
AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 5:
64-Bit Media and x87 Floating-

Point Instructions

Publication No. Revision Date

26569 3.03 April 2003

Trademarks
AMD, the AMD arrow logo, AMD Athlon, AMD Duron, and combinations thereof, and 3DNow! are trademarks, and Am486, Am5x86,
and AMD-K6 are registered trademarks of Advanced Micro Devices, Inc.
MMX is a trademark and Pentium is a registered trademark of Intel Corporation.
Windows NT is a registered trademark of Microsoft Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

© 2002, 2003 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced Micro Devices, Inc.
(“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or
completeness of the contents of this publication and reserves the right to make changes to
specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this
publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes
no liability whatsoever, and disclaims any express or implied warranty, relating to its products
including, but not limited to, the implied warranty of merchantability, fitness for a particular pur-
pose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as components in
systems intended for surgical implant into the body, or in other applications intended to support
or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without
notice.

Contents iii

26569—Rev. 3.03—April 2003 AMD64 Technology

Contents

Figures . vii

Tables . ix

Revision History . xi

Preface .xiii
About This Book .xiii
Audience .xiii
Contact Information. .xiii
Organization .xiii
Definitions. xiv
Related Documents . xxv

1 64-Bit Media Instruction Reference. 1

CVTPD2PI . 4
CVTPI2PD . 7
CVTPI2PS. 9
CVTPS2PI. 11
CVTTPD2PI . 14
CVTTPS2PI . 17
EMMS . 20
FEMMS. 21
FNSAVE
(FSAVE) . 22
FRSTOR . 24
FXRSTOR. 26
FXSAVE . 28
MASKMOVQ . 30
MOVD . 32
MOVDQ2Q . 35
MOVNTQ . 37
MOVQ . 39
MOVQ2DQ . 41
PACKSSDW . 43
PACKSSWB . 45
PACKUSWB . 47
PADDB . 49
PADDD . 51
PADDQ . 53
PADDSB . 55
PADDSW. 57
PADDUSB. 59
PADDUSW . 61

iv Contents

AMD64 Technology 26569—Rev. 3.03—April 2003

PADDW. 63
PAND . 65
PANDN . 67
PAVGB. 69
PAVGUSB . 71
PAVGW . 73
PCMPEQB . 75
PCMPEQD . 77
PCMPEQW . 79
PCMPGTB . 81
PCMPGTD . 83
PCMPGTW . 85
PEXTRW. 87
PF2ID . 89
PF2IW . 91
PFACC. 93
PFADD . 96
PFCMPEQ . 99
PFCMPGE . 102
PFCMPGT . 105
PFMAX . 108
PFMIN . 111
PFMUL . 114
PFNACC . 117
PFPNACC . 120
PFRCP . 123
PFRCPIT1 . 126
PFRCPIT2 . 129
PFRSQIT1 . 132
PFRSQRT . 135
PFSUB . 138
PFSUBR . 141
PI2FD . 144
PI2FW . 146
PINSRW . 148
PMADDWD . 150
PMAXSW . 152
PMAXUB . 154
PMINSW . 156
PMINUB . 158
PMOVMSKB. 160
PMULHRW. 162
PMULHUW . 164
PMULHW . 166
PMULLW . 168
PMULUDQ . 170
POR. 172

Contents v

26569—Rev. 3.03—April 2003 AMD64 Technology

PSADBW. 174
PSHUFW . 176
PSLLD. 179
PSLLQ. 181
PSLLW . 183
PSRAD . 185
PSRAW . 187
PSRLD . 190
PSRLQ . 192
PSRLW . 194
PSUBB . 196
PSUBD . 198
PSUBQ . 200
PSUBSB . 202
PSUBSW . 204
PSUBUSB . 206
PSUBUSW . 208
PSUBW . 210
PSWAPD. 212
PUNPCKHBW . 214
PUNPCKHDQ . 216
PUNPCKHWD . 218
PUNPCKLBW . 220
PUNPCKLDQ. 222
PUNPCKLWD . 224
PXOR . 226

2 x87 Floating-Point Instruction Reference 229

F2XM1 . 230
FABS . 232
FADDx . 234
FBLD. 237
FBSTP . 239
FCHS. 241
FNCLEXx . 243
FCMOVcc . 245
FCOMx . 247
FCOMIx . 250
FCOS. 253
FDECSTP . 255
FDIVx . 257
FDIVRx. 260
FFREE . 263
FICOMx . 264
FILD . 266
FINCSTP. 268
FNINITx . 270
FISTx . 272

vi Contents

AMD64 Technology 26569—Rev. 3.03—April 2003

FLD . 275
FLD1 . 277
FLDCW . 278
FLDENV . 280
FLDL2E . 282
FLDL2T . 284
FLDLG2 . 286
FLDLN2 . 288
FLDPI . 290
FLDZ. 292
FMULx . 293
FNOP . 296
FNSAVE
(FSAVE) . 297
FPATAN . 299
FPREM . 301
FPREM1 . 304
FPTAN . 307
FRNDINT . 309
FRSTOR . 311
FSCALE . 313
FSIN . 315
FSINCOS . 317
FSQRT . 319
FST
FSTP . 321
FNSTCWx. 324
FNSTENVx. 326
FNSTSWx . 328
FSUBx. 330
FSUBRx . 333
FTST . 336
FUCOMx. 338
FUCOMIx . 340
FWAIT
(WAIT) . 343
FXAM . 345
FXCH . 347
FXRSTOR. 349
FXSAVE . 351
FXTRACT. 353
FYL2X . 355
FYL2XP1 . 357

Index. 359

Figures vii

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

Figures

Figure 1-1. Diagram Conventions for 64-Bit Media Instructions 2

viii Figures

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

Tables ix

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

Tables

Table 1-1. Immediate-Byte Operand Encoding for 64-Bit PEXTRW. 87

Table 1-2. Numeric Range for PF2ID Results . 89

Table 1-3. Numeric Range for PF2IW Results . 92

Table 1-4. Numeric Range for PFACC Results . 94

Table 1-5. Numeric Range for the PFADD Results 97

Table 1-6. Numeric Range for the PFCMPEQ Instruction. 100

Table 1-7. Numeric Range for the PFCMPGE Instruction. 103

Table 1-8. Numeric Range for the PFCMPGT Instruction 106

Table 1-9. Numeric Range for the PFMAX Instruction 109

Table 1-10. Numeric Range for the PFMIN Instruction 112

Table 1-11. Numeric Range for the PFMUL Instruction 115

Table 1-12. Numeric Range of PFNACC Results . 118

Table 1-13. Numeric Range of PFPNACC Result (Low Result) 121

Table 1-14. Numeric Range of PFPNACC Result (High Result) 121

Table 1-15. Numeric Range for the PFRCP Result. 124

Table 1-16. Numeric Range for the PFRCP Result. 136

Table 1-17. Numeric Range for the PFSUB Results 139

Table 1-18. Numeric Range for the PFSUBR Results 142

Table 1-19. Immediate-Byte Operand Encoding for 64-Bit PINSRW 148

Table 1-20. Immediate-Byte Operand Encoding for PSHUFW 177

Table 2-1. Storing Numbers as Integers. 273

Table 2-2. Computing Arctangent of Numbers . 299

x Tables

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

Revision History xi

26569—Rev. 3.03—April 2003 AMD64 Technology

Revision History xi

Revision History

Date Revision Description

April 2003 303 Corrected numerous typos and stylistic errors. Corrected description of FYL2XP1
instruction. Clarified the description of the FXRSTOR instruction.

xii Revision History

AMD64 Technology 26569—Rev. 3.03—April 2003

Preface xiii

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64
Architecture Programmer’s Manual. This table lists each volume
and its order number.

Audience

This volume (Volume 5) is intended for all programmers writing
application or system software for a processor that implements
the x86-64 architecture.

Contact Information

To submit questions or comments concerning this document,
contact our technical documentat ion s taf f at
AMD64.Feedback@amd.com.

Organization

Volumes 3, 4, and 5 describe the AMD64 architecture’s
instruction set in detail. Together, they cover each instruction’s
mnemonic syntax, opcodes, functions, affected flags, and
possible exceptions.

The AMD64 instruction set is divided into five subsets:

General-purpose instructions

System instructions

128-bit media instructions

Title Order No.

Volume 1, Application Programming 24592

Volume 2, System Programming 24593

Volume 3, General-Purpose and System Instructions 24594

Volume 4, 128-Bit Media Instructions 26568

Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

xiv Preface

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

64-bit media instructions

x87 floating-point instructions

Several instructions belong to—and are described identically
in—multiple instruction subsets.

This volume describes the 64-bit media and x87 floating-point
instructions. The index at the end cross-references topics within
this volume. For other topics relating to the AMD64
architecture, and for information on instructions in other
subsets, see the tables of contents and indexes of the other
volumes.

Definitions

Many of the following definitions assume an in-depth
knowledge of the legacy x86 architecture. See “Related
Documents” on page xxv for descriptions of the legacy x86
architecture.

Terms and Notation In addition to the notation described below, “Opcode-Syntax
Notation” in volume 3 describes notation relating specifically
to opcodes.

1011b
A binary value—in this example, a 4-bit value.

F0EAh
A hexadecimal value—in this example a 2-byte value.

[1,2)
A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).

7–4
A bit range, from bit 7 to 4, inclusive. The high-order bit is
shown first.

128-bit media instructions
Instructions that use the 128-bit XMM registers. These are a
combination of the SSE and SSE2 instruction sets.

64-bit media instructions
Instructions that use the 64-bit MMX™ registers. These are
primarily a combination of MMX and 3DNow!™ instruction

Preface xv

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

sets, with some additional instructions from the SSE and
SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit
address size is active. See legacy mode and compatibility
mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute
Said of a displacement that references the base of a code
segment rather than an instruction pointer. Contrast with
relative.

biased exponent
The sum of a floating-point value’s exponent and a constant
bias for a particular floating-point data type. The bias makes
the range of the biased exponent always positive, which
allows reciprocation without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default
address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

xvi Preface

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

commit
To irreversibly write, in program order, an instruction’s
result to software-visible storage, such as a register
(including flags), the data cache, an internal write buffer, or
memory.

CPL
Current privilege level.

CR0–CR4
A register range, from register CR0 through CR4, inclusive,
with the low-order register first.

CR0.PE = 1
Notation indicating that the PE bit of the CR0 register has a
value of 1.

direct
Referencing a memory location whose address is included in
the instruction’s syntax as an immediate operand. The
address may be an absolute or relative address. Compare
indirect.

dirty data
Data held in the processor’s caches or internal buffers that is
more recent than the copy held in main memory.

displacement
A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI
The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

Preface xvii

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

EFER.LME = 0
Notation indicating that the LME bit of the EFER register
has a value of 0.

effective address size
The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size
The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. For all exceptions
except 128-bit media SIMD floating-point exceptions and
x87 floating-point exceptions, control is transferred to the
handler (or service routine) for that exception, as defined by
the exception’s vector. For floating-point exceptions defined
by the IEEE 754 standard, there are both masked and
unmasked responses. When unmasked, the exception
handler is called, and when masked, a default response is
provided instead of calling the handler.

FF /0
Notation indicating that FF is the first byte of an opcode,
and a subfield in the second byte has a value of 0.

flush
An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)
invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”

GDT
Global descriptor table.

IDT
Interrupt descriptor table.

xviii Preface

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

IGN
Ignore. Field is ignored.

indirect
Referencing a memory location whose address is in a
register or other memory location. The address may be an
absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on
page xxv for descriptions of the legacy x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which
existing 16-bit and 32-bit applications and operating systems
run without modification. A processor implementation of
the AMD64 architecture can run in either long mode or legacy
mode. Legacy mode has three submodes, real mode, protected
mode, and virtual-8086 mode.

long mode
An operating mode unique to the AMD64 architecture. A
processor implementation of the AMD64 architecture can
run in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.

lsb
Least-significant bit.

LSB
Least-significant byte.

Preface xix

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

main memory
Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

mask
(1) A control bit that prevents the occurrence of a floating-
point exception from invoking an exception-handling
routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memory.

ModRM
A byte following an instruction opcode that specifies
address calculation based on mode (Mod), register (R), and
memory (M) variables.

moffset
A direct memory offset. In other words, a displacement that
is added to the base of a code segment (for absolute
addressing) or to an instruction pointer (for addressing
relative to the instruction pointer, as in RIP-relative
addressing).

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
A combination of 128-bit media instructions and 64-bit media
instructions.

octword
Same as double quadword.

offset
Same as displacement.

xx Preface

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

overflow
The condition in which a floating-point number is larger in
magnitude than the largest, finite, positive or negative
number that can be represented in the data-type format
being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy
mode.

relative
Referencing with a displacement (also called offset) from an
instruction pointer rather than the base of a code segment.
Contrast with absolute.

REX
An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

Preface xxi

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.
Compare moffset.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies
address calculation based on scale (S), index (I), and base
(B).

SIMD
Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit
media instructions and 64-bit media instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media
instructions and 64-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CR8).

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in
magnitude than the smallest nonzero, positive or negative
number that can be represented in the data-type format
being used.

vector
(1) A set of integer or floating-point values, called elements,
that are packed into a single operand. Most of the 128-bit

xxii Preface

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

and 64-bit media instructions use vectors as operands.
Vectors are also called packed or SIMD (single-instruction
multiple-data) operands.
(2) An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare
AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B–R15B registers, available in 64-bit mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX–rSP.

EBP
Extended base pointer register.

Preface xxiii

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For
the 64-bit data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W
registers, or the 32-bit R8D–R15D registers, or the 64-bit
R8–R15 registers.

xxiv Preface

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with
nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit
size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

Preface xxv

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register, a new register introduced in the
AMD64 architecture to speed interrupt management.

TR
Task register.

Endian Order The x86 and AMD64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their
least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

Related Documents
Peter Abel, IBM PC Assembly Language and Programming,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume
II, Prentice-Hall, Englewood Cliffs, NJ, 1991.

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia
Technology, Sunnyvale, CA, 2000.

AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

AMD, AMD Extensions to the 3DNow!™ and MMX™
Instruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium Processor System
Architecture, Addison-Wesley, New York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro
Assembler Bible, Sams, Carmel, Indiana, 1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly
Language Programming, Macmillan Publishing Co., New
York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and
Pentium Based Personal Computer, Prentice-Hall, Englewood
Cliffs, NJ, 1995.

xxvi Preface

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley,
New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly
Language Programming, Windcrest McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York,
1994.

Chips and Technologies, Inc. Super386 DX Programmer’s
Reference Manual, Chips and Technologies, Inc., San Jose,
1992.

John Crawford and Patrick Gelsinger, Programming the
80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix
Corporation, Richardson, TX, 1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix
Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode
Table, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix
Corporation, Richardson, TX, 1997.

Jeffrey P. Doyer, Introduction to Protected Mode
Programming, course materials for an onsite class, 1992.

Ray Duncan, Extending DOS: A Programmer's Guide to
Protected-Mode DOS, Addison Wesley, NY, 1991.

William B. Giles, Assembly Language Programming for the
Intel 80xxx Family, Macmillan, New York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley,
New York, 1994.

John L. Hennessy and David A. Patterson, Computer
Architecture, Morgan Kaufmann Publishers, San Mateo, CA,
1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft
Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro,
Peer-to-Peer Communications, Menlo Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

Preface xxvii

26569—Rev. 3.03—April 2003 AMD 64-Bit Technology

IBM Corporation, 80486DX2 Processor Floating Point
Instructions, IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide,
IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, Blue Lightening 486DX2 Data Book, IBM
Corporation, Essex Junction, VT, 1994.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86
IBM PC and Compatible Computers, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book,
Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to
Computer Architecture: Using the Intel Pentium, Oxford
University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The
80386/387 Architecture, John Wiley & Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1993.

NexGen Inc., Nx686 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD
Extensions in the Pentium III, www.x86.org/articles/sse_pt1/
simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC
Programmer’s Bible, Microsoft Press, Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge
MA, 1993.

PharLap TNT DOS-Extender Reference Manual, Pharlap,
Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced
Programming, Van Nostrand Reinhold, New York, 1993.

Tom Shanley, Protected Mode System Architecture, Addison
Wesley, NY, 1996.

xxviii Preface

AMD 64-Bit Technology 26569—Rev. 3.03—April 2003

SGS-Thomson Corporation, 80486DX Processor SMM
Programming Manual, SGS-Thomson Corporation, 1995.

Walter A. Triebel, The 80386DX Microprocessor, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

John Wharton, The Complete x86, MicroDesign Resources,
Sebastopol, California, 1994.

Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

1

26569—Rev. 3.03—April 2003 AMD64 Technology

1 64-Bit Media Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes,
affected flags, and possible exceptions generated by the 64-bit
media instructions. These instructions operate on data located
in the 64-bit MMX™ registers. Most of the instructions operate
in parallel on sets of packed elements called vectors, although
some operate on scalars. The instructions define both integer
and floating-point operations, and include the legacy MMX
instructions, the 3DNow!™ instructions, and the AMD
extensions to the MMX and 3DNow! instruction sets.

Each instruction that performs a vector (packed) operation is
illustrated with a diagram. Figure 1-1 on page 2 shows the
conventions used in these diagrams. The particular diagram
shows the PSLLW (packed shift left logical words) instruction.

2

AMD64 Technology 26569—Rev. 3.03—April 2003

Figure 1-1. Diagram Conventions for 64-Bit Media Instructions

Gray areas in diagrams indicate unmodified operand bits.

Like the 128-bit media instructions, many of the 64-bit
instructions independently and simultaneously perform a
single operation on multiple elements of a vector and are thus
classified as single- instruction, multiple-data (SIMD)
instructions. A few 64-bit media instructions convert operands
in MMX registers to operands in GPR, XMM, or x87 registers
(or vice versa), or save or restore MMX state, or reset x87state.

Hardware support for a specific 64-bit media instruction
depends on the presence of at least one of the following CPUID
functions:

MMX Instructions, indicated by bit 23 of CPUID standard
function 1 and extended function 8000_0001h.

shift left

mmx1 mmx2/mem64

shift left

. .

. .
63 04748 15163132

. .

63 04748 15163132

513-324.eps

Ellipses indicate that the operation
is repeated for each element of the
source vectors. In this case, there are
4 elements in each source vector, so
the operation is performed 4 times,
in parallel.

Arrowheads coming from a source operand
indicate that the source operand provides
a control function. In this case, the second
source operand specifies the number of bits
to shift, and the first source operand specifies
the data to be shifted.

Arrowheads going to a source operand
indicate the writing of the result. In this
case, the result is written to the first source
operand, which is also the destination operand.

First Source Operand
(and Destination Operand) Second Source Operand

Operation. In this case,
a bitwise shift-left.

File name of
this figure (for
documentation
control)

3

26569—Rev. 3.03—April 2003 AMD64 Technology

AMD Extensions to MMX Instructions, indicated by bit 22 of
CPUID extended function 8000_0001h.

SSE, indicated by bit 25 of CPUID standard function 1.

SSE2, indicated by bit 26 of CPUID standard function 1.

AMD 3DNow! Instructions, indicated by bit 31 of CPUID
extended function 8000_0001h.

AMD Extensions to 3DNow! Instructions, indicated by bit 30
of CPUID extended function 8000_0001h.

FXSAVE and FXRSTOR, indicated by bit 24 of CPUID
standard function 1 and extended function 8000_0001h.

The 64-bit media instructions can be used in legacy mode or
long mode. Their use in long mode is available if the following
CPUID function is set:

Long Mode, indicated by bit 29 of CPUID extended function
8000_0001h.

Compilation of 64-bit media programs for execution in 64-bit
mode offers four primary advantages: access to the eight
extended, 64-bit general-purpose registers (for a register set
consisting of GPR0–GPR15), access to the eight extended XMM
registers (for a register set consisting of XMM0–XMM15),
access to the 64-bit virtual address space, and access to the RIP-
relative addressing mode.

For further information, see:

“64-Bit Media Programming” in volume 1.

“Summary of Registers and Data Types” in volume 3.

“Notation” in volume 3.

“Instruction Prefixes” in volume 3.

4 CVTPD2PI

AMD64 Technology 26569—Rev. 3.03—April 2003

Converts two packed double-precision floating-point values in an XMM register or a
128-bit memory location to two packed 32-bit signed integer values and writes the
converted values in an MMX register.

If the result of the conversion is an inexact value, the value is rounded as specified by
the rounding control bits (RC) in the MXCSR register. If the floating-point value is a
NaN, infinity, or if the result of the conversion is larger than the maximum signed
doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer
value (8000_0000h) when the invalid-operation exception (IE) is masked.

Execution of this instruction causes all fields in the x87 tag word to be set according to
their corresponding data, the top-of-stack-pointer bit (TOP) in the x87 status word to
be cleared to 0, and any pending x87 exceptions are handled before this instruction is
executed. For details, see “Actions Taken on Executing 64-Bit Media Instructions” in
volume 1.

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ,
CVTTPD2PI, CVTTSD2SI

CVTPD2PI Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integers

Mnemonic Opcode Description

CVTPD2PI mmx, xmm2/mem128 66 0F 2D /r Converts packed double-precision floating-point values in an
XMM register or 128-bit memory location to packed
doubleword integers values in the destination MMX™ register.

cvtpd2pi.eps

127 63 0643132

xmm/mem128mmx

convert
convert

63 0

CVTPD2PI 5

26569—Rev. 3.03—April 2003 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note:
A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

X

X

X

The SSE2 instructions are not supported, as indicated by bit
26 of CPUID standard function 1.

The emulate bit (EM) of CR0 was set to 1.

The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for details.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X

X

X

X

X

X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An exception is pending due to an x87 floating-point
instruction.

SIMD Floating-Point
Exception, #XF

X X X There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 1.
See SIMD Floating-Point Exceptions, below, for details.

6 CVTPD2PI

AMD64 Technology 26569—Rev. 3.03—April 2003

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value, a QNaN value, or
±infinity.

A source operand was too large to fit in the destination
format.

Precision exception (PE) X X X A result could not be represented exactly in the destination
format.

Exception Real
Virtual
8086 Protected Cause of Exception

CVTPI2PD 7

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit
memory location to two double-precision floating-point values and writes the
converted values in an XMM register.

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTSD2SI, CVTSI2SD, CVTTPD2DQ,
CVTTPD2PI, CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

None

CVTPI2PD Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point

Mnemonic Opcode Description

CVTPI2PD xmm, mmx/mem64 66 0F 2A /r Converts two packed doubleword integer values in an MMX™
register or 64-bit memory location to two packed double-
precision floating-point values in the destination XMM register.

cvtpi2pd.eps

127 63 064 3132

mmx/mem64xmm

convert
convert

63 0

8 CVTPI2PD

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

The SSE2 instructions are not supported, as indicated by
bit 26 of CPUID standard function 1.

The emulate bit (EM) of CR0 was set to 1.

The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An exception was pending due to an x87 floating-point
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

CVTPI2PS 9

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit
memory location to two single-precision floating-point values and writes the
converted values in the low-order 64 bits of an XMM register. The high-order 64 bits of
the XMM register are not modified.

Related Instructions

CVTDQ2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ,
CVTTPS2PI, CVTTSS2SI

rFLAGS Affected

None

CVTPI2PS Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point

Mnemonic Opcode Description

CVTPI2PS xmm, mmx/mem64 0F 2A /r Converts packed doubleword integer values in an MMX™ register or
64-bit memory location to single-precision floating-point values in
the destination XMM register.

cvtpi2ps.eps

3132

mmx/mem64xmm

convert
convert

63 0127 63 064 3132

10 CVTPI2PS

AMD64 Technology 26569—Rev. 3.03—April 2003

MXCSR Flags Affected

Exceptions

FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note:
A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

X

X

X

The SSE instructions are not supported, as indicated by bit
25 of CPUID standard function 1.

The emulate bit (EM) of CR0 was set to 1.

The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for details.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory..

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An exception was pending due to an x87 floating-point
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF

X X X There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 1.
See SIMD Floating-Point Exceptions, below, for details.

SIMD Floating-Point Exceptions

Precision exception (PE) X X X A result could not be represented exactly in the destination
format.

CVTPS2PI 11

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts two packed single-precision floating-point values in the low-order 64 bits of
an XMM register or a 64-bit memory location to two packed 32-bit signed integers and
writes the converted values in an MMX register.

If the result of the conversion is an inexact value, the value is rounded as specified by
the rounding control bits (RC) in the MXCSR register. If the floating-point value is a
NaN, infinity, or if the result of the conversion is larger than the maximum signed
doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer
value (8000_0000h) when the invalid-operation exception (IE) is masked.

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTSI2SS, CVTSS2SI, CVTTPS2DQ,
CVTTPS2PI, CVTTSS2SI

rFLAGS Affected

None

CVTPS2PI Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers

Mnemonic Opcode Description

CVTPS2PI mmx, xmm/mem64 0F 2D /r Converts packed single-precision floating-point values in an XMM
register or 64-bit memory location to packed doubleword integers in
the destination MMX™ register.

cvtps2pi.eps

xmm/mem64mmx

convert
convert

127 63 064 3132313263 0

12 CVTPS2PI

AMD64 Technology 26569—Rev. 3.03—April 2003

MXCSR Flags Affected

Exceptions

FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note:
A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

X

X

X

The SSE instructions are not supported, as indicated by bit
25 of CPUID standard function 1.

The emulate bit (EM) of CR0 was set to 1.

The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for details.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An exception was pending due to an x87 floating-point
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF

X X X There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 1.
See SIMD Floating-Point Exceptions, below, for details.

CVTPS2PI 13

26569—Rev. 3.03—April 2003 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value, a QNaN value, or
±infinity.

A source operand was too large to fit in the destination
format.

Precision exception (PE) X X X A result could not be represented exactly in the destination
format.

Exception Real
Virtual
8086 Protected Cause of Exception

14 CVTTPD2PI

AMD64 Technology 26569—Rev. 3.03—April 2003

Converts two packed double-precision floating-point values in an XMM register or a
128-bit memory location to two packed 32-bit signed integer values and writes the
converted values in an MMX register.

If the result of the conversion is an inexact value, the value is truncated (rounded
toward zero). If the floating-point value is a NaN, infinity, or if the result of the
conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the
instruction returns the 32-bit indefinite integer value (8000_0000h) when the invalid-
operation exception (IE) is masked.

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTSI2SD,
CVTTPD2DQ, CVTTSD2SI

rFLAGS Affected

None

CVTTPD2PI Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTPD2PI mmx, xmm/mem128 66 0F 2C /r Converts packed double-precision floating-point values in an
XMM register or 128-bit memory location to packed doubleword
integer values in the destination MMX™ register. Inexact results
are truncated.

cvttpd2pi.eps

127 63 0643132

xmm/mem128mmx

convert
convert

63 0

CVTTPD2PI 15

26569—Rev. 3.03—April 2003 AMD64 Technology

MXCSR Flags Affected

Exceptions

FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note:
A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

X

X

X

The SSE2 instructions are not supported, as indicated by bit
26 of CPUID standard function 1.

The emulate bit (EM) of CR0 was set to 1.

The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for details.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X

X

X

X

X

X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An exception is pending due to an x87 floating-point
instruction.

SIMD Floating-Point
Exception, #XF

X X X There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 1.
See SIMD Floating-Point Exceptions, below, for details.

16 CVTTPD2PI

AMD64 Technology 26569—Rev. 3.03—April 2003

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value, a QNaN value, or
±infinity.

A source operand was too large to fit in the destination
format.

Precision exception (PE) X X X A result could not be represented exactly in the destination
format.

Exception Real
Virtual
8086 Protected Cause of Exception

CVTTPS2PI 17

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts two packed single-precision floating-point values in the low-order 64 bits of
an XMM register or a 64-bit memory location to two packed 32-bit signed integer
values and writes the converted values in an MMX register.

If the result of the conversion is an inexact value, the value is truncated (rounded
toward zero). If the floating-point value is a NaN, infinity, or if the result of the
conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the
instruction returns the 32-bit indefinite integer value (8000_0000h) when the invalid-
operation exception (IE) is masked.

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI,
CVTTPS2DQ, CVTTSS2SI

rFLAGS Affected

None

CVTTPS2PI Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPS2PI mmx xmm/mem64 0F 2C /r Converts packed single-precision floating-point values in an XMM
register or 64-bit memory location to doubleword integer values in
the destination MMX™ register. Inexact results are truncated.

cvttps2pi.eps

xmm/mem64mmx

convert
convert

127 63 064 3132313263 0

18 CVTTPS2PI

AMD64 Technology 26569—Rev. 3.03—April 2003

MXCSR Flags Affected

Exceptions

FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note:
A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

X

X

X

The SSE instructions are not supported, as indicated by bit
25 of CPUID standard function 1.

The emulate bit (EM) of CR0 was set to 1.

The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for details.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An exception was pending due to an x87 floating-point
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF

X X X There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT = 1.
See SIMD Floating-Point Exceptions, below, for details.

CVTTPS2PI 19

26569—Rev. 3.03—April 2003 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value, a QNaN value, or
±infinity.

A source operand was too large to fit in the destination
format.

Precision exception (PE) X X X A result could not be represented exactly in the destination
format.

Exception Real
Virtual
8086 Protected Cause of Exception

20 EMMS

AMD64 Technology 26569—Rev. 3.03—April 2003

Clears the MMX state by setting the state of the x87 stack registers to empty (tag-bit
encoding of all 1s for all MMX registers) indicating that the contents of the registers
are available for a new procedure, such as an x87 floating-point procedure. This
setting of the tag bits is referred to as “clearing the MMX state”.

Because the MMX registers and tag word are shared with the x87 floating-point
instructions, software should execute an EMMS instruction to clear the MMX state
before executing code that includes x87 floating-point instructions.

The functions of the EMMS and FEMMS instructions are identical.

For details about the setting of x87 tag bits, see “Media and x87 Processor State” in
volume 2.

Related Instructions

FEMMS (a 3DNow! instruction)

rFLAGS Affected

None

Exceptions

EMMS Exit Multimedia State

Mnemonic Opcode Description

EMMS 0F 77 Clears the MMX™ state.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX™ instructions are not supported, as indicated by
bit 23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

FEMMS 21

26569—Rev. 3.03—April 2003 AMD64 Technology

Clears the MMX state by setting the state of the x87 stack registers to empty (tag-bit
encoding of all 1s for all MMX registers) indicating that the contents of the registers
are available for a new procedure, such as an x87 floating-point procedure. This
setting of the tag bits is referred to as “clearing the MMX state”.

Because the MMX registers and tag word are shared with the x87 floating-point
instructions, software should execute an EMMS or FEMMS instruction to clear the
MMX state before executing code that includes x87 floating-point instructions.

FEMMS is a 3DNow! instruction. The functions of the FEMMS and EMMS instructions
are identical. The FEMMS instruction is supported for backward-compatibility with
certain AMD processors. Software that must be both compatible with both AMD and
non-AMD processors should use the EMMS instruction.

For details about the setting of x87 tag bits, see “Media and x87 Processor State” in
volume 2.

Related Instructions

EMMS

rFLAGS Affected

None

Exceptions

FEMMS Fast Exit Multimedia State

Mnemonic Opcode Description

FEMMS 0F 0E Clears MMX™ state.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

22 FNSAVE (FSAVE)

AMD64 Technology 26569—Rev. 3.03—April 2003

Stores the complete x87 state to memory starting at the specified address and
reinitializes the x87 state. The x87 state requires 94 or 108 bytes of memory,
depending upon whether the processor is operating in real or protected mode and
whether the operand-size attribute is 16-bit or 32-bit. Because the MMX registers are
mapped onto the low 64 bits of the x87 floating-point registers, this operation also
saves the MMX state. For details about the memory image saved by FNSAVE, see
“Media and x87 Processor State” in volume 2.

The FNSAVE instruction does not wait for pending unmasked x87 floating-point
exceptions to be processed. Processor interrupts should be disabled before using this
instruction.

Assemblers usually provide an FSAVE macro that expands into the instruction
sequence

WAIT ; Opcode 9B
FNSAVE destination ; Opcode DD /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception
handler, if necessary. The FNSAVE instruction then stores the x87 state to the
specified destination.

Related Instructions

FRSTOR, FXSAVE, FXRSTOR

rFLAGS Affected

None

FNSAVE
(FSAVE)

Floating-Point Save No-Wait x87 and MMX™ State

Mnemonic Opcode Description

FNSAVE mem94/108env DD /6 Copy the x87 state to mem94/108env without checking for pending
floating-point exceptions, then reinitialize the x87 state.

FSAVE mem94/108env 9B DD /6 Copy the x87 state to mem94/108env after checking for pending
floating-point exceptions, then reinitialize the x87 state.

FNSAVE (FSAVE) 23

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 0

C1 0

C2 0

C3 0

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control
register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

X

A memory address exceeded a data segment limit or was non-
canonical.

The destination operand was in a nonwritable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

24 FRSTOR

AMD64 Technology 26569—Rev. 3.03—April 2003

Restores the complete x87 state from memory starting at the specified address, as
stored by a previous call to FNSAVE. The x87 state occupies 94 or 108 bytes of memory
depending on whether the processor is operating in real or protected mode and
whether the operand-size attribute is 16-bit or 32-bit. Because the MMX registers are
mapped onto the low 64 bits of the x87 floating-point registers, this operation also
restores the MMX state.

If FRSTOR results in set exception flags in the loaded x87 status word register, and
these exceptions are unmasked in the x87 control word register, a floating-point
exception occurs when the next floating-point instruction is executed (except for the
no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or
FNCLEX instruction to clear the exception flags in the x87 status word before storing
that environment.

For details about the memory image restored by FRSTOR, see “Media and x87
Processor State” in volume 2.

Related Instructions

FSAVE, FNSAVE, FXSAVE, FXRSTOR

rFLAGS Affected

None

FRSTOR Floating-Point Restore x87 and MMX™ State

Mnemonic Opcode Description

FRSTOR mem94/108env DD /4 Load the x87 state from mem94/108env.

FRSTOR 25

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Loaded from memory.

C1 M Loaded from memory.

C2 M Loaded from memory.

C3 M Loaded from memory.

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control
register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

26 FXRSTOR

AMD64 Technology 26569—Rev. 3.03—April 2003

Restores the XMM, MMX, and x87 state. The data loaded from memory is the state
information previously saved using the FXSAVE instruction. Restoring data with
FXRSTOR that had been previously saved with an FSAVE (rather than FXSAVE)
instruction results in an incorrect restoration.

If FXRSTOR results in set exception flags in the loaded x87 status word register, and
these exceptions are unmasked in the x87 control word register, a floating-point
exception occurs when the next floating-point instruction is executed (except for the
no-wait floating-point instructions).

If the restored MXCSR register contains a set bit in an exception status flag, and the
corresponding exception mask bit is cleared (indicating an unmasked exception),
loading the MXCSR register does not cause a SIMD floating-point exception (#XF).

FXRSTOR does not restore the x87 error pointers (last instruction pointer, last data
pointer, and last opcode), except in the relatively rare cases in which the exception-
summary (ES) bit in the x87 status word is set to 1, indicating that an unmasked x87
exception has occurred.

The architecture supports two memory formats for FXRSTOR, a 512-byte 32-bit legacy
format and a 512-byte 64-bit format. Selection of the 32-bit or 64-bit format is
accomplished by using the corresponding effective operand size in the FXRSTOR
instruction. If software running in 64-bit mode executes an FXRSTOR with a 32-bit
operand size (no REX-prefix operand-size override), the 32-bit legacy format is used.
If software running in 64-bit mode executes an FXRSTOR with a 64-bit operand size
(requires REX-prefix operand-size override), the 64-bit format is used. For details
about the memory image restored by FXRSTOR, see “Saving Media and x87 Processor
State” in volume 2.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared
to 0, the saved image of XMM0–XMM7 and MXCSR is not loaded into the processor. A
general-protection exception occurs if there is an attempt to load a non-zero value to
the bits in MXCSR that are defined as reserved (bits 31–16).
.

FXRSTOR Restore XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXRSTOR mem512env 0F AE /1 Restores XMM, MMX™, and x87 state from 512-byte memory
location.

FXRSTOR 27

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

FWAIT, FXSAVE

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note:
A flag that can be set to one or zero is M (modified). Unaffected flags are blank. Shaded fields are reserved.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The FXSAVE/FSRSTOR instructions are not supported, as
indicated by bit 24 of CPUID standard funcion 1 or
extended function 8000_0001.

The emulate bit (EM) of CR0 was set to 1.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit, or
was non-canonical.

General protection, #GP X

X

X

X

X

X

X

X

X

X

A memory address exceeded the data segment limit or was
non-canonical.

A null data segment was used to reference memory.

The memory operand was not aligned on a 16-byte
boundary.

Ones were written to the reserved bits in MXCSR.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

28 FXSAVE

AMD64 Technology 26569—Rev. 3.03—April 2003

Saves the XMM, MMX, and x87 state. A memory location that is not aligned on a 16-
byte boundary causes a general-protection exception.

Unlike FSAVE and FNSAVE, FXSAVE does not alter the x87 tag bits. The contents of
the saved MMX/x87 data registers are retained, thus indicating that the registers may
be valid (or whatever other value the x87 tag bits indicated prior to the save). To
invalidate the contents of the MMX/x87 data registers after FXSAVE, software must
execute an FINIT instruction. Also, FXSAVE (like FNSAVE) does not check for
pending unmasked x87 floating-point exceptions. An FWAIT instruction can be used
for this purpose.

FXSAVE does not save the x87 pointer registers (last instruction pointer, last data
pointer, and last opcode), except in the relatively rare cases in which the exception-
summary (ES) bit in the x87 status word is set to 1, indicating that an unmasked x87
exception has occurred.

The architecture supports two memory formats for FXSAVE, a 512-byte 32-bit legacy
format and a 512-byte 64-bit format. Selection of the 32-bit or 64-bit format is
accomplished by using the corresponding effective operand size in the FXSAVE
instruction. If software running in 64-bit mode executes an FXSAVE with a 32-bit
operand size (no REX-prefix operand-size override), the 32-bit legacy format is used.
If software running in 64-bit mode executes an FXSAVE with a 64-bit operand size
(requires REX-prefix operand-size override), the 64-bit format is used. For details
about the memory image restored by FXRSTOR, see “Saving Media and x87 Processor
State” in volume 2.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared
to 0, FXSAVE does not save the image of XMM0–XMM7 or MXCSR. For details about
the CR4.OSFXSR bit, see “FXSAVE/FXRSTOR Support (OSFXSR) Bit” in volume 2.

Related Instructions

FINIT, FNSAVE, FRSTOR, FSAVE, FXRSTOR, LDMXCSR, STMXCSR

FXSAVE Save XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXSAVE mem512env 0F AE /0 Saves XMM, MMX™, and x87 state to 512-byte memory
location.

FXSAVE 29

26569—Rev. 3.03—April 2003 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The FXSAVE/FSRSTOR instructions are not supported, as
indicated by bit 24 of CPUID standard funcion 1 or
extended function 8000_0001.

The emulate bit (EM) of CR0 was set to 1.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit, or
was non-canonical.

General protection, #GP X

X

X

X

X

X

X

X

A memory address exceeded the data segment limit or was
non-canonical.

A null data segment was used to reference memory.

The destination operand was in a non-writable segment.

The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

30 MASKMOVQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Stores bytes from the first source operand, as selected by the second source operand,
to a memory location specified in the DS:rDI registers (except that DS is ignored in 64-
bit mode). The first source operand is an MMX register, and the second source
operand is another MMX register. The most-significant bit (msb) of each byte in the
second source operand specifies the store (1 = store, 0 = no store) of the corresponding
byte of the first source operand.

A mask value of all 0s results in the following behavior:

No data is written to memory.

Page faults and exceptions associated with memory addressing are not guaranteed
to be generated in all implementations.

Data breakpoints are not guaranteed to be generated in all implementations
(although code breakpoints are guaranteed).

MASKMOVQ Masked Move Quadword

Mnemonic Opcode Description

MASKMOVQ mmx1, mmx2 0F F7 /r Store bytes from an MMX™ register, selected by the most-significant bit
of the corresponding byte in another MMX™ register, to DS:rDI.

select

maskmovq.eps

select

store address
Memory

DS:rDI

mmx1 mmx2

.

63 0

.

.

015233139475563 7

MASKMOVQ 31

26569—Rev. 3.03—April 2003 AMD64 Technology

MASKMOVQ implicitly uses weakly-ordered, write-combining buffering for the data,
as described in “Buffering and Combining Memory Writes” in volume 2. If the stored
data is shared by multiple processors, this instruction should be used together with a
fence instruction in order to ensure data coherency (refer to “Cache and TLB
Management” in volume 2).

Related Instructions

MASKMOVDQU

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

The SSE instructions are not supported, as indicated by bit 25
in CPUID standard function 1; and the AMD extensions to
MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

32 MOVD

AMD64 Technology 26569—Rev. 3.03—April 2003

Moves a 32-bit or 64-bit value in one of the following ways:

from a 32-bit or 64-bit general-purpose register or memory location to the low-
order 32 or 64 bits of an XMM register, with zero-extension to 128 bits

from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose
register or memory location

from a 32-bit or 64-bit general-purpose register or memory location to the low-
order 32 bits (with zero-extension to 64 bits) or the full 64 bits of an MMX register

from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit
general-purpose register or memory location

The following diagrams illustrate the operation of the MOVD instruction.

MOVD Move Doubleword or Quadword

Mnemonic Opcode Description

MOVD mmx, reg/mem32 0F 6E /r Move 32-bit value from a general-purpose register or 32-bit
memory location to an MMX register.

MOVD mmx, reg/mem64 0F 6E /r Move 64-bit value from a general-purpose register or 64-bit
memory location to an MMX register.

MOVD reg/mem32, mmx 0F 7E /r Move 32-bit value from an MMX register to a 32-bit general-
purpose register or memory location.

MOVD reg/mem64, mmx 0F 7E /r Move 64-bit value from an MMX register to a 64-bit general-
purpose register or memory location.

MOVD 33

26569—Rev. 3.03—April 2003 AMD64 Technology

movd.eps

with REX prefix

All operations
are "copy"

with REX prefix

reg/mem64xmm

63 0

63 0

127 63 064

127 63 064

reg/mem64 xmm

0

031

reg/mem32xmm

reg/mem32 xmm

127 0313231 0

127 31 032

0

0

reg/mem64mmx

reg/mem64 mmx

0

with REX prefix

with REX prefix

63 063 0

63 063 0

0310

reg/mem32mmx

reg/mem32 mmx

31 0

313263 0

313263 0

0

34 MOVD

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions (All Modes)

Exception Real
Virtual
8086 Protected Description

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

X

X

X

The MMX instructions are not supported, as indicated by bit
23 of CPUID standard function 1.

The SSE2 instructions are not supported, as indicated by bit
26 of CPUID standard function 1.

The emulate bit (EM) of CR0 was set to 1.

The instruction used XMM registers while CR4.OSFXSR=0.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

X

A memory address exceeded a data segment limit or was
non-canonical.

The destination operand was in a non-writable segment.

A null data segment was used to reference memory..

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

MOVDQ2Q 35

26569—Rev. 3.03—April 2003 AMD64 Technology

Moves the low-order 64-bit value in an XMM register to a 64-bit MMX register.

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

MOVDQ2Q Move Quadword to Quadword

Mnemonic Opcode Description

MOVDQ2Q mmx, xmm F2 0F D6 /r Moves low-order 64-bit value from an XMM register to the destination
MMX™ register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE2 instructions are not supported, as indicated by bit
26 in CPUID standard function 1.

movdq2q.eps

mmx xmm

copy

63 0 127 63 064

36 MOVDQ2Q

AMD64 Technology 26569—Rev. 3.03—April 2003

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

General protection, #GP X X X The destination operand was in non-writable segment.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Exception Real
Virtual
8086 Protected Cause of Exception

MOVNTQ 37

26569—Rev. 3.03—April 2003 AMD64 Technology

Stores a 64-bit MMX register value into a 64-bit memory location. This instruction
indicates to the processor that the data is non-temporal, and is unlikely to be used
again soon. The processor treats the store as a write-combining (WC) memory write,
which minimizes cache pollution. The exact method by which cache pollution is
minimized depends on the hardware implementation of the instruction. For further
information, see “Memory Optimization” in volume 1.

MOVNTQ is weakly-ordered with respect to other instructions that operate on
memory. Software should use an SFENCE instruction to force strong memory ordering
of MOVNTQ with respect to other stores.

MOVNTQ implicitly uses weakly-ordered, write-combining buffering for the data, as
described in “Buffering and Combining Memory Writes” in volume 2. For data that is
shared by multiple processors, this instruction should be used together with a fence
instruction in order to ensure data coherency (refer to “Cache and TLB Management”
in volume 2).

Related Instructions

MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS

MOVNTQ Move Non-Temporal Quadword

Mnemonic Opcode Description

MOVNTQ mem64, mmx 0F E7 /r Stores a 64-bit MMX™ register value into a 64-bit memory location,
minimizing cache pollution.

movntq.eps

0

mmxmem64

copy

63 063

38 MOVNTQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit 25
in CPUID standard function 1; and the AMD extensions to
MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

X

A memory address exceeded a data segment limit or was
non-canonical.

The destination operand was in a non-writable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

MOVQ 39

26569—Rev. 3.03—April 2003 AMD64 Technology

Moves a 64-bit value:

from an MMX register or 64-bit memory location to another MMX register, or

from an MMX register to another MMX register or 64-bit memory location.

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ2DQ

rFLAGS Affected

None

MOVQ Move Quadword

Mnemonic Opcode Description

MOVQ mmx1, mmx2/mem64 0F 6F /r Moves 64-bit value from an MMX™ register or memory location to
an MMX™ register.

MOVQ mmx1/mem64, mmx2 0F 7F /r Moves 64-bit value from an MMX™ register to an MMX™ register
or memory location.

movq-64.eps

copy

mmx1 mmx2/mem64

0 63 063 0

copy

mmx1/mem64 mmx2

0 63 063 0

40 MOVQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeds the stack segment limit or is non-
canonical.

General protection, #GP X X X

X

X

A memory address exceeded the stack segment limit or was
non-canonical.

A null data segment was used to reference memory.

The destination operand was in a non-writable segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

MOVQ2DQ 41

26569—Rev. 3.03—April 2003 AMD64 Technology

Moves a 64-bit value from an MMX register to the low-order 64 bits of an XMM
register, with zero-extension to 128 bits.

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVQ2DQ Move Quadword to Quadword

Mnemonic Opcode Description

MOVQ2DQ xmm, mmx F3 0F D6 /r Moves 64-bit value from an MMX™ register to an XMM register.

127 63 064

xmm mmx

copy

63 0

movq2dq.eps

0

42 MOVQ2DQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

The SSE2 instructions are not supported, as indicated by bit
26 in CPUID standard function 1.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

PACKSSDW 43

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts each 32-bit signed integer in the first and second source operands to a 16-bit
signed integer and packs the converted values into words in the destination (first
source). The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

Converted values from the first source operand are packed into the low-order words of
the destination, and the converted values from the second source operand are packed
into the high-order words of the destination.

For each packed value in the destination, if the value is larger than the largest signed
16-bit integer, it is saturated to 7FFFh, and if the value is smaller than the smallest
signed 16-bit integer, it is saturated to 8000h.

Related Instructions

PACKSSWB, PACKUSWB

PACKSSDW Pack with Saturation Signed Doubleword to
Word

Mnemonic Opcode Description

PACKSSDW mmx1, mmx2/mem64 0F 6B /r Packs 32-bit signed integers in an MMX™ register and
another MMX™ register or 64-bit memory location into 16-
bit signed integers in an MMX™ register.

packssdw-64.eps

convertconvert convert convert

63 04748 15163132

mmx1 mmx2/mem64

63 0313263 03132

44 PACKSSDW

AMD64 Technology 26569—Rev. 3.03—April 2003

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PACKSSWB 45

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts each 16-bit signed integer in the first and second source operands to an 8-bit
signed integer and packs the converted values into bytes in the destination (first
source). The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

Converted values from the first source operand are packed into the low-order bytes of
the destination, and the converted values from the second source operand are packed
into the high-order bytes of the destination.

For each packed value in the destination, if the value is larger than the largest signed
8-bit integer, it is saturated to 7Fh, and if the value is smaller than the smallest signed
8-bit integer, it is saturated to 80h.

Related Instructions

PACKSSDW, PACKUSWB

PACKSSWB Pack with Saturation Signed Word to Byte

Mnemonic Opcode Description

PACKSSWB mmx1, mmx2/mem64 0F 63 /r Packs 16-bit signed integers in an MMX™ register and
another MMX™ register or 64-bit memory location into 8-bit
signed integers in an MMX™ register.

packsswb-64.eps

. .. .

....

63 03132

convertconvert convert convert

mmx1 mmx2/mem64

63 031324748 151663 031324748 1516

46 PACKSSWB

AMD64 Technology 26569—Rev. 3.03—April 2003

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PACKUSWB 47

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts each 16-bit signed integer in the first and second source operands to an 8-bit
unsigned integer and packs the converted values into bytes in the destination (first
source). The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

Converted values from the first source operand are packed into the low-order bytes of
the destination, and the converted values from the second source operand are packed
into the high-order bytes of the destination.

For each packed value in the destination, if the value is larger than the largest
unsigned 8-bit integer, it is saturated to FFh, and if the value is smaller than the
smallest unsigned 8-bit integer, it is saturated to 00h.

Related Instructions

PACKSSDW, PACKSSWB

PACKUSWB Pack with Saturation Signed Word to Unsigned
Byte

Mnemonic Opcode Description

PACKUSWB mmx1, mmx2/mem64 0F 67 /r Packs 16-bit signed integers in an MMX™ register and
another MMX™ register or 64-bit memory location into 8-
bit unsigned integers in an MMX™ register.

63 031324748 151663 031324748 1516

. .. .

....

63 03132

convertconvert convert convert

mmx1 mmx2/mem64

packuswb-64.eps

48 PACKUSWB

AMD64 Technology 26569—Rev. 3.03—April 2003

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PADDB 49

26569—Rev. 3.03—April 2003 AMD64 Technology

Adds each packed 8-bit integer value in the first source operand to the corresponding
packed 8-bit integer in the second source operand and writes the integer result of each
addition in the corresponding byte of the destination (first source). The first
source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result
overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set),
and only the low-order 8 bits of each result are written in the destination.

Related Instructions

PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDB Packed Add Bytes

Mnemonic Opcode Description

PADDB mmx1, mmx2/mem64 0F FC /r Adds packed byte integer values in an MMX™ register and
another MMX™ register or 64-bit memory location and writes
the result in the destination MMX™ register.

paddb-64.eps

add

63 0 63 0

mmx1 mmx2/mem64

add

.

.

.

50 PADDB

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PADDD 51

26569—Rev. 3.03—April 2003 AMD64 Technology

Adds each packed 32-bit integer value in the first source operand to the corresponding
packed 32-bit integer in the second source operand and writes the integer result of
each addition in the corresponding doubleword of the destination (first source). The
first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result
overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set),
and only the low-order 32 bits of each result are written in the destination.

Related Instructions

PADDB, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDD Packed Add Doublewords

Mnemonic Opcode Description

PADDD mmx1, mmx2/mem64 0F FE /r Adds packed 32-bit integer values in an MMX™ register and
another MMX™ register or 64-bit memory location and writes the
result in the destination MMX™ register.

paddd-64.eps

add

mmx1 mmx2/mem64

add

63 0313263 03132

52 PADDD

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PADDQ 53

26569—Rev. 3.03—April 2003 AMD64 Technology

Adds each packed 64-bit integer value in the first source operand to the corresponding
packed 64-bit integer in the second source operand and writes the integer result of
each addition in the corresponding quadword of the destination (first source). The
first source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result
overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set),
and only the low-order 64 bits of each result are written in the destination.

Related Instructions

PADDB, PADDD, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDQ Packed Add Quadwords

Mnemonic Opcode Description

PADDQ mmx1, mmx2/mem64 0F D4 /r Adds 64-bit integer value in an MMX™ register and another
MMX™ register or 64-bit memory location and writes the result
in the destination MMX™ register.

paddq-64.eps

mmx1 mmx2/mem64

add

63 063 0

54 PADDQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PADDSB 55

26569—Rev. 3.03—April 2003 AMD64 Technology

Adds each packed 8-bit signed integer value in the first source operand to the
corresponding packed 8-bit signed integer in the second source operand and writes
the signed integer result of each addition in the corresponding byte of the destination
(first source). The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest
representable signed 8-bit integer, it is saturated to 7Fh, and if the value is smaller
than the smallest signed 8-bit integer, it is saturated to 80h.

Related Instructions

PADDB, PADDD, PADDQ, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDSB Packed Add Signed with Saturation Bytes

Mnemonic Opcode Description

PADDSB mmx1, mmx2/mem64 0F EC /r Adds packed byte signed integer values in an MMX™ register
and another MMX™ register or 64-bit memory location and
writes the result in the destination MMX™ register.

saturate
saturate

paddsb-64.eps

add

63 0 63 0

mmx1 mmx2/mem64

add

.

.

.

56 PADDSB

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PADDSW 57

26569—Rev. 3.03—April 2003 AMD64 Technology

Adds each packed 16-bit signed integer value in the first source operand to the
corresponding packed 16-bit signed integer in the second source operand and writes
the signed integer result of each addition in the corresponding word of the destination
(first source). The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest
representable signed 16-bit integer, it is saturated to 7FFFh, and if the value is
smaller than the smallest signed 16-bit integer, it is saturated to 8000h.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

PADDSW Packed Add Signed with Saturation Words

Mnemonic Opcode Description

PADDSW mmx1, mmx2/mem64 0F ED /r Adds packed 16-bit signed integer values in an MMX™ register
and another MMX™ register or 64-bit memory location and
writes the result in the destination MMX™ register.

add

add

saturate

saturate

paddsw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

58 PADDSW

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PADDUSB 59

26569—Rev. 3.03—April 2003 AMD64 Technology

Adds each packed 8-bit unsigned integer value in the first source operand to the
corresponding packed 8-bit unsigned integer in the second source operand and writes
the unsigned integer result of each addition in the corresponding byte of the
destination (first source). The first source/destination operand is an MMX register and
the second source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest
unsigned 8-bit integer, it is saturated to FFh, and if the value is smaller than the
smallest unsigned 8-bit integer, it is saturated to 00h.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSW, PADDW

rFLAGS Affected

None

PADDUSB Packed Add Unsigned with Saturation Bytes

Mnemonic Opcode Description

PADDUSB mmx1, mmx2/mem64 0F DC /r Adds packed byte unsigned integer values in an MMX™
register and another MMX™ register or 64-bit memory
location and writes the result in the destination MMX™
register.

saturate

saturate

paddusb-64.eps

add

63 0 63 0

mmx1 mmx2/mem64

add

.

.

.

60 PADDUSB

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PADDUSW 61

26569—Rev. 3.03—April 2003 AMD64 Technology

Adds each packed 16-bit unsigned integer value in the first source operand to the
corresponding packed 16-bit unsigned integer in the second source operand and
writes the unsigned integer result of each addition in the corresponding word of the
destination (first source). The first source/destination operand is an MMX register and
the second source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest
unsigned 16-bit integer, it is saturated to FFFFh, and if the value is smaller than the
smallest unsigned 16-bit integer, it is saturated to 0000h.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDW

rFLAGS Affected

None

PADDUSW Packed Add Unsigned with Saturation Words

Mnemonic Opcode Description

PADDUSW mmx1, mmx2/mem64 0F DD /r Adds packed 16-bit unsigned integer values in an MMX™
register and another MMX™ register or 64-bit memory
location and writes result in the destination MMX™ register.

add

add

saturate
saturate

paddusw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

62 PADDUSW

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PADDW 63

26569—Rev. 3.03—April 2003 AMD64 Technology

Adds each packed 16-bit integer value in the first source operand to the corresponding
packed 16-bit integer in the second source operand and writes the integer result of
each addition in the corresponding word of the destination (second source). The first
source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result
overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set),
and only the low-order 16 bits of the result are written in the destination.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW

rFLAGS Affected

None

PADDW Packed Add Words

Mnemonic Opcode Description

PADDW mmx1, mmx2/mem64 0F FD /r Adds packed 16-bit integer values in an MMX™ register and
another MMX™ register or 64-bit memory location and writes
the result in the destination MMX™ register.

paddw-64.eps

add

add

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

64 PADDW

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PAND 65

26569—Rev. 3.03—April 2003 AMD64 Technology

Performs a bitwise logical AND of the values in the first and second source operands
and writes the result in the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register
or 64-bit memory location.

Related Instructions

PANDN, POR, PXOR

rFLAGS Affected

None

PAND Packed Logical Bitwise AND

Mnemonic Opcode Description

PAND mmx1, mmx2/mem64 0F DB /r Performs bitwise logical AND of values in an MMX™ register and in
another MMX™ register or 64-bit memory location and writes the
result in the destination MMX™ register.

pand-64.eps

mmx1 mmx2/mem64

AND

0 63 063 0

66 PAND

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PANDN 67

26569—Rev. 3.03—April 2003 AMD64 Technology

Performs a bitwise logical AND of the value in the second source operand and the
one’s complement of the value in the first source operand and writes the result in the
destination (first source). The first source/destination operand is an MMX register and
the second source operand is another MMX register or 64-bit memory location.

Related Instructions

PAND, POR, PXOR

rFLAGS Affected

None

PANDN Packed Logical Bitwise AND NOT

Mnemonic Opcode Description

PANDN mmx1, mmx2/mem64 0F DF /r Performs bitwise logical AND NOT of values in an MMX™
register and in another MMX™ register or 64-bit memory
location and writes the result in the destination MMX™ register.

pandn-64.eps

AND

invert

mmx1 mmx2/mem64

0 63 063 0

68 PANDN

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PAVGB 69

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the rounded average of each packed unsigned 8-bit integer value in the first
source operand and the corresponding packed 8-bit unsigned integer in the second
source operand and writes each average in the corresponding byte of the destination
(first source). The average is computed by adding each pair of operands, adding 1 to
the 9-bit temporary sum, and then right-shifting the temporary sum by one bit
position. The destination and source operands are an MMX register and another MMX
register or 64-bit memory location.

Related Instructions

PAVGW

rFLAGS Affected

None

PAVGB Packed Average Unsigned Bytes

Mnemonic Opcode Description

PAVGB mmx1, mmx2/mem64 0F E0 /r Averages packed 8-bit unsigned integer values in an MMX™
register and another MMX™ register or 64-bit memory location
and writes the result in the destination MMX™ register.

pavgb-64.eps

average

63 0 63 0

mmx1 mmx2/mem64

average

.

.

.

70 PAVGB

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PAVGUSB 71

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the rounded-up average of each packed unsigned 8-bit integer value in the
first source operand and the corresponding packed 8-bit unsigned integer in the
second source operand and writes each average in the corresponding byte of the
destination (first source). The average is computed by adding each pair of operands,
adding 1 to the 9-bit temporary sum, and then right-shifting the temporary sum by one
bit position. The first source/destination operand is an MMX register. The second
source operand is another MMX register or 64-bit memory location.

The PAVGUSB instruction performs a function identical to the 64-bit version of the
PAVGB instruction, although the two instructions have different opcodes. PAVGUSB is
a 3DNow! instruction. It is useful for pixel averaging in MPEG-2 motion compensation
and video scaling operations.

Related Instructions

None

rFLAGS Affected

None

PAVGUSB Packed Average Unsigned Bytes

Mnemonic Opcode Description

PAVGUSB mmx1, mmx2/mem64 0F 0F /r BF Averages packed 8-bit unsigned integer values in an MMX™
register and another MMX™ register or 64-bit memory location
and writes the result in the destination MMX™ register.

pavgusb.eps

mmx1 mmx2/mem64

average

average

63 0

.

63 0

.

72 PAVGUSB

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PAVGW 73

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the rounded average of each packed unsigned 16-bit integer value in the
first source operand and the corresponding packed 16-bit unsigned integer in the
second source operand and writes each average in the corresponding word of the
destination (first source). The average is computed by adding each pair of operands,
adding 1 to the 17-bit temporary sum, and then right-shifting the temporary sum by
one bit position. The first source/destination operand is an MMX register and the
second source operand is another MMX register or 64-bit memory location.

Related Instructions

PAVGB

rFLAGS Affected

None

PAVGW Packed Average Unsigned Words

Mnemonic Opcode Description

PAVGW mmx1, mmx2/mem64 0F E3 /r Averages packed 16-bit unsigned integer values in an MMX™
register and another MMX™ register or 64-bit memory location
and writes the result in the destination MMX™ register.

pavgw-64.eps

average

average

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

74 PAVGW

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PCMPEQB 75

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares corresponding packed bytes in the first and second source operands and
writes the result of each compare in the corresponding byte of the destination (first
source). For each pair of bytes, if the values are equal, the result is all 1s. If the values
are not equal, the result is all 0s. The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory
location.

Related Instructions

PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPEQB Packed Compare Equal Bytes

Mnemonic Opcode Description

PCMPEQB mmx1, mmx2/mem64 0F 74 /r Compares packed bytes in an MMX™ register and an MMX™
register or 64-bit memory location.

pcmpeqb-64.eps

compare

63 0 63 0

mmx1 mmx2/mem64

compare
.

.

.

all 1s or 0s

all 1s or 0s

76 PCMPEQB

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PCMPEQD 77

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares corresponding packed 32-bit values in the first and second source operands
and writes the result of each compare in the corresponding 32 bits of the destination
(first source). For each pair of doublewords, if the values are equal, the result is all 1s.
If the values are not equal, the result is all 0s. The first source/destination operand is
an MMX register and the second source operand is another MMX register or 64-bit
memory location.

Related Instructions

PCMPEQB, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPEQD Packed Compare Equal Doublewords

Mnemonic Opcode Description

PCMPEQD mmx1, mmx2/mem64 0F 76 /r Compares packed doublewords in an MMX™ register and an
MMX™ register or 64-bit memory location.

pcmpeqd-64.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

78 PCMPEQD

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PCMPEQW 79

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares corresponding packed 16-bit values in the first and second source operands
and writes the result of each compare in the corresponding 16 bits of the destination
(first source). For each pair of words, if the values are equal, the result is all 1s. If the
values are not equal, the result is all 0s. The first source/destination operand is an
MMX register and the second source operand is another MMX register or 64-bit
memory location.

Related Instructions

PCMPEQB, PCMPEQD, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPEQW Packed Compare Equal Words

Mnemonic Opcode Description

PCMPEQW mmx1, mmx2/mem64 0F 75 /r Compares packed 16-bit values in an MMX™ register and an
MMX™ register or 64-bit memory location.

compare

mmx1 mmx2/mem64

compare

all 1s or 0s

all 1s or 0s
pcmpeqw-64.eps

....

..
63 04748 1516313263 04748 15163132

80 PCMPEQW

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PCMPGTB 81

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares corresponding packed signed bytes in the first and second source operands
and writes the result of each compare in the corresponding byte of the destination
(first source). For each pair of bytes, if the value in the first source operand is greater
than the value in the second source operand, the result is all 1s. If the value in the first
source operand is less than or equal to the value in the second source operand, the
result is all 0s. The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTD, PCMPGTW

rFLAGS Affected

None

PCMPGTB Packed Compare Greater Than Signed Bytes

Mnemonic Opcode Description

PCMPGTB mmx1, mmx2/mem64 0F 64 /r Compares packed signed bytes in an MMX™ register and an
MMX™ register or 64-bit memory location.

pcmpgtb-64.eps

compare

63 0 63 0

mmx1 mmx2/mem64

compare
.

.

.

all 1s or 0s
all 1s or 0s

82 PCMPGTB

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PCMPGTD 83

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares corresponding packed signed 32-bit values in the first and second source
operands and writes the result of each compare in the corresponding 32 bits of the
destination (first source). For each pair of doublewords, if the value in the first source
operand is greater than the value in the second source operand, the result is all 1s. If
the value in the first source operand is less than or equal to the value in the second
source operand, the result is all 0s. The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory
location.

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTW

rFLAGS Affected

None

PCMPGTD Packed Compare Greater Than Signed
Doublewords

Mnemonic Opcode Description

PCMPGTD mmx1, mmx2/mem64 0F 66 /r Compares packed signed 32-bit values in an MMX™ register
and an MMX™ register or 64-bit memory location.

pcmpgtd-64.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s

all 1s or 0s

63 0313263 03132

84 PCMPGTD

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PCMPGTW 85

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares corresponding packed signed 16-bit values in the first and second source
operands and writes the result of each compare in the corresponding 16 bits of the
destination (first source). For each pair of words, if the value in the first source
operand is greater than the value in the second source operand, the result is all 1s. If
the value in the first source operand is less than or equal to the value in the second
source operand, the result is all 0s. The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory
location.

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD

rFLAGS Affected

None

PCMPGTW Packed Compare Greater Than Signed Words

Mnemonic Opcode Description

PCMPGTW mmx1, mmx2/mem64 0F 65 /r Compares packed signed 16-bit values in an MMX™ register
and an MMX™ register or 64-bit memory location.

63 04748 15163132

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

pcmpgtw-64.eps

....

..
63 04748 15163132

86 PCMPGTW

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PEXTRW 87

26569—Rev. 3.03—April 2003 AMD64 Technology

Extracts a 16-bit value from an MMX register, as selected by the immediate byte
operand (as shown in Table 1-1) and writes it to the low-order word of a 32-bit general-
purpose register, with zero-extension to 32 bits.

Related Instructions

PINSRW

PEXTRW Extract Packed Word

Mnemonic Opcode Description

PEXTRW reg32, mmx, imm8 0F C5 /r ib Extracts a 16-bit value from an MMX™ register and writes it
to low-order 16 bits of a general-purpose register.

Table 1-1. Immediate-Byte Operand Encoding for 64-Bit PEXTRW

Immediate-Byte
Bit Field Value of Bit Field Source Bits Extracted

1–0

0 15–0

1 31–16

2 47–32

3 63–48

pextrw-64.eps

reg32 mmx

imm8
7 0

mux

063 4748 15163132015

0

31

88 PEXTRW

AMD64 Technology 26569—Rev. 3.03—April 2003

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PF2ID 89

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts two packed single-precision floating-point values in an MMX register or a 64-
bit memory location to two packed 32-bit signed integer values and writes the
converted values in another MMX register. If the result of the conversion is an inexact
value, the value is truncated (rounded toward zero). The numeric range for source and
destination operands is shown in Table 1-2.

PF2ID Packed Floating-Point to Integer Doubleword
Converson

Mnemonic Opcode Description

PF2ID mmx1, mmx2/mem64 0F 0F /r 1D Converts packed single-precision floating-point values in an MMX™
register or memory location to a doubleword integer value in the
destination MMX™ register.

Table 1-2. Numeric Range for PF2ID Results

Source 2 Source 1 and Destination

0 0

Normal, abs(Source 2) < 1 0

Normal, –231 < Source 2 <= –1

Normal, 1 <= Source 2 < 231

Round to zero (Source 2)

Round to zero (Source 2)

Normal, Source 2 >= 231 7FFF_FFFFh

Normal, Source 2 <= –231 8000_0000h

Unsupported Undefined

pf2id.eps

mmx1 mmx2/mem64

convert
convert

63 0313263 03132

90 PF2ID

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PF2IW, PI2FD, PI2FW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PF2IW 91

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts two packed single-precision floating-point values in an MMX register or a 64-
bit memory location to two packed 16-bit signed integer values, sign-extended to
32 bits, and writes the converted values in another MMX register. If the result of the
conversion is an inexact value, the value is truncated (rounded toward zero). The
numeric range for source and destination operands is shown in Table 1-3 on page 92.
Arguments outside the range representable by signed 16-bit integers are saturated to
the largest and smallest 16-bit integer, depending on their sign.

PF2IW Packed Floating-Point to Integer Word
Conversion

Mnemonic Opcode Description

PF2IW mmx1, mmx2/mem64 0F 0F /r 1C Converts packed single-precision floating-point values in an MMX™
register or memory location to word integer values in the destination
MMX™ register.

pf2iw.eps

mmx1 mmx2/mem64

convert
convert

63 0313263 03132

ss

92 PF2IW

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PF2ID, PI2FD, PI2FW

rFLAGS Affected

None

Exceptions

Table 1-3. Numeric Range for PF2IW Results

Source 2 Source 1 and Destination

0 0

Normal, abs(Source 2) < 1 0

Normal, –215 < Source 2 <= –1

Normal, 1 <= Source 2 < 215

Round to zero (Source 2)

Round to zero (Source 2)

Normal, Source 2 >= 215 0000_7FFFh

Normal, Source 2 <= –215 FFFF_8000h

Unsupported Undefined

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD Extensions to 3DNow!™ are not supported, as
indicated by bit 30 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PFACC 93

26569—Rev. 3.03—April 2003 AMD64 Technology

Adds the two single-precision floating-point values in the first source operand and
adds the two single-precision values in the second source operand and writes the two
results to the low-order and high-order doubleword, respectively, of the destination
(first source). The first source/destination operand is an MMX register. The second
source operand is another MMX register or 64-bit memory location.

The numeric range for operands is shown in Table 1-4 on page 94.

PFACC Packed Floating-Point Accumulate

Mnemonic Opcode Description

PFACC mmx1, mmx2/mem64 0F 0F /r AE Accumulates packed single-precision floating-point values in an MMX™
register or 64-bit memory location and another MMX™ register and
writes each result in the destination MMX™ register.

pfacc.eps

mmx1 mmx2/mem64

addadd

63 0313263 03132

94 PFACC

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PFADD, PFNACC, PFPNACC

rFLAGS Affected

None

Exceptions

Table 1-4. Numeric Range for PFACC Results

Source Operand
High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 High Operand High Operand

Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign of the result is the logical AND of the signs of the low and high operands
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero with the sign of the operand

(low or high) that is larger in magnitude. If the infinitely precise result is exactly zero, the result is zero with the sign of the low
operand. If the absolute value of the infinitely precise result is greater than or equal to 2128, the result is the largest normal number
with the sign of the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

PFACC 95

26569—Rev. 3.03—April 2003 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

96 PFADD

AMD64 Technology 26569—Rev. 3.03—April 2003

Adds each packed single-precision floating-point value in the first source operand to
the corresponding packed single-precision floating-point value in the second operand
and writes the result of each addition in the corresponding doubleword of the
destination (first source). The first source/destination operand is an MMX register.
The second source operand is another MMX register or 64-bit memory location. The
numeric range for operands is shown in Table 1-5 on page 97.

PFADD Packed Floating-Point Add

Mnemonic Opcode Description

PFADD mmx1, mmx2/mem64 0F 0F /r 9E Adds two packed single-precision floating-point values in an MMX™
register or 64-bit memory location and another MMX™ register and
writes each result in the destination MMX™ register.

pfadd.eps

add

mmx1 mmx2/mem64

add

63 0313263 03132

PFADD 97

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

PFACC, PFNACC, PFPNACC

rFLAGS Affected

None

Exceptions

Table 1-5. Numeric Range for the PFADD Results

Source Operand
Most-Significant Doubleword

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 Source 2 Source 2

Normal Source 1 Normal, +/– 02 Undefined

Unsupported3 Source 1 Undefined Undefined

Note:
1. The sign of the result is the logical AND of the signs of the source operands
2. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero with the sign of the source

operand that is larger in magnitude. If the infinitely precise result is exactly zero, the result is zero with the sign of source 1. If the
absolute value of the infinitely precise result is greater than or equal to 2128, the result is the largest normal number with the sign
of source 1.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

98 PFADD

AMD64 Technology 26569—Rev. 3.03—April 2003

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

PFCMPEQ 99

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares each of the two packed single-precision floating-point values in the first
source operand with the corresponding packed single-precision floating-point value in
the second source operand and writes the result of each comparison in the
corresponding doubleword of the destination (first source). For each pair of floating-
point values, if the values are equal, the result is all 1s. If the values are not equal, the
result is all 0s. The first source/destination operand is an MMX register. The second
source operand is another MMX register or 64-bit memory location. The numeric
range for operands is shown in Table 1-6 on page 100.

PFCMPEQ Packed Floating-Point Compare Equal

Mnemonic Opcode Description

PFCMPEQ mmx1, mmx2/mem64 0F 0F /r B0 Compares two pairs of packed single-precision floating-point
values in an MMX™ register and an MMX™ register or 64-bit
memory location.

pfcmpeq.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

100 PFCMPEQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PFCMPGE, PFCMPGT

rFLAGS Affected

None

Exceptions

Table 1-6. Numeric Range for the PFCMPEQ Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 FFFF_FFFFh1 0000_0000h 0000_0000h

Normal 0000_0000h
0000_0000h or
FFFF_FFFFh2 0000_0000h

Unsupported3 0000_0000h 0000_0000h Undefined

Note:
1. Positive zero is equal to negative zero.
2. The result is FFFF_FFFFh if source 1 and source 2 have identical signs, exponents, and mantissas. Otherwise, the result is

0000_0000h.
3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

PFCMPEQ 101

26569—Rev. 3.03—April 2003 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

102 PFCMPGE

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares each of the two packed single-precision floating-point values in the first
source operand with the corresponding packed single-precision floating-point value in
the second source operand and writes the result of each comparison in the
corresponding doubleword of the destination (first source). For each pair of floating-
point values, if the value in the first source operand is greater than or equal to the
value in the second source operand, the result is all 1s. If the value in the first source
operand is less than the value in the second source operand, the result is all 0s. The
first source/destination operand is an MMX register. The second source operand is
another MMX register or 64-bit memory location. The numeric range for operands is
shown in Table 1-7 on page 103.

PFCMPGE Packed Floating-Point Compare Greater or
Equal

Mnemonic Opcode Description

PFCMPGE mmx1, mmx2/mem64 0F 0F /r 90 Compares two pairs of packed single-precision floating-point
values in an MMX™ register and an MMX™ register or 64-bit
memory location.

pfcmpge.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

PFCMPGE 103

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

PFCMPEQ, PFCMPGT

rFLAGS Affected

None

Exceptions

Table 1-7. Numeric Range for the PFCMPGE Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 FFFF_FFFFh1 0000_0000h,
FFFF_FFFFh2 Undefined

Normal
0000_0000h,
FFFF_FFFFh3

0000_0000h,
FFFF_FFFFh4 Undefined

Unsupported5 Undefined Undefined Undefined

Note:
1. Positive zero is equal to negative zero.
2. The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
3. The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
4. The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative and source 1 is smaller than

or equal in magnitude to source 2, or if source 1 and source 2 are both positive and source 1 is greater than or equal in magni-
tude to source 2. The result is 0000_0000h in all other cases.

5. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

104 PFCMPGE

AMD64 Technology 26569—Rev. 3.03—April 2003

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

PFCMPGT 105

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares each of the two packed single-precision floating-point values in the first
source operand with the corresponding packed single-precision floating-point value in
the second source operand and writes the result of each comparison in the
corresponding doubleword of the destination (first source). For each pair of floating-
point values, if the value in the first source operand is greater than the value in the
second source operand, the result is all 1s. If the value in the first source operand is
less than or equal to the value in the second source operand, the result is all 0s. The
first source/destination operand is an MMX register. The second source operand is
another MMX register or 64-bit memory location. The numeric range for operands is
shown in Table 1-8 on page 106.

PFCMPGT Packed Floating-Point Compare Greater Than

Mnemonic Opcode Description

PFCMPGT mmx1, mmx2/mem64 0F 0F /r A0 Compares two pairs of packed single-precision floating-point
values in an MMX™ register and an MMX™ register or 64-bit
memory location.

pfcmpgt.eps

compare

mmx1 mmx2/mem64

compare

all 1s or 0s
all 1s or 0s

63 0313263 03132

106 PFCMPGT

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PFCMPEQ, PFCMPGE

rFLAGS Affected

None

Exceptions

Table 1-8. Numeric Range for the PFCMPGT Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 0000_0000h
0000_0000h,
FFFF_FFFFh1 Undefined

Normal
0000_0000h,
FFFF_FFFFh2

0000_0000h,
FFFF_FFFFh3 Undefined

Unsupported4 Undefined Undefined Undefined

Note:
1. The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
2. The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
3. The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative and source 1 is smaller in

magnitude than source 2, or if source 1 and source 2 are positive and source 1 is greater in magnitude than source 2. The result
is 0000_0000h in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

PFCMPGT 107

26569—Rev. 3.03—April 2003 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

108 PFMAX

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares each of the two packed single-precision floating-point values in the first
source operand with the corresponding packed single-precision floating-point value in
the second source operand and writes the maximum of the two values for each
comparison in the corresponding doubleword of the destination (first source). The
first source/destination operand is an MMX register. The second source operand is
another MMX register or 64-bit memory location.

Any operation with a zero and a negative number returns positive zero. An operation
consisting of two zeros returns positive zero. If either source operand is an undefined
value, the result is undefined. The numeric range for source and destination operands
is shown in Table 1-9 on page 109.

PFMAX Packed Single-Precision Floating-Point
Maximum

Mnemonic Opcode Description

PFMAX mmx1, mmx2/mem64 0F 0F /r A4 Compares two pairs of packed single-precision values in an MMX™
register and another MMX™ register or 64-bit memory location and
writes the maximum value of each comparison in the destination
MMX™ register.

pfmax.eps

maximum

mmx1 mmx2/mem64

maximum

63 0313263 03132

PFMAX 109

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

PFMIN

rFLAGS Affected

None

Exceptions

Table 1-9. Numeric Range for the PFMAX Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +01 Undefined

Normal Source 1, +02 Source 1/Source 23 Undefined

Unsupported4 Undefined Undefined Undefined

Note:
1. The result is source 2, if source 2 is positive. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is positive. Otherwise, the result is positive zero.
3. The result is source 1, if source 1 is positive and source 2 is negative. The result is source 1, if both are positive and source 1 is

greater in magnitude than source 2. The result is source 1, if both are negative and source 1 is lesser in magnitude than source
2. The result is source 2 in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

110 PFMAX

AMD64 Technology 26569—Rev. 3.03—April 2003

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

PFMIN 111

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares each of the two packed single-precision floating-point values in the first
source operand with the corresponding packed single-precision floating-point value in
the second source operand and writes the minimum of the two values for each
comparison in the corresponding doubleword of the destination (first source). The
first source/destination operand is an MMX register. The second source operand is
another MMX register or 64-bit memory location.

Any operation with a zero and a positive number returns positive zero. An operation
consisting of two zeros returns positive zero. If either source operand is an undefined
value, the result is undefined. The numeric range for source and destination operands
is shown in Table 1-10 on page 112.

PFMIN Packed Single-Precision Floating-Point
Minimum

Mnemonic Opcode Description

PFMIN mmx1, mmx2/mem64 0F 0F /r 94 Compares two pairs of packed single-precision values in an MMX™
register and another MMX™ register or 64-bit memory location and
writes the minimum value of each comparison in the destination
MMX™ register.

pfmin.eps

minimum

mmx1 mmx2/mem64

minimum

63 0313263 03132

112 PFMIN

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PFMAX

rFLAGS Affected

None

Exceptions

Table 1-10. Numeric Range for the PFMIN Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +01 Undefined

Normal Source 1, +02 Source 1/Source 23 Undefined

Unsupported4 Undefined Undefined Undefined

Note:
1. The result is source 2, if source 2 is negative. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is negative. Otherwise, the result is positive zero.
3. The result is source 1, if source 1 is negative and source 2 is positive. The result is source 1, if both are negative and source 1 is

greater in magnitude than source 2. The result is source 1, if both are positive and source 1 is lesser in magnitude than source 2.
The result is source 2 in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

PFMIN 113

26569—Rev. 3.03—April 2003 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

114 PFMUL

AMD64 Technology 26569—Rev. 3.03—April 2003

Multiplies each of the two packed single-precision floating-point values in the first
source operand by the corresponding packed single-precision floating-point value in
the second source operand and writes the result of each multiplication in the
corresponding doubleword of the destination (first source). The numeric range for
source and destination operands is shown in Table 1-11 on page 115. The first
source/destination operand is an MMX register. The second source operand is another
MMX register or 64-bit memory location.

PFMUL Packed Floating-Point Multiply

Mnemonic Opcode Description

PFMUL mmx1, mmx2/mem64 0F 0F /r B4 Multiplies packed single-precision floating-point values in an MMX™
register and another XMM register or 64-bit memory location and
writes the result in the destination MMX™ register.

pfmul.eps

multiply

mmx1 mmx2/mem64

multiply

63 0313263 03132

PFMUL 115

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

None

rFLAGS Affected

None

Exceptions

Table 1-11. Numeric Range for the PFMUL Instruction

Operand Value
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 +/– 01 +/– 01

Normal +/– 01 Normal, +/– 02 Undefined

Unsupported3 +/– 01 Undefined Undefined

Note:
1. The sign of the result is the exclusive-OR of the signs of the source operands.
2. If the absolute value of the result is less then 2–126, the result is zero with the sign being the exclusive-OR of the signs of the source

operands. If the absolute value of the product is greater than or equal to 2128, the result is the largest normal number with the
sign being the exclusive-OR of the signs of the source operands.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

116 PFMUL

AMD64 Technology 26569—Rev. 3.03—April 2003

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

PFNACC 117

26569—Rev. 3.03—April 2003 AMD64 Technology

Subtracts the first source operand’s high-order single-precision floating-point value
from its low-order single-precision floating-point value, subtracts the second source
operand’s high-order single-precision floating-point value from its low-order single-
precision floating-point value, and writes each result to the low-order or high-order
doubleword, respectively, of the destination (first source). The first source/destination
operand is an MMX register. The second source operand is another MMX register or
64-bit memory location.

The numeric range for operands is shown in Table 1-12 on page 118.

PFNACC Packed Floating-Point Negative Accumulate

Mnemonic Opcode Description

PFNACC mmx1, mmx2/mem64 0F 0F /r 8A Subtracts the packed single-precision floating-point values in an
MMX™ register or 64-bit memory location and another MMX™
register and writes each value in the destination MMX™ register.

pfnacc.eps

mmx1 mmx2/mem64

subtractsubtract

63 0313263 03132

118 PFNACC

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PFSUB, PFACC, PFPNACC

rFLAGS Affected

None

Exceptions

Table 1-12. Numeric Range of PFNACC Results

Source Operand
High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 - High Operand - High Operand

Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the sign of the low operand and the inverse of the sign of the high operand.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero. If the low operand is larger

in magnitude than the high operand, the sign of this zero is the same as the sign of the low operand, else it is the inverse of the
sign of the high operand. If the infinitely precise result is exactly zero, the result is zero with the sign of the low operand. If the
absolute value of the infinitely precise result is greater than or equal to 2128, the result is the largest normal number with the sign
of the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD Extensions to 3DNow!™ are not supported, as
indicated by bit 30 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

PFNACC 119

26569—Rev. 3.03—April 2003 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

120 PFPNACC

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts the first source operand’s high-order single-precision floating-point value
from its low-order single-precision floating-point value, adds the two single-precision
values in the second source operand, and writes each result to the low-order or high-
order doubleword, respectively, of the destination (first source). The first
source/destination operand is an MMX register. The second source operand is another
MMX register or 64-bit memory location.

The numeric range for operands is shown in Table 1-13 (for the low result) and
Table 1-14 (for the high result), both on page 121.

PFPNACC Packed Floating-Point Positive-Negative
Accumulate

Mnemonic Opcode Description

PFPNACC mmx1, mmx2/mem64 0F 0F /r 8E Subtracts the packed single-precision floating-point values in an
MMX™ register, adds the packed single-precision floating-point
values in another MMX™ register or 64-bit memory location, and
writes each value in the destination MMX™ register.

pfpnacc.eps

mmx1 mmx2/mem64

addsubtract

63 0313263 03132

PFPNACC 121

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

PFADD, PFSUB, PFACC, PFNACC

Table 1-13. Numeric Range of PFPNACC Result (Low Result)

Source Operand
High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 - High Operand - High Operand

Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the sign of the low operand and the inverse of the sign of the high operand.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero. If the low operand is larger

in magnitude than the high operand, the sign of this zero is the same as the sign of the low operand, else it is the inverse of the
sign of the high operand. If the infinitely precise result is exactly zero, the result is zero with the sign of the low operand. If the
absolute value of the infinitely precise result is greater than or equal to 2128, the result is the largest normal number with the sign
of the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Table 1-14. Numeric Range of PFPNACC Result (High Result)

Source Operand
High Operand2

0 Normal Unsupported

Low Operand1

0 +/– 03 High Operand High Operand

Normal Low Operand Normal, +/– 04 Undefined

Unsupported5 Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the signs of the low and high operands.
4. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is zero with the sign of the operand

(low or high) that is larger in magnitude. If the infinitely precise result is exactly zero, the result is zero with the sign of the low
operand. If the absolute value of the infinitely precise result is greater than or equal to 2128, the result is the largest normal number
with the sign of the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

122 PFPNACC

AMD64 Technology 26569—Rev. 3.03—April 2003

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD Extensions to 3DNow!™ are not supported, as
indicated by bit 30 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PFRCP 123

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the approximate reciprocal of the single-precision floating-point value in
the low-order 32 bits of an MMX register or 64-bit memory location and writes the
result in both doublewords of another MMX register. The result is accurate to 14 bits.

The PFRCP result can forwarded to the Newton-Raphson iteration step 1 (PFRCPIT1)
and Newton-Raphson iteration step 2 (PFRCPIT2) instructions to increase the
accuracy of the reciprocal. The first stage of this refinement in accuracy (PFRCPIT1)
requires that the input and output of the previously executed PFRCP instruction be
used as input to the PFRCPIT1 instruction.

The estimate contains the correct round-to-nearest value for approximately 99% of all
arguments. The remaining arguments differ from the correct round-to-nearest value
for the reciprocal by 1 unit-in-the-last-place (ulp). For details, see the data sheet or
other software-optimization documentation relating to particular hardware
implementations.

PFRCP Floating-Point Reciprocal Approximation

Mnemonic Opcode Description

PFRCP mmx1, mmx2/mem64 0F 0F /r 96 Computes approximate reciprocal of single-precision floating-point
value in an MMX™ register or 64-bit memory location and writes the
result in both doublewords of the destination MMX™ register.

pfrcp.eps

mmx2/mem64mmx1

approximate
reciprocal

63 03132313263 0

124 PFRCP

AMD64 Technology 26569—Rev. 3.03—April 2003

PFRCP(x) returns 0 for x >= 2-126. The numeric range for operands is shown in
Table 1-15.

Examples

The general Newton-Raphson recurrence for the reciprocal 1/b is:

Zi +1 ← Zi • (2 – b • Zi)

The following code sequence shows the computation of a/b:

X0 = PFRCP(b)
X1 = PFRCPIT1(b, X0)
X2 = PFRCPIT2(X1, X0)
q = PFMUL(a, X2)

The 24-bit final reciprocal value is X2. The quotient is formed in the last step by
multiplying the reciprocal by the dividend a.

Related Instructions

PFRCPIT1, PFRCPIT2

rFLAGS Affected

None

Table 1-15. Numeric Range for the PFRCP Result

Operand Source 1 and Destination

Source 2

0 +/– Maximum Normal1

Normal Normal, +/– 02

Unsupported3 Undefined

Note:
1. The result has the same sign as the source operand.
2. If the absolute value of the result is less then 2–126, the result is zero with the sign being the sign of the source operand. Otherwise,

the result is a normal with the sign being the same sign as the source operand.
3. “Unsupported” means that the exponent is all ones (1s).

PFRCP 125

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

126 PFRCPIT1

AMD64 Technology 26569—Rev. 3.03—April 2003

Performs the first step in the Newton-Raphson iteration to refine the reciprocal
approximation produced by the PFRCP instruction. The first source/destination
operand is an MMX register containing the results of two previous PFRCP
instructions, and the second source operand is another MMX register or 64-bit
memory location containing the source operands from the same PFRCP instructions.

This instruction is only defined for those combinations of operands such that the first
source operand (mmx1) is the approximate reciprocal of the second source operand
(mmx2/mem64), and thus the range of the product, mmx1 * mmx2/mem64, is (0.5, 2).
The initial approximation of an operand is accurate to about 12 bits, and the length of
the operand itself is 24 bits, so the product of these two operands is greater than 24
bits. PFRCPIT1 applies the one's complement of the product and rounds the result to
32 bits. It then compresses the result to fit into 24 bits by removing the 8 redundant
most-significant bits after the hidden integer bit.

The estimate contains the correct round-to-nearest value for approximately 99% of all
arguments. The remaining arguments differ from the correct round-to-nearest value
for the reciprocal by 1 unit-in-the-last-place (ulp). For details, see the data sheet or

PFRCPIT1 Packed Floating-Point Reciprocal Iteration 1

Mnemonic Opcode Description

PFRCPIT1 mmx1, mmx2/mem64 0F 0F /r A6 Refine approximate reciprocal of result from previous PFRCP
instruction.

pfrcpit1.eps

Newton-
Raphson
reciprocal

step 1
Newton-
Raphson
reciprocal

step 1

mmx1 mmx2/mem64

63 0313263 03132

PFRCP SourcePFRCP Result PFRCP SourcePFRCP Result

PFRCPIT1 127

26569—Rev. 3.03—April 2003 AMD64 Technology

other software-optimization documentation relating to particular hardware
implementations.

Operation

mmx1[31:0] = Compress (2 - mmx1[31:0] * (mmx2/mem64[31:0]) - 231);
mmx1[63:32] = Compress (2 - mmx1[63:32] * (mmx2/mem64[63:32]) - 231);

where:

“Compress” means discard the 8 redundant most-significant bits after the hidden
integer bit.

Examples

The general Newton-Raphson recurrence for the reciprocal 1/b is:

Zi +1 ← Zi • (2 – b • Zi)

The following code sequence computes a 24-bit approximation to a/b with one Newton-
Raphson iteration:

X0 = PFRCP(b)
X1 = PFRCPIT1(b, X0)
X2 = PFRCPIT2(X1, X0)
q = PFMUL(a, X2)

a/b is formed in the last step by multiplying the reciprocal approximation by a.

Related Instructions

PFRCP, PFRCPIT2

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

128 PFRCPIT1

AMD64 Technology 26569—Rev. 3.03—April 2003

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

PFRCPIT2 129

26569—Rev. 3.03—April 2003 AMD64 Technology

Performs the second and final step in the Newton-Raphson iteration to refine the
reciprocal approximation produced by the PFRCP instruction or the reciprocal
square-root approximation produced by the PFSQRT instruction. PFRCPIT2 takes two
paired elements in each source operand. These paired elements are the results of a
PFRCP and PFRCPIT1 instruction sequence or of a PFRSQRT and PFRSQIT1
instruction sequence. The first source/destination operand is an MMX register that
contains the PFRCPIT1 or PFRSQIT1 results and the second source operand is
another MMX register or 64-bit memory location that contains the PFRCP or
PFRSQRT results.

The PFRCPIT2 instruction expands the compressed PFRCPIT1 or PFRSQIT1 results
from 24 to 32 bits and multiplies them by their respective source operands. An optimal
correction factor is added to the product, which is then rounded to 24 bits.

PFRCPIT2 Packed Floating-Point Reciprocal or Reciprocal
Square Root Iteration 2

Mnemonic Opcode Description

PFRCPIT2 mmx1, mmx2/mem64 0F 0F /r B6 Refines approximate reciprocal result from previous PFRCP and
PFRCPIT1 instructions or from previous PFRSQRT and PFRSQIT1
instructions.

pfrcpit2.eps

Newton-
Raphson
reciprocal

step 2
Newton-
Raphson
reciprocal

step 2

mmx1 mmx2/mem64

63 0313263 03132

Reciprocal ResultIteration-1 Result Reciprocal ResultIteration-1 Result

130 PFRCPIT2

AMD64 Technology 26569—Rev. 3.03—April 2003

The estimate contains the correct round-to-nearest value for approximately 99% of all
arguments. The remaining arguments differ from the correct round-to-nearest value
for the reciprocal by 1 unit-in-the-last-place (ulp). For details, see the data sheet or
other software-optimization documentation relating to particular hardware
implementations.

Operation

mmx1[31:0] = Expand(mmx1[31:0]) * mmx2/mem64[31:0];
mmx1[63:32] = Expand(mmx1[63:32]) * mmx2/mem64[63:32];

where:

“Expand” means convert a 24-bit significand to a 32-bit significand according to the
following rule:

temp[31:0] = {1’b1, 8{mmx1[22]}, mmx1[22:0]};

Examples

The general Newton-Raphson recurrence for the reciprocal 1/b is:

Zi +1 ← Zi • (2 – b • Zi)

The following code sequence computes a 24-bit approximation to a/b with one Newton-
Raphson iteration:

X0 = PFRCP(b)
X1 = PFRCPIT1(b, X0)
X2 = PFRCPIT2(X1, X0)
q = PFMUL(a, X2)

a/b is formed in the last step by multiplying the reciprocal approximation by a.

Related Instructions

PFRCP, PFRCPIT1, PFRSQRT, PFRSQIT1

rFLAGS Affected

None

PFRCPIT2 131

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

132 PFRSQIT1

AMD64 Technology 26569—Rev. 3.03—April 2003

Performs the first step in the Newton-Raphson iteration to refine the reciprocal
square-root approximation produced by the PFSQRT instruction. The first
source/destination operand is an MMX register containing the result from a previous
PFRSQRT instruction, and the second source operand is another MMX register or 64-
bit memory location containing the source operand from the same PFRSQRT
instruction.

This instruction is only defined for those combinations of operands such that the first
source operand (mmx1) is the approximate reciprocal of the second source operand
(mmx2/mem64), and thus the range of the product, mmx1 * mmx2/mem64, is (0.5, 2).
The length of both operands is 24 bits, so the product of these two operands is greater
than 24 bits. The product is normalized and then rounded to 32 bits. The one's
complement of the result is applied, a 1 is added as the most-significant bit, and the
result re-normalized. The result is then compressed to fit into 24 bits by removing 8

PFRSQIT1 Packed Floating-Point Reciprocal Square Root
Iteration 1

Mnemonic Opcode Description

PFRSQIT1 mmx1, mmx2/mem64 0F 0F /r A7 Refines reciprocal square root approximation of previous PFRSQRT
instruction.

pfrsqit1.eps

Newton-
Raphson
reciprocal

square root
step 1Newton-

Raphson
reciprocal

square root
step 1

mmx1 mmx2/mem64

63 0313263 03132

PFSQRT SourcePFSQRT Result PFSQRT SourcePFSQRT Result

PFRSQIT1 133

26569—Rev. 3.03—April 2003 AMD64 Technology

redundant most-significant bits after the hidden integer bit, and the exponent is
reduced by 1 to account for the division by 2.

Operation

mmx1[31:0] = Compress ((3 - mmx1[31:0] * (mmx2/mem64[31:0]) - 231)/2);
mmx1[63:32] = Compress ((3 - mmx1[63:32] * (mmx2/mem64[63:32]) - 231)/2);

where:

“Compress” means discard the 8 redundant most-significant bits after the hidden
integer bit.

Examples

The following code sequence shows how the PFRSQRT and PFMUL instructions can
be used to compute a = 1/sqrt (b):

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
a = PFRCPIT2(X2,X0)

Related Instructions

PFRCPIT2, PFRSQRT

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

134 PFRSQIT1

AMD64 Technology 26569—Rev. 3.03—April 2003

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

PFRSQRT 135

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the approximate reciprocal square root of the single-precision floating-
point value in the low-order 32 bits of an MMX register or 64-bit memory location and
writes the result in each doubleword of another MMX register. The source operand is
single-precision with a 24-bit significand, and the result is accurate to 15 bits.
Negative operands are treated as positive operands for purposes of reciprocal square-
root computation, with the sign of the result the same as the sign of the source
operand.

This instruction can be used together with the PFRSQIT1 and PFRCPIT2 instructions
to increase accuracy. The first stage of this refinement in accuracy (PFRSQIT1)
requires that the input and output of the previously executed PFRSQRT instruction
be used as input to the PFRSQIT1 instruction.

The estimate contains the correct round-to-nearest value for approximately 99% of all
arguments. The remaining arguments differ from the correct round-to-nearest value
for the reciprocal by 1 unit-in-the-last-place (ulp). For details, see the data sheet or
other software-optimization documentation relating to particular hardware
implementations.

The numeric range for operands is shown in Table 1-16 on page 136.

PFRSQRT Packed Floating-Point Reciprocal Square Root
Approximation

Mnemonic Opcode Description

PFRSQRT mmx1, mmx2/mem64 0F 0F /r 97 Computes approximate reciprocal square root of a packed single-
precision floating-point value.

pfrsqrt.eps

xmm2/mem64mmx1

reciprocal
square root

63 03132313263 0

136 PFRSQRT

AMD64 Technology 26569—Rev. 3.03—April 2003

Examples

The following code sequence shows how the PFRSQRT and PFMUL instructions can
be used to compute a = 1/sqrt (b):

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
a = PFRCPIT2(X2,X0)

Related Instructions

PFRCPIT2, PFRSQIT1

rFLAGS Affected

None

Exceptions

Table 1-16. Numeric Range for the PFRCP Result

Operand Source 1 and Destination

Source 2

0 +/– Maximum Normal1

Normal Normal1

Unsupported2 Undefined1

Note:
1. The result has the same sign as the source operand.
2. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

PFRSQRT 137

26569—Rev. 3.03—April 2003 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

138 PFSUB

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts each packed single-precision floating-point value in the second source
operand from the corresponding packed single-precision floating-point value in the
first source operand and writes the result of each subtraction in the corresponding
doubleword of the destination (first source). The first source/destination operand is an
MMX register. The second source operand is another MMX register or 64-bit memory
location. The numeric range for operands is shown in Table 1-17 on page 139.

PFSUB Packed Floating-Point Subtract

Mnemonic Opcode Description

PFSUB mmx1, mmx2/mem64 0F 0F /r 9A Subtracts packed single-precision floating-point values in an MMX™
register or 64-bit memory location from packed single-precision
floating-point values in another MMX™ register and writes the result
in the destination MMX™ register.

pfsub.eps

mmx1 mmx2/mem64

subtract

subtract

63 0313263 03132

PFSUB 139

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

PFSUBR

rFLAGS Affected

None

Exceptions

Table 1-17. Numeric Range for the PFSUB Results

Source Operand
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 - Source 2 - Source 2

Normal Source 1 Normal, +/– 02 Undefined

Unsupported3 Source 1 Undefined Undefined

Note:
1. The sign of the result is the logical AND of the sign of source 1 and the inverse of the sign of source 2
2. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero. If the source operand that

is larger in magnitude is source 1, the sign of this zero is the same as the sign of source 1, else it is the inverse of the sign of source
2. If the infinitely precise result is exactly zero, the result is zero with the sign of source 1. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of source 1.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

140 PFSUB

AMD64 Technology 26569—Rev. 3.03—April 2003

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

PFSUBR 141

26569—Rev. 3.03—April 2003 AMD64 Technology

Subtracts each packed single-precision floating-point value in the first source operand
from the corresponding packed single-precision floating-point value in the second
source operand and writes the result of each subtraction in the corresponding dword
of the destination (first source). The first source/destination operand is an MMX
register. The second source operand is another MMX register or 64-bit memory
location. The numeric range for operands is shown in Table 1-18 on page 142.

PFSUBR Packed Floating-Point Subtract Reverse

Mnemonic Opcode Description

PFSUBR mmx1, mmx2/mem64 0F 0F /r AA Subtracts packed single-precision floating-point values in an MMX™
register from packed single-precision floating-point values in another
MMX™ register or 64-bit memory location and writes the result in
the destination MMX™ register.

pfsubr.eps

mmx1 mmx2/mem64

subtract

subtract

63 0313263 03132

142 PFSUBR

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PFSUB

rFLAGS Affected

None

Exceptions0

Table 1-18. Numeric Range for the PFSUBR Results

Source Operand
Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 01 Source 2 Source 2

Normal - Source 1 Normal, +/– 02 Undefined

Unsupported3 - Source 1 Undefined Undefined

Note:
1. The sign is the logical AND of the sign of source 2 and the inverse of the sign of source 1.
2. If the absolute value of the infinitely precise result is less than 2–126 (but not zero), the result is a zero. If the source operand that

is larger in magnitude is source 2, the sign of this zero is the same as the sign of source 2, else it is the inverse of the sign of
source 1. If the infinitely precise result is exactly zero, the result is zero with the sign of source 2. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of source 2.

3. “Unsupported” means that the exponent is all ones (1s).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

PFSUBR 143

26569—Rev. 3.03—April 2003 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

144 PI2FD

AMD64 Technology 26569—Rev. 3.03—April 2003

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit
memory location to two packed single-precision floating-point values and writes the
converted values in another MMX register. If the result of the conversion is an inexact
value, the value is truncated (rounded toward zero).

Related Instructions

PF2ID, PF2IW, PI2FW

rFLAGS Affected

None

PI2FD Packed Integer to Floating-Point Doubleword
Conversion

Mnemonic Opcode Description

PI2FD mmx1, mmx2/mem64 0F 0F /r 0D Converts packed doubleword integers in an MMX™ register or 64-bit
memory location to single-precision floating-point values in the
destination MMX™ register. Inexact results are truncated.

pi2fd.eps

mmx1 mmx2/mem64

convert

convert

63 0313263 03132

PI2FD 145

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

146 PI2FW

AMD64 Technology 26569—Rev. 3.03—April 2003

Converts two packed 16-bit signed integer values in an MMX register or a 64-bit
memory location to two packed single-precision floating-point values and writes the
converted values in another MMX register.

Related Instructions

PF2ID, PF2IW, PI2FD

Exceptions

PI2FW Packed Integer to Floating-Point Word
Conversion

Mnemonic Opcode Description

PI2FW mmx1, mmx2/mem64 0F 0F /r 0C Converts packed 16-bit integers in an XMM register or 64-bit memory
location to packed single-precision floating-point values in the destination
MMX™ register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD Extensions to 3DNow!™ are not supported, as
indicated by bit 30 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

pi2fw.eps

mmx1 mmx2/mem64

convert

convert

63 03132 63 04748 15163132

PI2FW 147

26569—Rev. 3.03—April 2003 AMD64 Technology

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

148 PINSRW

AMD64 Technology 26569—Rev. 3.03—April 2003

Inserts a 16-bit value from the low-order word of a 32-bit general purpose register or a
16-bit memory location into an MMX register. The location in the destination register
is selected by the immediate byte operand, a shown in Table 1-19. The other words in
the destination register operand are not modified.

Related Instructions

PEXTRW

PINSRW Packed Insert Word

Mnemonic Opcode Description

PINSRW mmx, reg32/mem16, imm8 0F C4 /r ib Inserts a 16-bit value from a general-purpose register
or memory location into an MMX™ register.

Table 1-19. Immediate-Byte Operand Encoding for 64-Bit PINSRW

Immediate-Byte
Bit Field Value of Bit Field Destination Bits Filled

1–0

0 15–0

1 31–16

2 47–32

3 63–48

select word position for insert
pinsrw-64.eps

reg32/mem16mmx

imm8
7 0

01563 04748 15163132 31

PINSRW 149

26569—Rev. 3.03—April 2003 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

150 PMADDWD

AMD64 Technology 26569—Rev. 3.03—April 2003

Multiplies each packed 16-bit signed value in the first source operand by the
corresponding packed 16-bit signed value in the second source operand, adds the
adjacent intermediate 32-bit results of each multiplication (for example, the
multiplication results for the adjacent bit fields 63–48 and 47–32, and 31–16 and
15–0), and writes the 32-bit result of each addition in the corresponding doubleword of
the destination (first source). The first source/destination operand is an MMX register
and the second source operand is another MMX register or 64-bit memory location.

If all four of the 16-bit source operands used to produce a 32-bit multiply-add result
have the value 8000h, the 32-bit result is 8000_0000h, which is not the correct 32-bit
signed result.

Related Instructions

PMULHUW, PMULHW, PMULLW, PMULUDQ

PMADDWD Packed Multiply Words and Add Doublewords

Mnemonic Opcode Description

PMADDWD mmx1, mmx2/mem64 0F F5 /r Multiplies four packed 16-bit signed values in an MMX™
register and another MMX™ register or 64-bit memory
location, adds intermediate results, and writes the result in
the destination MMX™ register.

mmx1 mmx2/mem64

pmaddwd-64.eps

multiply

multiply

add

multiply

multiply

add

63 03132

63 04748 15163132 63 04748 15163132

PMADDWD 151

26569—Rev. 3.03—April 2003 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

152 PMAXSW

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares each of the packed 16-bit signed integer values in the first source operand
with the corresponding packed 16-bit signed integer value in the second source
operand and writes the maximum of the two values for each comparison in the
corresponding word of the destination (first source). The first source/destination and
second source operands are an MMX register and an MMX register or 64-bit memory
location.

Related Instructions

PMAXUB, PMINSW, PMINUB

rFLAGS Affected

None

PMAXSW Packed Maximum Signed Words

Mnemonic Opcode Description

PMAXSW mmx1, mmx2/mem64 0F EE /r Compares packed signed 16-bit integer values in an MMX™ register
and another MMX™ register or 64-bit memory location and writes
the maximum value of each compare in destination MMX™
register.

pmaxsw-64.eps

maximum

maximum

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

PMAXSW 153

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

154 PMAXUB

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares each of the packed 8-bit unsigned integer values in the first source operand
with the corresponding packed 8-bit unsigned integer value in the second source
operand and writes the maximum of the two values for each comparison in the
corresponding byte of the destination (first source). The first source/destination and
second source operands are an MMX register and an MMX register or 64-bit memory
location.

Related Instructions

PMAXSW, PMINSW, PMINUB

rFLAGS Affected

None

PMAXUB Packed Maximum Unsigned Bytes

Mnemonic Opcode Description

PMAXUB mmx1, mmx2/mem64 0F DE /r Compares packed unsigned 8-bit integer values in an MMX™
register and another MMX™ register or 64-bit memory location
and writes the maximum value of each compare in the
destination MMX™ register.

pmaxub-64.eps

maximum

63 0 63 0

mmx1 mmx2/mem64

maximum

.

.

.

PMAXUB 155

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

156 PMINSW

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares each of the packed 16-bit signed integer values in the first source operand
with the corresponding packed 16-bit signed integer value in the second source
operand and writes the minimum of the two values for each comparison in the
corresponding word of the destination (first source). The first source/destination and
second source operands are an MMX register and an MMX register or 64-bit memory
location.

Related Instructions

PMAXSW, PMAXUB, PMINUB

rFLAGS Affected

None

PMINSW Packed Minimum Signed Words

Mnemonic Opcode Description

PMINSW mmx1, mmx2/mem64 0F EA /r Compares packed signed 16-bit integer values in an MMX™
register and another MMX™ register or 64-bit memory location
and writes the minimum value of each compare in the destination
MMX™ register.

pminsw-64.eps

minimum

minimum

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

PMINSW 157

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

158 PMINUB

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares each of the packed 8-bit unsigned integer values in the first source operand
with the corresponding packed 8-bit unsigned integer value in the second source
operand and writes the minimum of the two values for each comparison in the
corresponding byte of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register
or 64-bit memory location.

Related Instructions

PMAXSW, PMAXUB, PMINSW

rFLAGS Affected

None

PMINUB Packed Minimum Unsigned Bytes

Mnemonic Opcode Description

PMINUB mmx1, mmx2/mem64 0F DA /r Compares packed unsigned 8-bit integer values in an MMX™
register and another MMX™ register or 64-bit memory location
and writes the minimum value of each comparison in the
destination MMX™ register.

pminub-64.eps

minimum

63 0 63 0

mmx1 mmx2/mem64

minimum

.

.

.

PMINUB 159

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

160 PMOVMSKB

AMD64 Technology 26569—Rev. 3.03—April 2003

Moves the most-significant bit of each byte in the source operand to the destination,
with zero-extension to 32. The destination and source operands are a 32-bit general-
purpose register and an MMX register.

If the source operand is an XMM register, the result is written to the low-order word of
the general-purpose register. If the source operand is an MMX register, the result is
written to the low-order byte of the general-purpose register.

Related Instructions

MOVMSKPD, MOVMSKPS

rFLAGS Affected

None

PMOVMSKB Packed Move Mask Byte

Mnemonic Opcode Description

PMOVMSKB reg32, mmx 0F D7 /r Moves most-significant bit of each byte in an MMX™ register to the
low-order byte of a 32-bit general-purpose register.

reg32

pmovmskb-64.eps

mmx

..

015233139475563 7

copy
copy

07

0

.
31

PMOVMSKB 161

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit 25
in CPUID standard function ; 1 and the AMD extensions to
MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

162 PMULHRW

AMD64 Technology 26569—Rev. 3.03—April 2003

Multiplies each of the four packed 16-bit signed integer values in the first source
operand by the corresponding packed 16-bit integer value in the second source
operand, adds 8000h to the lower 16 bits of the intermediate 32-bit result of each
multiplication, and writes the high-order 16 bits of each result in the corresponding
word of the destination (first source) The addition of 8000h results in the rounding of
the result, providing a numerically more accurate result than the PMULHW
instruction, which truncates the result. The first source/destination operand is an
MMX register. The second source operand is another MMX register or 64-bit memory
location.

Related Instructions

None

rFLAGS Affected

None

PMULHRW Packed Multiply High Rounded Word

Mnemonic Opcode Description

PMULHRW mmx1, mmx2/mem64 0F 0F /r B7 Multiply 16-bit signed integer values in an MMX™ register and
another MMX™ register or 64-bit memory location and write
rounded result in the destination MMX™ register.

multiply

mmx1 mmx2/mem64

multiply

round

round

pmulhrw.eps

31324748 151663 031324748 151663 0

..

..

..

PMULHRW 163

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

164 PMULHUW

AMD64 Technology 26569—Rev. 3.03—April 2003

Multiplies each packed unsigned 16-bit values in the first source operand by the
corresponding packed unsigned word in the second source operand and writes the
high-order 16 bits of each intermediate 32-bit result in the corresponding word of the
destination (first source). The first source/destination operand is an MMX register and
the second source operand is another MMX register or 64-bit memory location.

Related Instructions

PMADDWD, PMULHW, PMULLW, PMULUDQ

rFLAGS Affected

None

PMULHUW Packed Multiply High Unsigned Word

Mnemonic Opcode Description

PMULHUW mmx1, mmx2/mem64 0F E4 /r Multiplies packed 16-bit values in an MMX™ register by the
packed 16-bit values in another MMX™ register or 64-bit
memory location and writes the high-order 16 bits of each
result in the destination MMX™ register.

pmulhuw-64.eps

multiply

mmx1 mmx2/mem64

multiply

..

63 04748 15163132

..

..
63 04748 15163132

PMULHUW 165

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

166 PMULHW

AMD64 Technology 26569—Rev. 3.03—April 2003

Multiplies each packed 16-bit signed integer value in the first source operand by the
corresponding packed 16-bit signed integer in the second source operand and writes
the high-order 16 bits of the intermediate 32-bit result of each multiplication in the
corresponding word of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register
or 64-bit memory location.

Related Instructions

PMADDWD, PMULHUW, PMULLW, PMULUDQ

rFLAGS Affected

None

PMULHW Packed Multiply High Signed Word

Mnemonic Opcode Description

PMULHW mmx1, mmx2/mem64 0F E5 /r Multiplies packed 16-bit signed integer values in an MMX™
register and another MMX™ register or 64-bit memory location
and writes the high-order 16 bits of each result in the
destination MMX™ register.

pmulhw-64.eps

multiply

mmx1 mmx2/mem64

multiply

..

63 04748 15163132

..

..
63 04748 15163132

PMULHW 167

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

168 PMULLW

AMD64 Technology 26569—Rev. 3.03—April 2003

Multiplies each packed 16-bit signed integer value in the first source operand by the
corresponding packed 16-bit signed integer in the second source operand and writes
the low-order 16 bits of the intermediate 32-bit result of each multiplication in the
corresponding word of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register
or 64-bit memory location.

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULUDQ

rFLAGS Affected

None

PMULLW Packed Multiply Low Signed Word

Mnemonic Opcode Description

PMULLW mmx1, mmx2/mem64 0F D5 /r Multiplies packed 16-bit signed integer values in an MMX™
register and another MMX™ register or 64-bit memory
location and writes the low-order 16 bits of each result in the
destination MMX™ register.

pmullw-64.eps

multiply

mmx1 mmx2/mem64

multiply

..

63 04748 15163132

..

..
63 04748 15163132

PMULLW 169

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

170 PMULUDQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Multiplies two 32-bit unsigned integer values in the low-order doubleword of the first
and second source operands and writes the 64-bit result in the destination (first
source). The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULLW

rFLAGS Affected

None

PMULUDQ Packed Multiply Unsigned Doubleword and
Store Quadword

Mnemonic Opcode Description

PMULUDQ mmx1, mmx2/mem64 0F F4 /r Multiplies low-order 32-bit unsigned integer value in an
MMX™ register and another MMX™ register or 64-bit
memory location and writes the 64-bit result in the
destination MMX™ register.

pmuludq-64.eps

mmx1 mmx2/mem64

multiply

63 0313263 03132

PMULUDQ 171

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE2 instructions are not supported, as indicated by bit
26 in CPUID standard function 1.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

172 POR

AMD64 Technology 26569—Rev. 3.03—April 2003

Performs a bitwise logical OR of the values in the first and second source operands
and writes the result in the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register
or 64-bit memory location.

Related Instructions

PAND, PANDN, PXOR

rFLAGS Affected

None

POR Packed Logical Bitwise OR

Mnemonic Opcode Description

POR mmx1, mmx2/mem64 0F EB /r Performs bitwise logical OR of values in an MMX™ register and in
another MMX™ register or 64-bit memory location and writes the
result in the destination MMX™ register.

por-64.eps

mmx1 mmx2/mem64

OR

0 63 063 0

POR 173

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

174 PSADBW

AMD64 Technology 26569—Rev. 3.03—April 2003

Computes the absolute differences of eight corresponding packed 8-bit unsigned
integers in the first and second source operands and writes the unsigned 16-bit integer
result of the sum of the eight differences in a word in the destination (first source).
The first source/destination operand is an MMX register and the second source
operand is another MMX register or 64-bit memory location. The result is stored in the
low-order word of the destination operand, and the remaining bytes in the destination
are cleared to all 0s.

rFLAGS Affected

None

PSADBW Packed Sum of Absolute Differences of Bytes
Into a Word

Mnemonic Opcode Description

PSADBW mmx1, mmx2/mem64 0F F6 /r Compute the sum of the absolute differences of packed 8-bit
unsigned integer values in an MMX™ register and another
MMX™ register or 64-bit memory location and writes the 16-bit
unsigned integer result in the destination MMX™ register.

psadbw-64.eps

mmx1 mmx2/mem64

absolute
difference

absolute
difference

63 063 0

63 015

0

.

add 8
pairs

PSADBW 175

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

176 PSHUFW

AMD64 Technology 26569—Rev. 3.03—April 2003

Moves any one of the four packed words in an MMX register or 64-bit memory location
to a specified word location in another MMX register. In each case, the selection of the
value of the destination word is determined by a two-bit field in the immediate-byte
operand, with bits 0 and 1 selecting the contents of the low-order word, bits 2 and 3
selecting the second word, bits 4 and 5 selecting the third word, and bits 6 and 7
selecting the high-order word. Refer to Table 1-20 on page 177. A word in the source
operand may be copied to more than one word in the destination.

PSHUFW Packed Shuffle Words

Mnemonic Opcode Description

PSHUFW mmx1, mmx2/mem64, imm8 0F 70 /r ib Shuffles packed 16-bit values in an MMX™ register or
64-bit memory location and puts the result in another
XMM register.

pshufw.eps

mmx1 mmx2/mem64

imm8
7 0

mux
mux

mux
mux

063 4748 15163132063 4748 15163132

PSHUFW 177

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

PSHUFD, PSHUFHW, PSHUFLW

rFLAGS Affected

None

Table 1-20. Immediate-Byte Operand Encoding for PSHUFW

Destination Bits Filled Immediate-Byte
Bit Field Value of Bit Field Source Bits Moved

15–0 1–0

0 15–0

1 31–16

2 47–32

3 63–48

31–16 3–2

0 15–0

1 31–16

2 47–32

3 63–48

47–32 5–4

0 15–0

1 31–16

2 47–32

3 63–48

63–48 7–6

0 15–0

1 31–16

2 47–32

3 63–48

178 PSHUFW

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE instructions are not supported, as indicated by bit
25 in CPUID standard function 1; and the AMD extensions
to MMX are not supported, as indicated by bit 22 of CPUID
extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PSLLD 179

26569—Rev. 3.03—April 2003 AMD64 Technology

Left-shifts each of the packed 32-bit values in the first source operand by the number
of bits specified in the second source operand and writes each shifted value in the
corresponding doubleword of the dest inat ion (f irst source) . The f irst
source/destination and second source operands are:

an MMX register and another MMX register or 64-bit memory location, or

an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift
value is greater than 31, the destination is cleared to all 0s.

PSLLD Packed Shift Left Logical Doublewords

Mnemonic Opcode Description

PSLLD mmx1, mmx2/mem64 0F F2 /r Left-shifts packed doublewords in an MMX™ register by the
amount specified in an MMX™ register or 64-bit memory
location.

PSLLD mmx, imm8 0F 72 /6 ib Left-shifts packed doublewords in an MMX™ register by the
amount specified in an immediate byte value.

pslld-64.eps

shift left

mmx1 mmx2/mem64

shift left

mmx imm8

63 063 03132

shift left

shift left

63 03132 7 0

180 PSLLD

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PSLLQ 181

26569—Rev. 3.03—April 2003 AMD64 Technology

Left-shifts each 64-bit value in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding
quadword of the destination (first source). The first source/destination and second
source operands are:

an MMX register and another MMX register or 64-bit memory location, or

an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift
value is greater than 63, the destination is cleared to all 0s.

Related Instructions

PSLLD, PSLLDQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

PSLLQ Packed Shift Left Logical Quadwords

Mnemonic Opcode Description

PSLLQ mmx1, mmx2/mem64 0F F3 /r Left-shifts quadword in an MMX™ register by the amount
specified in an MMX™ register or 64-bit memory location.

PSLLQ mmx imm8 0F 73 /6 ib Left-shifts quadword in an MMX™ register by the amount
specified in an immediate byte value.

mmx1 mmx2/mem64

shift left

psllq-64.eps

mmx imm8

63 063 0

shift left

63 0 7 0

182 PSLLQ

AMD64 Technology 26569—Rev. 3.03—April 2003

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PSLLW 183

26569—Rev. 3.03—April 2003 AMD64 Technology

Left-shifts each of the packed 16-bit values in the first source operand by the number
of bits specified in the second source operand and writes each shifted value in the
corresponding word of the destination (first source). The first source/destination and
second source operands are:

an MMX register and another MMX register or 64-bit memory location, or

an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift
value is greater than 15, the destination is cleared to all 0s.

PSLLW Packed Shift Left Logical Words

Mnemonic Opcode Description

PSLLW mmx1, mmx2/mem64 0F F1 /r Left-shifts packed words in an MMX™ register by the amount
specified in an MMX™ register or 64-bit memory location.

PSLLW mmx, imm8 0F 71 /6 ib Left-shifts packed words in an MMX™ register by the amount
specified in an immediate byte value.

psllw-64.eps

shift left

mmx1 mmx2/mem64

shift left

mmx imm8

shift left

shift left

. .

. .
7 063 04748 15163132

. .

. .
63 04748 15163132 63 0

184 PSLLW

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PSRAD 185

26569—Rev. 3.03—April 2003 AMD64 Technology

Right-shifts each of the packed 32-bit values in the first source operand by the number
of bits specified in the second source operand and writes each shifted value in the
corresponding doubleword of the dest inat ion (f irst source) . The f irst
source/destination and second source operands are:

an MMX register and another MMX register or 64-bit memory location, or

an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are filled with the sign bit
of the doubleword’s initial value. If the shift value is greater than 31, each doubleword
in the destination is filled with the sign bit of the doubleword’s initial value.

PSRAD Packed Shift Right Arithmetic Doublewords

Mnemonic Opcode Description

PSRAD mmx1, mmx2/mem64 0F E2 /r Right-shifts packed doublewords in an MMX™ register by the
amount specified in an MMX™ register or 64-bit memory
location.

PSRAD mmx, imm8 0F 72 /4 ib Right-shifts packed doublewords in an MMX™ register by the
amount specified in an immediate byte value.

psrad-64.eps

shift right

mmx1 mmx2/mem64

shift right

mmx imm8

63 03132

shift right

shift right

63 03132 7 0

63 0

186 PSRAD

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

PSRAW 187

26569—Rev. 3.03—April 2003 AMD64 Technology

Right-shifts each of the packed 16-bit values in the first source operand by the number
of bits specified in the second source operand and writes each shifted value in the
corresponding word of the destination (first source). The first source/destination and
second source operands are:

an MMX register and another MMX register or 64-bit memory location, or

an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are filled with the sign bit
of the word’s initial value. If the shift value is greater than 15, each word in the
destination is filled with the sign bit of the word’s initial value.

PSRAW Packed Shift Right Arithmetic Words

Mnemonic Opcode Description

PSRAW mmx1, mmx2/mem64 0F E1 /r Right-shifts packed words in an MMX™ register by the
amount specified in an MMX™ register or 64-bit memory
location.

PSRAW mmx, imm8 0F 71 /4 ib Right-shifts packed words in an MMX™ register by the
amount specified in an immediate byte value.

188 PSRAW

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

psraw-64.eps

shift right
arithmetic

mmx1 mmx2/mem64

shift right
arithmetic

mmx imm8

shift right
arithmetic

shift right
arithmetic

. .

. .

. .

7 063 04748 15163132

. .

63 04748 15163132 63 0

PSRAW 189

26569—Rev. 3.03—April 2003 AMD64 Technology

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

190 PSRLD

AMD64 Technology 26569—Rev. 3.03—April 2003

Right-shifts each of the packed 32-bit values in the first source operand by the number
of bits specified in the second source operand and writes each shifted value in the
corresponding doubleword of the dest inat ion (f irst source) . The f irst
source/destination and second source operands are:

an MMX register and another MMX register or 64-bit memory location, or

an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift
value is greater than 31, the destination is cleared to 0.

PSRLD Packed Shift Right Logical Doublewords

Mnemonic Opcode Description

PSRLD mmx1, mmx2/mem64 0F D2 /r Right-shifts packed doublewords in an MMX™ register by the
amount specified in an MMX™ register or 64-bit memory
location.

PSRLD mmx, imm8 0F 72 /2 ib Right-shifts packed doublewords in an MMX™ register by the
amount specified in an immediate byte value.

psrld-64.eps

shift right

mmx1 mmx2/mem64

shift right

mmx imm8

63 03132

shift right

shift right

63 03132 7 0

63 0

PSRLD 191

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

192 PSRLQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Right-shifts each 64-bit value in the first source operand by the number of bits
specified in the second source operand and writes each shifted value in the
corresponding quadword of the destination (first source). The first source/destination
and second source operands are:

an MMX register and another MMX register or 64-bit memory location, or

an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift
value is greater than 63, the destination is cleared to 0.

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLW

PSRLQ Packed Shift Right Logical Quadwords

Mnemonic Opcode Description

PSRLQ mmx1, mmx2/mem64 0F D3 /r Right-shifts quadword in an MMX™ register by the amount
specified in an MMX™ register or 64-bit memory location.

PSRLQ mmx, imm8 0F 73 /2 ib Right-shifts quadword in an MMX™ register by the amount
specified in an immediate byte value.

psrlq-64.eps

7 0

mmx1 mmx2/mem64

shift right

mmx imm8

63 063 0

shift right

63 0

PSRLQ 193

26569—Rev. 3.03—April 2003 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

194 PSRLW

AMD64 Technology 26569—Rev. 3.03—April 2003

Right-shifts each of the packed 16-bit values in the first source operand by the number
of bits specified in the second operand and writes each shifted value in the
corresponding word of the destination (first source). The first source/destination and
second source operands are:

an MMX register and another MMX register or 64-bit memory location, or

an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift
value is greater than 15, the destination is cleared to 0.

PSRLW Packed Shift Right Logical Words

Mnemonic Opcode Description

PSRLW mmx1, mmx2/mem64 0F D1 /r Right-shifts packed words in an MMX™ register by the amount
specified in an MMX™ register or 64-bit memory location.

PSRLW mmx, imm8 0F 71 /2 ib Right-shifts packed words in an MMX™ register by the amount
specified in an immediate byte value.

psrlw-64.eps

shift right

mmx1 mmx2/mem64

shift right

mmx imm8

shift right

shift right

. .

. .

. .

7 063 04748 15163132

. .

63 04748 15163132 63 0

PSRLW 195

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

196 PSUBB

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts each packed 8-bit integer value in the second source operand from the
corresponding packed 8-bit integer in the first source operand and writes the integer
result of each subtraction in the corresponding byte of the destination (first source).
The first source/destination operand is an MMX register and the second source
operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result
overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set),
and only the low-order 8 bits of each result are written in the destination.

Related Instructions

PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBB Packed Subtract Bytes

Mnemonic Opcode Description

PSUBB mmx1, mmx2/mem64 0F F8 /r Subtracts packed byte integer values in an MMX™ register or 64-
bit memory location from packed byte integer values in another
MMX™ register and writes the result in the destination MMX™
register.

psubb-64.eps

subtract

63 0 63 0

mmx1 mmx2/mem64

subtract

.

.

.

PSUBB 197

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

198 PSUBD

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts each packed 32-bit integer value in the second source operand from the
corresponding packed 32-bit integer in the first source operand and writes the integer
result of each subtraction in the corresponding doubleword of the destination (first
source). The first source/destination operand is an MMX register and the second
source operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result
overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set),
and only the low-order 32 bits of each result are written in the destination.

Related Instructions

PSUBB, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBD Packed Subtract Doublewords

Mnemonic Opcode Description

PSUBD mmx1, mmx2/mem64 0F FA /r Subtracts packed 32-bit integer values in an MMX™ register or 64-
bit memory location from packed 32-bit integer values in another
MMX™ register and writes the result in the destination MMX™
register.

psubd-64.eps

subtract

mmx1 mmx2/mem64

subtract

63 0313263 03132

PSUBD 199

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

200 PSUBQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts each packed 64-bit integer value in the second source operand from the
corresponding packed 64-bit integer in the first source operand and writes the integer
result of each subtraction in the corresponding quadword of the destination (first
source). The first source/destination and source operands are an MMX register and
another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result
overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set),
and only the low-order 64 bits of each result are written in the destination.

Related Instructions

PSUBB, PSUBD, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBQ Packed Subtract Quadword

Mnemonic Opcode Description

PSUBQ mmx1, mmx2/mem64 0F FB /r Subtracts packed 64-bit integer values in an MMX™ register or
64-bit memory location from packed 64-bit integer values in
another MMX™ register and writes the result in the destination
MMX™ register.

psubq-64.eps

mmx1 mmx2/mem64

subtract

63 063 0

PSUBQ 201

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The SSE2 instructions are not supported, as indicated by bit
26 in CPUID standard function 1.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

202 PSUBSB

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts each packed 8-bit signed integer value in the second source operand from
the corresponding packed 8-bit signed integer in the first source operand and writes
the signed integer result of each subtraction in the corresponding byte of the
destination (first source). The first source/destination operand is an MMX register and
the second source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest signed
8-bit integer, it is saturated to 7Fh, and if the value is smaller than the smallest signed
8-bit integer, it is saturated to 80h.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBSB Packed Subtract Signed With Saturation Bytes

Mnemonic Opcode Description

PSUBSB mmx1, mmx2/mem64 0F E8 /r Subtracts packed byte signed integer values in an MMX™
register or 64-bit memory location from packed byte integer
values in another MMX™ register and writes the result in the
destination MMX™ register.

saturate

saturate

psubsb-64.eps

subtract

63 0 63 0

mmx1 mmx2/mem64

subtract

.

.

.

PSUBSB 203

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

204 PSUBSW

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts each packed 16-bit signed integer value in the second source operand from
the corresponding packed 16-bit signed integer in the first source operand and writes
the signed integer result of each subtraction in the corresponding word of the
destination (first source). The first source/destination and source operands are an
MMX register and another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest signed
16-bit integer, it is saturated to 7FFFh, and if the value is smaller than the smallest
signed 16-bit integer, it is saturated to 8000h.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBSW Packed Subtract Signed With Saturation Words

Mnemonic Opcode Description

PSUBSW mmx1, mmx2/mem64 0F E9 /r Subtracts packed 16-bit signed integer values in an MMX™
register or 64-bit memory location from packed 16-bit integer
values in another MMX™ register and writes the result in the
destination MMX™ register.

subtract

subtract

saturate

saturate

psubsw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

PSUBSW 205

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

206 PSUBUSB

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts each packed 8-bit unsigned integer value in the second source operand from
the corresponding packed 8-bit unsigned integer in the first source operand and
writes the unsigned integer result of each subtraction in the corresponding byte of the
destination (first source). The first source/destination operand is an MMX register and
the second source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest
unsigned 8-bit integer, it is saturated to FFh, and if the value is smaller than the
smallest unsigned 8-bit integer, it is saturated to 00h.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSW, PSUBW

rFLAGS Affected

None

PSUBUSB Packed Subtract Unsigned and Saturate Bytes

Mnemonic Opcode Description

PSUBUSB mmx1, mmx2/mem64 0F D8 /r Subtracts packed byte unsigned integer values in an MMX™
register or 64-bit memory location from packed byte integer
values in another MMX™ register and writes the result in the
destination MMX™ register.

saturate
saturate

psubusb-64.eps

subtract

63 0 63 0

mmx1 mmx2/mem64

subtract

.

.

.

PSUBUSB 207

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

208 PSUBUSW

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts each packed 16-bit unsigned integer value in the second source operand
from the corresponding packed 16-bit unsigned integer in the first source operand and
writes the unsigned integer result of each subtraction in the corresponding word of
the destination (first source). The first source/destination operand is an MMX register
and the second source operand is another MMX register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest
unsigned 16-bit integer, it is saturated to FFFFh, and if the value is smaller than the
smallest unsigned 16-bit integer, it is saturated to 0000h.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBW

rFLAGS Affected

None

PSUBUSW Packed Subtract Unsigned and Saturate Words

Mnemonic Opcode Description

PSUBUSW mmx1, mmx2/mem64 0F D9 /r Subtracts packed 16-bit unsigned integer values in an MMX™
register or 64-bit memory location from packed 16-bit integer
values in another MMX™ register and writes the result in the
destination MMX™ register.

subtract

subtract

saturate
saturate

psubusw-64.eps

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

PSUBUSW 209

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

210 PSUBW

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts each packed 16-bit integer value in the second source operand from the
corresponding packed 16-bit integer in the first source operand and writes the integer
result of each subtraction in the corresponding word of the destination (first source).
The first source/destination operand is an MMX register and the second source
operand is another MMX register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result
overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set),
and only the low-order 16 bits of the result are written in the destination.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW

rFLAGS Affected

None

PSUBW Packed Subtract Words

Mnemonic Opcode Description

PSUBW mmx1, mmx2/mem64 0F F9 /r Subtracts packed 16-bit integer values in an MMX™ register or
64-bit memory location from packed 16-bit integer values in
another MMX™ register and writes the result in the destination
MMX™ register.

psubw-64.eps

subtract
subtract

mmx1 mmx2/mem64

....

..
63 04748 1516313263 04748 15163132

PSUBW 211

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

212 PSWAPD

AMD64 Technology 26569—Rev. 3.03—April 2003

Swaps (reverses) the two packed 32-bit values in the source operand and writes each
swapped value in the corresponding doubleword of the destination. The source
operand is an MMX register or 64-bit memory location. The destination is another
MMX register.

Related Instructions

None

rFLAGS Affected

None

PSWAPD Packed Swap Doubleword

Mnemonic Opcode Description

PSWAPD mmx1, mmx2/mem64 0F 0F /r BB Swaps packed 32-bit values in an MMX™ register or 64-bit
memory location and writes each value in the destination
MMX™ register.

pswapd.eps

mmx1 mmx2/mem64

copy copy

63 03132

63 03132

63 03132

PSWAPD 213

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The AMD Extensions to 3DNow!™ are not supported, as
indicated by bit 30 in CPUID extended function 8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

214 PUNPCKHBW

AMD64 Technology 26569—Rev. 3.03—April 2003

Unpacks the high-order bytes from the first and second source operands and packs
them into interleaved-byte words in the destination (first source). The low-order bytes
of the source operands are ignored. The first source/destination operand is an MMX
register and the second source operand is another MMX register or 64-bit memory
location.

If the second source operand is all 0s, the destination contains the bytes from the first
source operand zero-extended to 16 bits. This operation is useful for expanding
unsigned 8-bit values to unsigned 16-bit operands for subsequent processing that
requires higher precision.

Related Instructions

PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKHBW Unpack and Interleave High Bytes

Mnemonic Opcode Description

PUNPCKHBW mmx1, mmx2/mem64 0F 68 /r Unpacks the four high-order bytes in an MMX™ register and
another MMX™ register or 64-bit memory location and packs
them into interleaved bytes in the destination MMX™ register.

punpckhbw-64.eps

313263 0313263 0

copy

. .. .

. . . .

63 03132

mmx1 mmx2/mem64

copy copycopy

PUNPCKHBW 215

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

216 PUNPCKHDQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Unpacks the high-order doublewords from the first and second source operands and
packs them into interleaved-doubleword quadwords in the destination (first source).
The low-order doublewords of the source operands are ignored. The first
source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from
the first source operand zero-extended to 64 bits. This operation is useful for
expanding unsigned 32-bit values to unsigned 64-bit operands for subsequent
processing that requires higher precision.

Related Instructions

PUNPCKHBW, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKHDQ Unpack and Interleave High Doublewords

Mnemonic Opcode Description

PUNPCKHDQ mmx1, mmx2/mem64 0F 6A /r Unpacks the high-order doubleword in an MMX™ register and
another MMX™ register or 64-bit memory location and packs
them into interleaved doublewords in the destination MMX™
register.

punpckhdq-64.eps

copy

mmx1 mmx2/mem64

63 03132

63 03132

63 03132

copy

PUNPCKHDQ 217

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

218 PUNPCKHWD

AMD64 Technology 26569—Rev. 3.03—April 2003

Unpacks the high-order words from the first and second source operands and packs
them into interleaved-word doublewords in the destination (first source). The low-
order words of the source operands are ignored. The first source/destination operand
is an MMX register and the second source operand is another MMX register or 64-bit
memory location.

If the second source operand is all 0s, the destination contains the words from the first
source operand zero-extended to 32 bits. This operation is useful for expanding
unsigned 16-bit values to unsigned 32-bit operands for subsequent processing that
requires higher precision.

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKHWD Unpack and Interleave High Words

Mnemonic Opcode Description

PUNPCKHWD mmx1, mmx2/mem64 0F 69 /r Unpacks two high-order words in an MMX™ register and
another MMX™ register or 64-bit memory location and
packs them into interleaved words in the destination MMX™
register.

punpckhwd-64.eps63 04748 15163132

63 4748 3132 063 4748 3132 0

copy

mmx1 mmx2/mem64

copy copycopy

PUNPCKHWD 219

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

220 PUNPCKLBW

AMD64 Technology 26569—Rev. 3.03—April 2003

Unpacks the low-order bytes from the first and second source operands and packs
them into interleaved-byte words in the destination (first source). The high-order
bytes of the source operands are ignored. The first source/destination operand is an
MMX register and the second source operand is another MMX register or 64-bit
memory location.

If the second source operand is all 0s, the destination contains the bytes from the first
source operand zero-extended to 16 bits. This operation is useful for expanding
unsigned 8-bit values to unsigned 16-bit operands for subsequent processing that
requires higher precision.

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKLBW Unpack and Interleave Low Bytes

Mnemonic Opcode Description

PUNPCKLBW mmx1, mmx2/mem64 0F 60 /r Unpacks the four low-order bytes in an MMX™ register and
another MMX™ register or 64-bit memory location and
packs them into interleaved bytes in the destination MMX™
register.

punpcklbw-64.eps

313263 0313263 0

. .. .

. . . .

63 03132

mmx1 mmx2/mem64

copycopy copycopy

PUNPCKLBW 221

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

222 PUNPCKLDQ

AMD64 Technology 26569—Rev. 3.03—April 2003

Unpacks the low-order doublewords from the first and second source operands and
packs them into interleaved-doubleword quadwords in the destination (first source).
The high-order doublewords of the source operands are ignored. The first
source/destination operand is an MMX register and the second source operand is
another MMX register or 64-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from
the first source operand zero-extended to 64 bits. This operation is useful for
expanding unsigned 32-bit values to unsigned 64-bit operands for subsequent
processing that requires higher precision.

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKLDQ Unpack and Interleave Low Doublewords

Mnemonic Opcode Description

PUNPCKLDQ mmx1, mmx2/mem64 0F 62 /r Unpacks the low-order doubleword in an MMX™ register and
another MMX™ register or 64-bit memory location and packs
them into interleaved doublewords in the destination MMX™
register.

punpckldq-64.eps

copy

mmx1 mmx2/mem64

63 03132

63 03132

63 03132

copy

PUNPCKLDQ 223

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

224 PUNPCKLWD

AMD64 Technology 26569—Rev. 3.03—April 2003

Unpacks the low-order words from the first and second source operands and packs
them into interleaved-word doublewords in the destination (first source). The high-
order words of the source operands are ignored. The first source/destination operand
is an MMX register and the second source operand is another MMX register or 64-bit
memory location.

If the second source operand is all 0s, the destination contains the words from the first
source operand zero-extended to 32 bits. This operation is useful for expanding
unsigned 16-bit values to unsigned 32-bit operands for subsequent processing that
requires higher precision.

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW,
PUNPCKLDQ, PUNPCKLQDQ

rFLAGS Affected

None

PUNPCKLWD Unpack and Interleave Low Words

Mnemonic Opcode Description

PUNPCKLWD mmx1, mmx2/mem64 0F 61 /r Unpacks the two low-order words in an MMX™ register and
another MMX™ register or 64-bit memory location and
packs them into interleaved words in the destination MMX™
register.

punpcklwd-64.eps63 04748 15163132

63 15163132 063 15163132 0

mmx1 mmx2/mem64

copycopycopy copy

PUNPCKLWD 225

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

226 PXOR

AMD64 Technology 26569—Rev. 3.03—April 2003

Performs a bitwise exclusive OR of the values in the first and second source operands
and writes the result in the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MMX register
or 64-bit memory location.

Related Instructions

PAND, PANDN, POR

rFLAGS Affected

None

PXOR Packed Logical Bitwise Exclusive OR

Mnemonic Opcode Description

PXOR mmx1, mmx2/mem64 0F EF /r Performs bitwise logical XOR of values in an MMX™ register and in
another MMX™ register or 64-bit memory location and writes the
result in the destination MMX™ register.

pxor-64.eps

mmx1 mmx2/mem64

XOR

0 63 063 0

PXOR 227

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The emulate bit (EM) of CR0 was set to 1.

The MMX instructions are not supported, as indicated by bit
23 in CPUID standard function 1 or extended function
8000_0001.

Device not available,
#NM

X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP X X X

X

A memory address exceeded a data segment limit or was
non-canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

228 PXOR

AMD64 Technology 26569—Rev. 3.03—April 2003

229

26569—Rev. 3.03—April 2003 AMD64 Technology

2 x87 Floating-Point Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes,
condition codes, affected flags, and possible exceptions
generated by the x87 floating-point instructions. The x87
floating-point instructions are used in legacy floating-point
applications. Most of these instructions load, store, or operate
on data located in the x87 ST(0)–ST(7) stack registers (the
FPR0–FPR7 physical registers). The remaining instructions
within this category are used to manage the x87 floating-point
environment.

A given hardware implementation of the AMD64 architecture
supports the x87 floating-point instructions if the following
CPUID functions are set:

On-Chip Floating-Point Unit, indicated by bit 0 of CPUID
standard function 1 and extended function 8000_0001h.

CMOVcc (conditional moves), indicated by bit 15 of CPUID
standard function 1 and extended function 8000_0001h. A 1
in this bit indicates support for x87 floating-point
conditional moves (FCMOVcc) whenever the On-Chip
Floating-Point Unit bit (bit 0) is also 1.

The x87 instructions can be used in legacy mode or long mode.
Their use in long mode is available if the following CPUID
function bit is set to 1:

Long Mode, indicated by bit 29 of CPUID extended function
8000_0001h.

Compilation of x87 media programs for execution in 64-bit
mode offers two primary advantages: access to the 64-bit virtual
address space and access to the RIP-relative addressing mode.

For further information about the x87 floating-point
instructions and register resources, see:

“x87 Floating-Point Programming” in volume 1.

“Summary of Registers and Data Types” in volume 3.

“Notation” in volume 3.

“Instruction Prefixes” in volume 3.

230 F2XM1

AMD64 Technology 26569—Rev. 3.03—April 2003

Raises 2 to the power specified by the value in ST(0), subtracts 1, and stores the result
in ST(0). The source value must be in the range –1.0 to +1.0. The result is undefined for
source values outside this range.

This instruction, when used in conjunction with the FYL2X instruction, can be
applied to calculate z = xy by taking advantage of the log property xy = 2y*log

2
x.

Related Instructions

FYL2X, FYL2XP1

rFLAGS Affected

None

x87 Condition Code

F2XM1 Floating-Point Compute 2x–1

Mnemonic Opcode Description

F2XM1 D9 F0 Replace ST(0) with (2ST(0) – 1).

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

F2XM1 231

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) were set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occured.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the desti-
nation operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination for-
mat.

232 FABS

AMD64 Technology 26569—Rev. 3.03—April 2003

Converts the value in ST(0) to its absolute value by clearing the sign bit. The resulting
value depends upon the type of number used as the source value:

This operation applies even if the value in ST(0) is negative zero or negative infinity.

Related Instructions

FPREM, FRNDINT, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

FABS Floating-Point Absolute Value

Source Value (ST(0)) Result (ST(0))

-∞ +∞

-FiniteReal +FiniteReal

-0 +0

+0 +0

+FiniteReal +FiniteReal

+∞ +∞

NaN NaN

Mnemonic Opcode Description

FABS D9 E1 Replace ST(0) with its absolute value.

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FABS 233

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

234 FADDx

AMD64 Technology 26569—Rev. 3.03—April 2003

Adds two values and stores the result in a floating-point register. If two operands are
specified, the values are in ST(0) and another floating-point register and the
instruction stores the result in the first register specified. If one operand is specified,
the instruction adds the 32-bit or 64-bit value in the specified memory location to the
value in ST(0).

The FADDP instruction adds the value in ST(0) to the value in another floating-point
register and pops the register stack. If two operands are specified, the first operand is
the other register. If no operand is specified, then the other register is ST(1).

The FIADD instruction reads a 16-bit or 32-bit signed integer value from the specified
memory location, converts it to double-extended-real format, and adds it to the value
in ST(0).

Related Instructions

None

rFLAGS Affected

None

FADDx
FADDP
FIADD

Floating-Point Add

Mnemonic Opcode Description

FADD ST(0),ST(i) D8 C0+i Replace ST(0) with ST(0) + ST(i).

FADD ST(i),ST(0) DC C0+i Replace ST(i) with ST(0) + ST(i).

FADD mem32real D8 /0 Replace ST(0) with ST(0) + mem32real.

FADD mem64real DC /0 Replace ST(0) with ST(0) + mem64real.

FADDP DE C1 Replace ST(1) with ST(0) + ST(1), and pop the x87 register stack.

FADDP ST(i),ST(0) DE C0+i Replace ST(i) with ST(0) + ST(i), and pop the x87 register stack.

FIADD mem16int DE /0 Replace ST(0) with ST(0) + mem16int.

FIADD mem32int DA /0 Replace ST(0) with ST(0) + mem32int.

FADDx 235

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control
register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while align-
ment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported for-
mat.

+infinity was added to –infinity..

Invalid-operation
exception (IE) with stack
fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-operand
exception (DE)

X X X A source operand was a denormal value.

236 FADDx

AMD64 Technology 26569—Rev. 3.03—April 2003

Overflow exception
(OE)

X X X A rounded result was too large to fit into the format of the des-
tination operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the des-
tination operand.

Precision exception (PE) X X X A result could not be represented exactly in the destination for-
mat.

Exception Real
Virtual
8086 Protected Cause of Exception

FBLD 237

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts a 10-byte packed BCD value in memory into double-extended-precision
format, and pushes the result onto the x87 stack. In the process, it preserves the sign
of the source value.

The packed BCD digits should be in the range 0 to 9. Attempting to load invalid digits
(Ah through Fh) produces undefined results.

Related Instructions

FBSTP

rFLAGS Affected

None

x87 Condition Code

FBLD Floating-Point Load Binary-Coded Decimal

Mnemonic Opcode Description

FBLD mem80dec DF /4 Convert a packed BCD value to floating-point and push the result onto
the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
1 x87 stack overflow, if an x87 register stack fault was detected.

0 If no other flags are set.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

238 FBLD

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

FBSTP 239

26569—Rev. 3.03—April 2003 AMD64 Technology

Converts the value in ST(0) to an 18-digit packed BCD integer, stores the result in the
specified memory location, and pops the register stack. It rounds a non-integral value
to an integer value, depending on the rounding mode specified by the RC field of the
x87 control word.

The operand specifies the memory address of the first byte of the resulting 10-byte
value.

Related Instructions

FBLD

rFLAGS Affected

None

x87 Condition Code

FBSTP Floating-Point Store Binary-Coded Decimal and Pop

Mnemonic Opcode Description

FBSTP mem80dec DF /6 Convert the floating-point value in ST(0) to BCD, store the result in
mem80, and pop the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

240 FBSTP

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

X

A memory address exceeded a data segment limit or was non-
canonical.

The destination operand was in a nonwritable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value, a QNaN value, ±infinity or
an unsupported format.

A source operand was too large to fit in the destination format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination format.

FCHS 241

26569—Rev. 3.03—April 2003 AMD64 Technology

Compliments the sign bit of ST(0), changing the value from negative to positive or vice
versa. This operation applies to positive and negative floating point values, as well as
–0 and +0, NaNs, and +∞ and –∞.

Related Instructions

FABS, FPREM, FRNDINT, FXTRACT

rFLAGS Affected

None

x87 Condition Code

Exceptions

FCHS Floating-Point Change Sign

Mnemonic Opcode Description

FCHS D9 E0 Reverse the sign bit of ST(0).

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

242 FCHS

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Exception Real
Virtual
8086 Protected Cause of Exception

FNCLEX (FCLEX) 243

26569—Rev. 3.03—April 2003 AMD64 Technology

Clears the following flags in the x87 status word:

Floating-point exception flags (PE, UE, OE, ZE, DE, and IE)

Stack fault flag (SF)

Exception summary status flag (ES)

Busy flag (B)

It leaves the four condition-code bits undefined. It does not check for possible
floating-point exceptions before clearing the flags.

Assemblers usually provide an FCLEX macro that expands into the instruction
sequence

WAIT ; Opcode 9B
FNCLEX destination ; Opcode DB E2

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception
handler, if necessary. The FNCLEX instruction then clears all the relevant x87
exception flags.

Related Instructions

WAIT

rFLAGS Affected

None

FNCLEXx
(FCLEX)

Floating-Point Clear Flags

Mnemonic Opcode Description

FNCLEX DB E2 Clear the floating-point flags without checking for pending unmasked
floating-point exceptions.

FCLEX 9B DB E2 Perform a WAIT (9B) to check for pending floating-point exceptions,
and then clear the floating-point exception flags.

244 FNCLEX (FCLEX)

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

FCMOVcc 245

26569—Rev. 3.03—April 2003 AMD64 Technology

Tests the flags in the rFLAGS register and, depending upon the values encountered,
moves the value in another stack register to ST(0).

This set of instructions includes the mnemonics FCMOVB, FCMOVBE, FCMOVE,
FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVNU, and FCMOVU.

Use the CPUID instruction to determine if this instruction is supported on a
particular x86-64 implementation. It is supported if both the CMOV and FPU bits are
set to 1.

Related Instructions

None

rFLAGS Affected

None

FCMOVcc Floating-Point Conditional Move

Mnemonic Opcode Description

FCMOVB ST(0),ST(i) DA C0+i Move the contents of ST(i) into ST(0) if below (CF = 1).

FCMOVBE ST(0),ST(i) DA D0+i Move the contents of ST(i) into ST(0) if below or equal (CF = 1 or
ZF = 1).

FCMOVE ST(0),ST(i) DA C8+i Move the contents of ST(i) into ST(0) if equal (ZF = 1).

FCMOVNB ST(0),ST(i) DB C0+i Move the contents of ST(i) into ST(0) if not below (CF = 0).

FCMOVNBE ST(0),ST(i) DB D0+i Move the contents of ST(i) into ST(0) if not below or equal (CF = 0
and ZF = 0).

FCMOVNE ST(0),ST(i) DB C8+i Move the contents of ST(i) into ST(0) if not equal (ZF = 0).

FCMOVNU ST(0),ST(i) DB D8+i Move the contents of ST(i) into ST(0) if not unordered (PF = 0).

FCMOVU ST(0),ST(i) DA D8+i Move the contents of ST(i) into ST(0) if unordered (PF = 1).

246 FCMOVcc

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 0 x87 stack underflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X The Conditional Move instructions are not supported, as indicated by
bit 15 in CPUID standard function 1 or extended function 8000_0001.

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control register
(CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

FCOMx 247

26569—Rev. 3.03—April 2003 AMD64 Technology

Compares the specified value to the value in ST(0) and sets the C0, C2, and C3
condition code flags in the x87 status word as shown in the x87 Condition Code table
below. The specified value can be in a floating-point register or a memory location.

The no-operand version compares the value in ST(1) with the value in ST(0).

The comparison operation ignores the sign of zero (–0.0 = +0.0).

After performing the comparison operation, the FCOMP instruction pops the x87
register stack and the FCOMPP instruction pops the x87 register stack twice.

If either or both of the compared values is a NaN or is in an unsupported format, the
FCOMx instruction sets the invalid-operation exception (IE) bit in the x87 status word
to 1. Then, if the exception is masked (IM bit set to 1 in the x87 control word), the
instruction sets the condition flags to “unordered.” If the exception is unmasked (IM
bit cleared to 0), the instruction does not set the condition code flags.

The FUCOMx instructions perform the same operations as the FCOMx instructions,
but do not set the IE bit for QNaNs.

FCOMx
FCOMP
FCOMPP

Floating-Point Compare

Mnemonic Opcode Description

FCOM D8 D1 Compare the contents of ST(0) to the contents of ST(1) and set
condition flags to reflect the results of the comparison.

FCOM ST(i) D8 D0+i Compare the contents of ST(0) to the contents of ST(i) and set
condition flags to reflect the results of the comparison.

FCOM mem32real D8 /2 Compare the contents of ST(0) to the contents of mem32real and set
condition flags to reflect the results of the comparison.

FCOM mem64real DC /2 Compare the contents of ST(0) to the contents of mem64real and set
condition flags to reflect the results of the comparison.

FCOMP D8 D9 Compare the contents of ST(0) to the contents of ST(1), set condition
flags to reflect the results of the comparison, and pop the x87 register
stack.

FCOMP ST(i) D8 D8+i Compare the contents of ST(0) to the contents of ST(i), set condition
flags to reflect the results of the comparison, and pop the x87 register
stack.

248 FCOMx

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

x87 Condition Code

Exceptions

FCOMP mem32real D8 /3 Compare the contents of ST(0) to the contents of mem32real, set
condition flags to reflect the results of the comparison, and pop the
x87 register stack.

FCOMP mem64real DC /3 Compare the contents of ST(0) to the contents of mem64real, set
condition flags to reflect the results of the comparison, and pop the
x87 register stack.

FCOMPP DE D9 Compare the contents of ST(0) to the contents of ST(1), set condition
flags to reflect the results of the comparison, and pop the x87 register
stack twice.

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > source

0 0 0 1 ST(0) < source

1 0 0 0 ST(0) = source

1 1 0 1 Operands were unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

FCOMx 249

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN value, or an
unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

250 FCOMIx

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares the value in ST(0) with the value in another floating-point register and sets
the zero flag (ZF), parity flag (PF), and carry flag (CF) in the rFLAGS register based
on the result as shown in the table in the x87 Condition Code section.

The comparison operation ignores the sign of zero (–0.0 = +0.0).

After performing the comparison operation, FCOMIP pops the x87 register stack.

If either or both of the compared values is a NaN or is in an unsupported format, the
FCOMIx instruction sets the invalid-operation exception (IE) bit in the x87 status
word to 1. Then, if the exception is masked (IM bit set to 1 in the x87 control word), the
instruction sets the flags to “unordered.” If the exception is unmasked (IM bit cleared
to 0), the instruction does not set the flags.

The FUCOMIx instructions perform the same operations as the FCOMIx instructions,
but do not set the IE bit for QNaNs.

Related Instructions

FCOM, FCOMPP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

FCOMIx
FCOMIP

Floating-Point Compare and Set Flags

Mnemonic Opcode Description

FCOMI ST(0),ST(i) DB F0+i Compare the contents of ST(0) with the contents of ST(i) and set
status flags to reflect the results of the comparison.

FCOMIP ST(0),ST(i) DF F0+i Compare the contents of ST(0) with the contents of ST(i), set status
flags to reflect the results of the comparison, and pop the x87 register
stack.

FCOMIx 251

26569—Rev. 3.03—April 2003 AMD64 Technology

rFLAGS Affected

x87 Condition Code

Exceptions

ZF PF CF Compare Result

0 0 0 ST(0) > source

0 0 1 ST(0) < source

1 0 0 ST(0) = source

1 1 1 Operands were unordered

x87 Condition Code Value Description

C0

C1 0

C2

C3

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.
A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

252 FCOMIx

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN value, or an
unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

FCOS 253

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the cosine of the radian value in ST(0) and stores the result in ST(0).

If the radian value lies outside the valid range of –263 to +263 radians, the instruction
sets the C2 flag in the x87 status word to 1 to indicate the value is out of range and
does not change the value in ST(0). It does not set any of the exception flags. The
program should check the C2 flag and, if necessary, can reduce an invalid source value
to the proper range by using the FPREM instruction with the value 2π in ST(1) and
the out-of-range radian value in ST(0).

Related Instructions

FPTAN, FPATAN, FSIN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

FCOS Floating-Point Cosine

Mnemonic Opcode Description

FCOS D9 FF Replace ST(0) with the cosine of ST(0).

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

254 FCOS

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the desti-
nation operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination format.

FDECSTP 255

26569—Rev. 3.03—April 2003 AMD64 Technology

Decrements the top-of-stack pointer (TOP) field of the x87 status word. If the TOP
field contains 0, it is set to 7. In other words, this instruction rotates the stack by one
position.

Related Instructions

FINCSTP

rFLAGS Affected

None

FDECSTP Floating-Point Decrement Stack-Top Pointer

Mnemonic Opcode Description

FDECSTP D9 F6 Decrement the TOP field in the x87 status word.

Data Register
Before FDECSTP After FDECSTP

Value Stack Pointer Stack Pointer Value

7 num1 ST(7) ST(0) num1

6 num2 ST(6) ST(7) num2

5 num3 ST(5) ST(6) num3

4 num4 ST(4) ST(5) num4

3 num5 ST(3) ST(4) num5

2 num6 ST(2) ST(3) num6

1 num7 ST(1) ST(2) num7

0 num8 ST(0) ST(1) num8

256 FDECSTP

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

FDIVx 257

26569—Rev. 3.03—April 2003 AMD64 Technology

Divides the value in a floating-point register by the value in another register or a
memory location and stores the result in the register containing the dividend. For the
FDIV and FDIVP instructions, the divisor value in memory can be stored in single-
precision or double-precision floating-point format.

If only one operand is specified, the instruction divides the value in ST(0) by the value
in the specified memory location.

If no operands are specified, the FDIVP instruction divides the value in ST(1) by the
value in ST(0), stores the result in ST(1), and pops the x87 register stack.

The FIDIV instruction converts a divisor in word integer or short integer format to
double-extended-precision floating-point format before performing the division. It
treats an integer 0 as +0.

If the zero-divide exception is not masked (ZM bit cleared to 0 in the x87 control word)
and the operation causes a zero-divide exception (sets the ZE bit in the x87 status
word to 1), the operation stores no result. If the zero-divide exception is masked (ZM
bit set to 1), a zero-divide exception causes ±∞ to be stored.

The sign of the operands, even if one of the operands is 0, determines the sign of the
result.

FDIVx
FDIVP
FIDIV

Floating-Point Divide

Mnemonic Opcode Description

FDIV ST(0),ST(i) D8 F0+i Replace ST(0) with ST(0)/ST(i).

FDIV ST(i),ST(0) DC F8+i Replace ST(i) with ST(i)/ST(0).

FDIV mem32real D8 /6 Replace ST(0) with ST(0)/mem32real.

FDIV mem64real DC /6 Replace ST(0) with ST(0)/mem64real.

FDIVP DE F9 Replace ST(1) with ST(1)/ST(0), and pop the x87 register stack.

FDIVP ST(i),ST(0) DE F8+i Replace ST(i) with ST(i)/ST(0), and pop the x87 register stack.

FIDIV mem16int DE /6 Replace ST(0) with ST(0)/mem16int.

FIDIV mem32int DA /6 Replace ST(0) with ST(0)/mem32int.

258 FDIVx

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

FDIVR, FDIVRP, FIDIVR

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

FDIVx 259

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

±infinity was divided by ±infinity.

±0 was divided by ±0.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Zero-divide exception
(ZE)

X X X A non-zero value was divided by ±0.

Overflow exception
(OE)

X X X A rounded result was too large to fit into the format of the desti-
nation operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the desti-
nation operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination for-
mat.

Exception Real
Virtual
8086 Protected Cause of Exception

260 FDIVRx

AMD64 Technology 26569—Rev. 3.03—April 2003

Divides a value in a floating-point register or a memory location by the value in a
floating-point register and stores the result in the register containing the divisor. For
the FDIVR and FDIVRP instructions, a dividend value in memory can be stored in
single-precision or double-precision floating-point format.

If one operand is specified, the instruction divides the value at the specified memory
location by the value in ST(0). If two operands are specified, it divides the value in
ST(0) by the value in another x87 stack register or vice versa.

The FIDIVR instruction converts a dividend in word integer or short integer format to
double-extended-precision format before performing the division.

The FDIVRP instruction pops the x87 register stack after performing the division
operation. If no operand is specified, the FDIVRP instruction divides the value in
ST(0) by the value in ST(1).

If the zero-divide exception is not masked (ZM bit cleared to 0 in the x87 control word)
and the operation causes a zero-divide exception (sets the ZE bit in the x87 status
word to 1), the operation stores no result. If the zero-divide exception is masked (ZM
bit set to 1), a zero-divide exception causes ±∞ to be stored.

The sign of the operands, even if one of the operands is 0, determines the sign of the
result.

FDIVRx
FDIVRP
FIDIVR

Floating-Point Divide Reverse

Mnemonic Opcode Description

FDIVR ST(0),ST(i) D8 F8+i Replace ST(0) with ST(i)/ST(0).

FDIVR ST(i), ST(0) DC F0+i Replace ST(i) with ST(0)/ST(i).

FDIVR mem32real D8 /7 Replace ST(0) with mem32real/ST(0).

FDIVR mem64real DC /7 Replace ST(0) with mem64real/ST(0).

FDIVRP DE F1 Replace ST(1) with ST(0)/ST(1), and pop the x87 register stack.

FDIVRP ST(i), ST(0) DE F0 +i Replace ST(i) with ST(0)/ST(i), and pop the x87 register stack.

FIDIVR mem16int DE /7 Replace ST(0) with mem16int/ST(0).

FIDIVR mem32int DA /7 Replace ST(0) with mem32int/ST(0).

FDIVRx 261

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

FDIV, FDIVP, FIDIV

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or is non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or is non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

262 FDIVRx

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

±infinity was divided by ±infinity.

±0 was divided by ±0.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Zero-divide exception
(ZE)

X X X A non-zero value was divided by ±0.

Overflow exception
(OE)

X X X A rounded result was too large to fit into the format of the desti-
nation operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the desti-
nation operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination for-
mat.

Exception Real
Virtual
8086 Protected Cause of Exception

FFREE 263

26569—Rev. 3.03—April 2003 AMD64 Technology

Frees the specified x87 stack register by marking its tag register entry as empty. The
instruction does not affect the contents of the freed register or the top-of-stack
pointer (TOP).

Related Instructions

FLD, FST, FSTP

rFLAGS Affected

None

x87 Condition Code

Exceptions

FFREE Floating-Point Free Register

Mnemonic Opcode Description

FFREE ST(i) DD C0+i Set the tag for x87 stack register i to empty (11b).

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

264 FICOMx

AMD64 Technology 26569—Rev. 3.03—April 2003

Converts a 16-bit or 32-bit signed integer value to double-extended-precision format,
compares it to the value in ST(0), and sets the C0, C2, and C3 condition code flags in
the x87 status word to reflect the results.

The comparison operation ignores the sign of zero (–0.0 = +0.0).

After performing the comparison operation, the FICOMP instruction pops the x87
register stack.

If ST(0) is a NaN or is in an unsupported format, the instruction sets the condition
flags to “unordered.”

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

FICOMx
FICOMP

Floating-Point Integer Compare

Mnemonic Opcode Description

FICOM mem16int DE /2 Convert the contents of mem16int to double-extended-precision
format, compare the result to the contents of ST(0), and set condition
flags to reflect the results of the comparison.

FICOM mem32int DA /2 Convert the contents of mem32int to double-extended-precision
format, compare the result to the contents of ST(0), and set condition
flags to reflect the results of the comparison.

FICOMP mem16int DE /3 Convert the contents of mem16int to double-extended-precision
format, compare the result to the contents of ST(0), set condition flags
to reflect the results of the comparison, and pop the x87 register stack.

FICOMP mem32int DA /3 Convert the contents of mem32int to double-extended-precision
format, compare the result to the contents of ST(0), set condition flags
to reflect the results of the comparison, and pop the x87 register stack.

FICOMx 265

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Condition Code

Exceptions

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > source

0 0 0 1 ST(0) < source

1 0 0 0 ST(0) = source

1 1 0 1 Operands were unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN value, or an unsup-
ported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

266 FILD

AMD64 Technology 26569—Rev. 3.03—April 2003

Converts a signed-integer in memory to double-extended-precision format and pushes
the value onto the x87 register stack. The value can be a 16-bit, 32-bit, or 64- bit
integer value. Signed values from memory can always be represented exactly in x87
registers without rounding.

Related Instructions

FLD, FST, FSTP, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

FILD Floating-Point Load Integer

Mnemonic Opcode Description

FILD mem16int DF /0 Push the contents of mem16int onto the x87 register stack.

FILD mem32int DB /0 Push the contents of mem32int onto the x87 register stack.

FILD mem64int DF /5 Push the contents of mem64int onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No stack overflow..

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FILD 267

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

268 FINCSTP

AMD64 Technology 26569—Rev. 3.03—April 2003

Increments the top-of-stack pointer (TOP) field of the x87 status word. If the TOP field
contains 7, it is set to 0. In other words, this instruction rotates the stack by one
position.

Related Instructions

FDECSTP

rFLAGS Affected

None

FINCSTP Floating-Point Increment Stack-Top Pointer

Mnemonic Opcode Description

FINCSTP D9 F7 Increment the TOP field in the x87 status word.

Data Register
Before FINCSTP After FINCSTP

Value Stack Pointer Stack Pointer Value

7 num1 ST(7) ST(6) num1

6 num2 ST(6) ST(5) num2

5 num3 ST(5) ST(4) num3

4 num4 ST(4) ST(3) num4

3 num5 ST(3) ST(2) num5

2 num6 ST(2) ST(1) num6

1 num7 ST(1) ST(0) num7

0 num8 ST(0) ST(7) num8

FINCSTP 269

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

270 FNINIT (FINIT)

AMD64 Technology 26569—Rev. 3.03—April 2003

Sets the x87 control word register, status word register, tag word register, instruction
pointer, and data pointer to their default states as follows:

Sets the x87 control word to 037Fh—round to nearest (RC = 00b); double-
extended-precision (PC = 11b); all exceptions masked (PM, UM, OM, ZM, DM, and
IM all set to 1).

Clears all bits in the x87 status word (TOP is set to 0, which maps ST(0) onto
FPR0).

Marks all x87 stack registers as empty (11b) in the x87 tag register.

Clears the instruction pointer and the data pointer.

These instructions do not actually zero out the x87 stack registers.

Assemblers usually provide an FINIT macro that expands into the instruction
sequence

WAIT ; Opcode 9B
FNINIT destination ; Opcode DB E3

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception
handler, if necessary. The FNINIT instruction then resets the x87 environment to its
default state.

Related Instructions

FWAIT, WAIT

rFLAGS Affected

None

FNINITx
(FINIT)

Floating-Point Initialize

Mnemonic Opcode Description

FNINIT DB E3 Initialize the x87 unit without checking for unmasked floating-point
exceptions.

FINIT 9B DB E3 Perform a WAIT (9B) to check for pending floating-point exceptions
and then initialize the x87 unit.

FNINIT (FINIT) 271

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 0

C1 0

C2 0

C3 0

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

272 FISTx

AMD64 Technology 26569—Rev. 3.03—April 2003

Converts the value in ST(0) to a signed integer, rounds it if necessary, and copies it to
the specified memory location. The rounding control (RC) field of the x87 control
word determines the type of rounding used.

The FIST instruction supports 16-bit and 32-bit values. The FISTP instructions
supports 16-bit, 32-bit, and 64-bit values.

The FISTP instruction pops the stack after storing the rounded value in memory.

If the value is too large for the destination location, is a NaN, or is in an unsupported
format, the instruction sets the invalid-operation exception (IE) bit in the x87 status
word to 1. Then, if the exception is masked (IM bit set to 1 in the x87 control word), the
instruction stores the integer indefinite value. If the exception is unmasked (IM bit
cleared to 0), the instruction does not store the value.

Table 2-1 on page 273 shows the results of storing various types of numbers as
integers.

FISTx
FISTP

Floating-Point Integer Store

Mnemonic Opcode Description

FIST mem16int DF /2 Convert the contents of ST(0) to integer and store the result in
mem16int.

FIST mem32int DB /2 Convert the contents of ST(0) to integer and store the result in
mem32int.

FISTP mem16int DF /3 Convert the contents of ST(0) to integer, store the result in mem16int,
and pop the x87 register stack.

FISTP mem32int DB /3 Convert the contents of ST(0) to integer, store the result in mem32int,
and pop the x87 register stack.

FISTP mem64int DF /7 Convert the contents of ST(0) to integer, store the result in mem64int,
and pop the x87 register stack.

FISTx 273

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

FLD, FST, FSTP, FILD, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

Table 2-1. Storing Numbers as Integers

ST(0) DEST

-∞ Invalid-operation (IE) exception

–Finite-real < –1 –Integer (Invalid-operation (IE) exception if the integer is too large for the destination)

–1 < –Finite-real< –0 0 or –1, depending on the rounding mode

-0 0

+0 0

+0 < +Finite-real < +1 0 or +1, depending on the rounding mode

+Finite-real > +1 +Integer (Invalid-operation (IE) exception if the integer is too large for the destination)

+∞ Invalid-operation (IE) exception

NaN Invalid-operation (IE) exception

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

274 FISTx

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

X

A memory address exceeded a data segment limit or was non-
canonical.

Result is located in a nonwritable segment.

A null data segment is being used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

The source operand was too large for the destination format.

A source operand was an SNaN value, a QNaN value, or an unsup-
ported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination for-
mat.

FLD 275

26569—Rev. 3.03—April 2003 AMD64 Technology

Pushes a value in memory or in a floating-point register onto the register stack. If in
memory, the value can be a single-precision, double-precision, or double-extended-
precision floating-point value. The operation converts a single-precision or double-
precision value to double-extended-precision format before pushing it onto the stack.

Related Instructions

FFREE, FST, FSTP, FILD, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

FLD Floating-Point Load

Mnemonic Opcode Description

FLD ST(i) D9 C0+i Push the contents of ST(i) onto the x87 register stack.

FLD mem32real D9 /0 Push the contents of mem32real onto the x87 register stack.

FLD mem64real DD /0 Push the contents of mem64real onto the x87 register stack.

FLD mem80real DB /5 Push the contents of mem80real onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 No x87 stack fault.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

276 FLD

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

X

A memory address exceeded a data segment limit or was non-
canonical.

The destination operand was in a nonwritable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

Invalid-operation
exception (IE) with
stack fault (SF)

X

X

X

X

X

X

An x87 stack underflow occurred.

An x87 stack overflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value. This exception does not
occur if the source operand was in double-extended-precision for-
mat.

FLD1 277

26569—Rev. 3.03—April 2003 AMD64 Technology

Pushes the floating-point value +1.0 onto the register stack.

Related Instructions

FLD, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLD1 Floating-Point Load +1.0

Mnemonic Opcode Description

FLD1 D9 E8 Push +1.0 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

278 FLDCW

AMD64 Technology 26569—Rev. 3.03—April 2003

Loads a 16-bit value from the specified memory location into the x87 control word. If
the new x87 control word unmasks any pending floating point exceptions, then they
are handled upon execution of the next x87 floating-point or 64-bit media instruction.

To avoid generating exceptions when loading a new control word, use the FCLEX or
FNCLEX instruction to clear any pending exceptions.

Related Instructions

FSTCW, FNSTCW, FSTSW, FNSTSW, FSTENV, FNSTENV, FLDENV, FCLEX,
FNCLEX

rFLAGS Affected

None

x87 Condition Code

FLDCW Floating-Point Load x87 Control Word

Mnemonic Opcode Description

FLDCW mem2env D9 /5 Load the contents of mem2env into the x87 control word.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FLDCW 279

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

280 FLDENV

AMD64 Technology 26569—Rev. 3.03—April 2003

Restores the x87 environment from memory starting at the specified address. The x87
environment consists of the x87 control, status, and tag word registers, the last non-
control x87 instruction pointer, the last x87 data pointer, and the opcode of the last
completed non-control x87 instruction.

The x87 environment requires a 14-byte or 28-byte area in memory, depending on
whether the processor is operating in protected or real mode and whether the
operand-size attribute is 16-bit or 32-bit. See “Media and x87 Processor State” in
volume 2 for details on how this instruction stores the x87 environment in memory.

The environment to be loaded is typically stored by a previous FNSTENV or FSTENV
instruction. The FLDENV instruction should be executed in the same operating mode
as the instruction that stored the x87 environment.

If FLDENV results in set exception flags in the loaded x87 status word register, and
these exceptions are unmasked in the x87 control word register, a floating-point
exception occurs when the next floating-point instruction is executed (except for the
no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or
FNCLEX instruction to clear the exception flags in the x87 status word before storing
that environment.

Related Instructions

FSTENV, FNSTENV, FCLEX, FNCLEX

rFLAGS Affected

None

FLDENV Floating-Point Load x87 Environment

Mnemonic Opcode Description

FLDENV mem14/28env D9 /4 Load the complete contents of the x87 environment from
mem14/28env.

FLDENV 281

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Loaded from memory.

C1 M Loaded from memory.

C2 M Loaded from memory.

C3 M Loaded from memory.

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

282 FLDL2E

AMD64 Technology 26569—Rev. 3.03—April 2003

Pushes log2e onto the x87 register stack. The value in ST(0) is the result, in double-
extended-precision format, of rounding an internal 66-bit constant according to the
setting of the RC field in the x87 control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

FLDL2E Floating-Point Load Log2 e

Mnemonic Opcode Description

FLDL2E D9 EA Push log2e onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FLDL2E 283

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

284 FLDL2T

AMD64 Technology 26569—Rev. 3.03—April 2003

Pushes log2 10 onto the x87 register stack. The value in ST(0) is the result, in double-
extended-precision format, of rounding an internal 66-bit constant according to the
setting of the RC field in the x87 control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

FLDL2T Floating-Point Load Log2 10

Mnemonic Opcode Description

FLDL2T D9 E9 Push log210 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FLDL2T 285

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

286 FLDLG2

AMD64 Technology 26569—Rev. 3.03—April 2003

Pushes log10 2 onto the x87 register stack. The value in ST(0) is the result, in double-
extended-precision format, of rounding an internal 66-bit constant according to the
setting of the RC field in the x87 control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLN2

rFLAGS Affected

None

x87 Condition Code

FLDLG2 Floating-Point Load Log10 2

Mnemonic Opcode Description

FLDLG2 D9 EC Push log102 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FLDLG2 287

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

288 FLDLN2

AMD64 Technology 26569—Rev. 3.03—April 2003

Pushes loge2 onto the x87 register stack. The value in ST(0) is the result, in double-
extended-precision format, of rounding an internal 66-bit constant according to the
setting of the RC field in the x87 control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLG2

rFLAGS Affected

None

x87 Condition Code

FLDLN2 Floating-Point Load Ln 2

Mnemonic Opcode Description

FLDLN2 D9 ED Push loge2 onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FLDLN2 289

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

290 FLDPI

AMD64 Technology 26569—Rev. 3.03—April 2003

Pushes π onto the x87 register stack. The value in ST(0) is the result, in double-
extended-precision format, of rounding an internal 66-bit constant according to the
setting of the RC field in the x87 control word register.

Related Instructions

FLD, FLD1, FLDZ, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

FLDPI Floating-Point Load Pi

Mnemonic Opcode Description

FLDPI D9 EB Push π onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FLDPI 291

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

292 FLDZ

AMD64 Technology 26569—Rev. 3.03—April 2003

Pushes +0.0 onto the x87 register stack.

Related Instructions

FLD, FLD1, FLDPI, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

Exceptions

FLDZ Floating-Point Load +0.0

Mnemonic Opcode Description

FLDZ D9 EE Push zero onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 No x87 stack fault occurred.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack overflow occurred.

FMULx 293

26569—Rev. 3.03—April 2003 AMD64 Technology

Multiplies the value in a floating-point register by the value in a memory location or
another stack register and stores the result in the first register. The instruction
converts a single-precision or double-precision value in memory to double-extended-
precision format before multiplying.

If one operand is specified, the instruction multiplies the value in the ST(0) register
by the value in the specified memory location and stores the result in the ST(0)
register.

If two operands are specified, the instruction multiplies the value in the ST(0) register
by the value in another specified floating-point register and stores the result in the
register specified in the first operand.

The FMULP instruction pops the x87 stack after storing the product. The no-operand
version of the FMULP instruction multiplies the value in the ST(1) register by the
value in the ST(0) register and stores the product in the ST(1) register.

The FIMUL instruction converts a short-integer or word-integer value in memory to
double-extended-precision format, multiplies it by the value in ST(0), and stores the
product in ST(0).

FMULx
FMULP
FIMUL

Floating-Point Multiply

Mnemonic Opcode Description

FMUL ST(0),ST(i) D8 C8+i Replace ST(0) with ST(0) ∗ ST(i).

FMUL ST(i),ST(0) DC C8+i Replace ST(i) with ST(0) ∗ ST(i).

FMUL mem32real D8 /1 Replace ST(0) with mem32real ∗ ST(0).

FMUL mem64real DC /1 Replace ST(0) with mem64real ∗ ST(0).

FMULP DE C9 Replace ST(1) with ST(0) ∗ ST(1), and pop the x87 register stack.

FMULP ST(i),ST(0) DE C8+i Replace ST(i) with ST(0) ∗ ST(i), and pop the x87 register stack.

FIMUL mem16int DE /1 Replace ST(0) with mem16int ∗ ST(0).

FIMUL mem32int DA /1 Replace ST(0) with mem32int ∗ ST(0).

294 FMULx

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

None.

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

FMULx 295

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

±infinity was multiplied by ±0.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Overflow exception
(OE)

X X X A rounded result was too large to fit into the format of the destina-
tion operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the desti-
nation operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

296 FNOP

AMD64 Technology 26569—Rev. 3.03—April 2003

Performs no operation. This instruction affects only the rIP register. It does not
otherwise affect the processor context.

Related Instructions

FWAIT, NOP

rFLAGS Affected

None

x87 Condition Code

None

Exceptions

FNOP Floating-Point No Operation

Mnemonic Opcode Description

FNOP D9 D0 Perform no operation.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

FNSAVE (FSAVE) 297

26569—Rev. 3.03—April 2003 AMD64 Technology

Stores the complete x87 state to memory starting at the specified address and
reinitializes the x87 state. The x87 state requires 94 or 108 bytes of memory,
depending upon whether the processor is operating in real or protected mode and
whether the operand-size attribute is 16-bit or 32-bit. Because the MMX registers are
mapped onto the low 64 bits of the x87 floating-point registers, this operation also
saves the MMX state. For details about the memory image saved by FNSAVE, see
“Media and x87 Processor State” in volume 2.

The FNSAVE instruction does not wait for pending unmasked x87 floating-point
exceptions to be processed.

Assemblers usually provide an FSAVE macro that expands into the instruction
sequence

WAIT ; Opcode 9B
FNSAVE destination ; Opcode DD /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception
handler, if necessary. The FNSAVE instruction then stores the x87 state to the
specified destination.

Related Instructions

FRSTOR, FXSAVE, FXRSTOR

rFLAGS Affected

None

FNSAVE
(FSAVE)

Floating-Point Save No-Wait x87 and MMX™ State

Mnemonic Opcode Description

FNSAVE mem94/108env DD /6 Copy the x87 state to mem94/108env without checking for pending
floating-point exceptions, then reinitialize the x87 state.

FSAVE mem94/108env 9B DD /6 Copy the x87 state to mem94/108env after checking for pending
floating-point exceptions, then reinitialize the x87 state.

298 FNSAVE (FSAVE)

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 0

C1 0

C2 0

C3 0

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

X

A memory address exceeded a data segment limit or was non-
canonical.

The destination operand was in a nonwritable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

FPATAN 299

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the arctangent of the ordinate (Y) in ST(1) divided by the abscissa (X) in
ST(0), which is the angle in radians between the X axis and the radius vector from the
origin to the point (X, Y). It then stores the result in ST(1) and pops the x87 register
stack. The resulting value has the same sign as the ordinate value and a magnitude
less than or equal to π.

There is no restriction on the range of values that FPATAN can accept. Table 2-2 shows
the results obtained when computing the arctangent of various classes of numbers,
assuming that underflow does not occur:

Related Instructions

FCOS, FPTAN, FSIN, FSINCOS

rFLAGS Affected

None

FPATAN Floating-Point Partial Arctangent

Table 2-2. Computing Arctangent of Numbers

X (ST(0))

–∞ –Finite –0 +0 +Finite +∞ NaN

Y (ST(1))

–∞ –3π/4 –π/2 –π/2 –π/2 –π/2 –π/4 NaN

–Finite –π –π to –π/2 –π/2 –π/2 –π/2 to –0 —0 NaN

–0 –π –π –π –0 –0 —0 NaN

+0 +π +π +π +0 +0 +0 NaN

+Finite +π +π to +π/2 +π/2 +π/2 +π/2 to +0 +0 NaN

+∞ +3π/4 +π/2 +π/2 +π/2 +π/2 +π/4 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Mnemonic Opcode Description

FPATAN D9 F3 Compute arctan(ST(1)/ST(0)), store the result in ST(1), and pop the
x87 register stack.

300 FPATAN

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the destina-
tion operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination format.

FPREM 301

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the exact remainder obtained by dividing the value in ST(0) by that in
ST(1), and stores the result in ST(0). It computes the remainder by an iterative
subtract-and-shift long division algorithm in which one quotient bit is calculated in
each iteration.

If the exponent difference between ST(0) and ST(1) is less than 64, the instruction
computes all integer bits of the quotient, guaranteeing that the remainder is less in
magnitude than the divisor in ST(1). If the exponent difference is equal to or greater
than 64, it computes only the subset of integer quotient bits numbering between 32
and 63, returns a partial remainder, and sets the C2 condition code bit to 1.

FPREM is supported for software that was written for early x87 coprocessors. Unlike
the FPREM1 instruction, FPREM does not compute the partial remainder as specified
in IEEE Standard 754.

ExpDiff = Exponent(ST(0)) - Exponent(ST(1)
IF (ExpDiff < 0)
{
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = 0
}
ELSIF (ExpDiff < 64)
{
 Quotient = Floor(ST(0)/ST(1))
 ST(0) = ST(0) - (ST(1) * Quotient)
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = Quotient mod 8
}
ELSE
{
 N = 32 + (ExpDiff mod 32)
 Quotient = Floor ((ST(0)/ST(1))/2^(ExpDiff-N))
 ST(0) = ST(0) - (ST(1) * Quotient * 2^(ExpDiff-N))
 SW.C2 = 1
 {SW.C0, SW.C3, SW.C1} = 0
}

FPREM Floating-Point Partial Remainder

Mnemonic Opcode Description

FPREM D9 F8 Compute the remainder of the division of ST(0) by ST(1) and store
the result in ST(0).

302 FPREM

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

FPREM1, FABS, FRNDINT, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Set equal to the value of bit 2 of the quotient.

C1
0 x87 stack underflow, if an x87 register stack fault was detected.

M Set equal to the value of bit 0 of the quotient, if there was no fault.

C2

0 FPREM generated the partial remainder.

1 The source operands differed by more than a factor of 264, so the result is
incomplete.

C3 M Set equal to the value of bit 1 of the quotient.

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

ST(0) was ±infinity.

ST(0) and ST(1) were both ±0.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

FPREM 303

26569—Rev. 3.03—April 2003 AMD64 Technology

Zero-divide exception
(ZE)

X X X ST(1) was ±0 and ST(0) was not ±0 or ±infinity.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the destina-
tion operand.

Exception Real
Virtual
8086 Protected Cause of Exception

304 FPREM1

AMD64 Technology 26569—Rev. 3.03—April 2003

Computes the IEEE Standard 754 remainder obtained by dividing the value in ST(0)
by that in ST(1), and stores the result in ST(0). Unlike FPREM, it rounds the integer
quotient to the nearest even integer and returns the remainder corresponding to the
back multiply of the rounded quotient.

If the exponent difference between ST(0) and ST(1) is less than 64, the instruction
computes all integer as well as additional fractional bits of the quotient to do the
rounding. The remainder returned is a complete remainder and is less than or equal to
one half of the magnitude of the divisor. If the exponent difference is equal to or
greater than 64, it computes only the subset of integer quotient bits numbering
between 32 and 63, returns the partial remainder, and sets the C2 condition code bit to
1.

Rounding control has no effect. FPREM1 results are exact.

Action
ExpDiff = Exponent(ST(0)) - Exponent(ST(1)
IF (ExpDiff < 0)
{
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = 0
}
ELSIF (ExpDiff < 64)
{
 Quotient = Integer obtained by rounding (ST(0)/ST(1))
 to nearest even integer
 ST(0) = ST(0) - (ST(1) * Quotient)
 SW.C2 = 0
 {SW.C0, SW.C3, SW.C1} = Quotient mod 8
}
ELSE
{
 N = 32 + (ExpDiff mod 32)
 Quotient = Floor ((ST(0)/ST(1))/2^(ExpDiff-N))
 ST(0) = ST(0) - (ST(1) * Quotient * 2^(ExpDiff-N))
 SW.C2 = 1
 {SW.C0, SW.C3, SW.C1} = 0
}

FPREM1 Floating-Point Partial Remainder

Mnemonic Opcode Description

FPREM1 D9 F5 Compute the IEEE standard 754 remainder of the division of ST(0) by
ST(1) and store the result in ST(0).

FPREM1 305

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

FPREM, FABS, FRNDINT, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 M Set equal to the value of bit 2 of the quotient.

C1
0 x87 stack underflow, if an x87 register stack fault was detected.

M Set equal to the value of the bit 0 of the quotient, if there was no fault.

C2

0 FPREM1 generated the partial remainder.

1 The source operands differed by more than a factor of 264, so the result is
incomplete.

C3 M Set equal to the value of bit 1 of the quotient.

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

ST(0) was ±infinity.

ST(0) and ST(1) were both ±0.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

306 FPREM1

AMD64 Technology 26569—Rev. 3.03—April 2003

Zero-divide exception
(ZE)

X X X ST(1) was ±0 and ST(0) was not ±0 or ±infinity.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the desti-
nation operand.

Exception Real
Virtual
8086 Protected Cause of Exception

FPTAN 307

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the tangent of the radian value in ST(0), stores the result in ST(0), and
pushes a value of 1.0 onto the x87 register stack.

The source value must be between –263 and +263 radians. To convert a source value
outside of this range to an equivalent acceptable value, use the FPREM instruction to
divide the value with a divisor of 2π. If the source value lies outside the specified
range, the instruction sets the C2 bit of the x87 status word to 1 and does not change
the value in ST(0).

Related Instructions

FCOS, FPATAN, FSIN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

FPTAN Floating-Point Partial Tangent

Mnemonic Opcode Description

FPTAN D9 F2 Replace ST(0) with the tangent of ST(0), then push 1.0 onto the x87
register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

308 FPTAN

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

A source operand was ±infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X

X

X

X

X

X

An x87 stack underflow occurred.

An x87 stack overflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the destina-
tion operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination format.

FRNDINT 309

26569—Rev. 3.03—April 2003 AMD64 Technology

Rounds the value in ST(0) to an integer, depending on the setting of the rounding
control (RC) field of the x87 control word, and stores the result in ST(0).

If the initial value in ST(0) is ∞, the instruction does not change ST(0). If the value in
ST(0) is not an integer, it sets the precision exception (PE) bit of the x87 status word to
1.

Related Instructions

FABS, FPREM, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

FRNDINT Floating-Point Round to Integer

Mnemonic Opcode Description

FRNDINT D9 FC Round the contents of ST(0) to an integer.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

310 FRNDINT

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Precision exception
(PE)

X X X The source operand was not an integral value.

FRSTOR 311

26569—Rev. 3.03—April 2003 AMD64 Technology

Restores the complete x87 state from memory starting at the specified address, as
stored by a previous call to FNSAVE. The x87 state occupies 94 or 108 bytes of memory
depending on whether the processor is operating in real or protected mode and
whether the operand-size attribute is 16-bit or 32-bit. Because the MMX registers are
mapped onto the low 64 bits of the x87 floating-point registers, this operation also
restores the MMX state.

If FRSTOR results in set exception flags in the loaded x87 status word register, and
these exceptions are unmasked in the x87 control word register, a floating-point
exception occurs when the next floating-point instruction is executed (except for the
no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or
FNCLEX instruction to clear the exception flags in the x87 status word before storing
that environment.

For details about the memory image restored by FRSTOR, see “Media and x87
Processor State” in volume 2.

Related Instructions

FSAVE, FNSAVE, FXSAVE, FXRSTOR

rFLAGS Affected

None

x87 Condition Code

FRSTOR Floating-Point Restore x87 and MMX™ State

Mnemonic Opcode Description

FRSTOR mem94/108env DD /4 Load the x87 state from mem94/108env.

x87 Condition Code Value Description

C0 M Loaded from memory.

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

312 FRSTOR

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

C1 M Loaded from memory.

C2 M Loaded from memory.

C3 M Loaded from memory.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Condition Code Value Description

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FSCALE 313

26569—Rev. 3.03—April 2003 AMD64 Technology

Multiplies the floating-point value in ST(0) by 2 to the power of the integer portion of
the floating-point value in ST(1).

This instruction provides an efficient method of multiplying (or dividing) by integral
powers of 2 because, typically, it simply adds the integer value to the exponent of the
value in ST(0), leaving the significand unaffected. However, if the value in ST(0) is a
denormal value, the mantissa is also modified and the result may end up being a
normalized number. Likewise, if overflow or underflow results from a scale operation,
the mantissa of the resulting value will be different from that of the source.

The FSCALE instruction performs the reverse operation to that of the FXTRACT
instruction.

Related Instructions

FSQRT, FPREM, FPREM1, FRNDINT, FXTRACT, FABS, FCHS

rFLAGS Affected

None

x87 Condition Code

FSCALE Floating-Point Scale

Mnemonic Opcode Description

FSCALE D9 FD Replace ST(0) with ST(0) ∗ 2rndint(ST(1))

x87 Condition Code Value Description

C0 U Undefined.

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U Undefined.

C3 U Undefined

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

314 FSCALE

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Overflow exception
(OE)

X X X A rounded result was too large to fit into the format of the desti-
nation operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the desti-
nation operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination for-
mat.

FSIN 315

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the sine of the radian value in ST(0) and stores the result in ST(0).

The source value must be in the range –263 to +263 radians. If the value lies outside this
range, the instruction sets the C2 bit in the x87 status word to 1 and does not change
the value in ST(0). To convert a source value outside the range –263 and +263 to an
equivalent acceptable value, use the FPREM instruction to divide it by 2π.

Related Instructions

FCOS, FPATAN, FPTAN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

FSIN Floating-Point Sine

Mnemonic Opcode Description

FSIN D9 FE Replace ST(0) with the sine of ST(0).

x87 Condition Code Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

316 FSIN

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

A source operand was ±infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination for-
mat.

FSINCOS 317

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the sine and cosine of the value in ST(0), stores the sine in ST(0), and
pushes the cosine onto the x87 register stack. The source value must be in the range
–263 to +263 radians.

If the source operand is outside this range, the instruction sets the C2 bit in the x87
status word to 1 and does not change the value in ST(0). To convert a source value
outside the range –263 and +263 to an equivalent acceptable value, use the FPREM
instruction to divide it by 2π.

Related Instructions

FCOS, FPATAN, FPTAN, FSIN

rFLAGS Affected

None

x87 Condition Code

FSINCOS Floating-Point Sine and Cosine

Mnemonic Opcode Description

FSINCOS D9 FB Replace ST(0) with the sine of ST(0), then push the cosine of ST(0)
onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2
0 Source operand was in range.

1 Source operand was out of range.

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

318 FSINCOS

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

A source operand was ±infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X

X

X

X

X

X

An x87 stack underflow occurred.

An x87 stack overflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the destina-
tion operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination format.

FSQRT 319

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes the square root of the value in ST(0) and stores the result in ST(0). Taking
the square root of +infinity returns +infinity.

Related Instructions

FSCALE, FPREM, FPREM1, FRNDINT, FXTRACT, FABS, FCHS

rFLAGS Affected

None

x87 Condition Code

Exceptions

FSQRT Floating-Point Square Root

Mnemonic Opcode Description

FSQRT D9 FA Replace ST(0) with the square root of ST(0).

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

320 FSQRT

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

A source operand was a negative value (not including -0).

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination for-
mat.

Exception Real
Virtual
8086 Protected Cause of Exception

FST 321

26569—Rev. 3.03—April 2003 AMD64 Technology

Copies the value in ST(0) to the specified floating-point register or memory location.

The FSTP instruction pops the x87 stack after copying the value. The instruction
FSTP ST(0) is the same as popping the stack with no data transfer.

If the specified destination is a single-precision or double-precision memory location,
the instruction converts the value to the appropriate precision format. It does this by
truncating the significand of the source value to the width of the memory location and
rounding as specified by the rounding mode determined by the RC field of the x87
control word. It also converts the exponent to the width and bias of the destination
format.

If the value is too large for the destination format, the instruction sets the overflow
exception (OE) bit of the x87 status word. Then, if the overflow exception is unmasked
(OM bit cleared to 0 in the x87 control word), the instruction does not perform the
store.

If the value is a denormal value, the instruction sets the underflow exception (UE) bit
in the x87 status word.

If the value is ±0, ±∞, or a NaN, the instruction truncates the least significant bits of
the significand and exponent to fit the destination location.

FST
FSTP

Floating-Point Store Stack Top

Mnemonic Opcode Description

FST ST(i) DD D0+i Copy the contents of ST(0) to ST(i).

FST mem32real D9 /2 Copy the contents of ST(0) to mem32real.

FST mem64real DD /2 Copy the contents of ST(0) to mem64real.

FSTP ST(i) DD D8+i Copy the contents of ST(0) to ST(i) and pop the x87 register stack.

FSTP mem32real D9 /3 Copy the contents of ST(0) to mem32real and pop the x87 register
stack

FSTP mem64real DD /3 Copy the contents of ST(0) to mem64real and pop the x87 register
stack.

FSTP mem80real DB /7 Copy the contents of ST(0) to mem80real and pop the x87 register
stack.

322 FST

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

FFREE, FLD, FILD, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control
register (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X

X

X

A memory address exceeded a data segment limit or was non-
canonical.

The destination operand was in a nonwritable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while align-
ment checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

FST 323

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X

X

X

X

X

X

An x87 stack underflow occurred.

An x87 stack overflow occurred.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of the
destination operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the
destination operand.

Precision exception (PE) X X X A result could not be represented exactly in the destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

324 FNSTCW (FSTCW)

AMD64 Technology 26569—Rev. 3.03—April 2003

Stores the x87 control word in the specified 2-byte memory location. The FNSTCW
instruction does not check for possible floating-point exceptions before copying the
image of the x87 status register.

Assemblers usually provide an FSTCW macro that expands into the instruction
sequence:

WAIT ; Opcode 9B
FNSTCW destination ; Opcode D9 /7

The WAIT (9Bh) instruction checks for pending x87 exception and calls an exception
handler, if necessary. The FNSTCW instruction then stores the state of the x87 control
register to the desired destination.

Related Instructions

FSTSW, FNSTSW, FSTENV, FNSTENV

rFLAGS Affected

None

x87 Condition Code

FNSTCWx
(FSTCW)

Floating-Point Store Control Word

Mnemonic Opcode Description

FNSTCW mem2env D9 /7 Copy the x87 control word to mem2env without checking for floating-
point exceptions.

FSTCW mem2env 9B D9 /7 Perform a WAIT (9B) to check for pending floating-point exceptions,
then copy the x87 control word to mem2env.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

FNSTCW (FSTCW) 325

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

X

A memory address exceeded a data segment limit or was non-
canonical.

The destination operand was in a nonwritable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

326 FNSTENV (FSTENV)

AMD64 Technology 26569—Rev. 3.03—April 2003

Stores the current x87 environment to memory starting at the specified address, and
then masks all floating-point exceptions. The x87 environment consists of the x87
control, status, and tag word registers, the last non-control x87 instruction pointer, the
last x87 data pointer, and the opcode of the last completed non-control x87
instruction.

The x87 environment requires a 14-byte or 28-byte area in memory, depending on
whether the processor is operating in protected or real mode and whether the
operand-size attribute is 16-bit or 32-bit. See “Media and x87 Processor State” in
volume 2 for details on how this instruction stores the x87 environment in memory.

The FNSTENV instruction does not check for possible floating-point exceptions
before storing the environment.

Assemblers usually provide an FSTENV macro that expands into the instruction
sequence

WAIT ; Opcode 9B
FNSTENV destination ; Opcode D9 /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception
handler if necessary. The FNSTENV instruction then stores the state of the x87
environment to the specified destination.

Exception handlers often use these instructions because they provide access to the
x87 instruction and data pointers. An exception handler typically saves the
environment on the stack. The instructions mask all floating-point exceptions after
saving the environment to prevent those exceptions from interrupting the exception
handler.

FNSTENVx
(FSTENV)

Floating-Point Store x87 Environment

Mnemonic Opcode Description

FNSTENV mem14/28env D9 /6 Copy the x87 environment to mem14/28env without checking for
pending floating-point exceptions, and mask the exceptions.

FSTENV mem14/28env 9B D9 /6 Perform a WAIT (9B) to check for pending floating-point exceptions,
then copy the x87 environment to mem14/28env and mask the
floating-point exceptions.

FNSTENV (FSTENV) 327

26569—Rev. 3.03—April 2003 AMD64 Technology

Related Instructions

FLDENV, FSTSW, FNSTSW, FSTCW, FNSTCW

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

X

A memory address exceeded a data segment limit or was non-
canonical.

The destination operand was in a nonwritable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

328 FNSTSW (FSTSW)

AMD64 Technology 26569—Rev. 3.03—April 2003

Stores the current state of the x87 status word register in either the AX register or a
specified two-byte memory location. The image of the status word placed in the AX
register always reflects the result after the execution of the previous x87 instruction.

The AX form of the instruction is useful for performing conditional branching
operations based on the values of x87 condition flags.

The FNSTSW instruction does not check for possible floating-point exceptions before
storing the x87 status word.

Assemblers usually provide an FSTSW macro that expands into the instruction
sequence:

WAIT ; Opcode 9B
FNSTSW destination ; Opcode DD /7 or DF E0

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception
handler if necessary. The FNSTSW instruction then stores the state of the x87 status
register to the desired destination.

Related Instructions

FSTCW, FNSTCW, FSTENV, FNSTENV

rFLAGS Affected

None

FNSTSWx
(FSTSW)

Floating-Point Store x87 Status Word

Mnemonic Opcode Description

FNSTSW AX DF E0 Copy the x87 status word to the AX register without checking for
pending floating-point exceptions.

FNSTSW mem2env DD /7 Copy the x87 status word to mem12byte without checking for pending
floating-point exceptions.

FSTSW AX 9B DF E0 Perform a WAIT (9B) to check for pending floating-point exceptions,
then copy the x87 status word to the AX register.

FSTSW mem2env 9B DD /7 Perform a WAIT (9B) to check for pending floating-point exceptions,
then copy the x87 status word to mem12byte.

FNSTSW (FSTSW) 329

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

X

A memory address exceeded a data segment limit or was non-
canonical.

The destination operand was in a nonwritable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

330 FSUBx

AMD64 Technology 26569—Rev. 3.03—April 2003

Subtracts the value in a floating-point register or memory location from the value in a
another register and stores the result in that register.

If no operands are specified, the instruction subtracts the value in ST(0) from that in
ST(1) and stores the result in ST(1).

If one operand is specified, it subtracts a floating-point or integer value in memory
from the contents of ST(0) and stores the result in ST(0).

If two operands are specified, it subtracts the value in ST(0) from the value in another
floating-point register or vice versa.

The FSUBP instruction pops the x87 register stack after performing the subtraction.

The no-operand version of the instruction always pops the register stack. In some
assemblers, the mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instruction converts a signed integer value to double-extended-precision
format before performing the subtraction.

Related Instructions

FSUBRP, FISUBR, FSUBR

FSUBx
FSUBP
FISUB

Floating-Point Subtract

Mnemonic Opcode Description

FSUB ST(0),ST(i) D8 E0+i Replace ST(0) with ST(0) – ST(i).

FSUB ST(i),ST(0) DC E8+i Replace ST(i) with ST(i) – ST(0)

FSUB mem32real D8 /4 Replace ST(0) with ST(0) – mem32real.

FSUB mem64real DC /4 Replace ST(0) with ST(0) – mem64real.

FSUBP DE E9 Replace ST(1) with ST(1) – ST(0) and pop the x87 register stack.

FSUBP ST(i),ST(0) DE E8+i Replace ST(i) with ST(i) – ST(0), and pop the x87 register stack.

FISUB mem16int DE /4 Replace ST(0) with ST(0) – mem16int.

FISUB mem32int DA /4 Replace ST(0) with ST(0) – mem32int.

FSUBx 331

26569—Rev. 3.03—April 2003 AMD64 Technology

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

+infinity was subtracted from +infinity.

–infinity was subtracted from –infinity.

332 FSUBx

AMD64 Technology 26569—Rev. 3.03—April 2003

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Overflow exception
(OE)

X X X A rounded result was too large to fit into the format of the destination
operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the destination
operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

FSUBRx 333

26569—Rev. 3.03—April 2003 AMD64 Technology

Subtracts the value in a floating-point register from the value in another register or a
memory location, and stores the result in the first specified register. Values in memory
can be in single-precision or double-precision floating-point, word integer, or short
integer format.

If one operand is specified, the instruction subtracts the value in ST(0) from the value
in memory and stores the result in ST(0).

If two operands are specified, it subtracts the value in ST(0) from the value in another
floating-point register or vice versa.

The FSUBRP instruction pops the x87 register stack after performing the subtraction.

The no-operand version of the instruction always pops the register stack. In some
assemblers, the mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instruction converts a signed integer operand to double-extended-
precision format before performing the subtraction.

The FSUBR instructions perform the reverse operations of the FSUB instructions.

FSUBRx
FSUBRP
FISUBR

Floating-Point Subtract Reverse

Mnemonic Opcode Description

FSUBR ST(0),ST(i) D8 E8+i Replace ST(0) with ST(i) - ST(0).

FSUBR ST(i),ST(0) DC E0+i Replace ST(i) with ST(0) - ST(i)

FSUBR mem32real D8 /5 Replace ST(0) with mem32real - ST(0).

FSUBR mem64real DC /5 Replace ST(0) with mem64real - ST(0).

FSUBRP DE E1 Replace ST(1) with ST(0) - ST(1) and pop x87 stack.

FSUBRP ST(i),ST(0) DE E0+i Replace ST(i) with ST(0) - ST(i) and pop x87 stack.

FISUBR mem16int DE /5 Replace ST(0) with mem16int - ST(0).

FISUBR mem32int DA /5 Replace ST(0) with mem32int - ST(0).

334 FSUBRx

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

FSUB, FSUBP, FISUB

rFLAGS Affected

None

x87 Condition Code

Exceptions

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

FSUBRx 335

26569—Rev. 3.03—April 2003 AMD64 Technology

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

+infinity was subtracted from +infinity.

–infinity was subtracted from –infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Overflow exception
(OE)

X X X A rounded result was too large to fit into the format of the
destination operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the
destination operand.

Precision exception (PE) X X X A result could not be represented exactly in the destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

336 FTST

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares the value in ST(0) with 0.0, and sets the condition code flags in the x87
status word as shown in the x87 Condition Code table below. The instruction ignores
the sign distinction between –0.0 and +0.0.

Related Instructions

FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FUCOMI, FUCOMIP,
FUCOM, FUCOMP, FUCOMPP, FXAM

rFLAGS Affected

None

x87 Condition Code

FTST Floating-Point Test with Zero

Mnemonic Opcode Description

FTST D9 E4 Compare ST(0) to 0.0.

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > 0.0

0 0 0 1 ST(0) < 0.0

1 0 0 0 ST(0) = 0.0

1 1 0 1 ST(0) was unordered

FTST 337

26569—Rev. 3.03—April 2003 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was a SNaN value, a QNaN value, or an unsup-
ported format..

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

338 FUCOMx

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares the value in ST(0) to the value in another x87 register, and sets the
condition codes in the x87 status word as shown in the x87 Condition Code table
below.

If no source operand is specified, the instruction compares the value in ST(0) to that in
ST(1).

After making the comparison, the FUCOMP instruction pops the x87 stack register
and the FUCOMPP instruction pops the x87 stack register twice.

The instruction carries out the same comparison operation as the FCOM instructions,
but sets the invalid-operation exception (IE) bit in the x87 status word to 1 when
either or both operands are an SNaN or are in an unsupported format. If either or both
operands is a QNaN, it sets the condition code flags to unordered, but does not set the
IE bit. The FCOM instructions, on the other hand, raise an IE exception when either
or both of the operands are a NaN value or are in an unsupported format.

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP,
FXAM

FUCOMx
FUCOMP
FUCOMPP

Floating-Point Unordered Compare

Mnemonic Opcode Description

FUCOM DD E1 Compare ST(0) to ST(1) and set condition code flags to reflect the
results of the comparison.

FUCOM ST(i) DD E0+i Compare ST(0) to ST(i) and set condition code flags to reflect the
results of the comparison.

FUCOMP DD E9 Compare ST(0) to ST(1), set condition code flags to reflect the results
of the comparison, and pop the x87 register stack.

FUCOMP ST(i) DD E8+i Compare ST(0) to ST(i), set condition code flags to reflect the results
of the comparison, and pop the x87 register stack.

FUCOMPP DA E9 Compare ST(0) to ST(1), set condition code flags to reflect the results
of the comparison, and pop the x87 register stack twice.

FUCOMx 339

26569—Rev. 3.03—April 2003 AMD64 Technology

rFLAGS Affected

None

x87 Condition Code

Exceptions

C3 C2 C1 C0 Compare Result

0 0 0 0 ST(0) > source

0 0 0 1 ST(0) < source

1 0 0 0 ST(0) = source

1 1 0 1 Operands were unordered

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

340 FUCOMIx

AMD64 Technology 26569—Rev. 3.03—April 2003

Compares the contents of ST(0) with the contents of another floating-point register,
and sets the zero flag (ZF), parity flag (PF), and carry flag (CF) as shown in the
rFLAGS Affected table below.

Unlike FCOMI and FCOMIP, the FUCOMI and FUCOMIP instructions do not set the
invalid-operation exception (IE) bit in the x87 status word for QNaNs.

After completing the comparison, FUCOMIP pops the x87 register stack.

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOM, FUCOMP,
FUCOMPP, FXAM

FUCOMIx
FUCOMIP

Floating-Point Unordered Compare and Set Eflags

Mnemonic Opcode Description

FUCOMI ST(0),ST(i) DB E8+i Compare ST(0) to ST(i) and set eflags to reflect the result of the
comparison.

FUCOMIP ST(0),ST(i) DF E8+i Compare ST(0) to ST(i), set eflags to reflect the result of the
comparison, and pop the x87 register stack.

FUCOMIx 341

26569—Rev. 3.03—April 2003 AMD64 Technology

rFLAGS Affected

x87 Condition Code

Exceptions

ZF PF CF Compare Result

0 0 0 ST(0) > source

0 0 1 ST(0) < source

1 0 0 ST(0) = source

1 1 1 Operands were unordered

x87 Condition Code Value Description

C0

C1 0

C2

C3

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection,
#GP

X X X

X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

342 FUCOMIx

AMD64 Technology 26569—Rev. 3.03—April 2003

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

FWAIT (WAIT) 343

26569—Rev. 3.03—April 2003 AMD64 Technology

Forces the processor to test for pending unmasked floating-point exceptions before
proceeding.

If there is a pending floating-point exception and CR0.NE = 1, a numeric exception
(#MF) is generated. If there is a pending floating-point exception and CR0.NE = 0,
FWAIT asserts the FERR output signal, then waits for an external interrupt.

This instruction is useful for insuring that unmasked floating-point exceptions are
handled before altering the results of a floating point instruction.

FWAIT and WAIT are synonyms for the same opcode.

Related Instructions

None

rFLAGS Affected

None

x87 Condition Code

FWAIT
(WAIT)

Wait for Unmasked x87 Floating-Point Exceptions

Mnemonic Opcode Description

FWAIT 9B Check for any pending floating-point exceptions.

x87 Condition Code Value Description

C0 U

C1 U

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

344 FWAIT (WAIT)

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The monitor coprocessor bit (MP) and the task switch bit (TS) of
the control register (CR0) were both set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

FXAM 345

26569—Rev. 3.03—April 2003 AMD64 Technology

Examines the value in ST(0) and sets the C0, C2, and C3 condition code flags in the
x87 status word as shown in the x87 Condition Code table below to indicate whether
the value is a NaN, infinity, zero, empty, denormal, normal finite, or unsupported
value. The instruction also sets the C1 flag to indicate the sign of the value in ST(0)
(0 = positive, 1 = negative).

Related Instructions

FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOM,
FUCOMI, FUCOMIP, FUCOMP, FUCOMPP

rFLAGS Affected

None

x87 Condition Code

FXAM Floating-Point Examine

Mnemonic Opcode Description

FXAM D9 E5 Characterize the number in the ST(0) register.

C3 C2 C1 C0 Meaning

0 0 0 0 +unsupported format

0 0 0 1 +NaN

0 0 1 0 -unsupported format

0 0 1 1 -NaN

0 1 0 0 +normal

0 1 0 1 +infinity

0 1 1 0 -normal

0 1 1 1 -infinity

1 0 0 0 +0

1 0 0 1 empty

346 FXAM

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

1 0 1 0 -0

1 0 1 1 empty

1 1 0 0 +denormal

1 1 1 0 -denormal

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control
register (CR0) is set to 1.

x87 floating-point
exception pending, #MF

X X X An unmasked x87 floating-point exception was pending.

C3 C2 C1 C0 Meaning

FXCH 347

26569—Rev. 3.03—April 2003 AMD64 Technology

Exchanges the value in ST(0) with the value in any other x87 register. If no operand is
specified, the instruction exchanges the values in ST(0) and ST(1).

Use this instruction to move a value from an x87 register to ST(0) for subsequent
processing by a floating-point instruction that can only operate on ST(0).

Related Instructions

FLD, FST, FSTP

rFLAGS Affected

None

x87 Condition Code

FXCH Floating-Point Exchange

Mnemonic Opcode Description

FXCH D9 C9 Exchange the contents of ST(0) and ST(1).

FXCH ST(i) D9 C8+i Exchange the contents of ST(0) and ST(i).

x87 Condition Code Value Description

C0 U

C1 0

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

348 FXCH

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

FXRSTOR 349

26569—Rev. 3.03—April 2003 AMD64 Technology

Restores the XMM, MMX, and x87 state. The data loaded from memory is the state
information previously saved using the FXSAVE instruction. Restoring data with
FXRSTOR that had been previously saved with an FSAVE (rather than FXSAVE)
instruction results in an incorrect restoration.

If FXRSTOR results in set exception flags in the loaded x87 status word register, and
these exceptions are unmasked in the x87 control word register, a floating-point
exception occurs when the next floating-point instruction is executed (except for the
no-wait floating-point instructions).

If the restored MXCSR register contains a set bit in an exception status flag, and the
corresponding exception mask bit is cleared (indicating an unmasked exception),
loading the MXCSR register from memory does not cause a SIMD floating-point
exception (#XF).

FXRSTOR does not restore the x87 error pointers (last instruction pointer, last data
pointer, and last opcode), except in the relatively rare cases in which the exception-
summary (ES) bit in the x87 status word is set to 1, indicating that an unmasked x87
exception has occurred.

The architecture supports two memory formats for FXRSTOR, a 512-byte 32-bit legacy
format and a 512-byte 64-bit format. Selection of the 32-bit or 64-bit format is
accomplished by using the corresponding effective operand size in the FXRSTOR
instruction. If software running in 64-bit mode executes an FXRSTOR with a 32-bit
operand size (no REX-prefix operand-size override), the 32-bit legacy format is used.
If software running in 64-bit mode executes an FXRSTOR with a 64-bit operand size
(requires REX-prefix operand-size override), the 64-bit format is used. For details
about the memory image restored by FXRSTOR, see “Saving Media and x87 Processor
State” in volume 2.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared
to 0, the saved image of XMM0–XMM7 and MXCSR is not loaded into the processor. A
general-protection exception occurs if there is an attempt to load a non-zero value to
the bits in MXCSR that are defined as reserved (bits 31–16).
.

FXRSTOR Restore XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXRSTOR mem512env 0F AE /1 Restores XMM, MMX™, and x87 state from 512-byte memory
location.

350 FXRSTOR

AMD64 Technology 26569—Rev. 3.03—April 2003

Related Instructions

FWAIT, FXSAVE

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note:
A flag that can be set to one or zero is M (modified). Unaffected flags are blank. Shaded fields are reserved.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The FXSAVE/FSRSTOR instructions are not supported, as
indicated by bit 24 of CPUID standard funcion 1 or
extended function 8000_0001.

The emulate bit (EM) of CR0 was set to 1.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit, or
was non-canonical.

General protection, #GP X

X

X

X

X

X

X

X

X

X

A memory address exceeded the data segment limit or was
non-canonical.

A null data segment was used to reference memory.

The memory operand was not aligned on a 16-byte
boundary.

Ones were written to the reserved bits in MXCSR.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

FXSAVE 351

26569—Rev. 3.03—April 2003 AMD64 Technology

Saves the XMM, MMX, and x87 state. A memory location that is not aligned on a 16-
byte boundary causes a general-protection exception.

Unlike FSAVE and FNSAVE, FXSAVE does not alter the x87 tag bits. The contents of
the saved MMX/x87 data registers are retained, thus indicating that the registers may
be valid (or whatever other value the x87 tag bits indicated prior to the save). To
invalidate the contents of the MMX/x87 data registers after FXSAVE, software must
execute an FINIT instruction. Also, FXSAVE (like FNSAVE) does not check for
pending unmasked x87 floating-point exceptions. An FWAIT instruction can be used
for this purpose.

FXSAVE does not save the x87 pointer registers (last instruction pointer, last data
pointer, and last opcode), except in the relatively rare cases in which the exception-
summary (ES) bit in the x87 status word is set to 1, indicating that an unmasked x87
exception has occurred.

The architecture supports two memory formats for FXSAVE, a 512-byte 32-bit legacy
format and a 512-byte 64-bit format. Selection of the 32-bit or 64-bit format is
accomplished by using the corresponding effective operand size in the FXSAVE
instruction. If software running in 64-bit mode executes an FXSAVE with a 32-bit
operand size (no REX-prefix operand-size override), the 32-bit legacy format is used.
If software running in 64-bit mode executes an FXSAVE with a 64-bit operand size
(requires REX-prefix operand-size override), the 64-bit format is used. For details
about the memory image restored by FXRSTOR, see “Saving Media and x87 Processor
State” in volume 2.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared
to 0, FXSAVE does not save the image of XMM0–XMM7 or MXCSR. For details about
the CR4.OSFXSR bit, see “FXSAVE/FXRSTOR Support (OSFXSR) Bit” in volume 2.

Related Instructions

FINIT, FNSAVE, FRSTOR, FSAVE, FXRSTOR, LDMXCSR, STMXCSR

FXSAVE Save XMM, MMX™, and x87 State

Mnemonic Opcode Description

FXSAVE mem512env 0F AE /0 Saves XMM, MMX™, and x87 state to 512-byte memory
location.

352 FXSAVE

AMD64 Technology 26569—Rev. 3.03—April 2003

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X

X

X

X

X

X

The FXSAVE/FSRSTOR instructions are not supported, as
indicated by bit 24 of CPUID standard funcion 1 or
extended function 8000_0001.

The emulate bit (EM) of CR0 was set to 1.

Device not available, #NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit, or
was non-canonical.

General protection, #GP X

X

X

X

X

X

X

X

A memory address exceeded the data segment limit or was
non-canonical.

A null data segment was used to reference memory.

The destination operand was in a non-writable segment.

The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

FXTRACT 353

26569—Rev. 3.03—April 2003 AMD64 Technology

Extracts the exponent and significand portions of the floating-point value in ST(0),
stores the exponent in ST(0), and then pushes the significand onto the x87 register
stack. After this operation, the new ST(0) contains a real number with the sign and
value of the original significand and an exponent of 3FFFh (biased value for true
exponent of zero), and ST(1) contains a real number that is the value of the original
value’s true (unbiased) exponent.

The FXTRACT instruction is useful for converting a double-extended-precision
number to its decimal representation.

If the zero-divide-exception mask (ZM) bit of the x87 control word is set to 1 and the
source value is ±0, then the instruction stores ±0 in ST(0) and an exponent value of –∞
in register ST(1).

Related Instructions

FABS, FPREM, FRNDINT, FCHS

rFLAGS Affected

None

x87 Condition Code

FXTRACT Floating-Point Extract Exponent and Significand

Mnemonic Opcode Description

FXTRACT D9 F4 Extract the exponent and significand of ST(0), store the exponent in
ST(0), and push the significand onto the x87 register stack.

x87 Condition Code Value Description

C0 U

C1
0 x87 stack underflow, if an x87 register stack fault was detected.

1 x87 stack overflow, if an x87 register stack fault was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

354 FXTRACT

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) is set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value or an unsupported format.

Invalid-operation
exception (IE) with
stack fault (SF)

X

X

X

X

X

X

An x87 stack underflow occurred.

An x87 stack overflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Zero-divide exception
(ZE)

X X X The source operand was ±0.

FYL2X 355

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes (ST(1) ∗ log2(ST(0))), stores the result in ST(1), and pops the x87 register
stack. The value in ST(0) must be greater than 0.

If the zero-divide-exception mask (ZM) bit in the x87 control word is set to 1 and ST(0)
contains ±0, the instruction returns ∞ with the opposite sign of the value in register
ST(1).

Related Instructions

FYL2XP1, F2XM1

rFLAGS Affected

None

x87 Condition Code

FYL2X Floating-Point y ∗ Log2 (x)

Mnemonic Opcode Description

FYL2X D9 F1 Replace ST(1) with ST(1) ∗ log2(ST(0)), then pop the x87 register
stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

356 FYL2X

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

A source operand was an SNaN value or an unsupported format.

The source operand in ST(0) was a negative finite value (not -0).

The source operand in ST(0) was +1 and the source operand in
ST(1) was ±infinity.

The source operand in ST(0) was -infinity.

The source operand in ST(0) was ±0 or ±infinity and the source
operand in ST(1) was ±0.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Zero-divide exception
(ZE)

X X X The source operand in ST(0) was ±0 and the source operand in
ST(1) was a finite value.

Overflow exception
(OE)

X X X A rounded result was too large to fit into the format of the destina-
tion operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the desti-
nation operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination format.

FYL2XP1 357

26569—Rev. 3.03—April 2003 AMD64 Technology

Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in ST(1), and pops the x87
register stack. The value in ST(0) must be in the range sqrt(1/2)–1 to sqrt(2)-1.

Related Instructions

FYL2X, F2XM1

rFLAGS Affected

None

x87 Condition Code

FYL2XP1 Floating-Point y ∗ Log2 (x+1)

Mnemonic Opcode Description

FYL2XP1 D9 F9 Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0), then pop the x87
register stack.

x87 Condition Code Value Description

C0 U

C1

0 x87 stack underflow, if an x87 register stack fault was detected.

0 Result was rounded down, if a precision exception was detected.

1 Result was rounded up, if a precision exception was detected.

C2 U

C3 U

A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

358 FYL2XP1

AMD64 Technology 26569—Rev. 3.03—April 2003

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Device not available,
#NM

X X X The emulate bit (EM) or the task switch bit (TS) of the control reg-
ister (CR0) was set to 1.

x87 floating-point
exception pending,
#MF

X X X An unmasked x87 floating-point exception was pending.

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE)

X

X

X

X

X

X

A source operand was an SNaN or unsupported format.

The source operand in ST(0) was ±0 and the source operand in
ST(1) was ±infinity.

Invalid-operation
exception (IE) with
stack fault (SF)

X X X An x87 stack underflow occurred.

Denormalized-oper-
and exception (DE)

X X X A source operand was a denormal value.

Overflow exception
(OE)

X X X A rounded result was too large to fit into the format of the destina-
tion operand.

Underflow exception
(UE)

X X X A rounded result was too small to fit into the format of the desti-
nation operand.

Precision exception
(PE)

X X X A result could not be represented exactly in the destination format.

Index 359

26569—Rev. 3.03—April 2003 AMD64 Technology

Numerics
16-bit mode.. xv
32-bit mode.. xv
64-bit mode.. xv

A
addressing

RIP-relative ... xxi

B
biased exponent.. xv

C
commit .. xvi
compatibility mode..................................... xv
condition codes

x87... 229
CVTPD2PI ... 4
CVTPI2PD ... 7
CVTPI2PS.. 9
CVTPS2PI.. 11
CVTTPD2PI... 14
CVTTPS2PI ... 17

D
direct referencing xvi
displacements .. xvi
double quadword xvi
doubleword... xvi

E
eAX–eSP register...................................... xxii
effective address size xvii
effective operand size xvii
eFLAGS register xxiii
eIP register.. xxiii
element.. xvii
EMMS .. 20
endian order.. xxv
exceptions.. xvii
exponent .. xv

F
F2XM1 ... 230
FABS .. 232
FADDx ... 234
FBLD.. 237
FBSTP .. 239
FCHS.. 241
FCLEXx ... 243
FCMOVcc... 245

FCOMIx... 250
FCOMx .. 247
FCOS ... 253
FDECSTP.. 255
FDIVRx ... 260
FDIVx.. 257
FEMMS ... 21
FFREE... 263
FICOMx... 264
FILD .. 266
FINCSTP ... 268
FINITx ... 270
FISTx ... 272
FLD.. 275
FLD1.. 277
FLDCW.. 278
FLDENV.. 280
FLDL2E... 282
FLDL2T... 284
FLDLG2... 286
FLDLN2... 288
FLDPI .. 290
FLDZ ... 292
flush... xvii
FMULx .. 293
FNOP... 296
FNSAVE .. 22, 297
FPATAN... 299
FPREM.. 301
FPREM1.. 304
FPTAN... 307
FRNDINT.. 309
FRSTOR .. 24, 311
FSCALE .. 313
FSIN... 315
FSINCOS... 317
FSQRT... 319
FST .. 321
FSTCWx .. 324
FSTENVx .. 326
FSTSWx... 328
FSUBRx... 333
FSUBx ... 330
FTST.. 336
FUCOMIx.. 340
FUCOMx ... 338
FWAIT ... 343
FXAM.. 345

Index

360 Index

AMD64 Technology 26569—Rev. 3.03—April 2003

FXCH ... 347
FXRSTOR.. 26, 349
FXSAVE... 28, 351
FXTRACT.. 353
FYL2X ... 355
FYL2XP1 ... 357

I
IGN... xviii
indirect .. xviii
instructions

3DNow!™.. 1
64-bit media.. 1
MMX™.. 1
SSE.. 3
x87... 229

L
legacy mode... xviii
legacy x86 .. xviii
long mode .. xviii
LSB... xviii
lsb... xviii

M
mask.. xix
MASKMOVQ ... 30
MBZ... xix
modes

16-bit ... xv
32-bit ... xv
64-bit ... xv
compatibility .. xv
legacy .. xviii
long.. xviii
protected .. xx
real .. xx
virtual-8086 .. xxii

moffset .. xix
MOVD .. 32
MOVDQ2Q... 35
MOVNTQ ... 37
MOVQ .. 39
MOVQ2DQ... 41
MSB... xix
msb.. xix
MSR ... xxiii

O
octword ... xix
offset ... xix
overflow ... xx

P
packed ... xx
PACKSSDW... 43
PACKSSWB... 45
PACKUSWB .. 47
PADDB... 49
PADDD .. 51
PADDQ .. 53
PADDSB .. 55
PADDSW ... 57
PADDUSB ... 59
PADDUSW .. 61
PADDW ... 63
PAND... 65
PANDN .. 67
PAVGB ... 69
PAVGUSB.. 71
PAVGW.. 73
PCMPEQB... 75
PCMPEQD .. 77
PCMPEQW.. 79
PCMPGTB... 81
PCMPGTD... 83
PCMPGTW.. 85
PEXTRW ... 87
PF2ID .. 89
PF2IW.. 91
PFACC ... 93
PFADD .. 96
PFCMPEQ... 99
PFCMPGE... 102
PFCMPGT... 105
PFMAX.. 108
PFMIN... 111
PFMUL.. 114
PFNACC .. 117
PFPNACC.. 120
PFRCP... 123
PFRCPIT1 ... 126
PFRCPIT2 ... 129
PFRSQIT1 ... 132
PFRSQRT.. 135
PFSUB... 138
PFSUBR .. 141
PI2FD .. 144
PI2FW.. 146
PINSRW .. 148
PMADDWD... 150
PMAXSW .. 152
PMAXUB... 154
PMINSW.. 156

Index 361

26569—Rev. 3.03—April 2003 AMD64 Technology

PMINUB .. 158
PMOVMSKB.. 160
PMULHRW.. 162
PMULHUW ... 164
PMULHW .. 166
PMULLW ... 168
PMULUDQ .. 170
POR.. 172
protected mode ... xx
PSADBW.. 174
PSHUFW ... 176
PSLLD.. 179
PSLLQ.. 181
PSLLW ... 183
PSRAD... 185
PSRAW .. 187
PSRLD ... 190
PSRLQ ... 192
PSRLW... 194
PSUBB ... 196
PSUBD ... 198
PSUBQ ... 200
PSUBSB ... 202
PSUBSW .. 204
PSUBUSB .. 206
PSUBUSW ... 208
PSUBW .. 210
PSWAPD .. 212
PUNPCKHBW... 214
PUNPCKHDQ ... 216
PUNPCKHWD .. 218
PUNPCKLBW ... 220
PUNPCKLDQ.. 222
PUNPCKLWD ... 224
PXOR ... 226

Q
quadword... xx

R
r8–r15... xxiii
rAX–rSP.. xxiv
RAZ.. xx
real address mode. See real mode
real mode... xx
registers

eAX–eSP... xxii
eFLAGS... xxiii
eIP ... xxiii
r8–r15.. xxiii
rAX–rSP... xxiv
rFLAGS.. xxiv
rIP... xxiv

relative .. xx
revision history.. xi
rFLAGS register xxiv
rIP register... xxiv
RIP-relative addressing xxi

S
set ... xxi
SSE ... xxi
SSE-2 .. xxi
sticky bits ... xxi

T
TSS.. xxi

U
underflow... xxi

V
vector.. xxi
virtual-8086 mode xxii

362 Index

AMD64 Technology 26569—Rev. 3.03—April 2003

	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Contact Information
	Organization
	Definitions
	Related Documents

	1 64-Bit Media Instruction Reference
	CVTPD2PI
	CVTPI2PD
	CVTPI2PS
	CVTPS2PI
	CVTTPD2PI
	CVTTPS2PI
	EMMS
	FEMMS
	FNSAVE (FSAVE)
	FRSTOR
	FXRSTOR
	FXSAVE
	MASKMOVQ
	MOVD
	MOVDQ2Q
	MOVNTQ
	MOVQ
	MOVQ2DQ
	PACKSSDW
	PACKSSWB
	PACKUSWB
	PADDB
	PADDD
	PADDQ
	PADDSB
	PADDSW
	PADDUSB
	PADDUSW
	PADDW
	PAND
	PANDN
	PAVGB
	PAVGUSB
	PAVGW
	PCMPEQB
	PCMPEQD
	PCMPEQW
	PCMPGTB
	PCMPGTD
	PCMPGTW
	PEXTRW
	PF2ID
	PF2IW
	PFACC
	PFADD
	PFCMPEQ
	PFCMPGE
	PFCMPGT
	PFMAX
	PFMIN
	PFMUL
	PFNACC
	PFPNACC
	PFRCP
	PFRCPIT1
	PFRCPIT2
	PFRSQIT1
	PFRSQRT
	PFSUB
	PFSUBR
	PI2FD
	PI2FW
	PINSRW
	PMADDWD
	PMAXSW
	PMAXUB
	PMINSW
	PMINUB
	PMOVMSKB
	PMULHRW
	PMULHUW
	PMULHW
	PMULLW
	PMULUDQ
	POR
	PSADBW
	PSHUFW
	PSLLD
	PSLLQ
	PSLLW
	PSRAD
	PSRAW
	PSRLD
	PSRLQ
	PSRLW
	PSUBB
	PSUBD
	PSUBQ
	PSUBSB
	PSUBSW
	PSUBUSB
	PSUBUSW
	PSUBW
	PSWAPD
	PUNPCKHBW
	PUNPCKHDQ
	PUNPCKHWD
	PUNPCKLBW
	PUNPCKLDQ
	PUNPCKLWD
	PXOR

	2 x87 Floating-Point Instruction Reference
	F2XM1
	FABS
	FADDx
	FBLD
	FBSTP
	FCHS
	FNCLEXx
	FCMOVcc
	FCOMx
	FCOMIx
	FCOS
	FDECSTP
	FDIVx
	FDIVRx
	FFREE
	FICOMx
	FILD
	FINCSTP
	FNINITx
	FISTx
	FLD
	FLD1
	FLDCW
	FLDENV
	FLDL2E
	FLDL2T
	FLDLG2
	FLDLN2
	FLDPI
	FLDZ
	FMULx
	FNOP
	FNSAVE (FSAVE)
	FPATAN
	FPREM
	FPREM1
	FPTAN
	FRNDINT
	FRSTOR
	FSCALE
	FSIN
	FSINCOS
	FSQRT
	FST FSTP
	FNSTCWx
	FNSTENVx
	FNSTSWx
	FSUBx
	FSUBRx
	FTST
	FUCOMx
	FUCOMIx
	FWAIT (WAIT)
	FXAM
	FXCH
	FXRSTOR
	FXSAVE
	FXTRACT
	FYL2X
	FYL2XP1

	Index

