(0),ST(i) DF F0+i
Compare the contents of ST(0) with the contents of ST(i),
set status flags to reflect the results of the comparison, and
pop the x87 register stack.

ZF PF CF Compare Result

0 0 0 ST(0) > source

0 0 1 ST(0) < source

1 0 0 ST(0) = source

1 1 1 Operands were unordered

238 FCOMIx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0

C1 0 x87 stack underflow, if an x87 register stack fault was detected.

C2

C3

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X
The conditional move instructions are not supported, as
indicated by EDX bit 0 and EDX bit 15 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value, a QNaN value, or

an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Instruction Reference FCOS 239

26569—Rev. 3.08—July 2007 AMD64 Technology

Computes the cosine of the radian value in ST(0) and stores the result in ST(0).

If the radian value lies outside the valid range of –263 to +263 radians, the instruction sets the C2 flag in
the x87 status word to 1 to indicate the value is out of range and does not change the value in ST(0).

Related Instructions

FPTAN, FPATAN, FSIN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

FCOS Floating-Point Cosine

Mnemonic Opcode Description

FCOS D9 FF Replace ST(0) with the cosine of ST(0).

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

240 FCOS Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Instruction Reference FDECSTP 241

26569—Rev. 3.08—July 2007 AMD64 Technology

Decrements the top-of-stack pointer (TOP) field of the x87 status word. If the TOP field contains 0, it
is set to 7. In other words, this instruction rotates the stack by one position.

Related Instructions

FINCSTP

rFLAGS Affected

None

x87 Condition Code

FDECSTP Floating-Point Decrement Stack-Top Pointer

Mnemonic Opcode Description

FDECSTP D9 F6 Decrement the TOP field in the x87 status word.

Data Register

Before FDECSTP After FDECSTP

Value Stack Pointer Stack Pointer Value

7 num1 ST(7) ST(0) num1

6 num2 ST(6) ST(7) num2

5 num3 ST(5) ST(6) num3

4 num4 ST(4) ST(5) num4

3 num5 ST(3) ST(4) num5

2 num6 ST(2) ST(3) num6

1 num7 ST(1) ST(2) num7

0 num8 ST(0) ST(1) num8

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

242 FDECSTP Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

Instruction Reference FDIVx 243

26569—Rev. 3.08—July 2007 AMD64 Technology

Divides the value in a floating-point register by the value in another register or a memory location and
stores the result in the register containing the dividend. For the FDIV and FDIVP instructions, the
divisor value in memory can be stored in single-precision or double-precision floating-point format.

If only one operand is specified, the instruction divides the value in ST(0) by the value in the specified
memory location.

If no operands are specified, the FDIVP instruction divides the value in ST(1) by the value in ST(0),
stores the result in ST(1), and pops the x87 register stack.

The FIDIV instruction converts a divisor in word integer or short integer format to double-extended-
precision floating-point format before performing the division. It treats an integer 0 as +0.

If the zero-divide exception is not masked (ZM bit cleared to 0 in the x87 control word) and the
operation causes a zero-divide exception (sets the ZE bit in the x87 status word to 1), the operation
stores no result. If the zero-divide exception is masked (ZM bit set to 1), a zero-divide exception
causes ±∞ to be stored.

The sign of the operands, even if one of the operands is 0, determines the sign of the result.

Related Instructions

FDIVR, FDIVRP, FIDIVR

rFLAGS Affected

None

FDIV
FDIVP
FIDIV

Floating-Point Divide

Mnemonic Opcode Description

FDIV ST(0),ST(i) D8 F0+i Replace ST(0) with ST(0)/ST(i).

FDIV ST(i),ST(0) DC F8+i Replace ST(i) with ST(i)/ST(0).

FDIV mem32real D8 /6 Replace ST(0) with ST(0)/mem32real.

FDIV mem64real DC /6 Replace ST(0) with ST(0)/mem64real.

FDIVP DE F9 Replace ST(1) with ST(1)/ST(0), and pop the x87 register
stack.

FDIVP ST(i),ST(0) DE F8+i Replace ST(i) with ST(i)/ST(0), and pop the x87 register
stack.

FIDIV mem16int DE /6 Replace ST(0) with ST(0)/mem16int.

FIDIV mem32int DA /6 Replace ST(0) with ST(0)/mem32int.

244 FDIVx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ±infinity was divided by ±infinity.

X X X ±zero was divided by ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Zero-divide
exception (ZE) X X X A non-zero value was divided by ±zero.

Instruction Reference FDIVx 245

26569—Rev. 3.08—July 2007 AMD64 Technology

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

246 FDIVRx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Divides a value in a floating-point register or a memory location by the value in a floating-point
register and stores the result in the register containing the divisor. For the FDIVR and FDIVRP
instructions, a dividend value in memory can be stored in single-precision or double-precision
floating-point format.

If one operand is specified, the instruction divides the value at the specified memory location by the
value in ST(0). If two operands are specified, it divides the value in ST(0) by the value in another x87
stack register or vice versa.

The FIDIVR instruction converts a dividend in word integer or short integer format to double-
extended-precision format before performing the division.

The FDIVRP instruction pops the x87 register stack after performing the division operation. If no
operand is specified, the FDIVRP instruction divides the value in ST(0) by the value in ST(1).

If the zero-divide exception is not masked (ZM bit cleared to 0 in the x87 control word) and the
operation causes a zero-divide exception (sets the ZE bit in the x87 status word to 1), the operation
stores no result. If the zero-divide exception is masked (ZM bit set to 1), a zero-divide exception
causes ±∞ to be stored.

The sign of the operands, even if one of the operands is 0, determines the sign of the result.

Related Instructions

FDIV, FDIVP, FIDIV

FDIVR
FDIVRP
FIDIVR

Floating-Point Divide Reverse

Mnemonic Opcode Description

FDIVR ST(0),ST(i) D8 F8+i Replace ST(0) with ST(i)/ST(0).

FDIVR ST(i), ST(0) DC F0+i Replace ST(i) with ST(0)/ST(i).

FDIVR mem32real D8 /7 Replace ST(0) with mem32real/ST(0).

FDIVR mem64real DC /7 Replace ST(0) with mem64real/ST(0).

FDIVRP DE F1 Replace ST(1) with ST(0)/ST(1), and pop the x87 register
stack.

FDIVRP ST(i), ST(0) DE F0 +i Replace ST(i) with ST(0)/ST(i), and pop the x87 register
stack.

FIDIVR mem16int DE /7 Replace ST(0) with mem16int/ST(0).

FIDIVR mem32int DA /7 Replace ST(0) with mem32int/ST(0).

Instruction Reference FDIVRx 247

26569—Rev. 3.08—July 2007 AMD64 Technology

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or is
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or is
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ±infinity was divided by ±infinity.

X X X ±zero was divided by ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

248 FDIVRx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Zero-divide
exception (ZE) X X X A non-zero value was divided by ±zero.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference FFREE 249

26569—Rev. 3.08—July 2007 AMD64 Technology

Frees the specified x87 stack register by marking its tag register entry as empty. The instruction does
not affect the contents of the freed register or the top-of-stack pointer (TOP).

Related Instructions

FLD, FST, FSTP

rFLAGS Affected

None

x87 Condition Code

Exceptions

FFREE Floating-Point Free Register

Mnemonic Opcode Description

FFREE ST(i) DD C0+i Set the tag for x87 stack register i to empty (11b).

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

250 FICOMx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts a 16-bit or 32-bit signed integer value to double-extended-precision format, compares it to
the value in ST(0), and sets the C0, C2, and C3 condition code flags in the x87 status word to reflect the
results.

The comparison operation ignores the sign of zero (–0.0 = +0.0).

After performing the comparison operation, the FICOMP instruction pops the x87 register stack.

If ST(0) is a NaN or is in an unsupported format, the instruction sets the condition flags to
“unordered.”

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

FICOM
FICOMP

Floating-Point Integer Compare

Mnemonic Opcode Description

FICOM mem16int DE /2

Convert the contents of mem16int to double-extended-
precision format, compare the result to the contents of
ST(0), and set condition flags to reflect the results of the
comparison.

FICOM mem32int DA /2

Convert the contents of mem32int to double-extended-
precision format, compare the result to the contents of
ST(0), and set condition flags to reflect the results of the
comparison.

FICOMP mem16int DE /3

Convert the contents of mem16int to double-extended-
precision format, compare the result to the contents of
ST(0), set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

FICOMP mem32int DA /3

Convert the contents of mem32int to double-extended-
precision format, compare the result to the contents of
ST(0), set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

Instruction Reference FICOMx 251

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > source

0 0 0 1 ST(0) < source

1 0 0 0 ST(0) = source

1 1 0 1 Operands were unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value, a QNaN value, or an

unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

252 FILD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts a signed-integer in memory to double-extended-precision format and pushes the value onto
the x87 register stack. The value can be a 16-bit, 32-bit, or 64- bit integer value. Signed values from
memory can always be represented exactly in x87 registers without rounding.

Related Instructions

FLD, FST, FSTP, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

FILD Floating-Point Load Integer

Mnemonic Opcode Description

FILD mem16int DF /0 Push the contents of mem16int onto the x87 register stack.

FILD mem32int DB /0 Push the contents of mem32int onto the x87 register stack.

FILD mem64int DF /5 Push the contents of mem64int onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No stack overflow.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FILD 253

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

254 FINCSTP Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Increments the top-of-stack pointer (TOP) field of the x87 status word. If the TOP field contains 7, it is
cleared to 0. In other words, this instruction rotates the stack by one position.

Related Instructions

FDECSTP

rFLAGS Affected

None

x87 Condition Code

FINCSTP Floating-Point Increment Stack-Top Pointer

Mnemonic Opcode Description

FINCSTP D9 F7 Increment the TOP field in the x87 status word.

Data Register

Before FINCSTP After FINCSTP

Value Stack Pointer Stack Pointer Value

7 num1 ST(7) ST(6) num1

6 num2 ST(6) ST(5) num2

5 num3 ST(5) ST(4) num3

4 num4 ST(4) ST(3) num4

3 num5 ST(3) ST(2) num5

2 num6 ST(2) ST(1) num6

1 num7 ST(1) ST(0) num7

0 num8 ST(0) ST(7) num8

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FINCSTP 255

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

256 FINIT (FNINIT) Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Sets the x87 control word register, status word register, tag word register, instruction pointer, and data
pointer to their default states as follows:

• Sets the x87 control word to 037Fh—round to nearest (RC = 00b); double-extended-precision (PC
= 11b); all exceptions masked (PM, UM, OM, ZM, DM, and IM all set to 1).

• Clears all bits in the x87 status word (TOP is set to 0, which maps ST(0) onto FPR0).

• Marks all x87 stack registers as empty (11b) in the x87 tag register.

• Clears the instruction pointer and the data pointer.

These instructions do not actually zero out the x87 stack registers.

Assemblers usually provide an FINIT macro that expands into the instruction sequence

WAIT ; Opcode 9B
FNINIT destination ; Opcode DB E3

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNINIT instruction then resets the x87 environment to its default state.

Related Instructions

FWAIT, WAIT

rFLAGS Affected

None

FINIT
FNINIT

Floating-Point Initialize

Mnemonic Opcode Description

FINIT 9B DB E3 Perform a WAIT (9B) to check for pending floating-point
exceptions and then initialize the x87 unit.

FNINIT DB E3 Initialize the x87 unit without checking for unmasked
floating-point exceptions.

Instruction Reference FINIT (FNINIT) 257

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 0

C1 0

C2 0

C3 0

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

258 FISTx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Converts the value in ST(0) to a signed integer, rounds it if necessary, and copies it to the specified
memory location. The rounding control (RC) field of the x87 control word determines the type of
rounding used.

The FIST instruction supports 16-bit and 32-bit values. The FISTP instructions supports 16-bit, 32-bit,
and 64-bit values.

The FISTP instruction pops the stack after storing the rounded value in memory.

If the value is too large for the destination location, is a NaN, or is in an unsupported format, the
instruction sets the invalid-operation exception (IE) bit in the x87 status word to 1. Then, if the
exception is masked (IM bit set to 1 in the x87 control word), the instruction stores the integer
indefinite value. If the exception is unmasked (IM bit cleared to 0), the instruction does not store the
value.

Table 2-1 shows the results of storing various types of numbers as integers.

FIST
FISTP

Floating-Point Integer Store

Mnemonic Opcode Description

FIST mem16int DF /2 Convert the contents of ST(0) to integer and store the result
in mem16int.

FIST mem32int DB /2 Convert the contents of ST(0) to integer and store the result
in mem32int.

FISTP mem16int DF /3 Convert the contents of ST(0) to integer, store the result in
mem16int, and pop the x87 register stack.

FISTP mem32int DB /3 Convert the contents of ST(0) to integer, store the result in
mem32int, and pop the x87 register stack.

FISTP mem64int DF /7 Convert the contents of ST(0) to integer, store the result in
mem64int, and pop the x87 register stack.

Table 2-1. Storing Numbers as Integers

ST(0) DEST
-∞ Invalid-operation (IE) exception

–Finite-real < –1
–Integer (Invalid-operation (IE) exception if the integer is too large for the
destination)

–1 < –Finite-real< –0 0 or –1, depending on the rounding mode

-0 0

+0 0

+0 < +Finite-real < +1 0 or +1, depending on the rounding mode

Instruction Reference FISTx 259

26569—Rev. 3.08—July 2007 AMD64 Technology

Related Instructions

FLD, FST, FSTP, FILD, FBLD, FBSTP, FISTTP

rFLAGS Affected

None

x87 Condition Code

+Finite-real > +1
+Integer (Invalid-operation (IE) exception if the integer is too large for the
destination)

+∞ Invalid-operation (IE) exception

NaN Invalid-operation (IE) exception

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Table 2-1. Storing Numbers as Integers (continued)

ST(0) DEST

260 FISTx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X The SSE3 instructions are not supported, as indicated by
ECX bit 0 of CPUID function 0000_0001h.

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X The source operand was too large for the destination
format.

X X X A source operand was an SNaN value, a QNaN value,
+-infinity, or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Instruction Reference FISTTP 261

26569—Rev. 3.08—July 2007 AMD64 Technology

Converts a floating-point value in ST(0) to an integer by truncating the fractional part of the number
and storing the integer result to the memory address specified by the destination operand. FISTTP then
pops the floating point register stack. The FISTTP instruction ignores the rounding mode specified by
the x87 control word.

The FISTTP instruction applies to 16-bit, 32-bit, and 64-bit operands.

The FISTTP instruction is an SSE3 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Table 2-2 shows the results of storing various types of numbers as integers.

Related Instructions

FLD, FST, FSTP, FILD, FBLD, FBSTP, FISTP

rFLAGS Affected

None

FISTTP Floating Point Integer Truncate and Store

Mnemonic Opcode Description

FISTTP mem16int DF /1
Store the truncated floating-point value in ST(0) in
memory location mem16int and pop the floating-point
register stack.

FISTTP mem32int DB /1
Store the truncated floating-point value in ST(0) in
memory location mem32int and pop the floating-point
register stack.

FISTTP mem64int DD /1
Store the truncated floating-point value in ST(0) in
memory location mem64int and pop the floating-point
register stack.

Table 2-2. Storing Numbers as Integers

ST(0) DESTINATION
-∞ Invalid-operation (IE) exception

–Finite-real ≤ –1 –Integer (Invalid-operation (IE) exception if the integer is too large for the destination)

-1 < Finite-real < +1 0

+Finite-real ≥ +1 +Integer (Invalid-operation (IE) exception if the integer is too large for the destination)

+∞ Invalid-operation (IE) exception

NaN Invalid-operation (IE) exception

262 FISTTP Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

x87 Condition Code

Exceptions

x87 Condition Code Value* Description

C0 U

C1 0

x87 stack underflow, if an x87 register stack fault was detected.

FP number is rounded down (always done since the instruction forces
truncate mode).

C2 U

C3 U

Note: *A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

#UD X X X The SSE3 instructions are not supported, as indicated by
ECX bit 0 of CPUID function 0000_0001h.

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X The source operand was too large for the destination
format.

X X X A source operand was an SNaN value, a QNaN value,+-
infinity, or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Instruction Reference FLD 263

26569—Rev. 3.08—July 2007 AMD64 Technology

Pushes a value in memory or in a floating-point register onto the register stack. If in memory, the value
can be a single-precision, double-precision, or double-extended-precision floating-point value. The
operation converts a single-precision or double-precision value to double-extended-precision format
before pushing it onto the stack.

Related Instructions

FFREE, FST, FSTP, FILD, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

FLD Floating-Point Load

Mnemonic Opcode Description

FLD ST(i) D9 C0+i Push the contents of ST(i) onto the x87 register stack.

FLD mem32real D9 /0 Push the contents of mem32real onto the x87 register stack.

FLD mem64real DD /0 Push the contents of mem64real onto the x87 register stack.

FLD mem80real DB /5 Push the contents of mem80real onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 No x87 stack fault.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

264 FLD Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X A source operand was in an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Denormalized-
operand exception
(DE)

X X X
A source operand was a denormal value. This exception
does not occur if the source operand was in double-
extended-precision format.

Instruction Reference FLD1 265

26569—Rev. 3.08—July 2007 AMD64 Technology

Pushes the floating-point value +1.0 onto the register stack.

Related Instructions

FLD, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLD1 Floating-Point Load +1.0

Mnemonic Opcode Description

FLD1 D9 E8 Push +1.0 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

266 FLDCW Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Loads a 16-bit value from the specified memory location into the x87 control word. If the new x87
control word unmasks any pending floating point exceptions, then they are handled upon execution of
the next x87 floating-point or 64-bit media instruction.

To avoid generating exceptions when loading a new control word, use the FCLEX or FNCLEX
instruction to clear any pending exceptions.

Related Instructions

FSTCW, FNSTCW, FSTSW, FNSTSW, FSTENV, FNSTENV, FLDENV, FCLEX, FNCLEX

rFLAGS Affected

None

x87 Condition Code

FLDCW Floating-Point Load x87 Control Word

Mnemonic Opcode Description

FLDCW mem2env D9 /5 Load the contents of mem2env into the x87 control word.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FLDCW 267

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

268 FLDENV Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Restores the x87 environment from memory starting at the specified address. The x87 environment
consists of the x87 control, status, and tag word registers, the last non-control x87 instruction pointer,
the last x87 data pointer, and the opcode of the last completed non-control x87 instruction.

The FLDENV instruction takes a memory operand that specifies the starting address of either a 14-
byte or 28-byte area in memory. The 14-byte operand is required for a 16-bit operand-size; the 28-byte
memory area is required for both 32-bit and 64-bit operand sizes. The layout of the saved x87
environment within the specified memory area depends on whether the processor is operating in
protected or real mode. See “Media and x87 Processor State” in Volume 2 for details on how this
instruction loads the x87 environment from memory. (Because FSTENV does not save the full 64-bit
data and instruction pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than
FSTENV/FLDENV.)

The environment to be loaded is typically stored by a previous FNSTENV or FSTENV instruction.
The FLDENV instruction should be executed in the same operating mode as the instruction that stored
the x87 environment.

If FLDENV results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or FNCLEX
instruction to clear the exception flags in the x87 status word before storing that environment.

Related Instructions

FSTENV, FNSTENV, FCLEX, FNCLEX

rFLAGS Affected

None

FLDENV Floating-Point Load x87 Environment

Mnemonic Opcode Description

FLDENV
mem14/28env D9 /4 Load the complete contents of the x87 environment from

mem14/28env.

Instruction Reference FLDENV 269

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Loaded from memory.

C1 M Loaded from memory.

C2 M Loaded from memory.

C3 M Loaded from memory.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

270 FLDL2E Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Pushes log2e onto the x87 register stack. The value in ST(0) is the result, in double-extended-precision
format, of rounding an internal 66-bit constant according to the setting of the RC field in the x87
control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDL2E Floating-Point Load Log2 e

Mnemonic Opcode Description

FLDL2E D9 EA Push log2e onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

Instruction Reference FLDL2T 271

26569—Rev. 3.08—July 2007 AMD64 Technology

Pushes log2 10 onto the x87 register stack. The value in ST(0) is the result, in double-extended-
precision format, of rounding an internal 66-bit constant according to the setting of the RC field in the
x87 control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDL2T Floating-Point Load Log2 10

Mnemonic Opcode Description

FLDL2T D9 E9 Push log210 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

272 FLDLG2 Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Pushes log10 2 onto the x87 register stack. The value in ST(0) is the result, in double-extended-
precision format, of rounding an internal 66-bit constant according to the setting of the RC field in the
x87 control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDLG2 Floating-Point Load Log10 2

Mnemonic Opcode Description

FLDLG2 D9 EC Push log102 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

Instruction Reference FLDLN2 273

26569—Rev. 3.08—July 2007 AMD64 Technology

Pushes loge2 onto the x87 register stack. The value in ST(0) is the result, in double-extended-precision
format, of rounding an internal 66-bit constant according to the setting of the RC field in the x87
control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLG2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDLN2 Floating-Point Load Ln 2

Mnemonic Opcode Description

FLDLN2 D9 ED Push loge2 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

274 FLDPI Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Pushes π onto the x87 register stack. The value in ST(0) is the result, in double-extended-precision
format, of rounding an internal 66-bit constant according to the setting of the RC field in the x87
control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDPI Floating-Point Load Pi

Mnemonic Opcode Description

FLDPI D9 EB Push π onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

Instruction Reference FLDZ 275

26569—Rev. 3.08—July 2007 AMD64 Technology

Pushes +0.0 onto the x87 register stack.

Related Instructions

FLD, FLD1, FLDPI, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDZ Floating-Point Load +0.0

Mnemonic Opcode Description

FLDZ D9 EE Push zero onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

276 FMULx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Multiplies the value in a floating-point register by the value in a memory location or another stack
register and stores the result in the first register. The instruction converts a single-precision or double-
precision value in memory to double-extended-precision format before multiplying.

If one operand is specified, the instruction multiplies the value in the ST(0) register by the value in the
specified memory location and stores the result in the ST(0) register.

If two operands are specified, the instruction multiplies the value in the ST(0) register by the value in
another specified floating-point register and stores the result in the register specified in the first
operand.

The FMULP instruction pops the x87 stack after storing the product. The no-operand version of the
FMULP instruction multiplies the value in the ST(1) register by the value in the ST(0) register and
stores the product in the ST(1) register.

The FIMUL instruction converts a short-integer or word-integer value in memory to double-extended-
precision format, multiplies it by the value in ST(0), and stores the product in ST(0).

Related Instructions

None

rFLAGS Affected

None

FMUL
FMULP
FIMUL

Floating-Point Multiply

Mnemonic Opcode Description

FMUL ST(0),ST(i) D8 C8+i Replace ST(0) with ST(0) ∗ ST(i).

FMUL ST(i),ST(0) DC C8+i Replace ST(i) with ST(0) ∗ ST(i).

FMUL mem32real D8 /1 Replace ST(0) with mem32real ∗ ST(0).

FMUL mem64real DC /1 Replace ST(0) with mem64real ∗ ST(0).

FMULP DE C9 Replace ST(1) with ST(0) ∗ ST(1), and pop the x87 register
stack.

FMULP ST(i),ST(0) DE C8+i Replace ST(i) with ST(0) ∗ ST(i), and pop the x87 register
stack.

FIMUL mem16int DE /1 Replace ST(0) with mem16int ∗ ST(0).

FIMUL mem32int DA /1 Replace ST(0) with mem32int ∗ ST(0).

Instruction Reference FMULx 277

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ±infinity was multiplied by ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

278 FMULx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference FNOP 279

26569—Rev. 3.08—July 2007 AMD64 Technology

Performs no operation. This instruction affects only the rIP register. It does not otherwise affect the
processor context.

Related Instructions

FWAIT, NOP

rFLAGS Affected

None

x87 Condition Code

None

Exceptions

FNOP Floating-Point No Operation

Mnemonic Opcode Description

FNOP D9 D0 Perform no operation.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

280 FPATAN Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the arctangent of the ordinate (Y) in ST(1) divided by the abscissa (X) in ST(0), which is the
angle in radians between the X axis and the radius vector from the origin to the point (X, Y). It then
stores the result in ST(1) and pops the x87 register stack. The resulting value has the same sign as the
ordinate value and a magnitude less than or equal to π.

There is no restriction on the range of values that FPATAN can accept. Table 2-3 shows the results
obtained when computing the arctangent of various classes of numbers, assuming that underflow does
not occur:

Related Instructions

FCOS, FPTAN, FSIN, FSINCOS

rFLAGS Affected

None

FPATAN Floating-Point Partial Arctangent

Table 2-3. Computing Arctangent of Numbers

X (ST(0))

–∞ –Finite –0 +0 +Finite +∞ NaN

Y (ST(1))

–∞ –3π/4 –π/2 –π/2 –π/2 –π/2 –π/4 NaN

–Finite –π –π to –π/2 –π/2 –π/2 –π/2 to –0 —0 NaN

–0 –π –π –π –0 –0 —0 NaN

+0 +π +π +π +0 +0 +0 NaN

+Finite +π +π to +π/2 +π/2 +π/2 +π/2 to +0 +0 NaN

+∞ +3π/4 +π/2 +π/2 +π/2 +π/2 +π/4 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Mnemonic Opcode Description

FPATAN D9 F3 Compute arctan(ST(1)/ST(0)), store the result in ST(1), and
pop the x87 register stack.

Instruction Reference FPATAN 281

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

282 FPREM Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the exact remainder obtained by dividing the value in ST(0) by that in ST(1), and stores the
result in ST(0). It computes the remainder by an iterative subtract-and-shift long division algorithm in
which one quotient bit is calculated in each iteration.

If the exponent difference between ST(0) and ST(1) is less than 64, the instruction computes all integer
bits of the quotient, guaranteeing that the remainder is less in magnitude than the divisor in ST(1). If
the exponent difference is equal to or greater than 64, it computes only the subset of integer quotient
bits numbering between 32 and 63, returns a partial remainder, and sets the C2 condition code bit to 1.

FPREM is supported for software that was written for early x87 coprocessors. Unlike the FPREM1
instruction, FPREM does not compute the partial remainder as specified in IEEE Standard 754.

Action
ExpDiff = Exponent(ST(0)) - Exponent(ST(1))
IF (ExpDiff < 0)
{
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = 0
}
ELSIF (ExpDiff < 64)
{
 Quotient = Truncate(ST(0)/ST(1))
 ST(0) = ST(0) - (ST(1) * Quotient)
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = Quotient mod 8
}
ELSE
{
 N = 32 + (ExpDiff mod 32)
 Quotient = Truncate ((ST(0)/ST(1))/2^(ExpDiff-N))
 ST(0) = ST(0) - (ST(1) * Quotient * 2^(ExpDiff-N))
 SW.C2 = 1
 {SW.C0, SW.C3, SW.C1} = 0
}

Related Instructions

FPREM1, FABS, FRNDINT, FXTRACT, FCHS

rFLAGS Affected

None

FPREM Floating-Point Partial Remainder

Mnemonic Opcode Description

FPREM D9 F8 Compute the remainder of the division of ST(0) by ST(1) and
store the result in ST(0).

Instruction Reference FPREM 283

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Set equal to the value of bit 2 of the quotient.

C1
0 x87 stack underflow, if an x87 register stack fault was detected.

M Set equal to the value of bit 0 of the quotient, if there was no fault.

C2

0 FPREM generated the partial remainder.

1 The source operands differed by more than a factor of 264, so the result
is incomplete.

C3 M Set equal to the value of bit 1 of the quotient.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the control

register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ST(0) was ±infinity.

X X X ST(0) and ST(1) were both ±zero.

X X X ST(1) was ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

284 FPREM1 Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the IEEE Standard 754 remainder obtained by dividing the value in ST(0) by that in ST(1),
and stores the result in ST(0). Unlike FPREM, it rounds the integer quotient to the nearest even integer
and returns the remainder corresponding to the back multiply of the rounded quotient.

If the exponent difference between ST(0) and ST(1) is less than 64, the instruction computes all integer
as well as additional fractional bits of the quotient to do the rounding. The remainder returned is a
complete remainder and is less than or equal to one half of the magnitude of the divisor. If the exponent
difference is equal to or greater than 64, it computes only the subset of integer quotient bits numbering
between 32 and 63, returns the partial remainder, and sets the C2 condition code bit to 1.

Rounding control has no effect. FPREM1 results are exact.

Action

ExpDiff = Exponent(ST(0)) - Exponent(ST(1))
IF (ExpDiff < 0)
{
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = 0
}
ELSIF (ExpDiff < 64)
{
 Quotient = Integer obtained by rounding (ST(0)/ST(1))
 to nearest even integer
 ST(0) = ST(0) - (ST(1) * Quotient)
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = Quotient mod 8
}
ELSE
{
 N = 32 + (ExpDiff mod 32)
 Quotient = Truncate ((ST(0)/ST(1))/2^(ExpDiff-N))
 ST(0) = ST(0) - (ST(1) * Quotient * 2^(ExpDiff-N))
 SW.C2 = 1
 {SW.C0, SW.C3, SW.C1} = 0
}

Related Instructions

FPREM, FABS, FRNDINT, FXTRACT, FCHS

FPREM1 Floating-Point Partial Remainder

Mnemonic Opcode Description

FPREM1 D9 F5 Compute the IEEE standard 754 remainder of the division of
ST(0) by ST(1) and store the result in ST(0).

Instruction Reference FPREM1 285

26569—Rev. 3.08—July 2007 AMD64 Technology

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Set equal to the value of bit 2 of the quotient.

C1
0 x87 stack underflow, if an x87 register stack fault was detected.

M Set equal to the value of the bit 0 of the quotient, if there was no fault.

C2

0 FPREM1 generated the partial remainder.

1 The source operands differed by more than a factor of 264, so the result
is incomplete.

C3 M Set equal to the value of bit 1 of the quotient.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X ST(0) was ±infinity.

X X X ST(0) and ST(1) were both ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Zero-divide
exception (ZE) X X X ST(1) was ±0 and ST(0) was not ±zero or ±infinity.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

286 FPTAN Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the tangent of the radian value in ST(0), stores the result in ST(0), and pushes a value of 1.0
onto the x87 register stack.

The source value must be between –263 and +263 radians. If the source value lies outside the specified
range, the instruction sets the C2 bit of the x87 status word to 1 and does not change the value in ST(0).

Related Instructions

FCOS, FPATAN, FSIN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

FPTAN Floating-Point Partial Tangent

Mnemonic Opcode Description

FPTAN D9 F2 Replace ST(0) with the tangent of ST(0), then push 1.0 onto
the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FPTAN 287

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the control

register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X A source operand was ±infinity

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

288 FRNDINT Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Rounds the value in ST(0) to an integer, depending on the setting of the rounding control (RC) field of
the x87 control word, and stores the result in ST(0).

If the initial value in ST(0) is ∞, the instruction does not change ST(0). If the value in ST(0) is not an
integer, it sets the precision exception (PE) bit of the x87 status word to 1.

Related Instructions

FABS, FPREM, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

FRNDINT Floating-Point Round to Integer

Mnemonic Opcode Description

FRNDINT D9 FC Round the contents of ST(0) to an integer.

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FRNDINT 289

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Precision exception
(PE) X X X The source operand was not an integral value.

290 FRSTOR Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Restores the complete x87 state from memory starting at the specified address, as stored by a previous
call to F(N)SAVE.

The FRSTOR instruction takes a memory operand that specifies the starting address of either a 94-byte
or 108-byte area in memory. The 94-byte operand is required for a 16-bit operand-size; the 108-byte
memory area is required for both 32-bit and 64-bit operand sizes. The layout of the saved x87 state
within the specified memory area depends on whether the processor is operating in protected or real
mode. See “Media and x87 Processor State” in Volume 2 for details on how this instruction stores the
x87 environment in memory. (Because FSAVE does not save the full 64-bit data and instruction
pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than FSAVE/FRSTOR.)

Because the MMX registers are mapped onto the low 64 bits of the x87 floating-point registers, this
operation also restores the MMX state.

If FRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or FNCLEX
instruction to clear the exception flags in the x87 status word before storing that environment.

For details about the memory image restored by FRSTOR, see “Media and x87 Processor State” in
Volume 2.

Related Instructions

FSAVE, FNSAVE, FXSAVE, FXRSTOR

rFLAGS Affected

None

FRSTOR Floating-Point Restore x87 and MMX™ State

Mnemonic Opcode Description

FRSTOR
mem94/108env DD /4 Load the x87 state from mem94/108env.

Instruction Reference FRSTOR 291

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Loaded from memory.

C1 M Loaded from memory.

C2 M Loaded from memory.

C3 M Loaded from memory.

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

292 FSAVE (FNSAVE) Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Stores the complete x87 state to memory starting at the specified address and reinitializes the x87 state.

The FSAVE instruction takes a memory operand that specifies the starting address of either a 94-byte
or 108-byte area in memory. The 94-byte operand is required for a 16-bit operand-size; the 108-byte
memory area is required for both 32-bit and 64-bit operand sizes. The layout of the saved x87 state
within the specified memory area depends on whether the processor is operating in protected or real
mode. See “Media and x87 Processor State” in Volume 2 for details on how this instruction stores the
x87 environment in memory. (Because FSAVE does not save the full 64-bit data and instruction
pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than FSAVE/FRSTOR.)

Because the MMX registers are mapped onto the low 64 bits of the x87 floating-point registers, this
operation also saves the MMX state.

The FNSAVE instruction does not wait for pending unmasked x87 floating-point exceptions to be
processed.

Assemblers usually provide an FSAVE macro that expands into the instruction sequence

WAIT ; Opcode 9B
FNSAVE destination ; Opcode DD /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNSAVE instruction then stores the x87 state to the specified destination.

Related Instructions

FRSTOR, FXSAVE, FXRSTOR

rFLAGS Affected

None

FSAVE
FNSAVE

Floating-Point Save x87 and MMX™ State

Mnemonic Opcode Description

FSAVE mem94/108env 9B DD /6
Copy the x87 state to mem94/108env after checking for
pending floating-point exceptions, then reinitialize the x87
state.

FNSAVE
mem94/108env DD /6

Copy the x87 state to mem94/108env without checking for
pending floating-point exceptions, then reinitialize the x87
state.

Instruction Reference FSAVE (FNSAVE) 293

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 0

C1 0

C2 0

C3 0

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

294 FSCALE Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Multiplies the floating-point value in ST(0) by 2 to the power of the integer portion of the floating-
point value in ST(1).

This instruction provides an efficient method of multiplying (or dividing) by integral powers of 2
because, typically, it simply adds the integer value to the exponent of the value in ST(0), leaving the
significand unaffected. However, if the value in ST(0) is a denormal value, the mantissa is also
modified and the result may end up being a normalized number. Likewise, if overflow or underflow
results from a scale operation, the mantissa of the resulting value will be different from that of the
source.

The FSCALE instruction performs the reverse operation to that of the FXTRACT instruction.

Related Instructions

FSQRT, FPREM, FPREM1, FRNDINT, FXTRACT, FABS, FCHS

rFLAGS Affected

None

x87 Condition Code

FSCALE Floating-Point Scale

Mnemonic Opcode Description

FSCALE D9 FD Replace ST(0) with ST(0) ∗ 2rndint(ST(1))

x87 Condition Code Value Description

C0 U Undefined.

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U Undefined.

C3 U Undefined

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FSCALE 295

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

296 FSIN Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the sine of the radian value in ST(0) and stores the result in ST(0).

The source value must be in the range –263 to +263 radians. If the value lies outside this range, the
instruction sets the C2 bit in the x87 status word to 1 and does not change the value in ST(0).

Related Instructions

FCOS, FPATAN, FPTAN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

FSIN Floating-Point Sine

Mnemonic Opcode Description

FSIN D9 FE Replace ST(0) with the sine of ST(0).

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FSIN 297

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X A source operand was ±infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

298 FSINCOS Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the sine and cosine of the value in ST(0), stores the sine in ST(0), and pushes the cosine onto
the x87 register stack. The source value must be in the range –263 to +263 radians.

If the source operand is outside this range, the instruction sets the C2 bit in the x87 status word to 1 and
does not change the value in ST(0).

Related Instructions

FCOS, FPATAN, FPTAN, FSIN

rFLAGS Affected

None

x87 Condition Code

FSINCOS Floating-Point Sine and Cosine

Mnemonic Opcode Description

FSINCOS D9 FB Replace ST(0) with the sine of ST(0), then push the cosine
of ST(0) onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 Result in ST(1) was rounded down, if a precision exception was
detected.

1 Result in ST(1) was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FSINCOS 299

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the control

register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X A source operand was ±infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

300 FSQRT Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Computes the square root of the value in ST(0) and stores the result in ST(0). Taking the square root of
+infinity returns +infinity.

Related Instructions

FSCALE, FPREM, FPREM1, FRNDINT, FXTRACT, FABS, FCHS

rFLAGS Affected

None

x87 Condition Code

FSQRT Floating-Point Square Root

Mnemonic Opcode Description

FSQRT D9 FA Replace ST(0) with the square root of ST(0).

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FSQRT 301

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not
available, #NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X A source operand was a negative value (not including -
zero).

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

302 FSTx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Copies the value in ST(0) to the specified floating-point register or memory location.

The FSTP instruction pops the x87 stack after copying the value. The instruction FSTP ST(0) is the
same as popping the stack with no data transfer.

If the specified destination is a single-precision or double-precision memory location, the instruction
converts the value to the appropriate precision format. It does this by rounding the significand of the
source value as specified by the rounding mode determined by the RC field of the x87 control word
and then converting to the format of destination. It also converts the exponent to the width and bias of
the destination format.

If the value is too large for the destination format, the instruction sets the overflow exception (OE) bit
of the x87 status word. Then, if the overflow exception is unmasked (OM bit cleared to 0 in the x87
control word), the instruction does not perform the store.

If the value is a denormal value, the instruction sets the underflow exception (UE) bit in the x87 status
word.

If the value is ±0, ±∞, or a NaN, the instruction truncates the least significant bits of the significand and
exponent to fit the destination location.

Related Instructions

FFREE, FLD, FILD, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

FST
FSTP

Floating-Point Store Stack Top

Mnemonic Opcode Description

FST ST(i) DD D0+i Copy the contents of ST(0) to ST(i).

FST mem32real D9 /2 Copy the contents of ST(0) to mem32real.

FST mem64real DD /2 Copy the contents of ST(0) to mem64real.

FSTP ST(i) DD D8+i Copy the contents of ST(0) to ST(i) and pop the x87 register stack.

FSTP mem32real D9 /3 Copy the contents of ST(0) to mem32real and pop the x87 register stack

FSTP mem64real DD /3 Copy the contents of ST(0) to mem64real and pop the x87 register stack.

FSTP mem80real DB /7 Copy the contents of ST(0) to mem80real and pop the x87 register stack.

Instruction Reference FSTx 303

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

304 FSTCW (FNSTCW) Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Stores the x87 control word in the specified 2-byte memory location. The FNSTCW instruction does
not check for possible floating-point exceptions before copying the image of the x87 status register.

Assemblers usually provide an FSTCW macro that expands into the instruction sequence:

WAIT ; Opcode 9B
FNSTCW destination ; Opcode D9 /7

The WAIT (9Bh) instruction checks for pending x87 exception and calls an exception handler, if
necessary. The FNSTCW instruction then stores the state of the x87 control register to the desired
destination.

Related Instructions

FSTSW, FNSTSW, FSTENV, FNSTENV

rFLAGS Affected

None

x87 Condition Code

FSTCW
(FNSTCW)

Floating-Point Store Control Word

Mnemonic Opcode Description

FSTCW mem2env 9B D9 /7 Perform a WAIT (9B) to check for pending floating-point
exceptions, then copy the x87 control word to mem2env.

FNSTCW mem2env D9 /7 Copy the x87 control word to mem2env without checking for
floating-point exceptions.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Instruction Reference FSTCW (FNSTCW) 305

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

306 FSTENV (FNSTENV) Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Stores the current x87 environment to memory starting at the specified address, and then masks all
floating-point exceptions. The x87 environment consists of the x87 control, status, and tag word
registers, the last non-control x87 instruction pointer, the last x87 data pointer, and the opcode of the
last completed non-control x87 instruction.

The FSTENV instruction takes a memory operand that specifies the start of either a 14-byte or 28-byte
area in memory. The 14-byte operand is required for a 16-bit operand-size; the 28-byte memory area is
required for both 32-bit and 64-bit operand sizes. The layout of the saved x87 environment within the
specified memory area depends on whether the processor is operating in protected or real mode. See
“Media and x87 Processor State” in Volume 2 for details on how this instruction stores the x87
environment in memory. (Because FLDENV/FSTENV do not save the full 64-bit data and instruction
pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than FLDENV/FSTENV.)

The FNSTENV instruction does not check for possible floating-point exceptions before storing the
environment.

Assemblers usually provide an FSTENV macro that expands into the instruction sequence

WAIT ; Opcode 9B
FNSTENV destination ; Opcode D9 /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler if
necessary. The FNSTENV instruction then stores the state of the x87 environment to the specified
destination.

Exception handlers often use these instructions because they provide access to the x87 instruction and
data pointers. An exception handler typically saves the environment on the stack. The instructions
mask all floating-point exceptions after saving the environment to prevent those exceptions from
interrupting the exception handler.

Related Instructions

FLDENV, FSTSW, FNSTSW, FSTCW, FNSTCW

FSTENV
(FNSTENV)

Floating-Point Store Environment

Mnemonic Opcode Description

FSTENV
mem14/28env 9B D9 /6

Perform a WAIT (9B) to check for pending floating-point
exceptions, then copy the x87 environment to mem14/28env
and mask the floating-point exceptions.

FNSTENV
mem14/28env D9 /6

Copy the x87 environment to mem14/28env without
checking for pending floating-point exceptions, and mask the
exceptions.

Instruction Reference FSTENV (FNSTENV) 307

26569—Rev. 3.08—July 2007 AMD64 Technology

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

308 FSTSW (FNSTSW) Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Stores the current state of the x87 status word register in either the AX register or a specified two-byte
memory location. The image of the status word placed in the AX register always reflects the result
after the execution of the previous x87 instruction.

The AX form of the instruction is useful for performing conditional branching operations based on the
values of x87 condition flags.

The FNSTSW instruction does not check for possible floating-point exceptions before storing the x87
status word.

Assemblers usually provide an FSTSW macro that expands into the instruction sequence:

WAIT ; Opcode 9B
FNSTSW destination ; Opcode DD /7 or DF E0

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler if
necessary. The FNSTSW instruction then stores the state of the x87 status register to the desired
destination.

Related Instructions

FSTCW, FNSTCW, FSTENV, FNSTENV

rFLAGS Affected

None

FSTSW
(FNSTSW)

Floating-Point Store Status Word

Mnemonic Opcode Description

FSTSW AX 9B DF E0 Perform a WAIT (9B) to check for pending floating-point
exceptions, then copy the x87 status word to the AX register.

FSTSW mem2env 9B DD /7 Perform a WAIT (9B) to check for pending floating-point
exceptions, then copy the x87 status word to mem12byte.

FNSTSW AX DF E0 Copy the x87 status word to the AX register without
checking for pending floating-point exceptions.

FNSTSW mem2env DD /7 Copy the x87 status word to mem12byte without checking
for pending floating-point exceptions.

Instruction Reference FSTSW (FNSTSW) 309

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a nonwritable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

310 FSUBx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Subtracts the value in a floating-point register or memory location from the value in another register
and stores the result in that register.

If no operands are specified, the instruction subtracts the value in ST(0) from that in ST(1) and stores
the result in ST(1).

If one operand is specified, it subtracts a floating-point or integer value in memory from the contents of
ST(0) and stores the result in ST(0).

If two operands are specified, it subtracts the value in ST(0) from the value in another floating-point
register or vice versa.

The FSUBP instruction pops the x87 register stack after performing the subtraction.

The no-operand version of the instruction always pops the register stack. In some assemblers, the
mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instruction converts a signed integer value to double-extended-precision format before
performing the subtraction.

Related Instructions

FSUBRP, FISUBR, FSUBR

rFLAGS Affected

None

FSUB
FSUBP
FISUB

Floating-Point Subtract

Mnemonic Opcode Description

FSUB ST(0),ST(i) D8 E0+i Replace ST(0) with ST(0) – ST(i).

FSUB ST(i),ST(0) DC E8+i Replace ST(i) with ST(i) – ST(0).

FSUB mem32real D8 /4 Replace ST(0) with ST(0) – mem32real.

FSUB mem64real DC /4 Replace ST(0) with ST(0) – mem64real.

FSUBP DE E9 Replace ST(1) with ST(1) – ST(0) and pop the x87 register
stack.

FSUBP ST(i),ST(0) DE E8+i Replace ST(i) with ST(i) – ST(0), and pop the x87 register
stack.

FISUB mem16int DE /4 Replace ST(0) with ST(0) – mem16int.

FISUB mem32int DA /4 Replace ST(0) with ST(0) – mem32int.

Instruction Reference FSUBx 311

26569—Rev. 3.08—July 2007 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

312 FSUBx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference FSUBRx 313

26569—Rev. 3.08—July 2007 AMD64 Technology

Subtracts the value in a floating-point register from the value in another register or a memory location,
and stores the result in the first specified register. Values in memory can be in single-precision or
double-precision floating-point, word integer, or short integer format.

If one operand is specified, the instruction subtracts the value in ST(0) from the value in memory and
stores the result in ST(0).

If two operands are specified, it subtracts the value in ST(0) from the value in another floating-point
register or vice versa.

The FSUBRP instruction pops the x87 register stack after performing the subtraction.

The no-operand version of the instruction always pops the register stack. In some assemblers, the
mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instruction converts a signed integer operand to double-extended-precision format
before performing the subtraction.

The FSUBR instructions perform the reverse operations of the FSUB instructions.

Related Instructions

FSUB, FSUBP, FISUB

rFLAGS Affected

None

FSUBR
FSUBRP
FISUBR

Floating-Point Subtract Reverse

Mnemonic Opcode Description

FSUBR ST(0),ST(i) D8 E8+i Replace ST(0) with ST(i) - ST(0).

FSUBR ST(i),ST(0) DC E0+i Replace ST(i) with ST(0) - ST(i).

FSUBR mem32real D8 /5 Replace ST(0) with mem32real - ST(0).

FSUBR mem64real DC /5 Replace ST(0) with mem64real - ST(0).

FSUBRP DE E1 Replace ST(1) with ST(0) - ST(1) and pop x87 stack.

FSUBRP ST(i),ST(0) DE E0+i Replace ST(i) with ST(0) - ST(i) and pop x87 stack.

FISUBR mem16int DE /5 Replace ST(0) with mem16int - ST(0).

FISUBR mem32int DA /5 Replace ST(0) with mem32int - ST(0).

314 FSUBRx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

Instruction Reference FSUBRx 315

26569—Rev. 3.08—July 2007 AMD64 Technology

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Exception Real
Virtual
8086 Protected Cause of Exception

316 FTST Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Compares the value in ST(0) with 0.0, and sets the condition code flags in the x87 status word as
shown in the x87 Condition Code table below. The instruction ignores the sign distinction between
–0.0 and +0.0.

Related Instructions

FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FUCOMI, FUCOMIP, FUCOM,
FUCOMP, FUCOMPP, FXAM

rFLAGS Affected

None

x87 Condition Code

Exceptions

FTST Floating-Point Test with Zero

Mnemonic Opcode Description

FTST D9 E4 Compare ST(0) to 0.0.

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > 0.0

0 0 0 1 ST(0) < 0.0

1 0 0 0 ST(0) = 0.0

1 1 0 1 ST(0) was unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was a SNaN value, a QNaN value, or an

unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Instruction Reference FUCOMx 317

26569—Rev. 3.08—July 2007 AMD64 Technology

Compares the value in ST(0) to the value in another x87 register, and sets the condition codes in the
x87 status word as shown in the x87 Condition Code table below.

If no source operand is specified, the instruction compares the value in ST(0) to that in ST(1).

After making the comparison, the FUCOMP instruction pops the x87 stack register and the
FUCOMPP instruction pops the x87 stack register twice.

The instruction carries out the same comparison operation as the FCOM instructions, but sets the
invalid-operation exception (IE) bit in the x87 status word to 1 when either or both operands are an
SNaN or are in an unsupported format. If either or both operands is a QNaN, it sets the condition code
flags to unordered, but does not set the IE bit. The FCOM instructions, on the other hand, raise an IE
exception when either or both of the operands are a NaN value or are in an unsupported format.

Support for the FUCOM(P(P)) instruction is indicated by EDX bit 0 (FPU) and EDX bit 15 (CMOV)
as returned by either CPUID function 0000_0001h or CPUID function 8000_0001h.

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

FUCOM
FUCOMP
FUCOMPP

Floating-Point Unordered Compare

Mnemonic Opcode Description

FUCOM DD E1 Compare ST(0) to ST(1) and set condition code flags to
reflect the results of the comparison.

FUCOM ST(i) DD E0+i Compare ST(0) to ST(i) and set condition code flags to
reflect the results of the comparison.

FUCOMP DD E9
Compare ST(0) to ST(1), set condition code flags to reflect
the results of the comparison, and pop the x87 register
stack.

FUCOMP ST(i) DD E8+i
Compare ST(0) to ST(i), set condition code flags to reflect
the results of the comparison, and pop the x87 register
stack.

FUCOMPP DA E9
Compare ST(0) to ST(1), set condition code flags to reflect
the results of the comparison, and pop the x87 register stack
twice.

318 FUCOMx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

x87 Condition Code

Exceptions

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > source

0 0 0 1 ST(0) < source

1 0 0 0 ST(0) = source

1 1 0 1 Operands were unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Instruction Reference FUCOMIx 319

26569—Rev. 3.08—July 2007 AMD64 Technology

Compares the contents of ST(0) with the contents of another floating-point register, and sets the zero
flag (ZF), parity flag (PF), and carry flag (CF) as shown in the rFLAGS Affected table below.

Unlike FCOMI and FCOMIP, the FUCOMI and FUCOMIP instructions do not set the invalid-
operation exception (IE) bit in the x87 status word for QNaNs.

After completing the comparison, FUCOMIP pops the x87 register stack.

Support for the FUCOMI(P) instruction is indicated by EDX bit 0 (FPU) and EDX bit 15 (CMOV) as
returned by either CPUID function 0000_0001h or CPUID function 8000_0001h.

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOM, FUCOMP, FUCOMPP,
FXAM

rFLAGS Affected

x87 Condition Code

FUCOMI
FUCOMIP

Floating-Point Unordered Compare and Set
eFLAGS

Mnemonic Opcode Description

FUCOMI ST(0),ST(i) DB E8+i Compare ST(0) to ST(i) and set eFLAGS to reflect the result
of the comparison.

FUCOMIP ST(0),ST(i) DF E8+i Compare ST(0) to ST(i), set eFLAGS to reflect the result of
the comparison, and pop the x87 register stack.

ZF PF CF Compare Result

0 0 0 ST(0) > source

0 0 1 ST(0) < source

1 0 0 ST(0) = source

1 1 1 Operands were unordered

x87 Condition Code Value Description

C0

C1 0

C2

C3

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

320 FUCOMIx Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X
The conditional move instructions are not supported, as
indicated by EDX bit 0 and EDX bit 15 in CPUID function
0000_0001h or function 8000_0001h.

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Instruction Reference FWAIT (WAIT) 321

26569—Rev. 3.08—July 2007 AMD64 Technology

Forces the processor to test for pending unmasked floating-point exceptions before proceeding.

If there is a pending floating-point exception and CR0.NE = 1, a numeric exception (#MF) is
generated. If there is a pending floating-point exception and CR0.NE = 0, FWAIT asserts the FERR
output signal, then waits for an external interrupt.

This instruction is useful for insuring that unmasked floating-point exceptions are handled before
altering the results of a floating point instruction.

FWAIT and WAIT are synonyms for the same opcode.

Related Instructions

None

rFLAGS Affected

None

x87 Condition Code

Exceptions

FWAIT
(WAIT)

Wait for Unmasked x87 Floating-Point
Exceptions

Mnemonic Opcode Description

FWAIT 9B Check for any pending floating-point exceptions.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The monitor coprocessor bit (MP) and the task switch bit

(TS) of the control register (CR0) were both set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

322 FXAM Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Examines the value in ST(0) and sets the C0, C2, and C3 condition code flags in the x87 status word as
shown in the x87 Condition Code table below to indicate whether the value is a NaN, infinity, zero,
empty, denormal, normal finite, or unsupported value. The instruction also sets the C1 flag to indicate
the sign of the value in ST(0) (0 = positive, 1 = negative).

Related Instructions

FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOM, FUCOMI,
FUCOMIP, FUCOMP, FUCOMPP

rFLAGS Affected

None

x87 Condition Code

FXAM Floating-Point Examine

Mnemonic Opcode Description

FXAM D9 E5 Characterize the number in the ST(0) register.

C3 C2 C1 C0 Meaning

0 0 0 0 +unsupported
format

0 0 0 1 +NaN

0 0 1 0 –unsupported
format

0 0 1 1 –NaN

0 1 0 0 +normal

0 1 0 1 +infinity

0 1 1 0 –normal

0 1 1 1 –infinity

1 0 0 0 +0

1 0 0 1 +empty

1 0 1 0 –0

1 0 1 1 –empty

1 1 0 0 +denormal

1 1 1 0 –denormal

Instruction Reference FXAM 323

26569—Rev. 3.08—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

324 FXCH Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exchanges the value in ST(0) with the value in any other x87 register. If no operand is specified, the
instruction exchanges the values in ST(0) and ST(1).

Use this instruction to move a value from an x87 register to ST(0) for subsequent processing by a
floating-point instruction that can only operate on ST(0).

Related Instructions

FLD, FST, FSTP

rFLAGS Affected

None

x87 Condition Code

Exceptions

FXCH Floating-Point Exchange

Mnemonic Opcode Description

FXCH D9 C9 Exchange the contents of ST(0) and ST(1).

FXCH ST(i) D9 C8+i Exchange the contents of ST(0) and ST(i).

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the control

register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Instruction Reference FXRSTOR 325

26569—Rev. 3.08—July 2007 AMD64 Technology

Restores the XMM, MMX, and x87 state. The data loaded from memory is the state information
previously saved using the FXSAVE instruction. Restoring data with FXRSTOR that had been
previously saved with an FSAVE (rather than FXSAVE) instruction results in an incorrect restoration.

If FXRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

If the restored MXCSR register contains a set bit in an exception status flag, and the corresponding
exception mask bit is cleared (indicating an unmasked exception), loading the MXCSR register from
memory does not cause a SIMD floating-point exception (#XF).

FXRSTOR does not restore the x87 error pointers (last instruction pointer, last data pointer, and last
opcode), except in the relatively rare cases in which the exception-summary (ES) bit in the x87 status
word is set to 1, indicating that an unmasked x87 exception has occurred.

The architecture supports two 512-bit memory formats for FXRSTOR, a 64-bit format that loads
XMM0-XMM15, and a 32-bit legacy format that loads only XMM0-XMM7. If FXRSTOR is executed
in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-bit format is
used, if the operand-size is 64-bit, FXRSTOR loads the x87 pointer registers as offset64, otherwise it
loads them as sel:offset32. For details about the memory format used by FXRSTOR, see "Saving
Media and x87 Processor State" in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXRSTOR does not restore the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is restored
whether fast-FXSAVE/FXRSTOR is enabled or not. Software can use CPUID to determine whether
the fast-FXSAVE/FXRSTOR feature is available. (See “CPUID” in Volume 3.)

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, the saved
image of XMM0–XMM15 and MXCSR is not loaded into the processor. A general-protection
exception occurs if the FXRSTOR instruction attempts to load non-zero values into reserved MXCSR
bits. Software can use MXCSR_MASK to determine which bits of MXCSR are reserved. For details
on the MXCSR_MASK, see “128-Bit, 64-Bit, and x87 Programming” in Volume 2.
.

Related Instructions

FWAIT, FXSAVE

FXRSTOR Restore XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXRSTOR mem512env 0F AE /1 Restores XMM, MMX™, and x87 state from 512-byte
memory location.

326 FXRSTOR Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank. Shaded fields are reserved.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The FXSAVE/FXRSTOR instructions are not
supported, as indicated by bit 24 of CPUID function
0000_0001h or function 8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit,
or was non-canonical.

General protection, #GP

X X X A memory address exceeded the data segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary.

X X X Ones were written to the reserved bits in MXCSR.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Instruction Reference FXSAVE 327

26569—Rev. 3.08—July 2007 AMD64 Technology

Saves the XMM, MMX, and x87 state. A memory location that is not aligned on a 16-byte boundary
causes a general-protection exception.

Unlike FSAVE and FNSAVE, FXSAVE does not alter the x87 tag bits. The contents of the saved
MMX/x87 data registers are retained, thus indicating that the registers may be valid (or whatever other
value the x87 tag bits indicated prior to the save). To invalidate the contents of the MMX/x87 data
registers after FXSAVE, software must execute an FINIT instruction. Also, FXSAVE (like FNSAVE)
does not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction can be
used for this purpose.

FXSAVE does not save the x87 pointer registers (last instruction pointer, last data pointer, and last
opcode), except in the relatively rare cases in which the exception-summary (ES) bit in the x87 status
word is set to 1, indicating that an unmasked x87 exception has occurred.

The architecture supports two 512-bit memory formats for FXSAVE, a 64-bit format that saves
XMM0-XMM15, and a 32-bit legacy format that saves only XMM0-XMM7. If FXSAVE is executed
in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-bit format is
used, if the operand-size is 64-bit, FXSAVE saves the x87 pointer registers as offset64, otherwise it
saves them as sel:offset32. For more details about the memory format used by FXSAVE, see “Saving
Media and x87 Processor State” in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE does not save the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is saved whether
fast-FXSAVE/FXRSTOR is enabled or not. Software can use CPUID to determine whether the fast-
FXSAVE/FXRSTOR feature is available. (See “CPUID” in Volume 3.)

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, FXSAVE
does not save the image of XMM0–XMM15 or MXCSR. For details about the CR4.OSFXSR bit, see
“FXSAVE and FXRSTOR Instructions” in Volume 2.

Related Instructions

FINIT, FNSAVE, FRSTOR, FSAVE, FXRSTOR, LDMXCSR, STMXCSR

rFLAGS Affected

None

FXSAVE Save XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXSAVE mem512env 0F AE /0 Saves XMM, MMX™, and x87 state to 512-byte
memory location.

328 FXSAVE Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The FXSAVE/FXRSTOR instructions are not
supported, as indicated by bit 24 of CPUID function
0000_0001h or function 8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit,
or was non-canonical.

General protection, #GP

X X X A memory address exceeded the data segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

X X X The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Instruction Reference FXTRACT 329

26569—Rev. 3.08—July 2007 AMD64 Technology

Extracts the exponent and significand portions of the floating-point value in ST(0), stores the exponent
in ST(0), and then pushes the significand onto the x87 register stack. After this operation, the new
ST(0) contains a real number with the sign and value of the original significand and an exponent of
3FFFh (biased value for true exponent of zero), and ST(1) contains a real number that is the value of
the original value’s true (unbiased) exponent.

The FXTRACT instruction is useful for converting a double-extended-precision number to its decimal
representation.

If the zero-divide-exception mask (ZM) bit of the x87 control word is set to 1 and the source value is
±0, then the instruction stores ±zero in ST(0) and an exponent value of –∞ in register ST(1).

Related Instructions

FABS, FPREM, FRNDINT, FCHS

rFLAGS Affected

None

x87 Condition Code

FXTRACT Floating-Point Extract Exponent and Significand

Mnemonic Opcode Description

FXTRACT D9 F4
Extract the exponent and significand of ST(0), store the
exponent in ST(0), and push the significand onto the x87
register stack.

x87 Condition Code Value Description

C0 U

C1
0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

330 FXTRACT Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) X X X A source operand was an SNaN value or an unsupported

format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

X X X An x87 stack overflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Zero-divide
exception (ZE) X X X The source operand was ±zero.

Instruction Reference FYL2X 331

26569—Rev. 3.08—July 2007 AMD64 Technology

Computes (ST(1) ∗ log2(ST(0))), stores the result in ST(1), and pops the x87 register stack. The value
in ST(0) must be greater than zero.

If the zero-divide-exception mask (ZM) bit in the x87 control word is set to 1 and ST(0) contains
±zero, the instruction returns ∞ with the opposite sign of the value in register ST(1).

Related Instructions

FYL2XP1, F2XM1

rFLAGS Affected

None

x87 Condition Code

FYL2X Floating-Point y ∗ Log2 (x)

Mnemonic Opcode Description

FYL2X D9 F1
Replace ST(1) with ST(1) ∗ log2(ST(0)), then pop the x87
register stack.

x87 Condition Code Value Description

C0 U

C1

0 No precision exception occurred.

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

332 FYL2X Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported
format.

X X X The source operand in ST(0) was a negative finite value
(not -zero).

X X X The source operand in ST(0) was +1 and the source
operand in ST(1) was ±infinity.

X X X The source operand in ST(0) was -infinity.

X X X The source operand in ST(0) was ±zero or ±infinity and the
source operand in ST(1) was ±zero.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Zero-divide
exception (ZE) X X X The source operand in ST(0) was ±zero and the source

operand in ST(1) was a finite value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Instruction Reference FYL2XP1 333

26569—Rev. 3.08—July 2007 AMD64 Technology

Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in ST(1), and pops the x87 register stack. The
value in ST(0) must be in the range sqrt(1/2)–1 to sqrt(2)-1.

Related Instructions

FYL2X, F2XM1

rFLAGS Affected

None

x87 Condition Code

FYL2XP1 Floating-Point y ∗ Log2 (x+1)

Mnemonic Opcode Description

FYL2XP1 D9 F9
Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0), then pop the
x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

Note: A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

334 FYL2XP1 Instruction Reference

AMD64 Technology 26569—Rev. 3.08—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM X X X The emulate bit (EM) or the task switch bit (TS) of the

control register (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN or unsupported format.

X X X The source operand in ST(0) was ±0 and the source
operand in ST(1) was ±infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Overflow exception
(OE) X X X A rounded result was too large to fit into the format of the

destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of the

destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the destination

format.

Recommended Substitutions for 3DNow!™ Instructions 335

26569—Rev. 3.08—July 2007 AMD64 Technology

Appendix A Recommended Substitutions for
3DNow!™ Instructions

Table A-1 lists the deprecated 3DNow!™ instructions and the recommended substitutions.

Table A-1. Substitutions for 3DNow!™ Instructions

64-Bit 3DNow!™
Instruction

128-Bit SSE
Instruction

64-Bit MMX™
Instruction

Notes

FEMMS N/A EMMS (MMX)

PAVGUSB PAVGB PAVGB
SSE and MMX™ instructions round according to the
current rounding mode; 3DNow!™ instructions always
round up.

PF2ID CVTTPS2DQ

PF2IW
CVTTPS2DQ may be used if 16-bit result is not
necessary.

PFACC HADDPS

PFADD ADDPS

PFCMPEQ CMPPS

PFCMPGE CMPPS

PFCMPGT CMPPS

PFMAX MAXPS MAXPS may return -0.0.

PFMIN MINPS MINPS may return -0.0.

PFMUL MULPS

PFNACC HSUBPS

PFPNACC ADDSUBPS
ADDSUBPS expects arguments in different positions
from PFPNACC.

PFRCP
RCPSS may be used in conjunction with the Newton-
Raphson algorithm.

PFRCPIT1 See PFRCP.

PFRCPIT2 See PFRCP.

PFRSQIT1 See PFRSQRT.

PFRSQRT
RSQRTSS may be used in conjunction with the
Newton-Raphson algorithm.

PFSUB SUBPS

PFSUBR SUBPS may be used.

PI2FD CVTDQ2PS
SSE instructions round according to the current
rounding mode; 3DNow! instructions always truncate.

PI2FW

PMULHRW PMULHW may be used if rounding is not necessary.

PSWAPD PSHUFD

336 Recommended Substitutions for 3DNow!™ Instructions

AMD64 Technology 26569—Rev. 3.08—July 2007

Index 337

26569—Rev. 3.08—July 2007 AMD64 Technology

Numerics

16-bit mode.. xiv
32-bit mode.. xiv
64-bit mode... xv

A

addressing
RIP-relative.. xx

B

biased exponent ... xv

C

commit ... xv
compatibility mode .. xv
condition codes

x87.. 217
CVTPD2PI.. 3
CVTPI2PD.. 6
CVTPI2PS .. 8
CVTPS2PI .. 10
CVTTPD2PI ... 12
CVTTPS2PI .. 15

D

direct referencing... xv
displacements ... xvi
double quadword .. xvi
doubleword .. xvi

E

eAX–eSP register ... xxi
effective address size... xvi
effective operand size .. xvi
eFLAGS register.. xxii
eIP register .. xxii
element .. xvi
EMMS.. 17
endian order ... xxiv
exceptions .. xvi
exponent ... xv

F

F2XM1 ... 218
FABS.. 220
FADD... 222
FADDP... 222

FBLD.. 225
FBSTP .. 227
FCHS.. 229
FCMOVcc... 232
FCOM .. 234
FCOMI ... 237
FCOMIP ... 237
FCOMP .. 234
FCOMPP .. 234
FCOS.. 239
FDECSTP ... 241
FDIV .. 243
FDIVP .. 243
FDIVR.. 246
FDIVRP.. 246
FEMMS .. 18
FFREE.. 249
FIADD.. 222
FICOM ... 250
FICOMP ... 250
FIDIV ... 243
FIDIVR... 246
FILD... 252
FIMUL ... 276
FINCSTP .. 254
FINIT.. 256
FIST ... 258
FISTP ... 258
FISTTP ... 261
FISUB .. 310
FISUBR .. 313
FLD.. 263
FLD1 .. 265
FLDCW .. 266
FLDENV .. 268
FLDL2E.. 270
FLDL2T.. 270
FLDLG2 ... 272
FLDLN2 ... 273
FLDPI... 274
FLDZ.. 275
flush.. xvii
FMUL... 276
FMULP... 276
FNINIT... 256
FNOP.. 279
FNSAVE ... 22, 292
FNSTCW .. 304

Index

338 Index

AMD64 Technology 26569—Rev. 3.08—July 2007

FNSTENV .. 306
FNSTSW .. 308
FPATAN ... 280
FPREM... 282
FPREM1... 284
FPTAN ... 286
FRNDINT... 288
FRSTOR.. 20, 290
FSAVE... 22, 292
FSCALE ... 294
FSIN... 296
FSINCOS.. 298
FSQRT ... 300
FST .. 302
FSTCW .. 304
FSTENV... 306
FSTP .. 302
FSTSW... 308
FSUB ... 310
FSUBP ... 310
FSUBR ... 313
FSUBRP ... 313
FTST .. 316
FUCOM.. 317
FUCOMI .. 319
FUCOMIP .. 319
FUCOMP.. 317
FUCOMPP.. 317
FWAIT ... 321
FXAM .. 322
FXCH... 324
FXRSTOR ... 24, 325
FXSAVE.. 26, 327
FXTRACT .. 329
FYL2X ... 331
FYL2XP1 ... 333

I

IGN .. xvii
indirect ... xvii
instructions

3DNow!™ ... 1
64-bit media... 1
SSE ... 2
x87.. 217

L

legacy mode .. xvii
legacy x86... xvii
long mode ... xvii
LSB... xviii
lsb ... xviii

M

mask .. xviii
MASKMOVQ ... 28
MBZ.. xviii
modes

16-bit .. xiv
32-bit .. xiv
64-bit ... xv
compatibility .. xv
legacy .. xvii
long ... xvii
protected ... xix
real ... xix
virtual-8086... xxi

moffset... xviii
MOVD.. 31
MOVDQ2Q... 34
MOVNTQ ... 35
MOVQ.. 37
MOVQ2DQ... 39
MSB .. xviii
msb.. xviii
MSR ... xxii

O

octword .. xviii
offset.. xviii
overflow... xix

P

packed.. xix
PACKSSDW.. 40
PACKSSWB.. 42
PACKUSWB ... 44
PADDB... 46
PADDD... 48
PADDQ... 50
PADDSB... 52
PADDSW.. 54
PADDUSB .. 56
PADDUSW ... 58
PADDW.. 60
PAND ... 62
PANDN... 64
PAVGB ... 66
PAVGUSB... 68
PAVGW .. 70
PCMPEQB.. 72
PCMPEQD.. 74
PCMPEQW... 76
PCMPGTB.. 78
PCMPGTD.. 80

Index 339

26569—Rev. 3.08—July 2007 AMD64 Technology

PCMPGTW... 82
PEXTRW.. 84
PF2ID... 86
PF2IW .. 88
PFACC ... 90
PFADD... 92
PFCMPEQ .. 95
PFCMPGE .. 97
PFCMPGT .. 100
PFMAX .. 102
PFMIN ... 104
PFMUL .. 106
PFNACC... 108
PFPNACC... 111
PFRCP.. 114
PFRCPIT1 .. 117
PFRCPIT2 .. 120
PFRSQIT1 .. 123
PFRSQRT ... 126
PFSUB ... 129
PFSUBR ... 131
PI2FD... 133
PI2FW .. 135
PINSRW ... 137
PMADDWD ... 139
PMAXSW... 141
PMAXUB ... 143
PMINSW .. 145
PMINUB .. 147
PMOVMSKB.. 149
PMULHRW .. 151
PMULHUW.. 153
PMULHW .. 155
PMULLW ... 157
PMULUDQ... 159
POR ... 161
protected mode ... xix
PSADBW ... 163
PSHUFW.. 165
PSLLD ... 168
PSLLQ ... 170
PSLLW... 172
PSRAD... 174
PSRAW .. 176
PSRLD ... 178
PSRLQ ... 180
PSRLW... 182
PSUBB ... 184
PSUBD... 186
PSUBQ... 188
PSUBSB ... 190

PSUBSW .. 192
PSUBUSB... 194
PSUBUSW.. 196
PSUBW .. 198
PSWAPD .. 200
PUNPCKHBW.. 202
PUNPCKHDQ... 204
PUNPCKHWD.. 206
PUNPCKLBW .. 208
PUNPCKLDQ ... 210
PUNPCKLWD .. 212
PXOR ... 214

Q

quadword ... xix

R

r8–r15 ... xxii
rAX–rSP .. xxiii
RAZ... xix
real address mode. See real mode
real mode ... xix
registers

eAX–eSP .. xxi
eFLAGS... xxii
eIP... xxii
r8–r15.. xxii
rAX–rSP ... xxiii
rFLAGS.. xxiii
rIP .. xxiii

relative ... xix
reserved.. xix
revision history ... xi
rFLAGS register ... xxiii
rIP register.. xxiii
RIP-relative addressing... xx

S

set... xx
SSE... xx
SSE-2.. xx
SSE3... xx
sticky bits .. xx

T

TSS... xx

U

underflow .. xx

340 Index

AMD64 Technology 26569—Rev. 3.08—July 2007

V

vector.. xx
virtual-8086 mode... xxi

W

WAIT.. 321

	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Contact Information
	Organization
	Definitions
	Terms and Notation
	Registers
	Endian Order

	Related Documents

	1 64-Bit Media Instruction Reference
	CVTPD2PI
	CVTPI2PD
	CVTPI2PS
	CVTPS2PI
	CVTTPD2PI
	CVTTPS2PI
	EMMS
	FEMMS
	FRSTOR
	FSAVE (FNSAVE)
	FXRSTOR
	FXSAVE
	MASKMOVQ
	MOVD
	MOVDQ2Q
	MOVNTQ
	MOVQ
	MOVQ2DQ
	PACKSSDW
	PACKSSWB
	PACKUSWB
	PADDB
	PADDD
	PADDQ
	PADDSB
	PADDSW
	PADDUSB
	PADDUSW
	PADDW
	PAND
	PANDN
	PAVGB
	PAVGUSB
	PAVGW
	PCMPEQB
	PCMPEQD
	PCMPEQW
	PCMPGTB
	PCMPGTD
	PCMPGTW
	PEXTRW
	PF2ID
	PF2IW
	PFACC
	PFADD
	PFCMPEQ
	PFCMPGE
	PFCMPGT
	PFMAX
	PFMIN
	PFMUL
	PFNACC
	PFPNACC
	PFRCP
	PFRCPIT1
	PFRCPIT2
	PFRSQIT1
	PFRSQRT
	PFSUB
	PFSUBR
	PI2FD
	PI2FW
	PINSRW
	PMADDWD
	PMAXSW
	PMAXUB
	PMINSW
	PMINUB
	PMOVMSKB
	PMULHRW
	PMULHUW
	PMULHW
	PMULLW
	PMULUDQ
	POR
	PSADBW
	PSHUFW
	PSLLD
	PSLLQ
	PSLLW
	PSRAD
	PSRAW
	PSRLD
	PSRLQ
	PSRLW
	PSUBB
	PSUBD
	PSUBQ
	PSUBSB
	PSUBSW
	PSUBUSB
	PSUBUSW
	PSUBW
	PSWAPD
	PUNPCKHBW
	PUNPCKHDQ
	PUNPCKHWD
	PUNPCKLBW
	PUNPCKLDQ
	PUNPCKLWD
	PXOR

	2 x87 Floating-Point Instruction Reference
	F2XM1
	FABS
	FADD FADDP FIADD
	FBLD
	FBSTP
	FCHS
	FCLEX (FNCLEX)
	FCMOVcc
	FCOM FCOMP FCOMPP
	FCOMI FCOMIP
	FCOS
	FDECSTP
	FDIV FDIVP FIDIV
	FDIVR FDIVRP FIDIVR
	FFREE
	FICOM FICOMP
	FILD
	FINCSTP
	FINIT FNINIT
	FIST FISTP
	FISTTP
	FLD
	FLD1
	FLDCW
	FLDENV
	FLDL2E
	FLDL2T
	FLDLG2
	FLDLN2
	FLDPI
	FLDZ
	FMUL FMULP FIMUL
	FNOP
	FPATAN
	FPREM
	FPREM1
	FPTAN
	FRNDINT
	FRSTOR
	FSAVE FNSAVE
	FSCALE
	FSIN
	FSINCOS
	FSQRT
	FST FSTP
	FSTCW (FNSTCW)
	FSTENV (FNSTENV)
	FSTSW (FNSTSW)
	FSUB FSUBP FISUB
	FSUBR FSUBRP FISUBR
	FTST
	FUCOM FUCOMP FUCOMPP
	FUCOMI FUCOMIP
	FWAIT (WAIT)
	FXAM
	FXCH
	FXRSTOR
	FXSAVE
	FXTRACT
	FYL2X
	FYL2XP1

	Appendix A Recommended Substitutions for 3DNow!™ Instructions
	Index

