
Advanced Micro Devices

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 4:
128-Bit and 256-Bit
Media Instructions

Publication No. Revision Date

26568 3.14 December 2011

AMD64 Technology 26568—Rev. 3.14—December 2011

Trademarks

AMD, the AMD arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, AMD Virtualization and 3DNow!
are trademarks, and AMD-K6 is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation. HyperTransport is a licensed trade-
mark of the HyperTransport Technology Consortium.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2002 – 2012 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

iii

26568—Rev. 3.14—December 2011 AMD64 Technology

Contents

Contents . iii

Figures. xix

Tables . xxi

Revision History . xxiii

Preface. xxv
About This Book. xxv
Audience . xxv
Organization . xxv
Conventions and Definitions . xxvi
Related Documents . xxxvii

1 Introduction .1
1.1 Syntax and Notation . 2
1.2 Extended Instruction Encoding . 3

1.2.1 Immediate Byte Usage Unique to the SSE instructions . 4
1.2.2 Instruction Format Examples . 4

1.3 Enabling SSE Instruction Execution . 6
1.4 String Compare Instructions . 7

1.4.1 Source Data Format . 9
1.4.2 Comparison Type . 10
1.4.3 Comparison Summary Bit Vector . 12
1.4.4 Intermediate Result Post-processing. 14
1.4.5 Output Option Selection . 14
1.4.6 Affect on Flags . 15

2 Instruction Reference .17
ADDPD
VADDPD . 19
ADDPS
VADDPS . 21
ADDSD
VADDSD . 23
ADDSS
VADDSS . 25
ADDSUBPD
VADDSUBPD . 27
ADDSUBPS
VADDSUBPS . 29
AESDEC
VAESDEC . 31
AESDECLAST
VAESDECLAST . 33
AESENC

iv

AMD64 Technology 26568—Rev. 3.14—December 2011

VAESENC . 35
AESENCLAST
VAESENCLAST . 37
AESIMC
VAESIMC . 39
AESKEYGENASSIST
VAESKEYGENASSIST . 41
ANDNPD
VANDNPD . 43
ANDNPS
VANDNPS . 45
ANDPD
VANDPD . 47
ANDPS
VANDPS . 49
BLENDPD
VBLENDPD . 51
BLENDPS
VBLENDPS. 53
BLENDVPD
VBLENDVPD . 55
BLENDVPS
VBLENDVPS . 57
CMPPD
VCMPPD. 59
CMPPS
VCMPPS . 62
CMPSD
VCMPSD. 65
CMPSS
VCMPSS . 68
COMISD
VCOMISD. 71
COMISS
VCOMISS . 73
CVTDQ2PD
VCVTDQ2PD . 75
CVTDQ2PS
VCVTDQ2PS . 77
CVTPD2DQ
VCVTPD2DQ . 79
CVTPD2PS
VCVTPD2PS. 81
CVTPS2DQ
VCVTPS2DQ . 83
CVTPS2PD
VCVTPS2PD. 85

v

26568—Rev. 3.14—December 2011 AMD64 Technology

CVTSD2SI
VCVTSD2SI . 87
CVTSD2SS
VCVTSD2SS. 90
CVTSI2SD
VCVTSI2SD . 92
CVTSI2SS
VCVTSI2SS . 94
CVTSS2SD
VCVTSS2SD. 96
CVTSS2SI
VCVTSS2SI . 98
CVTTPD2DQ
VCVTTPD2DQ . 100
CVTTPS2DQ
VCVTTPS2DQ . 102
CVTTSD2SI
VCVTTSD2SI . 104
CVTTSS2SI
VCVTTSS2SI . 106
DIVPD
VDIVPD . 109
DIVPS
VDIVPS. 111
DIVSD
VDIVSD . 113
DIVSS
VDIVSS. 115
DPPD
VDPPD . 117
DPPS
VDPPS. 120
EXTRACTPS
VEXTRACTPS . 123
EXTRQ . 125
HADDPD
VHADDPD . 127
HADDPS
VHADDPS . 129
HSUBPD
VHSUBPD. 131
HSUBPS
VHSUBPS . 133
INSERTPS
VINSERTPS . 135
INSERTQ. 137
LDDQU

vi

AMD64 Technology 26568—Rev. 3.14—December 2011

VLDDQU . 139
LDMXCSR
VLDMXCSR . 141
MASKMOVDQU
VMASKMOVDQU. 143
MAXPD
VMAXPD . 145
MAXPS
VMAXPS. 147
MAXSD
VMAXSD . 149
MAXSS
VMAXSS. 151
MINPD
VMINPD . 153
MINPS
VMINPS . 155
MINSD
VMINSD . 157
MINSS
VMINSS . 159
MOVAPD
VMOVAPD . 161
MOVAPS
VMOVAPS . 163
MOVD
VMOVD . 165
MOVDDUP
VMOVDDUP . 167
MOVDQA
VMOVDQA . 169
MOVDQU
VMOVDQU . 171
MOVHLPS
VMOVHLPS . 173
MOVHPD
VMOVHPD . 175
MOVHPS
VMOVHPS . 177
MOVLHPS
VMOVLHPS . 179
MOVLPD
VMOVLPD . 181
MOVLPS
VMOVLPS . 183
MOVMSKPD
VMOVMSKPD . 185

vii

26568—Rev. 3.14—December 2011 AMD64 Technology

MOVMSKPS
VMOVMSKPS . 187
MOVNTDQ
VMOVNTDQ . 189
MOVNTDQA
VMOVNTDQA . 191
MOVNTPD
VMOVNTPD. 193
MOVNTPS
VMOVNTPS . 195
MOVNTSD . 197
MOVNTSS . 199
MOVQ
VMOVQ . 201
MOVSD
VMOVSD . 203
MOVSHDUP
VMOVSHDUP . 205
MOVSLDUP
VMOVSLDUP . 207
MOVSS
VMOVSS. 209
MOVUPD
VMOVUPD . 211
MOVUPS
VMOVUPS . 213
MPSADBW
VMPSADBW . 215
MULPD
VMULPD . 217
MULPS
VMULPS . 219
MULSD
VMULSD . 221
MULSS
VMULSS . 223
ORPD
VORPD . 225
ORPS
VORPS . 227
PABSB
VPABSB . 229
PABSD
VPABSD . 231
PABSW
VPABSW . 233
PACKSSDW

viii

AMD64 Technology 26568—Rev. 3.14—December 2011

VPACKSSDW . 235
PACKSSWB
VPACKSSWB . 237
PACKUSDW
VPACKUSDW . 239
PACKUSWB
VPACKUSWB. 241
PADDB
VPADDB . 243
PADDD
VPADDD . 245
PADDQ
VPADDQ . 247
PADDSB
VPADDSB . 249
PADDSW
VPADDSW . 251
PADDUSB
VPADDUSB . 253
PADDUSW
VPADDUSW . 255
PADDW
VPADDW . 257
PALIGNR
VPALIGNR . 259
PAND
VPAND . 261
PANDN
VPANDN . 263
PAVGB
VPAVGB . 265
PAVGW
VPAVGW. 267
PBLENDVB
VPBLENDVB . 269
PBLENDW
VPBLENDW . 271
PCLMULQDQ
VPCLMULQDQ . 273
PCMPEQB
VPCMPEQB . 275
PCMPEQD
VPCMPEQD . 277
PCMPEQQ
VPCMPEQQ . 279
PCMPEQW
VPCMPEQW. 281

ix

26568—Rev. 3.14—December 2011 AMD64 Technology

PCMPESTRI
VPCMPESTRI. 283
PCMPESTRM
VPCMPESTRM . 286
PCMPGTB
VPCMPGTB . 289
PCMPGTD
VPCMPGTD . 291
PCMPGTQ
VPCMPGTQ . 293
PCMPGTW
VPCMPGTW. 295
PCMPISTRI
VPCMPISTRI . 297
PCMPISTRM
VPCMPISTRM . 300
PEXTRB
VPEXTRB . 303
PEXTRD
VPEXTRD. 305
PEXTRQ
VPEXTRQ. 307
PEXTRW
VPEXTRW . 309
PHADDD
VPHADDD . 311
PHADDSW
VPHADDSW. 313
PHADDW
VPHADDW. 315
PHMINPOSUW
VPHMINPOSUW . 317
PHSUBD
VPHSUBD. 319
PHSUBSW
VPHSUBSW . 321
PHSUBW
VPHSUBW . 323
PINSRB
VPINSRB . 325
PINSRD
VPINSRD . 327
PINSRQ
VPINSRQ . 329
PINSRW
VPINSRW . 331
PMADDUBSW

x

AMD64 Technology 26568—Rev. 3.14—December 2011

VPMADDUBSW . 333
PMADDWD
VPMADDWD . 335
PMAXSB
VPMAXSB . 337
PMAXSD
VPMAXSD . 339
PMAXSW
VPMAXSW. 341
PMAXUB
VPMAXUB . 343
PMAXUD
VPMAXUD . 345
PMAXUW
VPMAXUW . 347
PMINSB
VPMINSB . 349
PMINSD
VPMINSD . 351
PMINSW
VPMINSW . 353
PMINUB
VPMINUB. 355
PMINUD
VPMINUD. 357
PMINUW
VPMINUW . 359
PMOVMSKB
VPMOVMSKB . 361
PMOVSXBD
VPMOVSXBD . 363
PMOVSXBQ
VPMOVSXBQ . 365
PMOVSXBW
VPMOVSXBW . 367
PMOVSXDQ
VPMOVSXDQ . 369
PMOVSXWD
VPMOVSXWD . 371
PMOVSXWQ
VPMOVSXWQ . 373
PMOVZXBD
VPMOVZXBD . 375
PMOVZXBQ
VPMOVZXBQ . 377
PMOVZXBW
VPMOVZXBW . 379

xi

26568—Rev. 3.14—December 2011 AMD64 Technology

PMOVZXDQ
VPMOVZXDQ . 381
PMOVZXWD
VPMOVZXWD. 383
PMOVZXWQ
VPMOVZXWQ. 385
PMULDQ
VPMULDQ . 387
PMULHRSW
VPMULHRSW . 389
PMULHUW
VPMULHUW . 391
PMULHW
VPMULHW. 393
PMULLD
VPMULLD . 395
PMULLW
VPMULLW . 397
PMULUDQ
VPMULUDQ. 399
POR
VPOR. 401
PSADBW
VPSADBW . 403
PSHUFB
VPSHUFB . 405
PSHUFD
VPSHUFD . 407
PSHUFHW
VPSHUFHW . 409
PSHUFLW
VPSHUFLW . 411
PSIGNB
VPSIGNB . 413
PSIGND
VPSIGND . 415
PSIGNW
VPSIGNW . 417
PSLLD
VPSLLD . 419
PSLLDQ
VPSLLDQ . 421
PSLLQ
VPSLLQ . 423
PSLLW
VPSLLW . 425
PSRAD

xii

AMD64 Technology 26568—Rev. 3.14—December 2011

VPSRAD . 427
PSRAW
VPSRAW . 429
PSRLD
VPSRLD . 431
PSRLDQ
VPSRLDQ . 433
PSRLQ
VPSRLQ . 435
PSRLW
VPSRLW . 437
PSUBB
VPSUBB . 439
PSUBD
VPSUBD . 441
PSUBQ
VPSUBQ . 443
PSUBSB
VPSUBSB . 445
PSUBSW
VPSUBSW . 447
PSUBUSB
VPSUBUSB. 449
PSUBUSW
VPSUBUSW . 451
PSUBW
VPSUBW. 453
PTEST
VPTEST. 455
PUNPCKHBW
VPUNPCKHBW . 457
PUNPCKHDQ
VPUNPCKHDQ . 459
PUNPCKHQDQ
VPUNPCKHQDQ . 461
PUNPCKHWD
VPUNPCKHWD . 463
PUNPCKLBW
VPUNPCKLBW . 465
PUNPCKLDQ
VPUNPCKLDQ . 467
PUNPCKLQDQ
VPUNPCKLQDQ . 469
PUNPCKLWD
VPUNPCKLWD . 471
PXOR
VPXOR . 473

xiii

26568—Rev. 3.14—December 2011 AMD64 Technology

RCPPS
VRCPPS . 475
RCPSS
VRCPSS . 477
ROUNDPD
VROUNDPD . 479
ROUNDPS
VROUNDPS . 482
ROUNDSD
VROUNDSD . 485
ROUNDSS
VROUNDSS . 488
RSQRTPS
VRSQRTPS . 491
RSQRTSS
VRSQRTSS . 493
SHUFPD
VSHUFPD . 495
SHUFPS
VSHUFPS . 497
SQRTPD
VSQRTPD . 500
SQRTPS
VSQRTPS . 502
SQRTSD
VSQRTSD . 504
SQRTSS
VSQRTSS . 506
STMXCSR
VSTMXCSR . 508
SUBPD
VSUBPD . 510
SUBPS
VSUBPS . 512
SUBSD
VSUBSD . 514
SUBSS
VSUBSS . 516
UCOMISD
VUCOMISD . 518
UCOMISS
VUCOMISS. 520
UNPCKHPD
VUNPCKHPD. 522
UNPCKHPS
VUNPCKHPS . 524
UNPCKLPD

xiv

AMD64 Technology 26568—Rev. 3.14—December 2011

VUNPCKLPD . 526
UNPCKLPS
VUNPCKLPS . 528
VBROADCASTF128 . 530
VBROADCASTSD . 532
VBROADCASTSS . 534
VCVTPS2PH. 539
VEXTRACTF128 . 543
VFMADDPD
VFMADD132PD
VFMADD213PD
VFMADD231PD. 545
VFMADDPS
VFMADD132PS
VFMADD213PS
VFMADD231PS . 548
VFMADDSD
VFMADD132SD
VFMADD213SD
VFMADD231SD. 551
VFMADDSS
VFMADD132SS
VFMADD213SS
VFMADD231SS . 554
VFMADDSUBPD
VFMADDSUB132PD
VFMADDSUB213PD
VFMADDSUB231PD . 557
VFMADDSUBPS
VFMADDSUB132PS
VFMADDSUB213PS
VFMADDSUB231PS . 560
VFMSUBADDPD
VFMSUBADD132PD
VFMSUBADD213PD
VFMSUBADD231PD . 563
VFMSUBADDPS
VFMSUBADD132PS
VFMSUBADD213PS
VFMSUBADD231PS . 566
VFMSUBPD
VFMSUB132PD
VFMSUB213PD
VFMSUB231PD . 569
VFMSUBPS
VFMSUB132PS
VFMSUB213PS

xv

26568—Rev. 3.14—December 2011 AMD64 Technology

VFMSUB231PS . 572
VFMSUBSD
VFMSUB132SD
VFMSUB213SD
VFMSUB231SD . 575
VFMSUBSS
VFMSUB132SS
VFMSUB213SS
VFMSUB231SS . 578
VFNMADDPD
VFNMADD132PD
VFNMADD213PD
VFNMADD231PD . 581
VFNMADDPS
VFNMADD132PS
VFNMADD213PS
VFNMADD231PS. 584
VFNMADDSD
VFNMADD132SD
VFNMADD213SD
VFNMADD231SD . 587
VFNMADDSS
VFNMADD132SS
VFNMADD213SS
VFNMADD231SS. 590
VFNMSUBPD
VFNMSUB132PD
VFNMSUB213PD
VFNMSUB231PD. 593
VFNMSUBPS
VFNMSUB132PS
VFNMSUB213PS
VFNMSUB231PS . 596
VFNMSUBSD
VFNMSUB132SD
VFNMSUB213SD
VFNMSUB231SD. 599
VFNMSUBSS
VFNMSUB132SS
VFNMSUB213SS
VFNMSUB231SS . 602
VFRCZPD . 605
VFRCZPS . 607
VFRCZSD . 609
VFRCZSS . 611
VINSERTF128 . 613
VMASKMOVPD . 615

xvi

AMD64 Technology 26568—Rev. 3.14—December 2011

VMASKMOVPS . 617
VPCMOV . 619
VPCOMB . 621
VPCOMD . 623
VPCOMQ . 625
VPCOMUB . 627
VPCOMUD . 629
VPCOMUQ . 631
VPCOMUW . 633
VPCOMW . 635
VPERM2F128 . 637
VPERMIL2PD. 639
VPERMIL2PS . 643
VPERMILPD. 647
VPERMILPS . 650
VPHADDBD . 654
VPHADDBQ . 656
VPHADDBW . 658
VPHADDDQ. 660
VPHADDUBD . 662
VPHADDUBQ . 664
VPHADDUBW . 666
VPHADDUDQ . 668
VPHADDUWD . 670
VPHADDUWQ . 672
VPHADDWD . 674
VPHADDWQ . 676
VPHSUBBW . 678
VPHSUBDQ . 680
VPHSUBWD. 682
VPMACSDD . 684
VPMACSDQH . 686
VPMACSDQL. 688
VPMACSSDD. 690
VPMACSSDQH . 692
VPMACSSDQL . 694
VPMACSSWD . 696
VPMACSSWW . 698
VPMACSWD . 700
VPMACSWW . 702
VPMADCSSWD . 704
VPMADCSWD . 706
VPPERM . 708
VPROTB . 710
VPROTD . 712
VPROTQ . 714
VPROTW . 716

xvii

26568—Rev. 3.14—December 2011 AMD64 Technology

VPSHAB . 718
VPSHAD . 720
VPSHAQ . 722
VPSHAW. 724
VPSHLB . 726
VPSHLD . 728
VPSHLQ . 730
VPSHLW . 732
VTESTPD . 734
VTESTPS . 736
VZEROALL . 738
VZEROUPPER . 739
XORPD
VXORPD. 740
XORPS
VXORPS . 742
XGETBV . 744
XRSTOR . 745
XSAVE. 747
XSAVEOPT . 749
XSETBV . 751

3 Exception Summary .753

Appendix A AES Instructions .829
A.1 AES Overview . 829
A.2 Coding Conventions . 829
A.3 AES Data Structures . 830
A.4 Algebraic Preliminaries . 831

A.4.1 Multiplication in the Field GF. 832
A.4.2 Multiplication of 4x4 Matrices Over GF. 832

A.5 AES Operations . 833
A.5.1 Sequence of Operations . 834

A.6 Initializing the Sbox and InvSBox Matrices . 835
A.6.1 Computation of SBox and InvSBox . 836
A.6.2 Initialization of InvSBox[] . 838

A.7 Encryption and Decryption . 840
A.7.1 The Encrypt() and Decrypt() Procedures . 840
A.7.2 Round Sequences and Key Expansion . 841

A.8 The Cipher Function . 842
A.8.1 Text to Matrix Conversion. 843
A.8.2 Cipher Transformations. 843
A.8.3 Matrix to Text Conversion. 845

A.9 The InvCipher Function. 845
A.9.1 Text to Matrix Conversion. 846
A.9.2 InvCypher Transformations. 846
A.9.3 Matrix to Text Conversion. 848

A.10 An Alternative Decryption Procedure . 848

xviii

AMD64 Technology 26568—Rev. 3.14—December 2011

A.11 Computation of GFInv with Euclidean Greatest Common Divisor 850

Index . 853

xix

26568—Rev. 3.14—December 2011 AMD64 Technology

Figures

Figure 1-1. Typical Descriptive Synopsis - Extended SSE Instructions . 3

Figure 1-2. Byte-wide Character String – Memory and Register Image. 9

Figure 2-1. Typical Instruction Description . 17

Figure A-1. GFMatrix Representation of 16-byte Block . 830

Figure A-2. GFMatrix to Operand Byte Mappings . 830

xx

AMD64 Technology 26568—Rev. 3.14—December 2011

xxi

26568—Rev. 3.14—December 2011 AMD64 Technology

Tables

Table 1-1. Three-Operand Selection . 5

Table 1-2. Four-Operand Selection . 6

Table 1-3. Source Data Format . 10

Table 1-4. Comparison Type . 11

Table 1-5. Post-processing Options . 14

Table 1-6. Indexed Output Option Selection . 14

Table 1-7. Masked Output Option Selection . 14

Table 1-8. State of Affected Flags After Execution . 15

Table 3-1. Instructions By Exception Class . 753

Table A-1. SBox Definition . 838

Table A-2. InvSBox Definition . 840

Table A-3. Cipher Key, Round Sequence, and Round Key Length . 841

xxii

AMD64 Technology 26568—Rev. 3.14—December 2011

xxiii

26568—Rev. 3.14—December 2011 AMD64 Technology

Revision History

Date Revision Description

December
2011

3.14

Reworked Section 1.4, "String Compare Instructions" on page 7.

Revised descriptions of the string compare instructions in instruction
reference.

Moved AES overview to Appendix A.

Clarified trap and exception behavior for elements not selected for
writing. See MASKMOVDQU VMASKMOVDQU on page 143.

Additional minor corrections and clarifications.

September
2011

3.13

Moved discussion of extended instruction encoding; VEX and XOP
prefixes to Volume 3.

Added FMA instructions. Described on the corresponding FMA4
reference page.

Moved BMI and TBM instructions to Volume 3.

Added XSAVEOPT instruction.

Corrected descriptions of VSQRTSD and VSQRTSS.

May 2011 3.12 Added F16C, BMI, and TBM instructions.

December
2010

3.11

Complete revision and reformat accommodating 128-bit and 256-bit media
instructions. Includes revised definitions of legacy SSE, SSE2, SSE3,
SSE4.1, SSE4.2, and SSSE3 instructions, as well as new definitions of
extended AES, AVX, CLMUL, FMA4, and XOP instructions. Introduction
includes supplemental information concerning encoding of extended
instructions, enhanced processor state management provided by the
XSAVE/XRSTOR instructions, cryptographic capabilities of the AES
instructions, and functionality of extended string comparison instructions.

September
2007

3.10 Added minor clarifications and corrected typographical and formatting
errors.

July 2007 3.09

Added the following instructions: EXTRQ, INSERTQ, MOVNTSD, and
MOVNTSS.
Added misaligned exception mask (MXCSR.MM) information.
Added imm8 values with corresponding mnemonics to (V)CMPPD,
(V)CMPPS, (V)CMPSD, and (V)CMPSS.
Reworded CPUID information in condition tables.
Added minor clarifications and corrected typographical and formatting
errors.

September
2006

3.08 Made minor corrections.

xxiv

AMD64 Technology 26568—Rev. 3.14—December 2011

December
2005

3.07 Made minor editorial and formatting changes.

January 2005 3.06
Added documentation on SSE3 instructions. Corrected numerous
minor factual errors and typos.

September
2003

3.05 Made numerous small factual corrections.

April 2003 3.04 Made minor corrections.

Date Revision Description

xxv

26568—Rev. 3.14—December 2011 AMD64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual.
The complete set includes the following volumes.

Audience

This volume is intended for programmers who develop application or system software.

Organization

Volumes 3, 4, and 5 describe the AMD64 instruction set in detail, providing mnemonic syntax,
instruction encoding, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

• General-purpose instructions

• System instructions

• Streaming SIMD Extensions (includes 128-bit and 256-bit media instructions)

• 64-bit media instructions (MMX™)

• x87 floating-point instructions

Several instructions belong to, and are described identically in, multiple instruction subsets.

This volume describes the Streaming SIMD Extensions (SSE) instruction set which includes 128-bit
and 256-bit media instructions. SSE includes both legacy and extended forms. The index at the end
cross-references topics within this volume. For other topics relating to the AMD64 architecture, and
for information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

xxvi

AMD64 Technology 26568—Rev. 3.14—December 2011

Conventions and Definitions

The section which follows, Notational Conventions, describes notational conventions used in this
volume. The next section, Definitions, lists a number of terms used in this volume along with their
technical definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See
“Related Documents” on page xxxvii for further information about the legacy x86 architecture.
Finally, the Registers section lists the registers which are a part of the system programming model.

Notational Conventions

Section 1.1, “Syntax and Notation” on page 2 describes notation relating specifically to instruction
encoding.

#GP(0)

An instruction exception—in this example, a general-protection exception with error code of 0.

1011b

A binary value, in this example, a 4-bit value.

F0EA_0B40h

A hexadecimal value, in this example a 32-bit value. Underscore characters may be used to
improve readability.

128

Numbers without an alpha suffix are decimal unless the context indicates otherwise.

[7:4]

A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

#GP(0)

A general-protection exception (#GP) with error code of 0.

CPUID FnXXXX_XXXX_RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “_RRR” notation is followed by
“_xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CR0–CR4

A register range, from register CR0 through CR4, inclusive, with the low-order register first.

xxvii

26568—Rev. 3.14—December 2011 AMD64 Technology

CR4[OXSAVE]

The OXSAVE bit of the CR4 register.

CR0[PE] = 1

The PE bit of the CR0 register has a value of 1.

EFER[LME] = 0

The LME field of the EFER register is cleared (contains a value of 0).

DS:rSI

The content of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

Definitions

128-bit media instruction

Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instruction

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX and 3DNow!™ instruction sets and their extensions, with some additional instructions from
the SSE1 and SSE2 instruction sets.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute

A displacement that references the base of a code segment rather than an instruction pointer.
See relative.

xxviii

AMD64 Technology 26568—Rev. 3.14—December 2011

AES

Advance Encryption Standard (AES) algorithm acceleration instructions; part of Streaming SIMD
Extensions (SSE).

ASID

Address space identifier.

AVX

Extension of the SSE instruction set supporting 256-bit vector (packed) operands. See Streaming
SIMD Extensions.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte

Eight bits.

clear, cleared

To write the value 0 to a bit or a range of bits. See set.

compatibility mode

A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL

Current privilege level.

direct

Referencing a memory address included in the instruction syntax as an immediate operand. The
address may be an absolute or relative address. See indirect.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword

Two words, or four bytes, or 32 bits.

double quadword

Eight words, or 16 bytes, or 128 bits. Also called octword.

xxix

26568—Rev. 3.14—December 2011 AMD64 Technology

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element

See vector.

exception

An abnormal condition that occurs as the result of instruction execution. Processor response to an
exception depends on the type of exception. For all exceptions except SSE floating-point
exceptions and x87 floating-point exceptions, control is transferred to a handler (or service
routine) for that exception as defined by the exception’s vector. For floating-point exceptions
defined by the IEEE 754 standard, there are both masked and unmasked responses. When
unmasked, the exception handler is called, and when masked, a default response is provided
instead of calling the handler.

extended SSE instructions

Enhanced set of SIMD instructions supporting 256-bit vector data types and allowing the
specification of up to four operands. A subset of the Streaming SIMD Extensions (SSE). Includes
the AVX, FMA, FMA4, and XOP instructions. Compare legacy SSE.

flush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

FMA4

Fused Multiply Add, four operand. Part of the extended SSE instruction set.

FMA

Fused Multiply Add. Part of the extended SSE instruction set.

GDT

Global descriptor table.

GIF

Global interrupt flag.

IDT

Interrupt descriptor table.

xxx

AMD64 Technology 26568—Rev. 3.14—December 2011

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. See direct.

IRB

The virtual-8086 mode interrupt-redirection bitmap.

IST

The long-mode interrupt-stack table.

IVT

The real-address mode interrupt-vector table.

LDT

Local descriptor table.

legacy x86

The legacy x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

legacy SSE instructions

All Streaming SIMD Extensions instructions prior to AVX, XOP, and FMA4. Legacy SSE
instructions primarily utilize operands held in XMM registers. The legacy SSE instructions
include the original Streaming SIMD Extensions (SSE1) and the subsequent extensions SSE2,
SSE3, SSSE3, SSE4, SSE4A, SSE4.1, and SSE4.2. See Streaming SIMD instructions.

long mode

An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

lsb

Least-significant bit.

LSB

Least-significant byte.

xxxi

26568—Rev. 3.14—December 2011 AMD64 Technology

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs. See reserved.

memory

Unless otherwise specified, main memory.

moffset

A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb

Most-significant bit.

MSB

Most-significant byte.

octword

Same as double quadword.

offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed

See vector.

PAE

Physical-address extensions.

physical memory

Actual memory, consisting of main memory and cache.

xxxii

AMD64 Technology 26568—Rev. 3.14—December 2011

probe

A check for an address in processor caches or internal buffers. External probes originate outside
the processor, and internal probes originate within the processor.

protected mode

A submode of legacy mode.

quadword

Four words, eight bytes, or 64 bits.

RAZ

Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. See reserved.

real-address mode, real mode

A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (offset) from an instruction pointer rather than the base of a code
segment. See absolute.

reserved

Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX

A legacy instruction modifier prefix that specifies 64-bit operand size and provides access to
additional registers.

RIP-relative addressing

Addressing relative to the 64-bit relative instruction pointer.

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

scalar

An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

xxxiii

26568—Rev. 3.14—December 2011 AMD64 Technology

set

To write the value 1 to a bit or a range of bits. See clear.

SIMD

Single instruction, multiple data. See vector.

Streaming SIMD Extensions (SSE)

Instructions that operate on scalar or vector (packed) integer and floating point numbers. The SSE
instruction set comprises the legacy SSE and extended SSE instruction sets.

SSE1

Original SSE instruction set. Includes instructions that operate on vector operands in both the
MMX and the XMM registers.

SSE2

Extensions to the SSE instruction set.

SSE3

Further extensions to the SSE instruction set.

SSSE3

Further extensions to the SSE instruction set.

SSE4.1

Further extensions to the SSE instruction set.

SSE4.2

Further extensions to the SSE instruction set.

SSE4A

A minor extension to the SSE instruction set adding the instructions EXTRQ, INSERTQ,
MOVNTSS, and MOVNTSD.

sticky bit

A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TSS

Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

xxxiv

AMD64 Technology 26568—Rev. 3.14—December 2011

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most media instructions use vectors as operands. Also called packed or SIMD operands.

(2) An interrupt descriptor table index, used to access exception handlers. See exception.

VEX prefix

Extended instruction encoding escape prefix. Introduces a two- or three-byte encoding escape
sequence used in the encoding of AVX instructions. Opens a new extended instruction encoding
space. Fields select the opcode map and allow the specification of operand vector length and an
additional operand register. See XOP prefix.

virtual-8086 mode

A submode of legacy mode.

VMCB

Virtual machine control block.

VMM

Virtual machine monitor.

word

Two bytes, or 16 bits.

x86

See legacy x86.

XOP instructions

Part of the extended SSE instruction set using the XOP prefix. See Streaming SIMD Extensions.

XOP prefix

Extended instruction encoding escape prefix. Introduces a three-byte escape sequence used in the
encoding of XOP instructions. Opens a new extended instruction encoding space distinct from the
VEX opcode space. Fields select the opcode map and allow the specification of operand vector
length and an additional operand register. See VEX prefix.

Registers

In the following list of registers, mnemonics refer either to the register itself or to the register content:

AH–DH

The high 8-bit AH, BH, CH, and DH registers. See [AL–DL].

AL–DL

The low 8-bit AL, BL, CL, and DL registers. See [AH–DH].

xxxv

26568—Rev. 3.14—December 2011 AMD64 Technology

AL–r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and [r8B–r15B] registers, available in 64-bit
mode.

BP

Base pointer register.

CRn

Control register number n.

CS

Code segment register.

eAX–eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. See [rAX–rSP].

EFER

Extended features enable register.

eFLAGS

16-bit or 32-bit flags register. See rFLAGS.

EFLAGS

32-bit (extended) flags register.

eIP

16-bit or 32-bit instruction-pointer register. See rIP.

EIP

32-bit (extended) instruction-pointer register.

FLAGS

16-bit flags register.

GDTR

Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR

Interrupt descriptor table register.

xxxvi

AMD64 Technology 26568—Rev. 3.14—December 2011

IP

16-bit instruction-pointer register.

LDTR

Local descriptor table register.

MSR

Model-specific register.

r8–r15

The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX

64-bit version of the EAX register.

RBP

64-bit version of the EBP register.

RBX

64-bit version of the EBX register.

RCX

64-bit version of the ECX register.

RDI

64-bit version of the EDI register.

RDX

64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. See RFLAGS.

RFLAGS

64-bit flags register. See rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. See RIP.

xxxvii

26568—Rev. 3.14—December 2011 AMD64 Technology

RIP

64-bit instruction-pointer register.

RSI

64-bit version of the ESI register.

RSP

64-bit version of the ESP register.

SP

Stack pointer register.

SS

Stack segment register.

TPR

Task priority register (CR8).

TR

Task register.

YMM/XMM

Set of sixteen (eight accessible in legacy and compatibility modes) 256-bit wide registers that hold
scalar and vector operands used by the SSE instructions.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with the least-significant byte at the lowest byte address, and illustrated with their
least significant byte at the right side. Strings are illustrated in reverse order, because the addresses of
string bytes increase from right to left.

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.

• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

• AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.

• AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

• AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.

• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

xxxviii

AMD64 Technology 26568—Rev. 3.14—December 2011

• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.

• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

xxxix

26568—Rev. 3.14—December 2011 AMD64 Technology

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.

• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium III,
www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.

• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.

• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.

• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.

• Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

xl

AMD64 Technology 26568—Rev. 3.14—December 2011

1

26568—Rev. 3.14—December 2011 AMD64 Technology

1 Introduction

Processors capable of performing the same mathematical operation simultaneously on multiple data
streams are classified as single-instruction, multiple-data (SIMD). Instructions that utilize this
hardware capability are called SIMD instructions.

Software can utilize SIMD instructions to drastically increase the performance of media applications
which typically employ algorithms that perform the same mathematical operation on a set of values in
parallel. The original SIMD instruction set was called MMX and operated on 64-bit wide vectors of
integer and floating-point elements. Subsequently a new SIMD instruction set called the Streaming
SIMD Extensions (SSE) was added to the architecture.

The SSE instruction set defines a new programming model with its own array of vector data registers
(YMM/XMM registers) and a control and status register (MXCSR). Most SSE instructions pull their
operands from one or more YMM/XMM registers and store results in a YMM/XMM register,
although some instructions use a GPR as either a source or destination. Most instructions allow one
operand to be loaded from memory. The set includes instructions to load a YMM/XMM register from
memory (aligned or unaligned) and store the contents of a YMM/XMM register.

An overview of the SSE instruction set is provided in Volume 1, Chapter 4.

This volume provides detailed descriptions of each instruction within the SSE instruction set. The SSE
instruction set comprises the legacy SSE instructions and the extended SSE instructions.

Legacy SSE instructions comprise the following subsets:

• The original Streaming SIMD Extensions (herein referred to as SSE1)

• SSE2

• SSE3

• SSSE3

• SSE4.1

• SSE4.2

• SSE4A

• Advanced Encryption Standard (AES)

Extended SSE instructions comprise the following subsets:

• AVX

• FMA

• FMA4

• XOP

2

AMD64 Technology 26568—Rev. 3.14—December 2011

Legacy SSE architecture supports operations involving 128-bit vectors and defines the base
programming model including the SSE registers, the Media eXtension Control and Status Register
(MXCSR), and the instruction exception behavior.

The Streaming SIMD Extensions (SSE) instruction set is extended to include the AVX, FMA, FMA4,
and XOP instruction sets. The AVX instruction set provides an extended form for most legacy SSE
instructions and several new instructions. Extensions include providing for the specification of a
unique destination register for operations with two or more source operands and support for 256-bit
wide vectors. Some AVX instructions also provide enhanced functionality compared to their legacy
counterparts.

A significant feature of the extended SSE instruction set architecture is the doubling of the width of the
XMM registers. These registers are referred to as the YMM registers. The XMM registers overlay the
lower octword (128 bits) of the YMM registers. Registers YMM/XMM0–7 are accessible in legacy
and compatibility mode. Registers YMM/XMM8–15 are available in 64-bit mode (a subset of long
mode). VEX/XOP instruction prefixes allow instruction encodings to address the additional registers.

The SSE instructions can be used in processor legacy mode or long (64-bit) mode. CPUID function
8000_0001h[LM] indicates the availability of long mode.

Compilation for execution in 64-bit mode offers the following advantages:

• Access to an additional eight YMM/XMM registers for a total of 16

• Access to an additional eight 64-bit general-purpose registers for a total of 16

• Access to the 64-bit virtual address space and the RIP-relative addressing mode

Hardware support for each of the subsets of SSE instructions listed above is indicated by CPUID
feature bits. Refer to Volume 2, Chapter 11, “Determining Media and x87 Feature Support” for a list of
feature bits. The CPUID feature bits that pertain to each instruction are also given in the instruction
descriptions below.

The following “Instruction Reference” chapter contains detailed descriptions of each instruction,
organized in alphabetic order by mnemonic. For those legacy SSE instructions that have an AVX form,
the extended form of the instruction is described together with the legacy instruction in one entry. For
these instructions, the instruction reference page is located based on the instruction mnemonic of the
legacy SSE and not the extended (AVX) form. Those AVX instructions without a legacy form are
listed in order by their AVX mnemonic. The mnemonic for all extended SSE instructions including the
FMA and XOP instructions begin with the letter V.

1.1 Syntax and Notation

The descriptive synopsis of opcode syntax for legacy SSE instructions follows the conventions
described in Volume 3: General Purpose and System Instructions. See Chapter 2 and the section
entitled “Notation.”

For general information on the programming model and overview descriptions of the SSE instruction
set, see:

3

26568—Rev. 3.14—December 2011 AMD64 Technology

• “Streaming SIMD Extensions Media and Scientific Programming” in Volume 1.

• “Instruction Encoding” in Volume 3

• “Summary of Registers and Data Types” in Volume 3.

The syntax of the extended instruction sets requires an expanded synopsis. The expanded synopsis
includes a mnemonic summary and a summary of prefix sequence fields. Figure 1-1 shows the
descriptive synopsis of a typical XOP instruction. The synopsis of VEX-encoded instructions have the
same format, differing only in regard to the instruction encoding escape prefix, that is, VEX instead of
XOP.

Figure 1-1. Typical Descriptive Synopsis - Extended SSE Instructions

1.2 Extended Instruction Encoding

The legacy SSE instructions are encoded using the legacy encoding syntax and the extended
instructions are encoded using an enhanced encoding syntax which is compatible with the legacy
syntax. Both are described in detail in Chapter 1 of Volume 3.

As described in Volume 3, the extended instruction encoding syntax utilizes multi-byte escape
sequences to both select alternate opcode maps as well as augment the encoding of the instruction.
Multi-byte escape sequences are introduced by one of the two VEX prefixes or the XOP prefix.

The AVX instructions utilize either the two-byte (introduced by the VEX C5h prefix) or the three-byte
(introduced by the VEX C4h prefix) encoding escape sequence. XOP instructions are encoded using a
three-byte encoding escape sequence introduced by the XOP prefix (except for the XOP instructions
VPERMIL2PD and VPERMIL2PS which are encoded using the VEX prefix). The XOP prefix is 8Fh.
The three-byte encoding escape sequences utilize the map_select field of the second byte to select the
opcode map used to interpret the opcode byte.

The two-byte VEX prefix sequence implicitly selects the secondary (“two-byte”) opcode map.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCMOV ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.08 0.src.1.00 A2 /r ib

assembly language representation

3-bit field representing R, X, B bit values

W bit
vvvv field

L bit
pp field

opcode
register/memory type specifier

immediate operand
5-bit map_select field

encoding escape prefix

4

AMD64 Technology 26568—Rev. 3.14—December 2011

1.2.1 Immediate Byte Usage Unique to the SSE instructions

An immediate is a value, typically an operand, explicitly provided within the instruction encoding.
Depending on the opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8
bytes. Legacy and extended media instructions typically use an immediate byte operand (imm8).

A one-byte immediate is generally shown in the instruction synopsis as “ib” suffix. For extended SSE
instructions with four source operands, the suffix “is4” is used to indicate the presence of the
immediate byte used to select the fourth source operand.

The VPERMIL2PD and VPERMIL2PS instructions utilize a fifth 2-bit operand which is encoded
along with the fourth register select index in an immediate byte. For this special case the immediate
byte will be shown in the instruction synopsis as “is5”.

1.2.2 Instruction Format Examples

The following sections provide examples of two-, three-, and four-operand extended instructions.
These instructions generally perform nondestructive-source operations, meaning that the result of the
operation is written to a separately specified destination register rather than overwriting one of the
source operands. This preserves the contents of the source registers. Most legacy SSE instructions
perform destructive-source operations, in which a single register is both source and destination, so
source content is lost.

1.2.2.1 XMM Register Destinations

The following general properties apply to YMM/XMM register destination operands.

• For legacy instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are not affected.

• For extended instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

1.2.2.2 Two Operand Instructions

Two-operand instructions use ModRM-based operand assignment. For most instructions, the first
operand is the destination, selected by the ModRM.reg field, and the second operand is either a register
or a memory source, selected by the ModRM.r/m field.

VCVTDQ2PD is an example of a two-operand AVX instruction.

The destination register is selected by ModRM.reg. The size of the destination register is determined
by VEX.L. The source is either an YMM/XMM register or a memory location specified by

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.01 0.1111.0.10 E6 /r

VCVTDQ2PD ymm1, xmm2/mem128 C4 RXB.01 0.1111.1.10 E6 /r

5

26568—Rev. 3.14—December 2011 AMD64 Technology

ModRM.r/m Because this instruction converts packed doubleword integers to double-precision
floating-point values, the source data size is smaller than the destination data size.

VEX.vvvv is not used and must be set to 1111b.

1.2.2.3 Three-Operand Instructions

These extended instructions have two source operands and a destination operand.

VPROTB is an example of a three-operand XOP instruction.

There are versions of the instruction for variable-count rotation and for fixed-count rotation.

VPROTB dest, src, variable-count

VPROTB dest, src, fixed-count

For both versions of the instruction, the destination (dest) operand is an XMM register specified by
ModRM.reg.

The variable-count version of the instruction rotates each byte of the source as specified by the
corresponding byte element variable-count.

Selection of src and variable-count is controlled by XOP.W.

• When XOP.W = 0, src is either an XMM register or a 128-bit memory location specified by
ModRM.r/m, and variable-count is an XMM register specified by XOP.vvvv.

• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an
XMM register or a 128-bit memory location specified by ModRM.r/m.

Table 1-1 summarizes the effect of the XOP.W bit on operand selection.

Table 1-1. Three-Operand Selection

The fixed-count version of the instruction rotates each byte of src as specified by the immediate byte
operand fixed-count. For this version, src is either an XMM register or a 128-bit memory location
specified by ModRM.r/m. Because XOP.vvvv is not used to specify the source register, it must be set
to 1111b or execution of the instruction will cause an Invalid Opcode (#UD) exception.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.src.0.00 90 /r

VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 90 /r

VPROTB xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 90 /r ib

XOP.W dest src variable-count

0 ModRM.reg ModRM.r/m XOP.vvvv

1 ModRM.reg XOP.vvvv ModRM.r/m

6

AMD64 Technology 26568—Rev. 3.14—December 2011

1.2.2.4 Four-Operand Instructions

Some extended instructions have three source operands and a destination operand. This is
accomplished by using the VEX/XOP.vvvv field, the ModRM.reg and ModRM.r/m fields, and bits
[7:4] of an immediate byte to select the operands. The opcode suffix “is4” is used to identify the
immediate byte, and the selected operands are shown in the synopsis.

VFMSUBPD is an example of an four-operand FMA4 instruction.

VFMSUBPD dest, src1, src2, src3 dest = src1* src2 - src3

The first operand, the destination (dest), is an XMM register or a YMM register (as determined by
VEX.L) selected by ModRM.reg. The following three operands (src1, src2, src3) are sources.

The src1 operand is an XMM or YMM register specified by VEX.vvvv.

VEX.W determines the configuration of the src2 and src3 operands.

• When VEX.W = 0, src2 is either a register or a memory location specified by ModRM.r/m, and
src3 is a register specified by bits [7:4] of the immediate byte.

• When VEX.W = 1, src2 is a register specified by bits [7:4] of the immediate byte and src3 is either
a register or a memory location specified by ModRM.r/m.

Table 1-1 summarizes the effect of the VEX.W bit on operand selection.

Table 1-2. Four-Operand Selection

1.3 Enabling SSE Instruction Execution

Application software that utilizes the SSE instructions requires support from operating system
software.

To enable and support SSE instruction execution, operating system software must:

• enable hardware for supported SSE subsets

• manage the SSE hardware architectural state, saving and restoring it as required during and after
task switches

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src.0.01 6D /r is4

VFMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src.1.01 6D /r is4

VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.src.0.01 6D /r is4

VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src.1.01 6D /r is4

VEX.W dest src1 src2 src3

0 ModRM.reg VEX.vvvv ModRM.r/m is4[7:4]

1 ModRM.reg VEX.vvvv is4[7:4] ModRM.r/m

7

26568—Rev. 3.14—December 2011 AMD64 Technology

• provide exception handlers for all unmasked SSE exceptions.

See Volume 3, Chapter 11, for details on enabling SSE execution and managing its execution state.

1.4 String Compare Instructions

The legacy SSE instructions PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM and the
extended SSE instructions VPCMPESTRI, VPCMPESTRM, VPCMPISTRI, and VPCMPISTRM
provide a versatile means of classifying characters of a string by performing one of several different
types of comparison operations using a second string as a prototype.

This section describes the operation of the legacy string compare instructions. This discussion applies
equally to the extended versions of the instructions. Any difference between the legacy and the
extended version of a given instruction is described in the instruction reference entry for the
instruction in the following chapter.

A character string is a vector of data elements that is normally used to represent an ordered
arrangement of graphemes which may be stored, processed, displayed, or printed. Ordered strings of
graphemes are most often used to convey information in a human-readable manner. The string
compare instructions, however, do not restrict the use or interpretation of their operands.

The first source operand provides the prototype string and the second operand is the string to be
scanned and characterized (referred to herein as the string under test, or SUT). Four string formats and
four types of comparisons are supported. The intermediate result of this processing is a bit vector that
summarizes the characterization of each character in the SUT. This bit vector is then post-processed
based on options specified in the instruction encoding. Instruction variants determine the final result—
either an index or a mask.

Instruction execution affects the arithmetic status flags (ZF, CF, SF, OF, AF, PF), but the significance
of many of the flags is redefined to provide information tailored to the result of the comparison
performed. See Section 1.4.6, “Affect on Flags” on page 15.

The instructions have a defined base function and additional functionality controlled by bit fields in an
immediate byte operand (imm8). The base function determines whether the source strings have
implicitly (PCMPISTRI and PCMPISTRM) or explicitly (PCMPESTRI and PCMPESTRM) defined
lengths, and whether the result is an index (PCMPISTRI and PCMPESTRI) or a mask (PCMPISTRM
and PCMPESTRM).

PCMPISTRI and PCMPESTRI return their final result (an integer value) via the ECX register, while
PCMPISTRM and PCMPESTRM write a bit or character mask, depending on the option selected, to
the XMM0 register.

There are a number of different schemes for encoding a set of graphemes, but the most common ones
use either an 8-bit code (ASCII) or a 16-bit code (unicode). The string compare instructions support
both character sizes.

8

AMD64 Technology 26568—Rev. 3.14—December 2011

Bit fields of the immediate operand control the following functions:

• Source data format — character size (byte or word), signed or unsigned values

• Comparison type

• Intermediate result postprocessing

• Output option selection

This overview description covers functions common to all of the string compare instructions and
describes some of the differentiated features of specific instructions. Information on instruction
encoding and exception behavior are covered in the individual instruction reference pages in the
following chapter.

9

26568—Rev. 3.14—December 2011 AMD64 Technology

1.4.1 Source Data Format

The character strings that constitute the source operands for the string compare instructions are
formatted as either 8-bit or 16-bit integer values packed into a 128-bit data type. The figure below
illustrates how a string of byte-wide characters is laid out in memory and how these characters are
arranged when loaded into an XMM register.

Figure 1-2. Byte-wide Character String – Memory and Register Image

Note from the figure that the longest string that can be packed in a 128-bit data object is either sixteen
8-bit characters (as illustrated) or eight 16-bit characters. When loaded from memory, the character
read from the lowest address in memory is placed in the least-significant position of the register and
the character read from the highest address is placed in the most-significant position. In other words,
for character i of width w, bits [w−1:0] of the character are placed in bits [iw + (w−1):iw] of the
register.

10Fh

110h

111h

112h Highest address

128-bit String of

Byte-wide

Characters in

Memory (ASCII

Encoded)

v4_String_layout.eps

Lowest address
Defines address of string

[null] (00)

. (2Eh)

g (67h)

n (6Eh)

i (69h)

r (72h)

t (74h)

s (73h)

[blank] (20h)

t (74h)

r (72h)

h (68h)

s (73h)

[blank] (20h)

A (41h) 103h

105h

106h

107h

108h

109h

10Ah

10Bh

10Ch

10Dh

10Eh

104h

o (6Fh)

Memory Image

XMM Register Image

[null] (00) . (2Eh) g (67h) n (6Eh) i (69h) r (72h) t (74h) s (73h)

127 6489101112131415

[blank] (20h) t (74h) r (72h) o (6Fh) h (68h) s (73h) [blank] (20h) A (41h)

063 01234567

10

AMD64 Technology 26568—Rev. 3.14—December 2011

Bits [1:0] of the immediate byte operand specify the source string data format, as shown in Table 1-3.

The string compare instructions are defined with the capability of operating on strings of lengths from
0 to the maximum that can be packed into the 128-bit data type as shown in the table above. Because
strings being processed may be shorter than the maximum string length, a means is provided to
designate the length of each string. As mentioned above, one pair of string compare instructions relies
on an explicit method while the other utilizes an implicit method.

For the explicit method, the length of the first operand (the prototype string) is specified by the
absolute value of the signed integer contained in rAX and the length of the second operand (the SUT)
is specified by the absolute value of the signed integer contained in rDX. If a specified length is greater
than the maximum allowed, the maximum value is used. Using the explicit method of length
specification, null characters (characters whose numerical value is 0) can be included within a string.

Using the implicit method, a string shorter than the maximum length is terminated by a null character.
If no null character is found in the string, its length is implied to be the maximum. For the example
illustrated in Figure 1-2 above, the implicit length of the string is 15 because the final character is null.
However, using the the explicit method, a specified length of 16 would include the null character in the
string.

In the following discussion, l1 is the length of the first operand string (the prototype string), l2 is the
length of the second operand string (the SUT) and m is the maximum string length based on the
selected character size.

1.4.2 Comparison Type

Although the string compare instructions can be implemented in many different ways, the instructions
are most easily understood as the sequential processing of the SUT using the characters of the
prototype string as a template. The template is applied at each character index of SUT, processing the
string from the first character (index 0) to the last character (index l2−1).

The result of each comparison is recorded in successive positions of a summary bit vector CmprSumm.
When the sequence of comparisons is complete, this bit vector summarizes the results of comparison
operations that were performed. The length of the CmprSumm bit vector is equal to the maximum
input operand string length (m). The rules for the setting of CmprSumm bits beyond the end of the SUT
(CmprSumm[m−1:l2]) are dependent on the comparison type (see Table 1-4 below.)

Bits [3:2] of the immediate byte operand determine the comparison type, as shown in Table 1-4.

Table 1-3. Source Data Format
Imm8[1:0] Character Format Maximum String Length

00b unsigned bytes 16

01b unsigned words 8

10b signed bytes 16

11b signed words 8

11

26568—Rev. 3.14—December 2011 AMD64 Technology

In the Sub-string comparison type, any matching sub-string of the SUT must match the prototype
string one-for-one, in order, and without gaps. Null characters in the SUT do not match non-null
characters in the prototype. If the prototype and the SUT are equal in length, the two strings must be
identical for the comparison to be TRUE. In this case, bit 0 of CmprSumm is set to one and the
remainder are all 0s. If the length of the SUT is less than the prototype string, no match is possible and
CmprSumm is all 0s.

If the prototype string is shorter than the SUT (l1 < l2), a sequential search of the SUT is performed.
For each i from 0 to l2−l1, the prototype is compared to characters [i + l1−1:i] of the SUT. If the
prototype and the sub-string SUT[i + l1−1:i] match exactly, then CmprSumm[i] is set, otherwise the bit
is cleared. When the comparison at i = l2−l1 is complete, no further testing is required because there
are not enough characters remaining in the SUT for a match to be possible. The remaining bits l2−l1+1
through m-1 are all set to 0.

For the Match comparison type, the character-by-character comparison is performed on all m
characters in the 128-bit operand data, which may extend beyond the end of one or both strings. A null
character at index i within one string is not considered a match when compared with a character
beyond the end of the other string. In this case, CmprSumm[i] is cleared. For index positions beyond
the end of both strings, CmprSumm[i] is set.

The following section provides more detail on the generation of the comparison summary bit vector
based on the specified comparison type.

Table 1-4. Comparison Type

Imm8[3:2]
Comparison

Type Description

00b Subset Tests each character of the SUT to determine if it is within the subset of
characters specified by the prototype string. Each set bit of CmprSumm
indicates that the corresponding character of the SUT is within the subset
specified by the prototype. Bits [m−1:l2] are cleared.

01b Ranges Tests each character of the SUT to determine if it lies within one or more
ranges specified by pairs of values within the prototype string. The ranges
are inclusive. Each set bit in CmprSumm indicates that the corresponding
character of the SUT is within one or more of the inclusive ranges specified.
Bits [m−1:l2] are cleared. If the length of the prototype is odd, the last value
in the prototype is effectively ignored.

10b Match Performs a character-by-character comparison between the SUT and the
prototype string. Each set bit of CmprSumm indicates that the
corresponding characters in the two strings match. If not, the bit is cleared.
Bits [m−1:max(l1, l2)] of CmprSumm are set.

11b Sub-string Searches for an exact match between the prototype string and an ordered
sequence of characters (a sub-string) in the SUT beginning at the current
index i. Bit i of CmprSumm is set for each value of i where the sub-string
match is made, otherwise the bit is cleared. See discussion below.

12

AMD64 Technology 26568—Rev. 3.14—December 2011

1.4.3 Comparison Summary Bit Vector

The following pseudo code provides more detail on the generation of the comparison summary bit
vector CmprSumm. The function CompareStrgs defined below returns a bit vector of length m, the
maximum length of the operand data strings.

bit vector CompareStrgs(ProtoType, length1, SUT, length2, CmpType, signed, m)
doubleword vector StrUndTst // temp vector; holds string under test
doubleword vector StrProto // temp vector; holds prototype string
bit vector[m] Result // length of vector is m

StrProto = m{0} //initialize m elements of StrProto to 0
StrUndTst = m{0} //initialize m elements of StrUndTst to 0
Result = m{0} //initialize result bit vector

FOR i = 0 to length1
StrProto[i] = signed ? SignExtend(ProtoType[i]) : ZeroExtend(ProtoType[i])

FOR i = 0 to length2
StrUndTst[i] = signed ? SignExtend(SUT[i]) : ZeroExtend(SUT[i])

IF CmpType == Subset
FOR j = 0 to length2 - 1 // j indexes SUT

FOR i = 0 to length1 - 1 // i indexes prototype
Result[j] |= (StrProto[i] == StrUndTst[j])

IF CmpType == Ranges

FOR j = 0 to length2 - 1 // j indexes SUT
FOR i = 0 to length1 - 2, BY 2 // i indexes prototype

Result[j] |= (StrProto[i] <= StrUndTst[j])
&& (StrProto[i+1] >= StrUndTst[j])

IF CmpType == Match

FOR i = 0 to (min(length1, length2)-1)
Result[i] = (StrProto[i] == StrUndTst[i])

FOR i = min(length1, length2) to (max(length1, length2)-1)
Result[i] = 0

FOR i = max(length1, length2) to (m-1)
Result[i] = 1

IF CmpType == Sub-string
IF length2 >= length1
FOR j = 0 to length2 - length1 // j indexes result bit vector

Result[j] = 1
k = j // k scans the SUT
FOR i = 0 to length1 - 1 // i scans the Prototype

Result[j] &= (StrProto[i] == StrUndTst[k])
// Result[j] is cleared if any of the comparisons do not match
k++

else

Return Result

13

26568—Rev. 3.14—December 2011 AMD64 Technology

Given the above definition of CompareStrgs(), the following pseudo code computes the value of
CmprSumm:

ProtoType = contents of first source operand (xmm1)
SUT = contents of xmm2 or 128-bit value read from the specified memory location
length1 = length of first operand string //specified implicitly or explicitly
length2 = length of second operand string //specified implicitly or explicitly
m = Maximum String Length from Table 1-3 above
CmpType = Comparison Type from Table 1-4 above
signed = (imm8[1] == 1) ? TRUE : FALSE
bit vector [m] CmprSumm // CmprSumm is m bits long

CmprSumm = CompareStrgs(ProtoType, length1, SUT, length2, CmpType, signed, m)

The following examples demonstrate the comparison summary bit vector CmprSumm for each
comparison type. For the sake of illustration, the operand strings are represented as ASCII-encoded
strings. Each character value is represented by its ASCII grapheme. Strings are displayed with the
lowest indexed character on the left as they would appear when printed or displayed. CmprSumm is
shown in reverse order with the least significant bit on the left to agree with the string presentation.

Comparison Type = Subset

Prototype: ZCx
SUT: aCx%xbZreCx
CmprSumm: 0110101001100000

Comparison Type = Ranges

Prototype: ACax
SUT: aCx%xbZreCx
CmprSumm: 1110110111100000

Comparison Type = Match

Prototype: ZCx
SUT: aCx%xbZreCx
CmprSumm: 0110000000011111

Comparison Type = Sub-string

Prototype: ZCx
SUT: aZCx%xCZreZCxCZ
CmprSumm: 0100000000100000

14

AMD64 Technology 26568—Rev. 3.14—December 2011

1.4.4 Intermediate Result Post-processing

Post-processing of the CmprSumm bit vector is controlled by imm8[5:4]. The result of this step is
designated pCmprSumm.

Bit [4] of the immediate operand determines whether a ones’ complement (bit-wise inversion) is
performed on CmprSumm; bit [5] of the immediate operand determines whether the inversion applies
to the entire comparison summary bit vector (CmprSumm) or just to those bits that correspond to
characters within the SUT. See Table 1-5 below for the encoding of the imm8[5:4] field.

1.4.5 Output Option Selection

For PCMPESTRI and PCMPISTRI, imm8[6] determines whether the index of the lowest set bit or the
highest set bit of pCmprSumm is written to ECX, as shown in Table 1-6.

For PCMPESTRM and PCMPISTRM, imm8[6] specifies whether the output from the instruction is a
bit mask or an expanded mask. The bit mask is a copy of pCmprSumm zero-extended to 128 bits. The
expanded mask is a packed vector of byte or word elements, as determined by the string operand
format (as indicated by imm8[0]). The expanded mask is generated by copying each bit of
pCmprSumm to all bits of the element of the same index. Table 1-7 below shows the encoding of
imm8[6].

The PCMPESTRM and PCMPISTRM instructions return their output in register XMM0. For the
extended forms of the instructions, bits [127:64] of YMM0 are cleared.

Table 1-5. Post-processing Options
Imm8[5:4] Post-processing Applied

x0b pCmprSumm = CmprSumm

01b pCmprSumm = NOT CmprSumm

11b pCmprSumm[i] = !CmprSumm[i] for i < l2,
pCmprSumm[i] = CmprSumm[i], for l2 ≤ i < m

Table 1-6. Indexed Output Option Selection
Imm8[6] Description

0b Return the index of the least significant set bit in pCmprSumm.

1b Return the index of the most significant set bit in pCmprSumm.

Table 1-7. Masked Output Option Selection
Imm8[6] Description

0b Return pCmprSumm as the output with zero extension to 128 bits.

1b Return expanded pCmprSumm byte or word mask.

15

26568—Rev. 3.14—December 2011 AMD64 Technology

1.4.6 Affect on Flags

The execution of a string compare instruction updates the state of the CF, PF, AF, ZF, SF, and OF flags
within the rFLAGs register. All other flags are unaffected. The PF and AF flags are are always cleared.
The ZF and SF flags are set or cleared based on attributes of the source strings and the CF and OF flags
are set or cleared based on attributes of the summary bit vector after post processing.

The CF flag is cleared if the summary bit vector, after post processing, is zero; the flag is set if one or
more of the bits in the post-processed bit vector are 1. The OF flag is updated to match the value of the
lsb of the post-processed summary bit vector.

The ZF flag is set if the length of the second string operand (SUT) is shorter than m, the maximum
number of 8-bit or 16-bit characters that can be packed into 128 bits. Similiarly, the SF flag is set if the
length of the first string operand (prototype) is shorter than m.

This information is summarized in Table 1-8 below.

Table 1-8. State of Affected Flags After Execution
Unconditional Source String Length Post-processed Bit Vector

PF AF SF ZF CF OF

0 0 (l1 < m) (l2 < m) pCmprSumm ≠ 0 pCmprSumm [0]

16

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Reference 17

26568—Rev. 3.14—December 2011 AMD64 Technology

2 Instruction Reference

Instructions are listed by mnemonic, in alphabetic order. Each entry describes instruction function,
syntax, opcodes, affected flags and exceptions related to the instruction.
Figure 2-1 shows the conventions used in the descriptions. Items that do not pertain to a particular
instruction, such as a synopsis of the 256-bit form, may be omitted.

Figure 2-1. Typical Instruction Description

Brief functional description

INST

Description of legacy version of instruction.

VINST

Description of extended version of instruction.

XMM Encoding

Description of 128-bit extended instruction.

YMM Encoding

Description of 256-bit extended instruction.

Information about CPUID functions related to the instruction set.

Synopsis diagrams for legacy and extended versions of the instruction.

Related Instructions

Instructions that perform similar or related functions.

rFLAGS Affected

Rflags diagram.

MXCSR Flags Affected

MXCSR diagram.

Exceptions

Exception summary table.

INST
VINST

Instruction
Mnemonic Expansion

Mnemonic Opcode Description
INST xmm1, xmm2/mem128 FF FF /r Brief summary of legacy operation.

Mnemonic Encoding
VEX RXB.mmmmm W.vvvv.L.pp Opcode

VINST xmm1, xmm2/mem128, xmm3 C4 RXB.11 0.src.0.00 FF /r
V���� ymm1, ymm2/mem256, ymm3 C4 RXB.11 0.src.0.00 FF /r

18 Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Exceptions

Under various conditions instructions described below can cause exceptions. The conditions that
cause these exceptions can differ based on processor mode and instruction subset. This information is
summarized at the end of each instruction reference page in an Exception Table. Rows list the appli-
cable exceptions and the different conditions that trigger each exception for the instruction. For each
processor mode (real, virtual, and protected) a symbol in the table indicates whether this exception
condition applies.
Each AVX instruction has a legacy form that comes from one of the legacy (SSE1, SSE2, ...) subsets.
An “X” at the intersection of a processor mode column and an exception cause row indicates that the
causing condition and potential exception applies to both the AVX instruction and the legacy SSE
instruction. “A” indicates that the causing condition applies only to the AVX instruction and “S” indi-
cates that the condition applies to the SSE legacy instruction.
Note that XOP and FMA4 instructions do not have corresponding instructions from the SSE legacy
subsets. In the exception tables for these instructions, “X” represents the XOP instruction and “F”
represents the FMA4 instruction.

Instruction Reference ADDPD, VADDPD 19

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds each packed double-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
quadword of the destination.
There are legacy and extended forms of the instruction:

ADDPD

Adds two pairs of values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds two pairs of values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
Adds four pairs of values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ADDPD is an SSE2 instruction and VADDPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ADDPS, (V)ADDSD, (V)ADDSS

ADDPD
VADDPD

Add
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

ADDPD xmm1, xmm2/mem128 66 0F 58 /r Adds two packed double-precision floating-point
values in xmm1 to corresponding values in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 58 /r

VADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 58 /r

20 ADDPD, VADDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDPS, VADDPS 21

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds each packed single-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
elements of the destination.
There are legacy and extended forms of the instruction:

ADDPS

Adds four pairs of values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds four pairs of values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
Adds eight pairs of values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ADDPS is an SSE2 instruction and VADDPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ADDPD, (V)ADDSD, (V)ADDSS

ADDPS
VADDPS

Add
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

ADDPS xmm1, xmm2/mem128 0F 58 /r Adds four packed single-precision floating-point values in
xmm1 to corresponding values in xmm2 or mem128. Writes
results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 58 /r

VADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 58 /r

22 ADDPS, VADDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDSD, VADDSD 23

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds the double-precision floating-point value in the low-order quadword of the first source operand
to the corresponding value in the low-order quadword of the second source operand and writes the
result into the low-order quadword of the destination.
There are legacy and extended forms of the instruction:

ADDSD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding YMM register are not affected.

VADDSD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first
source operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

ADDSD is an SSE2 instruction and VADDSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ADDPD, (V)ADDPS, (V)ADDSS

rFLAGS Affected

None

MXCSR Flags Affected

ADDSD
VADDSD

Add
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

ADDSD xmm1, xmm2/mem64 F2 0F 58 /r Adds low-order double-precision floating-point values in
xmm1 to corresponding values in xmm2 or mem64.
Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VADDSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 58 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

24 ADDSD, VADDSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDSS, VADDSS 25

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds the single-precision floating-point value in the low-order doubleword of the first source oper-
and to the corresponding value in the low-order doubleword of the second source operand and writes
the result into the low-order doubleword of the destination.
There are legacy and extended forms of the instruction:

ADDSS

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.

VADDSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM regis-
ter that corresponds to the destination are cleared.

ADDSS is an SSE1 instruction and VADDSS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ADDPD, (V)ADDPS, (V)ADDSD

rFLAGS Affected

None

MXCSR Flags Affected

ADDSS
VADDSS

Add
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

ADDSS xmm1, xmm2/mem32 F3 0F 58 /r Adds a single-precision floating-point value in the low-order
doubleword of xmm1 to a corresponding value in xmm2 or
mem32. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VADDSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 58 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

26 ADDSS, VADDSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDSUBPD, VADDSUBPD 27

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds the odd-numbered packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the sum to the corresponding odd-
numbered element of the destination; subtracts the even-numbered packed double-precision floating-
point values of the second source operand from the corresponding values of the first source operand
and writes the differences to the corresponding even-numbered element of the destination.
There are legacy and extended forms of the instruction:

ADDSUBPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDSUBPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ADDSUBPD is an SSE2 instruction and VADDSUBPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ADDSUBPS

ADDSUBPD
VADDSUBPD

Alternating Addition and Subtraction
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

ADDSUBPD xmm1, xmm2/mem128 66 0F D0 /r Adds a value in the upper 64 bits of xmm1 to the
corresponding value in xmm2 and writes the result to
the upper 64 bits of xmm1; subtracts the value in the
lower 64 bits of xmm1 from the corresponding value
in xmm2 and writes the result to the lower 64 bits of
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VADDSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D0 /r

VADDSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 D0 /r

28 ADDSUBPD, VADDSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ADDSUBPS, VADDSUBPS 29

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds the second and fourth single-precision floating-point values of the first source operand to the
corresponding values of the second source operand and writes the sums to the second and fourth ele-
ments of the destination. Subtracts the first and third single-precision floating-point values of the sec-
ond source operand from the corresponding values of the first source operand and writes the
differences to the first and third elements of the destination.
There are legacy and extended forms of the instruction:

ADDSUBPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDSUBPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ADDSUBPS is an SSE1 instruction and VADDSUBPS is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ADDSUBPD

ADDSUBPS
VADDSUBPS

Alternating Addition and Subtraction
Packed Single-Precision Floating Point

Mnemonic Opcode Description

ADDSUBPS xmm1, xmm2/mem128 F2 0F D0 /r Adds the second and fourth packed single-precision
values in xmm2 or mem128 to the corresponding
values in xmm1 and writes results to the
corresponding positions of xmm1. Subtracts the first
and third packed single-precision values in xmm2 or
mem128 from the corresponding values in xmm1 and
writes results to the corresponding positions of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VADDSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 D0 /r

VADDSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 D0 /r

30 ADDSUBPS, VADDSUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESDEC, VAESDEC 31

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs a single round of AES decryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.
See Appendix A for more information about the operation of the AES instructions.
Decryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr. The AESDEC and VAESDEC instructions perform all the rounds except the
last; the AESDECLAST and VAESDECLAST instructions perform the final round.
The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.
There are legacy and extended forms of the instruction:

AESDEC

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESDEC

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESDEC is an AES instruction and VAESDEC is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected

None

AESDEC
VAESDEC

AES
Decryption Round

Mnemonic Opcode Description

AESDEC xmm1, xmm2/mem128 66 0F 38 DE /r Performs one decryption round on a state value
in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VAESDEC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DE /r

32 AESDEC, VAESDEC Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESDECLAST, VAESDECLAST 33

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs the final round of AES decryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.
See Appendix A for more information about the operation of the AES instructions.
Decryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr.The AESDEC and VAESDEC instructions perform all the rounds before the
final round; the AESDECLAST and VAESDECLAST instructions perform the final round.
The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.
There are legacy and extended forms of the instruction:

AESDECLAST

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESDECLAST

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESDECLAST is an AES instruction and VAESDECLAST is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected

None

AESDECLAST
VAESDECLAST

AES
Last Decryption Round

Mnemonic Opcode Description

AESDECLAST xmm1, xmm2/mem128 66 0F 38 DF/r Performs the last decryption round on a state
value in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VAESDECLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DF /r

34 AESDECLAST, VAESDECLAST Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESENC, VAESENC 35

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs a single round of AES encryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.
See Appendix A for more information about the operation of the AES instructions.
Encryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.
The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register
There are legacy and extended forms of the instruction:

AESENC

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESENC

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESENC is an AES instruction and VAESENC is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected

None

AESENC
VAESENC

AES
Encryption Round

Mnemonic Opcode Description

AESENC xmm1, xmm2/mem128 66 0F 38 DC /r Performs one encryption round on a state value
in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VAESENC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DC /r

36 AESENC, VAESENC Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESENCLAST, VAESENCLAST 37

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs the final round of AES encryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.
See Appendix A for more information about the operation of the AES instructions.
Encryption consists of 1, …, Nr – 1 iterations of sequences of operations called rounds, terminated by
a unique final round, Nr. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.
The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.
There are legacy and extended forms of the instruction:

AESENCLAST

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESENCLAST

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESENCLAST is an AES instruction and VAESENCLAST is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected

None

AESENCLAST
VAESENCLAST

 AES
Last Encryption Round

Mnemonic Opcode Description

AESENCLAST xmm1, xmm2/mem128 66 0F 38 DD /r Performs the last encryption round on a
state value in xmm1 using the key value in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VAESENCLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DD /r

38 AESENCLAST, VAESENCLAST Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESIMC, VAESIMC 39

26568—Rev. 3.14—December 2011 AMD64 Technology

Applies the AES InvMixColumns() transformation to expanded round keys in preparation for decryp-
tion. Transforms an expanded key specified by the second source operand and writes the result to a
destination register.
See Appendix A for more information about the operation of the AES instructions.
The 128-bit round key vector is interpreted as 16-byte column-major entries in a 4-by-4 matrix of
bytes.The transformed result is written to the destination in column-major order.
AESIMC and VAESIMC are not used to transform the first and last round key in a decryption
sequence.
There are legacy and extended forms of the instruction:

AESIMC

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESIMC

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESIMC is an AES instruction and VAESIMC is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[AES] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESKEYGENASSIST

rFLAGS Affected

None

MXCSR Flags Affected

None

AESIMC
VAESIMC

AES
InvMixColumn Transformation

Mnemonic Opcode Description

AESIMC xmm1, xmm2/mem128 66 0F 38 DB /r Performs AES InvMixColumn transformation on
a round key in the xmm2 or mem128 and stores
the result in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VAESIMC xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 DB /r

40 AESIMC, VAESIMC Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference AESKEYGENASSIST, VAESKEYGENASSIST 41

26568—Rev. 3.14—December 2011 AMD64 Technology

Expands a round key for encryption. Transforms a 128-bit round key operand using an 8-bit round
constant and writes the result to a destination register.
See Appendix A for more information about the operation of the AES instructions.
The round key is provided by the second source operand and the round constant is specified by an
immediate operand. The 128-bit round key vector is interpreted as 16-byte column-major entries in a
4-by-4 matrix of bytes. The transformed result is written to the destination in column-major order.
There are legacy and extended forms of the instruction:

AESKEYGENASSIST

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESKEYGENASSIST

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESKEYGENASSIST is an AES instruction and VAESKEYGENASSIST is an AVX instruction.
Support for these instructions is indicated by CPUID Fn0000_00001_ECX[AES] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST,(V)AESIMC

rFLAGS Affected

None

MXCSR Flags Affected

None

AESKEYGENASSIST
VAESKEYGENASSIST

AES
Assist Round Key Generation

Mnemonic Opcode Description

AESKEYGENASSIST xmm1, xmm2/mem128, imm8 66 0F 3A DF /r ib Expands a round key in xmm2 or
mem128 using an immediate
round constant. Writes the result
to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

AESKEYGENASSIST xmm1, xmm2 /mem128, imm8 C4 RXB.00011 X.src.0.01 DF /r ib

42 AESKEYGENASSIST, VAESKEYGENASSIST Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ANDNPD, VANDNPD 43

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs a bitwise AND of two packed double-precision floating-point values in the second source
operand with the ones’-complement of the two corresponding packed double-precision floating-point
values in the first source operand and writes the result into the destination.
There are legacy and extended forms of the instruction:

ANDNPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDNPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ANDNPD is an SSE2 instruction and VANDNPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

rFLAGS Affected

None

ANDNPD
VANDNPD

AND NOT
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

ANDNPD xmm1, xmm2/mem128 66 0F 55 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of two packed double-precision floating-
point values in xmm1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VANDNPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 55 /r

VANDNPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 55 /r

44 ANDNPD, VANDNPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ANDNPS, VANDNPS 45

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs a bitwise AND of four packed single-precision floating-point values in the second source
operand with the ones’-complement of the four corresponding packed single-precision floating-point
values in the first source operand, and writes the result in the destination.
There are legacy and extended forms of the instruction:

ANDNPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDNPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ANDNPS is an SSE1 instruction and VANDNPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ANDNPD, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

rFLAGS Affected

None

ANDNPS
VANDNPS

AND NOT
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

ANDNPS xmm1, xmm2/mem128 0F 55 /r Performs bitwise AND of four packed double-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of four packed double-precision floating-point
values in xmm1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VANDNPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 55 /r

VANDNPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 55 /r

46 ANDNPS, VANDNPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ANDPD, VANDPD 47

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs bitwise AND of two packed double-precision floating-point values in the first source oper-
and with the corresponding two packed double-precision floating-point values in the second source
operand and writes the results into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:

ANDPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ANDPD is an SSE2 instruction and VANDPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ANDNPD, (V)ANDNPS, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

rFLAGS Affected

None

ANDPD
VANDPD

AND
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

ANDPD xmm1, xmm2/mem128 66 0F 54 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VANDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 54 /r

VANDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 54 /r

48 ANDPD, VANDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ANDPS, VANDPS 49

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs bitwise AND of the four packed single-precision floating-point values in the first source
operand with the corresponding four packed single-precision floating-point values in the second
source operand, and writes the result into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:

ANDPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ANDPS is an SSE1 instruction and VANDPS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

rFLAGS Affected

None

ANDPS
VANDPS

AND
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

ANDPS xmm1, xmm2/mem128 0F 54 /r Performs bitwise AND of four packed double-precision
floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VANDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 54 /r

VANDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 54 /r

50 ANDPS, VANDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDPD, VBLENDPD 51

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.
Each mask bit specifies a 64-bit element in a source location and a corresponding 64-bit element in
the destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.
There are legacy and extended forms of the instruction:

BLENDPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Only mask bits [1:0] are used.

VBLENDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Only mask bits [1:0] are used.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

BLENDPD is an SSE4.1 instruction and VBLENDPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)BLENDPS, (B)BLENDVPD, (V)BLENDVPS

BLENDPD
VBLENDPD

 Blend
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

BLENDPD xmm1, xmm2/mem128, imm8 66 0F 3A 0D /r ib Copies values from xmm1 or
xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VBLENDPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0D /r ib

VBLENDPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 0D /r ib

52 BLENDPD, VBLENDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDPS, VBLENDPS 53

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.
Each mask bit specifies a 32-bit element in a source location and a corresponding 32-bit element in
the destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.
There are legacy and extended forms of the instruction:

BLENDPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Only mask bits [3:0] are used.

VBLENDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.Only mask bits [3:0] are used.
YMM Encoding
The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

BLENDPS is an SSE4.1 instruction and VBLENDPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)BLENDPD, (V)BLENDVPD, (V)BLENDVPS

BLENDPS
VBLENDPS

 Blend
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

BLENDPS xmm1, xmm2/mem128, imm8 66 0F 3A 0C /r ib Copies values from xmm1 or
xmm2/mem128 to xmm1, as
specified by imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VBLENDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00011 X.src.0.01 0C /r ib

VBLENDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00011 X.src.1.01 0C /r ib

54 BLENDPS, VBLENDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDVPD, VBLENDVPD 55

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.
Each mask bit specifies a 64-bit element of a source location and a corresponding 64-bit element of
the destination. The position of a mask bit corresponds to the position of the most significant bit of a
copied value. When a mask bit = 0, the specified element of the first source is copied to the corre-
sponding position in the destination. When a mask bit = 1, the specified element of the second source
is copied to the corresponding position in the destination.
There are legacy and extended forms of the instruction:

BLENDVPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask is defined by bits 127
and 63 of the implicit register XMM0.

VBLENDVPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask is defined by bits 127 and 63
of a fourth XMM register.
YMM Encoding
The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. The mask is defined by bits 255,
191, 127, and 63 of a fourth YMM register.

BLENDVPD is an SSE4.1 instruction and VBLENDVPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

BLENDVPD
VBLENDVPD

 Variable Blend
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

BLENDVPD xmm1, xmm2/mem128 66 0F 38 15 /r Copies values from xmm1 or xmm2/mem128 to
xmm1, as specified by the MSB of corresponding
elements of xmm0.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VBLENDVPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4B /r

VBLENDVPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4B /r

56 BLENDVPD, VBLENDVPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)BLENDPD, (V)BLENDPS, (V)BLENDVPS

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference BLENDVPS, VBLENDVPS 57

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.
Each mask bit specifies a 32-bit element of a source location and a corresponding 32-bit element of
the destination register. The position of a mask bits corresponds to the position of the most significant
bit of a copied value. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination. When a mask bit = 1, the specified element of the second
source is copied to the corresponding position in the destination.
There are legacy and extended forms of the instruction:

BLENDVPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask is defined by bits
127, 95, 63, and 31 of the implicit register XMM0.

VBLENDVPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask is defined by bits 127, 95, 63,
and 31 of a fourth XMM register.
YMM Encoding
The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. The mask is defined by bits 255,
223, 191, 159, 127, 95, 63, and 31 of a fourth YMM register.

BLENDVPS is an SSE4.1 instruction and VBLENDVPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

BLENDVPS
VBLENDVPS

 Variable Blend
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

BLENDVPS xmm1, xmm2/mem128 66 0F 38 14 /r Copies packed single-precision
floating-point values from xmm1 or
xmm2/mem128 to xmm1, as
specified by bits in xmm0.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VBLENDVPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4A /r

VBLENDVPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4A /r

58 BLENDVPS, VBLENDVPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)BLENDPD, (V)BLENDPS, (V)BLENDVPD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPPD, VCMPPD 59

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each of the two packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 64-bit element of the destination. When a comparison is TRUE, all 64 bits of the desti-
nation element are set; when a comparison is FALSE, all 64 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.
Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.
QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.
There are legacy and extended forms of the instruction:

CMPPD

The first source operand is an XMM register and the second source operand is either another XMM
register or a128-bit memory location.The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Comparison type is specified
by bits [2:0] of an immediate byte operand.

VCMPPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Comparison type is specified by bits
[4:0] of an immediate byte operand.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination operand is a YMM register. Comparison type is speci-
fied by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPD uses bits [2:0] of the 8-bit immediate operand and VCMPPD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPD supports 20h encoding values, the comparison types echo
those of CMPPD on 4-bit boundaries. The following table shows the immediate operand value for
CMPPD and each of the VCMPPD echoes.
Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations.

CMPPD
VCMPPD

Compare
Packed Double-Precision Floating-Point

60 CMPPD, VCMPPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

The following alias mnemonics for (V)CMPPD with appropriate value of imm8 are supported.

CMPPD is an SSE2 instruction and VCMPPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception

00h, 08h, 10h, 18h Equal FALSE No

01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes

Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No

04h, 0Ch, 14h, 1Ch Not equal TRUE No

05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes

Not greater than or equal
(swapped operands)

TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8

(V)CMPEQPD 00h, 08h, 10h, 18h

(V)CMPLTPD 01h, 09h, 11h, 19h

(V)CMPLEPD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPD 03h, 0Bh, 13h, 1Bh

(V)CMPNEQPD 04h, 0Ch, 14h, 1Ch

(V)CMPNLTPD 05h, 0Dh, 15h, 1Dh

(V)CMPNLEPD 06h, 0Eh, 16h, 1Eh

(V)CMPORDPD 07h, 0Fh, 17h, 1Fh

Mnemonic Opcode Description

CMPPD xmm1, xmm2/mem128, imm8 66 0F C2 /r ib Compares two pairs of values in xmm1 to
corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Instruction Reference CMPPD, VCMPPD 61

26568—Rev. 3.14—December 2011 AMD64 Technology

Related Instructions

(V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCMPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.01 C2 /r ib

VCMPPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00001 X.src.1.01 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

62 CMPPS, VCMPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Compares each of the four packed single-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 32-bit element of the destination. When a comparison is TRUE, all 32 bits of the desti-
nation element are set; when a comparison is FALSE, all 32 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.
Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.
QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.
There are legacy and extended forms of the instruction:

CMPPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Comparison type is specified
by bits [2:0] of an immediate byte operand.

VCMPPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Comparison type is specified by bits
[4:0] of an immediate byte operand.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination operand is a YMM register. Comparison type is speci-
fied by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPS uses bits [2:0] of the 8-bit immediate operand and VCMPPS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPS supports 20h encoding values, the comparison types echo
those of CMPPS on 4-bit boundaries. The following table shows the immediate operand value for
CMPPS and each of the VCMPPDS echoes.
Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown in
with the directly supported comparison operations.

CMPPS
VCMPPS

Compare
Packed Single-Precision Floating-Point

Instruction Reference CMPPS, VCMPPS 63

26568—Rev. 3.14—December 2011 AMD64 Technology

The following alias mnemonics for (V)CMPPS with appropriate value of imm8 are supported.

CMPPS is an SSE1 instruction and VCMPPS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception

00h, 08h, 10h, 18h Equal FALSE No

01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes

Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No

04h, 0Ch, 14h, 1Ch Not equal TRUE No

05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes

Not greater than or equal
(swapped operands)

TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8

(V)CMPEQPS 00h, 08h, 10h, 18h

(V)CMPLTPS 01h, 09h, 11h, 19h

(V)CMPLEPS 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPS 03h, 0Bh, 13h, 1Bh

(V)CMPNEQPS 04h, 0Ch, 14h, 1Ch

(V)CMPNLTPS 05h, 0Dh, 15h, 1Dh

(V)CMPNLEPS 06h, 0Eh, 16h, 1Eh

(V)CMPORDPS 07h, 0Fh, 17h, 1Fh

Mnemonic Opcode Description

CMPPS xmm1, xmm2/mem128, imm8 0F C2 /r ib Compares four pairs of values in xmm1 to
corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

64 CMPPS, VCMPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)CMPPD, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCMPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.00 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPSD, VCMPSD 65

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares a double-precision floating-point value in the low-order 64 bits of the first source operand
with a double-precision floating-point value in the low-order 64 bits of the second source operand and
writes the result to the low-order 64 bits of the destination. When a comparison is TRUE, all 64 bits
of the destination element are set; when a comparison is FALSE, all 64 bits of the destination element
are cleared. Comparison type is specified by an immediate byte operand.
Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.
QNaN operands generate an Invalid Operation Exception (IE) only when the comparison type is not
Equal, Unequal, Ordered, or Unordered. SNaN operands always generate an IE.
There are legacy and extended forms of the instruction:

CMPSD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 64-bit memory location. The first source register is also the destination. Bits [127:64] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected. Comparison type is specified by bits [2:0] of an immediate byte operand.
This CMPSD instruction must not be confused with the same-mnemonic CMPSD (compare strings
by doubleword) instruction in the general-purpose instruction set. Assemblers can distinguish the
instructions by the number and type of operands.

VCMPSD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the desti-
nation are copied from bits [127:64] of the first source. Bits [255:128] of the YMM register that
corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate
byte operand.

Immediate Operand Encoding

CMPSD uses bits [2:0] of the 8-bit immediate operand and VCMPSD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSD supports 20h encoding values, the comparison types echo
those of CMPSD on 4-bit boundaries. The following table shows the immediate operand value for
CMPSD and each of the VCMPSD echoes.
Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations. When operands are swapped, the first source
XMM register is overwritten by the result.

CMPSD
VCMPSD

Compare
Scalar Double-Precision Floating-Point

66 CMPSD, VCMPSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

The following alias mnemonics for (V)CMPSD with appropriate value of imm8 are supported.

CMPSD is an SSE2 instruction and VCMPSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception

00h, 08h, 10h, 18h Equal FALSE No

01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes

Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No

04h, 0Ch, 14h, 1Ch Not equal TRUE No

05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes

Not greater than or equal
(swapped operands)

TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8

(V)CMPEQSD 00h, 08h, 10h, 18h

(V)CMPLTSD 01h, 09h, 11h, 19h

(V)CMPLESD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSD 03h, 0Bh, 13h, 1Bh

(V)CMPNEQSD 04h, 0Ch, 14h, 1Ch

(V)CMPNLTSD 05h, 0Dh, 15h, 1Dh

(V)CMPNLESD 06h, 0Eh, 16h, 1Eh

(V)CMPORDSD 07h, 0Fh, 17h, 1Fh

Mnemonic Opcode Description

CMPSD xmm1, xmm2/mem64, imm8 F2 0F C2 /r ib Compares double-precision floating-point
values in the low-order 64 bits of xmm1 with
corresponding values in xmm2 or mem64.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Instruction Reference CMPSD, VCMPSD 67

26568—Rev. 3.14—December 2011 AMD64 Technology

Related Instructions

(V)CMPPD, (V)CMPPS, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCMPSD xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.00001 X.src.X.11 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

68 CMPSS, VCMPSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Compares a single-precision floating-point value in the low-order 32 bits of the first source operand
with a single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the result to the low-order 32 bits of the destination. When a comparison is TRUE, all 32 bits
of the destination element are set; when a comparison is FALSE, all 32 bits of the destination element
are cleared. Comparison type is specified by an immediate byte operand.
Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.
QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.
There are legacy and extended forms of the instruction:

CMPSS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

VCMPSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the desti-
nation are copied from bits [127L32] of the first source. Bits [255:128] of the YMM register that
corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate
byte operand.

Immediate Operand Encoding

CMPSS uses bits [2:0] of the 8-bit immediate operand and VCMPSS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSS supports 20h encoding values, the comparison types echo
those of CMPSS on 4-bit boundaries. The following table shows the immediate operand value for
CMPSS and each of the VCMPSS echoes.
Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
below with the directly supported comparison operations. When operands are swapped, the first
source XMM register is overwritten by the result.

CMPSS
VCMPSS

Compare
Scalar Single-Precision Floating-Point

Instruction Reference CMPSS, VCMPSS 69

26568—Rev. 3.14—December 2011 AMD64 Technology

The following alias mnemonics for (V)CMPSS with appropriate value of imm8 are supported.

CMPSS is an SSE1 instruction and VCMPSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Immediate Operand
Value

Compare Operation Result If NaN Operand QNaN Operand Causes
Invalid Operation

Exception

00h, 08h, 10h, 18h Equal FALSE No

01h, 09h, 11h, 19h Less than FALSE Yes

Greater than
(swapped operands)

FALSE Yes

02h, 0Ah, 12h, 1Ah Less than or equal FALSE Yes

Greater than or equal
(swapped operands)

FALSE Yes

03h, 0Bh, 13h, 1Bh Unordered TRUE No

04h, 0Ch, 14h, 1Ch Not equal TRUE No

05h, 0Dh, 15h, 1Dh Not less than TRUE Yes

Not greater than
(swapped operands)

TRUE Yes

06h, 0Eh, 16h, 1Eh Not less than or equal TRUE Yes

Not greater than or equal
(swapped operands)

TRUE Yes

07h, 0Fh, 17h, 1Fh Ordered FALSE No

Mnemonic Implied Value of imm8

(V)CMPEQSS 00h, 08h, 10h, 18h

(V)CMPLTSS 01h, 09h, 11h, 19h

(V)CMPLESS 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSS 03h, 0Bh, 13h, 1Bh

(V)CMPNEQSS 04h, 0Ch, 14h, 1Ch

(V)CMPNLTSS 05h, 0Dh, 15h, 1Dh

(V)CMPNLESS 06h, 0Eh, 16h, 1Eh

(V)CMPORDSS 07h, 0Fh, 17h, 1Fh

Mnemonic Opcode Description

CMPSS xmm1, xmm2/mem32, imm8 F3 0F C2 /r ib Compares single-precision floating-point
values in the low-order 32 bits of xmm1 with
corresponding values in xmm2 or mem32.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

70 CMPSS, VCMPSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCMPSS xmm1, xmm2, xmm3/mem32, imm8 C4 RXB.00001 X.src.X.10 C2 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference COMISD, VCOMISD 71

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares a double-precision floating-point value in the low-order 64 bits of an operand with a dou-
ble-precision floating-point value in the low-order 64 bits of another operand or a 64-bit memory
location and sets rFLAGS.ZF, PF, and CF to show the result of the comparison:

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:

COMISD

The first source operand is an XMM register and the second source operand is another XMM register
or a 64-bit memory location.

VCOMISD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location.

COMISD is an SSE2 instruction and VCOMISD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISS, (V)UCOMISD, (V)UCOMISS

COMISD
VCOMISD

Compare Ordered
Scalar Double-Precision Floating-Point

Comparison ZF PF CF

NaN input 1 1 1

operand 1 > operand 2 0 0 0

operand 1 < operand 2 0 0 1

operand 1 == operand 2 1 0 0

Mnemonic Opcode Description

COMISD xmm1, xmm2/mem64 66 0F 2F /r Compares double-precision floating-point values in xmm1
with corresponding values in xmm2 or mem64 and sets
rFLAGS.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCOMISD xmm1, xmm2 /mem64 C4 RXB.00001 X.src.X.01 2F /r

72 COMISD, VCOMISD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 M M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference COMISS, VCOMISS 73

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares a double-precision floating-point value in the low-order 32 bits of an operand with a dou-
ble-precision floating-point value in the low-order 32 bits of another operand or a 32-bit memory
location and sets rFLAGS.ZF, PF, and CF to show the result of the comparison:

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.

There are legacy and extended forms of the instruction:

COMISS

The first source operand is an XMM register and the second source operand is another XMM register
or a 32-bit memory location.

VCOMISS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location.

COMISS is an SSE1 instruction and VCOMISS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)UCOMISD, (V)UCOMISS

COMISS
VCOMISS

Compare
Ordered Scalar Single-Precision Floating-Point

Comparison ZF PF CF

NaN input 1 1 1

operand 1 > operand 2 0 0 0

operand 1 < operand 2 0 0 1

operand 1 == operand 2 1 0 0

Mnemonic Opcode Description

COMISS xmm1, xmm2/mem32 0F 2F /r Compares single-precision floating-point values in xmm1
with corresponding values in xmm2 or mem32 and sets
rFLAGS.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCOMISS xmm1, xmm2 /mem32 C4 RXB.00001 X.src.X.00 2F /r

74 COMISS, VCOMISS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 M M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTDQ2PD, VCVTDQ2PD 75

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts packed 32-bit signed integer values to packed double-precision floating-point values and
writes the converted values to the destination.
There are legacy and extended forms of the instruction:

CVTDQ2PD

Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted values to an XMM register. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VCVTDQ2PD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted values to an XMM register. Bits [255:128] of the YMM register that corresponds to the desti-
nation are cleared.
YMM Encoding
Converts four packed 32-bit signed integer values in the low-order 128 bits of a YMM register or a
256-bit memory location to four packed double-precision floating-point values and writes the con-
verted values to a YMM register.

CVTDQ2PD is an SSE2 instruction and VCVTDQ2PD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected

None

CVTDQ2PD
VCVTDQ2PD

Convert Packed Doubleword Integers
to Packed Double-Precision Floating-Point

Mnemonic Opcode Description

CVTDQ2PD xmm1, xmm2/mem64 F3 0F E6 /r Converts packed doubleword signed integers in xmm2
or mem64 to double-precision floating-point values in
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.10 E6 /r

VCVTDQ2PD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 E6 /r

76 CVTDQ2PD, VCVTDQ2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTDQ2PS, VCVTDQ2PS 77

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts packed 32-bit signed integer values to packed single-precision floating-point values and
writes the converted values to the destination. When the result is an inexact value, it is rounded as
specified by MXCSR.RC.
There are legacy and extended forms of the instruction:

CVTDQ2PS

Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location
to four packed single-precision floating-point values and writes the converted values to an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTDQ2PS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location
to four packed double-precision floating-point values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Converts eight packed 32-bit signed integer values in a YMM register or a 256-bit memory location
to eight packed double-precision floating-point values and writes the converted values to a YMM reg-
ister.

CVTDQ2PS is an SSE2 instruction and the VCVTDQ2PS instruction is an AVX instruction. Support
for these instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

rFLAGS Affected

None

CVTDQ2PS
VCVTDQ2PS

Convert Packed Doubleword Integers
to Packed Single-Precision Floating-Point

Mnemonic Opcode Description

CVTDQ2PS xmm1, xmm2/mem128 0F 5B /r Converts packed doubleword integer values in xmm2 or
mem128 to packed single-precision floating-point
values in xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTDQ2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 5B /r

VCVTDQ2PS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 5B /r

78 CVTDQ2PS, VCVTDQ2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTPD2DQ, VCVTPD2DQ 79

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts packed double-precision floating-point values to packed signed doubleword integers and
writes the converted values to the destination.
When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value (8000_0000h)
when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:
CVTPD2DQ
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPD2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword values and writes the converted values to an XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

CVTPD2DQ is an SSE2 instruction and VCVTPD2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

CVTPD2DQ
VCVTPD2DQ

Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integer

Mnemonic Opcode Description

CVTPD2DQ xmm1, xmm2/mem128 F2 0F E6 /r Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.11 E6 /r

VCVTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.11 E6 /r

80 CVTPD2DQ, VCVTPD2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)CVTDQ2PD, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTPD2PS, VCVTPD2PS 81

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts packed double-precision floating-point values to packed single-precision floating-point val-
ues and writes the converted values to the low-order doubleword elements of the destination. When
the result is an inexact value, it is rounded as specified by MXCSR.RC.
There are legacy and extended forms of the instruction:

CVTPD2PS

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VCVTPD2PS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.
YMM Encoding
Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four packed single-precision floating-point values and writes the converted values to a
YMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

CVTPD2PS is an SSE2 instruction and VCVTPD2PS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CVTPS2PD, (V)CVTSD2SS, (V)CVTSS2SD

rFLAGS Affected

None

CVTPD2PS
VCVTPD2PS

Convert Packed Double-Precision Floating-Point
to Packed Single-Precision Floating-Point

Mnemonic Opcode Description

CVTPD2PS xmm1, xmm2/mem128 66 0F 5A /r Converts packed double-precision floating-point
values in xmm2 or mem128 to packed single-
precision floating-point values in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPD2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5A /r

VCVTPD2PS xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5A /r

82 CVTPD2PS, VCVTPD2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTPS2DQ, VCVTPS2DQ 83

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.
When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value (8000_0000h)
when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:

CVTPS2DQ

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPS2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

CVTPS2DQ is an SSE2 instruction and VCVTPS2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CVTDQ2PS, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

CVTPS2DQ
VCVTPS2DQ

Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers

Mnemonic Opcode Description

CVTPS2DQ xmm1, xmm2/mem128 66 0F 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5B /r

VCVTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5B /r

84 CVTPS2DQ, VCVTPS2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTPS2PD, VCVTPS2PD 85

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts packed single-precision floating-point values to packed double-precision floating-point val-
ues and writes the converted values to the destination.
There are legacy and extended forms of the instruction:

CVTPS2PD

Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VCVTPS2PD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.
YMM Encoding
Converts four packed single-precision floating-point values in a YMM register or a 128-bit memory
location to four double-precision floating-point values and writes the converted values to a YMM
register.

CVTPS2PD is an SSE2 instruction and VCVTPS2PD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CVTPD2PS, (V)CVTSD2SS, (V)CVTSS2SD

rFLAGS Affected

None

CVTPS2PD
VCVTPS2PD

Convert Packed Single-Precision Floating-Point
to Packed Double-Precision Floating-Point

Mnemonic Opcode Description

CVTPS2PD xmm1, xmm2/mem64 0F 5A /r Converts packed single-precision floating-point values
in xmm2 or mem64 to packed double-precision floating-
point values in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPS2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.00 5A /r

VCVTPS2PD ymm1, ymm2/mem128 C4 RXB.00001 X.1111.1.00 5A /r

86 CVTPS2PD, VCVTPS2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CVTSD2SI, VCVTSD2SI 87

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts a scalar double-precision floating-point value to a 32-bit or 64-bit signed integer value and
writes the converted value to a general-purpose register.
When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the instruction returns the indefinite
integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers) when the
invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:

CVTSD2SI

The legacy form has two encodings:
• When REX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When REX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTSD2SI

The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When VEX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

CVTSD2SI is an SSE2 instruction and VCVTSD2SI is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

CVTSD2SI
VCVTSD2SI

Convert Scalar Double-Precision Floating-Point
to Signed Doubleword or Quadword Integer

Mnemonic Opcode Description

CVTSD2SI reg32, xmm1/mem64 F2 (W0) 0F 2D /r Converts a packed double-precision floating-point value
in xmm1 or mem64 to a doubleword integer in reg32.

CVTSD2SI reg64, xmm1/mem64 F2 (W1) 0F 2D /r Converts a packed double-precision floating-point value
in xmm1 or mem64 to a quadword integer in reg64.

88 CVTSD2SI, VCVTSD2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2D /r

VCVTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2D /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Instruction Reference CVTSD2SI, VCVTSD2SI 89

26568—Rev. 3.14—December 2011 AMD64 Technology

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

90 CVTSD2SS, VCVTSD2SS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts a scalar double-precision floating-point value to a scalar single-precision floating-point
value and writes the converted value to the low-order 32 bits of the destination. When the result is an
inexact value, it is rounded as specified by MXCSR.RC.
There are legacy and extended forms of the instruction:

CVTSD2SS

Converts a scalar double-precision floating-point value in the low-order 64 bits of the second source
XMM register or a 64-bit memory location to a scalar single-precision floating-point value and writes
the converted value to the low-order 32 bits of a destination XMM register. Bits [127:32] of the desti-
nation are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VCVTSD2SS

The extended form of the instruction has a 128-bit encoding only.
Converts a scalar double-precision floating-point value in the low-order 64 bits of a source XMM
register or a 64-bit memory location to a scalar single-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the destina-
tion are copied from the first source XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

CVTSD2SS is an SSE2 instruction and VCVTSD2SS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSS2SD

rFLAGS Affected

None

CVTSD2SS
VCVTSD2SS

Convert Scalar Double-Precision Floating-Point
to Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

CVTSD2SS xmm1, xmm2/mem64 F2 0F 5A /r Converts a scalar double-precision floating-point
value in xmm2 or mem64 to a scalar single-precision
floating-point value in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSD2SS xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5A /r

Instruction Reference CVTSD2SS, VCVTSD2SS 91

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

92 CVTSI2SD, VCVTSI2SD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts a signed integer value to a double-precision floating-point value and writes the converted
value to a destination register. When the result of the conversion is an inexact value, the value is
rounded as specified by MXCSR.RC.
There are legacy and extended forms of the instruction:

CVTSI2SD

The legacy form as two encodings:
• When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

• When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit double-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the
destination XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SD

The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• When VEX.W = 1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

CVTSI2SD is an SSE2 instruction and VCVTSI2SD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

CVTSI2SD
VCVTSI2SD

Convert Signed Doubleword or Quadword Integer
to Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

CVTSI2SD xmm1, reg32/mem32 F2 (W0) 0F 2A /r Converts a doubleword integer in reg32 or mem32 to a
double-precision floating-point value in xmm1.

CVTSI2SD xmm1, reg64/mem64 F2 (W1) 0F 2A /r Converts a quadword integer in reg64 or mem64 to a
double-precision floating-point value in xmm1.

Instruction Reference CVTSI2SD, VCVTSI2SD 93

26568—Rev. 3.14—December 2011 AMD64 Technology

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSI2SD xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.11 2A /r

VCVTSI2SD xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X.11 2A /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

94 CVTSI2SS, VCVTSI2SS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts a signed integer value to a single-precision floating-point value and writes the converted
value to an XMM register. When the result of the conversion is an inexact value, the value is rounded
as specified by MXCSR.RC.
There are legacy and extended forms of the instruction:

CVTSI2SS

The legacy form has two encodings:
• When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

• When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit double-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:32] of the
destination XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SS

The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-

purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• When VEX.W = 1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

CVTSI2SS is an SSE1 instruction and VCVTSI2SS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

CVTSI2SS
VCVTSI2SS

Convert Signed Doubleword or Quadword Integer
to Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

CVTSI2SS xmm1, reg32/mem32 F3 (W0) 0F 2A /r Converts a doubleword integer in reg32 or mem32 to a
single-precision floating-point value in xmm1.

CVTSI2SS xmm1, reg64/mem64 F3 (W1) 0F 2A /r Converts a quadword integer in reg64 or mem64 to a
single-precision floating-point value in xmm1.

Instruction Reference CVTSI2SS, VCVTSI2SS 95

26568—Rev. 3.14—December 2011 AMD64 Technology

Related Instructions

(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSI2SS xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.10 2A /r

VCVTSI2SS xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X.10 2A /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

96 CVTSS2SD, VCVTSS2SD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts a scalar single-precision floating-point value to a scalar double-precision floating-point
value and writes the converted value to the low-order 64 bits of the destination.
There are legacy and extended forms of the instruction:

CVTSS2SD

Converts a scalar single-precision floating-point value in the low-order 32 bits of a source XMM reg-
ister or a 32-bit memory location to a scalar double-precision floating-point value and writes the con-
verted value to the low-order 64 bits of a destination XMM register. Bits [127:64] of the destination
and bits [255:128] of the corresponding YMM register are not affected.

VCVTSS2SD

The extended form of the instruction has a 128-bit encoding only.
Converts a scalar single-precision floating-point value in the low-order 32 bits of the second source
XMM register or 32-bit memory location to a scalar double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the des-
tination are copied from the first source XMM register. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

CVTSD2SD is an SSE2 instruction and VCVTSD2SD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSD2SS

CVTSS2SD
VCVTSS2SD

Convert Scalar Single-Precision Floating-Point
to Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

CVTSS2SD xmm1, xmm2/mem32 F3 0F 5A /r Converts a scalar single-precision floating-point value
in xmm2 or mem32 to a scalar double-precision
floating-point value in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSS2SD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.10 5A /r

Instruction Reference CVTSS2SD, VCVTSS2SD 97

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

98 CVTSS2SI, VCVTSS2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.
When the result of the conversion is an inexact value, the value is rounded as specified by
MXCSR.RC. When the floating-point value is a NaN, infinity, or the result of the conversion is larger
than the maximum signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the
indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers)
is returned when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:

CVTSS2SI

The legacy form has two encodings:
• When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

• When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

VCVTSS2SI

The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

• When VEX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

CVTSS2SI is an SSE1 instruction and VCVTSS2SI is an AVX instruction. Support for these instruc-
tions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

CVTSS2SI
VCVTSS2SI

Convert Scalar Single-Precision Floating-Point
to Signed Doubleword or Quadword Integer

Mnemonic Opcode Description

CVTSS2SI reg32, xmm1/mem32 F3 (W0) 0F 2D /r Converts a single-precision floating-point value in
xmm1 or mem32 to a 32-bit integer value in reg32

CVTSS2SI reg64, xmm1//mem64 F3 (W1) 0F 2D /r Converts a single-precision floating-point value in
xmm1 or mem64 to a 64-bit integer value in reg64

Instruction Reference CVTSS2SI, VCVTSS2SI 99

26568—Rev. 3.14—December 2011 AMD64 Technology

Related Instructions

(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTTPS2DQ, (V)CVTTSS2SI

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTSS2SI reg32, xmm1/mem32 C4 RXB.00001 0.1111.X.10 2D /r

VCVTSS2SI reg64, xmm1/mem64 C4 RXB.00001 1.1111.X.10 2D /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

100 CVTTPD2DQ, VCVTTPD2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts packed double-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.
When the result is an inexact value, it is truncated (rounded toward zero). When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value (8000_0000h) when the
invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:

CVTTPD2DQ

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VCVTTPD2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.
YMM Encoding
Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword integer values and writes the converted values to an XMM regis-
ter. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

CVTTPD2DQ is an SSE2 instruction and VCVTTPD2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

CVTTPD2DQ
VCVTTPD2DQ

Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integer, Truncated

Mnemonic Opcode Description

CVTTPD2DQ xmm1, xmm2/mem128 66 0F E6 /r Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmm1. Truncates inexact result.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 E6 /r

VCVTTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 E6 /r

Instruction Reference CVTTPD2DQ, VCVTTPD2DQ 101

26568—Rev. 3.14—December 2011 AMD64 Technology

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTSD2SI

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

102 CVTTPS2DQ, VCVTTPS2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.
When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the max-
imum signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:

CVTTPS2DQ

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. The high-order 128-bits of the corresponding YMM register are not affected.

VCVTTPS2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

CVTTPS2DQ is an SSE2 instruction and VCVTTPS2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTSS2SI

CVTTPS2DQ
VCVTTPS2DQ

Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPS2DQ xmm1, xmm2/mem128 F3 0F 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1. Truncates inexact
result.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 5B /r

VCVTTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 5B /r

Instruction Reference CVTTPS2DQ, VCVTTPS2DQ 103

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

104 CVTTSD2SI, VCVTTSD2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts a scalar double-precision floating-point value to a signed integer value and writes the con-
verted value to a general-purpose register.
When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the max-
imum signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the instruction
returns the indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-
bit integers) when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:

CVTTSD2SI

The legacy form of the instruction has two encodings:
• When REX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When REX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTTSD2SI

The extended form of the instruction has two 128-bit encodings.
• When VEX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits

of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

• When VEX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

CVTTSD2SI is an SSE2 instruction and VCVTTSD2SI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

CVTTSD2SI
VCVTTSD2SI

Convert Scalar Double-Precision Floating-Point
to Signed Double- or Quadword Integer, Truncated

Mnemonic Opcode Description
CVTTSD2SI reg32, xmm1/mem64 F2 (W0) 0F 2C /r Converts a packed double-precision floating-point

value in xmm1 or mem64 to a doubleword integer in
reg32. Truncates inexact result.

CVTTSD2SI reg64, xmm1/mem64 F2 (W1) 0F 2C /r Converts a packed double-precision floating-point
value in xmm1 or mem64 to a quadword integer in
reg64.Truncates inexact result.

Instruction Reference CVTTSD2SI, VCVTTSD2SI 105

26568—Rev. 3.14—December 2011 AMD64 Technology

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD,
(V)CVTTPD2DQ

MXCSR Flags Affected

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2C /r
VCVTTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2C /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

106 CVTTSS2SI, VCVTTSS2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.
When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the max-
imum signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the indefinite inte-
ger value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers) is returned
when the invalid-operation exception (IE) is masked.
There are legacy and extended forms of the instruction:

CVTTSS2SI

The legacy form of the instruction has two encodings:
• When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

• When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

VCVTTSS2SI

The extended form of the instruction has two 128-bit encodings:
• When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an

XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

• When VEX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

CVTTSS2SI is an SSE1 instruction and VCVTTSS2SI is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

CVTTSS2SI
VCVTTSS2SI

Convert Scalar Single-Precision Floating-Point
to Signed Double or Quadword Integer, Truncated

Instruction Reference CVTTSS2SI, VCVTTSS2SI 107

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding

Related Instructions

(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ

MXCSR Flags Affected

Mnemonic Opcode Description

CVTTSS2SI reg32, xmm1/mem32 F3 (W0) 0F 2C /r Converts a single-precision floating-point value in
xmm1 or mem32 to a 32-bit integer value in reg32.
Truncates inexact result.

CVTTSS2SI reg64, xmm1/mem64 F3 (W1) 0F 2C /r Converts a single-precision floating-point value in
xmm1 or mem64 to a 64-bit integer value in reg64.
Truncates inexact result.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTTSS2SI reg32, xmm1/mem32 C4 RXB.00001 0.1111.X.10 2C /r

VCVTTSS2SI reg64, xmm1/mem64 C4 RXB.00001 1.1111.X.10 2C /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

108 CVTTSS2SI, VCVTTSS2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference DIVPD, VDIVPD 109

26568—Rev. 3.14—December 2011 AMD64 Technology

Divides each of the packed double-precision floating-point values of the first source operand by the
corresponding packed double-precision floating-point values of the second source operand and writes
the quotients to the destination.
There are legacy and extended forms of the instruction:

DIVPD

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes the two results a destination XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.
YMM Encoding
Divides four packed double-precision floating-point values in the first source YMM register by the
corresponding packed double-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

DIVPD is an SSE2 instruction and VDIVPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)DIVPS, (V)DIVSD, (V)DIVSS

DIVPD
VDIVPD

Divide
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

DIVPD xmm1, xmm2/mem128 66 0F 5E /r Divides packed double-precision floating-point values in
xmm1 by the packed double-precision floating-point
values in xmm2 or mem128. Writes quotients to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VDIVPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5E /r

VDIVPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5E /r

110 DIVPD, VDIVPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DIVPS, VDIVPS 111

26568—Rev. 3.14—December 2011 AMD64 Technology

Divides each of the packed single-precision floating-point values of the first source operand by the
corresponding packed single-precision floating-point values of the second source operand and writes
the quotients to the destination.
There are legacy and extended forms of the instruction:

DIVPS

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes two results to a third destination XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Divides eight packed single-precision floating-point values in the first source YMM register by the
corresponding packed single-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

DIVPS is an SSE1 instruction and VDIVPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)DIVPD, (V)DIVSD, (V)DIVSS

DIVPS
VDIVPS

Divide
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

DIVPS xmm1, xmm2/mem128 0F 5E /r Divides packed single-precision floating-point values in
xmm1 by the corresponding values in xmm2 or mem128.
Writes quotients to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VDIVPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5E /r

VDIVPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5E /r

112 DIVPS, VDIVPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DIVSD, VDIVSD 113

26568—Rev. 3.14—December 2011 AMD64 Technology

Divides the double-precision floating-point value in the low-order quadword of the first source oper-
and by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the quotient to the low-order quadword of the destination.
There are legacy and extended forms of the instruction:

DIVSD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination are not affected. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VDIVSD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. Bits [127:64] of the first source operand are copied to bits [127:64] of
the destination. The destination is a third XMM register. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

DIVSD is an SSE2 instruction and VDIVSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)DIVPD, (V)DIVPS, (V)DIVSS

MXCSR Flags Affected

DIVSD
VDIVSD

Divide
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

DIVSD xmm1, xmm2/mem64 F2 0F 5E /r Divides the double-precision floating-point value in the low-
order 64 bits of xmm1by the corresponding value in xmm2
or mem64. Writes quotient to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VDIVSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5E /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

114 DIVSD, VDIVSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DIVSS, VDIVSS 115

26568—Rev. 3.14—December 2011 AMD64 Technology

Divides the single-precision floating-point value in the low-order doubleword of the first source oper-
and by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the quotient to the low-order doubleword of the destination.
There are legacy and extended forms of the instruction:

DIVSS

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination register. Bits [127:32]
of the destination are not affected. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VDIVSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source operand are copied to bits [127:32] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

DIVSS is an SSE1 instruction and VDIVSS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)DIVPD, (V)DIVPS, (V)DIVSD

MXCSR Flags Affected

DIVSS
VDIVSS

Divide Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

DIVSS xmm1, xmm2/mem32 F3 0F 5E /r Divides a single-precision floating-point value in the low-
order doubleword of xmm1 by a corresponding value in
xmm2 or mem32. Writes the quotient to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VDIVSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5E /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

116 DIVSS, VDIVSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference DPPD, VDPPD 117

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.
Selectively multiplies packed double-precision values in a source operand by the corresponding val-
ues in another source operand, writes the results to a temporary location, adds the results, writes the
sum to a second temporary location and selectively writes the sum to a destination.
Mask bits [5:4] of an 8-bit immediate operand perform multiplicative selection. Bit 5 selects bits
[127:64] of the source operands; bit 4 selects bits [63:0] of the source operands. When a mask bit = 1,
the corresponding packed double-precision floating point values are multiplied and the product is
written to the corresponding position of a 128-bit temporary location. When a mask bit = 0, the corre-
sponding position of the temporary location is cleared.
After the two 64-bit values in the first temporary location are added and written to the 64-bit second
temporary location, mask bits [1:0] of the same 8-bit immediate operand perform write selection. Bit
1 selects bits [127:64] of the destination; bit 0 selects bits [63:0] of the destination. When a mask bit =
1, the 64-bit value of the second temporary location is written to the corresponding position of the
destination. When a mask bit = 0, the corresponding position of the destination is cleared.
When the operation produces a NaN, its value is determined as follows.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when both
multiplications produce NaNs, the one that corresponds to bits [64:0] is written to all indicated fields
of the destination, regardless of how those NaNs were generated from the sources. When the high-
order multiplication produces NaNs and the low-order multiplication produces infinities of opposite
signs, the real indefinite QNaN (produced as the sum of the infinities) is written to the destination.
NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

DPPD
VDPPD

Dot Product
Packed Double-Precision Floating-Point

Source Operands (in either order) NaN Result1

QNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of QNaN

SNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of SNaN,
converted to a QNaN2

QNaN QNaN First operand

QNaN SNaN First operand
(converted to QNaN if SNaN

SNaN SNaN First operand
converted to a QNaN2

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

118 DPPD, VDPPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

There are legacy and extended forms of the instruction:

DPPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VDPPD

The extended form of the instruction has a single 128-bit encoding.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

DPPD is an SSE4.1 instruction and VDPPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)DPPS

MXCSR Flags Affected

Mnemonic Opcode Description

DPPD xmm1, xmm2/mem128, imm8 66 0F 3A 41 /r ib Selectively multiplies packed double-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VDPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 41 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Instruction Reference DPPD, VDPPD 119

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

120 DPPS, VDPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.
Selectively multiplies packed single-precision values in a source operand by corresponding values in
another source operand, writes results to a temporary location, adds pairs of results, writes the sums to
additional temporary locations, and selectively writes a cumulative sum to a destination.
Mask bits [7:4] of an 8-bit immediate operand perform multiplicative selection. Each bit selects a 32-
bit segment of the source operands; bit 7 selects bits [127:96], bit 6 selects bits [95:64], bit 5 selects
bits [63:32], and bit 4 selects bits [31:0]. When a mask bit = 1, the corresponding packed single-preci-
sion floating point values are multiplied and the product is written to the corresponding position of a
128-bit temporary location. When a mask bit = 0, the corresponding position of the temporary loca-
tion is cleared.
After multiplication, three pairs of 32-bit values are added and written to temporary locations.
Bits [63:32] and [31:0] of temporary location 1 are added and written to 32-bit temporary location 2;
bits [127:96] and [95:64] of temporary location 1 are added and written to 32-bit temporary location
3; then the contents of temporary locations 2 and 3 are added and written to 32-bit temporary location
4.
After addition, mask bits [3:0] of the same 8-bit immediate operand perform write selection. Each bit
selects a 32-bit segment of the source operands; bit 3 selects bits [127:96], bit 2 selects bits [95:64],
bit 1 selects bits [63:32], and bit 0 selects bits [31:0] of the destination. When a mask bit = 1, the 64-
bit value of the fourth temporary location is written to the corresponding position of the destination.
When a mask bit = 0, the corresponding position of the destination is cleared.

For the 256-bit extended encoding, this process is performed on the upper and lower 128 bits of the
affected YMM registers.
When the operation produces a NaN, its value is determined as follows.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when all four
multiplications produce NaNs, the one that corresponds to bits [31:0] is written to all indicated fields

DPPS
VDPPS

Dot Product
Packed Single-Precision Floating-Point

Source Operands (in either order) NaN Result1

QNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of QNaN

SNaN Any non-NaN floating-point value
(or single-operand instruction)

Value of SNaN,
converted to a QNaN2

QNaN QNaN First operand

QNaN SNaN First operand
(converted to QNaN if SNaN

SNaN SNaN First operand
converted to a QNaN2

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

Instruction Reference DPPS, VDPPS 121

26568—Rev. 3.14—December 2011 AMD64 Technology

of the destination, regardless of how those NaNs were generated from the sources. When the two
highest-order multiplication produce NaNs and the two lowest-low-order multiplications produce
infinities of opposite signs, the real indefinite QNaN (produced as the sum of the infinities) is written
to the destination.
NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.
There are legacy and extended forms of the instruction:

DPPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VDPPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

DPPS is an SSE4.1 instruction and VDPPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)DPPD

Mnemonic Opcode Description

DPPS xmm1, xmm2/mem128, imm8 66 0F 3A 40 /r ib Selectively multiplies packed single-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VDPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 40 /r ib

VDPPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 40 /r ib

122 DPPS, VDPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference EXTRACTPS, VEXTRACTPS 123

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies one of four packed single-precision floating-point values from a source XMM register to a
general purpose register or a 32-bit memory location.
Bits [1:0] of an immediate byte operand specify the location of the 32-bit value that is copied. 00b
corresponds to the low word of the source register and 11b corresponds to the high word of the source
register. Bits [7:2] of the immediate operand are ignored.

There are legacy and extended forms of the instruction:

EXTRACTPS

The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location. A 32-bit single-precision value extracted to a general purpose register is zero-
extended to 64-bits.

VEXTRACTPS

The extended form of the instruction has a single 128-bit encoding.
The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location.

EXTRACTPS is an SSE4.1 instruction and VEXTRACTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)INSERTPS

EXTRACTPS
VEXTRACTPS

Extract
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

EXTRACTPS reg32/mem32, xmm1
imm8

66 0F 3A 17 /r ib Extract the single-precision floating-point
element of xmm1 specified by imm8 to
reg32/mem32.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VEXTRACTPS reg32/mem32, xmm1, imm8 C4 RXB.00011 X.1111.0.01 17 /r ib

124 EXTRACTPS, VEXTRACTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference EXTRQ 125

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts specified bits from the lower 64 bits of the first operand (the destination XMM register). The
extracted bits are saved in the least-significant bit positions of the lower quadword of the destination;
the remaining bits in the lower quadword of the destination register are cleared to 0. The upper quad-
word of the destination register is undefined.
The portion of the source data being extracted is defined by the bit index and the field length. The bit
index defines the least-significant bit of the source operand being extracted. Bits [bit index + length
field – 1]:[bit index] are extracted. If the sum of the bit index + length field is greater than 64, the
results are undefined.
For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source [47:32] in bits 15:0, with zeros in bits 63:16.
A value of zero in the field length is defined as a length of 64. If the length field is 0 and the
bit index is 0, bits 63:0 of the source are extracted. For any other value of the bit index, the results are
undefined.
The bit index and field length can be specified as immediate values (second and first immediate oper-
ands, respectively, in the case of the three argument version of the instruction), or they can both be
specified by fields in an XMM source operand. In the latter case, bits [5:0] of the XMM register spec-
ify the number of bits to extract (the field length) and bits [13:8] of the XMM register specify the
index of the first bit in the field to extract. The bit index and field length are each six bits in length;
other bits of the field are ignored.
The diagram below illustrates the operation of this instruction.

EXTRQ Extract Field From Register

XMM1 XMM2

06364127 127

shift right

mask to field length

XMM1
second imm8

06364127 05

shift right

mask to field length

first imm8

05

13 8 5 0

7 7

126 EXTRQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

EXTRQ is an SSE4A instruction. Support for SSE4A instructions is indicated by CPUID
Fn8000_0001_ECX[SSE4A] = 1. Software must check the CPUID bit once per program or library
initialization before using the EXTRQ instruction, or inconsistent behavior may result.

See the CPUID Specification, order# 25481 for more information on feature bits.

Instruction Encoding

Related Instructions

INSERTQ, PINSRW, PEXTRW

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

EXTRQ xmm1, imm8, imm8 66 0F 78 /0 ib ib

Extract field from xmm1, with the least significant bit
of the extracted data starting at the bit index
specified by [5:0] of the second immediate byte, with
the length specified by [5:0] of the first immediate
byte.

EXTRQ xmm1, xmm2 66 0F 79 /r

Extract field from xmm1, with the least significant bit
of the extracted data starting at the bit index
specified by xmm2[13:8], with the length specified
by xmm2[5:0].

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Instruction Reference HADDPD, VHADDPD 127

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds adjacent pairs of double-precision floating-point values in two source operands and writes the
sums to a destination.
There are legacy and extended forms of the instruction:

HADDPD

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination; adds the corresponding doublewords of the
second source XMM register or a 128-bit memory location and writes the sum to bits [127:64] of the
destination. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VHADDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination XMM register; adds the corresponding dou-
blewords of the second source XMM register or a 128-bit memory location and writes the sum to bits
[127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the destination
are cleared.
YMM Encoding
Adds the packed double-precision values in bits [127:64] and bits [63:0] of the of the first source
YMM register and writes the sum to bits [63:0] of the destination YMM register; adds the corre-
sponding doublewords of the second source YMM register or a 256-bit memory location and writes
the sum to bits [127:64] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

HADDPD is an SSE3 instruction and VHADDPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)HADDPS, (V)HSUBPD, (V)HSUBPS

HADDPD
VHADDPD

Horizontal Add
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

HADDPD xmm1, xmm2/mem128 66 0F 7C /r Adds adjacent pairs of double-precision values in xmm1
and xmm2 or mem128. Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VHADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7C /r

VHADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7C /r

128 HADDPD, VHADDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference HADDPS, VHADDPS 129

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds adjacent pairs of single-precision floating-point values in two source operands and writes the
sums to a destination.
There are legacy and extended forms of the instruction:

HADDPS

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM regis-
ter and writes the sum to bits [31:0] of the destination; adds the packed single-precision values in bits
[127:96] and bits [95:64] of the first source register and writes the sum to bits [63:32] of the destina-
tion. Adds the corresponding values in the second source XMM register or a 128-bit memory location
and writes the sum to bits [95:64] and [127:96] of the destination. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VHADDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM regis-
ter and writes the sum to bits [31:0] of the destination XMM register; adds the packed single-preci-
sion values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source XMM register or a
128-bit memory location and writes the sum to bits [95:64] and [127:96] of the destination. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source YMM regis-
ter and writes the sum to bits [31:0] of the destination YMM register; adds the packed single-preci-
sion values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source YMM register or a
256-bit memory location and writes the sums to bits [95:64] and [127:96] of the destination. Performs
the same process for the upper 128 bits of the sources and destination.

HADDPS is an SSE3 instruction and VHADDPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

HADDPS
VHADDPS

Horizontal Add
Packed Single-Precision

Mnemonic Opcode Description
HADDPS xmm1, xmm2/mem128 F2 0F 7C /r Adds adjacent pairs of single-precision values in xmm1

and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VHADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7C /r
VHADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7C /r

130 HADDPS, VHADDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)HADDPD, (V)HSUBPD, (V)HSUBPS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference HSUBPD, VHSUBPD 131

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts adjacent pairs of double-precision floating-point values in two source operands and writes
the sums to a destination.
There are legacy and extended forms of the instruction:

HSUBPD

The first source register is also the destination.
Subtracts the packed double-precision value in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination; subtracts the corre-
sponding values of the second source XMM register or a 128-bit memory location and writes the dif-
ference to bits [127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are not affected.

VHSUBPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination XMM register; sub-
tracts the corresponding values of the second source XMM register or a 128-bit memory location and
writes the difference to bits [127:64] of the destination. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.
YMM Encoding
Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the of
the first source YMM register and writes the difference to bits [63:0] of the destination YMM regis-
ter; subtracts the corresponding values of the second source YMM register or a 256-bit memory loca-
tion and writes the difference to bits [127:64] of the destination. Performs the same process for the
upper 128 bits of the sources and destination.

HSUBPD is an SSE3 instruction and VHSUBPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

HSUBPD
VHSUBPD

Horizontal Subtract
Packed Double-Precision

Mnemonic Opcode Description

HSUBPD xmm1, xmm2/mem128 66 0F 7D /r Subtracts adjacent pairs of double-precision floating-
point values in xmm1 and xmm2 or mem128. Writes the
differences to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VHSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7D /r

VHSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7D /r

132 HSUBPD, VHSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)HSUBPS, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference HSUBPS; VHSUBPS 133

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts adjacent pairs of single-precision floating-point values in two source operands and writes
the differences to a destination.
There are legacy and extended forms of the instruction:

HSUBPS

Subtracts the packed single-precision values in bits [63:32] from the values in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination; subtracts the packed
single-precision values in bits [127:96] from the value in bits [95:64] of the first source register and
writes the difference to bits [63:32] of the destination. Subtracts the corresponding values of the sec-
ond source XMM register or a 128-bit memory location and writes the differences to bits [95:64] and
[127:96] of the destination. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VHSUBPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination XMM register; sub-
tracts the packed single-precision values in bits [127:96] from the value bits [95:64] of the first source
register and writes the sum to bits [63:32] of the destination. Subtracts the corresponding values of the
second source XMM register or a 128-bit memory location and writes the differences to bits [95:64]
and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to the destina-
tion are cleared.
YMM Encoding
Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source YMM register and writes the difference to bits [31:0] of the destination YMM register; sub-
tracts the packed single-precision values in bits [127:96] from the value in bits [95:64] of the first
source register and writes the difference to bits [63:32] of the destination. Subtracts the corresponding
values of the second source YMM register or a 256-bit memory location and writes the differences to
bits [95:64] and [127:96] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

HSUBPS is an SSE3 instruction and VHSUBPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

HSUBPS
VHSUBPS

Horizontal Subtract Packed Single

Mnemonic Opcode Description
HSUBPS xmm1, xmm2/mem128 F2 0F 7D /r Subtracts adjacent pairs of values in xmm1 and xmm2

or mem128. Writes differences to xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VHSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7D /r
VHSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7D /r

134 HSUBPS; VHSUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)HSUBPD, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference INSERTPS, VINSERTPS 135

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies a selected single-precision floating-point value from a source operand to a selected location in
a destination register and optionally clears selected elements of the destination. The legacy and
extended forms of the instruction treat the remaining elements of the destination in different ways.
Selections are specified by three fields of an immediate 8-bit operand:

COUNT_S — The binary value of the field specifies a 32-bit element of a source register, counting
upward from the low-order doubleword. COUNT_S is used only for register source; when the source
is a memory operand, COUNT_S = 0.
COUNT_D — The binary value of the field specifies a 32-bit destination element, counting upward
from the low-order doubleword.
ZMASK — Set a bit to clear a 32-bit element of the destination.
There are legacy and extended forms of the instruction:

INSERTPS

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.
When the source operand is a register, the instruction copies the 32-bit element of the source specified
by Count_S to the location in the destination specified by Count_D, and clears destination elements
as specified by ZMask. Elements of the destination that are not cleared are not affected.
When the source operand is a memory location, the instruction copies a 32-bit value from memory, to
the location in the destination specified by Count_D, and clears destination elements as specified by
ZMask. Elements of the destination that are not cleared are not affected.

VINSERTPS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.
When the second source operand is a register, the instruction copies the 32-bit element of the source
specified by Count_S to the location in the destination specified by Count_D. The other elements of
the destination are either copied from the first source operand or cleared as specified by ZMask.
When the second source operand is a memory location, the instruction copies a 32-bit value from the
source to the location in the destination specified by Count_D. The other elements of the destination
are either copied from the first source operand or cleared as specified by ZMask.

INSERTPS is an SSE4.1 instruction and VINSERTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

INSERTPS
VINSERTPS

Insert
Packed Single-Precision Floating-Point

7 6 5 4 3 2 1 0

COUNT_S COUNT_D ZMASK

136 INSERTPS, VINSERTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)EXTRACTPS

Mnemonic Opcode Description

INSERTPS xmm1, xmm2/mem32, imm8 66 0F 3A 21 /r ib Insert a selected single-precision floating-
point value from xmm2 or from mem32 at a
selected location in xmm1 and clear
selected elements of xmm1. Selections
specified by imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VINSERTPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 21 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference INSERTQ 137

26568—Rev. 3.14—December 2011 AMD64 Technology

Inserts bits from the lower 64 bits of the source operand into the lower 64 bits of the destination oper-
and. No other bits in the lower 64 bits of the destination are modified. The upper 64 bits of the desti-
nation are undefined.
The least-significant l bits of the source operand are inserted into the destination, with the least-signif-
icant bit of the source operand inserted at bit position n, where l and n are defined as the field length
and bit index, respectively.
Bits (field length – 1):0 of the source operand are inserted into bits (bit index + field length – 1):(bit
index) of the destination. If the sum of the bit index + length field is greater than 64, the results are
undefined.
For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source operand[15:0] in bits 47:32. Bits 63:48 and bits 31:0 are not modified.
A value of zero in the field length is defined as a length of 64. If the length field is 0 and the bit index
is 0, bits 63:0 of the source operand are inserted. For any other value of the bit index, the results are
undefined.
The bits to insert are located in the XMM2 source operand. The bit index and field length can be spec-
ified as immediate values or can be specified in the XMM source operand. In the immediate form, the
bit index and the field length are specified by the fourth (second immediate byte) and third operands
(first immediate byte), respectively. In the register form, the bit index and field length are specified in
bits [77:72] and bits [69:64] of the source XMM register, respectively. The bit index and field length
are each six bits in length; other bits in the field are ignored.
The diagram below illustrates the operation of this instruction.

INSERTQ Insert Field

7

XMM1 XMM2

06364127 0127

XMM2
second

06364127 05

select number of bits to insert

select bit position for insert

first

05

imm8 imm8

06364127

XMM1

 69
 64 63

select bit position for insert

select number of bits to insert

77
 72

7

138 INSERTQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

INSERTQ is an SSE4A instruction. Support for SSE4A instructions is indicated CPUID
Fn8000_0001_ECX[SSE4A] = 1. Software must check the CPUID bit once per program or library
initialization before using the INSERTQ instruction, or inconsistent behavior may result.
See the CPUID Specification, order# 25481 for more information about processor feature bits.

Instruction Encoding

Related Instructions

EXTRQ, PINSRW, PEXTRW

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

INSERTQ xmm1, xmm2, imm8,
imm8 F2 0F 78 /r ib ib

Insert field starting at bit 0 of xmm2 with the length
specified by [5:0] of the first immediate byte. This
field is inserted into xmm1 starting at the bit position
specified by [5:0] of the second immediate byte.

INSERTQ xmm1, xmm2 F2 0F 79 /r

Insert field starting at bit 0 of xmm2 with the length
specified by xmm2[69:64]. This field is inserted into
xmm1 starting at the bit position specified by
xmm2[77:72].

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Instruction Reference LDDQU, VLDDQU 139

26568—Rev. 3.14—December 2011 AMD64 Technology

Loads unaligned double quadwords from a memory location to a destination register.
Like the (V)MOVUPD instructions, (V)LDDQU loads a 128-bit or 256-bit operand from an
unaligned memory location. However, to improve performance when the memory operand is actually
misaligned, (V)LDDQU may read an aligned 16 or 32 bytes to get the first part of the operand, and an
aligned 16 or 32 bytes to get the second part of the operand. This behavior is implementation-specific,
and (V)LDDQU may only read the exact 16 or 32 bytes needed for the memory operand. If the mem-
ory operand is in a memory range where reading extra bytes can cause performance or functional
issues, use (V)MOVUPD instead of (V)LDDQU.
Memory operands that are not aligned on 16-byte or 32-byte boundaries do not cause general-protec-
tion exceptions.
There are legacy and extended forms of the instruction:

LDDQU

The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are not
affected.

VLDDQU

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are cleared.
YMM Encoding
The source operand is an unaligned 256-bit memory location. The destination operand is a YMM reg-
ister.

LDDQU is an SSE3 instruction and VLDDQU is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVDQU

LDDQU
VLDDQU

Load
Unaligned Double Quadword

Mnemonic Opcode Description

LDDQU xmm1, mem128 F2 0F F0 /r Loads a 128-bit value from an unaligned mem128 to
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VLDDQU xmm1, mem128 C4 RXB.00001 X.1111.0.11 F0 /r

VLDDQU ymm1, mem256 C4 RXB.00001 X.1111.1.11 F0 /r

140 LDDQU, VLDDQU Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference LDMXCSR, VLDMXCSR 141

26568—Rev. 3.14—December 2011 AMD64 Technology

Loads the MXCSR register with a 32-bit value from memory.
For both legacy LDMXCSR and extended VLDMXCSR forms of the instruction, the source operand
is a 32-bit memory location and the destination operand is the MXCSR.
If an MXCSR load clears a SIMD floating-point exception mask bit and sets the corresponding
exception flag bit, a SIMD floating-point exception is not generated immediately. An exception is
generated only when the next instruction that operates on an XMM or YMM register operand and
causes that particular SIMD floating-point exception to be reported executes.
A general protection exception occurs if the instruction attempts to load non-zero values into reserved
MXCSR bits. Software can use MXCSR_MASK to determine which bits are reserved. For details,
see “128-Bit, 64-Bit, and x87 Programming” in Volume 2.
The MXCSR register is described in “Registers” in Volume 1.

LDMXCSR is an SSE1 instruction and VLDMXCSR is an AVX instruction. Support for these
instructions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)STMXCSR

MXCSR Flags Affected

LDMXCSR
VLDMXCSR

Load
MXCSR Control/Status Register

Mnemonic Opcode Description

LDMXCSR mem32 0F AE /2 Loads MXCSR register with 32-bit value from memory.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VLDMXCSR mem32 C4 RXB.00001 X.1111.0.00 AE /2

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

142 LDMXCSR, VLDMXCSR Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Null data segment used to reference memory.
S S X Attempt to load non-zero values into reserved MXCSR bits

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MASKMOVDQU, VMASKMOVDQU 143

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves bytes from the first source operand to a memory location specified by the DS:rDI register.
Bytes are selected by mask bits in the second source operand. The memory location may be
unaligned.
The mask consists of the most significant bit of each byte of the second source register.
When a mask bit = 1, the corresponding byte of the first source register is written to the destination;
when a mask bit = 0, the corresponding byte is not written.
Exception and trap behavior for elements not selected for storage to memory are implementation
dependent. For instance, a given implementation may signal a data breakpoint or a page fault for
bytes that are zero-masked and not actually written.
The instruction implicitly uses weakly-ordered, write-combining buffering for the data, as described
in “Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple pro-
cessors, this instruction should be used together with a fence instruction in order to ensure data coher-
ency (see “Cache and TLB Management” in Volume 2).
There are legacy and extended forms of the instruction:

MASKMOVDQU

The first source operand is an XMM register and the second source operand is another XMM register.
The destination is a 128-bit memory location.

VMASKMOVDQU

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is another XMM register.
The destination is a 128-bit memory location.

MASKMOVDQU is an SSE2 instruction and VMASKMOVDQU is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MASKMOVPD, (V)MASKMOVPS

MASKMOVDQU
VMASKMOVDQU

Masked Move
Double Quadword Unaligned

Mnemonic Opcode Description

MASKMOVDQU xmm1, xmm2 66 0F F7 /r Move bytes selected by a mask value in xmm2 from
xmm1 to the memory location specified by DS:rDI.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMASKMOVDQU xmm1, xmm2 C4 RXB.00001 X.1111.0.01 F7 /r

144 MASKMOVDQU, VMASKMOVDQU Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXPD, VMAXPD 145

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:

MAXPD

Compares two pairs of packed double-precision floating-point values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMAXPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
Compares four pairs of packed double-precision floating-point values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

MAXPD is an SSE2 instruction and VMAXPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

MAXPD
VMAXPD

Maximum
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MAXPD xmm1, xmm2/mem128 66 0F 5F /r Compares two pairs of packed double-precision values in
xmm1 and xmm2 or mem128 and writes the greater value
to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMAXPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5F /r

VMAXPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5F /r

146 MAXPD, VMAXPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXPS, VMAXPS 147

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:

MAXPS

Compares four pairs of packed single-precision floating-point values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMAXPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
Compares eight pairs of packed single-precision floating-point values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

MAXPS is an SSE1 instruction and VMAXPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

MAXPS
VMAXPS

Maximum
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MAXPS xmm1, xmm2/mem128 0F 5F /r Compares four pairs of packed single-precision values in
xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMAXPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5F /r

VMAXPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5F /r

148 MAXPS, VMAXPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MAXPD, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXSD, VMAXSD 149

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 64 bits of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:

MAXSD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 64-bit memory location. The first source register is also the destination. When the second
source is a 64-bit memory location, the upper 64 bits of the first source register are copied to the des-
tination. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VMAXSD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 64-bit memory location. The destination is an XMM register. When the second source is
a 64-bit memory location, the upper 64 bits of the first source register are copied to the destination.
Bits [127:64] of the destination are copied from bits [127:64] of the first source. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

MAXSD is an SSE2 instruction and VMAXSD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MAXPD, (V)MAXPS, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MAXSD
VMAXSD

Maximum
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

MAXSD xmm1, xmm2/mem64 F2 0F 5F /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the greater value to the low-order 64 bits of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMAXSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5F /r

150 MAXSD, VMAXSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXSS, VMAXSS 151

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 32 bits of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:

MAXSS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMAXSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the desti-
nation are copied from the first source operand. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

MAXSS is an SSE1 instruction and VMAXSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

MAXSS
VMAXSS

Maximum
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

MAXSS xmm1, xmm2/mem32 F3 0F 5F /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the greater value to the low-order 32 bits of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMAXSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5F /r

152 MAXSS, VMAXSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINPD, VMINPD 153

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:

MINPD

Compares two pairs of packed double-precision floating-point values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMINPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
Compares four pairs of packed double-precision floating-point values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

MINPD is an SSE2 instruction and VMINPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

MINPD
VMINPD

Minimum
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MINPD xmm1, xmm2/mem128 66 0F 5D /r Compares two pairs of packed double-precision values in
xmm1 and xmm2 or mem128 and writes the lesser value
to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMINPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5D /r

VMINPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5D /r

154 MINPD, VMINPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPS, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINPS, VMINPS 155

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:

MINPS

Compares four pairs of packed single-precision floating-point values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMINPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
Compares eight pairs of packed single-precision floating-point values.
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

MINPS is an SSE1 instruction and VMINPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

MINPS
VMINPS

Minimum
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MINPS xmm1, xmm2/mem128 0F 5D /r Compares four pairs of packed single-precision values in
xmm1 and xmm2 or mem128 and writes the lesser values
to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMINPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5D /r

VMINPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5D /r

156 MINPS, VMINPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINSD, (V)MINSS

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINSD, VMINSD 157

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 64 bits of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:

MINSD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 64-bit memory location. The first source register is also the destination. Bits [127:64] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMINSD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 64-bit memory location. The destination is an XMM register. Bits [127:64] of the desti-
nation are copied from the first source operand. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

MINSD is an SSE2 instruction and VMINSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSS

MINSD
VMINSD

Minimum
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

MINSD xmm1, xmm2/mem64 F2 0F 5D /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the lesser value to the low-order 64 bits of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMINSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5D /r

158 MINSD, VMINSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINSS, VMINSS 159

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 32 bits of the destination.
If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.
There are legacy and extended forms of the instruction:

MINSS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMINSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the desti-
nation are copied from the first source operand. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

MINSS is an SSE1 instruction and VMINSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD

MINSS
VMINSS

Minimum
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

MINSS xmm1, xmm2/mem32 F3 0F 5D /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the lesser value to the low-order 32 bits of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMINSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5D /r

160 MINSS, VMINSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVAPD, VMOVAPD 161

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves packed double-precision floating-point values. Values can be moved from a register or mem-
ory location to a register; or from a register to a register or memory location.
A memory operand that is not aligned causes a general-protection exception.
There are legacy and extended forms of the instruction:

MOVAPD

Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.

• The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVAPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move:
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.

• The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves four double-precision floating-point values. There are encodings for each type of move:
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.

• The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVAPD is an SSE2 instruction and VMOVAPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

MOVAPD
VMOVAPD

Move Aligned
Packed Double-Precision Floating-Point

162 MOVAPD, VMOVAPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Mnemonic Opcode Description

MOVAPD xmm1, xmm2/mem128 66 0F 28 /r Moves two packed double-precision floating-point
values from xmm2 or mem128 to xmm1.

MOVAPD xmm1/mem128, xmm2 66 0F 29 /r Moves two packed double-precision floating-point
values from xmm1 or mem128 to xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVAPD xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 28 /r

VMOVAPD xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 29 /r

VMOVAPD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 28 /r

VMOVAPD ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.01 29 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A
VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVAPS, VMOVAPS 163

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.
A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:

MOVAPS

Moves four single-precision floating-point values.
There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.

• The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVAPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves four single-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.

• The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves eight single-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.

• The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVAPS is an SSE1 instruction and VMOVAPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

MOVAPS
VMOVAPS

Move Aligned
Packed Single-Precision Floating-Point

164 MOVAPS, VMOVAPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Mnemonic Opcode Description

MOVAPS xmm1, xmm2/mem128 0F 28 /r Moves four packed single-precision floating-point
values from xmm2 or mem128 to xmm1.

MOVAPS xmm1/mem128, xmm2 0F 29 /r Moves four packed single-precision floating-point
values from xmm1 or mem128 to xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVAPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 28 /r

VMOVAPS xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.00 29 /r

VMOVAPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 28 /r

VMOVAPS ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.00 29 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A
VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVD, VMOVD 165

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves 32-bit and 64-bit values. A value can be moved from a general-purpose register or memory
location to the corresponding low-order bits of an XMM register, with zero-extension to 128 bits; or
from the low-order bits of an XMM register to a general-purpose register or memory location.
The quadword form of this instruction is distinct from the differently-encoded (V)MOVQ instruction.
There are legacy and extended forms of the instruction:

MOVD

There are two encodings for 32-bit moves, characterized by REX.W = 0.
• The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The

destination is an XMM register. The 32-bit value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is either a 32-bit general-purpose register
or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by REX.W = 0.
• The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The

destination is an XMM register. The 64-bit value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is either a 64-bit general-purpose register
or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVD

The extended form of the instruction has four 128-bit encodings:
There are two encodings for 32-bit moves, characterized by VEX.W = 0.
• The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The

destination is an XMM register. The 32-bit value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is either a 32-bit general-purpose register
or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by VEX.W = 1.
• The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The

destination is an XMM register. The 64-bit value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is either a 64-bit general-purpose register
or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVD is an SSE2 instruction and VMOVD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

MOVD
VMOVD

Move
Doubleword or Quadword

166 MOVD, VMOVD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)MOVDQA, (V)MOVDQU, (V)MOVQ

Mnemonic Opcode Description

MOVD xmm, reg32/mem32 66 (W0) 0F 6E /r Move a 32-bit value from reg32/mem32 to xmm.

MOVQ xmm, reg64/mem64 66 (W1) 0F 6E /r Move a 64-bit value from reg64/mem64 to xmm.

MOVD reg32/mem32, xmm 66 (W0) 0F 7E /r Move a 32-bit value from xmm to reg32/mem32

MOVQ reg64/mem64, xmm 66 (W1) 0F 7E /r Move a 64-bit value from xmm to reg64/mem64.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVD xmm, reg32/mem32 C4 RXB.00001 0.1111.0.01 6E /r

VMOVQ xmm, reg64/mem64 C4 RXB.00001 1.1111.0.01 6E /r

VMOVD reg32/mem32, xmm C4 RXB.00001 0.1111.1.01 7E /r

VMOVQ reg64/mem64, xmm C4 RXB.00001 1.1111.1.01 7E /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S X Write to a read-only data segment.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVDDUP, VMOVDDUP 167

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves and duplicates double-precision floating-point values.
There are legacy and extended forms of the instruction:

MOVDDUP

Moves and duplicates one quadword value.
The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is another XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMOVDDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves and duplicates one quadword value.
The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is another XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves and duplicates two even-indexed quadword values.
The source operand is either a YMM register or the address of the least-significant byte of 256 bits of
data in memory. The destination is another YMM register.Bits [63:0] of the source are written to bits
[127:64] and [63:0] of the destination; bits [191:128] of the source are written to bits [255:192] and
[191:128] of the destination.

MOVDDUP is an SSE3 instruction and VMOVDDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVSHDUP, (V)MOVSLDUP

MOVDDUP
VMOVDDUP

Move and Duplicate
Double-Precision Floating-Point

Mnemonic Opcode Description

MOVDDUP xmm1, xmm2/mem64 F2 0F 12 /r Moves two copies of the low 64 bits of xmm2 or
mem64 to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

MOVDDUP xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.11 12 /r

MOVDDUP ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.11 12 /r

168 MOVDDUP, VMOVDDUP Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVDQA, VMOVDQA 169

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves aligned packed integer values. Values can be moved from a register or a memory location to
another register, or from a register to another register or a memory location.
A memory operand that is not aligned causes a general-protection exception.
There are legacy and extended forms of the instruction:

MOVDQA

Moves two aligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either another XMM register or a

128-bit memory location.

• The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVDQA

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves two aligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either another XMM register or a

128-bit memory location.

• The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves four aligned quadwords (256-bit move). There are two encodings.
• The source operand is a YMM register. The destination is either another YMM register or a 256-bit

memory location.

• The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

MOVDQA is an SSE2 instruction and VMOVDQA is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

MOVDQA
VMOVDQA

Move Aligned
Double Quadword

170 MOVDQA, VMOVDQA Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)MOVD, (V)MOVDQU, (V)MOVQ

Mnemonic Opcode Description

MOVDQA xmm1, xmm2/mem128 66 0F 6F /r Moves aligned packed integer values from xmm2
ormem128 to xmm1.

MOVDQA xmm1/mem128, xmm2 66 0F 7F /r Moves aligned packed integer values from xmm1 or
mem128 to xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVDQA xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 6F /r

VMOVDQA xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 6F /r

VMOVDQA ymm1, xmm2/mem256 C4 RXB.00001 X.1111.1.01 7F /r

VMOVDQA ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.01 7F /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

S S X Write to a read-only data segment.

A
VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVDQU, VMOVDQU 171

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves unaligned packed integer values. Values can be moved from a register or a memory location to
another register, or from a register to another register or a memory location.
There are legacy and extended forms of the instruction:

MOVDQU

Moves two unaligned quadwords (128-bit move). There are two encodings.
• The source operand is an XMM register. The destination is either another XMM register or a

128-bit memory location.

• The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVDQU

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves two unaligned quadwords (128-bit move). There are two encodings:
• The source operand is an XMM register. The destination is either another XMM register or a

128-bit memory location.

• The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves four unaligned quadwords (256-bit move). There are two encodings:
• The source operand is a YMM register. The destination is either another YMM register or a 256-bit

memory location.

• The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

MOVDQU is an SSE2 instruction and VMOVDQU is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

MOVDQU
VMOVDQU

Move
Unaligned Double Quadword

172 MOVDQU, VMOVDQU Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)MOVD, (V)MOVDQA, (V)MOVQ

Mnemonic Opcode Description

MOVDQU xmm1, xmm2/mem128 F3 0F 6F /r Moves unaligned packed integer values from xmm2 or
mem128 to xmm1.

MOVDQU xmm1/mem128, xmm2 F3 0F 7F /r Moves unaligned packed integer values from xmm1 or
mem128 to xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVDQU xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 6F /r

VMOVDQU xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.10 6F /r

VMOVDQU ymm1, xmm2/mem256 C4 RXB.00001 X.1111.1.10 7F /r

VMOVDQU ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.10 7F /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVHLPS, VMOVHLPS 173

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves two packed single-precision floating-point values from the high quadword of an XMM regis-
ter to the low quadword of another XMM register.
There are legacy and extended forms of the instruction:

MOVHLPS

The source operand is bits [127:64] of an XMM register. The destination is bits [63:0] of another
XMM register. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VMOVHLPS

The extended form of the instruction has a 128-bit encoding only.
The source operands are bits [127:64] of two XMM registers. The destination is a third XMM regis-
ter. Bits [127:64] of the first source are moved to bits [127:64] of the destination; bits [127:64] of the
second source are moved to bits [63:0] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MOVHLPS is an SSE1 instruction and VMOVHLPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVAPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

MOVHLPS
VMOVHLPS

Move High to Low
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MOVHLPS xmm1, xmm2 0F 12 /r Moves two packed single-precision floating-point
values from xmm2[127:64] to xmm1[63:0].

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVHLPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 12 /r

174 MOVHLPS, VMOVHLPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVHPD, VMOVHPD 175

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.
There are legacy and extended forms of the instruction:

MOVHPD

There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM

register.

• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPD

The extended form of the instruction has two 128-bit encodings:
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVHPD is an SSE2 instruction and VMOVHPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

MOVHPD
VMOVHPD

Move High
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MOVHPD xmm1, mem64 66 0F 16 /r Moves a packed double-precision floating-point value from
mem64 to xmm1[127:64].

MOVHPD mem64, xmm1 66 0F 17 /r Moves a packed double-precision floating-point value from
xmm1[127:64] to mem64.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVHPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 16 /r

VMOVHPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 17 /r

176 MOVHPD, VMOVHPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MOVAPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVHPS, VMOVHPS 177

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves two packed single-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.
There are legacy and extended forms of the instruction:

MOVHPS

There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM

register.

• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPS

The extended form of the instruction has two 128-bit encodings:
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [63:0] of the source register are written
to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

• The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVHPS is an SSE1 instruction and VMOVHPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

MOVHPS
VMOVHPS

Move High
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MOVHPS xmm1, mem64 0F 16 /r Moves two packed double-precision floating-point value from
mem64 to xmm1[127:64].

MOVHPS mem64, xmm1 0F 17 /r Moves two packed double-precision floating-point value from
xmm1[127:64] to mem64.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVHPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 16 /r

VMOVHPS mem64, xmm1 C4 RXB.00001 X.1111.0.00 17 /r

178 MOVHPS, VMOVHPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVLHPS; VMOVLHPS 179

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves two packed single-precision floating-point values from the low quadword of an XMM register
to the high quadword of another XMM register.
There are legacy and extended forms of the instruction:

MOVLHPS

The source operand is bits [63:0] of an XMM register. The destination is bits [127:64] of another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VMOVLHPS

The extended form of the instruction has a 128-bit encoding only.
The source operands are bits [63:0] of two XMM registers. The destination is a third XMM register.
Bits [63:0] of the first source are moved to bits [63:0] of the destination; bits [63:0] of the second
source are moved to bits [127:64] of the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

MOVLHPS is an SSE1 instruction and VMOVLHPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

MOVLHPS
VMOVLHPS

Move Low to High
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MOVLHPS xmm1, xmm2 0F 16 /r Moves two packed single-precision floating-point
values from xmm2[63:0] to xmm1[127:64].

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVLHPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 16 /r

180 MOVLHPS; VMOVLHPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVLPD, VMOVLPD 181

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.
There are legacy and extended forms of the instruction:

MOVLPD

There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.
VMOVLPD

VMOVLPD

The extended form of the instruction has two 128-bit encodings.
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

MOVLPD is an SSE2 instruction and VMOVLPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVAPD, (V)MOVHPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

MOVLPD
VMOVLPD

Move Low
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MOVLPD xmm1, mem64 66 0F 12 /r Moves a packed double-precision floating-point value from
mem64 to xmm1[63:0].

MOVHPD mem64, xmm1 66 0F 13 /r Moves a packed double-precision floating-point value from
xmm1[63:0] to mem64.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVLPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 12 /r

VMOVLPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 13 /r

182 MOVLPD, VMOVLPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVLPS, VMOVLPS 183

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves two packed single-precision floating-point values. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.
There are legacy and extended forms of the instruction:

MOVLPS

There are two encodings.
• The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

VMOVLPS

The extended form of the instruction has two 128-bit encodings.
• There are two source operands. The first source is an XMM register. The second source is a 64-bit

memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

• The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

MOVLPS is an SSE1 instruction and VMOVLPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

MOVLPS
VMOVLPS

Move Low Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

MOVLPS xmm1, mem64 0F 12 /r Moves two packed single-precision floating-point value from
mem64 to xmm1[63:0].

MOVLPS mem64, xmm1 0F 13 /r Moves two packed single-precision floating-point value from
xmm1[63:0] to mem64.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVLPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 12 /r

VMOVLPS mem64, xmm1 C4 RXB.00001 X.1111.0.00 13 /r

184 MOVLPS, VMOVLPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVMSKPD, VMOVMSKPD 185

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts the sign bits of packed double-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.
There are legacy and extended forms of the instruction:

MOVMSKPD

Extracts two mask bits.
The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the source are not affected.

MOVMSKPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Extracts two mask bits.
The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Extracts four mask bits.
The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

MOVMSKPD is an SSE2 instruction and VMOVMSKPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVMSKPS, (V)PMOVMSKB

MOVMSKPD
VMOVMSKPD

Extract Sign Mask
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MOVMSKPD reg, xmm 66 0F 50 /r Move zero-extended sign bits of packed double-precision
values from xmm to a general-purpose register.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVMSKPD reg, xmm C4 RXB.00001 X.1111.0.01 50 /r

VMOVMSKPD reg, ymm C4 RXB.00001 X.1111.1.01 50 /r

186 MOVMSKPD, VMOVMSKPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVMSKPS, VMOVMSKPS 187

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts the sign bits of packed single-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.
There are legacy and extended forms of the instruction:

MOVMSKPS

Extracts four mask bits.
The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

MOVMSKPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Extracts four mask bits.
The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.
YMM Encoding
Extracts eight mask bits.
The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [7:0] of the destination and clears the remaining
bits.

MOVMSKPS is an SSE1 instruction and VMOVMSKPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVMSKPD, (V)PMOVMSKB

MOVMSKPS
VMOVMSKPS

Extract Sign Mask
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MOVMSKPS reg, xmm 0F 50 /r Move zero-extended sign bits of packed single-precision
values from xmm to a general-purpose register.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVMSKPS reg, xmm C4 RXB.00001 X.1111.0.00 50 /r

VMOVMSKPS reg, ymm C4 RXB.00001 X.1111.1.00 50 /r

188 MOVMSKPS, VMOVMSKPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVNTDQ, VMOVNTDQ 189

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves double quadword values from a register to a memory location.
Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For
further information, see “Memory Optimization” in Volume 1.
The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.
There are legacy and extended forms of the instruction:

MOVNTDQ

Moves one 128-bit value.
The source operand is an XMM register. The destination is a 128-bit memory location.

VMOVNTDQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves one 128-bit value.
The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding
Moves two 128-bit values.
The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTDQ is an SSE2 instruction and VMOVNTDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

MOVNTDQ
VMOVNTDQ

Move Non-Temporal
Double Quadword

Mnemonic Opcode Description

MOVNTDQ mem128, xmm 66 0F E7 /r Moves a 128-bit value from xmm to mem128, minimizing
cache pollution.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVNTDQ mem128, xmm C4 RXB.00001 X.1111.0.01 E7 /r

VMOVNTDQ mem256, ymm C4 RXB.00001 X.1111.1.01 E7 /r

190 MOVNTDQ, VMOVNTDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A
VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVNTDQA, VMOVNTDQA 191

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves aligned double quadword values from a register to a memory location.
Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For
further information, see “Memory Optimization” in Volume 1.
The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an MFENCE instruction to force strong memory ordering of MOVNTDQ with respect to
other stores.
There are legacy and extended forms of the instruction:

MOVNTDQA

Moves one 128-bit value.
The source operand is an XMM register. The destination is a 128-bit memory location.

VMOVNTDQ

The extended form of the instruction has a 128-bit encodings only.
Moves one 128-bit value.
The source operand is an XMM register. The destination is a 128-bit memory location.

MOVNTDQA is an SSE4.1 instruction and VMOVNTDQA is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVNTDQ, (V)MOVNTPD, (V)MOVNTPS

MOVNTDQA
VMOVNTDQA

Move Non-Temporal
Double Quadword Aligned

Mnemonic Opcode Description

MOVNTDQA mem128, xmm 66 0F 38 2A /r Moves an aligned 128-bit value from xmm to mem128,
minimizing cache pollution.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVNTDQA mem128, xmm C4 RXB.00010 X.1111.0.01 2A /r

192 MOVNTDQA, VMOVNTDQA Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A VEX.L field = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A
VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVNTPD, VMOVNTPD 193

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves packed double-precision floating-point values from a register to a memory location.
Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For
further information, see “Memory Optimization” in Volume 1.
The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.
There are legacy and extended forms of the instruction:

MOVNTPD

Moves two values.
The source operand is an XMM register. The destination is a 128-bit memory location.

MOVNTPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves two values.
The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding
Moves four values.
The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTPD is an SSE2 instruction and VMOVNTPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

MOVNTDQ, MOVNTI, MOVNTPS, MOVNTQ

MOVNTPD
VMOVNTPD

Move Non-Temporal
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MOVNTPD mem128, xmm 66 0F 2B /r Moves two packed double-precision floating-point values
from xmm to mem128, minimizing cache pollution.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVNTPD mem128, xmm C4 RXB.00001 X.1111.0.01 2B /r

VMOVNTPD mem256, ymm C4 RXB.00001 X.1111.1.01 2B /r

194 MOVNTPD, VMOVNTPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A
VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVNTPS, VMOVNTPS 195

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves packed single-precision floating-point values from a register to a memory location.
Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The
processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For
further information, see “Memory Optimization” in Volume 1.
The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.
There are legacy and extended forms of the instruction:

MOVNTPS

Moves four values.
The source operand is an XMM register. The destination is a 128-bit memory location.

MOVNTPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves four values.
The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding
Moves eight values.
The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTPS is an SSE1 instruction and VMOVNTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTQ

MOVNTPS
VMOVNTPS

Move Non-Temporal
PackedSingle-Precision Floating-Point

Mnemonic Opcode Description

MOVNTPS mem128, xmm 0F 2B /r Moves four packed double-precision floating-point values
from xmm to mem128, minimizing cache pollution.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVNTPS mem128, xmm C4 RXB.00001 X.1111.0.00 2B /r

VMOVNTPS mem256, ymm C4 RXB.00001 X.1111.1.00 2B /r

196 MOVNTPS, VMOVNTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A
VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVNTSD 197

26568—Rev. 3.14—December 2011 AMD64 Technology

Stores one double-precision floating-point value from an XMM register to a 64-bit memory location.
This instruction indicates to the processor that the data is non-temporal, and is unlikely to be used
again soon. The processor treats the store as a write-combining memory write, which minimizes cache
pollution.

The diagram below illustrates the operation of this instruction:

MOVNTSD is an SSE4A instruction. Support for SSE4A instructions is indicated by CPUID
Fn8000_0001_ECX[SSE4A] = 1. Software must check the CPUID bit once per program or library
initialization before using the MOVNTSD instruction or inconsistent behavior may result.

For more information about the CPUID instruction, see instruction listing in Volume 3. For more
information on processor feature bits, see the CPUID Specification, order# 25481.

Instruction Encoding

Related Instructions

MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS, MOVNTQ, MOVNTSS

rFLAGS Affected

None

MOVNTSD Move Non-Temporal Scalar
Double-Precision Floating-Point

Mnemonic Opcode Description

MOVNTSD mem64, xmm F2 0F 2B /r
Stores one double-precision floating-point XMM
register value into a 64 bit memory location. Treat as
a non-temporal store.

mem64

XMM register

copy

063 06364127

198 MOVNTSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE4A instructions are not supported, as
indicated by CPUID Fn8000_0001_ECX[SSE4A] = 0.

X X X The emulate bit (CR0.EM) was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.OSFXSR) was cleared to 0.

Device not available,
#NM X X X The task-switch bit (CR0.TS) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from executing the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference MOVNTSS 199

26568—Rev. 3.14—December 2011 AMD64 Technology

Stores one single-precision floating-point value from an XMM register to a 32-bit memory location.
This instruction indicates to the processor that the data is non-temporal, and is unlikely to be used
again soon. The processor treats the store as a write-combining memory write, which minimizes cache
pollution.

The diagram below illustrates the operation of this instruction:

Support for the MOVNTSS instruction is indicated by ECX bit 6 (SSE4A) as returned by CPUID
function 8000_0001h. Software must check the CPUID bit once per program or library initialization
before using the MOVNTSS instruction, or inconsistent behavior may result.

Instruction Encoding

Related Instructions

MOVNTDQ, MOVNTI, MOVNTOPD, MOVNTPS, MOVNTQ, MOVNTSD

rFLAGS Affected

None

MOVNTSS Move Non-Temporal Scalar
Single-Precision Floating-Point

Mnemonic Opcode Description

MOVNTSS mem32, xmm F3 0F 2B /r
Stores one single-precision floating-point XMM
register value into a 32-bit memory location. Treat as
a non-temporal store.

mem32

XMM register

copy

0 03112731

200 MOVNTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE4A instructions are not supported, as
indicated by ECX bit 6 (SSE4A) of CPUID function
8000_0001h.

X X X The emulate bit (CR0.EM) was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.OSFXSR) was cleared to 0.

Device not available,
#NM X X X The task-switch bit (CR0.TS) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from executing the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference MOVQ, VMOVQ 201

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves 64-bit values. The source is either the low-order quadword of an XMM register or a 64-bit
memory location. The destination is either the low-order quadword of an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.
There are legacy and extended forms of the instruction:

MOVQ

There are two encodings:
• The source operand is either an XMM register or a 64-bit memory location. The destination is an

XMM register. The 64-bit value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVQ

The extended form of the instruction has three 128-bit encodings:
• The source operand is an XMM register. The destination is an XMM register. The 64-bit value is

zero-extended to 128 bits.

• The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit
value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVQ is an SSE2 instruction and VMOVQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

MOVQ
VMOVQ

Move
Quadword

Mnemonic Opcode Description

MOVQ xmm1, xmm2/mem64 F3 0F 7E /r Move a zero-extended 64-bit value from xmm2 or mem64
to xmm1.

MOVQ xmm1/mem64, xmm2 66 0F D6 /r Move a 64-bit value from xmm2 to xmm1 or mem64.
Zero-extends for register destination.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVQ xmm1, xmm2 C4 RXB.00001 X.1111.0.10 7E /r

VMOVQ xmm1, mem64 C4 RXB.00001 X.1111.0.10 7E /r

VMOVQ xmm1/mem64, xmm2 C4 RXB.00001 X.1111.1.01 D6 /r

202 MOVQ, VMOVQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MOVD, (V)MOVDQA, (V)MOVDQU

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSD, VMOVSD 203

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves scalar double-precision floating point values. The source is either a low-order quadword of an
XMM register or a 64-bit memory location. The destination is either a low-order quadword of an
XMM register or a 64-bit memory location.
There are legacy and extended forms of the instruction:

MOVSD

There are three encodings.
• The source operand is an XMM register. The destination is an XMM register. Bits [127:64] of the

destination are not affected.

• The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit
value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSD

The extended form of the instruction has four 128-bit encodings. Two of the encodings are function-
ally equivalent.
• The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit

value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is a 64-bit memory location.

• Two functionally-equivalent encodings:
There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 64-bit value in bits [63:0] of the
second source register is written to bits [63:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVSD is an SSE2 instruction and VMOVSD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).
This instruction must not be confused with the MOVSD (move string doubleword) instruction of the
general-purpose instruction set. Assemblers can distinguish the instructions by the number and type
of operands.

MOVSD
VMOVSD

Move
Scalar Double-Precision Floating-Point

204 MOVSD, VMOVSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVUPD

Mnemonic Opcode Description

MOVSD xmm1, xmm2 F2 0F 10 /r Moves a zero-extended 64-bit value from xmm2 to xmm1.

MOVSD xmm1, mem64 F2 0F 10 /r Moves a zero-extended 64-bit value from mem64 to xmm1.

MOVSD xmm2/mem64, xmm1 F2 0F 11 /r Moves a 64-bit value from xmm1 to xmm2 or mem64.
Zero-extends for register destination.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVSD xmm1, mem64 C4 RXB.00001 X.1111.0.11 10 /r

VMOVSD mem64, xmm1 C4 RXB.00001 X.1111.0.11 11 /r

VMOVSD xmm, xmm2, xmm3 C4 RXB.00001 X.src.1.11 10 /r

VMOVSD xmm, xmm2, xmm3 C4 RXB.00001 X.src.1.11 11 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination enoding only).

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSHDUP, VMOVSHDUP 205

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves and duplicates odd-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:

MOVSHDUP

Moves and duplicates two odd-indexed single-precision floating-point values.
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the des-
tination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSHDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves and duplicates two odd-indexed single-precision floating-point values.
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the des-
tination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves and duplicates four odd-indexed single-precision floating-point values.
The source operand is a YMM register or a 256-bit memory location. The destination is a YMM reg-
ister. Bits [255:224] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [191:160] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of
the destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

MOVSHDUP is an SSE3 instruction and VMOVSHDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

MOVSHDUP
VMOVSHDUP

Move High and Duplicate
Single-Precision

Mnemonic Opcode Description

MOVSHDUP xmm1, xmm2/mem128 F3 0F 16 /r Moves and duplicates two odd-indexed single-
precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVSHDUP xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 16 /r

VMOVSHDUP ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 16 /r

206 MOVSHDUP, VMOVSHDUP Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MOVDDUP, (V)MOVSLDUP

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSLDUP, VMOVSLDUP 207

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves and duplicates even-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:

MOVSLDUP

Moves and duplicates two even-indexed single-precision floating-point values.
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the desti-
nation. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSLDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves and duplicates two even-indexed single-precision floating-point values.
The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the desti-
nation. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves and duplicates four even-indexed single-precision floating-point values.
The source operand is a YMM register or a 256-bit memory location. The destination is a YMM reg-
ister. Bits [223:192] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [159:128] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of
the destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

MOVSLDUP is an SSE3 instruction and VMOVSLDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

MOVSLDUP
VMOVSLDUP

Move Low and Duplicate
Single-Precision

Mnemonic Opcode Description

MOVSLDUP xmm1, xmm2/mem128 F3 0F 12 /r Moves and duplicates two even-indexed single-
precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVSLDUP xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 12 /r

VMOVSLDUP ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 12 /r

208 MOVSLDUP, VMOVSLDUP Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MOVDDUP, (V)MOVSHDUP

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSS, VMOVSS 209

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves scalar single-precision floating point values. The source is either a low-order doubleword of
an XMM register or a 32-bit memory location. The destination is either a low-order doubleword of an
XMM register or a 32-bit memory location.
There are legacy and extended forms of the instruction:

MOVSS

There are three encodings.
• The source operand is an XMM register. The destination is an XMM register. Bits [127:32] of the

destination are not affected.

• The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit
value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is either an XMM register or a 32-bit
memory location. When the destination is a register, the 32-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the source are not affected.

VMOVSS

The extended form of the instruction has four 128-bit encodings. Two of the encodings are function-
ally equivalent.
• The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit

value is zero-extended to 128 bits.

• The source operand is an XMM register. The destination is a 32-bit memory location.

• Two functionally-equivalent encodings:
There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 32-bit value in bits [31:0] of the
second source register is written to bits [31:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVSS is an SSE1 instruction and VMOVSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

MOVSS
VMOVSS

Move
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

MOVSS xmm1, xmm2 F3 0F 10 /r Moves a 32-bit value from xmm2 to xmm1.

MOVSS xmm1, mem32 F3 0F 10 /r Moves a zero-extended 32-bit value from mem32 to xmm1.

MOVSS xmm2/mem32, xmm1 F3 0F 11 /r Moves a 32-bit value from xmm1 to xmm2 or mem32.
Zero-extended for register destination.

210 MOVSS, VMOVSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,
(V)MOVUPS

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVSS xmm1, mem32 C4 RXB.00001 X.1111.0.10 10 /r

VMOVSS mem32, xmm1 C4 RXB.00001 X.1111.0.10 11 /r

VMOVSS xmm, xmm2, xmm3 C4 RXB.00001 X.src.1.10 10 /r

VMOVSS xmm, xmm2, xmm3 C4 RXB.00001 X.src.1.10 11 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination enoding only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVUPD, VMOVUPD 211

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves packed double-precision floating-point values. Values can be moved from a register or mem-
ory location to a register; or from a register to a register or memory location.
A memory operand that is not aligned does not cause a general-protection exception.
There are legacy and extended forms of the instruction:

MOVUPD

Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.

• The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVUPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves two double-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.

• The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves four double-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.

• The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVUPD is an SSE2 instruction and VMOVUPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

MOVUPD
VMOVUPD

Move Unaligned
Packed Double-Precision Floating-Point

212 MOVUPD, VMOVUPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD

Mnemonic Opcode Description

MOVUPD xmm1, xmm2/mem128 66 0F 10 /r Moves two packed double-precision floating-point
values from xmm2 or mem128 to xmm1.

MOVUPD xmm1/mem128, xmm2 66 0F 11 /r Moves two packed double-precision floating-point
values from xmm1 or mem128 to xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVUPD xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 10 /r

VMOVUPD xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 11 /r

VMOVUPD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 10 /r

VMOVUPD ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.01 11 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVUPS, VMOVUPS 213

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.
A memory operand that is not aligned does not cause a general-protection exception.

There are legacy and extended forms of the instruction:

MOVUPS

Moves four single-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.

• The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVUPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves four single-precision floating-point values. There are encodings for each type of move.
• The source operand is either an XMM register or a 128-bit memory location. The destination

operand is an XMM register.

• The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Moves eight single-precision floating-point values. There are encodings for each type of move.
• The source operand is either a YMM register or a 256-bit memory location. The destination

operand is a YMM register.

• The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVUPS is an SSE1 instruction and VMOVUPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

MOVUPS
VMOVUPS

Move Unaligned
Packed Single-Precision Floating-Point

214 MOVUPS, VMOVUPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,
(V)MOVSS

Mnemonic Opcode Description

MOVUPS xmm1, xmm2/mem128 0F 10 /r Moves four packed single-precision floating-point
values from xmm2 or unaligned mem128 to xmm1.

MOVUPS xmm1/mem128, xmm2 0F 11 /r Moves four packed single-precision floating-point
values from xmm1 or unaligned mem128 to xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVUPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 10 /r

VMOVUPS xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.00 11 /r

VMOVUPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 10 /r

VMOVUPS ymm1/mem256, ymm2 C4 RXB.00001 X.1111.1.00 11 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MPSADBW, VMPSADBW 215

26568—Rev. 3.14—December 2011 AMD64 Technology

Calculates the sum of absolute differences of each member of four sequential groups of four unsigned
byte integers in the first source register and each of four unsigned byte integers in a second source
register, and writes the 16-bit integer sums to the destination.
Bit fields in an 8-bit immediate operand are used to calculate offsets that select sequences of bytes in
the two source registers. The binary value of each bit field is multiplied by 32 to produce a 32-bit off-
set. Bit 2 of the immediate operand determines the offset for the first source register; 11 bytes begin-
ning at the offset position are used. Bits [1:0] of the immediate operand determine the offset for the
second source register; four bytes beginning at the offset position are used.
The selected bytes are repositioned in the source registers. Bytes [10:0] of the first source occupy bits
[87:0] of the first source register; bytes [3:0] of the second source occupy bits [31:0] of the second
source register.
Operation is iterative and repeats eight times. Each repetition increments the starting byte position in
the first source by one and calculates the sum of differences with the four integers of the second
source. Results are written to eight consecutive words in the destination, starting with the low word.
In the first iteration, bytes [0:4] of the second source are subtracted from bytes [0:4] of the first source
and the sum of the differences is written to bits [15:0] of the destination; in the second iteration, bytes
[0:4] of the second source are subtracted from bytes [1:5] of the first source and the sum of the differ-
ences is written to bits [31:16] of the destination. The process continues until bytes [0:4] of the second
source are subtracted from bytes [7:10] of the first source and the sum of the differences is written to
bits [127:112] of the destination.

There are legacy and extended forms of the instruction:

MPSADBW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMPSADBW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

MPSADBW is an SSE4.1 instruction and VMPSADBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

MPSADBW
VMPSADBW

Multiple Sum of Absolute Differences

216 MPSADBW, VMPSADBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)PSADBW, (V)PABSB, (V)PABSD, (V)PABSW

Mnemonic Opcode Description

MPSADBW xmm1, xmm2/mem128, imm8 66 0F 3A 42 /r ib Sums absolute difference of groups of
four 8-bit integer in xmm1 and xmm2
or mem128. Writes results to xmm1.
Starting source offsets are determined
by imm8 bit fields.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMPSADBW xmm1, xmm2, xmm3/mem128 C4 RXB.00011 X.src.0.01 42 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULPD, VMULPD 217

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies each packed double-precision floating-point value of the first source operand by the corre-
sponding packed double-precision floating-point value of the second source operand and writes the
product of each multiplication into the corresponding quadword of the destination.
There are legacy and extended forms of the instruction:

MULPD

Multiplies two double-precision floating-point values in the first source XMM register by the corre-
sponding double precision floating-point values in either a second XMM register or a 128-bit mem-
ory location. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VMULPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Multiplies two double-precision floating-point values in the first source XMM register by the corre-
sponding double-precision floating-point values in either a second source XMM register or a 128-bit
memory location. The destination is a third XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.
YMM Encoding
Multiplies four double-precision floating-point values in the first source YMM register by the corre-
sponding double precision floating-point values in either a second source YMM register or a 256-bit
memory location. The destination is a third YMM register.

MULPD is an SSE2 instruction and VMULPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MULPS, (V)MULSD, (V)MULSS

MULPD
VMULPD

Multiply
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MULPD xmm1, xmm2/mem128 66 0F 59 /r Multiplies two packed double-precision floating-
point values in xmm1 by corresponding values in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMULPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 59 /r

VMULPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 59 /r

218 MULPD, VMULPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULPS, VMULPS 219

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies each packed single-precision floating-point value of the first source operand by the corre-
sponding packed single-precision floating-point value of the second source operand and writes the
product of each multiplication into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:

MULPS

Multiplies four single-precision floating-point values in the first source XMM register by the corre-
sponding single-precision floating-point values of either a second source XMM register or a 128-bit
memory location. The first source register is also the destination. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VMULPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Multiplies four single-precision floating-point values in the first source XMM register by the corre-
sponding single-precision floating-point values of either a second source XMM register or a 128-bit
memory location. The destination is a third XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.
YMM Encoding
Multiplies eight single-precision floating-point values in the first source YMM register by the corre-
sponding single-precision floating-point values of either a second source YMM register or a 256-bit
memory location. Writes the results to a third YMM register.

MULPS is an SSE2 instruction and VMULPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MULPD, (V)MULSD, (V)MULSS

MULPS
VMULPS

Multiply
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MULPS xmm1, xmm2/mem128 0F 59 /r Multiplies four packed single-precision floating-point values
in xmm1 by corresponding values in xmm2 or mem128.
Writes the products to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMULPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 59 /r

VMULPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 59 /r

220 MULPS, VMULPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULSD, VMULSD 221

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the product into the low-order quadword of the destination.
There are legacy and extended forms of the instruction:

MULSD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding YMM register are not affected.

VMULSD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first
source operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MULSD is an SSE2 instruction and VMULSD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MULPD, (V)MULPS, (V)MULSS

MXCSR Flags Affected

MULSD
VMULSD

Multiply
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

MULSD xmm1, xmm2/mem64 F2 0F 59 /r Multiplies low-order double-precision floating-point values
in xmm1 by corresponding values in xmm2 or mem64.
Writes the products to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMULSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 59 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

222 MULSD, VMULSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULSS, VMULSS 223

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second
source operand and writes the product into the low-order doubleword of the destination.
There are legacy and extended forms of the instruction:

MULSS

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.

VMULSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM regis-
ter that corresponds to the destination are cleared.

MULSS is an SSE1 instruction and VMULSS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MULPD, (V)MULPS, (V)MULSD

MXCSR Flags Affected

MULSS
VMULSS

Multiply Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

MULSS xmm1, xmm2/mem32 F3 0F 59 /r Multiplies a single-precision floating-point value in the low-
order doubleword of xmm1 by a corresponding value in
xmm2 or mem32. Writes the product to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMULSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 59 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

224 MULSS, VMULSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ORPD, VORPD 225

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs bitwise OR of two packed double-precision floating-point values in the first source operand
with the corresponding two packed double-precision floating-point values in the second source oper-
and and writes the results into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:

ORPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VORPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ORPD is an SSE2 instruction and VORPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPS, (V)XORPD, (V)XORPS

MXCSR Flags Affected

None

ORPD
VORPD

OR
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

ORPD xmm1, xmm2/mem128 66 0F 56 /r Performs bitwise OR of two packed double-precision
floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VORPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 56 /r

VORPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 56 /r

226 ORPD, VORPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ORPS, VORPS 227

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs bitwise OR of the four packed single-precision floating-point values in the first source oper-
and with the corresponding four packed single-precision floating-point values in the second source
operand, and writes the result into the corresponding elements of the destination.
There are legacy and extended forms of the instruction:

ORPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VORPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ORPS is an SSE1 instruction and VORPS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)XORPD, (V)XORPS

MXCSR Flags Affected

None

ORPS
VORPS

OR
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

ORPS xmm1, xmm2/mem128 0F 56 /r Performs bitwise OR of four packed double-precision floating-
point values in xmm1 with corresponding values in xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VORPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 56 /r

VORPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 56 /r

228 ORPS, VORPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PABSB, VPABSB 229

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the absolute value of 16 packed 8-bit signed integers in the source operand and writes 8-bit
unsigned results to the destination.
There are legacy and extended forms of the instruction:

PABSB

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPABSB

The extended form of the instruction has a 128-bit encoding only.
The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSB is an SSSE3 instruction and VPABSB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PABSW, (V)PABSD

MXCSR Flags Affected

None

PABSB
VPABSB

Packed Absolute Value
Signed Byte

Mnemonic Opcode Description

PABSB xmm1, xmm2/mem128 0F 38 1C /r Computes the absolute value of each packed 8-bit signed
integer value in xmm2/mem128 and writes the 8-bit unsigned
results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPABSB xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1C /r

230 PABSB, VPABSB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PABSD, VPABSD 231

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the absolute value of two packed 32-bit signed integers in the source operand and writes
32-bit unsigned results to the destination.
There are legacy and extended forms of the instruction:

PABSD

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPABSD

The extended form of the instruction has a 128-bit encoding only.
The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSD is an SSSE3 instruction and VPABSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PABSB, (V)PABSW

MXCSR Flags Affected

None

PABSD
VPABSD

Packed Absolute Value
Signed Doubleword

Mnemonic Opcode Description

PABSD xmm1, xmm2/mem128 0F 38 1E /r Computes the absolute value of each packed 32-bit signed
integer value in xmm2/mem128 and writes the 32-bit
unsigned results to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPABSD xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1E /r

232 PABSD, VPABSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PABSW, VPABSW 233

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the absolute values of four packed 16-bit signed integers in the source operand and writes
16-bit unsigned results to the destination.
There are legacy and extended forms of the instruction:

PABSW

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPABSW

The extended form of the instruction has a 128-bit encoding only.
The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSW is an SSSE3 instruction and VPABSW is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PABSB, (V)PABSD

MXCSR Flags Affected

None

PABSW
VPABSW

Packed Absolute Value
Signed Word

Mnemonic Opcode Description

PABSW xmm1, xmm2/mem128 0F 38 1D /r Computes the absolute value of each packed 16-bit signed
integer value in xmm2/mem128 and writes the 16-bit
unsigned results to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPABSW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1D /r

234 PABSW, VPABSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PACKSSDW, VPACKSSDW 235

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts four 32-bit signed integers from the first source operand and four 32-bit signed integers
from the second source operand into eight 16-bit signed integers and packs the results into the desti-
nation.
Positive source value greater than 7FFFh are saturated to 7FFFh; negative source values less than
8000h are saturated to 8000h.
Converted values from the first source operand are packed into the low-order words of the destina-
tion; converted values from the second source operand are packed into the high-order words of the
destination.
There are legacy and extended forms of the instruction:

PACKSSDW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKSSDW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKSSDW is an SSE2 instruction and VPACKSSDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PACKSSWB, (V)PACKUSDW, (V)PACKUSWB

MXCSR Flags Affected

None

PACKSSDW
VPACKSSDW

Pack with Signed Saturation
Doubleword to Word

Mnemonic Opcode Description

PACKSSDW xmm1, xmm2/mem128 66 0F 6B /r Converts 32-bit signed integers in xmm1 and xmm2
or mem128 into 16-bit signed integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPACKSSDW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 0.src1.0.01 6B /r

236 PACKSSDW, VPACKSSDW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PACKSSWB, VPACKSSWB 237

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts eight 16-bit signed integers from the first source operand and eight 16-bit signed integers
from the second source operand into sixteen 8-bit signed integers and packs the results into the desti-
nation.
Positive source values greater than 7Fh are saturated to 7Fh; negative source values less than 80h are
saturated to 80h.
Converted values from the first source operand are packed into the low-order bytes of the destination;
converted values from the second source operand are packed into the high-order bytes of the destina-
tion.
There are legacy and extended forms of the instruction:

PACKSSWB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKSSWB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKSSWB is an SSE2 instruction and VPACKSSWB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PACKSSDW, (V)PACKUSDW, (V)PACKUSWB

MXCSR Flags Affected

None

PACKSSWB
VPACKSSWB

Pack with Signed Saturation
Word to Byte

Mnemonic Opcode Description

PACKSSWB xmm1, xmm2/mem128 66 0F 63 /r Converts 16-bit signed integers in xmm1 and xmm2
or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPACKSSWB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 63 /r

238 PACKSSWB, VPACKSSWB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PACKUSDW, VPACKUSDW 239

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts four 32-bit signed integers from the first source operand and four 32-bit signed integers
from the second source operand into eight 16-bit unsigned integers and packs the results into the des-
tination.
Source values greater than FFFFh are saturated to FFFFh; source values less than 0000h are saturated
to 0000h.
Packs converted values from the first source operand into the low-order words of the destination;
packs converted values from the second source operand into the high-order words of the destination.
There are legacy and extended forms of the instruction:

PACKUSDW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKUSDW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKUSDW is an SSE4.1 instruction and VPACKUSDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSWB

MXCSR Flags Affected

None

PACKUSDW
VPACKUSDW

Pack with Unsigned Saturation
Doubleword to Word

Mnemonic Opcode Description

PACKUSDW xmm1, xmm2/mem128 66 0F 38 2B /r Converts 32-bit signed integers in xmm1 and xmm2
or mem128 into 16-bit unsigned integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPACKUSDW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 2B /r

240 PACKUSDW, VPACKUSDW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PACKUSWB, VPACKUSWB 241

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts eight 16-bit signed integers from the first source operand and eight 16-bit signed integers
from the second source operand into sixteen 8-bit unsigned integers and packs the results into the des-
tination.
When a source value is greater than 7Fh it is saturated to FFh; when source value is less than 00h, it is
saturated to 00h.
Packs converted values from the first source operand into the low-order bytes of the destination;
packs converted values from the second source operand into the high-order bytes of the destination.
There are legacy and extended forms of the instruction:

PACKUSWB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKUSWB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKUSWB is an SSE2 instruction and VPACKUSWB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSDW

MXCSR Flags Affected

None

PACKUSWB
VPACKUSWB

Pack with Unsigned Saturation
Word to Byte

Mnemonic Opcode Description

PACKUSWB xmm1, xmm2/mem128 66 0F 67 /r Converts 16-bit signed integers in xmm1 and xmm2
or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPACKUSWB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 67 /r

242 PACKUSWB, VPACKUSWB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDB, VPADDB 243

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds 16 packed 8-bit integer values in the first source operand to corresponding values in the second
source operand and writes the integer sums to the corresponding bytes of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.
There are legacy and extended forms of the instruction:

PADDB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDB is an SSE2 instruction and VPADDB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

PADDB
VPADDB

Packed Add
Bytes

Mnemonic Opcode Description

PADDB xmm1, xmm2/mem128 66 0F FC /r Adds packed byte integer values in xmm1 and xmm2 or
mem128 Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FC /r

244 PADDB, VPADDB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDD, VPADDD 245

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds four packed 32-bit integer value in the first source operand to corresponding values in the sec-
ond source operand and writes integer sums to the corresponding doublewords of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written to the destination.
There are legacy and extended forms of the instruction:

PADDD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDD is an SSE2 instruction and VPADDD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PADDB, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

PADDD
VPADDD

Packed Add
Doublewords

Mnemonic Opcode Description

PADDD xmm1, xmm2/mem128 66 0F FE /r Adds packed doubleword integer values in xmm1 and
xmm2 or mem128 Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FE /r

246 PADDD, VPADDD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDQ, VPADDQ 247

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds two packed 64-bit integer values in the first source operand to corresponding values in the sec-
ond source operand and writes the integer sums to the corresponding quadwords of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written to the destination.
There are legacy and extended forms of the instruction:

PADDQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDQ is an SSE2 instruction and VPADDQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PADDB, (V)PADDD, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

PADDQ
VPADDQ

Packed Add
Quadwords

Mnemonic Opcode Description

PADDQ xmm1, xmm2/mem128 66 0F D4 /r Adds packed quadword integer values in xmm1 and
xmm2 or mem128 Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D4 /r

248 PADDQ, VPADDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDSB, VPADDSB 249

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds 16 packed 8-bit signed integer values in the first source operand to the corresponding values in
the second source operand and writes the signed integer sums to corresponding bytes of the destina-
tion.
Positive sums greater than 7Fh are saturated to FFh; negative sums less than 80h are saturated to 80h.
There are legacy and extended forms of the instruction:

PADDSB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDSB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDSB is an SSE2 instruction and VPADDSB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

PADDSB
VPADDSB

Packed Add with Signed Saturation
Bytes

Mnemonic Opcode Description

PADDSB xmm1, xmm2/mem128 66 0F EC /r Adds packed signed 8-bit integer values in xmm1 and
xmm2 or mem128 with signed saturation. Writes the
sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EC /r

250 PADDSB, VPADDSB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDSW, VPADDSW 251

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds eight packed 16-bit signed integer value in the first source operand to the corresponding values
in the second source operand and writes the signed integer sums to the corresponding words of the
destination.
Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums less than 8000h are saturated
to 8000h.
There are legacy and extended forms of the instruction:

PADDSW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDSW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDSW is an SSE2 instruction and VPADDSW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

PADDSW
VPADDSW

Packed Add with Signed Saturation
Words

Mnemonic Opcode Description

PADDSW xmm1, xmm2/mem128 66 0F ED /r Adds packed signed 16-bit integer values in xmm1 and
xmm2 or mem128 with signed saturation. Writes the
sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 ED /r

252 PADDSW, VPADDSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDUSB, VPADDUSB 253

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds 16 packed 8-bit unsigned integer values in the first source operand to the corresponding values
in the second source operand and writes the unsigned integer sums to the corresponding bytes of the
destination.
Sums greater than 7Fh are saturated to 7Fh; Sums less than 00h are saturated to 00h.
There are legacy and extended forms of the instruction:

PADDUSB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDUSB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDUSB is an SSE2 instruction and VPADDUSB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSW, (V)PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDUSB
VPADDUSB

Packed Add with Unsigned Saturation
Bytes

Mnemonic Opcode Description

PADDUSB xmm1, xmm2/mem128 66 0F DC /r Adds packed unsigned 8-bit integer values in xmm1
and xmm2 or mem128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDUSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DC /r

254 PADDUSB, VPADDUSB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDUSW, VPADDUSW 255

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds eight packed 16-bit unsigned integer value in the first source operand to the corresponding val-
ues in the second source operand and writes the unsigned integer sums to the corresponding words of
the destination.
Sums greater than FFFFh are saturated to FFFFh; sums less than 0000h are saturated to 0000h.
There are legacy and extended forms of the instruction:

PADDUSW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDUSW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDUSW is an SSE2 instruction and VPADDUSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDUSW
VPADDUSW

Packed Add with Unsigned Saturation
Words

Mnemonic Opcode Description

PADDUSW xmm1, xmm2/mem128 66 0F DD /r Adds packed unsigned 16-bit integer values in xmm1
and xmm2 or mem128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDUSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DD /r

256 PADDUSW, VPADDUSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PADDW, VPADDW 257

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds eight packed 16-bit integer value in the first source operand to the corresponding values in the
second source operand and writes the integer sums to the corresponding word of the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of each
result are written to the destination.
There are legacy and extended forms of the instruction:

PADDW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDW is an SSE2 instruction and VPADDW is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW

RFlags Affected

None

MXCSR Flags Affected

None

PADDW
VPADDW

Packed Add
Words

Mnemonic Opcode Description

PADDW xmm1, xmm2/mem128 66 0F FD /r Adds packed 16-bit integer values in xmm1 and xmm2
or mem128. Writes the sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPADDW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FD /r

258 PADDW, VPADDW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PALIGNR, VPALIGNR 259

26568—Rev. 3.14—December 2011 AMD64 Technology

Concatenates [source1:source2] in a temporary 256-bit location and right-shifts the concatenated
value the number of bytes specified by the unsigned immediate operand. Writes the shifted result to
the destination.
The binary value of the immediate operand determineS the byte shift value. For byte shifts greater
than 16 bytes, the upper bytes of the destination are zero-filled; when the byte shift is greater than 32
bytes, the destination is zeroed.
There are two forms of the instruction.

PALIGNR

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPALIGNR

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PALIGNR is an SSSE3 instruction and VPALIGNR is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

None

rFLAGS Affected

None

MXCSR Flags Affected

None

PALIGNR
VPALIGNR

Packed Align Right

Mnemonic Opcode Description

PALIGNR xmm1, xmm2/mem128, imm8 66 0F 3A 0F /r ib Right-shifts xmm1:xmm2/mem128 imm8
bytes. Writes shifted result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPALIGNR xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0F /r ib

260 PALIGNR, VPALIGNR Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PAND, VPAND 261

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs a bitwise AND of the packed values in the first and second source operands and writes the
result to the destination.
There are legacy and extended forms of the instruction:

PAND

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPAND

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PAND is an SSE2 instruction and VPAND is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PANDN, (V)POR, (V)PXOR

rFLAGS Affected

None

MXCSR Flags Affected

None

PAND
VPAND

Packed AND

Mnemonic Opcode Description

PAND xmm1, xmm2/mem128 66 0F DB /r Performs bitwise AND of values in xmm1 and xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPAND xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DB /r

262 PAND, VPAND Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PANDN, VPANDN 263

26568—Rev. 3.14—December 2011 AMD64 Technology

Generates the ones’ complement of the value in the first source operand and performs a bitwise AND
of the complement and the value in the second source operand. Writes the result to the destination.
There are legacy and extended forms of the instruction:

PANDN

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPANDN

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PANDN is an SSE2 instruction and VPANDN is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PAND, (V)POR, (V)PXOR

rFLAGS Affected

None

MXCSR Flags Affected

None

PANDN
VPANDN

Packed AND NOT

Mnemonic Opcode Description

PANDN xmm1, xmm2/mem128 66 0F DF /r Generates ones’ complement of xmm1, then performs
bitwise AND with value in xmm2 or mem128. Writes the
result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPANDN xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DF /r

264 PANDN, VPANDN Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PAVGB, VPAVGB 265

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the rounded averages of 16 packed unsigned 8-bit integer values in the first source operand
and the corresponding values of the second source operand. Writes each average to the corresponding
byte of the destination.
An average is computed by adding pairs of operands, adding 1 to a 9-bit temporary sum, and right-
shifting the temporary sum by one bit position.
There are legacy and extended forms of the instruction:

PAVGB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPAVGB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PAVGB is an SSE2 instruction and VPAVGB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

PAVGW

rFLAGS Affected

None

MXCSR Flags Affected

None

PAVGB
VPAVGB

Packed Average
Unsigned Bytes

Mnemonic Opcode Description

PAVGB xmm1, xmm2/mem128 66 0F E0 /r Averages pairs of packed 8-bit unsigned integer values
in xmm1 and xmm2 or mem128. Writes the averages to
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPAVGB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E0 /r

266 PAVGB, VPAVGB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PAVGW, VPAVGW 267

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the rounded average of packed unsigned 16-bit integer values in the first source operand
and the corresponding values of the second source operand. Writes each average to the corresponding
word of the destination.
An average is computed by adding pairs of operands, adding 1 to a 17-bit temporary sum, and right-
shifting the temporary sum by one bit position.
There are legacy and extended forms of the instruction:

PAVGW

The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The destination is the same XMM register as the first source operand; the
upper 128-bits of the corresponding YMM register are not affected.

VPAVGW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PAVGW is an SSE2 instruction and VPAVGW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PAVGB

rFLAGS Affected

None

MXCSR Flags Affected

None

PAVGW
VPAVGW

Packed Average
Unsigned Words

Mnemonic Opcode Description

PAVGW xmm1, xmm2/mem128 66 0F E3 /r Averages pairs of packed 16-bit unsigned integer values
in xmm1 and xmm2 or mem128. Writes the averages to
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPAVGW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E3 /r

268 PAVGW, VPAVGW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PBLENDVB, VPBLENDVB 269

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed bytes from either of two sources to a destination, as specified by a mask operand.
The mask is defined by the msb of each byte of the mask operand. The position of a mask bit corre-
sponds to the position of the most significant bit of a copied value.
• When a mask bit = 0, the specified element of the first source is copied to the corresponding

position in the destination.

• When a mask bit = 1, the specified element of the second source is copied to the corresponding
position in the destination.

There are legacy and extended forms of the instruction:

PBLENDVB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask operand is the
implicit register XMM0.

VPBLENDVB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask operand is a fourth XMM
register selected byte bits [7:4] of an immediate byte.

PBLENDVB is an SSE4.1 instruction and VPBLENDVB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)BLENDVPD, (V)BLENDVPS

rFLAGS Affected

None

PBLENDVB
VPBLENDVB

Variable Blend
Packed Bytes

Mnemonic Opcode Description

PBLENDVB xmm1, xmm2/mem128 66 0F 38 10 /r Selects byte values from xmm1 or xmm2/mem128,
depending on the value of corresponding mask bits
in XMM0. Writes the selected values to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPBLENDVB xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 4C /r is4

270 PBLENDVB, VPBLENDVB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PBLENDW, VPBLENDW 271

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed words from either of two sources to a destination, as specified by an immediate 8-bit
mask operand.
Each mask bit corresponds to a source word value, in ascending order. Mask bit [0] corresponds to
source bits [15:0], mask bit [7] corresponds to source bits [127:112].
• When a mask bit = 0, the specified element of the first source is copied to the corresponding

position in the destination.

• When a mask bit = 1, the specified element of the second source is copied to the corresponding
position in the destination.

There are legacy and extended forms of the instruction:

PBLENDW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPBLENDW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PBLENDW is an SSE4.1 instruction and VPBLENDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
respectively (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)BLENDPD

rFLAGS Affected

None

PBLENDW
VPBLENDW

Blend
Packed Words

Mnemonic Opcode Description

PBLENDW xmm1, xmm2/mem128, imm8 66 0F 3A 0E /r ib Selects word values from xmm1 or
xmm2/mem128, as specified by imm8.
Writes the selected values to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPBLENDW xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0E /r /ib

272 PBLENDW, VPBLENDW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCLMULQDQ, VPCLMULQDQ 273

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs a carry-less multiplication of a selected quadword element of the first source operand by a
selected quadword element of the second source operand and writes the product to the destination.
Carry-less multiplication, also known as binary polynomial multiplication, is the mathematical opera-
tion of computing the product of two operands without generating or propagating carries. It is an
essential component of cryptographic processing, and typically requires a large number of cycles.
The instruction provides an efficient means of performing the operation and is particularly useful in
implementing the Galois counter mode used in the Advanced Encryption Standard (AES). See
Appendix A for additional information.
Bits 4 and 0 of an 8-bit immediate byte operand specify which quadword of each source operand to
multiply, as follows.

Alias mnemonics are provided for the various immediate byte combinations.
There are legacy and extended forms of the instruction:

PCLMULQDQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCLMULQDQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCLMULQDQ is a CLMUL instruction and VPCLMULQDQ is both a CLMUL instruction and an
AVX instruction. Support for these instructions is indicated by CPUID Fn0000_00001_ECX[PCL-
MULQDQ] and Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

PCLMULQDQ
VPCLMULQDQ

Carry-less Multiply
Quadwords

Mnemonic Imm[0] Imm[4] Quadword Operands Selected

(V)PCLMULLQLQDQ 0 0 SRC1[63:0], SRC2[63:0]

(V)PCLMULHQLQDQ 1 0 SRC1[127:64], SRC2[63:0]

(V)PCLMULLQHQDQ 0 1 SRC1[63:0], SRC2[127:64]

(V)PCLMULHQHQDQ 1 1 SRC1[127:64], SRC2[127:64]

274 PCLMULQDQ, VPCLMULQDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)PMULDQ, (V)PMULUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCLMULQDQ xmm1, xmm2/mem128, imm8 66 0F 3A 44 /r ib Performs carry-less multiplication of a
selected quadword element of xmm1 by a
selected quadword element of xmm2 or
mem128. Elements are selected by bits 4
and 0 of imm8. Writes the product to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCLMULQDQ xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 44 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPEQB, VPCMPEQB 275

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares 16 packed byte values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding byte of the destination.
When values are equal, the result is FFh; when values are not equal, the result is 00h.
There are legacy and extended forms of the instruction:

PCMPEQB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQB is an SSE2 instruction and VPCMPEQB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPEQB
VPCMPEQB

Packed Compare Equal
Bytes

Mnemonic Opcode Description

PCMPEQB xmm1, xmm2/mem128 66 0F 74 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPEQB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 74 /r

276 PCMPEQB, VPCMPEQB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPEQD, VPCMPEQD 277

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares four packed doubleword values in the first source operand to corresponding values in the
second source operand and writes a comparison result to the corresponding doubleword of the desti-
nation.
When values are equal, the result is FFFFFFFFh; when values are not equal, the result is 00000000h.
There are legacy and extended forms of the instruction:

PCMPEQD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQD is an SSE2 instruction and VPCMPEQD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPEQD
VPCMPEQD

Packed Compare Equal
Doublewords

Mnemonic Opcode Description

PCMPEQD xmm1, xmm2/mem128 66 0F 76 /r Compares packed doublewords in xmm1 to packed
doublewords in xmm2 or mem128. Writes results to
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPEQD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 76 /r

278 PCMPEQD, VPCMPEQD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPEQQ, VPCMPEQQ 279

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares two packed quadword values in the first source operand to corresponding values in the sec-
ond source operand and writes a comparison result to the corresponding quadword of the destination.
When values are equal, the result is FFFFFFFFFFFFFFFFh; when values are not equal, the result is
0000000000000000h.
There are legacy and extended forms of the instruction:

PCMPEQQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQQ is an SSE4.1 instruction and VPCMPEQQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPEQQ
VPCMPEQQ

Packed Compare Equal
Quadwords

Mnemonic Opcode Description

PCMPEQQ xmm1, xmm2/mem128 66 0F 38 29 /r Compares packed quadwords in xmm1 to packed
quadwords in xmm2 or mem128. Writes results to
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPEQQ xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 29 /r

280 PCMPEQQ, VPCMPEQQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPEQW, VPCMPEQW 281

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares four packed word values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding word of the destination.
When values are equal, the result is FFFFh; when values are not equal, the result is 0000h.
There are legacy and extended forms of the instruction:

PCMPEQW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQW is an SSE2 instruction and VPCMPEQW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPEQB, (V)PCMPEQD, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPEQW
VPCMPEQW

Packed Compare Equal
Words

Mnemonic Opcode Description

PCMPEQW xmm1, xmm2/mem128 66 0F 75 /r Compares packed words in xmm1 to packed words in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPEQW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 75 /r

282 PCMPEQW, VPCMPEQW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPESTRI, VPCMPESTRI 283

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes an index to the ECX reg-
ister.
Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values. Each operand has associated with it a
separate integer value specifying the length of the string.
The absolute value of the data in the EAX/RAX register represents the length of the character string
in the first source operand; the absolute value of the data in the EDX/RDX register represents the
length of the character string in the second source operand.
If the absolute value of the data in either register is greater than the maximum string length that fits in
128 bits, the length is set to the maximum: 8, for 16-bit characters, or 16, for 8-bit characters.
The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.
The index of either the most significant or least significant set bit of the post-processed comparison
summary bit vector is returned in ECX. If no bits are set in the post-processed comparison summary
bit vector, ECX is set to 16 for source operand strings composed of 8-bit characters or 8 for 16-bit
character strings.
See Section 1.4, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.
The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:

PCMPESTRI

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. A result index is written to the ECX register.

VPCMPESTRI

The extended form of the instruction has a 128-bit encoding only.

PCMPESTRI
VPCMPESTRI

Packed Compare
Explicit Length Strings Return Index

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.

PF cleared.

AF cleared.

ZF Set if the specified length of the second string is less than the maximum; otherwise
cleared.

SF Set if the specified length of the first string is less than the maximum; otherwise
cleared.

OF Equal to the value of the lsb of the post-processed comparision summary bit vector.

284 PCMPESTRI, VPCMPESTRI Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. A result index is written to the ECX register.

PCMPESTRI is an SSE4.2 instruction and VPCMPESTRI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPESTRM, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCMPESTRI xmm1, xmm2/mem128, imm8 66 0F 3A 61 /r ib Compares packed string data in xmm1 and
xmm2 or mem128. Writes a result index to
the ECX register.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPESTRI xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 61 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 0 M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

Instruction Reference PCMPESTRI, VPCMPESTRI 285

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

286 PCMPESTRM, VPCMPESTRM Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes a mask value to the
YMM0/XMM0 register.
Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values. Each operand has associated with it a
separate integer value specifying the length of the string.
The absolute value of the data in the EAX/RAX register represents the length of the character string
in the first source operand; the absolute value of the data in the EDX/RDX register represents the
length of the character string in the second source operand.
If the absolute value of the data in either register is greater than the maximum string length that fits in
128 bits, the length is set to the maximum: 8, for 16-bit characters, or 16, for 8-bit characters.
The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.
Depending on the output option selected, the post-processed comparison summary bit vector is either
zero-extended to 128 bits or expanded into a byte/word-mask and then written to XMM0.
See Section 1.4, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.
The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:

PCMPESTRM

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The mask result is written to the XMM0 register.

VPCMPESTRM

The extended form of the instruction has a 128-bit encoding only.

PCMPESTRM
VPCMPESTRM

Packed Compare
Explicit Length Strings Return Mask

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.

PF cleared.

AF cleared.

ZF Set if the specified length of the second string is less than the maximum; otherwise
cleared.

SF Set if the specified length of the first string is less than the maximum; otherwise
cleared.

OF Equal to the value of the lsb of the post-processed summary bit vector.

Instruction Reference PCMPESTRM, VPCMPESTRM 287

26568—Rev. 3.14—December 2011 AMD64 Technology

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The mask result is written to the XMM0 register. Bits [255:128] of
the YMM0 register are cleared.
PCMPESTRM is an SSE4.2 instruction and VPCMPESTRM is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPESTRI, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCMPESTRMxmm1, xmm2/mem128, imm8 66 0F 3A 60 /r ib Compares packed string data in xmm1 and
xmm2 or mem128. Writes a mask value to
the XMM0 register.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPESTRM xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 60 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 0 M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

288 PCMPESTRM, VPCMPESTRM Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference PCMPGTB, VPCMPGTB 289

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares 16 packed signed byte values in the first source operand to corresponding values in the sec-
ond source operand and writes a comparison result to the corresponding byte of the destination.
When a value in the first operand is greater than a value in the second source operand, the result is
FFh; when a value in the first operand is less than or equal to a value in the second operand, the result
is 00h.
There are legacy and extended forms of the instruction:

PCMPGTB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTB is an SSE2 instruction and VPCMPGTB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPGTB
VPCMPGTB

Packed Compare Greater Than
Signed Bytes

Mnemonic Opcode Description

PCMPGTB xmm1, xmm2/mem128 66 0F 66 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPGTB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 66 /r

290 PCMPGTB, VPCMPGTB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPGTD, VPCMPGTD 291

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares four packed signed doubleword values in the first source operand to corresponding values
in the second source operand and writes a comparison result to the corresponding doubleword of the
destination.
When a value in the first operand is greater than a value in the second operand, the result is
FFFFFFFFh; when a value in the first operand is less than or equal to a value in the second operand,
the result is 00000000h.
There are legacy and extended forms of the instruction:

PCMPGTD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTD is an SSE2 instruction and VPCMPGTD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPGTD
VPCMPGTD

Packed Compare Greater Than
Signed Doublewords

Mnemonic Opcode Description

PCMPGTD xmm1, xmm2/mem128 66 0F 66 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPGTD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 66 /r

292 PCMPGTD, VPCMPGTD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPGTQ, VPCMPGTQ 293

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares two packed signed quadword values in the first source operand to corresponding values in
the second source operand and writes a comparison result to the corresponding quadword of the desti-
nation.
When a value in the first operand is greater than a value in the second operand, the result is
FFFFFFFFFFFFFFFFh; when a value in the first operand is less than or equal to a value in the second
operand, the result is 0000000000000000h.
There are legacy and extended forms of the instruction:

PCMPGTQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTQ is an SSE4.2 instruction and VPCMPGTQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPGTQ
VPCMPGTQ

Packed Compare Greater Than
Signed Quadwords

Mnemonic Opcode Description

PCMPGTQ xmm1, xmm2/mem128 66 0F 38 37 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPGTQ xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 37 /r

294 PCMPGTQ, VPCMPGTQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPGTW, VPCMPGTW 295

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares two packed signed word values in the first operand to corresponding values in the second
source operand and writes a comparison result to the corresponding word of the destination.
When a value in the first operand is greater than a value in the second operand, the result is FFFFh;
when a value in the first operand is less than or equal to a value in the second operand, the result is
0000h.
There are legacy and extended forms of the instruction:

PCMPGTW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTW is an SSE2 instruction and VPCMPGTW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPGTW
VPCMPGTW

Packed Compare Greater Than Signed Words

Mnemonic Opcode Description

PCMPGTW xmm1, xmm2/mem128 66 0F 65 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPGTW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 65 /r

296 PCMPGTW, VPCMPGTW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPISTRI, VPCMPISTRI 297

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes an index to the ECX reg-
ister.
Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values.
Source operand strings shorter than the maximum that can be packed into a 128-bit value are termi-
nated by a null character (value of 0). The characters prior to the null character constitute the string. If
the first (lowest indexed) character is null, the string length is 0.
The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.
The index of either the most significant or least significant set bit of the post-processed comparison
summary bit vector is returned in ECX. If no bits are set in the post-processed comparison summary
bit vector, ECX is set to 16 for source operand strings composed of 8-bit characters or 8 for 16-bit
character strings.
See Section 1.4, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.
The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:

PCMPISTRI

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. A result index is written to the ECX register.

VPCMPISTRI

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. A result index is written to the ECX register.

PCMPISTRI
VPCMPISTRI

Packed Compare
Implicit Length Strings Return Index

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.

PF cleared.

AF cleared.

ZF Set if any byte (word) in the second operand is null; otherwise cleared.

SF Set if any byte (word) in the first operand is null; otherwise cleared

OF Equal to the value of the lsb of the post-processed summary bit vector.

298 PCMPISTRI, VPCMPISTRI Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

PCMPISTRI is an SSE4.2 instruction and VPCMPISTRI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRM

rFLAGS Affected

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCMPISTRI xmm1, xmm2/mem128, imm8 66 0F 3A 63 /r ib Compares packed string data in xmm1 and
xmm2 or mem128. Writes a result index to
the ECX register.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPISTRI xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 63 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 0 M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference PCMPISTRI, VPCMPISTRI 299

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

300 PCMPISTRM, VPCMPISTRM Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes a mask value to the
YMM0/XMM0 register
Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values.
Source operand strings shorter than the maximum that can be packed into a 128-bit value are termi-
nated by a null character (value of 0). The characters prior to the null character constitute the string. If
the first (lowest indexed) character is null, the string length is 0.
The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.
Depending on the output option selected, the post-processed comparison summary bit vector is either
zero-extended to 128 bits or expanded into a byte/word-mask and then written to XMM0.
See Section 1.4, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.
The rFLAGS are set to indicate the following conditions:

There are legacy and extended forms of the instruction:

PCMPISTRM

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The mask result is written to the XMM0 register.

VPCMPISTRM

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The mask result is written to the XMM0 register. Bits [255:128] of
the YMM0 register are cleared.

PCMPISTRM
VPCMPISTRM

Packed Compare Implicit Length
Strings Return Mask

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.

PF cleared.

AF cleared.

ZF Set if any byte (word) in the second operand is null; otherwise cleared.

SF Set if any byte (word) in the first operand is null; otherwise cleared.

OF Equal to the value of the lsb of the post-processed summary bit vector.

Instruction Reference PCMPISTRM, VPCMPISTRM 301

26568—Rev. 3.14—December 2011 AMD64 Technology

PCMPISTRM is an SSE4.2 instruction and VPCMPISTRM is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE42] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRI

rFLAGS Affected

MXCSR Flags Affected

None

Mnemonic Opcode Description

PCMPISTRM xmm1, xmm2/mem128, imm8 66 0F 3A 62 /r ib Compares packed string data in xmm1 and
xmm2 or mem128. Writes a result or mask
to the XMM0 register.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPCMPISTRM xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 62 /r ib

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 0 M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

302 PCMPISTRM, VPCMPISTRM Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference PEXTRB, VPEXTRB 303

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts a byte from a source register and writes it to an 8-bit memory location or to the low-order
byte of a general-purpose register, with zero-extension to 32 or 64 bits. Bits [3:0] of an immediate
byte operand select the byte to be extracted:

There are legacy and extended forms of the instruction:

PEXTRB

The source operand is an XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.

VPEXTRB

The extended form of the instruction has a 128-bit encoding only.
The source operand is an XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.

PEXTRB is an SSE4.1 instruction and VPEXTRB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

PEXTRB
VPEXTRB

Extract
Packed Byte

Value of imm8 [3:0] Source Bits Extracted

0000 [7:0]

0001 [15:8]

0010 [23:16]

0011 [31:24]

0100 [39:32]

0101 [47:40]

0110 [55:48]

0111 [63:56]

1000 [71:64]

1001 [79:72]

1010 [87:80]

1011 [95:88]

1100 [103:96]

1101 [111:104]

1110 [119:112]

1111 [127:120]

304 PEXTRB, VPEXTRB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PEXTRB reg/m8, xmm, imm8 66 0F 3A 14 /r ib Extracts an 8-bit value specified by imm8 from xmm
and writes it to m8 or the low-order byte of a general-
purpose register, with zero-extension.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPEXTRB reg/mem8, xmm, imm8 C4 RXB.00011 X.1111.0.01 14 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S X Write to a read-only data segment.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PEXTRD, VPEXTRD 305

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts a doubleword from a source register and writes it to an 32-bit memory location or a 32-bit
general-purpose register. Bits [1:0] of an immediate byte operand select the doubleword to be
extracted:

There are legacy and extended forms of the instruction:

PEXTRD

The encoding is the same as PEXTRQ, with REX.W = 0.
The source operand is an XMM register and the destination is either an 32-bit memory location or a
32-bit general-purpose register.

VPEXTRD

The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPEXTRQ, with VEX.W = 0.
The source operand is an XMM register and the destination is either an 32-bit memory location or a
32-bit general-purpose register.

PEXTRD is an SSE4.1 instruction and VPEXTRD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PEXTRB, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

PEXTRD
VPEXTRD

Extract
Packed Doubleword

Value of imm8 [1:0] Source Bits Extracted

00 [31:0]

01 [63:32]

10 [95:64]

11 [127:96]

Mnemonic Opcode Description

PEXTRD reg32/mem32, xmm, imm8 66 (W0) 0F 3A 16 /r ib Extracts a 32-bit value specified by imm8 from
xmm and writes it to mem32 or reg32.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPEXTRD reg32/mem32, xmm, imm8 C4 RXB.00011 0.1111.0.01 16 /r ib

306 PEXTRD, VPEXTRD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PEXTRQ, VPEXTRQ 307

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts a quadword from a source register and writes it to an 64-bit memory location or to a 64-bit
general-purpose register. Bit [0] of an immediate byte operand selects the quadword to be extracted:

There are legacy and extended forms of the instruction:

PEXTRQ

The encoding is the same as PEXTRD, with REX.W = 1.
The source operand is an XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.

VPEXTRQ

The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPEXTRD, with VEX.W = 1.
The source operand is an XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.

PEXTRQ is an SSE4.1 instruction and VPEXTRQ is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PEXTRQ
VPEXTRQ

Extract
Packed Quadword

Value of imm8 [0] Source Bits Extracted

0 [63:0]

1 [127:64]

Mnemonic Opcode Description

PEXTRQ reg64/mem64, xmm, imm8 66 (W1) 0F 3A 16 /r ib Extracts a 64-bit value specified by imm8 from
xmm and writes it to mem64 or reg64.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPEXTRQ reg64/mem64, xmm, imm8 C4 RXB.00011 1.1111.0.01 16 /r ib

308 PEXTRQ, VPEXTRQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PEXTRW, VPEXTRW 309

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts a word from a source register and writes it to a 16-bit memory location or to the low-order
word of a general-purpose register, with zero-extension to 32 or 64 bits. Bits [3:0] of an immediate
byte operand select the word to be extracted:

There are legacy and extended forms of the instruction:

PEXTRW

The legacy form of the instruction has SSE2 and SSE4.1 encodings.
The source operand is an XMM register and the destination is the low-order word of a general-pur-
pose register. The extracted word is zero-extended to 32 or 64 bits.
The source operand is an XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.

VPEXTRW

The extended form of the instruction has two 128-bit encodings that correspond to the two legacy
encodings.
The source operand is an XMM register and the destination is the low-order word of a general-pur-
pose register. The extracted word is zero-extended to 32 or 64 bits.
The source operand is an XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.

PEXTRW is either an SSE2 or an SSE4.1 instruction. VPEXTRW is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000_00001_EDX[SSE2], Fn0000_00001_ECX[SSE41]
and Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

PEXTRW
VPEXTRW

Extract Packed Word

Value of imm8 [2:0] Source Bits Extracted

000 [15:0]

001 [31:16]

010 [47:32

011 [63:48]

100 [79:64]

101 [95:80]

110 [111:96]

111 [127:112]

310 PEXTRW, VPEXTRW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PEXTRW reg, xmm, imm8 66 0F C5 /r ib Extracts a 16-bit value specified by imm8 from xmm
and writes it to the low-order byte of a general-
purpose register, with zero-extension.

PEXTRW reg/m16, xmm, imm8 66 0F 3A 15 /r ib Extracts a 16-bit value specified by imm8 from xmm
and writes it to m16 or the low-order byte of a
general-purpose register, with zero-extension.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPEXTRW reg, xmm, imm8 C4 RXB.00001 X.1111.0.01 C5 /r ib

VPEXTRW reg/mem16, xmm, imm8 C4 RXB.00011 X.1111.0.01 15 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHADDD, VPHADDD 311

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds adjacent pairs of 32-bit signed integers in two source operands and packs the sums into a desti-
nation. If a sum overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set)
and only the low-order 32 bits of the sum are written in the destination.
There are legacy and extended forms of the instruction:

PHADDD

The first source register is also the destination register.
Adds the 32-bit signed integer values in bits [63:32] and bits [31:0] of the first source XMM register
and packs the sum into bits [31:0] of the destination; adds the 32-bit signed integer values in bits
[127:96] and bits [95:64] of the first source register and packs the sum into bits [63:32] of the destina-
tion. Adds the corresponding values in the second source XMM register or a 128-bit memory location
and packs the sums into bits [95:64] and [127:96] of the destination. Bits [255:128] of the YMM reg-
ister that corresponds to the destination not affected.

VPHADDD

The extended form of the instruction has a 128-bit encoding only.
Adds the 32-bit signed integer values in bits [63:32] and bits [31:0] of the first source XMM register
and packs the sum into bits [31:0] of the destination XMM register; adds the 32-bit signed integer val-
ues in bits [127:96] and bits [95:64] of the first source register and packs the sum into bits [63:32] of
the destination. Adds the corresponding values in the second source XMM register or a 128-bit mem-
ory location and packs the sums into bits [95:64] and [127:96] of the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PHADDD is an SSSE3 instruction and VPHADDD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PHADDW, (V)PHADDSW

rFLAGS Affected

None

PHADDD
VPHADDD

Packed Horizontal Add
Doubleword

Mnemonic Opcode Description

PHADDD xmm1, xmm2/mem128 66 0F 38 02 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPHADDD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 02 /r

312 PHADDD, VPHADDD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHADDSW, VPHADDSW 313

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds adjacent pairs of 16-bit signed integers in two source operands, with saturation, and packs the
sums into a destination.
Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums less than 8000h are saturated
to 8000h.
There are legacy and extended forms of the instruction:

PHADDSW

The first source register is also the destination.
Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with bits [31:16] and [15:0] and packs each saturated 16-bit sum into the low quadword of the desti-
nation sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the
second source XMM register or a 128-bit memory location and packs each saturated 16-bit sum into
the high quadword of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VPHADDSW

The extended form of the instruction has a 128-bit encoding only.
Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with bits [31:16] and [15:0] and packs each saturated 16-bit sum into the low quadword of the desti-
nation sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the
second source XMM register or a 128-bit memory location and packs each saturated 16-bit sum into
the high quadword of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

PHADDSW is an SSSE3 instruction and VPHADDSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PHADDD, (V)PHADDW

PHADDSW
VPHADDSW

Packed Horizontal Add with Saturation
Word

Mnemonic Opcode Description

PHADDSW xmm1, xmm2/mem128 66 0F 38 03 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128, with saturation. Writes packed
sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPHADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 03 /r

314 PHADDSW, VPHADDSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHADDW, VPHADDW 315

26568—Rev. 3.14—December 2011 AMD64 Technology

Adds adjacent pairs of 16-bit signed integers in two source operands and packs the sums into a desti-
nation. If a sum overflows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set)
and only the low-order 32 bits of the sum are written in the destination.
There are legacy and extended forms of the instruction:

PHADDW

The first source register is also the destination.
Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with bits [31:16] and [15:0] and packs each 16-bit sum into the low quadword of the destination
sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the second
source XMM register or a 128-bit memory location and packs each 16-bit sum into the high quad-
word of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VPHADDW

The extended form of the instruction has a 128-bit encoding only.
Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with bits [31:16] and [15:0] and packs each 16-bit sum into the low quadword of the destination
sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the second
source XMM register or a 128-bit memory location and packs each 16-bit sum into the high quad-
word of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

PHADDSW is an SSSE3 instruction and VPHADDSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481)

Instruction Encoding
.

Related Instructions

(V)PHADDD, (V)PHADDSW

rFLAGS Affected

None

PHADDW
VPHADDW

Packed Horizontal Add
Word

Mnemonic Opcode Description

PHADDW xmm1, xmm2/mem128 66 0F 38 01 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPHADDW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 01 /r

316 PHADDW, VPHADDW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHMINPOSUW, VPHMINPOSUW 317

26568—Rev. 3.14—December 2011 AMD64 Technology

Finds the minimum unsigned 16-bit value in the source operand and copies it to the low order word
element of the destination. Writes the source position index of the value to bits [18:16] of the destina-
tion and clears bits[127:19] of the destination.
There are legacy and extended forms of the instruction:

PHMINPOSUW

The source operand is an XMM register or 128-bit memory location. The destination is an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPHMINPOSUW

The extended form of the instruction has a 128-bit encoding only.
The source operand is an XMM register or 128-bit memory location. The destination is an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PHMINPOSUW is an SSE4.1 instruction and VPHMINPOSUW is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PHMINPOSUW
VPHMINPOSUW

 Horizontal Minimum and Position

Mnemonic Opcode Description

PHMINPOSUW xmm1, xmm2/mem128 66 0F 38 41 /r Finds the minimum unsigned word element in
xmm2 or mem128, copies it to xmm1[15:0]; writes
its position index to xmm1[18:16], and clears
xmm1[127:19].

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPHMINPOSUW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 41 /r

318 PHMINPOSUW, VPHMINPOSUW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHSUBD, VPHSUBD 319

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts adjacent pairs of 32-bit signed integers in two source operands and packs the differences
into a destination. The higher-order doubleword of each pair is subtracted from the lower-order dou-
bleword.
There are legacy and extended forms of the instruction:

PHSUBD

The first source register is also the destination.
Subtracts the 32-bit signed integer value in bits [63:32] of the first source XMM register from the
value in bits [31:0] of the first source XMM register and packs the difference into bits [31:0] of the
destination; subtracts the 32-bit signed integer value in bits [127:96] from the value in bits [95:64]
and packs the difference into bits [63:32] of the destination. Subtracts the corresponding values in the
second source XMM register or a 128-bit memory location and packs the differences into bits [95:64]
and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to the destina-
tion are not affected.

VPHSUBD

The extended form of the instruction has a 128-bit encoding only.
Subtracts the 32-bit signed integer value in bits [63:32] of the first source XMM register from the
value in bits [31:0] of the first source XMM register and packs the difference into bits [31:0] of the
destination XMM register; subtracts the 32-bit signed integer values in bits [127:96] from the value in
bits [95:64] and packs the difference into bits [63:32] of the destination. Subtracts the corresponding
values in the second source XMM register or a 128-bit memory location and packs the differences
into bits [95:64] and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

PHSUBD is an SSSE3 instruction and VPHSUBD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PHSUBW, (V)PHSUBSW

PHSUBD
VPHSUBD

Packed Horizontal Subtract
Doubleword

Mnemonic Opcode Description

PHSUBD xmm1, xmm2/mem128 66 0F 38 06 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPHSUBD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 06 /r

320 PHSUBD, VPHSUBD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHSUBSW, VPHSUBSW 321

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts adjacent pairs of 16-bit signed integers in two source operands, with saturation, and packs
the differences into a destination. The higher-order word of each pair is subtracted from the lower-
order word.
Positive differences greater than 7FFFh are saturated to 7FFFh; negative differences less than 8000h
are saturated to 8000h.
There are legacy and extended forms of the instruction:

PHSUBSW

The first source register is also the destination.
Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four saturated 16-bit differ-
ences into bits [63:0] of the destination, starting with bits [15:0]. Subtracts the four corresponding
adjacent pairs of values in the second source XMM register or a 128-bit memory location and packs
four saturated 16-bit differences into bits [127:64] of the destination, starting with bits [79:64]. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

VPHSUBSW

The extended form of the instruction has a 128-bit encoding only.
Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four saturated 16-bit differ-
ences into bits [63:0] of the destination XMM register, starting with bits [15:0]. Subtracts the four
corresponding adjacent pairs of values in the second source XMM register or a 128-bit memory loca-
tion and packs four saturated 16-bit differences into bits [127:64] of the destination, starting with bits
[79:64]. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PHSUBSW is an SSSE3 instruction and VPHSUBSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PHSUBD, (V)PHSUBW

PHSUBSW
VPHSUBSW

Packed Horizontal Subtract with Saturation
Word

Mnemonic Opcode Description

PHSUBSW xmm1, xmm2/mem128 66 0F 38 07 /r Subtracts adjacent pairs of signed integers in xmm1
and xmm2 or mem128, with saturation. Writes packed
differences to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPHSUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 07 /r

322 PHSUBSW, VPHSUBSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHSUBW, VPHSUBW 323

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts adjacent pairs of 16-bit signed integers in two source operands and packs the differences
into a destination. The higher-order word of each pair is subtracted from the lower-order word.
There are legacy and extended forms of the instruction:

PHSUBW

The first source register is also the destination register.
Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four 16-bit differences into bits
[63:0] of the destination, starting with bits [15:0]. Subtracts the four corresponding adjacent pairs of
values in the second source XMM register or a 128-bit memory location and packs four 16-bit differ-
ences into bits [127:64] of the destination, starting with bits [79:64]. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

VPHSUBW

The extended form of the instruction has a 128-bit encoding only.
Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four 16-bit differences into bits
[63:0] of the destination XMM register, starting with bits [15:0]. Subtracts the four corresponding
adjacent pairs of values in the second source XMM register or a 128-bit memory location and packs
four 16-bit differences into bits [127:64] of the destination, starting with bits [79:64]. Bits [255:128]
of the YMM register that corresponds to the destination are cleared.

PHSUBW is an SSSE3 instruction and VPHSUBW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PHSUBD, (V)PHSUBW

rFLAGS Affected

None

PHSUBW
VPHSUBW

Packed Horizontal Subtract
Word

Mnemonic Opcode Description

PHSUBW xmm1, xmm2/mem128 66 0F 38 05 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPHSUBW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 05 /r

324 PHSUBW, VPHSUBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRB, VPINSRB 325

26568—Rev. 3.14—December 2011 AMD64 Technology

Inserts a byte from an 8-bit memory location or the low-order byte of a 32-bit general-purpose regis-
ter into a destination register. Bits [3:0] of an immediate byte operand select the location where the
byte is to be inserted:

There are legacy and extended forms of the instruction:

PINSRB

The source operand is either an 8-bit memory location or the low-order byte of a 32-bit general-pur-
pose register and the destination an XMM register. The other bytes of the destination are not affected.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPINSRB

The extended form of the instruction has a 128-bit encoding only.
There are two source operands. The first source operand is either an 8-bit memory location or the
low-order byte of a 32-bit general-purpose register and the second source operand is an XMM regis-
ter. The destination is a second XMM register. All the bytes of the second source other than the byte
that corresponds to the location of the inserted byte are copied to the destination. Bits [255:128] of the
YMM register that corresponds to destination are cleared.

PINSRB is an SSE4.1 instruction and VPINSRB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

PINSRB
VPINSRB

Packed Insert
Byte

Value of imm8 [3:0] Insertion Location

0000 [7:0]

0001 [15:8]

0010 [23:16]

0011 [31:24]

0100 [39:32]

0101 [47:40]

0110 [55:48]

0111 [63:56]

1000 [71:64]

1001 [79:72]

1010 [87:80]

1011 [95:88]

1100 [103:96]

1101 [111:104]

1110 [119:112]

1111 [127:120]

326 PINSRB, VPINSRB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRD, (V)PINSRQ, (V)PINSRW

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PINSRB xmm, reg32/mem8, imm8 66 0F 3A 20 /r ib Inserts an 8-bit value selected by imm8 from the
low-order byte of reg32 or from mem8 into xmm.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPINSRB xmm, reg/mem8, xmm, imm8 C4 RXB.00011 X.1111.0.01 20 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRD, VPINSRD 327

26568—Rev. 3.14—December 2011 AMD64 Technology

Inserts a doubleword from a 32-bit memory location or a 32-bit general-purpose register into a desti-
nation register. Bits [1:0] of an immediate byte operand select the location where the doubleword is to
be inserted:

There are legacy and extended forms of the instruction:

PINSRD

The encoding is the same as PINSRQ, with REX.W = 0.
The source operand is either a 32-bit memory location or a 32-bit general-purpose register and the
destination an XMM register. The other doublewords of the destination are not affected. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPINSRD

The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPINSRQ, with VEX.W = 0.
There are two source operands. The first source operand is either a 32-bit memory location or a 32-bit
general-purpose register and the second source operand is an XMM register. The destination is a sec-
ond XMM register. All the doublewords of the second source other than the doubleword that corre-
sponds to the location of the inserted doubleword are copied to the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PINSRD is an SSE4.1 instruction and VPINSRD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

PINSRD
VPINSRD

Packed Insert
Doubleword

Value of imm8 [1:0] Insertion Location

00 [31:0]

01 [63:32]

10 [95:64]

11 [127:96]

Mnemonic Opcode Description

PINSRD xmm, reg32/mem32, imm8 66 (W0) 0F 3A 22 /r ib Inserts a 32-bit value selected by imm8 from
reg32 or mem32 into xmm.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPINSRD xmm, reg32/mem32, xmm, imm8 C4 RXB.00011 0.1111.0.01 22 /r ib

328 PINSRD, VPINSRD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRQ, (V)PINSRW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRQ, VPINSRQ 329

26568—Rev. 3.14—December 2011 AMD64 Technology

Inserts a quadword from a 64-bit memory location or a 64-bit general-purpose register into a destina-
tion register. Bit [0] of an immediate byte operand selects the location where the doubleword is to be
inserted:

There are legacy and extended forms of the instruction:

PINSRQ

The encoding is the same as PINSRD, with REX.W = 1.
The source operand is either a 64-bit memory location or a 64-bit general-purpose register and the
destination an XMM register. The other quadwords of the destination are not affected. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPINSRQ

The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPINSRD, with VEX.W = 1.
There are two source operands. The first source operand is either a 64-bit memory location or a 64-bit
general-purpose register and the second source operand is an XMM register. The destination is a sec-
ond XMM register. All the quadwords of the second source other than the quadword that corresponds
to the location of the inserted quadword are copied to the destination. Bits [255:128] of the YMM reg-
ister that corresponds to the destination XMM registers are cleared.

PINSRQ is an SSE4.1 instruction and VPINSRQ is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW

PINSRQ
VPINSRQ

Packed Insert
Quadword

Value of imm8 [0] Insertion Location

0 [63:0]

1 [127:64]

Mnemonic Opcode Description

PINSRQ xmm, reg64/mem64, imm8 66 (W1) 0F 3A 22 /r ib Inserts a 64-bit value selected by imm8 from
reg64 or mem64 into xmm.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPINSRQ xmm, reg64/mem64, xmm, imm8 C4 RXB.00011 1.1111.0.01 22 /r ib

330 PINSRQ, VPINSRQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRW, VPINSRW 331

26568—Rev. 3.14—December 2011 AMD64 Technology

Inserts a word from a 16-bit memory location or the low-order word of a 32-bit general-purpose reg-
ister into a destination register. Bits [2:0] of an immediate byte operand select the location where the
byte is to be inserted:

There are legacy and extended forms of the instruction:

PINSRW

The source operand is either a 16-bit memory location or the low-order word of a 32-bit general-pur-
pose register and the destination an XMM register. The other words of the destination are not
affected. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPINSRW

The extended form of the instruction has a 128-bit encoding only.
There are two source operands. The first source operand is either a 16-bit memory location or the
low-order word of a 32-bit general-purpose register and the second source operand is an XMM regis-
ter. The destination is an XMM register. All the words of the second source other than the word that
corresponds to the location of the inserted word are copied to the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PINSRW is an SSE1 instruction and VPINSRW is an AVX instruction. Support for these instructions
is indicated by CPUID CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

PINSRW
VPINSRW

Packed Insert Word

Value of imm8 [2:0] Insertion Location

000 [15:0]

001 [31:16]

010 [47:32

011 [63:48]

100 [79:64]

101 [95:80]

110 [111:96]

111 [127:112]

Mnemonic Opcode Description

PINSRW xmm, reg32/mem16, imm8 66 0F C4 /r ib Inserts a 16-bit value selected by imm8 from the
low-order word of reg32 or from mem16 into xmm.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPINSRW xmm, reg32/mem16, xmm, imm8 C4 RXB.00001 X.1111.0.01 C4 /r ib

332 PINSRW, VPINSRW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMADDUBSW, VPMADDUBSW 333

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies and adds eight sets of two packed 8-bit unsigned values from the first source register and
two packed 8-bit signed values from the second source register, with signed saturation; writes eight
16-bit sums to the destination.
Source registers 1 and 2 consist of bytes [a0 a1 a2 ...] and [b0 b1 b2 ...] and the destination register
consists of words [w0 w1 w2 ...]. Operation is summarized as follows.
• The product of the values in bits [7:0] of the source registers (a0b0) is added to the product of the

values in bits [15:8] of the source registers (a1b1). The saturated sum w0 = (a0b0 + a1b1) is
written to bits [15:0] of the destination.

• The product of the values in bits [23:16] of the source registers (a2b2) is added to the product of the
values in bits [31:24] of the source registers (a3b3). The saturated sum w1 = (a2b2 + a3b3) is
written to bits [31:16] of the destination.

• The product of the values in bits [39:32] of the source registers (a4b4) is added to the product of the
values in bits [47:40] of the source registers (a5b5). The saturated sum w2 = (a4b4 + a5b5) is
written to bits [47:32] of the destination.

• The product of the values in bits [55:48] of the source registers (a6b6) is added to the product of the
values in bits [63:56] of the source registers (a7b7). The saturated sum w3 = (a6b6 + a7b7) is
written to bits [63:48] of the destination.

• The product of the values in bits [71:64] of the source registers (a8b8) is added to the product of the
values in bits [79:72] of the source registers (a9b9). The saturated sum w4 = (a8b8 + a9b9) is
written to bits [79:64] of the destination.

• The product of the values in bits [87:80] of the source registers (a10b10) is added to the product of
the values in bits [95:88] of the source registers (a11b11). The saturated sum
w5 = (a10b10 + a11b11) is written to bits [95:80] of the destination.

• The product of the values in bits [103:96] of the source registers (a12b12) is added to the product
of the values in bits [111:104] of the source registers (a13b13). The saturated sum
w6 = (a12b12 + a13b13) is written to bits [111:96] of the destination.

• The product of the values in bits [119:112] of the source registers (a14b14) is added to the product
of the values in bits [127:120] of the source registers (a15b15). The saturated sum
w7 = (a14b14 + a15b15) is written to bits [127:112] of the destination.

There are legacy and extended forms of the instruction:

PMADDUBSW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMADDUBSW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMADDUBSW
VPMADDUBSW

Packed Multiply and Add
Unsigned Byte to Signed Word

334 PMADDUBSW, VPMADDUBSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

PMADDUBSW is an SSSE3 instruction and VPMADDUBSW is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMADDWD

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PMADDUBSW xmm1, xmm2/mem128 66 0F 38 04 /r Multiplies packed 8-bit unsigned values in xmm1
and packed 8-bit signed values xmm2 or
mem128, adds the products, and writes saturated
sums to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMADDUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 04 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMADDWD, VPMADDWD 335

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies and adds four sets of four packed 16-bit signed values from two source registers; writes
four 32-bit sums to the destination.
Source registers 1 and 2 consist of words [a0 a1 a2 ...] and [b0 b1 b2 ...] and the destination register
consists of doublewords [w0 w1 w2 ...]. Operation is summarized as follows.
• The product of the values in bits [15:0] of the source registers (a0b0) is added to the product of the

values in bits [31:16] of the source registers (a1b1). The sum d0 = (a0b0 + a1b1) is written to bits
[31:0] of the destination.

• The product of the values in bits [47:33] of the source registers (a2b2) is added to the product of the
values in bits [63:48] of the source registers (a3b3). The sum d1 = (a2b2 + a3b3) is written to bits
[63:32] of the destination.

• The product of the values in bits [79:64] of the source registers (a4b4) is added to the product of the
values in bits [95:80] of the source registers (a5b5). The sum d2 = (a4b4 + a5b5) is written to bits
[95:64] of the destination.

• The product of the values in bits [111:96] of the source registers (a6b6) is added to the product of
the values in bits [127:112] of the source registers (a7b7). The sum d3 = (a6b6 + a7b7) is written to
bits [127:96] of the destination.

When all four of the signed 16-bit source operands in a set have the value 8000h, the 32-bit overflow
wraps around to 8000_0000h. There are no other overflow cases.
There are legacy and extended forms of the instruction:

PMADDWD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMADDWD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMADDWD is an SSE2 instruction and VPMADDWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

PMADDWD
VPMADDWD

Packed Multiply and Add
Word to Doubleword

Mnemonic Opcode Description

PMADDWD xmm1, xmm2/mem128 66 0F F5 /r Multiplies packed 16-bit signed values in xmm1 and
xmm2 or mem128, adds the products, and writes the
sums to xmm1.

336 PMADDWD, VPMADDWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PMADDUBSW, (V)PMULHUW, (V)PMULHW, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMADDWD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F5 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXSB, VPMAXSB 337

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 8-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXSB

Compares16 pairs of 8-bit signed integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXSB

The extended form of the instruction has a 128-bit encoding only.
Compares 16 pairs of 8-bit signed integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXSB is an SSE4.1 instruction and VPMAXSB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMAXSB
VPMAXSB

Packed Maximum
Signed Bytes

Mnemonic Opcode Description

PMAXSB xmm1, xmm2/mem128 66 0F 38 3C /r Compares 16 pairs of packed 8-bit values in xmm1 and
xmm2 or mem128 and writes the greater values to the
corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXSB xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3C /r

338 PMAXSB, VPMAXSB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXSD, VPMAXSD 339

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 32-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXSD

Compares four pairs of packed 32-bit signed integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXSD

The extended form of the instruction has a 128-bit encoding only.
Compares four pairs of packed 32-bit signed integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXSD is an SSE4.1 instruction and VPMAXSD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMAXSB, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMAXSD
VPMAXSD

Packed Maximum
Signed Doublewords

Mnemonic Opcode Description

PMAXSD xmm1, xmm2/mem128 66 0F 38 3D /r Compares four pairs of packed 32-bit values in xmm1
and xmm2 or mem128 and writes the greater values to
the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXSD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3D /r

340 PMAXSD, VPMAXSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXSW, VPMAXSW 341

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 16-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXSW

Compares eight pairs of packed 16-bit signed integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXSW

The extended form of the instruction has a 128-bit encoding only.
Compares eight pairs of packed 16-bit signed integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXSW is an SSE2 instruction and VPMAXSW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMAXSB, (V)PMAXSD, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMAXSW
VPMAXSW

Packed Maximum
Signed Words

Mnemonic Opcode Description

PMAXSW xmm1, xmm2/mem128 66 0F EE /r Compares eight pairs of packed 16-bit values in xmm1
and xmm2 or mem128 and writes the greater values to
the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EE /r

342 PMAXSW, VPMAXSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXUB, VPMAXUB 343

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 8-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXUB

Compares 16 pairs of 8-bit unsigned integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXUB

The extended form of the instruction has a 128-bit encoding only.
Compares 16 pairs of 8-bit unsigned integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXUB is an SSE2 instruction and VPMAXUB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMAXUB
VPMAXUB

Packed Maximum
Unsigned Bytes

Mnemonic Opcode Description

PMAXUB xmm1, xmm2/mem128 66 0F DE /r Compares 16 pairs of packed unsigned 8-bit values in
xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXUB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DE /r

344 PMAXUB, VPMAXUB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXUD, VPMAXUD 345

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 32-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXUD

Compares four pairs of packed 32-bit unsigned integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXUD

The extended form of the instruction has a 128-bit encoding only.
Compares four pairs of packed 32-bit unsigned integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXUD is an SSE4.1 instruction and VPMAXUD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMAXUD
VPMAXUD

Packed Maximum
Unsigned Doublewords

Mnemonic Opcode Description

PMAXUD xmm1, xmm2/mem128 66 0F 38 3F /r Compares four pairs of packed unsigned 32-bit values
in xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXUD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3F /r

346 PMAXUD, VPMAXUD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMAXUW, VPMAXUW 347

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 16-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMAXUW

Compares eight pairs of packed 16-bit unsigned integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXUW

The extended form of the instruction has a 128-bit encoding only.
Compares eight pairs of packed 16-bit signed integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXUW is an SSE4.1 instruction and VPMAXUW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD

rFLAGS Affected

None

MXCSR Flags Affected

None

PMAXUW
VPMAXUW

Packed Maximum
Unsigned Words

Mnemonic Opcode Description

PMAXUW xmm1, xmm2/mem128 66 0F 38 3E /r Compares eight pairs of packed unsigned 16-bit values
in xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMAXUW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3E /r

348 PMAXUW, VPMAXUW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINSB, VPMINSB 349

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 8-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINSB

Compares 16 pairs of 8-bit signed integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINSB

The extended form of the instruction has a 128-bit encoding only.
Compares 16 pairs of 8-bit signed integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINSB is an SSE4.1 instruction and VPMINSB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMINSB
VPMINSB

Packed Minimum
Signed Bytes

Mnemonic Opcode Description

PMINSB xmm1, xmm2/mem128 66 0F 38 38 /r Compares 16 pairs of packed 8-bit values in xmm1 and
xmm2 or mem128 and writes the lesser values to the
corresponding positions in xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINSB xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 38 /r

350 PMINSB, VPMINSB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINSD, VPMINSD 351

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 32-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINSD

Compares four pairs of packed 32-bit signed integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINSD

The extended form of the instruction has a 128-bit encoding only.
Compares four pairs of packed 32-bit signed integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINSD is an SSE4.1 instruction and VPMINSD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMINSB, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMINSD
VPMINSD

Packed Minimum
Signed Doublewords

Mnemonic Opcode Description

PMINSD xmm1, xmm2/mem128 66 0F 38 39 /r Compares four pairs of packed 32-bit values in xmm1
and xmm2 or mem128 and writes the lesser values to
the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINSD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 39 /r

352 PMINSD, VPMINSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINSW, VPMINSW 353

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 16-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINSW

Compares eight pairs of packed 16-bit signed integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINSW

The extended form of the instruction has a 128-bit encoding only.
Compares eight pairs of packed 16-bit signed integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINSW is an SSE2 instruction and VPMINSW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMINSB, (V)PMINSD, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMINSW
VPMINSW

Packed Minimum Signed Words

Mnemonic Opcode Description

PMINSW xmm1, xmm2/mem128 66 0F EA /r Compares eight pairs of packed 16-bit values in xmm1
and xmm2 or mem128 and writes the lesser values to the
corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EA /r

354 PMINSW, VPMINSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINUB, VPMINUB 355

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 8-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINUB

Compares 16 pairs of 8-bit unsigned integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINUB

The extended form of the instruction has a 128-bit encoding only.
Compares 16 pairs of 8-bit unsigned integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINUB is an SSE2 instruction and VPMINUB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMINUB
VPMINUB

Packed Minimum
Unsigned Bytes

Mnemonic Opcode Description

PMINUB xmm1, xmm2/mem128 66 0F DA /r Compares 16 pairs of packed unsigned 8-bit values in
xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINUB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DA /r

356 PMINUB, VPMINUB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINUD, VPMINUD 357

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 32-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINUD

Compares four pairs of packed 32-bit unsigned integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINUD

The extended form of the instruction has a 128-bit encoding only.
Compares four pairs of packed 32-bit unsigned integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINUD is an SSE4.1 instruction and VPMINUD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMINUD
VPMINUD

Packed Minimum
Unsigned Doublewords

Mnemonic Opcode Description

PMINUD xmm1, xmm2/mem128 66 0F 38 3B /r Compares four pairs of packed unsigned 32-bit values
in xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINUD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3B /r

358 PMINUD, VPMINUD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMINUW, VPMINUW 359

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares each packed 16-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:

PMINUW

Compares eight pairs of packed 16-bit unsigned integer values.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINUW

The extended form of the instruction has a 128-bit encoding only.
Compares eight pairs of packed 16-bit signed integer values.
The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINUW is an SSE4.1 instruction and VPMINUW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD

rFLAGS Affected

None

MXCSR Flags Affected

None

PMINUW
VPMINUW

Packed Minimum Unsigned Words

Mnemonic Opcode Description

PMINUW xmm1, xmm2/mem128 66 0F 38 3A /r Compares eight pairs of packed unsigned 16-bit values
in xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMINUW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3A /r

360 PMINUW, VPMINUW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVMSKB, VPMOVMSKB 361

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies the values of the most-significant bits of each byte element of the source operand to create a
16-bit mask value, zero-extends the value, and writes it to the destination.

There are legacy and extended forms of the instruction:

PMOVMSKB

The source operand is an XMM register. The destination is a 32-bit general purpose register. The
mask is zero-extended to fill the destination register, the mask occupies bits [15:0].

VPMOVMSKB

The source operand is an XMM register. The destination is a 64-bit general purpose register. The
mask is zero-extended to fill the destination register, the mask occupies bits [15:0]. VEX.W is
ignored.

PMOVMSKB is an SSE2 instruction and VPMOVMSKB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MOVMSKPD, (V)MOVMSKPS

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVMSKB
VPMOVMSKB

Packed Move Mask
Byte

Mnemonic Opcode Description

PMOVMSKB reg32, xmm1 66 0F D7 /r Moves a zero-extended mask consisting of the most-
significant bit of each byte in xmm1 to a 32-bit general-
purpose register.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VMOVMSKB reg64, xmm1 C4 RXB.00001 X.1111.0.01 D7 /r

362 PMOVMSKB, VPMOVMSKB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv field ! = 1111b.

A VEX.L field = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXBD, VPMOVSXBD 363

26568—Rev. 3.14—December 2011 AMD64 Technology

Sign-extends each of four packed 8-bit signed integers, in either the four low bytes of a source regis-
ter or a 32-bit memory location, to 32 bits and writes four packed doubleword signed integers to the
destination.

There are legacy and extended forms of the instruction:

PMOVSXBD

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXBD

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXBD is an SSE4.1 instruction and VPMOVSXBD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVSXBD
VPMOVSXBD

 Packed Move with Sign-Extension
Byte to Doubleword

Mnemonic Opcode Description

PMOVSXBD xmm1, xmm2/mem32 66 0F 38 21 /r Sign-extends four packed signed 8-bit
integers in the four low bytes of xmm2 or
mem32 and writes four packed signed
32-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXBD xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 21 /r

364 PMOVSXBD, VPMOVSXBD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXBQ, VPMOVSXBQ 365

26568—Rev. 3.14—December 2011 AMD64 Technology

Sign-extends each of two packed 8-bit signed integers, in either the two low bytes of a source register
or a 16-bit memory location, to 64 bits and writes two packed quadword signed integers to the desti-
nation.

There are legacy and extended forms of the instruction:

PMOVSXBQ

The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXBQ

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXBQ is an SSE4.1 instruction and VPMOVSXBQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVSXBD, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVSXBQ
VPMOVSXBQ

 Packed Move with Sign Extension
Byte to Quadword

Mnemonic Opcode Description

PMOVSXBQ xmm1, xmm2/mem16 66 0F 38 22 /r Sign-extends two packed signed 8-bit
integers in the two low bytes of xmm2
or mem16 and writes two packed
signed 64-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXBQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 22 /r

366 PMOVSXBQ, VPMOVSXBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXBW, VPMOVSXBW 367

26568—Rev. 3.14—December 2011 AMD64 Technology

Sign-extends each of eight packed 8-bit signed integers, in either the eight low bytes of a source reg-
ister or a 64-bit memory location, to 16 bits and writes eight packed word signed integers to the desti-
nation.

There are legacy and extended forms of the instruction:

PMOVSXBW

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXBW

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXBW is an SSE4.1 instruction and VPMOVSXBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVSXBW
VPMOVSXBW

 Packed Move with Sign Extension
Byte to Word

Mnemonic Opcode Description

PMOVSXBW xmm1, xmm2/mem128 66 0F 38 20 /r Sign-extends eight packed signed 8-bit
integers in the eight low bytes of xmm2 or
mem128 and writes eight packed signed
16-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXBW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 20 /r

368 PMOVSXBW, VPMOVSXBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXDQ, VPMOVSXDQ 369

26568—Rev. 3.14—December 2011 AMD64 Technology

Sign-extends each of two packed 32-bit signed integers, in either the two low doublewords of a
source register or a 64-bit memory location, to 64 bits and writes two packed quadword signed inte-
gers to the destination.

There are legacy and extended forms of the instruction:

PMOVSXDQ

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXDQ

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXDQ is an SSE4.1 instruction and VPMOVSXDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXWD, (V)PMOVSXWQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVSXDQ
VPMOVSXDQ

 Packed Move with Sign-Extension
Doubleword to Quadword

Mnemonic Opcode Description

PMOVSXDQ xmm1, xmm2/mem64 66 0F 38 25 /r Sign-extends two packed signed 32-bit
integers in the two low doublewords of
xmm2 or mem64 and writes two packed
signed 64-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXDQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 25 /r

370 PMOVSXDQ, VPMOVSXDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXWD, VPMOVSXWD 371

26568—Rev. 3.14—December 2011 AMD64 Technology

Sign-extends each of four packed 16-bit signed integers, in either the four low words of a source reg-
ister or a 64-bit memory location, to 32 bits and writes four packed doubleword signed integers to the
destination.

There are legacy and extended forms of the instruction:

PMOVSXWD

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXWD

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXWD is an SSE4.1 instruction and VPMOVSXWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVSXWD
VPMOVSXWD

 Packed Move with Sign-Extension
Word to Doubleword

Mnemonic Opcode Description

PMOVSXWD xmm1, xmm2/mem64 66 0F 38 23 /r Sign-extends four packed signed 16-bit
integers in the four low words of xmm2 or
mem64 and writes four packed signed 32-bit
integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXWD xmm1, xmm2/mem64 C4 RXB.00010 X.1111.0.01 23 /r

372 PMOVSXWD, VPMOVSXWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXWQ, VPMOVSXWQ 373

26568—Rev. 3.14—December 2011 AMD64 Technology

Sign-extends each of two packed 16-bit signed integers, in either the two low words of a source regis-
ter or a 32-bit memory location, to 64 bits and writes two packed quadword signed integers to the des-
tination.

There are legacy and extended forms of the instruction:

PMOVSXWQ

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXWQ

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXWQ is an SSE4.1 instruction and VPMOVSXWQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVSXWQ
VPMOVSXWQ

 Packed Move with Sign-Extension
Word to Quadword

Mnemonic Opcode Description

PMOVSXWQ xmm1, xmm2/mem32 66 0F 38 24 /r Sign-extends two packed signed 16-bit
integers in the two low words of xmm2 or
mem32 and writes two packed signed
64-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVSXWQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 24 /r

374 PMOVSXWQ, VPMOVSXWQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXBD, VPMOVZXBD 375

26568—Rev. 3.14—December 2011 AMD64 Technology

Zero-extends each of four packed 8-bit unsigned integers, in either the four low bytes of a source reg-
ister or a 32-bit memory location, to 32 bits and writes four packed doubleword positive-signed inte-
gers to the destination.

There are legacy and extended forms of the instruction:

PMOVZXBD

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVZXBD

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXBD is an SSE4.1 instruction and VPMOVZXBD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVZXBD
VPMOVZXBD

 Packed Move with Zero-Extension
Byte to Doubleword

Mnemonic Opcode Description

PMOVZXBD xmm1, xmm2/mem32 66 0F 38 31 /r Zero-extends four packed unsigned 8-bit
integers in the four low bytes of xmm2 or
mem32 and writes four packed positive-
signed 32-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXBD xmm1, xmm2/mem32 C4 RXB.00010 X.1111.0.01 31 /r

376 PMOVZXBD, VPMOVZXBD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXBQ, VPMOVZXBQ 377

26568—Rev. 3.14—December 2011 AMD64 Technology

Zero-extends each of two packed 8-bit unsigned integers, in either the two low bytes of a source reg-
ister or a 16-bit memory location, to 64 bits and writes two packed quadword positive-signed integers
to the destination.

There are legacy and extended forms of the instruction:

PMOVZXBQ

The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVZXBQ

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXBQ is an SSE4.1 instruction and VPMOVZXBQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVZXBD, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVZXBQ
VPMOVZXBQ

 Packed Move Byte to Quadword
with Zero-Extension

Mnemonic Opcode Description

PMOVZXBQ xmm1, xmm2/mem16 66 0F 38 32 /r Zero-extends two packed unsigned 8-bit
integers in the two low bytes of xmm2 or
mem16 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXBQ xmm1, xmm2/mem16 C4 RXB.00010 X.1111.0.01 32 /r

378 PMOVZXBQ, VPMOVZXBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXBW, VPMOVZXBW 379

26568—Rev. 3.14—December 2011 AMD64 Technology

Zero-extends each of eight packed 8-bit unsigned integers, in either the eight low bytes of a source
register or a 64-bit memory location, to 16 bits and writes eight packed word positive-signed integers
to the destination.

There are legacy and extended forms of the instruction:

PMOVZXBW

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVZXBW

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXBW is an SSE4.1 instruction and VPMOVZXBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVZXBW
VPMOVZXBW

 Packed Move Byte to Word with Zero-Extension

Mnemonic Opcode Description

PMOVZXBW xmm1, xmm2/mem128 66 0F 38 30 /r Zero-extends eight packed unsigned 8-bit
integers in the eight low bytes of xmm2 or
mem128 and writes eight packed positive-
signed 16-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXBW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 30 /r

380 PMOVZXBW, VPMOVZXBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXDQ, VPMOVZXDQ 381

26568—Rev. 3.14—December 2011 AMD64 Technology

Zero-extends each of two packed 32-bit unsigned integers, in either the two low doublewords of a
source register or a 64-bit memory location, to 64 bits and writes two packed quadword positive-
signed integers to the destination.

There are legacy and extended forms of the instruction:

PMOVZXDQ

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVZXDQ

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXDQ is an SSE4.1 instruction and VPMOVZXDQ is an AVX instruction.Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXWD, (V)PMOVZXWQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVZXDQ
VPMOVZXDQ

 Packed Move with Zero-Extension
Doubleword to Quadword

Mnemonic Opcode Description

PMOVZXDQ xmm1, xmm2/mem64 66 0F 38 35 /r Zero-extends two packed unsigned 32-bit
integers in the two low doublewords of xmm2
or mem64 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXDQ xmm1, xmm2/mem64 C4 RXB.00010 X.1111.0.01 35 /r

382 PMOVZXDQ, VPMOVZXDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVZXWD, VPMOVZXWD 383

26568—Rev. 3.14—December 2011 AMD64 Technology

Zero-extends each of four packed 16-bit unsigned integers, in either the four low words of a source
register or a 64-bit memory location, to 32 bits and writes four packed doubleword positive-signed
integers to the destination.

There are legacy and extended forms of the instruction:

PMOVZXWD

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVZXWD

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXWD is an SSE4.1 instruction and VPMOVZXWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVZXWD
VPMOVZXWD

 Packed Move Word to Doubleword
with Zero-Extension

Mnemonic Opcode Description

PMOVZXWD xmm1, xmm2/mem64 66 0F 38 33 /r Zero-extends four packed unsigned 16-bit
integers in the four low words of xmm2 or
mem64 and writes four packed positive-
signed 32-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXWD xmm1, xmm2/mem64 C4 RXB.00010 X.1111.0.01 33 /r

384 PMOVZXWD, VPMOVZXWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMOVSXWQ, VPMOVSXWQ 385

26568—Rev. 3.14—December 2011 AMD64 Technology

Zero-extends each of two packed 16-bit unsigned integers, in either the two low words of a source
register or a 32-bit memory location, to 64 bits and writes two packed quadword positive-signed inte-
gers to the destination.

There are legacy and extended forms of the instruction:

PMOVZXWQ

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVZXWQ

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSZWQ is an SSE4.1 instruction and VPMOVZXWQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMOVZXBD, (V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVZXWQ
VPMOVZXWQ

 Packed Move with Zero-Extension
Word to Quadword

Mnemonic Opcode Description

PMOVZXWQ xmm1, xmm2/mem32 66 0F 38 34 /r Zero-extends two packed unsigned 16-bit
integers in the two low words of xmm2 or
mem32 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMOVZXWQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 34 /r

386 PMOVSXWQ, VPMOVSXWQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULDQ, VPMULDQ 387

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies the packed 32-bit signed integer in bits [31:0] of the first source operand by the corre-
sponding value of the second source operand and writes the packed 64-bit signed integer product to
bits [63:0] of the destination; multiplies the packed 32-bit signed integer in bits [95:64] of the first
source operand by the corresponding value of the second source operand and writes the packed 64-bit
signed integer product to bits [127:64] of the destination.
When the source is a memory location, all 128 bits are fetched, but only the first and third double-
words are used in the computation.

There are legacy and extended forms of the instruction:

PMULDQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULDQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULDQ is an SSE4.1 instruction and VPMULDQ is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMULLD, (V)PMULHW, (V)PMULHUW,(V)PMULUDQ, (V)PMULLW

rFLAGS Affected

None

PMULDQ
VPMULDQ

 Packed Multiply
Signed Doubleword to Quadword

Mnemonic Opcode Description

PMULDQ xmm1, xmm2/mem128 66 0F 38 28 /r Multiplies two packed 32-bit signed integers in
xmm1[31:0] and xmm1[95:64] by the
corresponding values in xmm2 or mem128.
Writes packed 64-bit signed integer products to
xmm1[63:0] and xmm1[127:64].

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULDQ xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 28 /r

388 PMULDQ, VPMULDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULHRSW, VPMULHRSW 389

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies each packed 16-bit signed value in the first source operand by the corresponding value in
the second source operand, truncates the 32-bit product to the 18 most significant bits by right-shift-
ing, then rounds the truncated value by adding 1 to its least-significant bit. Writes bits [16:1] of the
sum to the corresponding word of the destination.

There are legacy and extended forms of the instruction:

PMULHRSW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULHRSW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULHRSW instruction is an SSSE3 instruction and VPMULHRSW is an AVX instruction. Support
for these instructions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

None

rFLAGS Affected

None

MXCSR Flags Affected

None

PMULHRSW
VPMULHRSW

Packed Multiply High with Round and Scale
Words

Mnemonic Opcode Description

PMULHRSW xmm1, xmm2/mem128 66 0F 38 0B /r Multiplies each packed 16-bit signed value in xmm1
by the corresponding value in xmm2 or mem128,
truncates product to 18 bits, rounds by adding 1.
Writes bits [16:1] of the sum to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULHRSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 0B /r

390 PMULHRSW, VPMULHRSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULHUW, VPMULHUW 391

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies each packed 16-bit unsigned value in the first source operand by the corresponding value
in the second source operand; writes the high-order 16 bits of each 32-bit product to the correspond-
ing word of the destination.

There are legacy and extended forms of the instruction:

PMULHUW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULHUW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULHUW is an SSE2 instruction and VPMULHUW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMULDQ, (V)PMULHW, (V)PMULLD, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMULHUW
VPMULHUW

Packed Multiply High
Unsigned Word

Mnemonic Opcode Description

PMULHUW xmm1, xmm2/mem128 66 0F E4 /r Multiplies packed 16-bit unsigned values in xmm1 by
the corresponding values in xmm2 or mem128. Writes
bits [31:16] of each product to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULHUW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E4 /r

392 PMULHUW, VPMULHUW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULHW, VPMULHW 393

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies each packed 16-bit signed value in the first source operand by the corresponding value in
the second source operand; writes the high-order 16 bits of each 32-bit product to the corresponding
word of the destination.

There are legacy and extended forms of the instruction:

PMULHW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULHW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULHW is an SSE2 instruction and VPMULHW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMULDQ, (V)PMULHUW, (V)PMULLD, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMULHW
VPMULHW

Packed Multiply High
Signed Word

Mnemonic Opcode Description

PMULHW xmm1, xmm2/mem128 66 0F E5 /r Multiplies packed 16-bit signed values in xmm1 by the
corresponding values in xmm2 or mem128. Writes bits
[31:16] of each product to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULHW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E5 /r

394 PMULHW, VPMULHW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULLD, VPMULLD 395

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies four packed 32-bit signed integers in the first source operand by the corresponding values
in the second source operand and writes bits [31:0] of each 64-bit product to the corresponding 32-bit
element of the destination.

There are legacy and extended forms of the instruction:

PMULLD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULLD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULLD is an SSE4.1 instruction and VPMULLD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMULDQ, (V)PMULHUW, (V)PMULHW, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMULLD
VPMULLD

 Packed Multiply and Store Low
Signed Doubleword

Mnemonic Opcode Description

PMULLD xmm1, xmm2/mem128 66 0F 38 40 /r Multiplies four packed 32-bit signed integers in
xmm1 by corresponding values in xmm2 or
m128. Writes bits [31:0] of each 64-bit product to
the corresponding 32-bit element of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULLD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 40 /r

396 PMULLD, VPMULLD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULLW, VPMULLW 397

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies eight packed 16-bit signed integers in the first source operand by the corresponding values
in the second source operand and writes bits [15:0] of each 32-bit product to the corresponding 16-bit
element of the destination.

There are legacy and extended forms of the instruction:

PMULLW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULLW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULLW is an SSE2 instruction and VPMULLW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMULDQ, (V)PMULHUW, (V)PMULHW, (V)PMULLD, (V)PMULUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMULLW
VPMULLW

Packed Multiply Low
Signed Word

Mnemonic Opcode Description

PMULLW xmm1, xmm2/mem128 66 0F D5 /r Multiplies eight packed 16-bit signed integers in
xmm1 by corresponding values in xmm2 or
m128. Writes bits [15:0] of each 32-bit product to
the corresponding 16-bit element of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULLW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D5 /r

398 PMULLW, VPMULLW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMULUDQ, VPMULUDQ 399

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies the packed 32-bit unsigned integer in bits [31:0] of the first source operand by the corre-
sponding value of the second source operand and writes the packed 64-bit unsigned integer product to
bits [63:0] of the destination; multiplies the packed 32-bit unsigned integer in bits [95:64] of the first
source operand by the corresponding value of the second source operand and writes the packed 64-bit
unsigned integer product to bits [127:64] of the destination.
When the source is a memory location, all 128 bits are fetched, but only the first and third double-
words are used in the computation.

There are legacy and extended forms of the instruction:

PMULUDQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMULUDQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMULUDQ is an SSE2 instruction and VPMULUDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PMULDQ, (V)PMULHUW, (V)PMULHW, (V)PMULLD, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected

None

PMULUDQ
VPMULUDQ

Packed Multiply
Unsigned Doubleword to Quadword

Mnemonic Opcode Description

PMULUDQ xmm1, xmm2/mem128 66 0F F4 /r Multiplies two packed 32-bit unsigned integers in
xmm1[31:0] and xmm1[95:64] by the
corresponding values in xmm2 or mem128.
Writes packed 64-bit unsigned integer products to
xmm1[63:0] and xmm1[127:64].

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPMULUDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F4 /r

400 PMULUDQ, VPMULUDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference POR, VPOR 401

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs a bitwise OR of the first and second source operands and writes the result to the destination.
When one or both of a pair of corresponding bits in the first and second operands are set, the corre-
sponding bit of the destination is set; when neither source bit is set, the destination bit is cleared.

There are legacy and extended forms of the instruction:

POR

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPOR

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

POR is an SSE2 instruction and VPOR is an AVX instruction. Support for these instructions is indi-
cated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID Spec-
ification, order# 25481).

Instruction Encoding

Related Instructions

(V)PAND, (V)PANDN, (V)PXOR

rFLAGS Affected

None

MXCSR Flags Affected

None

POR
VPOR

Packed OR

Mnemonic Opcode Description

POR xmm1, xmm2/mem128 66 0F EB /r Performs bitwise OR of values in xmm1 and xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPOR xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EB /r

402 POR, VPOR Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSADBW, VPSADBW 403

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts the 16 packed 8-bit unsigned integers in the second source operand from the corresponding
values in the first source operand and computes the absolute difference for each subtraction, then
computes two unsigned 16-bit integer sums, one for the eight differences that correspond to the upper
eight source bytes, and one for the differences that correspond to the lower eight source bytes. Writes
the sums to the destination.
The unsigned 16-bit integer sum of the differences of the eight bytes in bits [127:64] of the source
operands is written to bits [15:0] of the destination; bits [63:16] are cleared.
The unsigned 16-bit integer sum of the differences of the eight bytes in bits [63:0] of the source oper-
ands is written to bits [79:64] of the destination; bits [127:80] are cleared.

There are legacy and extended forms of the instruction:

PSADBW

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPSADBW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSADBW is an SSE2 instruction and VPSADBW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)MPSADBW

rFLAGS Affected

None

PSADBW
VPSADBW

Packed Sum of Absolute Differences
Bytes to Words

Mnemonic Opcode Description

PSADBW xmm1, xmm2/mem128 66 0F F6 /r Compute the sum of the absolute differences of two sets
of packed 8-bit unsigned integer values in xmm1 and
xmm2 or mem128. Writes 16-bit unsigned integer sums
to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSADBW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F6 /r

404 PSADBW, VPSADBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSHUFB, VPSHUFB 405

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies bytes from the first source operand to the destination or clears bytes in the destination, as
specified by control bytes in the second source operand.
The control bytes occupy positions in the source operand that correspond to positions in the destina-
tion. Each control byte has the following fields.

There are legacy and extended forms of the instruction:

PSHUFB

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPSHUFB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSHUFB is an SSSE3 instruction and VPSHUFB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

PSHUFB
VPSHUFB

Packed Shuffle
Byte

7 6 4 3 0

FRZ Reserved SRC_Index

Bits Description

[7] Set the bit to clear the corresponding byte of the destination.
Clear the bit to copy the selected source byte to the corresponding byte of the destination.

[6:4] Reserved

[3:0] Binary value selects the source byte.

Mnemonic Opcode Description

PSHUFB xmm1, xmm2/mem128 66 0F 38 00 /r Moves bytes in xmm1 as specified by control bytes in
xmm2 or mem128.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSHUFB xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 00 /r

406 PSHUFB, VPSHUFB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PSHUFD, (V)PSHUFW, (V)PSHUHW, (V)PSHUFLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSHUFD, VPSHUFD 407

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed doubleword values from a source to a doubleword in the destination, as specified by
bit fields of an immediate byte operand. A source doubleword can be copied more than once.
Source doublewords are selected by two-bit fields in the immediate-byte operand. Each bit field cor-
responds to a destination doubleword, as shown:

There are legacy and extended forms of the instruction:

PSHUFD

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPSHUFD

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PSHUFD is an SSE2 instruction and VPSHUFD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

PSHUFD
VPSHUFD

Packed Shuffle
Doublewords

Destination
Doubleword

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Doubleword

[31:0] [1:0] 00 [31:0]

01 [63:32]

10 [95:64]

11 [127:96]

[63:32] [3:2] 00 [31:0]

01 [63:32]

10 [95:64]

11 [127:96]

[95:64] [5:4] 00 [31:0]

01 [63:32]

10 [95:64]

11 [127:96]

[127:96] [7:6] 00 [31:0]

01 [63:32]

10 [95:64]

11 [127:96]

408 PSHUFD, VPSHUFD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)PSHUFHW, (V)PSHUFLW, (V)PSHUFW

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PSHUFD xmm1, xmm2/mem128, imm8 66 0F 70 /r ib Moves packed 32-bit values from xmm2 or
mem128 to xmm1, as specified by imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSHUFD xmm1, xmm2/mem128, imm8 C4 RXB.00001 X.1111.0.01 70 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSHUFHW, VPSHUFHW 409

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed word values from the high quadword of a source to a word in the high quadword of the
destination, as specified by bit fields of an immediate byte operand. A source word can be copied
more than once. The low-order quadword of the source is copied to the low-order quadword of the
destination.
Source words are selected by two-bit fields in the immediate-byte operand. Each bit field corresponds
to a destination word, as shown:

There are legacy and extended forms of the instruction:

PSHUFHW

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPSHUFHW

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
PSHUFHW is an SSE2 instruction and VPSHUFHW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

PSHUFHW
VPSHUFHW

Packed Shuffle
High Words

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[79:64] [1:0] 00 [79:64]

01 [95:80]

10 [111:96]

11 [127:112]

[95:80] [3:2] 00 [79:64]

01 [95:80]

10 [111:96]

11 [127:112]

[111:96] [5:4] 00 [79:64]

01 [95:80]

10 [111:96]

11 [127:112]

[127:112] [7:6] 00 [79:64]

01 [95:80]

10 [111:96]

11 [127:112]

410 PSHUFHW, VPSHUFHW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)PSHUFD, (V)PSHUFLW, (V)PSHUFW

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PSHUFHW xmm1, xmm2/mem128, imm8 F3 0F 70 /r ib Copies packed 16-bit values from the
high-order quadword of xmm2 or mem128
to the high-order quadword of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSHUFHW xmm1, xmm2/mem128, imm8 C4 RXB.00001 X.1111.0.10 70 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSHUFLW, VPSHUFLW 411

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed word values from the low quadword of a source to a word in the low quadword of the
destination, as specified by bit fields of an immediate byte operand. A source word can be copied
more than once. The high-order quadword of the source is copied to the high-order quadword of the
destination.
Source words are selected by two-bit fields in the immediate-byte operand. Each bit field corresponds
to a destination word, as shown:

There are legacy and extended forms of the instruction:

PSHUFLW

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPSHUFLW

The extended form of the instruction has a 128-bit encoding only.
The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PSHUFLW
VPSHUFLW

Packed Shuffle
Low Words

Destination
Word

Immediate-Byte
Bit Field

Value of
Bit Field

Source
Word

[15:0] [1:0] 00 [15:0]

01 [31:16]

10 [47:32]

11 [63:48]

[31:16] [3:2] 00 [15:0]

01 [31:16]

10 [47:32]

11 [63:48]

[47:32] [5:4] 00 [15:0]

01 [31:16]

10 [47:32]

11 [63:48]

[63:48] [7:6] 00 [15:0]

01 [31:16]

10 [47:32]

11 [63:48]

412 PSHUFLW, VPSHUFLW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

PSHUFLW is an SSE2 instruction and VPSHUFLW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSHUFD, (V)PSHUFHW, (V)PSHUFW

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

PSHUFLW xmm1, xmm2/mem128, imm8 F2 0F 70 /r ib Copies packed 16-bit values from the low-
order quadword of xmm2 or mem128 to
the low-order quadword of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSHUFLW xmm1, xmm2/mem128, imm8 C4 RXB.00001 X.1111.0.11 70 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSIGNB, VPSIGNB 413

26568—Rev. 3.14—December 2011 AMD64 Technology

For each packed signed byte in the first source operand, evaluate the corresponding byte of the second
source operand and perform one of the following operations.
• When a byte of the second source is negative, write the two’s-complement of the corresponding

byte of the first source to the destination.

• When a byte of the second source is positive, copy the corresponding byte of the first source to the
destination.

• When a byte of the second source is zero, clear the corresponding byte of the destination.

There are legacy and extended forms of the instruction:

PSIGNB

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPSIGNB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSIGNB is an SSSE3 instruction and VPSIGNB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSIGNW, (V)PSIGND

rFLAGS Affected

None

PSIGNB
VPSIGNB

Packed Sign
Byte

Mnemonic Opcode Description

PSIGNB xmm1, xmm2/mem128 66 0F 38 08 /r Perform operation based on evaluation of each packed
8-bit signed integer value in xmm2 or mem128.
Write 8-bit signed results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSIGNB xmm1, xmm2, xmm2/mem128 C4 RXB.00010 X.src.0.01 08 /r

414 PSIGNB, VPSIGNB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSIGND, VPSIGND 415

26568—Rev. 3.14—December 2011 AMD64 Technology

For each packed signed doubleword in the first source operand, evaluate the corresponding double-
word of the second source operand and perform one of the following operations.
• When a doubleword of the second source is negative, write the two’s-complement of the

corresponding doubleword of the first source to the destination.

• When a doubleword of the second source is positive, copy the corresponding doubleword of the
first source to the destination.

• When a doubleword of the second source is zero, clear the corresponding doubleword of the
destination.

There are legacy and extended forms of the instruction:

PSIGND

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPSIGND

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSIGND is an SSSE3 instruction and VPSIGND is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSIGNB, (V)PSIGNW

rFLAGS Affected

None

PSIGND
VPSIGND

Packed Sign
Doubleword

Mnemonic Opcode Description

PSIGND xmm1, xmm2/mem128 66 0F 38 0A /r Perform operation based on evaluation of each packed
32-bit signed integer value in xmm2 or mem128.
Write 32-bit signed results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSIGND xmm1, xmm2, xmm2/mem128 C4 RXB.00010 X.src.0.01 0A /r

416 PSIGND, VPSIGND Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSIGNW, VPSIGNW 417

26568—Rev. 3.14—December 2011 AMD64 Technology

For each packed signed word in the first source operand, evaluate the corresponding word of the sec-
ond source operand and perform one of the following operations.
• When a word of the second source is negative, write the two’s-complement of the corresponding

word of the first source to the destination.

• When a word of the second source is positive, copy the corresponding word of the first source to
the destination.

• When a word of the second source is zero, clear the corresponding word of the destination.

There are legacy and extended forms of the instruction:

PSIGNW

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPSIGNW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PSIGNW is an SSSE3 instruction and VPSIGNW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_ECX[SSSE3] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSIGNB, (V)PSIGND

rFLAGS Affected

None

PSIGNW
VPSIGNW

Packed Sign
Word

Mnemonic Opcode Description

PSIGNW xmm1, xmm2/mem128 66 0F 38 09 /r Perform operation based on evaluation of each packed
16-bit signed integer value in xmm2 or mem128.
Write 16-bit signed results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSIGNW xmm1, xmm2, xmm2/mem128 C4 RXB.00010 X.src.0.01 09 /r

418 PSIGNW, VPSIGNW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSLLD, VPSLLD 419

26568—Rev. 3.14—December 2011 AMD64 Technology

Left-shifts each packed 32-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.
Low-order bits emptied by shifting are cleared. When the shift value is greater than 31, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:

PSLLD

There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VPSLLD

The extended form of the instruction has two 128-bit encodings. These differ based on the type of
count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSLLD is an SSE2 instruction and VPSLLD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

PSLLD
VPSLLD

Packed Shift Left Logical
Doublewords

Mnemonic Opcode Description

PSLLD xmm1, xmm2/mem128 66 0F F2 /r Left-shifts packed doublewords in xmm1 as specified
by xmm2[63:0] or mem128[63:0].

PSLLD xmm, imm8 66 0F 72 /6 ib Left-shifts packed doublewords in xmm as specified by
imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSLLD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F2 /r

VPSLLD xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 72 /6 ib

420 PSLLD, VPSLLD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSLLDQ, VPSLLDQ 421

26568—Rev. 3.14—December 2011 AMD64 Technology

Left-shifts the double quadword value in an XMM register the number of bytes specified by an imme-
diate byte operand and writes the shifted values to the destination.
Low-order bytes emptied by shifting are cleared. When the shift value is greater than 15, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:

PSLLDQ

The source XMM register is also the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VPSLLDQ

The extended form of the instruction has a 128-bit encoding only.
The source operand is an XMM register. The destination is an XMM register specified by VEX.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PSLLDQ is an SSE2 instruction and VPSLLDQ is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSLLD, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ, (V)PSRLQ,
(V)PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSLLDQ
VPSLLDQ

Packed Shift Left Logical
Double Quadword

Mnemonic Opcode Description

PSLLDQ xmm, imm8 66 0F 73 /7 ib Left-shifts double quadword value in xmm1 as specified by imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSLLDQ xmm1, xmm2, imm8 C4 RXB.00001 0.dest.0.01 73 /7 ib

422 PSLLDQ, VPSLLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSLLQ, VPSLLQ 423

26568—Rev. 3.14—December 2011 AMD64 Technology

Left-shifts each packed 64-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.
Low-order bits emptied by shifting are cleared. When the shift value is greater than 64, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:

PSLLQ

There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VPSLLQ

The extended form of the instruction has two 128-bit encodings. These differ based on the type of
count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSLLQ is an SSE2 instruction and VPSLLQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

PSLLQ
VPSLLQ

Packed Shift Left Logical
Quadwords

Mnemonic Opcode Description

PSLLQ xmm1, xmm2/mem128 66 0F F3 /r Left-shifts packed quadwords in xmm1 as specified by
xmm2[63:0] or mem128[63:0].

PSLLQ xmm, imm8 66 0F 73 /6 ib Left-shifts packed quadwords in xmm as specified by
imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSLLQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F3 /r

VPSLLQ xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 73 /6 ib

424 PSLLQ, VPSLLQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PSLLD, (V)PSLLDQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSLLW, VPSLLW 425

26568—Rev. 3.14—December 2011 AMD64 Technology

Left-shifts each packed 16-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.
Low-order bits emptied by shifting are cleared. When the shift value is greater than 64, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:

PSLLW

There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VPSLLW

The extended form of the instruction has two 128-bit encodings. These differ based on the type of
count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSLLW is an SSE2 instruction and VPSLLW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

PSLLW
VPSLLW

Packed Shift Left Logical
Words

Mnemonic Opcode Description

PSLLW xmm1, xmm2/mem128 66 0F F1 /r Left-shifts packed words in xmm1 as specified by
xmm2[63:0] or mem128[63:0].

PSLLW xmm, imm8 66 0F 71 /6 ib Left-shifts packed words in xmm as specified by imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSLLW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F1 /r

VPSLLW xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 71 /6 ib

426 PSLLW, VPSLLW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRAD, VPSRAD 427

26568—Rev. 3.14—December 2011 AMD64 Technology

Right-shifts each packed 32-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.
High-order bits emptied by shifting are filled with the sign bit of the initial value. When the shift
value is greater than 31, each doubleword of the destination is filled with the sign bit of its initial
value.

There are legacy and extended forms of the instruction:

PSRAD

There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VPSRAD

The extended form of the instruction has two 128-bit encodings. These differ based on the type of
count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRAD is an SSE2 instruction and VPSRAD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

PSRAD
VPSRAD

Packed Shift Right Arithmetic
Doublewords

Mnemonic Opcode Description

PSRAD xmm1, xmm2/mem128 66 0F E2 /r Right-shifts packed doublewords in xmm1 as specified
by xmm2[63:0] or mem128[63:0].

PSRAD xmm, imm8 66 0F 72 /4 ib Right-shifts packed doublewords in xmm as specified
by imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSRAD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E2 /r

VPSRAD xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 72 /4 ib

428 PSRAD, VPSRAD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAW, (V)PSRLD, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRAW, VPSRAW 429

26568—Rev. 3.14—December 2011 AMD64 Technology

Right-shifts each packed 16-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.
High-order bits emptied by shifting are filled with the sign bit of the initial value. When the shift
value is greater than 31, each doubleword of the destination is filled with the sign bit of its initial
value.

There are legacy and extended forms of the instruction:

PSRAW

There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VPSRAW

The extended form of the instruction has two 128-bit encodings. These differ based on the type of
count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRAW is an SSE2 instruction and VPSRAW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

PSRAW
VPSRAW

Packed Shift Right Arithmetic
Words

Mnemonic Opcode Description

PSRAW xmm1, xmm2/mem128 66 0F E1 /r Right-shifts packed words in xmm1 as specified by
xmm2[63:0] or mem128[63:0].

PSRAW xmm, imm8 66 0F 71 /4 ib Right-shifts packed words in xmm as specified by
imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSRAW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E1 /r

VPSRAW xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 71 /4 ib

430 PSRAW, VPSRAW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRLD, VPSRLD 431

26568—Rev. 3.14—December 2011 AMD64 Technology

Right-shifts each packed 32-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands.Only bits [63:0] of the
source register or memory location are used to generate the shift count.
Low-order bits emptied by shifting are cleared. When the shift value is greater than 31, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:

PSRLD

There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VPSRLD

The extended form of the instruction has two 128-bit encodings. These differ based on the type of
count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRLD is an SSE2 instruction and VPSRLD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

PSRLD
VPSRLD

Packed Shift Right Logical
Doublewords

Mnemonic Opcode Description

PSRLD xmm1, xmm2/mem128 66 0F D2 /r Right-shifts packed doublewords in xmm1 as specified
by xmm2[63:0] or mem128[63:0].

PSRLD xmm, imm8 66 0F 72 /2 ib Right-shifts packed doublewords in xmm as specified
by imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSRLD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D2 /r

VPSRLD xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 72 /2 ib

432 PSRLD, VPSRLD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLDQ,
(V)PSRLQ, (V)PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRLDQ, VPSRLDQ 433

26568—Rev. 3.14—December 2011 AMD64 Technology

Right-shifts the double quadword value in an XMM register the number of bytes specified by an
immediate byte operand and writes the shifted values to the destination.
High-order bytes emptied by shifting are cleared. When the shift value is greater than 15, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:

PSRLDQ

The source XMM register is also the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VPSRLDQ

The extended form of the instruction has a 128-bit encoding only.
The source operand is an XMM register. The destination is an XMM register specified by VEX.vvvv.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PSRLDQ is an SSE2 instruction and VPSRLDQ is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD, (V)PSRLQ,
(V)PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSRLDQ
VPSRLDQ

Packed Shift Right Logical
Double Quadword

Mnemonic Opcode Description

PSRLDQ xmm, imm8 66 0F 73 /3 ib Right-shifts double quadword value in xmm1 as specified by
imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSRLDQ xmm1, xmm2, imm8 C4 RXB.00001 0.dest.0.01 73 /3 ib

434 PSRLDQ, VPSRLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRLQ, VPSRLQ 435

26568—Rev. 3.14—December 2011 AMD64 Technology

Right-shifts each packed 64-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands. Only bits [63:0] of the
source register or memory location are used to generate the shift count.
Low-order bits emptied by shifting are cleared. When the shift value is greater than 31, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:

PSRLQ

There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VPSRLQ

The extended form of the instruction has two 128-bit encodings that differ based on the type of count
operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRLQ is an SSE2 instruction and VPSRLQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

PSRLQ
VPSRLQ

Packed Shift Right Logical
Quadwords

Mnemonic Opcode Description

PSRLQ xmm1, xmm2/mem128 66 0F D3 /r Right-shifts packed quadwords in xmm1 as specified
by xmm2[63:0] or mem128[63:0].

PSRLQ xmm, imm8 66 0F 73 /2 ib Right-shifts packed quadwords in xmm as specified by
imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSRLQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D3 /r

VPSRLQ xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 73 /2 ib

436 PSRLQ, VPSRLQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSRLW, VPSRLW 437

26568—Rev. 3.14—December 2011 AMD64 Technology

Right-shifts each packed 16-bit value in the source operand as specified by a shift-count operand and
writes the shifted values to the destination.
The shift-count operand can be an immediate byte, a source register, or a memory location. There are
different encodings for immediate operands and register/memory operands. Only bits [63:0] of the
source register or memory location are used to generate the shift count.
Low-order bits emptied by shifting are cleared. When the shift value is greater than 31, the destina-
tion is cleared.

There are legacy and extended forms of the instruction:

PSRLW

There are two forms of the instruction, based on the type of count operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The first source XMM reg-
ister is also the destination. Bits [255:128] of the YMM register that corresponds to the destination are
not affected.

VPSRLW

The extended form of the instruction has two 128-bit encodings that differ based on the type of count
operand.
The first source operand is an XMM register. The shift count is specified by either a second XMM
register or a 128-bit memory location, or by an immediate 8-bit operand. The destination is an XMM
register. For the immediate operand encoding, the destination is specified by VEX.vvvv. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

PSRLW is an SSE2 instruction and VPSRLW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

PSRLW
VPSRLW

Packed Shift Right Logical
Words

Mnemonic Opcode Description

PSRLW xmm1, xmm2/mem128 66 0F D1 /r Right-shifts packed words in xmm1 as specified by
xmm2[63:0] or mem128[63:0].

PSRLW xmm, imm8 66 0F 71 /2 ib Right-shifts packed words in xmm as specified by
imm8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSRLQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D1 /r

VPSRLQ xmm1, xmm2, imm8 C4 RXB.00001 X.dest.0.01 71 /2 ib

438 PSRLW, VPSRLW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

(V)PSLLD, (V)PSLLDQ, (V)PSLLQ, (V)PSLLW, (V)PSRAD, (V)PSRAW, (V)PSRLD,
(V)PSRLDQ, (V)PSRLQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBB, VPSUBB 439

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts 16 packed 8-bit integer values in the second source operand from the corresponding values
in the first source operand and writes the integer differences to the corresponding bytes of the destina-
tion.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PSUBB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBB is an SSE2 instruction and VPSUBB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBB
VPSUBB

Packed Subtract
Bytes

Mnemonic Opcode Description

PSUBB xmm1, xmm2/mem128 66 0F F8 /r Subtracts 8-bit signed integer values in xmm2 or
mem128 from corresponding values in xmm1.
Writes differences to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F8 /r

440 PSUBB, VPSUBB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBD, VPSUBD 441

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts four packed 32-bit integer values in the second source operand from the corresponding val-
ues in the first source operand and writes the integer differences to the corresponding doubleword of
the destination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PSUBD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VSUBD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBD is an SSE2 instruction and VPSUBD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSUBB, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBD
VPSUBD

Packed Subtract
Doublewords

Mnemonic Opcode Description

PSUBD xmm1, xmm2/mem128 66 0F FA /r Subtracts packed 32-bit integer values in xmm2 or
mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FA /r

442 PSUBD, VPSUBD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBQ, VPSUBQ 443

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts two packed 64-bit integer values in the second source operand from the corresponding val-
ues in the first source operand and writes the differences to the corresponding quadword of the desti-
nation.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PSUBQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VSUBQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBQ is an SSE2 instruction and VPSUBQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSUBB, (V)PSUBD, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBQ
VPSUBQ

Packed Subtract
Quadword

Mnemonic Opcode Description

PSUBQ xmm1, xmm2/mem128 66 0F FB /r Subtracts packed 64-bit integer values in xmm2 or
mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FB /r

444 PSUBQ, VPSUBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBSB, VPSUBSB 445

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts 16 packed 8-bit signed integer value in the second source operand from the corresponding
values in the first source operand and writes the signed integer differences to the corresponding byte
of the destination.
For each packed value in the destination, if the value is larger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to
80h.

There are legacy and extended forms of the instruction:

PSUBSB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBSB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBSB is an SSE2 instruction and VPSUBSB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBSB
VPSUBSB

Packed Subtract Signed With Saturation
Bytes

Mnemonic Opcode Description

PSUBSB xmm1, xmm2/mem128 66 0F E8 /r Subtracts packed 8-bit signed integer values in xmm2 or
mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E8 /r

446 PSUBSB, VPSUBSB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBSW, VPSUBSW 447

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts eight packed 16-bit signed integer values in the second source operand from the corre-
sponding values in the first source operand and writes the signed integer differences to the corre-
sponding word of the destination.
Positive differences greater than 7FFFh are saturated to 7FFFh; negative differences less than 8000h
are saturated to 8000h.

There are legacy and extended forms of the instruction:

PSUBSW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBSW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBSW is an SSE2 instruction and VPSUBSW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBUSB, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBSW
VPSUBSW

Packed Subtract Signed With Saturation
Words

Mnemonic Opcode Description

PSUBSW xmm1, xmm2/mem128 66 0F E9 /r Subtracts packed 16-bit signed integer values in xmm2 or
mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E9 /r

448 PSUBSW, VPSUBSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBUSB, VPSUBUSB 449

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts 16 packed 8-bit unsigned integer value in the second source operand from the correspond-
ing values in the first source operand and writes the unsigned integer difference to the corresponding
byte of the destination.
Differences greater than 7Fh are saturated to 7Fh; differences less than 00h are saturated to 00h.

There are legacy and extended forms of the instruction:

PSUBUSB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBUSB

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBUSB is an SSE2 instruction and VPSUBUSB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSW, (V)PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBUSB
VPSUBUSB

Packed Subtract Unsigned With Saturation
Bytes

Mnemonic Opcode Description

PSUBUSB xmm1, xmm2/mem128 66 0F D8 /r Subtracts packed byte unsigned integer values in
xmm2 or mem128 from corresponding values in xmm1.
Writes the differences to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBUSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D8 /r

450 PSUBUSB, VPSUBUSB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBUSW, VPSUBUSW 451

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts eight packed 16-bit unsigned integer value in the second source operand from the corre-
sponding values in the first source operand and writes the unsigned integer differences to the corre-
sponding word of the destination.
Differences greater than FFFFh are saturated to FFFFh; differences less than 0000h are saturated to
0000h.

There are legacy and extended forms of the instruction:

PSUBUSW

The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBUSW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBUSW is an SSE2 instruction and VPSUBUSW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBUSW
VPSUBUSW

Packed Subtract Unsigned With Saturation
Words

Mnemonic Opcode Description

PSUBUSW xmm1, xmm2/mem128 66 0F D9 /r Subtracts packed 16-bit unsigned integer values in
xmm2 or mem128 from corresponding values in
xmm1. Writes the differences to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBUSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D9 /r

452 PSUBUSW, VPSUBUSW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PSUBW, VPSUBW 453

26568—Rev. 3.14—December 2011 AMD64 Technology

Subtracts eight packed 16-bit integer values in the second source operand from the corresponding val-
ues in the first source operand and writes the integer differences to the corresponding word of the des-
tination.
This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PSUBW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPSUBW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PSUBW is an SSE2 instruction and VPSUBW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PSUBB, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PSUBUSB, (V)PSUBUSW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBW
VPSUBW

Packed Subtract
Words

Mnemonic Opcode Description

PSUBW xmm1, xmm2/mem128 66 0F F9 /r Subtracts packed 16-bit integer values in xmm2 or
mem128 from corresponding values in xmm1. Writes the
differences to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPSUBW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F9 /r

454 PSUBW, VPSUBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PTEST, VPTEST 455

26568—Rev. 3.14—December 2011 AMD64 Technology

First, performs a bitwise AND of the first source operand with the second source operand.
Sets rFLAGS.ZF when all bit operations = 0; else, clears ZF.
Second. performs a bitwise AND of the second source operand with the logical complement (NOT)
of the first source operand. Sets rFLAGS.CF when all bit operations = 0; else, clears CF.
Neither source operand is modified.

There are legacy and extended forms of the instruction:

PTEST

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.

VPTEST

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.
YMM Encoding
The first source operand is a YMM register. The second source operand is a YMM register or 256-bit
memory location.

PTEST is an SSE4.1 instruction and VPTEST is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

VTESTPD, VTESTPS

PTEST
VPTEST

 Packed Bit Test

Mnemonic Opcode Description

PTEST xmm1, xmm2/mem128 66 0F 38 17 /r Set ZF if bitwise AND of xmm2/m128 with xmm1 = 0;
else, clear ZF.
Set CF if bitwise AND of xmm2/m128 with NOTxmm1 = 0;
else, clear CF.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPTEST xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 17 /r

VPTEST ymm1, ymm2/mem256 C4 RXB.00010 X.1111.1.01 17 /r

456 PTEST, VPTEST Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

MXCSR Flags Affected

None

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 0 M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3 and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank. Undefined
flags are U.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKHBW, VPUNPCKHBW 457

26568—Rev. 3.14—December 2011 AMD64 Technology

Unpacks the high-order bytes of the first and second source operands and interleaves the 16 values
into the destination. The low-order bytes of the source operands are ignored.
Bytes are interleaved in ascending order from the lsb of the sources and the destination. Bits [71:64]
of the first source are written to bits [7:0] of the destination; bits [71:64] of the second source are writ-
ten to bits [15:8] of the destination and so on, ending with bits [127:120] of the second source in bits
[127:120] of the destination
When the second source operand is all 0s, the destination effectively contains the bytes from the first
source operand zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values
to unsigned 16-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKHBW

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source operand is also the destination register. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPUNPCKHBW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKHBW is an SSE2 instruction and VPUNPCKHBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKHBW
VPUNPCKHBW

Unpack and Interleave
High Bytes

Mnemonic Opcode Description

PUNPCKHBW xmm1, xmm2/mem128 66 0F 68 /r Unpacks and interleaves the high-order bytes of
xmm1 and xmm2 or mem128. Writes the bytes to
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKHBW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 68 /r

458 PUNPCKHBW, VPUNPCKHBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKHDQ, VPUNPCKHDQ 459

26568—Rev. 3.14—December 2011 AMD64 Technology

Unpacks the high-order doublewords of the first and second source operands and interleaves the four
values into the destination. The low-order doublewords of the source operands are ignored.
Doublewords are interleaved in ascending order from the lsb of the sources and the destination. Bits
[95:64] of the first source are written to bits [31:0] of the destination; bits [95:64] of the second
source are written to bits [63:32] of the destination and so on, ending with bits [127:96] of the second
source in bits [127:96] of the destination
When the second source operand is all 0s, the destination effectively contains the doublewords from
the first source operand zero-extended to 64 bits. This operation is useful for expanding unsigned
32-bit values to unsigned 64-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKHDQ

The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPUNPCKHDQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKHDQ is an SSE2 instruction and VPUNPCKHDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PUNPCKHBW, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKHDQ
VPUNPCKHDQ

Unpack and Interleave
High Doublewords

Mnemonic Opcode Description

PUNPCKHDQ xmm1, xmm2/mem128 66 0F 6A /r Unpacks and interleaves the high-order doublewords
of xmm1 and xmm2 or mem128. Writes the
doublewords to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKHDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 6A /r

460 PUNPCKHDQ, VPUNPCKHDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKHQDQ, VPUNPCKHQDQ 461

26568—Rev. 3.14—December 2011 AMD64 Technology

Unpacks the high-order quadwords of the first and second source operands and interleaves the two
values into the destination. The low-order bytes of the source operands are ignored.
Quadwords are interleaved in ascending order from the lsb of the sources and the destination. Bits
[127:64] of the first source are written to bits [63:0] of the destination; bits [127:64] of the second
source are written to bits [127:64] of the destination.
When the second source operand is all 0s, the destination effectively contains the quadword from the
first source operand zero-extended to 128 bits. This operation is useful for expanding unsigned 64-bit
values to unsigned 128-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKHQDQ

The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPUNPCKHQDQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKHQDQ is an SSE2 instruction and VPUNPCKHQDQ is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHWD, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

rFLAGS Affected

None

PUNPCKHQDQ
VPUNPCKHQDQ

Unpack and Interleave
High Quadwords

Mnemonic Opcode Description

PUNPCKHQDQ xmm1, xmm2/mem128 66 0F 6D /r Unpacks and interleaves the high-order
quadwords of xmm1 and xmm2 or mem128.
Writes the bytes to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKHQDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 6D /r

462 PUNPCKHQDQ, VPUNPCKHQDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKHWD, VPUNPCKHWD 463

26568—Rev. 3.14—December 2011 AMD64 Technology

Unpacks the high-order words of the first and second source operands and interleaves the eight values
into the destination. The low-order words of the source operands are ignored.
Words are interleaved in ascending order from the lsb of the sources and the destination. Bits [79:64]
of the first source are written to bits [15:0] of the destination; bits [79:64] of the second source are
written to bits [31:16] of the destination and so on, ending with bits [127:112] of the second source in
bits [127:112] of the destination
When the second source operand is all 0s, the destination effectively contains the words from the first
source operand zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit val-
ues to unsigned 32-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKHWD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source operand is also the destination register. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPUNPCKHWD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKHWD is an SSE2 instruction and VPUNPCKHWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKHWD
VPUNPCKHWD

Unpack and Interleave
High Words

Mnemonic Opcode Description

PUNPCKHWD xmm1, xmm2/mem128 66 0F 69 /r Unpacks and interleaves the high-order words of
xmm1 and xmm2 or mem128. Writes the words to
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKHWD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 69 /r

464 PUNPCKHWD, VPUNPCKHWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKLBW, VPUNPCKLBW 465

26568—Rev. 3.14—December 2011 AMD64 Technology

Unpacks the low-order bytes of the first and second source operands and interleaves the 16 values
into the destination. The high-order bytes of the source operands are ignored.
Bytes are interleaved in ascending order from the lsb of the sources and the destination. Bits [7:0] of
the first source are written to bits [7:0] of the destination; bits [7:0] of the second source are written to
bits [15:8] of the destination and so on, ending with bits [63:56] of the second source in bits [127:120]
of the destination
When the second source operand is all 0s, the destination effectively contains the bytes from the first
source operand zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values
to unsigned 16-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKLBW

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source operand is also the destination register. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPUNPCKLBW

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKLBW is an SSE2 instruction and VPUNPCKLBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUN-
PCKLDQ, (V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKLBW
VPUNPCKLBW

Unpack and Interleave
Low Bytes

Mnemonic Opcode Description

PUNPCKLBW xmm1, xmm2/mem128 66 0F 60 /r Unpacks and interleaves the low-order bytes of
xmm1 and xmm2 or mem128. Writes the bytes to
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKLBW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 69 /r

466 PUNPCKLBW, VPUNPCKLBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKLDQ, VPUNPCKLDQ 467

26568—Rev. 3.14—December 2011 AMD64 Technology

Unpacks the low-order doublewords of the first and second source operands and interleaves the four
values into the destination. The high-order doublewords of the source operands are ignored.
Doublewords are interleaved in ascending order from the lsb of the sources and the destination. Bits
[31:0] of the first source are written to bits [31:0] of the destination; bits [31:0] of the second source
are written to bits [63:32] of the destination and so on, ending with bits [63:32] of the second source
in bits [127:96] of the destination
When the second source operand is all 0s, the destination effectively contains the doublewords from
the first source operand zero-extended to 64 bits. This operation is useful for expanding unsigned
32-bit values to unsigned 64-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKLDQ

The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPUNPCKLDQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKLDQ is an SSE2 instruction and VPUNPCKLDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PUNPCKHW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUNPCKLBW,
(V)PUNPCKLQDQ, (V)PUNPCKLWD

PUNPCKLDQ
VPUNPCKLDQ

Unpack and Interleave
Low Doublewords

Mnemonic Opcode Description

PUNPCKLDQ xmm1, xmm2/mem128 66 0F 62 /r Unpacks and interleaves the low-order doublewords
of xmm1 and xmm2 or mem128. Writes the
doublewords to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKLDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 62 /r

468 PUNPCKLDQ, VPUNPCKLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKLQDQ, VPUNPCKLQDQ 469

26568—Rev. 3.14—December 2011 AMD64 Technology

Unpacks the low-order quadwords of the first and second source operands and interleaves the two
values into the destination. The high-order bytes of the source operands are ignored.
Quadwords are interleaved in ascending order from the lsb of the sources and the destination. Bits
[63:0] of the first source are written to bits [63:0] of the destination; bits [63:0] of the second source
are written to bits [127:64] of the destination.
When the second source operand is all 0s, the destination effectively contains the quadword from the
first source operand zero-extended to 128 bits. This operation is useful for expanding unsigned 64-bit
values to unsigned 128-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKLQDQ

The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The first source operand is also the destination register. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPUNPCKLQDQ

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKLQDQ is an SSE2 instruction and VPUNPCKLQDQ is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUN-
PCKLBW, (V)PUNPCKLDQ, (V)PUNPCKLWD

rFLAGS Affected

None

PUNPCKLQDQ
VPUNPCKLQDQ

Unpack and Interleave
Low Quadwords

Mnemonic Opcode Description

PUNPCKLQDQ xmm1, xmm2/mem128 66 0F 6C /r Unpacks and interleaves the low-order
quadwords of xmm1 and xmm2 or mem128.
Writes the bytes to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKLQDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 6C /r

470 PUNPCKLQDQ, VPUNPCKLQDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PUNPCKLWD, VPUNPCKLWD 471

26568—Rev. 3.14—December 2011 AMD64 Technology

Unpacks the low-order words of the first and second source operands and interleaves the eight values
into the destination. The high-order words of the source operands are ignored.
Words are interleaved in ascending order from the lsb of the sources and the destination. Bits [15:0]
of the first source are written to bits [15:0] of the destination; bits [15:0] of the second source are writ-
ten to bits [31:16] of the destination and so on, ending with bits [63:48] of the second source in bits
[127:112] of the destination
When the second source operand is all 0s, the destination effectively contains the words from the first
source operand zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit val-
ues to unsigned 32-bit operands for subsequent processing that requires higher precision.

There are legacy and extended forms of the instruction:

PUNPCKLWD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source operand is also the destination register. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

PUNPCKLWD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PUNPCKLWD is an SSE2 instruction and VPUNPCKLWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PUNPCKHBW, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKHWD, (V)PUN-
PCKLBW, (V)PUNPCKLDQ, (V)PUNPCKLQDQ

PUNPCKLWD
VPUNPCKLWD

Unpack and Interleave
Low Words

Mnemonic Opcode Description

PUNPCKLWD xmm1, xmm2/mem128 66 0F 61 /r Unpacks and interleaves the low-order words of
xmm1 and xmm2 or mem128. Writes the words to
xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPUNPCKLLWD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 61 /r

472 PUNPCKLWD, VPUNPCKLWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PXOR, VPXOR 473

26568—Rev. 3.14—December 2011 AMD64 Technology

Performs a bitwise XOR of the first and second source operands and writes the result to the destina-
tion. When either of a pair of corresponding bits in the first and second operands are set, the corre-
sponding bit of the destination is set; when both source bits are set or when both source bits are not
set, the destination bit is cleared.

There are legacy and extended forms of the instruction:

PXOR

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The first source XMM register is also the destination. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPXOR

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

PXOR is an SSE2 instruction and VPXOR is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)PAND, (V)PANDN, (V)POR

rFLAGS Affected

None

MXCSR Flags Affected

None

PXOR
VPXOR

Packed Exclusive OR

Mnemonic Opcode Description

PXOR xmm1, xmm2/mem128 66 0F EF /r Performs bitwise XOR of values in xmm1 and xmm2 or
mem128. Writes the result to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPXOR xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EF /r

474 PXOR, VPXOR Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference RCPPS, VRCPPS 475

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the approximate reciprocal of each packed single-precision floating-point value in the
source operand and writes the results to the corresponding doubleword of the destination.
MXCSR.RC as no effect on the result.
The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal. A source value that is
±zero or denormal returns an infinity of the source value sign. Results that underflow are changed to
signed zero. For both SNaN and QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:

RCPPS

Computes four reciprocals. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. The first source register is also the des-
tination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VRCPPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Computes four reciprocals. The source operand is either an XMM register or a 128-bit memory loca-
tion. The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Computes eight reciprocals. The source operand is either a YMM register or a 256-bit memory loca-
tion. The destination is a YMM register.

RCPPS is an SSE2 instruction and VRCPPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)RCPSS, (V)RSQRTPS, (V)RSQRTSS

RCPPS
VRCPPS

Reciprocal
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

RCPPS xmm1, xmm2/mem128 0F 53 /r Computes reciprocals of packed single-precision floating-
point values in xmm1 or mem128. Writes result to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VRCPPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 53 /r

VRCPPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 53 /r

476 RCPPS, VRCPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference RCPSS, VRCPSS 477

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the approximate reciprocal of the scalar single-precision floating-point value in a source
operand and writes the results to the low-order doubleword of the destination. MXCSR.RC as no
effect on the result.
The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal. A source value that is
±zero or denormal returns an infinity of the source value sign. Results that underflow are changed to
signed zero. For both SNaN and QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:

RCPSS

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [127:32] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VRCPSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand and the destination are XMM registers. The second source operand is either
an XMM register or a 32-bit memory location. Bits [31:0] of the destination contain the reciprocal;
bits [127:32] of the destination are copied from the first source register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

RCPSS is an SSE1 instruction and VRCPSS is an AVX instruction. Support for these instructions is
indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)RCPPS, (V)RSQRTPS, (V)RSQRTSS

rFLAGS Affected

None

MXCSR Flags Affected

None

RCPSS
VRCPSS

Reciprocal
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

RCPSS xmm1, xmm2/mem32 F3 0F 53 /r Computes reciprocal of scalar single-precision floating-point
value in xmm1 or mem32. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VRCPSS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.X.10 53 /r

478 RCPSS, VRCPSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ROUNDPD, VROUNDPD 479

26568—Rev. 3.14—December 2011 AMD64 Technology

Rounds two or four double-precision floating-point values as specified by an immediate byte oper-
and. Source values are rounded to integral values and written to the destination as double-precision
floating-point values.
SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.
The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

There are legacy and extended forms of the instruction:

ROUNDPD

Rounds two source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. There is a third 8-bit immediate oper-

ROUNDPD
VROUNDPD

Round
Packed Double-Precision Floating-Point

7 4 3 2 1 0

Reserved P O RC

Bits Mnemonic Description

[7:4] — Reserved

[3] P Precision Exception

[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description

0 Normal PE exception

1 PE field is not updated.
No precision exception is taken when unmasked.

Value Description

0 MXCSR:RC

1 Use RC field value.

Value Description

00 Nearest

01 Downward (toward negative infinity)

10 Upward (toward positive infinity)

11 Truncated

480 ROUNDPD, VROUNDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

and. The first source register is also the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VROUNDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Rounds two source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. There is a third 8-bit immediate oper-
and. The destination is a third XMM register. Bits [255:128] of the YMM register that corresponds to
the destination are cleared.
YMM Encoding
Rounds four source values. The first source operand is a YMM register and the second source oper-
and is either a YMM register or a 256-bit memory location. There is a third 8-bit immediate operand.
The destination is a third YMM register.

ROUNDPD is an SSE4.1 instruction and VROUNDPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Opcode Description

ROUNDPD xmm1, xmm2/mem128,
imm8

66 0F 3A 09 /r ib Rounds double-precision floating-point values
in xmm2 or mem128. Writes rounded double-
precision values to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VROUNDPD xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.src.0.01 09 /r ib

VROUNDPD ymm1, xmm2/mem256, imm8 C4 RXB.00011 X.src.1.01 09 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Instruction Reference ROUNDPD, VROUNDPD 481

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

482 ROUNDPS, VROUNDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Rounds four or eight single-precision floating-point values as specified by an immediate byte oper-
and. Source values are rounded to integral values and written to the destination as single-precision
floating-point values.
SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.
The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

There are legacy and extended forms of the instruction:

ROUNDPS

Rounds four source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. There is a third 8-bit immediate oper-

ROUNDPS
VROUNDPS

Round
Packed Single-Precision Floating-Point

7 4 3 2 1 0

Reserved P O RC

Bits Mnemonic Description

[7:4] — Reserved

[3] P Precision Exception

[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description

0 Normal PE exception

1 PE field is not updated.
No precision exception is taken when unmasked.

Value Description

0 MXCSR:RC

1 Use RC field value.

Value Description

00 Nearest

01 Downward (toward negative infinity)

10 Upward (toward positive infinity)

11 Truncated

Instruction Reference ROUNDPS, VROUNDPS 483

26568—Rev. 3.14—December 2011 AMD64 Technology

and. The first source register is also the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VROUNDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Rounds four source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. There is a third 8-bit immediate oper-
and. The destination is a third XMM register. Bits [255:128] of the YMM register that corresponds to
the destination are cleared.
YMM Encoding
Rounds eight source values. The first source operand is a YMM register and the second source oper-
and is either a YMM register or a 256-bit memory location. There is a third 8-bit immediate operand.
The destination is a third YMM register.

ROUNDPS is an SSE4.1 instruction and VROUNDPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ROUNDPD, (V)ROUNDSD, (V)ROUNDSS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Opcode Description

ROUNDPS xmm1, xmm2/mem128, imm8 66 0F 3A 08 /r ib Rounds single-precision floating-point
values in xmm2 or mem128. Writes
rounded single-precision values to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VROUNDPS xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.src.0.01 08 /r ib

VROUNDPS ymm1, xmm2/mem256, imm8 C4 RXB.00011 X.src.1.01 08 /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

484 ROUNDPS, VROUNDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference ROUNDSD, VROUNDSD 485

26568—Rev. 3.14—December 2011 AMD64 Technology

Rounds a scalar double-precision floating-point value as specified by an immediate byte operand.
Source values are rounded to integral values and written to the destination as double-precision float-
ing-point values.
SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.
The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

There are legacy and extended forms of the instruction:

ROUNDSD

The source operand is either an XMM register or a 64-bit memory location. When the source is an
XMM register, the value to be rounded must be in the low doubleword. The destination is an XMM

ROUNDSD
VROUNDSD

Round
Scalar Double-Precision

7 4 3 2 1 0

Reserved P O RC

Bits Mnemonic Description

[7:4] — Reserved

[3] P Precision Exception

[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description

0 Normal PE exception

1 PE field is not updated.
No precision exception is taken when unmasked.

Value Description

0 MXCSR:RC

1 Use RC field value.

Value Description

00 Nearest

01 Downward (toward negative infinity)

10 Upward (toward positive infinity)

11 Truncated

486 ROUNDSD, VROUNDSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

register. There is a third 8-bit immediate operand. Bits [127:64] of the destination are not affected.
Bits [255:128] of the YMM register that corresponds to destination XMM register are not affected.

VROUNDSD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. When the second source is an XMM register, the value to be rounded must
be in the low doubleword. The destination is a third XMM register. There is a fourth 8-bit immediate
operand. Bits [127:64] of the destination are copied from the first source operand. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

ROUNDSD is an SSE4.1 instruction and VROUNDSD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Opcode Description

ROUNDSD xmm1, xmm2/mem64, imm8 66 0F 3A 0B /r ib Rounds a double-precision floating-point
value in xmm2[63:0] or mem64. Writes a
rounded double-precision value to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VROUNDSD xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.00011 X.src.X.01 0B /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Instruction Reference ROUNDSD, VROUNDSD 487

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

488 ROUNDSS, VROUNDSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Rounds a scalar single-precision floating-point value as specified by an immediate byte operand.
Source values are rounded to integral values and written to the destination as single-precision float-
ing-point values.
SNaN source values are converted to QNaN. When DAZ =1, denormals are converted to zero before
rounding.
The immediate byte operand is defined as follows.

Precision exception definitions:

Rounding control source definitions:

Rounding control definition:

There are legacy and extended forms of the instruction:

ROUNDSS

The source operand is either an XMM register or a 32-bit memory location. When the source is an
XMM register, the value to be rounded must be in the low word. The destination is an XMM register.

ROUNDSS
VROUNDSS

Round
Scalar Single-Precision

7 4 3 2 1 0

Reserved P O RC

Bits Mnemonic Description

[7:4] — Reserved

[3] P Precision Exception

[2] O Rounding Control Source

[1:0] RC Rounding Control

Value Description

0 Normal PE exception

1 PE field is not updated.
No precision exception is taken when unmasked.

Value Description

0 MXCSR:RC

1 Use RC field value.

Value Description

00 Nearest

01 Downward (toward negative infinity)

10 Upward (toward positive infinity)

11 Truncated

Instruction Reference ROUNDSS, VROUNDSS 489

26568—Rev. 3.14—December 2011 AMD64 Technology

There is a third 8-bit immediate operand. Bits [127:32] of the destination are not affected. Bits
[255:128] of the YMM register that corresponds to destination XMM register are not affected.

VROUNDSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. When the second source is an XMM register, the value to be rounded must
be in the low word. The destination is a third XMM register. There is a fourth 8-bit immediate oper-
and. Bits [127:32] of the destination are copied from the first source operand. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

ROUNDSS is an SSE4.1 instruction and VROUNDSS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_ECX[SSE41] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Opcode Description

ROUNDSS xmm1, xmm2/mem64, imm8 66 0F 3A 0A /r ib Rounds a single-precision floating-point
value in xmm2[63:0] or mem64. Writes a
rounded single-precision value to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VROUNDSS xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.00011 X.src.X.01 0A /r ib

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

490 ROUNDSS, VROUNDSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference RSQRTPS, VRSQRTPS 491

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the approximate reciprocal of the square root of each packed single-precision floating-
point value in the source operand and writes the results to the corresponding doublewords of the des-
tination. MXCSR.RC has no effect on the result.
The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal square root. A source
value that is ±zero or denormal returns an infinity of the source value sign. Negative source values
other than –zero and –denormal return a QNaN floating-point indefinite value. For both SNaN and
QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:

RSQRTPS

Computes four values. The first source operand is an XMM register. The second source operand is
either another XMM register or a 128-bit memory location. The first source register is also the desti-
nation. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VRSQRTPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Computes four values. The destination is an XMM register. The source operand is either an XMM
register or a 128-bit memory location. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.
YMM Encoding
Computes eight values. The destination is an YMM register. The source operand is either a YMM
register or a 256-bit memory location.

RSQRTPS is an SSE1 instruction and VRSQRTPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)RSQRTSS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSD, (V)SQRTSS

RSQRTPS
VRSQRTPS

Reciprocal Square Root
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

RSQRTPS xmm1, xmm2/mem128 0F 52 /r Computes reciprocals of square roots of packed single-
precision floating-point values in xmm1 or mem128.
Writes result to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VRSQRTPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 52 /r

VRSQRTPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 52 /r

492 RSQRTPS, VRSQRTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference RSQRTSS, VRSQRTSS 493

26568—Rev. 3.14—December 2011 AMD64 Technology

Computes the approximate reciprocal of the square root of the scalar single-precision floating-point
value in a source operand and writes the result to the low-order doubleword of the destination.
MXCSR.RC as no effect on the result.
The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal square root. A source
value that is ±zero or denormal returns an infinity of the source value’s sign. Negative source values
other than –zero and –denormal return a QNaN floating-point indefinite value. For both SNaN and
QNaN source operands, a QNaN is returned.

There are legacy and extended forms of the instruction:

RSQRTSS

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [127:32] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VRSQRTSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand and the destination are XMM registers. The second source operand is either
an XMM register or a 32-bit memory location. Bits [31:0] of the destination contain the reciprocal
square root of the single-precision floating-point value held in bits [31:0] of the second source oper-
and; bits [127:32] of the destination are copied from the first source register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

RSQRTSS is an SSE1 instruction and VSQRTSS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)RSQRTPS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSD, (V)SQRTSS

rFLAGS Affected

None

RSQRTSS
VRSQRTSS

Reciprocal Square Root
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

RSQRTSS xmm1, xmm2/mem32 F3 0F 52 /r Computes reciprocal of square root of a scalar single-
precision floating-point value in xmm1 or mem32. Writes
result to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VRSQRTSS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.X.10 52 /r

494 RSQRTSS, VRSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SHUFPD, VSHUFPD 495

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed double-precision floating-point values from either of two sources to quadwords in the
destination, as specified by bit fields of an immediate byte operand.
Each bit corresponds to a quadword destination. The 128-bit legacy and extended versions of the
instruction use bits [1:0]; the 256-bit extended version uses bits [3:0], as shown.

There are legacy and extended forms of the instruction:

SHUFPD

Shuffles four source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. There is a third 8-bit immediate oper-
and. The first source register is also the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VSHUFPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Shuffles four source values. The first source operand is an XMM register. The second source operand
is either another XMM register or a 128-bit memory location. The destination is a third XMM regis-
ter. There is a fourth 8-bit immediate operand. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.
YMM Encoding
Shuffles eight source values. The first source operand is a YMM register and the second source oper-
and is either a YMM register or a 256-bit memory location. The destination is a third YMM register.
There is a fourth 8-bit immediate operand.

SHUFPD is an SSE2 instruction and VSHUFPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

SHUFPD
VSHUFPD

Shuffle
Packed Double-Precision Floating-Point

Destination
Quadword

Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Source 2
Bits Copied

Used by 128-bit encoding and 256-bit encoding

[63:0] [0] 0 [63:0] —

1 [127:64] —

[127:64] [1] 0 — [63:0]

1 —]127:64]

Used only by 256-bit encoding

[191:128] [2] 0 [191:128] —

1 [255:192] —

[255:192] [3] 0 — [191:128]

1 — [255:192]

496 SHUFPD, VSHUFPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

(V)SHUFPS

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

SHUFPD xmm1, xmm2/mem128, imm8 66 0F C6 /r ib Shuffles packed double-precision floating-
point values in xmm1 and xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSHUFPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.01 C6 /r

VSHUFPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00001 X.src.1.01 C6 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference SHUFPS, VSHUFPS 497

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies packed single-precision floating-point values from either of two sources to doublewords in the
destination, as specified by bit fields of an immediate byte operand.
Each bit field corresponds to a doubleword destination. The 128-bit legacy and extended versions of
the instruction use a single 128-bit destination; the 256-bit extended version performs duplicate oper-
ations on bits [127:0] and bits [255:128] of the source and destination.

SHUFPS
VSHUFPS

Shuffle
Packed Single-Precision Floating-Point

Destination
Doubleword

Immediate-Byte
Bit Field

Value of Bit
Field

Source 1
Bits Copied

Source 2
Bits Copied

[31:0] [1:0] 00 [31:0] —
01 [63:32] —
10 [95:64] —
11 [127:96] —

[63:32] [3:2] 00 [31:0] —
01 [63:32] —
10 [95:64] —
11 [127:96] —

[95:64] [5:4] 00 — [31:0]
01 — [63:32]
10 — [95:64]
11 — [127:96]

[127:96] [7:6] 00 — [31:0]
01 — [63:32]
10 — [95:64]
11 — [127:96]

Upper 128 bits of 256-bit source and destination used by 256-bit encoding
[159:128] [1:0] 00 [159:128] —

01 [191:160] —
10 [223:192] —
11 [255:224] —

[191:160] [3:2] 00 [159:128] —
01 [191:160] —
10 [223:192] —
11 [255:224] —

[223:192] [5:4] 00 — [159:128]
01 — [191:160]
10 — [223:192]
11 — [255:224]

[255:224] [7:6] 00 — [159:128]
01 — [191:160]
10 — [223:192]
11 — [255:224]

498 SHUFPS, VSHUFPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

There are legacy and extended forms of the instruction:

SHUFPS

Shuffles eight source values. The first source operand is an XMM register. The second source oper-
and is either another XMM register or a 128-bit memory location. There is a third 8-bit immediate
operand. The first source register is also the destination. Bits [255:128] of the YMM register that cor-
responds to the destination are not affected.

VSHUFPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Shuffles eight source values. The first source operand is an XMM register. The second source oper-
and is either another XMM register or a 128-bit memory location. The destination is a third XMM
register. There is a fourth 8-bit immediate operand. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.
YMM Encoding
Shuffles 16 source values. The first source operand is a YMM register and the second source operand
is either a YMM register or a 256-bit memory location. The destination is a third YMM register.
There is a fourth 8-bit immediate operand.

SHUFPS is an SSE1 instruction and VSHUFPS is an AVX instruction. Support for these instructions
is indicated by CPUID feature identifiers CPUID Fn0000_00001_EDX[SSE] and
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)SHUFPD

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Opcode Description

SHUFPS xmm1, xmm2/mem128, imm8 0F C6 /r ib Shuffles packed single-precision floating-
point values in xmm1 and xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSHUFPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.00 C6 /r

VSHUFPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00001 X.src.1.00 C6 /r

Instruction Reference SHUFPS, VSHUFPS 499

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

500 SQRTPD, VSQRTPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Computes the square root of each packed double-precision floating-point value in a source operand
and writes the result to the corresponding quadword of the destination.
Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:

SQRTPD

Computes two values. The destination is an XMM register. The source operand is either another
XMM register or a 128-bit memory location. Bits [255:128] of the YMM register that corresponds to
the destination are not affected.

VSQRTPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Computes two values. The source operand is either an XMM register or a 128-bit memory location.
The destination is an XMM register. Bits [255:128] of the YMM register that corresponds to the des-
tination are cleared.
YMM Encoding
Computes four values. The source operand is either a YMM register or a 256-bit memory location.
The destination is a YMM register.

SQRTPD is an SSE2 instruction and VSQRTPD is an AVX instruction.Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPS, (V)SQRTSD, (V)SQRTSS

rFLAGS Affected

None

SQRTPD
VSQRTPD

Square Root
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

SQRTPD xmm1, xmm2/mem128 66 0F 51 /r Computes square roots of packed double-precision
floating-point values in xmm1 or mem128. Writes the
results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSQRTPD xmm1, xmm2/mem128 C4 RXB.00001 X.vvvv.0.01 51 /r

VSQRTPD ymm1, ymm2/mem256 C4 RXB.00001 X.vvvv.1.01 51 /r

Instruction Reference SQRTPD, VSQRTPD 501

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

502 SQRTPS, VSQRTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Computes the square root of each packed single-precision floating-point value in a source operand
and writes the result to the corresponding doubleword of the destination.
Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:

SQRTPS

Computes four values. The destination is an XMM register. The source operand is either another
XMM register or a 128-bit memory location. Bits [255:128] of the YMM register that corresponds to
the destination are not affected.

VSQRTPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Computes four values. The destination is an XMM register. The source operand is either another
XMM register or a 128-bit memory location. Bits [255:128] of the YMM register that corresponds to
the destination are cleared.
YMM Encoding
Computes eight values. The destination is a YMM register. The source operand is either a YMM reg-
ister or a 256-bit memory location.

SQRTPS is an SSE1 instruction and VSQRTPS is an AVX instruction.Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPD, (V)SQRTSD, (V)SQRTSS

rFLAGS Affected

None

SQRTPS
VSQRTPS

Square Root
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

SQRTPS xmm1, xmm2/mem128 0F 51 /r Computes square roots of packed single-precision
floating-point values in xmm1 or mem128. Writes the
results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSQRTPS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 51 /r

VSQRTPS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 51 /r

Instruction Reference SQRTPS, VSQRTPS 503

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.

S S S Non-aligned memory operand while MXCSR.MM = 0.
X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

504 SQRTSD, VSQRTSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Computes the square root of a double-precision floating-point value and writes the result to the low
quadword of the destination. The three-operand form of the instruction also writes a copy of the upper
quadword of another source operand to the upper quadword of the destination.
Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:

SQRTSD

The source operand is either an XMM register or a 64-bit memory location. When the source is an
XMM register, the source value must be in the low quadword. The destination is an XMM register.
Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that corresponds
to destination XMM register are not affected.

VSQRTSD

The extended form of the instruction has a single 128-bit encoding that requires three operands:

VSQRTSD xmm1, xmm2, xmm3/mem64

The first source operand is an XMM register. The second source operand is either an XMM register or
a 64-bit memory location. When the second source is an XMM register, the source value must be in
the low quadword. The destination is a third XMM register. The square root of the second source
operand is written to bits [63:0] of the destination register. Bits [127:64] of the destination are copied
from the corresponding bits of the first source operand. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

SQRTSD is an SSE2 instruction and VSQRTSD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]. For more
information on the CPUID instruction and defined processor feature bits, see the CPUID Specifica-
tion, order# 25481.

Instruction Encoding

Related Instructions

(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSS

SQRTSD
VSQRTSD

Square Root
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

SQRTSD xmm1, xmm2/mem64 F2 0F 51 /r Computes the square root of a double-precision floating-
point value in xmm1 or mem64. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSQRTSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 51 /r

Instruction Reference SQRTSD, VSQRTSD 505

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

506 SQRTSS, VSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Computes the square root of a single-precision floating-point value and writes the result to the low
doubleword of the destination. The three-operand form of the instruction also writes a copy of the
three most significant doublewords of a second source operand to the upper 96 bits of the destination.
Performing the square root of +infinity returns +infinity.

There are legacy and extended forms of the instruction:

SQRTSS

The source operand is either an XMM register or a 32-bit memory location. When the source is an
XMM register, the source value must be in the low doubleword. The destination is an XMM register.
Bits [127:32] of the destination are not affected. Bits [255:128] of the YMM register that corresponds
to destination XMM register are not affected.

VSQRTSS

The extended form has a single 128-bit encoding that requires three operands:

VSQRTSS xmm1, xmm2, xmm3/mem64

The first source operand is an XMM register. The second source operand is either an XMM register or
a 32-bit memory location. When the second source is an XMM register, the source value must be in
the low doubleword. The destination is a third XMM register. The square root of the second source
operand is written to bits [31:0] of the destination register. Bits [127:32] of the destination are copied
from the corresponding bits of the first source operand. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

SQRTSS is an SSE1 instruction and VSQRTSS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX]. For more infor-
mation on the CPUID instruction and defined processor feature bits, see the CPUID Specification,
order# 25481.

Instruction Encoding

Related Instructions

(V)RSQRTPS, (V)RSQRTSS, (V)SQRTPD, (V)SQRTPS, (V)SQRTSD

rFLAGS Affected

None

SQRTSS
VSQRTSS

Square Root
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

SQRTSS xmm1, xmm2/mem32 F3 0F 51 /r Computes square root of a single-precision floating-point
value in xmm1 or mem32. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSQRTSS xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.10 51 /r

Instruction Reference SQRTSS, VSQRTSS 507

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

508 STMXCSR, VSTMXCSR Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Saves the content of the MXCSR extended control/status register to a 32-bit memory location.
Reserved bits are stored as zeroes. The MXCSR is described in “Registers” in Volume 1.
For both legacy STMXCSR and extended VSTMXCSR forms of the instruction, the source operand
is the MXCSR and the destination is a 32-bit memory location.
There is one encoding for each instruction form.

STMXCSR is an SSE1 instruction and VSTMXCSR is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)LDMXCSR

rFLAGS Affected

None

MXCSR Flags Affected

STMXCSR
VSTMXCSR

Store MXCSR

Mnemonic Opcode Description

STMXCSR mem32 0F AE /3 Stores content of MXCSR in mem32.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSTMXCSR mem32 C4 RXB.00001 X.1111.0.00 AE /3

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference STMXCSR, VSTMXCSR 509

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.
S S S Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

510 SUBPD, VSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Subtracts each packed double-precision floating-point value of the second source operand from the
corresponding value of the first source operand and writes the difference to the corresponding quad-
word of the destination.

There are legacy and extended forms of the instruction:

SUBPD

Subtracts two pairs of values. The first source operand is an XMM register. The second source oper-
and is either another XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VSUBPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Subtracts two pairs of values. The first source operand is an XMM register. The second source oper-
and is either another XMM register or a 128-bit memory location. The destination is a third XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Subtracts four pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

SUBPD is an SSE2 instruction and VSUBPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)SUBPS, (V)SUBSD, (V)SUBSS

rFLAGS Affected

None

SUBPD
VSUBPD

Subtract
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

SUBPD xmm1, xmm2/mem128 66 0F 5C /r Subtracts packed double-precision floating-point values in
xmm2 or mem128 from corresponding values of xmm1.
Writes differences to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5C /r

VSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5C /r

Instruction Reference SUBPD, VSUBPD 511

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

512 SUBPS, VSUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Subtracts each packed single-precision floating-point value of the second source operand from the
corresponding value of the first source operand and writes the difference to the corresponding quad-
word of the destination.

There are legacy and extended forms of the instruction:

SUBPS

Subtracts four pairs of values. The first source operand is an XMM register. The second source oper-
and is either another XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VSUBPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Subtracts four pairs of values. The first source operand is an XMM register. The second source oper-
and is either another XMM register or a 128-bit memory location. The destination is a third XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Subtracts eight pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

SUBPS is an SSE1 instruction and VSUBPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)SUBPD, (V)SUBSD, (V)SUBSS

rFLAGS Affected

None

SUBPS
VSUBPS

Subtract
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

SUBPS xmm1, xmm2/mem128 0F 5C /r Subtracts packed single-precision floating-point values in
xmm2 or mem128 from corresponding values of xmm1.
Writes differences to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5C /r

VSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5C /r

Instruction Reference SUBPS, VSUBPS 513

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Non-aligned memory operand while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

514 SUBSD, VSUBSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Subtracts the double-precision floating-point value in the low-order quadword of the second source
operand from the corresponding value in the first source operand and writes the result to the low-
order quadword of the destination

There are legacy and extended forms of the instruction:

SUBSD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding YMM register are not affected.

VSUBSD

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first
source operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

SUBSD is an SSE2 instruction and VSUBSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)SUBPD, (V)SUBPS, (V)SUBSS

rFLAGS Affected

None

SUBSD
VSUBSD

Subtract
Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

SUBSD xmm1, xmm2/mem64 F2 0F 5C /r Subtracts low-order double-precision floating-point value in
xmm2 or mem64 from the corresponding value of xmm1.
Writes the difference to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSUBSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5C /r

Instruction Reference SUBSD, VSUBSD 515

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

516 SUBSS, VSUBSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Subtracts the single-precision floating-point value in the low-order word of the second source oper-
and from the corresponding value in the first source operand and writes the result to the low-order
word of the destination

There are legacy and extended forms of the instruction:

SUBSS

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination register. Bits [127:32]
of the destination and bits [255:128] of the corresponding YMM register are not affected.

VSUBSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source operand are copied to bits [127:32] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

SUBSS is an SSE2 instruction and VSUBSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)SUBPD, (V)SUBPS, (V)SUBSD

rFLAGS Affected

None

SUBSS
VSUBSS

Subtract
Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

SUBSS xmm1, xmm2/mem32 F3 0F 5C /r Subtracts a low-order single-precision floating-point value
in xmm2 or mem32 from the corresponding value of xmm1.
Writes the difference to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VSUBSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5C /r

Instruction Reference SUBSS, VSUBSS 517

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected
MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

518 UCOMISD, VUCOMISD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Performs an unordered comparison of a double-precision floating-point value in the low-order 64 bits
of an XMM register with a double-precision floating-point value in the low-order 64 bits of another
XMM register or a 64-bit memory location.
The ZF, PF, and CF bits in the rFLAGS register reflect the result of the compare as follows.

The OF, AF, and SF bits in rFLAGS are cleared. If the instruction causes an unmasked SIMD float-
ing-point exception (#XF), the rFLAGS bits are not updated.
The result is unordered when one or both of the operand values is a NaN. UCOMISD signals a SIMD
floating-point invalid operation exception (#I) only when a source operand is an SNaN.
The legacy and extended forms of the instruction operate in the same way.

UCOMISD is an SSE2 instruction and VUCOMISD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISS

UCOMISD
VUCOMISD

Unordered Compare
Scalar Double-Precision Floating-Point

Result of Compare ZF PF CF

Unordered 1 1 1

Greater Than 0 0 0

Less Than 0 0 1

Equal 1 0 0

Mnemonic Opcode Description

UCOMISD xmm1, xmm2/mem64 66 0F 2E /r Compares scalar double-precision floating-point values
in xmm1 and xmm2 or mem64. Sets rFLAGS.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VUCOMISD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.X.01 2E /r

Instruction Reference UCOMISD, VUCOMISD 519

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

520 UCOMISS, VUCOMISS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Performs an unordered comparison of a single-precision floating-point value in the low-order 32 bits
of an XMM register with a double-precision floating-point value in the low-order 32 bits of another
XMM register or a 32-bit memory location.
The ZF, PF, and CF bits in the rFLAGS register reflect the result of the compare as follows.

The OF, AF, and SF bits in rFLAGS are cleared. If the instruction causes an unmasked SIMD float-
ing-point exception (#XF), the rFLAGS bits are not updated.
The result is unordered when one or both of the operand values is a NaN. UCOMISD signals a SIMD
floating-point invalid operation exception (#I) only when a source operand is an SNaN.
The legacy and extended forms of the instruction operate in the same way.

UCOMISS is an SSE1 instruction and VUCOMISS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD

UCOMISS
VUCOMISS

Unordered Compare
Scalar Single-Precision Floating-Point

Result of Compare ZF PF CF

Unordered 1 1 1

Greater Than 0 0 0

Less Than 0 0 1

Equal 1 0 0

Mnemonic Opcode Description

UCOMISS xmm1, xmm2/mem32 0F 2E /r Compares scalar double-precision floating-point values
in xmm1 and xmm2 or mem64. Sets rFLAGS.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VUCOMISS xmm1, xmm2/mem32 C4 RXB.00001 X.1111.X.00 2E /r

Instruction Reference UCOMISS, VUCOMISS 521

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

522 UNPCKHPD, VUNPCKHPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Unpacks the high-order double-precision floating-point values of the first and second source oper-
ands and interleaves the values into the destination. Bits [63:0] of the source operands are ignored.
Values are interleaved in ascending order from the lsb of the sources and the destination. Bits
[127:64] of the first source are written to bits [63:0] of the destination; bits [127:64] of the second
source are written to bits [127:64] of the destination.For the 256-bit encoding, the process is repeated
for bits [255:192] of the sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:

UNPCKHPD

Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VUNPCKHPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Interleaves two pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

UNPCKHPD is an SSE2 instruction and VUNPCKHPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)UNPCKHPS, (V)UNPCKLPD, (V)UNPCKLPS

UNPCKHPD
VUNPCKHPD

Unpack High
Double-Precision Floating-Point

Mnemonic Opcode Description

UNPCKHPD xmm1, xmm2/mem128 66 0F 15 /r Unpacks the high-order double-precision floating-
point values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VUNPCKHPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 15 /r

VUNPCKHPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 15 /r

Instruction Reference UNPCKHPD, VUNPCKHPD 523

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

524 UNPCKHPS, VUNPCKHPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Unpacks the high-order single-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [63:0] of the source operands are ignored.
Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [95:64]
of the first source are written to bits [31:0] of the destination; bits [95:64] of the second source are
written to bits [63:32] of the destination and so on, ending with bits [127:96] of the second source in
bits [127:96] of the destination. For the 256-bit encoding, the process continues for bits [255:192] of
the sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:

UNPCKHPS

Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VUNPCKHPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Interleaves four pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

UNPCKHPS is an SSE1 instruction and VUNPCKHPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Encoding

UNPCKHPS
VUNPCKHPS

Unpack High
Single-Precision Floating-Point

Mnemonic Opcode Description

UNPCKHPS xmm1, xmm2/mem128 0F 15 /r Unpacks the high-order single-precision floating-point
values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VUNPCKHPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 15 /r

VUNPCKHPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 15 /r

Instruction Reference UNPCKHPS, VUNPCKHPS 525

26568—Rev. 3.14—December 2011 AMD64 Technology

Related Instructions

(V)UNPCKHPD, (V)UNPCKLPD, (V)UNPCKLPS

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

526 UNPCKLPD, VUNPCKLPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Unpacks the low-order double-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [127:64] of the source operands are ignored.
Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [63:0]
of the first source are written to bits [63:0] of the destination; bits [63:0] of the second source are writ-
ten to bits [127:64] of the destination. For the 256-bit encoding, the process is repeated for bits
[191:128] of the sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:

UNPCKLPD

Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VUNPCKLPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Interleaves one pair of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Interleaves two pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

UNPCKLPD is an SSE2 instruction and VUNPCKLPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX]
(see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPS

UNPCKLPD
VUNPCKLPD

Unpack Low
Double-Precision Floating-Point

Mnemonic Opcode Description

UNPCKLPD xmm1, xmm2/mem128 66 0F 14 /r Unpacks the low-order double-precision floating-point
values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VUNPCKLPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 14 /r

VUNPCKLPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 14 /r

Instruction Reference UNPCKLPD, VUNPCKLPD 527

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

528 UNPCKLPS, VUNPCKLPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Unpacks the low-order single-precision floating-point values of the first and second source operands
and interleaves the values into the destination. Bits [127:64] of the source operands are ignored.
Values are interleaved in ascending order from the lsb of the sources and the destination. Bits [31:0]
of the first source are written to bits [31:0] of the destination; bits [31:0] of the second source are writ-
ten to bits [63:32] of the destination and so on, ending with bits [63:32] of the second source in bits
[127:96] of the destination. For the 256-bit encoding, the process continues for bits [191:128] of the
sources and bits [255:128] of the destination.

There are legacy and extended forms of the instruction:

UNPCKLPS

Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The first source register is also the
destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VUNPCKLPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Interleaves two pairs of values. The first source operand is an XMM register and the second source
operand is either an XMM register or a 128-bit memory location. The destination is an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.
YMM Encoding
Interleaves four pairs of values. The first source operand is a YMM register and the second source
operand is either a YMM register or a 256-bit memory location. The destination is a third YMM reg-
ister.

UNPCKLPS is an SSE1 instruction and VUNPCKLPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000_00001_EDX[SSE] and Fn0000_00001_ECX[AVX] (see
the CPUID Specification, order# 25481).

Instruction Encoding

UNPCKLPS
VUNPCKLPS

Unpack Low
Single-Precision Floating-Point

Mnemonic Opcode Description

UNPCKLPS xmm1, xmm2/mem128 0F 14 /r Unpacks the high-order single-precision floating-point
values in xmm1 and xmm2 or mem128 and
interleaves them into xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VUNPCKLPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 14 /r

VUNPCKLPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 14 /r

Instruction Reference UNPCKLPS, VUNPCKLPS 529

26568—Rev. 3.14—December 2011 AMD64 Technology

Related Instructions

(V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

530 VBROADCASTF128 Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Loads double-precision floating-point data from a 128-bit memory location and writes it to the two
128-bit elements of a YMM register
This extended-form instruction has a single 256-bit encoding.
The source operand is a128-bit memory location. The destination is a YMM register.

VBROADCASTF128 is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VBROADCASTSD, VBROADCASTSS

rFLAGS Affected

None

MXCSR Flags Affected

None

VBROADCASTF128 Load With Broadcast
From 128-bit Memory Location

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VBROADCASTF128 ymm1, mem128 C4 RXB.00010 0.1111.1.01 1A /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Instruction Reference VBROADCASTF128 531

26568—Rev. 3.14—December 2011 AMD64 Technology

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

532 VBROADCASTSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Loads a double-precision floating-point value from a 64-bit memory location and writes it to the four
64-bit elements of a YMM register
This extended-form instruction has a single 256-bit encoding.
The source operand is a 64-bit memory location. The destination is a YMM register.

VBROADCASTSD is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VBROADCASTF128, VBROADCASTSS

rFLAGS Affected

None

MXCSR Flags Affected

None

VBROADCASTSD Load With Broadcast
From 64-Bit Memory Location

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VBROADCASTSD ymm1, mem64 C4 RXB.00010 0.1111.1.01 19 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.W = 1.
A VEX.vvvv ! = 1111b.
A VEX.L = 0.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Instruction Reference VBROADCASTSD 533

26568—Rev. 3.14—December 2011 AMD64 Technology

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

534 VBROADCASTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Loads a single-precision floating-point value from a 32-bit memory location and writes it to 32-bit
elements of an XMM or YMM register
This extended-form instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Broadcasts to eight 32-bit elements.
The source operand is a 32-bit memory location. The destination is an XMM register.

YMM Encoding

Broadcasts to sixteen 32-bit elements.
The source operand is a 32-bit memory location. The destination is a YMM register.

VBROADCASTSS is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VBROADCASTF128, VBROADCASTSD

rFLAGS Affected

None

MXCSR Flags Affected

None

VBROADCASTSS Load With Broadcast
From 32-Bit Memory Location

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VBROADCASTSS xmm1, mem32 C4 RXB.00010 0.1111.0.01 18 /r

VBROADCASTSS ymm1, mem32 C4 RXB.00010 0.1111.1.01 18 /r

Instruction Reference VBROADCASTSS 535

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

536 VCVTPH2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Converts packed 16-bit floating point values to single-precision floating point values.
A denormal source operand is converted to a normal result in the destination register. MXCSR.DAZ
is ignored and no MXCSR denormal exception is reported.
Because the full range of 16-bit floating-point encodings, including denormal encodings, can be rep-
resented exactly in single-precision format, rounding, inexact results, and denormalized results are
not applicable.
The operation of this instruction is illustrated in the following diagram.

This extended-form instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts four packed 16-bit floating-point values in the low-order 64 bits of an XMM register or in a
64-bit memory location to four packed single-precision floating-point values and writes the converted
values to an XMM destination register. When the result operand is written to the destination register,
the upper 128 bits of the corresponding YMM register are zeroed.

VCVTPH2PS Convert Packed 16-Bit Floating-Point to
Single-Precision Floating-Point

dest = xmm1

src = xmm2/mem64

095 63127 64 313296

063 16 15313248 47127 64

VCVTPH2PS
128-Bit

095 63127 64 313296128223 191255 192 159160224

0111 95 63127 16 1564 313248 4780 7996112

src = xmm2/

dest = ymm1

mem128

VCVTPH2PS
256-Bit

128255

0s

 convert
 convert

 convert
 convert

 convert
 convert

 convert
 convert

 convert
 convert

 convert
 convert

Instruction Reference VCVTPH2PS 537

26568—Rev. 3.14—December 2011 AMD64 Technology

YMM Encoding

Converts eight packed 16-bit floating-point values in the low-order 128 bits of a YMM register or in a
128-bit memory location to eight packed single-precision floating-point values and writes the con-
verted values to a YMM destination register.

VCVTPH2PS is a F16C instruction. Support for this instruction is indicated by CPUID
Fn0000_0001_ECX[F16C]. (See the CPUID Specification, order# 25481.)

Instruction Encoding

Related Instructions

VCVTPS2PH

rFLAGS Affected

None

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPH2PS xmm1, xmm2/mem64 C4 RXB.02 0.1111.0.01 13 /r

VCVTPH2PS ymm1, xmm2/mem128 C4 RXB.02 0.1111.1.01 13 /r

538 VCVTPH2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X F16C instructions are only recognized in protected
mode.

X The F16C instructions are not supported, as indicated
by CPUID Fn0000_0001_ECX[F16C] = 0.

X
The operating-system XSAVE/XRSTOR support bit
(OSXSAVE) of CR4 was cleared to 0, as indicated by
ECX bit 27 of CPUID function 0000_0001h.

X
The operating-system YMM and SSE support bits
XFEATURE_ENABLED_MASK[2:1] were not both set
to 1.

X VEX.W was set to 1.

X VEX.vvvv was not 1111b.

X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the
instruction.

SIMD Floating-Point
Exception, #XF X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X A source operand was an SNaN value.

Instruction Reference VCVTPS2PH 539

26568—Rev. 3.14—December 2011 AMD64 Technology

Converts packed single-precision floating-point values to packed 16-bit floating-point values and
writes the converted values to the destination register or to memory. An 8-bit immediate operand pro-
vides dynamic control of rounding and denormalized input operand handling.
The operation of this instruction is illustrated in the following diagram.

VCVTPS2PH Convert Packed Single-Precision Floating-Point
to 16-Bit Floating-Point

src = xmm2

095 63127 64 313296

063 16 15313248 47127 64
0s

imm8

dest = xmm1/mem64

VCVTPS2PH
128-Bit

src = ymm2

095 63127 64 313296128223 191255 192 159160224

0111 95 63127 161564 313248 4780 7996112
128255

0s

VCVTPS2PH

dest = xmm1/mem128

128255

0s

256-Bit

convert
convert

convert
convert

convert

convert
convert

convert

imm8 convert
convert

convert
convert

round

round

540 VCVTPS2PH Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

The handling of rounding is controlled by fields in the immediate byte, as shown in the following
table.

This extended-form instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts four packed single-precision floating-point values in an XMM register to four packed 16-bit
floating-point values and writes the converted values to the low-order 64 bits of the destination XMM
register or to a 64-bit memory location. When the result is written to the destination XMM register,
the high-order 64 bits in the destination XMM register and the upper 128 bits of the corresponding
YMM register are cleared to 0s.

YMM Encoding

Converts eight packed single-precision floating-point values in a YMM register to eight packed 16-
bit floating-point values and writes the converted values to the low-order 128 bits of another YMM
register or to a 128-bit memory location. When the result is written to the destination YMM register,
the high-order 128 bits in the register are cleared to 0s.

VCVTPS2PH is a CVT16 instruction. Support for this instruction is indicated by CPUID
Fn0000_0001_ECX[F16C]. (See the CPUID Specification, order# 25481.)

Instruction Encoding

Related Instructions

VCVTPH2PS

Denormal and Rounding Control with Immediate Byte Operand

Mnemonic

Rounding
Source

(RS)
Rounding Control

(RC)

Description NotesBit 2 1 0

Value

0

0 0 Nearest

Ignore MXCSR.RC.
0 1 Down

1 0 Up

1 1 Truncate

1 X X
Use MXCSR.RC for

rounding.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VCVTPS2PH xmm1/mem64, xmm2, imm8 C4 RXB.03 0.1111.0.01 1D /r /imm8

VCVTPS2PH xmm1/mem128, ymm2, imm8 C4 RXB.03 0.1111.1.01 1D /r /imm8

Instruction Reference VCVTPS2PH 541

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X F16C instructions are only recognized in protected
mode.

X The F16C instructions are not supported, as indicated
by CPUID Fn0000_0001_ECX[F16C] = 0.

X
The operating-system XSAVE/XRSTOR support bit
(OSXSAVE) of CR4 was cleared to 0, as indicated by
ECX bit 27 of CPUID function 0000_0001h.

X
The operating-system YMM and SSE support bits
XFEATURE_ENABLED_MASK[2:1] were not both set
to 1.

X VEX.W was set to 1.

X VEX.vvvv was not 1111b.

X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X A page fault resulted from the execution of the
instruction.

542 VCVTPS2PH Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

SIMD Floating-Point
Exception, #XF X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X A source operand was an SNaN value.

Denormal operand
exception (DE) X A source operand was a denormal value.

Overflow exception
(OE) X A rounded result was too large to fit into the format of

the destination operand.

Underflow exception
(UE) X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X A result could not be represented exactly in the

destination format.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Instruction Reference VEXTRACT128 543

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts 128-bit packed-value data from a YMM register as specified by an immediate byte operand,
and writes it to either an XMM register or a 128-bit memory location.
Only bit [0] of the immediate operand is used. Operation is as follows.
• When imm8[0] = 0, copy bits [127:0] of the source to the destination.

• When imm8[0] = 1, copy bits [255:128] of the source to the destination.

This extended-form instruction has a single 256-bit encoding.
The source operand is a YMM register and the destination is either an XMM register or a 128-bit
memory location. There is a third immediate byte operand.
This is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).\

Instruction Encoding

Related Instructions

VBROADCASTF128, VINSERTF128

rFLAGS Affected

None

MXCSR Flags Affected

None

VEXTRACTF128 Extract
Packed Values from 128-bit Memory Location

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VEXTRACT128 xmm/mem128, ymm, imm8 C4 RXB.00011 0.1111.1.01 19 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

544 VEXTRACT128 Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference VFMADDPD, VFMADDnnnPD 545

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point vectors and adds the unrounded product to a
third double-precision floating-point vector producing a precise result which is then rounded to dou-
ble-precision based on the mode specified by the MXCSR[RC] field. The rounded sum is written to
the destination register. The role of each of the source operands specified by the assembly language
prototypes given below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFMADDPD dest, src1, src2/mem, src3 // dest = (src1* src2/mem) + src3
VFMADDPD dest, src1, src2, src3/mem // dest = (src1* src2) + src3/mem

and three three-operand forms:

VFMADD132PD scr1, src2, src3/mem // src1 = (src1* src3/mem) + src2
VFMADD213PD scr1, src2, src3/mem // src1 = (src2* src1) + src3/mem
VFMADD231PD scr1, src2, src3/mem // src1 = (src2* src3/mem) + src1

When VEX.L = 0, the vector size is 128 bits (two double-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (four double-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMADDPD is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMADD132PD, VFMADD213PD, and VFMADD231PD are FMA instructions. Support for FMA
instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
See the CPUID Specification, order# 25481, for more information on the CPUID instruction and
defined feature bits.

VFMADDPD
VFMADD132PD
VFMADD213PD
VFMADD231PD

 Multiply and Add
Packed Double-Precision Floating-Point

546 VFMADDPD, VFMADDnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

VFMADDPS, VFMADD132PS, VFMADD213PS, VFMADD231PS, VFMADDSD,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADDSS, VFMADD132SS,
VFMADD213SS, VFMADD231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 69 /r /is4

VFMADDPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 69 /r /is4

VFMADDPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 69 /r /is4

VFMADDPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 69 /r /is4

VFMADD132PD xmm0, xmm1, xmm2/m128 C4 RXB.00010 1.src.0.01 98 /r

VFMADD132PD ymm0, ymm1, ymm2/m256 C4 RXB.00010 1.src.1.01 98 /r

VFMADD213PD xmm0, xmm1, xmm2/m128 C4 RXB.00010 1.src.0.01 A8 /r

VFMADD213PD ymm0, ymm1, ymm2/m256 C4 RXB.00010 1.src.1.01 A8 /r

VFMADD231PD xmm0, xmm1, xmm2/m128 C4 RXB.00010 1.src.0.01 B8 /r

VFMADD231PD ymm0, ymm1, ymm2/m256 C4 RXB.00010 1.src.1.01 B8 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

Instruction Reference VFMADDPD, VFMADDnnnPD 547

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

548 VFMADDPS, VFMADDnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point vectors and adds the unrounded product to a
third single-precision floating-point vector producing a precise result which is then rounded to single-
precision based on the mode specified by the MXCSR[RC] field. The rounded sum is written to the
destination register. The role of each of the source operands specified by the assembly language pro-
totypes given below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFMADDPS dest, src1, src2/mem, src3 // dest = (src1* src2/mem) + src3
VFMADDPS dest, src1, src2, src3/mem // dest = (src1* src2) + src3/mem

and three three-operand forms:

VFMADD132PS scr1, src2, src3/mem // src1 = (src1* src3/mem) + src2
VFMADD213PS scr1, src2, src3/mem // src1 = (src2* src1) + src3/mem
VFMADD231PS scr1, src2, src3/mem // src1 = (src2* src3/mem) + src1

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMADDPS is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMADD132PS, VFMADD213PS, and VFMADD231PS are FMA instructions. Support for FMA
instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
See the CPUID Specification, order# 25481, for more information on the CPUID instruction and
defined feature bits.

VFMADDPS
VFMADD132PS
VFMADD213PS
VFMADD231PS

 Multiply and Add
Packed Single-Precision Floating-Point

Instruction Reference VFMADDPS, VFMADDnnnPS 549

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding

Related Instructions

VFMADDPD, VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADDSD,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADDSS, VFMADD132SS,
VFMADD213SS, VFMADD231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 68 /r /is4

VFMADDPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 68 /r /is4

VFMADDPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 68 /r /is4

VFMADDPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 68 /r /is4

VFMADD132PS xmm0, xmm1, xmm2/m128 C4 RXB.00010 0.src.0.01 98 /r

VFMADD132PS ymm0, ymm1, ymm2/m256 C4 RXB.00010 0.src.1.01 98 /r

VFMADD213PS xmm0, xmm1, xmm2/m128 C4 RXB.00010 0.src.0.01 A8 /r

VFMADD213PS ymm0, ymm1, ymm2/m256 C4 RXB.00010 0.src.1.01 A8 /r

VFMADD231PS xmm0, xmm1, xmm2/m128 C4 RXB.00010 0.src.0.01 B8 /r

VFMADD231PS ymm0, ymm1, ymm2/m256 C4 RXB.00010 0.src.1.01 B8 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

550 VFMADDPS, VFMADDnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference VFMADDSD, VFMADDnnnSD 551

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point values and adds the unrounded product to a
third double-precision floating-point value producing a precise result which is then rounded to dou-
ble-precision based on the mode specified by the MXCSR[RC] field. The rounded sum is written to
the destination register. The role of each of the source operands specified by the assembly language
prototypes given below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMADDSD dest, src1, src2/mem64, src3 // dest = (src1* src2/mem64) + src3
VFMADDSD dest, src1, src2, src3/mem64 // dest = (src1* src2) + src3/mem64

and three three-operand forms:

VFMADD132SD scr1, src2, src3/mem64 // src1 = (src1* src3/mem64) + src2
VFMADD213SD scr1, src2, src3/mem64 // src1 = (src2* src1) + src3/mem64
VFMADD231SD scr1, src2, src3/mem64 // src1 = (src2* src3/mem64) + src1

All 64-bit double-precision floating-point register-based operands are held in the lower quadword of
XMM registers. The result is written to the lower quadword of the destination register. For those
instructions that use a memory-based operand, one of the source operands is a 64-bit value read from
memory.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 64-bit memory location and the third

source is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a 64-bit
memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a 64-bit memory location.
The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:64] of the destination and bits [255:128] of the corresponding YMM register are cleared.

VFMADDSD is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMADD132SD, VFMADD213SD, and VFMADD231SD are FMA instructions. Support for FMA
instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
See the CPUID Specification, order# 25481, for more information on the CPUID instruction and
defined feature bits.

VFMADDSD
VFMADD132SD
VFMADD213SD
VFMADD231SD

 Multiply and Add
Scalar Double-Precision Floating-Point

552 VFMADDSD, VFMADDnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

VFMADDPD, VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADDPS,
VFMADD132PS, VFMADD213PS, VFMADD231PS, VFMADDSS, VFMADD132SS,
VFMADD213SS, VFMADD231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDSD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.X.01 6B /r /is4

VFMADDSD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.X.01 6B /r /is4

VFMADD132SD xmm0, xmm1, xmm2/m128 C4 RXB.00010 1.src.X.01 99 /r

VFMADD213SD xmm0, xmm1, xmm2/m128 C4 RXB.00010 1.src.X.01 A9 /r

VFMADD231SD xmm0, xmm1, xmm2/m128 C4 RXB.00010 1.src.X.01 B9 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

Instruction Reference VFMADDSD, VFMADDnnnSD 553

26568—Rev. 3.14—December 2011 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.

F Undefined operation.
Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.

Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

554 VFMADDSS, VFMADDnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point values and adds the unrounded product to a
third single-precision floating-point value producing a precise result which is then rounded to single-
precision based on the mode specified by the MXCSR[RC] field. The rounded sum is written to the
destination register. The role of each of the source operands specified by the assembly language pro-
totypes given below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMADDSS dest, src1, src2/mem32, src3 // dest = (src1* src2/mem32) + src3
VFMADDSS dest, src1, src2, src3/mem32 // dest = (src1* src2) + src3/mem32

and three three-operand forms:

VFMADD132SS scr1, src2, src3/mem32 // src1 = (src1* src3/mem32) + src2
VFMADD213SS scr1, src2, src3/mem32 // src1 = (src2* src1) + src3/mem32
VFMADD231SS scr1, src2, src3/mem32 // src1 = (src2* src3/mem32) + src1

All 32-bit single-precision floating-point register-based operands are held in the lower doubleword of
XMM registers. The result is written to the low doubleword of the destination register. For those
instructions that use a memory-based operand, one of the source operands is a 32-bit value read from
memory.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 32-bit memory location and the third

source is a register.

• When VEX.W = 1, the second source is a a register and the third source is either a register or a 32-
bit memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a 32-bit memory location.
The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:32] of the destination and bits [255:128] of the corresponding YMM register are cleared.

VFMADDSS is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMADD132SS, VFMADD213SS, and VFMADD231SS are FMA instructions. Support for FMA
instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFMADDSS
VFMADD132SS
VFMADD213SS
VFMADD231SS

Multiply and Add
Scalar Single-Precision Floating-Point

Instruction Reference VFMADDSS, VFMADDnnnSS 555

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding

Related Instructions

VFMADDPD, VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADDPS,
VFMADD132PS, VFMADD213PS, VFMADD231PS, VFMADDSD, VFMADD132SD,
VFMADD213SD, VFMADD231SD

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.00011 0.src.X.01 6A /r /is4

VFMADDSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.00011 1.src.X.01 6A /r /is4

VFMADD132SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 99 /r

VFMADD213SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 A9 /r

VFMADD231SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 B9 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

556 VFMADDSS, VFMADDnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.

Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.

F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference VFMADDSUBPD, VFMADDSUBnnnPD 557

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point vectors, adds odd elements of the unrounded
product to odd elements of a third double-precision floating-point vector, and subtracts even elements
of the third floating point vector from even elements of unrounded product. The precise result of each
addition or subtraction is then rounded to double-precision based on the mode specified by the
MXCSR[RC] field and written to the corresponding element of the destination.
The role of each of the source operands specified by the assembly language prototypes given below is
reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMADDSUBPD dest, src1, src2/mem, src3 // destodd = (src1odd* src2odd/memodd) + src3odd
// desteven = (src1even * src2even /memeven) − src3even

VFMADDSUBPD dest, src1, src2, src3/mem // destodd = (src1odd* src2odd) + src3odd/memodd
// desteven = (src1even* src2even) − src3even/memeven

and three three-operand forms:

VFMADDSUB132PD scr1, src2, src3/mem // src1odd = (src1odd * src3odd /memodd) + src2odd
// src1even = (src1even* src3even/memeven) − src2even

VFMADDSUB213PD scr1, src2, src3/mem // src1odd = (src2odd * src1odd) + src3odd /memodd
// src1even = (src2even* src1even) − src3even/memeven

VFMADDSUB231PD scr1, src2, src3/mem // src1odd = (src2odd * src3odd /memodd) + src1odd
// src1even = (src2even* src3even/memeven) − src1even

When VEX.L = 0, the vector size is 128 bits (two double-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (four double-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is a XMM register (L = 0), bits [255:128] of the corresponding YMM register are cleared.

VFMADDSUBPD is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMADDSUB132PD, VFMADDSUB213PD, and VFMADDSUB231PD are FMA instructions.
Support for FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].

VFMADDSUBPD
VFMADDSUB132PD
VFMADDSUB213PD
VFMADDSUB231PD

Multiply with Alternating Add/Subtract
Packed Double-Precision Floating-Point

558 VFMADDSUBPD, VFMADDSUBnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

Instruction Encoding

Related Instructions

VFMSUBADDPD, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD,
VFMADDSUBPS, VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PS, VFMSUB-
ADDPS, VFMSUBADD132PS, VFMSUBADD213PS, VFMSUBADD231PS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 5D /r /is4

VFMADDSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 5D /r /is4

VFMADDSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 5D /r /is4

VFMADDSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 5D /r /is4

VFMADDSUB132PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 96 /r

VFMADDSUB132PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 96 /r

VFMADDSUB213PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 A6 /r

VFMADDSUB213PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 A6 /r

VFMADDSUB231PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 B6 /r

VFMADDSUB231PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 B6 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Instruction Reference VFMADDSUBPD, VFMADDSUBnnnPD 559

26568—Rev. 3.14—December 2011 AMD64 Technology

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.

F Null data segment used to reference memory.
Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.

Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.

F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

560 VFMADDSUBPS, VFMADDSUBnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point vectors, adds odd elements of the unrounded
product to odd elements of a third single-precision floating-point vector, and subtracts even elements
of the third floating point vector from even elements of unrounded product. The precise result of each
addition or subtraction is then rounded to single-precision based on the mode specified by the
MXCSR[RC] field and written to the corresponding element of the destination.
The role of each of the source operands specified by the assembly language prototypes given below is
reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMADDSUBPS dest, src1, src2/mem, src3 // destodd = (src1odd* src2odd/memodd) + src3odd
// desteven = (src1even * src2even /memeven) − src3even

VFMADDSUBPS dest, src1, src2, src3/mem // destodd = (src1odd* src2odd) + src3odd/memodd
// desteven = (src1even* src2even) − src3even/memeven

and three three-operand forms:

VFMADDSUB132PS scr1, src2, src3/mem // src1odd = (src1odd * src3odd /memodd) + src2odd
// src1even = (src1even* src3even/memeven) − src2even

VFMADDSUB213PS scr1, src2, src3/mem // src1odd = (src2odd * src1odd) + src3odd /memodd
// src1even = (src2even* src1even) − src3even/memeven

VFMADDSUB231PS scr1, src2, src3/mem // src1odd = (src2odd * src3odd /memodd) + src1odd
// src1even = (src2even* src3even/memeven) − src1even

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMADDSUBPS is an FMA4 instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].

VFMADDSUBPS
VFMADDSUB132PS
VFMADDSUB213PS
VFMADDSUB231PS

Multiply with Alternating Add/Subtract
Packed Single-Precision Floating-Point

Instruction Reference VFMADDSUBPS, VFMADDSUBnnnPS 561

26568—Rev. 3.14—December 2011 AMD64 Technology

VFMADDSUB132PS, VFMADDSUB213PS, and VFMADDSUB231PS are FMA instructions. Sup-
port for FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

Instruction Encoding

Related Instructions

VFMADDSUBPD, VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFM-
SUBADDPD, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBAD-
DPS, VFMSUBADD132PS, VFMSUBADD213PS, VFMSUBADD231PS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMADDSUBPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 5C /r /is4

VFMADDSUBPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 5C /r /is4

VFMADDSUBPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 5C /r /is4

VFMADDSUBPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 5C /r /is4

VFMADDSUB132PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 96 /r

VFMADDSUB132PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 96 /r

VFMADDSUB213PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 A6 /r

VFMADDSUB213PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 A6 /r

VFMADDSUB231PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 B6 /r

VFMADDSUB231PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 B6 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

562 VFMADDSUBPS, VFMADDSUBnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMSUBADDPD, VFMSUBADDnnnPD 563

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point vectors, adds even elements of the unrounded
product to even elements of a third double-precision floating-point vector, and subtracts odd elements
of the third floating point vector from odd elements of unrounded product. The precise result of each
addition or subtraction is then rounded to double-precision based on the mode specified by the
MXCSR[RC] field and written to the corresponding element of the destination.
The role of each of the source operands specified by the assembly language prototypes given below is
reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMSUBADDPD dest, src1, src2/mem, src3 // destodd = (src1odd* src2odd/memodd) − src3odd
// desteven = (src1even * src2even /memeven) + src3even

VFMSUBADDPD dest, src1, src2, src3/mem // destodd = (src1odd* src2odd) − src3odd/memodd
// desteven = (src1even* src2even) + src3even/memeven

and three three-operand forms:

VFMSUBADD132PD scr1, src2, src3/mem // src1odd = (src1odd * src3odd /memodd) − src2odd
// src1even = (src1even* src3even/memeven) + src2even

VFMSUBADD213PD scr1, src2, src3/mem // src1odd = (src2odd * src1odd) − src3odd /memodd
// src1even = (src2even* src1even) + src3even/memeven

VFMSUBADD231PD scr1, src2, src3/mem // src1odd = (src2odd * src3odd /memodd) − src1odd
// src1even = (src2even* src3even/memeven) + src1even

For VEX.L = 0, vector size is 128 bits and register-based operands are held in XMM registers. For
VEX.L = 1, vector size is 256 bits and register-based operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source operand is either a register
or a memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMSUBADDPD is an FMA4 instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMSUBADD132PD, VFMSUBADD213PD, and VFMSUBADD231PD are FMA instructions.
Support for FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].

VFMSUBADDPD
VFMSUBADD132PD
VFMSUBADD213PD
VFMSUBADD231PD

Multiply with Alternating Subtract/Add
Packed Double-Precision Floating-Point

564 VFMSUBADDPD, VFMSUBADDnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

Instruction Encoding

Related Instructions

VFMADDSUBPD, VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD,
VFMADDSUBPS, VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PS, VFMSUB-
ADDPS, VFMSUBADD132PS, VFMSUBADD213PS, VFMSUBADD231PS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBADDPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 5F /r /is4

VFMSUBADDPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 5F /r /is4

VFMSUBADDPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 5F /r /is4

VFMSUBADDPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 5F /r /is4

VFMSUBADD132PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 97 /r

VFMSUBADD132PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 97 /r

VFMSUBADD213PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 A7 /r

VFMSUBADD213PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 A7 /r

VFMSUBADD231PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 B7 /r

VFMSUBADD231PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 B7 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Instruction Reference VFMSUBADDPD, VFMSUBADDnnnPD 565

26568—Rev. 3.14—December 2011 AMD64 Technology

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.

F Null data segment used to reference memory.
Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.

Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.

F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

566 VFMSUBADDPS, VFMSUBADDnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point vectors, adds even elements of the unrounded
product to even elements of a third single-precision floating-point vector, and subtracts odd elements
of the third floating point vector from odd elements of unrounded product. The precise result of each
addition or subtraction is then rounded to single-precision based on the mode specified by the
MXCSR[RC] field and written to the corresponding element of the destination.
The role of each of the source operands specified by the assembly language prototypes given below is
reflected in the equation in the comment on the right.
There are two four-operand forms:

VFMSUBADDPS dest, src1, src2/mem, src3 // destodd = (src1odd* src2odd/memodd) − src3odd
// desteven = (src1even * src2even /memeven) + src3even

VFMSUBADDPS dest, src1, src2, src3/mem // destodd = (src1odd* src2odd) − src3odd/memodd
// desteven = (src1even* src2even) + src3even/memeven

and three three-operand forms:

VFMSUBADD132PS scr1, src2, src3/mem // src1odd = (src1odd * src3odd /memodd) − src2odd
// src1even = (src1even* src3even/memeven) + src2even

VFMSUBADD213PS scr1, src2, src3/mem // src1odd = (src2odd * src1odd) − src3odd /memodd
// src1even = (src2even* src1even) + src3even/memeven

VFMSUBADD231PS scr1, src2, src3/mem // src1odd = (src2odd * src3odd /memodd) − src1odd
// src1even = (src2even* src3even/memeven) + src1even

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMSUBADDPS is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].

VFMSUBADDPS
VFMSUBADD132PS
VFMSUBADD213PS
VFMSUBADD231PS

Multiply with Alternating Subtract/Add
Packed Single-Precision Floating-Point

Instruction Reference VFMSUBADDPS, VFMSUBADDnnnPS 567

26568—Rev. 3.14—December 2011 AMD64 Technology

VFMSUBADD132PS, VFMSUBADD213PS, and VFMSUBADD231PS are FMA instructions. Sup-
port for FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

Instruction Encoding

Related Instructions

VFMADDSUBPD, VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD,
VFMADDSUBPS, VFMADDSUB132PS, VFMADDSUB213PS, VFMADDSUB231PS, VFMSUB-
ADDPD, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBADDPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 5E /r /is4

VFMSUBADDPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 5E /r /is4

VFMSUBADDPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 5E /r /is4

VFMSUBADDPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 5E /r /is4

VFMSUBADD132PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 97 /r

VFMSUBADD132PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 97 /r

VFMSUBADD213PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 A7 /r

VFMSUBADD213PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 A7 /r

VFMSUBADD231PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 B7 /r

VFMSUBADD231PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 B7 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

568 VFMSUBADDPS, VFMSUBADDnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.
F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.
Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Instruction Reference VFMSUBPD, VFMSUBnnnPD 569

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point vectors and subtracts a third double-precision
floating-point vector from the unrounded product to produce a precise intermediate result. The inter-
mediate result is then rounded to double-precision based on the mode specified by the MXCSR[RC]
field and written to the destination register. The role of each of the source operands specified by the
assembly language prototypes given below is reflected in the vector equation in the comment on the
right.
There are two four-operand forms:

VFMSUBPD dest, src1, src2/mem, src3 // dest = (src1* src2/mem) − src3
VFMSUBPD dest, src1, src2, src3/mem // dest = (src1* src2) − src3/mem

and three three-operand forms:

VFMSUB132PD scr1, src2, src3/mem // src1 = (src1* src3/mem) − src2
VFMSUB213PD scr1, src2, src3/mem // src1 = (src2* src1) − src3/mem
VFMSUB231PD scr1, src2, src3/mem // src1 = (src2* src3/mem) − src1

For VEX.L = 0, vector size is 128 bits and register-based operands are held in XMM registers. For
VEX.L = 1, vector size is 256 bits and register-based operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMSUBPD is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMSUB132PD, VFMSUB213PD, and VFMSUB231PD are FMA instructions. Support for FMA
instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFMSUBPD
VFMSUB132PD
VFMSUB213PD
VFMSUB231PD

Multiply and Subtract
Packed Double-Precision Floating-Point

570 VFMSUBPD, VFMSUBnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

VFMSUBPS, VFMSUB132PS, VFMSUB213PS, VFMSUB231PPS, VFMSUBSD,
VFMSUB132SD, VFMSUB213SD, VFMSUB2P31SD, VFMSUBSS, VFMSUB132SS,
VFMSUB213SS, VFMSUBP231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 6D /r /is4

VFMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 6D /r /is4

VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 6D /r /is4

VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 6D /r /is4

VFMSUB132PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 9A /r

VFMSUB132PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 9A /r

VFMSUB213PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 AA /r

VFMSUB213PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 AA /r

VFMSUB231PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 BA /r

VFMSUB231PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 BA /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

Instruction Reference VFMSUBPD, VFMSUBnnnPD 571

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

572 VFMSUBPS, VFMSUBnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point vectors and subtracts a third single-precision
floating-point vector from the unrounded product to produce a precise intermediate result. The inter-
mediate result is then rounded to single-precision based on the mode specified by the MXCSR[RC]
field and written to the destination register. The role of each of the source operands specified by the
assembly language prototypes given below is reflected in the vector equation in the comment on the
right.
There are two four-operand forms:

VFMSUBPS dest, src1, src2/mem, src3 // dest = (src1* src2/mem) − src3
VFMSUBPS dest, src1, src2, src3/mem // dest = (src1* src2) − src3/mem

and three three-operand forms:

VFMSUB132PS scr1, src2, src3/mem // src1 = (src1* src3/mem) − src2
VFMSUB213PS scr1, src2, src3/mem // src1 = (src2* src1) − src3/mem
VFMSUB231PS scr1, src2, src3/mem // src1 = (src2* src3/mem) − src1

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFMSUBPS is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMSUB132PS, VFMSUB213PS, and VFMSUB231PS are FMA instructions. Support for FMA
instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFMSUBPS
VFMSUB132PS
VFMSUB213PS
VFMSUB231PS

Multiply and Subtract
Packed Single-Precision Floating-Point

Instruction Reference VFMSUBPS, VFMSUBnnnPS 573

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding

Related Instructions

VFMSUBPD, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUBSD,
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUBSS, VFMSUB132SS,
VFMSUB213SS, VFMSUB231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 6C /r /is4

VFMSUBPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 6C /r /is4

VFMSUBPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 6C /r /is4

VFMSUBPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 6C /r /is4

VFMSUB132PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 9A /r

VFMSUB132PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 9A /r

VFMSUB213PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 AA /r

VFMSUB213PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 AA /r

VFMSUB231PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 BA /r

VFMSUB231PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 BA /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

574 VFMSUBPS, VFMSUBnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference VFMSUBSD, VFMSUBnnnSD 575

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point values and subtracts a third double-precision
floating-point value from the unrounded product to produce a precise intermediate result. The inter-
mediate result is then rounded to double-precision based on the mode specified by the MXCSR[RC]
field and written to the destination register. The role of each of the source operands specified by the
assembly language prototypes given below is reflected in the vector equation in the comment on the
right.
There are two four-operand forms:

VFMSUBSD dest, src1, src2/mem, src3 // dest = (src1* src2/mem) − src3
VFMSUBSD dest, src1, src2, src3/mem // dest = (src1* src2) − src3/mem

and three three-operand forms:

VFMSUB132SD scr1, src2, src3/mem // src1 = (src1* src3/mem) − src2
VFMSUB213SD scr1, src2, src3/mem // src1 = (src2* src1) − src3/mem
VFMSUB231SD scr1, src2, src3/mem // src1 = (src2* src3/mem) − src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 64-bit memory location and the third

source is a register.

• When VEX.W = 1, the second source is a register and the third source is a register or 64-bit
memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:64] of the destination and bits [255:128] of the corresponding YMM register are cleared.

VFMSUBSD is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMSUB132SD, VFMSUB213SD, and VFMSUB231SD are FMA instructions. Support for FMA
instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFMSUBSD
VFMSUB132SD
VFMSUB213SD
VFMSUB231SD

Multiply and Subtract
Scalar Double-Precision Floating-Point

576 VFMSUBSD, VFMSUBnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding
.

Related Instructions

VFMSUBPD, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUBPS,
VFMSUB132PS, VFMSUB213PS, VFMSUB231PS, VFMSUBSS, VFMSUB132SS,
VFMSUB213SS, VFMSUB231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.00011 0.src.X.01 6F /r /is4

VFMSUBSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.00011 1.src.X.01 6F /r /is4

VFMSUB132SD xmm1, xmm2, xmm3/mem64 C4 RXB.00010 1.src.X.01 9B /r

VFMSUB213SD xmm1, xmm2, xmm3/mem64 C4 RXB.00010 1.src.X.01 AB /r

VFMSUB231SD xmm1, xmm2, xmm3/mem64 C4 RXB.00010 1.src.X.01 BB /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Instruction Reference VFMSUBSD, VFMSUBnnnSD 577

26568—Rev. 3.14—December 2011 AMD64 Technology

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.

Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.

F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

578 VFMSUBSS, VFMSUBnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point values and subtracts a third single-precision
floating-point value from the unrounded product to produce a precise intermediate result. The inter-
mediate result is then rounded to single-precision based on the mode specified by the MXCSR[RC]
field and written to the destination register. The role of each of the source operands specified by the
assembly language prototypes given below is reflected in the vector equation in the comment on the
right.
There are two four-operand forms:

VFMSUBSS dest, src1, src2/mem, src3 // dest = (src1* src2/mem) − src3
VFMSUBSS dest, src1, src2, src3/mem // dest = (src1* src2) − src3/mem

and three three-operand forms:

VFMSUB132SS scr1, src2, src3/mem // src1 = (src1* src3/mem) − src2
VFMSUB213SS scr1, src2, src3/mem // src1 = (src2* src1) − src3/mem
VFMSUB231SS scr1, src2, src3/mem // src1 = (src2* src3/mem) − src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 32-bit memory location and the third

source is a register.

• When VEX.W = 1, the second source is a register and the third source is a register or 32-bit
memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is an XMM register. When the result is written to the destination XMM register, bits
[127:32] of the XMM register and bits [255:128] of the corresponding YMM register are cleared.

VFMSUBSS is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFMSUB132SS, VFMSUB213SS, and VFMSUB231SS are FMA instructions. Support for FMA
instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFMSUBSS
VFMSUB132SS
VFMSUB213SS
VFMSUB231SS

Multiply and Subtract
Scalar Single-Precision Floating-Point

Instruction Reference VFMSUBSS, VFMSUBnnnSS 579

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding
.

Related Instructions

VFMSUBPD, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUBPS,
VFMSUB132PS, VFMSUB213PS, VFMSUB231PS, VFMSUBSD, VFMSUB132SD,
VFMSUB213SD, VFMSUB231SD

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFMSUBSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.00011 0.src.X.01 6E /r /is4

VFMSUBSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.00011 1.src.X.01 6E /r /is4

VFMSUB132SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 9B /r

VFMSUB213SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 AB /r

VFMSUB231SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 BB /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

580 VFMSUBSS, VFMSUBnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.

Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.

F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference FNMADDPD, FNMADDnnnPD 581

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point vectors, negates the unrounded product, and
adds it to a third double-precision floating-point vector. The precise result is then rounded to double-
precision based on the mode specified by the MXCSR[RC] field and written to the destination regis-
ter. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFNMADDPD dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) + src3
VFNMADDPD dest, src1, src2, src3/mem // dest = −(src1* src2) + src3/mem

and three three-operand forms:

VFNMADD132PD scr1, src2, src3/mem // src1 = −(src1* src3/mem) + src2
VFNMADD213PD scr1, src2, src3/mem // src1 = −(src2* src1) + src3/mem
VFNMADD231PD scr1, src2, src3/mem // src1 = −(src2* src3/mem) + src1

When VEX.L = 0, the vector size is 128 bits (two double-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (four double-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFNMADDPD is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFNMADD132PD, VFNMADD213PD, and VFNMADD231PD are FMA instructions. Support for
FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFNMADDPD
VFNMADD132PD
VFNMADD213PD
VFNMADD231PD

Negative Multiply and Add
Packed Double-Precision Floating-Point

582 FNMADDPD, FNMADDnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

VFNMADDPS, VFNMADD132PS, VFNMADD213PS, VFNMADD231PS, VFNMADDSD,
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADDSS, VFNMADD132SS,
VFNMADD213SS, VFNMADD231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMADDPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 79 /r /is4

VFNMADDPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 79 /r /is4

VFNMADDPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 79 /r /is4

VFNMADDPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 79 /r /is4

VFNMADD132PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 9C /r

VFNMADD132PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 9C /r

VFNMADD213PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 AC /r

VFNMADD213PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 AC /r

VFNMADD231PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 BC /r

VFNMADD231PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 BC /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

Instruction Reference FNMADDPD, FNMADDnnnPD 583

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

584 FNMADDPS, FNMADDnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point vectors, negates the unrounded product, and
adds it to a third single-precision floating-point vector. The precise result is then rounded to single-
precision based on the mode specified by the MXCSR[RC] field and written to the destination regis-
ter. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFNMADDPS dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) + src3
VFNMADDPS dest, src1, src2, src3/mem // dest = −(src1* src2) + src3/mem

and three three-operand forms:

VFNMADD132PS scr1, src2, src3/mem // src1 = −(src1* src3/mem) + src2
VFNMADD213PS scr1, src2, src3/mem // src1 = −(src2* src1) + src3/mem
VFNMADD231PS scr1, src2, src3/mem // src1 = −(src2* src3/mem) + src1

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFNMADDPS is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFNMADD132PS, VFNMADD213PS, and VFNMADD231PS are FMA instructions. Support for
FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFNMADDPS
VFNMADD132PS
VFNMADD213PS
VFNMADD231PS

Negative Multiply and Add
Packed Single-Precision Floating-Point

Instruction Reference FNMADDPS, FNMADDnnnPS 585

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding

Related Instructions

VFNMADDPD, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADDSD,
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADDSS, VFNMADD132SS,
VFNMADD213SS, VFNMADD231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMADDPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 78 /r /is4

VFNMADDPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 78 /r /is4

VFNMADDPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 78 /r /is4

VFNMADDPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 78 /r /is4

VFNMADD132PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 9C / r

VFNMADD132PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 9C / r

VFNMADD213PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 AC / r

VFNMADD213PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 AC / r

VFNMADD231PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 BC / r

VFNMADD231PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 BC / r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

586 FNMADDPS, FNMADDnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference VFNMADDSD, VFNMADDnnnSD 587

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point values, negates the unrounded product, and
adds it to a third double-precision floating-point value. The precise result is then rounded to double-
precision based on the mode specified by the MXCSR[RC] field and written to the destination regis-
ter. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFNMADDSD dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) + src3
VFNMADDSD dest, src1, src2, src3/mem // dest = −(src1* src2) + src3/mem

and three three-operand forms:

VFNMADD132SD scr1, src2, src3/mem // src1 = −(src1* src3/mem) + src2
VFNMADD213SD scr1, src2, src3/mem // src1 = −(src2* src1) + src3/mem
VFNMADD231SD scr1, src2, src3/mem // src1 = −(src2* src3/mem) + src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 64-bit memory location and the third

source is a register.

• When VEX.W = 1, the second source is a register and the third source is a register or 64-bit
memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a 64-bit memory location.
The destination is an XMM register. When the result is written to the destination, bits [127:64] of the
XMM register and bits [255:128] of the corresponding YMM register are cleared.

VFNMADDSD is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFNMADD132SD, VFNMADD213SD, and VFNMADD231SD are FMA instructions. Support for
FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFNMADDSD
VFNMADD132SD
VFNMADD213SD
VFNMADD231SD

Negative Multiply and Add
Scalar Double-Precision Floating-Point

588 VFNMADDSD, VFNMADDnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

VFNMADDPD, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADDPS,
VFNMADD132PS, VFNMADD213PS, VFNMADD231PS, VFNMADDSS, VFNMADD132SS,
VFNMADD213SS, VFNMADD231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMADDSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.00011 0.src.X.01 7B /r /is4

VFNMADDSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.00011 1.src.X.01 7B /r /is4

VFNMADD132SD xmm1, xmm2, xmm3/mem64 C4 RXB.00010 1.src.X.01 9D /r

VFNMADD213SD xmm1, xmm2, xmm3/mem64 C4 RXB.00010 1.src.X.01 AD /r

VFNMADD231SD xmm1, xmm2, xmm3/mem64 C4 RXB.00010 1.src.X.01 BD /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Instruction Reference VFNMADDSD, VFNMADDnnnSD 589

26568—Rev. 3.14—December 2011 AMD64 Technology

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.

Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.

F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

590 VFNMADDSS, VFNMADDnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point values, negates the unrounded product, and
adds it to a third single-precision floating-point value. The precise result is then rounded to single-
precision based on the mode specified by the MXCSR[RC] field and written to the destination regis-
ter. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFNMADDSS dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) + src3
VFNMADDSS dest, src1, src2, src3/mem // dest = −(src1* src2) + src3/mem

and three three-operand forms:

VFNMADD132SS scr1, src2, src3/mem // src1 = −(src1* src3/mem) + src2
VFNMADD213SS scr1, src2, src3/mem // src1 = −(src2* src1) + src3/mem
VFNMADD231SS scr1, src2, src3/mem // src1 = −(src2* src3/mem) + src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or 32-bit memory location and the third

source is a register.

• When VEX.W = 1, the second source is a register and the third source is a register or 32-bit
memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a 32-bit memory location.
The destination is an XMM register. When the result is written to the destination, bits [127:32] of the
XMM register and bits [255:128] of the corresponding YMM register are cleared.

VFNMADDSS is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFNMADD132SS, VFNMADD213SS, and VFNMADD231SS are FMA instructions. Support for
FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFNMADDSS
VFNMADD132SS
VFNMADD213SS
VFNMADD231SS

Negative Multiply and Add
Scalar Single-Precision Floating-Point

Instruction Reference VFNMADDSS, VFNMADDnnnSS 591

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding

Related Instructions

VFNMADDPD, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADDPS,
VFNMADD132PS, VFNMADD213PS, VFNMADD231PS, VFNMADDSS, VFNMADD132SS,
VFNMADD213SS, VFNMADD231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMADDSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.00011 0.src.X.01 7A /r /is4

VFNMADDSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.00011 1.src.X.01 7A /r /is4

VFNMADD132SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 9D /r

VFNMADD213SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 AD /r

VFNMADD231SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 BD /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

592 VFNMADDSS, VFNMADDnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.

Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.

F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference VFNMSUBPD, VFNMSUBnnnPD 593

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point vectors, negates the unrounded product, and
subtracts a third double-precision floating-point vector from it. The precise result is then rounded to
double-precision based on the mode specified by the MXCSR[RC] field and written to the destination
register. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFNMSUBPD dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) − src3
VFNMSUBPD dest, src1, src2, src3/mem // dest = −(src1* src2) − src3/mem

and three three-operand forms:

VFNMSUB132PD scr1, src2, src3/mem // src1 = −(src1* src3/mem) − src2
VFNMSUB213PD scr1, src2, src3/mem // src1 = −(src2* src1) − src3/mem
VFNMSUB231PD scr1, src2, src3/mem // src1 = −(src2* src3/mem) − src1

When VEX.L = 0, the vector size is 128 bits (two double-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (four double-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFNMSUBPD is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFNMSUB132PD, VFNMSUB213PD, and VFNMSUB231PD are FMA instructions. Support for
FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFNMSUBPD
VFNMSUB132PD
VFNMSUB213PD
VFNMSUB231PD

Negative Multiply and Subtract
Packed Double-Precision Floating-Point

594 VFNMSUBPD, VFNMSUBnnnPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

VFNMSUBPS, VFNMSUB132PS, VFNMSUB213PS, VFNMSUB231PS, VFNMSUBSD,
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUBSS, VFNMSUB132SS,
VFNMSUB213SS, VFNMSUB231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 7D /r /is4

VFNMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 7D /r /is4

VFNMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 7D /r /is4

VFNMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 7D /r /is4

VFNMSUB132PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 9E /r

VFNMSUB132PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 9E /r

VFNMSUB213PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 AE /r

VFNMSUB213PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 AE /r

VFNMSUB231PD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 1.src.0.01 BE /r

VFNMSUB231PD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 1.src.1.01 BE /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

Instruction Reference VFNMSUBPD, VFNMSUBnnnPD 595

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

596 VFNMSUBPS, VFNMSUBnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point vectors, negates the unrounded product, and
subtracts a third single-precision floating-point vector from it. The precise result is then rounded to
single-precision based on the mode specified by the MXCSR[RC] field and written to the destination
register. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the vector equation in the comment on the right.
There are two four-operand forms:

VFNMADDPS dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) − src3
VFNMADDPS dest, src1, src2, src3/mem // dest = −(src1* src2) − src3/mem

and three three-operand forms:

VFNMADD132PS scr1, src2, src3/mem // src1 = −(src1* src3/mem) − src2
VFNMADD213PS scr1, src2, src3/mem // src1 = −(src2* src1) − src3/mem
VFNMADD231PS scr1, src2, src3/mem // src1 = −(src2* src3/mem) − src1

When VEX.L = 0, the vector size is 128 bits (four single-precision elements per vector) and register-
based source operands are held in XMM registers.
When VEX.L = 1, the vector size is 256 bits (eight single-precision elements per vector) and register-
based source operands are held in YMM registers.
For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a memory location and the third source

is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a
memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a memory location.
The destination is either an XMM register or a YMM register, as determined by VEX.L. When the
destination is an XMM register (L = 0), bits [255:128] of the corresponding YMM register are
cleared.

VFNMSUBPS is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFNMSUB132PS, VFNMSUB213PS, and VFNMSUB231PS are FMA instructions. Support for
FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFNMSUBPS
VFNMSUB132PS
VFNMSUB213PS
VFNMSUB231PS

Negative Multiply and Subtract
Packed Single-Precision Floating-Point

Instruction Reference VFNMSUBPS, VFNMSUBnnnPS 597

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding

Related Instructions

VFNMSUBPD, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUBSD,
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUBSS, VFNMSUB132SS,
VFNMSUB213SS, VFNMSUB231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMSUBPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.src.0.01 7C /r /is4

VFNMSUBPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 0.src.1.01 7C /r /is4

VFNMSUBPS xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.00011 1.src.0.01 7C /r /is4

VFNMSUBPS ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.00011 1.src.1.01 7C /r /is4

VFNMSUB132PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 9E /r

VFNMSUB132PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 9E /r

VFNMSUB213PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 AE /r

VFNMSUB213PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 AE /r

VFNMSUB231PS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 BE /r

VFNMSUB231PS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 BE /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

598 VFNMSUBPS, VFNMSUBnnnPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Non-aligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.

Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference VFNMSUBSD, VFNMSUBnnnSD 599

26568—Rev. 3.14—December 2011 AMD64 Technology

Multiplies together two double-precision floating-point values, negates the unrounded product, and
subtracts a third double-precision floating-point value from it. The precise result is then rounded to
double-precision based on the mode specified by the MXCSR[RC] field and written to the destination
register. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFNMSUBSD dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) − src3
VFNMSUBSD dest, src1, src2, src3/mem // dest = −(src1* src2) − src3/mem

and three three-operand forms:

VFNMSUB132SD scr1, src2, src3/mem // src1 = −(src1* src3/mem) − src2
VFNMSUB213SD scr1, src2, src3/mem // src1 = −(src2* src1) − src3/mem
VFNMSUB231SD scr1, src2, src3/mem // src1 = −(src2* src3/mem) − src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 64-bit memory location and the third

source is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a 64-bit
memory location.

For the three-operand forms, VEX.W is 1. The first and second operands are registers and the third
operand is either a register or a 64-bit memory location.
The destination is an XMM register. Bits [127:64] of the destination XMM register and bits [255:128]
of the corresponding YMM register are cleared.

VFNMSUBSD is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFNMSUB132SD, VFNMSUB213SD, and VFNMSUB231SD are FMA instructions. Support for
FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFNMSUBSD
VFNMSUB132SD
VFNMSUB213SD
VFNMSUB231SD

Negative Multiply and Subtract
Scalar Double-Precision Floating-Point

600 VFNMSUBSD, VFNMSUBnnnSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Instruction Encoding

Related Instructions

VFNMSUBPD, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUBPS,
VFNMSUB132PS, VFNMSUB213PS, VFNMSUB231PS, VFNMSUBSS, VFNMSUB132SS,
VFNMSUB213SS, VFNMSUB231SS

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMSUBSD xmm1, xmm2, xmm3/mem64, xmm4 C4 RXB.00011 0.src.X.01 7F /r /is4

VFNMSUBSD xmm1, xmm2, xmm3, xmm4/mem64 C4 RXB.00011 1.src.X.01 7F /r /is4

VFNMSUB132SD xmm1, xmm2, xmm3/mem64 C4 RXB.00010 1.src.X.01 9F /r

VFNMSUB213SD xmm1, xmm2, xmm3/mem64 C4 RXB.00010 1.src.X.01 AF /r

VFNMSUB231SD xmm1, xmm2, xmm3/mem64 C4 RXB.00010 1.src.X.01 BF /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Instruction Reference VFNMSUBSD, VFNMSUBnnnSD 601

26568—Rev. 3.14—December 2011 AMD64 Technology

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.

Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.

F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

602 VFNMSUBSS, VFNMSUBnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies together two single-precision floating-point values, negates the unrounded product, and
subtracts a third single-precision floating-point value from it. The precise result is then rounded to
single-precision based on the mode specified by the MXCSR[RC] field and written to the destination
register. The role of each of the source operands specified by the assembly language prototypes given
below is reflected in the equation in the comment on the right.
There are two four-operand forms:

VFNMSUBSS dest, src1, src2/mem, src3 // dest = −(src1* src2/mem) − src3
VFNMSUBSS dest, src1, src2, src3/mem // dest = −(src1* src2) − src3/mem

and three three-operand forms:

VFNMSUB132SS scr1, src2, src3/mem // src1 = −(src1* src3/mem) − src2
VFNMSUB213SS scr1, src2, src3/mem // src1 = −(src2* src1) − src3/mem
VFNMSUB231SS scr1, src2, src3/mem // src1 = −(src2* src3/mem) − src1

For the four-operand forms, VEX.W determines operand configuration.
• When VEX.W = 0, the second source is either a register or a 32-bit memory location and the third

source is a register.

• When VEX.W = 1, the second source is a register and the third source is either a register or a 32-bit
memory location.

For the three-operand forms, VEX.W is 0. The first and second operands are registers and the third
operand is either a register or a 32-bit memory location.
The destination is an XMM register. Bits[127:32] of the destination XMM register and bits [255:128]
of the corresponding YMM register are cleared.

VFNMSUBSS is an FMA4 instruction. Support for FMA4 instructions is indicated by CPUID
Fn8000_00001_ECX[FMA4].
VFNMSUB132SS, VFNMSUB213SS, and VFNMSUB231SS are FMA instructions. Support for
FMA instructions is indicated by CPUID Fn8000_00001_ECX[FMA].
For more information on the CPUID instruction and defined processor feature bits, see the CPUID
Specification, order# 25481.

VFNMSUBSS
VFNMSUB132SS
VFNMSUB213SS
VFNMSUB231SS

Negative Multiply and Subtract
Scalar Single-Precision Floating-Point

Instruction Reference VFNMSUBSS, VFNMSUBnnnSS 603

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding

Related Instructions

VFNMSUBPD, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUBPS,
VFNMSUB132PS, VFNMSUB213PS, VFNMSUB231PS, VFNMSUBSD, VFNMSUB132SD,
VFNMSUB213SD, VFNMSUB231SD

rFLAGS Affected

None

MXCSR Flags Affected

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VFNMSUBSS xmm1, xmm2, xmm3/mem32, xmm4 C4 RXB.00011 0.src.X.01 7E /r /is4

VFNMSUBSS xmm1, xmm2, xmm3, xmm4/mem32 C4 RXB.00011 1.src.X.01 7E /r /is4

VFNMSUB132SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 9F /r

VFNMSUB213SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 AF /r

VFNMSUB231SS xmm1, xmm2, xmm3/mem32 C4 RXB.00010 0.src.X.01 BF /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Non-aligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

604 VFNMSUBSS, VFNMSUBnnnSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Invalid operation, IE
F A source operand was an SNaN value.
F Undefined operation.

Denormalized operand, DE F A source operand was a denormal value.

Overflow, OE F Rounded result too large to fit into the format of the destination operand.
Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.

F — FMA4 exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference VFRCZPD 605

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts the fractional portion of each double-precision floating-point value of either a source register
or a memory location and writes the resulting values to the corresponding elements of the destination.
The fractional results are precise.
• When XOP.L = 0, the source is either an XMM register or a 128-bit memory location.

• When XOP.L = 1, the source is a YMM register or 256-bit memory location.

When the destination is an XMM register, bits [255:128] of the corresponding YMM register are
cleared.

Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:

• When the operand is a zero.

• When the operand is a normal integer.

• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.

• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.

In the first three cases, when MXCSR.RC = 01b (round toward − ∞) the sign of the zero result is neg-
ative, and is otherwise positive.
In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS, VFRCZPS, VFRCZSS, VFRC-
ZSD

rFLAGS Affected

None

VFRCZPD Extract Fraction
Packed Double-Precision Floating-Point

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VFRCZPD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 81 /r

VFRCZPD ymm1, ymm2/mem256 8F RXB.01001 0.1111.1.00 81 /r

606 VFRCZPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.

X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.

Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

Instruction Reference VFRCZPS 607

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts the fractional portion of each single-precision floating-point value of either a source register
or a memory location and writes the resulting values to the corresponding elements of the destination.
The fractional results are exact.
• When XOP.L = 0, the source is either an XMM register or a 128-bit memory location.

• When XOP.L = 1, the source is a YMM register or 256-bit memory location.

When the destination is an XMM register, bits [255:128] of the corresponding YMM register are
cleared.

Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:

• When the operand is a zero.

• When the operand is a normal integer.

• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.

• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.

In the first three cases, when MXCSR.RC = 01b (round toward − ∞) the sign of the zero result is neg-
ative, and is otherwise positive.
In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS, VFRCZPD, VFRCZSS, VFRC-
ZSD

rFLAGS Affected

None

VFRCZPS Extract Fraction
Packed Single-Precision Floating-Point

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VFRCZPS xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 80 /r

VFRCZPS ymm1, ymm2/mem256 8F RXB.01001 0.1111.1.00 80 /r

608 VFRCZPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.

X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.

Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

Instruction Reference VFRCZSD 609

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts the fractional portion of the double-precision floating-point value of either the low-order
quadword of an XMM register or a 64-bit memory location and writes the result to the low-order
quadword of the destination XMM register. The fractional results are precise.
When the result is written to the destination XMM register, bits [127:64] of the destination and bits
[255:128] of the corresponding YMM register are cleared.

Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:

• When the operand is a zero.

• When the operand is a normal integer.

• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.

• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.

In the first three cases, when MXCSR.RC = 01b (round toward − ∞) the sign of the zero result is neg-
ative, and is otherwise positive.
In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ROUNDPD, (V)ROUNDPS, (V)ROUNDSD, (V)ROUNDSS, VFRCZPS, VFRCZPD, VFRC-
ZSS

rFLAGS Affected

None

MXCSR Flags Affected

VFRCZSD Extract Fraction
Scalar Double-Precision Floating-Point

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VFRCZSD xmm1, xmm2/mem64 8F RXB.01001 0.1111.0.00 83 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

610 VFRCZSD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.

X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.

X Undefined operation.
Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.

Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

Instruction Reference VFRCZSS 611

26568—Rev. 3.14—December 2011 AMD64 Technology

Extracts the fractional portion of the single-precision floating-point value of the low-order double-
word of an XMM register or 32-bit memory location and writes the result in the low-order double-
word of the destination XMM register. The fractional results are precise.
When the result is written to the destination XMM register, bits [127:32] of the destination and bits
[255:128] of the corresponding YMM register are cleared.

Exception conditions are the same as for other arithmetic instructions, except with respect to the sign
of a zero result. A zero is returned in the following cases:

• When the operand is a zero.

• When the operand is a normal integer.

• When the operand is a denormal value and is coerced to zero by MXCSR.DAZ.

• When the operand is a denormal value that is not coerced to zero by MXCSR.DAZ.

In the first three cases, when MXCSR.RC = 01b (round toward − ∞) the sign of the zero result is neg-
ative, and is otherwise positive.
In the fourth case, the operand is its own fractional part, which results in underflow, and the result is
forced to zero by MXCSR.FZ; the result has the same sign as the operand.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

ROUNDPD, ROUNDPS, ROUNDSD, ROUNDSS, VFRCZPS, VFRCZPD, VFRCZSD

rFLAGS Affected

None

MXCSR Flags Affected

VFRCZSS Extract Fraction
Scalar Single-Precision Floating Point

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VFRCZSS xmm1, xmm2/mem32 8F RXB.01001 0.1111.0.00 82 /r

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

612 VFRCZSS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.vvvv ! = 1111b.

X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.

X Undefined operation.
Denormalized operand, DE X A source operand was a denormal value.
Underflow, UE X Rounded result too small to fit into the format of the destination operand.

Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

Instruction Reference VINSERTF128 613

26568—Rev. 3.14—December 2011 AMD64 Technology

Combines 128 bits of data from a YMM register with 128-bit packed-value data from an XMM regis-
ter or a 128-bit memory location, as specified by an immediate byte operand, and writes the combined
data to the destination.
Only bit [0] of the immediate operand is used. Operation is a follows.
• When imm8[0] = 0, copy bits [255:128] of the first source to bits [255:128] of the destination and

copy bits [127:0] of the second source to bits [127:0] of the destination.

• When imm8[0] = 1, copy bits [127:0] of the first source to bits [127:0] of the destination and copy
bits [127:0] of the second source to bits [255:128] of the destination.

This extended-form instruction has 256-bit encoding.
The first source operand is a YMM register. The second source operand is either an XMM register or
a 128-bit memory location.The destination is a YMM register. There is a third immediate byte oper-
and.

This is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VBROADCASTF128, VEXTRACTF128

rFLAGS Affected

None

MXCSR Flags Affected

None

VINSERTF128 Insert Packed Values
128-bit

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VINSERTF128 ymm1, ymm2, xmm3/mem128, imm8 C4 RXB.00011 0.src.1.01 18 /r ib

614 VINSERTF128 Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A Lock prefix (F0h) preceding opcode.
Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VMASKMOVPD 615

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves packed double-precision data elements from a source element to a destination element, as
specified by mask bits in a source operand. There are load and store versions of the instruction.
For loads, the data elements are in a source memory location; for stores the data elements are in a
source register. The mask bits are the msb of the corresponding data element of a source register.
• For loads, when a mask bit = 1, the corresponding data element is copied from the source to the

same element of the destination; when a mask bit = 0, the corresponding element of the destination
is cleared.

• For stores, when a mask bit = 1, the corresponding data element is copied from the source to the
same element of the destination; when a mask bit = 0, the corresponding element of the destination
is not affected.

XMM Encoding

There are load and store encodings.
• For loads, there are two 64-bit source data elements in a 128-bit memory location, the mask

operand is an XMM register, and the destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• For stores, there are two 64-bit source data elements in an XMM register, the mask operand is
another XMM register, and the destination is a 128-bit memory location.

YMM Encoding

There are load and store encodings.
• For loads, there are four 64-bit source data elements in a 256-bit memory location, the mask

operand is a YMM register, and the destination is a YMM register.

• For stores, there are four 64-bit source data elements in a YMM register, the mask operand is
another YMM register, and the destination is a 128-bit memory location.

This is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

VMASKMOVPD Masked Move
Packed Double-Precision

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

Loads:

VMASKMOVPD xmm1, xmm2, mem128 C4 RXB.00010 0.src.0.01 2D /r

VMASKMOVPD ymm1, ymm2, mem256 C4 RXB.00010 0.src.1.01 2D /r

Stores:

VMASKMOVPD mem128, xmm1, xmm2 C4 RXB.00010 0.src.0.01 2F /r

VMASKMOVPD mem256, ymm1, ymm2 C4 RXB.00010 0.src.1.01 2F /r

616 VMASKMOVPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

VMASKMOVPS

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

S S X Write to a read-only data segment.
Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VMASKMOVPS 617

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves packed single-precision data elements from a source element to a destination element, as spec-
ified by mask bits in a source operand. There are load and store versions of the instruction.
For loads, the data elements are in a source memory location; for stores the data elements are in a
source register. The mask bits are the msb of the corresponding data element of a source register.
• For loads, when a mask bit = 1, the corresponding data element is copied from the source to the

same element of the destination; when a mask bit = 0, the corresponding element of the destination
is cleared.

• For stores, when a mask bit = 1, the corresponding data element is copied from the source to the
same element of the destination; when a mask bit = 0, the corresponding element of the destination
is not affected.

XMM Encoding

There are load and store encodings.
• For loads, there are four 32-bit source data elements in a 128-bit memory location, the mask

operand is an XMM register, and the destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

• For stores, there are four 32-bit source data elements in an XMM register, the mask operand is
another XMM register, and the destination is a 128-bit memory location.

YMM Encoding

There are load and store encodings.
• For loads, there are eight 32-bit source data elements in a 256-bit memory location, the mask

operand is a YMM register, and the destination is a YMM register.

• For stores, there are eight 32-bit source data elements in a YMM register, the mask operand is
another YMM register, and the destination is a 128-bit memory location.

This is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

VMASKMOVPS Masked Move
Packed Single-Precision

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

Loads:

VMASKMOVPS xmm1, xmm2, mem128 C4 RXB.00010 0.src.0.01 2C /r

VMASKMOVPS ymm1, ymm2, mem256 C4 RXB.00010 0.src.1.01 2C /r

Stores:

VMASKMOVPS mem128, xmm1, xmm2 C4 RXB.00010 0.src.0.01 2E /r

VMASKMOVPS mem256, ymm1, ymm2 C4 RXB.00010 0.src.1.01 2E /r

618 VMASKMOVPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Related Instructions

VMASKMOVPS

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

S S X Write to a read-only data segment.
Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VPCMOV 619

26568—Rev. 3.14—December 2011 AMD64 Technology

Moves bits of either the first source or the second source to the corresponding positions in the destina-
tion, depending on the value of the corresponding bit of a third source.
When a bit of the third source = 1, the corresponding bit of the first source is moved to the destina-
tion; when a bit of the third source = 0, the corresponding bit of the second source is moved to the
destination.
This instruction directly implements the C-language ternary “?” operation on each source bit.
Arbitrary bit-granular predicates can be constructed by any number of methods, or loaded as con-
stants from memory. This instruction may use the results of any SSE instructions as the predicate in
the selector. VPCMPEQB (VPCMPGTB), VPCMPEQW (VPCMPGTW), VPCMPEQD (VPCMP-
GTD) and VPCMPEQQ (VPCMPGTQ) compare bytes, words, doublewords, quadwords and inte-
gers, respectively, and set the predicate in the destination to masks of 1s and 0s accordingly.
VCMPPS (VCMPSS) and VCMPPD (VCMPSD) compare word and doubleword floating-point
source values, respectively, and provide the predicate for the floating-point instructions.
There are four operands: VPCMOV dest, src1, src2, src3.
The first source (src1) is an XMM or YMM register specified by XOP.vvvv.
XOP.W and bits [7:4] of an immediate byte (imm8) configure src2 and src3:
• When XOP.W = 0, src2 is either a register or a memory location specified by ModRM.r/m and src3

is a register specified by imm8[7:4].

• When XOP.W = 1, src2 is a register specified by imm8[7:4] and src3 is either a register or a
memory location specified by ModRM.r/m.

The destination (dest) is either an XMM or a YMM register, as determined by XOP.L. When the des-
tination is an XMM register, bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPCOMUB, VPCOMUD, VPCOMUQ, VPCOMUW, VCMPPD, VCMPPS

rFLAGS Affected

None

VPCMOV Vector Conditional Move

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCMOV xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 A2 /r ib

VPCMOV ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.01000 0.src.1.00 A2 /r ib

VPCMOV xmm1, xmm2, xmm3, xmm4/mem128 8F RXB.01000 1.src.0.00 A2 /r ib

VPCMOV ymm1, ymm2, ymm3, ymm4/mem256 8F RXB.01000 1.src.1.00 A2 /r ib

620 VPCMOV Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMB 621

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares corresponding packed signed bytes in the first and second sources and writes the result of
each comparison in the corresponding byte of the destination. The result of each comparison is an 8-
bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMB dest, src1, src2, imm8
The destination (dest) is an XMM registers specified by ModRM.reg. When the comparison results
are written to the destination XMM register, bits [255:128] of the corresponding YMM register are
cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of the immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPCOMB Compare Vector
Signed Bytes

imm8[2:0] Comparison Mnemonic

000 Less Than VPCOMLTB

001 Less Than or Equal VPCOMLEB

010 Greater Than VPCOMGTB

011 Greater Than or Equal VPCOMGEB

100 Equal VPCOMEQB

101 Not Equal VPCOMNEQB

110 False VPCOMFALSEB

111 True VPCOMTRUEB

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMB xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 CC /r ib

622 VPCOMB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMD 623

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares corresponding packed signed doublewords in the first and second sources and writes the
result of each comparison to the corresponding doubleword of the destination. The result of each
comparison is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMD dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results of the compar-
isons are written to the destination XMM register, bits [255:128] of the corresponding YMM register
are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMQ

rFLAGS Affected

None

VPCOMD Compare Vector
Signed Doublewords

imm8[2:0] Comparison Mnemonic

000 Less Than VPCOMLTD

001 Less Than or Equal VPCOMLED

010 Greater Than VPCOMGTD

011 Greater Than or Equal VPCOMGED

100 Equal VPCOMEQD

101 Not Equal VPCOMNEQD

110 False VPCOMFALSED

111 True VPCOMTRUED

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMD xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 CE /r ib

624 VPCOMD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMQ 625

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares corresponding packed signed quadwords in the first and second sources and writes the
result of each comparison to the corresponding quadword of the destination. The result of each com-
parison is a 64-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMQ dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the result is written to the
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPCOMQ Compare Vector
Signed Quadwords

imm8[2:0] Comparison Mnemonic

000 Less Than VPCOMLTQ

001 Less Than or Equal VPCOMLEQ

010 Greater Than VPCOMGTQ

011 Greater Than or Equal VPCOMGEQ

100 Equal VPCOMEQQ

101 Not Equal VPCOMNEQQ

110 False VPCOMFALSEQ

111 True VPCOMTRUEQ

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMQ xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 CF /r ib

626 VPCOMQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMUB 627

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares corresponding packed unsigned bytes in the first and second sources and writes the result
of each comparison to the corresponding byte of the destination. The result of each comparison is an
8-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMUB dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the result is written to the
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPCOMUB Compare Vector
Unsigned Bytes

imm8[2:0] Comparison Mnemonic

000 Less Than VPCOMLTUB

001 Less Than or Equal VPCOMLEUB

010 Greater Than VPCOMGTUB

011 Greater Than or Equal VPCOMGEUB

100 Equal VPCOMEQUB

101 Not Equal VPCOMNEQUB

110 False VPCOMFALSEUB

111 True VPCOMTRUEUB

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMUB xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 6C /r ib

628 VPCOMUB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMUD 629

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares corresponding packed unsigned doublewords in the first and second sources and writes the
result of each comparison to the corresponding doubleword of the destination. The result of each
comparison is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMUD dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPCOMUB, VPCOMUW, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPCOMUD Compare Vector
Unsigned Doublewords

imm8[2:0] Comparison Mnemonic

000 Less Than VPCOMLTUD

001 Less Than or Equal VPCOMLEUD

010 Greater Than VPCOMGTUD

011 Greater Than or Equal VPCOMGEUD

100 Equal VPCOMEQUD

101 Not Equal VPCOMNEQUD

110 False VPCOMFALSEUD

111 True VPCOMTRUEUD

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMUD xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 6E /r ib

630 VPCOMUD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMUQ 631

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares corresponding packed unsigned quadwords in the first and second sources and writes the
result of each comparison to the corresponding quadword of the destination. The result of each com-
parison is a 64-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMUQ dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPCOMUB, VPCOMUW, VPCOMUD, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPCOMUQ Compare Vector
Unsigned Quadwords

imm8[2:0] Comparison Mnemonic

000 Less Than VPCOMLTUQ

001 Less Than or Equal VPCOMLEUQ

010 Greater Than VPCOMGTUQ

011 Greater Than or Equal VPCOMGEUQ

100 Equal VPCOMEQUQ

101 Not Equal VPCOMNEQUQ

110 False VPCOMFALSEUQ

111 True VPCOMTRUEUQ

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMUQ xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 6F /r ib

632 VPCOMUQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMUW 633

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares corresponding packed unsigned words in the first and second sources and writes the result
of each comparison to the corresponding word of the destination. The result of each comparison is a
16-bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMUW dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPCOMUB, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMW, VPCOMD, VPCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPCOMUW Compare Vector
Unsigned Words

imm8[2:0] Comparison Mnemonic

000 Less Than VPCOMLTUW

001 Less Than or Equal VPCOMLEUW

010 Greater Than VPCOMGTUW

011 Greater Than or Equal VPCOMGEUW

100 Equal VPCOMEQUW

101 Not Equal VPCOMNEQUW

110 False VPCOMFALSEUW

111 True VPCOMTRUEUW

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMUW xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 6D /r ib

634 VPCOMUW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPCOMW 635

26568—Rev. 3.14—December 2011 AMD64 Technology

Compares corresponding packed signed words in the first and second sources and writes the result of
each comparison in the corresponding word of the destination. The result of each comparison is a 16-
bit value of all 1s (TRUE) or all 0s (FALSE).
There are four operands: VPCOMW dest, src1, src2, imm8
The destination (dest) is an XMM register specified by ModRM.reg. When the results are written to
the destination XMM register, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field and the second source
(src2) is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field.
The comparison type is specified by bits [2:0] of an immediate-byte operand (imm8). Each type has
an alias mnemonic to facilitate coding.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPCOMUB, VPCOMUW, VPCOMUD, VPCOMUQ, VPCOMB, VPCOMD, VPCOMQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPCOMW Compare Vector
Signed Words

imm8[2:0] Comparison Mnemonic

000 Less Than VPCOMLTW

001 Less Than or Equal VPCOMLEW

010 Greater Than VPCOMGTW

011 Greater Than or Equal VPCOMGEW

100 Equal VPCOMEQW

101 Not Equal VPCOMNEQW

110 False VPCOMFALSEW

111 True VPCOMTRUEW

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPCOMW xmm1, xmm2, xmm3/mem128, imm8 8F RXB.01000 0.src.0.00 CD /r ib

636 VPCOMW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPERM2F128 637

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies 128-bit floating-point data elements from two 256-bit sources to two 128-bit elements of a
256-bit destination, as specified by an immediate byte operand.
The immediate operand is encoded as follows.

This is a 256-bit extended-form instruction:
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

This is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VEXTRACTF128, VINSERTF128, VPERMILPD, VPERMILPS

rFLAGS Affected

None

MXCSR Flags Affected

None

VPERM2F128 Permute Floating-Point
128-bit

Destination Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Source 2
Bits Copied

[127:0] [1:0] 00 [127:0] —

01 [255:128] —

10 — [127:0]

11 — [255:128]

Setting imm8 [3] clears bits [127:0] of the destination; imm8 [2] is ignored.

[255:128] [5:4] 00 [127:0] —

01 [255:128] —

10 — [127:0]

11 — [255:128]

Setting imm8 [7] clears bits [255:128] of the destination; imm8 [6] is ignored.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VPERM2F128 ymm1, xmm2, xmm3/mem256, imm8 C4 RXB.00011 0.src.1.01 06 /r

638 VPERM2F128 Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 0.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Instruction Reference VPERMIL2PD 639

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies a selected quadword from one of two source operands to a selected quadword of the destina-
tion or clears the selected quadword of the destination. Values in a third source operand and an imme-
diate two-bit operand control the operation.
There are 128-bit and 256-bit versions of this instruction. Both versions have five operands:

VPERMIL2PD dest, src1, src2, src3, m2z.

The first four operands are either 128 bits or 256 bits wide, as determined by VEX.L. When the desti-
nation is an XMM register, bits [255:128] of the corresponding YMM register are cleared.
The third source operand is a selector that specifies how quadwords are copied or cleared in the desti-
nation. The selector contains one selector element for each quadword of the destination register.

Selector for 128-bit Instruction Form

The selector for the 128-bit instruction form is an octword composed of two quadword selector ele-
ments S0 and S1. S0 (the lower quadword) controls the value written to destination quadword 0 (bits
[63:0]) and S1 (the upper quadword) controls the destination quadword 1 (bits [127:64]).

Selector for 256-bit Instruction Form

The selector for the 256-bit instruction form is a double octword and adds two more selector elements
S2 and S3. S0 controls the value written to the destination quadword 0 (bits [63:0]), S1 controls the
destination quadword 1 (bits [127:64]), S2 controls the destination quadword 2 (bits [191:128]), and
S3 controls the destination quadword 3 (bits [255:192]).
The layout of each selector element is as follows:

The fields are defined as follows:

VPERMIL2PD Permute Two-Source
Double-Precision Floating-Point

127 64 63 0

S1 S0

255 192 191 128

S3 S2

127 64 63 0

S1 S0

63 4 3 2 1 0

Reserved, IGN M Sel

Bits Mnemonic Description

[63:4] — Reserved, IGN

[3] M Match

[2:1] Sel Select

[0] — Reserved, IGN

640 VPERMIL2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

• Sel — Select. Selects the source quadword to copy into the corresponding quadword of the
destination:

• M — Match bit. The combination of the Match bit in each selector element and the value of the
M2Z field determines if the Select field is overridden. This is described below.

m2z immediate operand

The fifth operand is m2z. The assembler uses this 2-bit value to encode the M2Z field in the instruc-
tion. M2Z occupies bits [1:0] of an immediate byte. Bits [7:4] of the same byte are used to select one
of 16 YMM/XMM registers. This dual use of the immediate byte is indicated in the instruction synop-
sis by the symbol “is5”.
The immediate byte is defined as follows.

Fields are defined as follows:
• SRS — Source Register Select. As with many other extended instructions, bits in the immediate

byte are used to select a source operand register. This field is set by the assembler based on the
operands listed in the instruction. See discussion in “src2 and src3 Operand Addressing” below.

• M2Z — Match to Zero. This field, combined with the M bit of the selector element, controls the
function of the Sel field as follows:

.

Sel Value Source Selected for Destination
Quadwords 0 and 1 (both forms)

Source Selected for Destination
Quadwords 2 and 3 (256-bit form)

00b src1[63:0] src1[191:128]

01b src1[127:64] src1[255:192]

10b src2[63:0] src2[191:128]

11b src2[127:64] src2[255:192]

7 4 3 2 1 0

SRS M2Z

Bits Mnemonic Description

[7:4] SRS Source Register Select

[3:2] — Reserved, IGN

[1:0] M2Z Match to Zero

M2Z Field Selector M Bit Value Loaded into Destination Quadword

0Xb X Source quadword selected by selector element Sel field.

10b 0 Source quadword selected by selector element Sel field.

10b 1 Zero

11b 0 Zero

11b 1 Source quadword selected by selector element Sel field.

Instruction Reference VPERMIL2PD 641

26568—Rev. 3.14—December 2011 AMD64 Technology

src2 and src3 Operand Addressing

In 64-bit mode, VEX.W and bits [7:4] of the immediate byte specify src2 and src3:
• When VEX.W = 0, src2 is either a register or a memory location specified by ModRM.r/m and

src3 is a register specified by bits [7:4] of the immediate byte.

• When VEX.W = 1, src2 is a register specified by bits [7:4] of the immediate byte and src3 is either
a register or a memory location specified by ModRM.r/m.

In non-64-bit mode, bit 7 is ignored.

Instruction Subset

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

NOTE: VPERMIL2PS is encoded using the VEX prefix even though it is an XOP instruction.

Related Instructions

VPERM2F128, VPERMIL2PS, VPERMILPD, VPERMILPS, VPPERM

rFLAGS Affected

None

MXCSR Flags Affected

None

Encoding

Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode

VPERMIL2PD xmm1, xmm2, xmm3/mem128, xmm4, m2z C4 RXB.00011 0.src.0.01 49 /r is5

VPERMIL2PD xmm1, xmm2, xmm3, xmm4/mem128, m2z C4 RXB.00011 1.src.0.01 49 /r is5

VPERMIL2PD ymm1, ymm2, ymm3/mem256, ymm4, m2z C4 RXB.00011 0.src.1.01 49 /r is5

VPERMIL2PD ymm1, ymm2, ymm3, ymm4/mem256, m2z C4 RXB.00011 1.src.1.01 49 /r is5

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.

X X XOP instructions are only recognized in protected mode.
X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.

X REX, F2, F3, or 66 prefix preceding VEX prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

642 VPERMIL2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference VPERMIL2PS 643

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies a selected doubleword from one of two source operands to a selected doubleword of the desti-
nation or clears the selected doubleword of the destination. Values in a third source operand and an
immediate two-bit operand control operation.
There are 128-bit and 256-bit versions of this instruction. Both versions have five operands:

VPERMIL2PS dest, src1, src2, src3, m2z

The first four operands are either 128 bits or 256 bits wide, as determined by VEX.L. When the desti-
nation is an XMM register, bits [255:128] of the corresponding YMM register are cleared.
The third source operand is a selector that specifies how doublewords are copied or cleared in the des-
tination. The selector contains one selector element for each doubleword of the destination register.

Selector for 128-bit Instruction Form

The selector for the 128-bit instruction form is an octword containing four selector elements S0–S3.
S0 controls the value written to the destination doubleword 0 (bits [31:0]), S1 controls the destination
doubleword 1 (bits [63:32]), S2 controls the destination doubleword 2 (bits [95:64]), and S3 controls
the destination doubleword 3 (bits [127:96]).

Selector for 256-bit Instruction Form

The selector for the 256-bit instruction form is a double octword and adds four more selector ele-
ments S4–S7. S4 controls the value written to the destination doubleword 4 (bits [159:128]), S5 con-
trols the destination doubleword 5 (bits [191:160]), S6 controls the destination doubleword 6 (bits
[223:192]), and S7 controls the destination doubleword 7 (bits [255:224]).
The layout of each selector element is as follows.

The fields are defined as follows:

VPERMIL2PS Permute Two-Source
Single-Precision Floating-Point

127 96 95 64 63 32 31 0

S3 S2 S1 S0

255 224 223 192 191 160 159 128

S7 S6 S5 S4

127 96 95 64 63 32 31 0

S3 S2 S1 S0

31 4 3 2 1 0

Reserved, IGN M Sel

Bits Mnemonic Description

[31:4] — Reserved, IGN

[3] M Match

[2:0] Sel Select

644 VPERMIL2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

• Sel — Select. Selects the source doubleword to copy into the corresponding doubleword of the
destination:

• M — Match. The combination of the M bit in each selector element and the value of the M2Z field
determines if the Sel field is overridden. This is described below.

m2z immediate operand

The fifth operand is m2z. The assembler uses this 2-bit value to encode the M2Z field in the instruc-
tion. M2Z occupies bits [1:0] of an immediate byte. Bits [7:4] of the same byte are used to select one
of 16 YMM/XMM registers. This dual use of the immediate byte is indicated in the instruction synop-
sis by the symbol “is5”.
The immediate byte is defined as follows.

Fields are defined as follows:
• SRS — Source Register Select. As with many other extended instructions, bits in the immediate

byte are used to select a source operand register. This field is set by the assembler based on the
operands listed in the instruction. See discussion in “src2 and src3 Operand Addressing” below.

• M2Z — Match to Zero. This field, combined with the M bit of the selector element, controls the
function of the Sel field as follows:

Sel Value Source Selected for Destination
Doublewords 0, 1, 2 and 3 (both forms)

Source Selected for Destination
Doublewords 4, 5, 6 and 7 (256-bit form)

000b src1[31:0] src1[159:128]

001b src1[63:32] src1[191:160]

010b src1[95:64] src1[223:192]

011b src1[127:96] src1[255:224]

100b src2[31:0] src2[159:128]

101b src2[63:32] src2[191:160]

110b src2[95:64] src2[223:192]

111b src2[127:96] src2[255:224]

7 4 3 2 1 0

SRS M2Z

Bits Mnemonic Description

[7:4] SRS Source Register Select

[3:2] — Reserved, IGN

[1:0] M2Z Match to Zero

M2Z Field Selector M Bit Value Loaded into Destination Doubleword

0Xb X Source doubleword selected by Sel field.

10b 0 Source doubleword selected by Sel field.

Instruction Reference VPERMIL2PS 645

26568—Rev. 3.14—December 2011 AMD64 Technology

src2 and src3 Operand Addressing

In 64-bit mode, VEX.W and bits [7:4] of the immediate byte specify src2 and src3:
• When VEX.W = 0, src2 is either a register or a memory location specified by ModRM.r/m and

src3 is a register specified by bits [7:4] of the immediate byte.

• When VEX.W = 1, src2 is a register specified by bits [7:4] of the immediate byte and src3 is either
a register or a memory location specified by ModRM.r/m.

In non-64-bit mode, bit 7 is ignored.

Instruction Subset

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

NOTE: VPERMIL2PS is encoded using the VEX prefix even though it is an XOP instruction.

Related Instructions

VPERM2F128, VPERMIL2PD, VPERMILPD, VPERMILPS, VPPERM

rFLAGS Affected

None

MXCSR Flags Affected

None

10b 1 Zero

11b 0 Zero

11b 1 Source doubleword selected by Sel field.

Encoding

Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode

VPERMIL2PS xmm1, xmm2, xmm3/mem128, xmm4, m2z C4 RXB.00011 0.src.0.01 48 /r is5

VPERMIL2PS xmm1, xmm2, xmm3, xmm4/mem128, m2z C4 RXB.00011 1.src.0.01 48 /r is5

VPERMIL2PS ymm1, ymm2, ymm3/mem256, ymm4, m2z C4 RXB.00011 0.src.1.01 48 /r is5

VPERMIL2PS ymm1, ymm2, ymm3, ymm4/mem256, m2z C4 RXB.00011 1.src.1.01 48 /r is5

M2Z Field Selector M Bit Value Loaded into Destination Doubleword

646 VPERMIL2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding VEX prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Instruction Reference VPERMILPD 647

26568—Rev. 3.14—December 2011 AMD64 Technology

Copies double-precision floating-point values from a source to a destination. Source and destination
can be selected in two ways. There are different encodings for each selection method.
Selection by bits in a source register or memory location:
Each quadword of the operand is defined as follows.

A bit selects source and destination. Only bit [1] is used; bits [63:2} and bit [0] are ignored. Setting
the bit selects the corresponding quadword element of the source and the destination.
Selection by bits in an immediate byte:
Each bit corresponds to a destination quadword. Only bits [3:2] and bits [1:0] are used; bits [7:4] are
ignored. Selections are defined as follows.

This extended-form instruction has both 128-bit and 256-bit encoding.

XMM Encoding

There are two encodings, one for each selection method:
• The first source operand is an XMM register. The second source operand is either an XMM

register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

• The first source operand is either an XMM register or a 128-bit memory location. The destination
is an XMM register. There is a third, immediate byte operand. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

VPERMILPD Permute
Double-Precision

63 2 1 0

Sel

Destination
Quadword

Immediate-Byte
Bit Field

Value of
Bit Field

Source 1
Bits Copied

Used by 128-bit encoding and 256-bit encoding

[63:0] [0] 0 [63:0]

1 [127:64]

[127:64] [1] 0 [63:0]

1 [127:64]

Used only by 256-bit encoding

[191:128] [2] 0 [191:128]

1 [255:192]

[255:192] [3] 0 [191:128]

1 [255:192]

648 VPERMILPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

YMM Encoding

There are two encodings, one for each selection method:
• The first source operand is a YMM register. The second source operand is either a YMM register

or a 256-bit memory location. The destination is a third YMM register.

• The first source operand is either a YMM register or a 256-bit memory location. The destination is
a YMM register. There is a third, immediate byte operand.

This is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPERM2F128, VPERMIL2PD, VPERMIL2PS, VPERMILPS, VPPERM

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

Selection by source register or memory:

VPERMILPD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 0D /r

VPERMILPD ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 0D /r

Selection by immediate byte operand:

VPERMILPD xmm1, xmm2, imm8 C4 RXB.00011 0.1111.1.01 05 /r ib

VPERMILPD ymm1, ymm2, imm8 C4 RXB.00011 0.1111.1.01 05 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.W = 1.
A VEX.vvvv ! = 1111b (for versions with immediate byte operand only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A Lock prefix (F0h) preceding opcode.
Device not available, #NM A CR0.TS = 1.

Instruction Reference VPERMILPD 649

26568—Rev. 3.14—December 2011 AMD64 Technology

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

650 VPERMILPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Copies single-precision floating-point values from a source to a destination. Source and destination
can be selected in two ways. There are different encodings for each selection method.
Selection by bit fields in a source register or memory location:
Each doubleword of the operand is defined as follows.

Each bit field corresponds to a destination doubleword. Bit values select a source doubleword. Only
bits [1:0] of each word are used; bits [31:2} are ignored. The 128-bit encoding uses four two-bit
fields; the 256-bit version uses eight two-bit fields. Field encoding is as follows.

VPERMILPS Permute
Single-Precision

31 2 1 0

Sel

Destination
Doubleword

Immediate Operand
Bit Field

Value of
Bit Field

Source
Bits Copied

[31:0] [1:0] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[63:32] [33:32] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[95:64] [65:64] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[127:96] [97:96] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Instruction Reference VPERMILPS 651

26568—Rev. 3.14—December 2011 AMD64 Technology

Selection by bit fields in an immediate byte:
Each bit field corresponds to a destination doubleword. For the 256-bit encoding, the fields specify
sources and destinations in both the upper and lower 128 bits of the register. Selections are defined as
follows.

Upper 128 bits of 256-bit source and destination used by 256-bit encoding
[159:128] [129:128] 00 [159:128]

01 [191:160]
10 [223:192]
11 [255:224]

[191:160] [161:160] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[223:192] [193:192] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[255:224] [225:224] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

Destination
Doubleword

Bit Field Value of Bit
Field

Source
Bits Copied

[31:0] [1:0] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[63:32] [3:2] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[95:64] [5:4] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

[127:96] [7:6] 00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

Destination
Doubleword

Immediate Operand
Bit Field

Value of
Bit Field

Source
Bits Copied

652 VPERMILPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

This extended-form instruction has both 128-bit and 256-bit encodings:

XMM Encoding

There are two encodings, one for each selection method:
• The first source operand is an XMM register. The second source operand is either an XMM

register or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

• The first source operand is either an XMM register or a 128-bit memory location. The destination
is an XMM register. There is a third, immediate byte operand. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

YMM Encoding

There are two encodings, one for each selection method:
• The first source operand is a YMM register. The second source operand is either a YMM register

or a 256-bit memory location. The destination is a third YMM register.

• The first source operand is either a YMM register or a 256-bit memory location. The destination is
a YMM register. There is a third, immediate byte operand.

This is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Upper 128 bits of 256-bit source and destination used by 256-bit encoding
[159:128] [1:0] 00 [159:128]

01 [191:160]
10 [223:192]
11 [255:224]

[191:160] [3:2] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[223:192] [5:4] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

[255:224] [7:6] 00 [159:128]
01 [191:160]
10 [223:192]
11 [255:224]

Destination
Doubleword

Bit Field Value of Bit
Field

Source
Bits Copied

Instruction Reference VPERMILPS 653

26568—Rev. 3.14—December 2011 AMD64 Technology

Instruction Encoding

Related Instructions

VPERM2F128, VPERMIL2PD, VPERMIL2PS, VPERMILPD, VPPERM

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

Selection by source register or memory:

VPERMILPS xmm1, xmm2, xmm3/mem128 C4 RXB.00010 0.src.0.01 0C /r

VPERMILPS ymm1, ymm2, ymm3/mem256 C4 RXB.00010 0.src.1.01 0C /r

Selection by immediate byte operand:

VPERMILPS xmm1, xmm2, imm8 C4 RXB.00011 0.1111.1.01 04 /r ib

VPERMILPS ymm1, ymm2, imm8 C4 RXB.00011 0.1111.1.01 04 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.vvvv ! = 1111b (for versions with immediate byte operand only).

A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

654 VPHADDBD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds four sets of four 8-bit signed integer values of the source and packs the sign-extended sums into
the corresponding doubleword of the destination.
There are two operands: VPHADDBD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDBW, VPHADDBQ, VPHADDWD, VPHADDWQ, VPHADDDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDBD Packed Horizontal Add
Signed Byte to Signed Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDBD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C2 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference VPHADDBD 655

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

656 VPHADDBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds two sets of eight 8-bit signed integer values of the source and packs the sign-extended sums into
the corresponding quadword of the destination.
There are two operands: VPHADDBQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDBW, VPHADDBD, VPHADDWD, VPHADDWQ, VPHADDDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDBQ Packed Horizontal Add
Signed Byte to Signed Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDBQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C3 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference VPHADDBQ 657

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

658 VPHADDBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds each adjacent pair of 8-bit signed integer values of the source and packs the sign-extended 16-
bit integer result of each addition into the corresponding word element of the destination.
There are two operands: VPHADDBW dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDBD, VPHADDBQ, VPHADDWD, VPHADDWQ, VPHADDDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDBW Packed Horizontal Add
Signed Byte to Signed Word

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDBW xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C1 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference VPHADDBW 659

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

660 VPHADDDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds each adjacent pair of signed doubleword integer values of the source and packs the sign-
extended sums into the corresponding quadword of the destination.
There are two operands: VPHADDDQ dest, src

The source is either an XMM register or a 128-bit memory location and the destination is an XMM
register. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDBW, VPHADDBD, VPHADDBQ, VPHADDWD, VPHADDWQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDDQ Packed Horizontal Add
Signed Doubleword to Signed Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDDQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 CB /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.

X X XOP instructions are only recognized in protected mode.
X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.

X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Instruction Reference VPHADDDQ 661

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

662 VPHADDUBD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds four sets of four 8-bit unsigned integer values of the source and packs the sums into the corre-
sponding doublewords of the destination.
There are two operands: VPHADDUBD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDUBW, VPHADDUBQ, VPHADDUWD, VPHADDUWQ, VPHADDUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDUBD Packed Horizontal Add
Unsigned Byte to Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUBD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D2 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference VPHADDUBD 663

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

664 VPHADDUBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds two sets of eight 8-bit unsigned integer values from the second source and packs the sums into
the corresponding quadword of the destination.
There are two operands: VPHADDUBQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. When the destination XMM register is written, bits [255:128] of the corresponding YMM
register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDUBW, VPHADDUBD, VPHADDUWD, VPHADDUWQ, VPHADDUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDUBQ Packed Horizontal Add
Unsigned Byte to Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUBQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D3 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

Instruction Reference VPHADDUBQ 665

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

666 VPHADDUBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds each adjacent pair of 8-bit unsigned integer values of the source and packs the 16-bit integer
sums to the corresponding word of the destination.
There are two operands: VPHADDUBW dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDUBD, VPHADDUBQ, VPHADDUWD, VPHADDUWQ, VPHADDUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDUBW Packed Horizontal Add
Unsigned Byte to Word

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUBWD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D1 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.

X X XOP instructions are only recognized in protected mode.
X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.

X XOP.W = 1.
A XOP.vvvv ! = 1111b.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

Instruction Reference VPHADDUBW 667

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

668 VPHADDUDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds two adjacent pairs of 32-bit unsigned integer values of the source and packs the sums into the
corresponding quadword of the destination.
There are two operands: VPHADDUDQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDUBW, VPHADDUBD, VPHADDUBQ, VPHADDUWD, VPHADDUWQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDUDQ Packed Horizontal Add
Unsigned Doubleword to Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUDQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 DB /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference VPHADDUDQ 669

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

670 VPHADDUWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds four adjacent pairs of 16-bit unsigned integer values of the source and packs the sums into the
corresponding doubleword of the destination.
There are two operands: VPHADDUWD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDUBW, VPHADDUBD, VPHADDUBQ, VPHADDUWQ, VPHADDUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDUWD Packed Horizontal Add
Unsigned Word to Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUWD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D6 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference VPHADDUWD 671

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

672 VPHADDUWQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds two pairs of 16-bit unsigned integer values of the source and packs the sums into the corre-
sponding quadword element of the destination.
There are two operands: VPHADDUWQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDUBW, VPHADDUBD, VPHADDUBQ, VPHADDUWD, VPHADDUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDUWQ Packed Horizontal Add
Unsigned Word to Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDUWQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 D7 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference VPHADDUWQ 673

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

674 VPHADDWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds four adjacent pairs of 16-bit signed integer values of the source and packs the sign-extended
sums to the corresponding doubleword of the destination.
There are two operands: VPHADDWD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDBW, VPHADDBD, VPHADDBQ, VPHADDWQ, VPHADDDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDWD Packed Horizontal Add
Signed Word to Signed Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDWD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C6 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference VPHADDWD 675

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

676 VPHADDWQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Adds four successive pairs of 16-bit signed integer values of the source and packs the sign-extended
sums to the corresponding quadword of the destination.
There are two operands: VPHADDWQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHADDBW, VPHADDBD, VPHADDBQ, VPHADDWD, VPHADDDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHADDWQ Packed Horizontal Add
Signed Word to Signed Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHADDWQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 C7 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Instruction Reference VPHADDWQ 677

26568—Rev. 3.14—December 2011 AMD64 Technology

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

678 VPHSUBBW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Subtracts the most significant signed integer byte from the least significant signed integer byte of
each word element in the source and packs the sign-extended 16-bit integer differences into the desti-
nation.
There are two operands: VPHSUBBW dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. When the destination is written, bits [255:128] of the corresponding YMM register are
cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHSUBWD, VPHSUBDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHSUBBW Packed Horizontal Subtract
Signed Byte to Signed Word

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHSUBBW xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 E1 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

Instruction Reference VPHSUBBW 679

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

680 VPHSUBDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Subtracts the most significant signed integer doubleword from the least significant signed integer
doubleword of each quadword in the source and packs the sign-extended 64-bit integer differences
into the corresponding quadword element of the destination.
There are two operands: VPHSUBDQ dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. When the destination is written, bits [255:128] of the corresponding YMM register are
cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHSUBBW, VPHSUBWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHSUBDQ Packed Horizontal Subtract
Signed Doubleword to Signed Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHSUBDQ xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 DB /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

Instruction Reference VPHSUBDQ 681

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

682 VPHSUBWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Subtracts the most significant signed integer word from the least significant signed integer word of
each doubleword of the source and packs the sign-extended 32-bit integer differences into the destina-
tion.
There are two operands: VPHSUBWD dest, src

The destination is an XMM register and the source is either an XMM register or a 128-bit memory
location. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPHSUBBW, VPHSUBDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPHSUBWD Packed Horizontal Subtract
Signed Word to Signed Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPHSUBWD xmm1, xmm2/mem128 8F RXB.01001 0.1111.0.00 E2 /r

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
A XOP.vvvv ! = 1111b.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

Instruction Reference VPHSUBWD 683

26568—Rev. 3.14—December 2011 AMD64 Technology

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

684 VPMACSDD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies each packed 32-bit signed integer value of the first source by the corresponding value of
the second source, adds the corresponding value of the third source to the 64-bit signed integer prod-
uct, and writes four 32-bit sums to the destination.
No saturation is performed on the sum. When the result of the multiplication causes non-zero values
to be set in the upper 32 bits of the 64-bit product, they are ignored. When the result of the add over-
flows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set). In both cases, only
the signed low-order 32 bits of the result are written to the destination.
There are four operands: VPMACSDD dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination is written,
bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When the third source designates the same XMM register as the destination, the XMM register
behaves as an accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSDD Packed Multiply Accumulate
Signed Doubleword to Signed Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSDD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 9E /r ib

Instruction Reference VPMACSDD 685

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

686 VPMACSDQH Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies the second 32-bit signed integer value of the first source by the corresponding value of the
second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the fourth 32-bit signed integer value of the first
source by the fourth 32-bit signed integer value of the second source, then adds the high-order 64-bit
signed integer value of the third source to the 64-bit signed integer product. Writes two 64-bit sums to
the destination.
No saturation is performed on the sum. When the result of the add overflows, the carry is ignored
(neither the overflow nor carry bit in rFLAGS is set).
There are four operands: VPMACSDQH dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination is written,
bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field; the second source (src2)
is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the
third source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When the third source designates the same XMM register as the destination, the XMM register
behaves as an accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQL, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSDQH Packed Multiply Accumulate
Signed High Doubleword to Signed Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSDQH xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 9F /r ib

Instruction Reference VPMACSDQH 687

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

688 VPMACSDQL Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies the low-order 32-bit signed integer value of the first source by the corresponding value of
the second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the third 32-bit signed integer value of the first
source by the corresponding value of the second source, then adds the high-order 64-bit signed inte-
ger value of the third source to the 64-bit signed integer product. Writes two 64-bit sums to the desti-
nation register.
No saturation is performed on the sum. When the result of the add overflows, the carry is ignored
(neither the overflow nor carry bit in rFLAGS is set). Only the low-order 64 bits of each result are
written to the destination.
There are four operands: VPMACSDQL dest, src1, src2, src3 dest = src1* src2 + src3
The destination is a YMM register specified by ModRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSDQL Packed Multiply Accumulate
Signed Low Doubleword to Signed Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSDQL xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 97 /r ib

Instruction Reference VPMACSDQL 689

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

690 VPMACSSDD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies each packed 32-bit signed integer value of the first source by the corresponding value of
the second source, then adds the corresponding packed 32-bit signed integer value of the third source
to each 64-bit signed integer product. Writes four saturated 32-bit sums to the destination.
Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 32-bit integer, it is saturated
to 7FFF_FFFFh, and when the value is smaller than the smallest signed 32-bit integer, it is saturated
to 8000_0000h.
There are four operands: VPMACSSDD dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination is written,
bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instructition Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSSDD Packed Multiply Accumulate with Saturation
Signed Doubleword to Signed Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSDD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 X.src.0.00 8E /r ib

Instruction Reference VPMACSSDD 691

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

692 VPMACSSDQH Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies the second 32-bit signed integer value of the first source by the corresponding value of the
second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the fourth 32-bit signed integer value of the first
source by the corresponding value of the second source, then adds the high-order 64-bit signed inte-
ger value of the third source to the 64-bit signed integer product. Writes two saturated sums to the
destination.
Out of range results of the addition are saturated to fit into a signed 64-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 64-bit integer, it is saturated
to 7FFF_FFFF_FFFF_FFFFh, and when the value is smaller than the smallest signed 64-bit integer, it
is saturated to 8000_0000_0000_0000h.
There are four operands: VPMACSSDQH dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination XMM reg-
ister is written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSSDQH Packed Multiply Accumulate with Saturation
Signed High Doubleword to Signed Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSDQH xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 8F /r ib

Instruction Reference VPMACSSDQH 693

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

694 VPMACSSDQL Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies the low-order 32-bit signed integer value of the first source by the corresponding value of
the second source, then adds the low-order 64-bit signed integer value of the third source to the 64-bit
signed integer product. Simultaneously, multiplies the third 32-bit signed integer value of the first
source by the third 32-bit signed integer value of the second source, then adds the high-order 64-bit
signed integer value of the third source to the 64-bit signed integer product. Writes two saturated
sums to the destination.
Out of range results of the addition are saturated to fit into a signed 64-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 64-bit integer, it is saturated
to 7FFF_FFFF_FFFF_FFFFh, and when the value is smaller than the smallest signed 64-bit integer, it
is saturated to 8000_0000_0000_0000h.
There are four operands: VPMACSSDQL dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) register is an XMM register specified by ModRM.reg. When the destination is
written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSSDQL Packed Multiply Accumulate with Saturation
Signed Low Doubleword to Signed Quadword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSDQL xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 87 /r ib

Instruction Reference VPMACSSDQL 695

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

696 VPMACSSWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies the odd-numbered packed 16-bit signed integer values of the first source by the corre-
sponding values of the second source, then adds the corresponding packed 32-bit signed integer val-
ues of the third source to the 32-bit signed integer products. Writes four saturated sums to the
destination.
Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 32-bit integer, it is saturated
to 7FFF_FFFFh, and when the value is smaller than the smallest signed 32-bit integer, it is saturated
to 8000_0000h.
There are four operands:

VPMACSSWD dest, src1, src2, src3 dest = src1* src2 + src3

The destination (dest) is an XMM register specified by ModRM.reg. When the destination XMM reg-
ister is written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by the XOP.vvvv field; the second source (src2)
is either an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the
third source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSWD, VPMACSSDD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSSWD Packed Multiply Accumulate with Saturation
Signed Word to Signed Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 86 /r ib

Instruction Reference VPMACSSWD 697

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

698 VPMACSSWW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies each packed 16-bit signed integer value of the first source by the corresponding packed 16-
bit signed integer value of the second source, then adds the corresponding packed 16-bit signed inte-
ger value of the third source to the 32-bit signed integer products. Writes eight saturated sums to the
destination.
Out of range results of the addition are saturated to fit into a signed 16-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 16-bit integer, it is saturated
to 7FFFh, and when the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.
There are four operands:

VPMACSSWW dest, src1, src2, src3 dest = src1* src2 + src3

The destination is an XMM register specified by ModRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte.
When src3 and dest designate the same XMM register, this register behaves as an accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL,VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSSWW Packed Multiply Accumulate with Saturation
Signed Word to Signed Word

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSSWW xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 X.src.0.00 85 /r ib

Instruction Reference VPMACSSWW 699

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

700 VPMACSWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies each odd-numbered packed 16-bit signed integer value of the first source by the corre-
sponding value of the second source, then adds the corresponding packed 32-bit signed integer value
of the third source to the 32-bit signed integer products. Writes four 32-bit results to the destination.
When the result of the add overflows, the carry is ignored (neither the overflow nor carry bit in
rFLAGS is set). Only the low-order 32 bits of the result are written to the destination.
There are four operands: VPMACSWD dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) register is an XMM register specified by ModRM.reg. When the destination
XMM register is written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSSDD, VPMACSDO, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSWD Packed Multiply Accumulate
Signed Word to Signed Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 96 /r ib

Instruction Reference VPMACSWD 701

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

702 VPMACSWW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies each packed 16-bit signed integer value of the first source by the corresponding value of
the second source, then adds the corresponding packed 16-bit signed integer value of the third source
to each 32-bit signed integer product. Writes eight 16-bit results to the destination.
No saturation is performed on the sum. When the result of the multiplication causes non-zero values
to be set in the upper 16 bits of the 32 bit result, they are ignored. When the result of the add over-
flows, the carry is ignored (neither the overflow nor carry bit in rFLAGS is set). In both cases, only
the signed low-order 16 bits of the result are written to the destination.
There are four operands: VPMACSWW dest, src1, src2, src3 dest = src1* src2 + src3
The destination (dest) is an XMM register specified by ModRM.reg. When the destination XMM reg-
ister is written, bits [255:128] of the corresponding YMM register are cleared.
The first source (src1) is an XMM register specified by XOP.vvvv; the second source (src2) is either
an XMM register or a 128-bit memory location specified by the ModRM.r/m field; and the third
source (src3) is an XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD, VPMACSSDQL,
VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMACSWW Packed Multiply Accumulate
Signed Word to Signed Word

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMACSWW xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 95 /r ib

Instruction Reference VPMACSWW 703

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

704 VPMADCSSWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies each packed 16-bit signed integer value of the first source by the corresponding value of
the second source, then adds the 32-bit signed integer products of the even-odd adjacent words. Each
resulting sum is then added to the corresponding packed 32-bit signed integer value of the third
source. Writes four 16-bit results to he destination.
Out of range results of the addition are saturated to fit into a signed 32-bit integer. For each packed
value of the destination, when the value is larger than the largest signed 32-bit integer, it is saturated
to 7FFF_FFFFh, and when the value is smaller than the smallest signed 32-bit integer, it is saturated
to 8000_0000h.
There are four operands: VPMADCSSWD dest, src1, src2, src3 dest = src1* src2 + src3
The destination is an XMM register specified by ModRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.
The first source is an XMM register specified by XOP.vvvv; the second source is either an XMM reg-
ister or a 128-bit memory location specified by the ModRM.r/m field; and the third source is an
XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMADCSSWD Packed Multiply Add Accumulate
with Saturation

Signed Word to Signed Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPMADCSSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 A6 /r ib

Instruction Reference VPMADCSSWD 705

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

706 VPMADCSWD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Multiplies each packed 16-bit signed integer value of the first source by the corresponding value of
the second source, then adds the 32-bit signed integer products of the even-odd adjacent words
together and adds the sums to the corresponding packed 32-bit signed integer values of the third
source. Writes four 32-bit sums to the destination.
No saturation is performed on the sum. When the result of the addition overflows, the carry is ignored
(neither the overflow nor carry bit in rFLAGS is set). Only the signed 32-bits of the result are written
to the destination.
There are four operands: VPMADCSWD dest, src1, src2, src3 dest = src1* src2 + src3
The destination is an XMM register specified by ModRM.reg. When the destination is written, bits
[255:128] of the corresponding YMM register are cleared.
The first source is an XMM register specified by XOP.vvvv, the second source is either an XMM reg-
ister or a 128-bit memory location specified by the ModRM.r/m field; and the third source is an
XMM register specified by bits [7:4] of an immediate byte operand.
When src3 designates the same XMM register as the dest register, the XMM register behaves as an
accumulator.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPMACSSWW, VPMACSWW, VPMACSSWD, VPMACSWD, VPMACSSDD, VPMACSDD,
VPMACSSDQL, VPMACSSDQH, VPMACSDQL, VPMACSDQH, VPMADCSSWD

rFLAGS Affected

None

MXCSR Flags Affected

None

VPMADCSWD Packed Multiply Add Accumulate
Signed Word to Signed Doubleword

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

PMADCSWD xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 B6 /r ib

Instruction Reference VPMADCSWD 707

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

708 VPPERM Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Selects 16 of 32 packed bytes from two concatenated sources, applies a logical transformation to each
selected byte, then writes the byte to a specified position in the destination.
There are four operands: VPPERM dest, src1, src2, src3
The second (src2) and first (src1) sources are concatenated to form the 32-byte source.
The src1 operand is an XMM register specified by XOP.vvvv.
The third source (src3) contains 16 control bytes. Each control byte specifies the source byte and the
logical operation to perform on that byte. The order of the bytes in the destination is the same as that
of the control bytes in the src3.
For each byte of the 16-byte result, the corresponding src3 byte is used as follows:
• Bits [7:5] select a logical operation to perform on the selected byte.

• Bits [4:0] select a source byte to move from src2:src1.

XOP.W and an immediate byte (imm8) determine register configuration.
• When XOP.W = 0, src2 is either an XMM register or a 128-bit memory location specified by

ModRM.r/m and src3 is an XMM register specified by imm8[7:4].

VPPERM Packed Permute
Bytes

Bit Value Selected Operation

000 Source byte (no logical operation)

001 Invert source byte

010 Bit reverse of source byte

011 Bit reverse of inverted source byte

100 00h (zero-fill)

101 FFh (ones-fill)

110 Most significant bit of source byte replicated in all bit positions.

111 Invert most significant bit of source byte and replicate in all bit positions.

Bit
Value

Source
Byte

Bit
Value

Source
Byte

Bit
Value

Source
Byte

Bit
Value

Source
Byte

00000 src1[7:0] 01000 src1[71:64] 10000 src2[7:0] 11000 src2[71:64]

00001 src1[15:8] 01001 src1[79:72] 10001 src2[15:8] 11001 src2[79:72]

00010 src1[23:16] 01010 src1[87:80] 10010 src2[23:16] 11010 src2[87:80]

00011 src1[31:24] 01011 src1[95:88] 10011 src2[31:24] 11011 src2[95:88]

00100 src1[39:32] 01100 src1[103:96] 10100 src2[39:32] 11100 src2[103:96]

00101 src1[47:40] 01101 src1[111:104] 10101 src2[47:40] 11101 src2[111:104]

00110 src1[55:48] 01110 src1[119:112] 10110 src2[55:48] 11110 src2[119:112]

00111 src1[63:56] 01111 src1[127:120] 10111 src2[63:56] 11111 src2[127:120]

Instruction Reference VPPERM 709

26568—Rev. 3.14—December 2011 AMD64 Technology

• When XOP.W = 1, src2 is an XMM register specified by imm8[7:4] and src3 is either an XMM
register or a 128-bit memory location specified by ModRM.r/m.

The destination (dest) is an XMM register specified by ModRM.reg. When the result is written to the
dest XMM register, bits [255:128] of the corresponding YMM register are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPSHUFHW, VPSHUFD, VPSHUFLW, VPSHUFW, VPERMIL2PS, VPERMIL2PD

rFLAGS Affected

None

MXCSR Flags Affected

None

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPPERM xmm1, xmm2, xmm3/mem128, xmm4 8F RXB.01000 0.src.0.00 A3 /r ib

VPPERM xmm1, xmm2, xmm3, xmm4/mem128 8F RXB.01000 1.src.0.00 A3 /r ib

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

710 VPROTB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Rotates each byte of the source as specified by a count operand and writes the result to the corre-
sponding byte of the destination.
There are two versions of the instruction, one for each source of the count byte:
• VPROTB dest, src, fixed-count

• VPROTB dest, src, variable-count

For both versions of the instruction, the destination (dest) operand is an XMM register specified by
ModRM.reg.
The fixed-count version of the instruction rotates each byte of the source (src) the number of bits spec-
ified by the immediate fixed-count byte. All bytes are rotated the same amount. The source XMM
register or memory location is selected by the ModRM.r/m field.
The variable-count version of the instruction rotates each byte of the source the amount specified in
the corresponding byte element of the variable-count. Both src and variable-count are configured by
XOP.W.
• When XOP.W = 0, variable-count is an XMM register specified by XOP.vvvv and src is either an

XMM register or a 128-bit memory location specified by ModRM.r/m.

• When XOP.W = 1, variable-count is either an XMM register or a 128-bit memory location
specified by ModRM.r/m and src is an XMM register specified by XOP.vvvv.

When the count value is positive, bits are rotated to the left (toward the more significant bit posi-
tions). The bits rotated out left of the most significant bit are rotated back in at the right end (least-sig-
nificant bit) of the byte.
When the count value is negative, bits are rotated to the right (toward the least significant bit posi-
tions). The bits rotated to the right out of the least significant bit are rotated back in at the left end
(most-significant bit) of the byte.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTW, VPROTD, VPROTQ,VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPROTB Packed Rotate
Bytes

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 90 /r

VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 90 /r

VPROTB xmm1, xmm2/mem128, imm8 8F RXB.01000 0.1111.0.00 C0 /r ib

Instruction Reference VPROTB 711

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

712 VPROTD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Rotates each doubleword of the source as specified by a count operand and writes the result to the
corresponding doubleword of the destination.
There are two versions of the instruction, one for each source of the count byte:
• VPROTD dest, src, fixed-count

• VPROTD dest, src, variable-count

For both versions of the instruction, the dest operand is an XMM register specified by ModRM.reg.
The fixed count version of the instruction rotates each doubleword of the source operand the number
of bits specified by the immediate fixed-count byte operand. All doublewords are rotated the same
amount. The src XMM register or memory location is selected by the ModRM.r/m field.
The variable count version of the instruction rotates each doubleword of the source by the amount
specified in the low order byte of the corresponding doubleword of the variable-count operand vector.
Both src and variable-count are configured by XOP.W.
• When XOP.W = 0, src is either an XMM register or a128-bit memory location specified by the

ModRM.r/m field and variable-count is an XMM register specified by XOP.vvvv.

• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an
XMM register or a 128-bit memory location specified by the ModRM.r/m field.

When the count value is positive, bits are rotated to the left (toward the more significant bit posi-
tions). The bits rotated out to the left of the most significant bit of each source doubleword operand
are rotated back in at the right end (least-significant bit) of the doubleword.
When the count value is negative, bits are rotated to the right (toward the least significant bit posi-
tions). The bits rotated to the right out of the least significant bit of each source doubleword operand
are rotated back in at the left end (most-significant bit) of the doubleword.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTW, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPROTD Packed Rotate
Doublewords

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTD xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 92 /r

VPROTD xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 92 /r

VPROTD xmm1, xmm2/mem128, imm8 8F RXB.01000 0.1111.0.00 C2 /r ib

Instruction Reference VPROTD 713

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

714 VPROTQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Rotates each quadword of the source operand as specified by a count operand and writes the result to
the corresponding quadword of the destination.
There are two versions of the instruction, one for each source of the count byte:
• VPROTQ dest, src, fixed-count

• VPROTQ dest, src, variable-count

For both versions of the instruction, the dest operand is an XMM register specified by ModRM.reg.
The fixed count version of the instruction rotates each quadword in the source the number of bits
specified by the immediate fixed-count byte operand. All quadword elements of the source are rotated
the same amount. The src XMM register or memory location is selected by the ModRM.r/m field.
The variable count version of the instruction rotates each quadword of the source the amount speci-
fied ny the low order byte of the corresponding quadword of the variable-count operand.
Both src and variable-count are configured by XOP.W.
• When XOP.W = 0, src is either an XMM register or a 128-bit memory location specified by

ModRM.r/m and variable-count is an XMM register specified by XOP.vvvv.

• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an
XMM register or a128-bit memory location specified by ModRM.r/m.

When the count value is positive, bits are rotated to the left (toward the more significant bit positions)
of the operand element. The bits rotated out to the left of the most significant bit of the word element
are rotated back in at the right end (least-significant bit).
When the count value is negative, operand element bits are rotated to the right (toward the least sig-
nificant bit positions). The bits rotated to the right out of the least significant bit are rotated back in at
the left end (most-significant bit) of the word element.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTW, VPROTD, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPROTQ Packed Rotate
Quadwords

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTQ xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 93 /r

VPROTQ xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 93 /r

VPROTQ xmm1, xmm2/mem128, imm8 8F RXB.01000 0.1111.0.00 C3 /r ib

Instruction Reference VPROTQ 715

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

716 VPROTW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Rotates each word of the source as specified by a count operand and writes the result to the corre-
sponding word of the destination.
There are two versions of the instruction, one for each source of the count byte:
• VPROTW dest, src, fixed-count

• VPROTW dest, src, variable-count

For both versions of the instruction, the dest operand is an XMM register specified by ModRM.reg.
The fixed count version of the instruction rotates each word of the source the number of bits specified
by the immediate fixed-count byte operand. All words of the source operand are rotated the same
amount. The src XMM register or memory location is selected by the ModRM.r/m field.
The variable count version of this instruction rotates each word of the source operand by the amount
specified in the low order byte of the corresponding word of the variable-count operand.
Both src and variable-count are configured by XOP.W.
• When XOP.W = 0, src is either an XMM register or a 128-bit memory location specified by

ModRM.r/m and variable-count is an XMM register specified by XOP.vvvv.

• When XOP.W = 1, src is an XMM register specified by XOP.vvvv and variable-count is either an
XMM register or a 128-bit memory location specified by ModRM.r/m.

When the count value is positive, bits are rotated to the left (toward the more significant bit posi-
tions). The bits rotated out to the left of the most significant bit of an element are rotated back in at the
right end (least-significant bit) of the word element.
When the count value is negative, bits are rotated to the right (toward the least significant bit posi-
tions) of the element. The bits rotated to the right out of the least significant bit of an element are
rotated back in at the left end (most-significant bit) of the word element.
Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

VPROTW Packed Rotate
Words

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPROTW xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 91 /r

VPROTW xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 91 /r

VPROTW xmm1, xmm2/mem128, imm8 8F RXB.01000 0.1111.0.00 C1 /r ib

Instruction Reference VPROTW 717

26568—Rev. 3.14—December 2011 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)
X XOP.L field = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

718 VPSHAB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Shifts each signed byte of the source as specified by a count byte and writes the result to the corre-
sponding byte of the destination.
The count bytes are 8-bit signed two's-complement values in the corresponding bytes of the count
operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the byte.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). The most significant bit (sign bit) is replicated and shifted in at the left end (most-significant
bit) of the byte.
There are three operands: VPSHAB dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a128-bit memory location specified by ModRM.r/m.

• When XOP.W = 1, count is either an XMM register or a 128-bit memory location specified by
ModRM.r/m and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPSHAB Packed Shift Arithmetic
Bytes

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHAB xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 98 /r

VPSHAB xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 98 /r

Instruction Reference VPSHAB 719

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

720 VPSHAD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Shifts each signed doubleword of the source operand as specified by a count byte and writes the result
to the corresponding doubleword of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding doubleword of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the doubleword.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). The most significant bit (sign bit) is replicated and shifted in at the left end (most-significant
bit) of the doubleword.
There are three operands: VPSHAD dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.

• When XOP.W = 1, count is either an XMM register or a memory location specified by
ModRM.r/m and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB,
VPSHAW, VPSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPSHAD Packed Shift Arithmetic
Doublewords

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHAD xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 9A /r

VPSHAD xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 9A /r

Instruction Reference VPSHAD 721

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

722 VPSHAQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Shifts each signed quadword of the source as specified by a count byte and writes the result to the cor-
responding quadword of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding quadword element of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the quadword.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). The most significant bit is replicated and shifted in at the left end (most-significant bit) of the
quadword.
The shift amount is stored in two’s-complement form. The count is modulo 64.
There are three operands: VPSHAQ dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.

• When XOP.W = 1, count is either an XMM register or a memory location specified by
ModRM.r/m and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB,
VPSHAW, VPSHAD

VPSHAQ Packed Shift Arithmetic
Quadwords

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHAQ xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 9B /r

VPSHAQ xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 9B /r

Instruction Reference VPSHAQ 723

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

724 VPSHAW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Shifts each signed word of the source as specified by a count byte and writes the result to the corre-
sponding word of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding word of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the word.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). The most significant bit (signed bit) is replicated and shifted in at the left end (most-significant
bit) of the word.
The shift amount is stored in two’s-complement form. The count is modulo 16.
There are three operands: VPSHAW dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.

• When XOP.W = 1, count is either an XMM register or a memory location specified by
ModRM.r/m and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHLQ, VPSHAB,
VPSHAD, VPSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPSHAW Packed Shift Arithmetic
Words

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHAW xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 99 /r

VPSHAW xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 99 /r

Instruction Reference VPSHAW 725

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

726 VPSHLB Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Shifts each packed byte of the source as specified by a count byte and writes the result to the corre-
sponding byte of the destination.
The count bytes are 8-bit signed two's-complement values located in the corresponding byte element
of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the byte.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). Zeros are shifted in at the left end (most-significant bit) of the byte.
There are three operands: VPSHLB dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.

• When XOP.W = 1, count is either an XMM register or a memory location specified by
ModRM.r/m and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLW, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPSHLB Packed Shift Logical
Bytes

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHLB xmm1, xmm2/mem128, xmm3 8F RXB.01001 0.src.0.00 94 /r

VPSHLB xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 94 /r

Instruction Reference VPSHLB 727

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

728 VPSHLD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Shifts each doubleword of the source operand as specified by a count byte and writes the result to the
corresponding doubleword of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding doubleword element of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the doubleword.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). Zeros are shifted in at the left end (most-significant bit) of the doubleword.
The shift amount is stored in two’s-complement form. The count is modulo 32.
There are three operands: VPSHLD dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.

• When XOP.W = 1, count is either an XMM register or a memory location specified by
ModRM.r/m and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPSHLD Packed Shift Logical
Doublewords

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHLD xmm1, xmm3/mem128, xmm2 8F RXB.01001 0.src.0.00 96 /r

VPSHLD xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 96 /r

Instruction Reference VPSHLD 729

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

730 VPSHLQ Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Shifts each quadwords of the source by as specified by a count byte and writes the result in the corre-
sponding quadword of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding quadword element of the count operand.
Bit 6 of the count byte is ignored.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the quadword.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). Zeros are shifted in at the left end (most-significant bit) of the quadword.
There are three operands: VPSHLQ dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.

• When XOP.W = 1, count is either an XMM register or a memory location specified by
ModRM.r/m and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROTW, VPROTD, VPROTQ, VPSHLB, VPSHLW, VPSHLD, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPSHLQ Packed Shift Logical
Quadwords

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHLQ xmm1, xmm3/mem128, xmm2 8F RXB.01001 0.src.0.00 97 /r

VPSHLQ xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 97 /r

Instruction Reference VPSHLQ 731

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

732 VPSHLW Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Shifts each word of the source operand as specified by a count byte and writes the result to the corre-
sponding word of the destination.
The count bytes are 8-bit signed two's-complement values located in the low-order byte of the corre-
sponding word element of the count operand.
When the count value is positive, bits are shifted to the left (toward the more significant bit positions).
Zeros are shifted in at the right end (least-significant bit) of the word.
When the count value is negative, bits are shifted to the right (toward the least significant bit posi-
tions). Zeros are shifted in at the left end (most-significant bit) of the word.
There are three operands: VPSHLW dest, src, count
The destination (dest) is an XMM register specified by ModRM.reg.
Both src and count are configured by XOP.W.
• When XOP.W = 0, count is an XMM register specified by XOP.vvvv and src is either an XMM

register or a memory location specified by ModRM.r/m.

• When XOP.W = 1, count is either an XMM register or a memory location specified by
ModRM.r/m and src is an XMM register specified by XOP.vvvv.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

This is an XOP instruction. Support for these instructions is indicated by CPUID
Fn8000_00001_ECX[XOP] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VPROTB, VPROLW, VPROTD, VPROTQ, VPSHLB, VPSHLD, VPSHLQ, VPSHAB, VPSHAW,
VPSHAD, VPSHAQ

rFLAGS Affected

None

MXCSR Flags Affected

None

VPSHLW Packed Shift Logical
Words

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

VPSHLW xmm1, xmm3/mem128, xmm2 8F RXB.01001 0.src.0.00 95 /r

VPSHLW xmm1, xmm2, xmm3/mem128 8F RXB.01001 1.src.0.00 95 /r

Instruction Reference VPSHLW 733

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

734 VPTESTPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Tests whether selected bits in the first source operand are all zeros or all ones. The second source
operand selects the bits to test.
First, performs a bitwise AND of the sign bits of each double-precision floating-point element of the
first source operand with the sign bits of the corresponding elements of the second source operand.
Sets rFLAGS.ZF when all bit operations = 0; else, clears ZF.
Second, performs a bitwise AND of the sign bits of each double-precision floating-point element of
the first source with the complements (NOT) of the sign bits of the corresponding elements of the sec-
ond source operand. Sets rFLAGS.CF when all bit operations = 0; else, clears CF.
Neither source operand is modified.
This extended-form instruction has both 128-bit and 256-bit encoding.

XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.

YMM Encoding

The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location.
VTESTPD is an AVX instruction. Support for these instructions is indicated by CPUID feature iden-
tifiers (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

PTEST, VTESTPS

rFLAGS Affected

MXCSR Flags Affected

None

VTESTPD Packed Bit Test

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VTESTPD xmm1, xmm2/mem128 C4 RXB.00010 0.1111.0.01 0F /r

VTESTPD ymm1, ymm2/mem256 C4 RXB.00010 0.1111.1.01 0F /r

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3 and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank. Undefined
flags are U.

Instruction Reference VPTESTPD 735

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
X X AVX instructions are only recognized in protected mode.
X X X CR0.EM = 1.

X X X CR4.OSFXSR = 0.
X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.

X VEX.W = 1.
X VEX.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X X X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X X Instruction execution caused a page fault.

X — AVX exception

736 VPTESTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Tests whether selected bits in the first source operand are all zeros or all ones. The second source
operand selects the bits to test.
First, performs a bitwise AND of the sign bits of each single-precision floating-point element of the
first source operand with the sign bits of the corresponding elements of the second source operand.
Sets rFLAGS.ZF when all bit operations = 0; else, clears ZF.
Second, performs a bitwise AND of the sign bits of each single-precision floating-point element of
the first source with the complements (NOT) of the sign bits of the corresponding elements of the sec-
ond source operand. Sets rFLAGS.CF when all bit operations = 0; else, clears CF.
Neither source operand is modified.
This extended-form instruction has both 128-bit and 256-bit encoding.

XMM Encoding

The first source operand is an XMM register. The second source operand is either an XMM register or
a 128-bit memory location.

YMM Encoding

The first source operand is a YMM register. The second source operand is either a YMM register or a
256-bit memory location.

VTESTPS is an AVX instruction. Support for these instructions is indicated by CPUID feature identi-
fiers (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

PTEST, VTESTPD

rFLAGS Affected

MXCSR Flags Affected

None

VTESTPS Packed Bit Test

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VTESTPS xmm1, xmm2/mem128 C4 RXB.00010 0.1111.0.01 0E /r

VTESTPS ymm1, ymm2/mem256 C4 RXB.00010 0.1111.1.01 0E /r

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M M M M

21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3 and 1 are reserved. A flag set or cleared is M (modified). Unaffected flags are blank. Undefined

flags are U.

Instruction Reference VPTESTPS 737

26568—Rev. 3.14—December 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
X X AVX instructions are only recognized in protected mode.
X X X CR0.EM = 1.

X X X CR4.OSFXSR = 0.
X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.

X VEX.W = 1.
X VEX.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X X X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X X Instruction execution caused a page fault.

X — AVX exception

738 VZEROALL Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Clears all YMM registers.
In 64-bit mode, YMM0–15 are all cleared (set to all zeros). In legacy and compatibility modes, only
YMM0–7 are cleared. The contents of the MXCSR is unaffected.

This is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VZEROUPPER

rFLAGS Affected

None

MXCSR Flags Affected

None

VZEROALL Zero
All YMM Registers

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VZEROALL C4 RXB.00001 X.1111.1.00 77

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
A — AVX exception.

Instruction Reference VZEROUPPER 739

26568—Rev. 3.14—December 2011 AMD64 Technology

Clears the upper octword of all YMM registers. The corresponding XMM registers (lower octword of
each YMM register) are not affected.
In 64-bit mode, the instruction operates on registers YMM0–15. In legacy and compatibility mode,
the instruction operates on YMM0–7. The contents of the MXCSR is unaffected.

This is an AVX instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[AVX] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

VZEROUPPER

rFLAGS Affected

None

MXCSR Flags Affected

None

VZEROUPPER Zero
All YMM Registers Upper

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VZEROUPPER C4 RXB.00001 X.1111.0.00 77

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
A — AVX exception.

740 XORPD, VXORPD Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Performs bitwise XOR of two packed double-precision floating-point values in the first source oper-
and with the corresponding values of the second source operand and writes the results into the corre-
sponding elements of the destination.

There are legacy and extended forms of the instruction:

XORPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VXORPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

XORPD is an SSE2 instruction and VXORPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPS

rFLAGS Affected

None

XORPD
VXORPD

XOR
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

XORPD xmm1, xmm2/mem128 66 0F 57 /r Performs bitwise XOR of two packed double-precision
floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VXORPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 57 /r

VXORPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 57 /r

Instruction Reference XORPD, VXORPD 741

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

742 XORPS, VXORPS Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Performs bitwise XOR of four packed single-precision floating-point values in the first source oper-
and with the corresponding values of the second source operand and writes the results into the corre-
sponding elements of the destination.

There are legacy and extended forms of the instruction:

XORPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VXORPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.
YMM Encoding
The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

XORPS is an SSE2 instruction and VXORPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_00001_EDX[SSE2] and Fn0000_00001_ECX[AVX] (see the CPUID
Specification, order# 25481).

Instruction Encoding

Related Instructions

(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD

rFLAGS Affected

None

XORPS
VXORPS

XOR
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

XORPS xmm1, xmm2/mem128 66 0F 57 /r Performs bitwise XOR of four packed single-precision
floating-point values in xmm1 with corresponding values in
xmm2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

VXORPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 57 /r

VXORPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 57 /r

Instruction Reference XORPS, VXORPS 743

26568—Rev. 3.14—December 2011 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

744 XGETBV Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

Copies the content of the extended control register (XCR) specified by the ECX register into the
EDX:EAX register pair. The high-order 32 bits of the XCR are loaded into EDX and the low-order 32
bits are loaded into EAX. The corresponding high-order 32 bits of RAX and RDX are cleared.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality. See Listing for the instruction
XSAVE – Save Extended States for more information.
Values returned to EDX:EAX in unimplemented bit locations are undefined.
Specifying a reserved or unimplemented XCR in ECX causes a general protection exception.
Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. All other values
of ECX are reserved.

XGETBV is an XSAVE/XRSTOR instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[XSAVE] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

RDMSR, XSETBV

rFLAGS Affected

None

MXCSR Flags Affected

None

XGETBV Get Extended Control Register Value

Mnemonic Opcode Description

XGETBV 0F 01 D0 Copies content of the XCR specified by ECX into
EDX:EAX.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

X X X Lock prefix (F0h) preceding opcode.
X X X CR4[OSFXSR] = 0

General protection, #GP X X X ECX specifies a reserved or unimplemented XCR address.

X — exception generated

Instruction Reference XRSTOR 745

26568—Rev. 3.14—December 2011 AMD64 Technology

Restores processor state from memory.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality. See Listing for the instruction
XSAVE – Save Extended States for more information.
The XSAVE/XRSTOR save area consists of a header section and individual save areas for each pro-
cessor state component. A component save area is updated when both the corresponding bits in the
mask operand (EDX:EAX) and the XFEATURE_ENABLED_MASK (XCR0) register are set. A
component save area is not updated when either of the corresponding bits in EDX:EAX or XCR0 is
cleared. Updated state is either loaded from memory or set directly to hardware-specified initial val-
ues, depending on the corresponding xstate_bv bit in the save area header.
Software can set any bit in EDX:EAX, regardless of whether the bit position in XCR0 is valid for the
processor. When the mask operand contains all 1's, all processor state components enabled in XCR0
are updated.

XRSTOR is an XSAVE/XRSTOR instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[XSAVE] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

XGETBV, XSAVE, XSAVEOPT, XSETBV

rFLAGS Affected

None

MXCSR Flags Affected

None

XRSTOR Restore Extended States

Mnemonic Opcode Description

XRSTOR mem 0F AE /5 Restores user-specified processor state from memory.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

746 XRSTOR Instruction Reference

AMD64 Technology 26568—Rev. 3.14—December 2011

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.

X X X Any must be zero (MBZ) bits in the save area were set.
X X X Attempt to set reserved bits in MXCSR.

Page fault, #PF X X X Instruction execution caused a page fault.

X — exception generated

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Instruction Reference XSAVE 747

26568—Rev. 3.14—December 2011 AMD64 Technology

Saves a user-defined subset of enabled processor state data to a specified memory address.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality.
The XSAVE/XRSTOR save area consists of a header section, and individual save areas for each pro-
cessor state component. A component is saved when both the corresponding bits in the mask operand
(EDX:EAX) and the XFEATURE_ENABLED_MASK (XCR0) register are set. A component is not
saved when either of the corresponding bits in EDX:EAX or XCR0 is cleared.
Software can set any bit in EDX:EAX, regardless of whether the bit position in XCR0 is valid for the
processor. When the mask operand contains all 1's, all processor state components enabled in XCR0
are saved.
For each component saved, XSAVE sets the corresponding bit in the XSTATE_BV field of the save
area header. XSAVE does not clear XSTATE_BV bits or modify individual save areas for components
that are not saved. If a saved component is in the hardware-specified initialized state, XSAVE may
clear the corresponding XSTATE_BV bit instead of setting it. This optimization is implementation-
dependent.

XSAVE is an XSAVE/XRSTOR instruction. Support for these instructions is indicated by CPUID
Fn0000_00001_ECX[XSAVE] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

XGETBV, XRSTOR, XSAVEOPT, XSETBV

rFLAGS Affected

None

MXCSR Flags Affected

None

XSAVE Save Extended States

Mnemonic Opcode Description

XSAVE mem 0F AE /4 Saves user-specified processor state to memory.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.

Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

748

AMD64 Technology 26568—Rev. 3.14—December 2011

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.

X X X Attempt to write read-only memory.
Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

749

26568—Rev. 3.14—December 2011 AMD64 Technology

Saves a user-defined subset of enabled processor state data to a specified memory address.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality. See Listing for the instruction
XSAVE – Save Extended States for more information.
The XSAVE/XRSTOR save area consists of a header section, and individual save areas for each pro-
cessor state component. A component is saved when both the corresponding bits in the mask operand
(EDX:EAX) and the XFEATURE_ENABLED_MASK (XCR0) register are set. A component is not
saved when either of the corresponding bits in EDX:EAX or XCR0 is cleared.
Software can set any bit in EDX:EAX, regardless of whether the bit position in XCR0 is valid for the
processor. When the mask operand contains all 1's, all processor state components enabled in XCR0
are saved.
For each component saved, XSAVEOPT sets the corresponding bit in the XSTATE_BV field of the
save area header. XSAVEOPT does not clear XSTATE_BV bits or modify individual save areas for
components that are not saved. If a saved component is in the hardware-specified initialized state,
XSAVEOPT may clear the corresponding XSTATE_BV bit instead of setting it. This optimization is
implementation-dependent.
XSAVEOPT may provide other implementation-specific optimizations.

Support for XSAVEOPT is indicated by CPUID Fn0000_0000D_EAX_x1[XSAVEOPT] (see the
CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

XGETBV, XRSTOR, XSAVE, XSETBV

rFLAGS Affected

None

MXCSR Flags Affected

None

XSAVEOPT Save Extended States
Performance Optimized

Mnemonic Opcode Description

XSAVEOPT mem 0F AE /6 Saves user-specified processor state to memory.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM X X X CR0.TS = 1.

750

AMD64 Technology 26568—Rev. 3.14—December 2011

Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.

X X X Memory operand not aligned on 64-byte boundary.
X X X Attempt to write read-only memory.

Page fault, #PF X X X Instruction execution caused a page fault.

X — exception generated

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

751

26568—Rev. 3.14—December 2011 AMD64 Technology

Writes the content of the EDX:EAX register pair into the extended control register (XCR) specified
by the ECX register. The high-order 32 bits of the XCR are loaded from EDX and the low-order 32
bits are loaded from EAX. The corresponding high-order 32 bits of RAX and RDX are ignored.
This instruction and associated data structures extend the FXSAVE/FXRSTOR memory image used
to manage processor states and provide additional functionality. See Listing for the instruction
XSAVE – Save Extended States for more information.
Currently, only the XFEATURE_ENABLED_MASK register (XCR0) is supported. Specifying a
reserved or unimplemented XCR in ECX causes a general protection exception (#GP).
Executing XSETBV at a privilege level other than 0 causes a general-protection exception. A general
protection exception also occurs when software attempts to write to reserved bits of an XCR.

The XGETBV instruction is an XSAVE/XRSTOR instruction. Support for these instructions is indi-
cated by CPUID Fn0000_00001_ECX[XSAVE] (see the CPUID Specification, order# 25481).

Instruction Encoding

Related Instructions

XGETBV, XRSTOR, XSAVE, XSAVEOPT

rFLAGS Affected

None

MXCSR Flags Affected

None

XSETBV Set Extended Control Register Value

Mnemonic Opcode Description

XSETBV 0F 01 D1 Writes the content of the EDX:EAX register pair to
the XCR specified by the ECX register.

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X Instruction not supported, as indicated by CPUID feature identifier.
X X CR4.OSFXSR = 0.
X X Lock prefix (F0h) preceding opcode.

General protection, #GP

X X CPL != 0.
X X ECX specifies a reserved or unimplemented XCR address.
X X Any must be zero (MBZ) bits in the XCR were set.

X X Setting XCR0[2:1] to 10b.
X X Writing 0 to XCR[0].

X — exception generated

752

AMD64 Technology 26568—Rev. 3.14—December 2011

753

26568—Rev. 3.14—December 2011 AMD64 Technology

3 Exception Summary

This chapter provides a ready reference to instruction exceptions. Table 3-1 shows instructions
grouped by exception class, with the extended and legacy instruction type (if applicable). Examples
of the exception tables for each class, in numeric order, follow the table.

Table 3-1. Instructions By Exception Class

Mnemonic Extended Type Legacy Type
Class 1 — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b
MOVAPD VMOVAPD AVX SSE2

MOVAPS VMOVAPS AVX SSE

MOVDQA VMOVDQA AVX SSE2

MOVNTDQ VMOVNTDQ AVX SSE2

MOVNTPD VMOVNTPD AVX SSE2

MOVNTPS VMOVNTPS AVX SSE

Class 1A — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b, VEX.L = 1
MOVNTDQA VMOVNTDQA AVX SSE4.1

Class 2 — AVX, SSE, 16/32-byte nonaligned, SIMD 111111
DIVPD VDIVPD AVX SSE2

DIVPS VDIVPS AVX SSE

Class 2-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011
ADDPD VADDPD AVX SSE2

ADDPS VADDPS AVX SSE

ADDSUBPD VADDSUBPD AVX SSE2

ADDSUBPS VADDSUBPS AVX SSE

DPPS VDPPS AVX SSE4.1

HADDPD VHADDPD AVX SSE3

HADDPS VHADDPS AVX SSE3

HSUBPD VHSUBPD AVX SSE3

HSUBPS VHSUBPS AVX SSE3

SUBPD VSUBPD AVX SSE2

SUBPS VSUBPS AVX SSE

Class 2-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 000011
CMPPD VCMPPD AVX SSE2

CMPPS VCMPPS AVX SSE

MAXPD VMAXPD AVX SSE2

MAXPS VMAXPS AVX SSE

MINPD VMINPD AVX SSE2

MINPS VMINPS AVX SSE

MULPD VMULPD AVX SSE2

MULPS VMULPS AVX SSE

Class 2-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001
ROUNDPD, VROUNDPD AVX SSE4.1

ROUNDPS, VROUNDPS AVX SSE4.1

754

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 2A — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.L = 1 1

Class 2A-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.L = 1
DPPD VDPPD AVX SSE4.1

Class 2B — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.vvvv != 1111b 1

Class 2B-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 100000, VEX.vvvv != 1111b
CVTDQ2PS VCVTDQ2PS AVX SSE2

Class 2B-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001, VEX.vvvv != 1111b
CVTPD2DQ VCVTPD2DQ AVX SSE2

CVTPS2DQ VCVTPS2DQ AVX SSE2

CVTTPS2DQ VCVTTPS2DQ AVX SSE2

CVTTPD2DQ VCVTTPD2DQ AVX SSE2

Class 2B-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.vvvv != 1111b
CVTPD2PS VCVTPD2PS AVX SSE2

Class 2B-4 — AVX, SSE, 16/32-byte nonaligned, SIMD 100011, VEX.vvvv != 1111b
SQRTPD VSQRTPD AVX SSE2

SQRTPS VSQRTPS AVX SSE

Class 3 — AVX, SSE, <16-byte, SIMD
DIVSD VDIVSD AVX SSE2

DIVSS VDIVSS AVX SSE

Class 3-1 — AVX, SSE, <16-byte, SIMD 111011
ADDSD VADDSD AVX SSE2

ADDSS VADDSS AVX SSE

CVTSD2SS VCVTSD2SS AVX SSE2

SUBSD VSUBSD AVX SSE2

SUBSS VSUBSS AVX SSE

Class 3-2 — AVX, SSE, <16-byte, SIMD 000011
CMPSD VCMPSD AVX SSE2

CMPSS VCMPSS AVX SSE

CVTSS2SD VCVTSS2SD AVX SSE2

MAXSD VMAXSD AVX SSE2

MAXSS VMAXSS AVX SSE

MINSD VMINSD AVX SSE2

MINSS VMINSS AVX SSE

MULSD VMULSD AVX SSE2

MULSS VMULSS AVX SSE

UCOMISD VUCOMISD AVX SSE2

UCOMISS VUCOMISS AVX SSE

Class 3-3 — AVX, SSE, <16-byte, SIMD 100000
CVTSI2SD VCVTSI2SD AVX SSE2

CVTSI2SS VCVTSI2SS AVX SSE

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

755

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 3-4 — AVX, SSE, <16-byte, SIMD 100001
ROUNDSD, VROUNDSD AVX SSE4.1

ROUNDSS, VROUNDSS AVX SSE4.1

Class 3-5 — AVX, SSE, <16-byte, SIMD 100011
SQRTSD VSQRTSD AVX SSE2

SQRTSS VSQRTSS AVX SSE

Class 3A — AVX, SSE, <16-byte, SIMD 111111, VEX.vvvv != 1111b1

Class 3A-1 — AVX, SSE, <16-byte, SIMD 000011, VEX.vvvv != 1111b
COMISD VCOMISD AVX SSE2

COMISS VCOMISS AVX SSE

CVTPS2PD VCVTPS2PD AVX SSE2

Class 3A-2 — AVX, SSE, <16-byte, SIMD 100001, VEX.vvvv != 1111b
CVTSD2SI VCVTSD2SI AVX SSE2

CVTSS2SI VCVTSS2SI AVX SSE

CVTTSD2SI VCVTTSD2SI AVX SSE2

CVTTSS2SI VCVTTSS2SI AVX SSE

Class 4 — AVX, SSE, 16/32-byte nonaligned
AESDEC VAESDEC AVX AES

AESDECLAST VAESDECLAST AES AES

AESENC VAESENC AES AES

AESENCLAST VAESENCLAST AES AES

AESIMC VAESIMC AES AES

AESKEYGENASSIST VAESKEYGENASSIST AES AES

ANDNPD VANDNPD AVX SSE2

ANDNPS VANDNPS AVX SSE

ANDPD VANDPD AVX SSE2

ANDPS VANDPS AVX SSE

BLENDPD VBLENDPD AVX SSE4.1

BLENDPS VBLENDPS AVX SSE4.1

ORPD VORPD AVX SSE2

ORPS VORPS AVX SSE

PCLMULQDQ — CLMUL

SHUFPD VSHUFPD AVX SSE2

SHUFPS VSHUFPS AVX SSE2

UNPCKHPD VUNPCKHPD AVX SSE2

UNPCKHPS VUNPCKHPS AVX SSE

UNPCKLPD VUNPCKLPD AVX SSE2

UNPCKLPS VUNPCKLPS AVX SSE

XORPD VXORPD AVX SSE2

XORPS VXORPS AVX SSE

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

756

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 4A — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1
BLENDVPD VBLENDVPD AVX SSE4.1

BLENDVPS VBLENDVPS AVX SSE4.1

Class 4B — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1
MPSADBW VMPSADBW AVX SSE4.1

PACKSSDW VPACKSSDW AVX SSE2

PACKSSWB VPACKSSWB AVX SSE2

PACKUSDW VPACKUSDW AVX SSE4.1

PACKUSWB VPACKUSWB AVX SSE2

PADDB VPADDB AVX SSE2

PADDD VPADDD AVX SSE2

PADDQ VPADDQ AVX SSE2

PADDSB VPADDSB AVX SSE2

PADDSW VPADDSW AVX SSE2

PADDUSB VPADDUSB AVX SSE2

PADDUSW VPADDUSW AVX SSE2

PADDW VPADDW AVX SSE2

PALIGNR VPALIGNR AVX SSSE3

PANDN VPANDN AVX SSE2

PAND VPAND AVX SSE2

PAVGB VPAVGB AVX SSE

PAVGW VPAVGW AVX SSE

PBLENDW VPBLENDW AVX SSE4.1

PCMPEQB VPCMPEQB AVX SSE2

PCMPEQD VPCMPEQD AVX SSE2

PCMPEQQ VPCMPEQQ AVX SSE4.1

PCMPEQW VPCMPEQW AVX SSE2

PCMPGTB VPCMPGTB AVX SSE2

PCMPGTD VPCMPGTD AVX SSE2

PCMPGTQ VPCMPGTQ AVX SSE4.2

PCMPGTW VPCMPGTW AVX SSE2

PCMPISTRI VPCMPISTRI AVX SSE4.2

PCMPISTRM VPCMPISTRM AVX SSE4.2

PHADDD VPHADDD AVX SSSE3

PHADDSW VPHADDSW AVX SSSE3

PHADDW VPHADDW AVX SSSE3

PHSUBD VPHSUBD AVX SSSE3

PHSUBW VPHSUBW AVX SSSE3

PHSUBSW VPHSUBSW AVX SSSE3

PMADDUBSW VPMADDUBSW AVX SSSE3

PMADDWD VPMADDWD AVX SSE2

PMAXSB VPMAXSB AVX SSE4.1

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

757

26568—Rev. 3.14—December 2011 AMD64 Technology

PMAXSD VPMAXSD AVX SSE4.1

PMAXSW VPMAXSW AVX SSE

PMAXUB VPMAXUB AVX SSE

PMAXUD VPMAXUD AVX SSE4.1

PMAXUW VPMAXUW AVX SSE4.1

PMINSB VPMINSB AVX SSE4.1

PMINSD VPMINSD AVX SSE4.1

PMINSW VPMINSW AVX SSE

PMINUB VPMINUB AVX SSE

PMINUD VPMINUD AVX SSE4.1

PMINUW VPMINUW AVX SSE4.1

PMULDQ VPMULDQ AVX SSE4.1

PMULHRSW VPMULHRSW AVX SSSE3

PMULHUW VPMULHUW AVX SSE2

PMULHW VPMULHW AVX SSE2

PMULLD VPMULLD AVX SSE4.1

PMULLW VPMULLW AVX SSE2

PMULUDQ VPMULUDQ AVX SSE2

POR VPOR AVX SSE2

PSADBW VPSADBW AVX SSE

PSHUFB VPSHUFB AVX SSSE3

PSIGNB VPSIGNB AVX SSSE3

PSIGND VPSIGND AVX SSSE3

PSIGNW VPSIGNW AVX SSSE3

PSUBB VPSUBB AVX SSE2

PSUBD VPSUBD AVX SSE2

PSUBQ VPSUBQ AVX SSE2

PSUBSB VPSUBSB AVX SSE2

PSUBSW VPSUBSW AVX SSE2

PSUBUSB VPSUBUSB AVX SSE2

PSUBUSW VPSUBUSW AVX SSE2

PSUBW VPSUBW AVX SSE2

PUNPCKHBW VPUNPCKHBW AVX SSE2

PUNPCKHDQ VPUNPCKHDQ AVX SSE2

PUNPCKHQDQ VPUNPCKHQDQ AVX SSE2

PUNPCKHWD VPUNPCKHWD AVX SSE2

PUNPCKLBW VPUNPCKLBW AVX SSE2

PUNPCKLDQ VPUNPCKLDQ AVX SSE2

PUNPCKLQDQ VPUNPCKLQDQ AVX SSE2

PUNPCKLWD VPUNPCKLWD AVX SSE2

PXOR VPXOR AVX SSE2

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

758

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 4C — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b
LDDQU VLDDQU AVX SSE3

MOVSHDUP VMOVSHDUP AVX SSE3

MOVSLDUP VMOVSLDUP AVX SSE3

PSHUFD VPSHUFD AVX SSE2

PSHUFHW VPSHUFHW AVX SSE2

PSHUFLW VPSHUFLW AVX SSE2

PTEST VPTEST AVX SSE4.1

RCPPS VRCPPS AVX SSE

RSQRTPS VRSQRTPS AVX SSE

Class 4C-1 — AVX, SSE, 16/32-byte nonaligned, write to RO, VEX.vvvv != 1111b
MOVDQU VMOVDQU AVX SSE2

MOVUPD VMOVUPD AVX SSE2

MOVUPS VMOVUPS AVX SSE

Class 4D — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b, VEX.L = 1
MASKMOVDQU VMASKMOVDQU AVX SSE2

PABSB VPABSB AVX SSSE3

PABSD VPABSD AVX SSSE3

PABSW VPABSW AVX SSSE3

PCMPESTRI VPCMPESTRI AVX SSE4.2

PCMPESTRM VPCMPESTRM AVX SSE4.2

PHMINPOSUW VPHMINPOSUW AVX SSE4.1

Class 4E — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1, VEX.L = 1
PBLENDVB VPBLENDVB AVX SSE4.1

Class 4F — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1 (no memory argument for SSE)
PSLLD VPSLLD AVX SSE2

PSLLQ VPSLLQ AVX SSE2

PSLLW VPSLLW AVX SSE2

PSRAD VPSRAD AVX SSE2

PSRAW VPSRAW AVX SSE2

PSRLD VPSRLD AVX SSE2

PSRLQ VPSRLQ AVX SSE2

PSRLW VPSRLW AVX SSE2

Class 4G — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1, VEX.vvvv != 1111b
VTESTPD AVX —

VTESTPS AVX —

Class 5 — AVX, SSE, <16-byte
RCPSS VRCPSS AVX SSE

RSQRTSS VRSQRTSS AVX SSE

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

759

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 5A — AVX, SSE, <16-byte, VEX.L = 1
INSERTPS VINSERTPS AVX SSE4.1

PMOVZXBD VPMOVZXBD AVX SSE4.1

PMOVZXBQ VPMOVZXBQ AVX SSE4.1

PMOVZXBW VPMOVZXBW AVX SSE4.1

PMOVZXDQ VPMOVZXDQ AVX SSE4.1

PMOVZXWD VPMOVZXWD AVX SSE4.1

PMOVZXWQ VPMOVZXWQ AVX SSE4.1

Class 5B — AVX, SSE, <16-byte, VEX.vvvv != 1111b
CVTDQ2PD VCVTDQ2PD AVX SSE2

MOVDDUP VMOVDDUP AVX SSE3

Class 5C — AVX, SSE, <16-byte, VEX.vvvv != 1111b, VEX.L = 1
PINSRB VPINSRB AVX SSE4.1

PINSRD VPINSRD AVX SSE4.1

PINSRQ VPINSRQ AVX SSE4.1

PINSRW VPINSRW AVX SSE

PMOVSXBD VPMOVSXBD AVX SSE4.1

PMOVSXBQ VPMOVSXBQ AVX SSE4.1

PMOVSXBW VPMOVSXBW AVX SSE4.1

PMOVSXDQ VPMOVSXDQ AVX SSE4.1

PMOVSXWD VPMOVSXWD AVX SSE4.1

PMOVSXWQ VPMOVSXWQ AVX SSE4.1

Class 5C-1 — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b, VEX.L = 1
EXTRACTPS VEXTRACTPS AVX SSE4.1

MOVD VMOVD AVX SSE2

MOVQ VMOVQ AVX SSE2

PEXTRB VPEXTRB AVX SSE4.1

PEXTRD VPEXTRD AVX SSE4.1

PEXTRQ VPEXTRQ AVX SSE4.1

PEXTRW VPEXTRW AVX SSE4.1

Class 5D — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant)
MOVSD VMOVSD AVX SSE2

MOVSS VMOVSS AVX SSE

Class 5E — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant), VEX.L = 1
MOVHPD VMOVHPD AVX SSE2

MOVHPS VMOVHPS AVX SSE

MOVLPD VMOVLPD AVX SSE2

MOVLPS VMOVLPS AVX SSE

Class 6 — AVX, mixed memory argument1

Class 6A — AVX, mixed memory argument, VEX.W = 1
VBROADCASTSS AVX —

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

760

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 6A-1 — AVX, mixed memory argument, write to RO, VEX.W = 1
VMASKMOVPD AVX —

VMASKMOVPS AVX —

Class 6B — AVX, mixed memory argument, VEX.W = 1, VEX.L=0
VINSERTF128 AVX —

VPERM2F128 AVX —

Class 6B-1 — AVX, mixed memory argument, write to RO, VEX.W = 1, VEX.L=0
VEXTRACTF128 AVX —

Class 6C — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b, VEX.L=0
VBROADCASTSD AVX —

VBROADCASTF128 AVX —

Class 6D — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b
VBROADCASTSS AVX —

Class 6E — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b (variant)
VPERMILPD AVX —

VPERMILPS AVX —

Class 7 — AVX, SSE, no memory argument1

Class 7A — AVX, SSE, no memory argument, VEX.L = 1
MOVHLPS VMOVHLPS AVX SSE

MOVLHPS VMOVLHPS AVX SSE

PSLLDQ VPSLLDQ AVX SSE2

PSRLDQ VPSRLDQ AVX SSE2

Class 7B — AVX, SSE, no memory argument, VEX.vvvv != 1111b
MOVMSKPD VMOVMSKPD AVX SSE2

MOVMSKPS VMOVMSKPS AVX SSE

Class 7C — AVX, SSE, no memory argument, VEX.vvvv != 1111b, VEX.L = 1
PMOVMSKB VPMOVMSKB AVX SSE2

Class 8 — AVX, no memory argument, VEX.W = 1, VEX.vvvv != 1111b
VZEROALL AVX —

VZEROUPPER AVX —

Class 9 — SSE, AVX, 4-byte argument, write to RO, VEX.vvvv != 1111b, VEX.L = 1
STMXCSR VSTMXCSR AVX SSE

Class 9A — SSE, AVX, 4-byte argument, reserved MBZ=1 write, VEX.vvvv != 1111b, VEX.L = 1
LDMXCSR VLDMXCSR AVX SSE

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

761

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 10 — XOP Base
VPCMOV XOP

VPCOMB XOP —

VPCOMD XOP —

VPCOMQ XOP —

VPCOMUB XOP —

VPCOMUD XOP —

VPCOMUQ XOP —

VPCOMUW XOP —

VPCOMW XOP —

VPERMIL2PS XOP —

VPERMIL2PD XOP —

Class 10A — XOP Base, XOP.L = 1
VPPERM XOP —

VPSHAB XOP —

VPSHAD XOP —

VPSHAQ XOP —

VPSHAW XOP —

VPSHLB XOP —

VPSHLD XOP —

VPSHLQ XOP —

VPSHLW XOP —

Class 10B — XOP Base, XOP.W = 1, XOP.L = 1
VPMACSDD XOP —

VPMACSDQH XOP —

VPMACSDQL XOP —

VPMACSSDD XOP —

VPMACSSDQH XOP —

VPMACSSDQL XOP —

VPMACSSWD XOP —

VPMACSSWW XOP —

VPMACSWD XOP —

VPMACSWW XOP —

VPMADCSSWD XOP —

VPMADCSWD XOP —

Class 10C — XOP Base, XOP.W = 1, XOP.vvvv != 1111b, XOP.L = 1
VPHADDBD XOP —

VPHADDBQ XOP —

VPHADDBW XOP —

VPHADDD XOP —

VPHADDDQ XOP —

VPHADDUBD XOP —

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

762

AMD64 Technology 26568—Rev. 3.14—December 2011

VPHADDUBQ XOP —

VPHADDUBW XOP —

VPHADDUDQ XOP —

VPHADDUWD XOP —

VPHADDUWQ XOP —

VPHADDWD XOP —

VPHADDWQ XOP —

VPHSUBBW XOP —

VPHSUBDQ XOP —

VPHSUBWD XOP —

Class 10D — XOP Base, XOP.W = 1, XOP.vvvv != 1111b, SIMD 110011
VFRCZPD XOP —

VFRCZPS XOP —

VFRCZSD XOP —

VFRCZSS XOP —

Class 10E — XOP Base, XOP.vvvv != 1111b (variant), XOP.L = 1
VPROTB XOP —

VPROTD XOP —

VPROTQ XOP —

VPROTW XOP —

Class 11
F16C/CVT16 instructions

Class 12 — FMA4, 16/32-byte nonaligned, SIMD 111011
VFMADDPD FMA4 —

VFMADDPS FMA4 —

VFMADDSUBPD FMA4 —

VFMADDSUBPS FMA4 —

VFMSUBADDPD FMA4 —

VFMSUBADDPS FMA4 —

VFMSUBPD FMA4 —

VFMSUBPS FMA4 —

VFNMADDPD FMA4 —

VFNMADDPS FMA4 —

VFNMSUBPD FMA4 —

VFNMSUBPS FMA4 —

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

763

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 13 — FMA4, <16-byte, SIMD 111011
VFMADDSD FMA4 —

VFMADDSS FMA4 —

VFMSUBSD FMA4 —

VFMSUBSS FMA4 —

VFNMADDSD FMA4 —

VFNMADDSS FMA4 —

VFNMSUBSD FMA4 —

VFNMSUBSS FMA4 —

Unique Cases
XGETBV — —

XRSTOR — —

XSAVE — —

XSAVEOPT — —

XSETBV — —

1.This base class does not apply to any instruction.It is shown for reference only.

Table 3-1. Instructions By Exception Class (continued)

Mnemonic Extended Type Legacy Type

764

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 1 — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on 16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A
VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

765

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 1A — AVX, SSE, 16/32-byte aligned, write to RO, VEX.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.vvvv ! = 1111b.
A VEX.L field = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.
S S X Write to a read-only data segment.

A
VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

766

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 2 — AVX, SSE, 16/32-byte nonaligned, SIMD 111111

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

767

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 2-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

768

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 2-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 000011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

769

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 2-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

770

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 2A — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

771

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 2A-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

772

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 2B — AVX, SSE, 16/32-byte nonaligned, SIMD 111111, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

773

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 2B-1 — AVX, SSE, 16/32-byte nonaligned, SIMD 100000, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

774

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 2B-2 — AVX, SSE, 16/32-byte nonaligned, SIMD 100001, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

775

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 2B-3 — AVX, SSE, 16/32-byte nonaligned, SIMD 111011, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

776

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 2B-4 — AVX, SSE, 16/32-byte nonaligned, SIMD 100011, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Memory operand not aligned on16-byte boundary while MXCSR.MM = 0.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

777

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 3 — AVX, SSE, <16-byte, SIMD

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.

Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

778

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 3-1 — AVX, SSE, <16-byte, SIMD 111011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

779

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 3-2 — AVX, SSE, <16-byte, SIMD 000011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

780

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 3-3 — AVX, SSE, <16-byte, SIMD 100000

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

781

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 3-4 — AVX, SSE, <16-byte, SIMD 100001

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

782

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 3-5 — AVX, SSE, <16-byte, SIMD 100011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.
S S X Undefined operation.

Denormalized operand, DE S S X A source operand was a denormal value.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

783

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 3A — AVX, SSE, <16-byte, SIMD 111111, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
Division by zero, ZE S S X Division of finite dividend by zero-value divisor.

Overflow, OE S S X Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

784

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 3A-1 — AVX, SSE, <16-byte, SIMD 000011, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Denormalized operand, DE S S X A source operand was a denormal value.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

785

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 3A-2 — AVX, SSE, <16-byte, SIMD 100001, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
S S X A source operand was an SNaN value.

S S X Undefined operation.
Precision, PE S S X A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

786

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 4 — AVX, SSE, 16/32-byte nonaligned

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

787

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 4A — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

788

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 4B — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

789

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 4C — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

790

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 4C-1 — AVX, SSE, 16/32-byte nonaligned, write to RO, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

791

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 4D — AVX, SSE, 16/32-byte nonaligned, VEX.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

792

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 4E — AVX, SSE, 16/32-byte nonaligned, VEX.W = 1, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

793

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 4F — AVX, SSE, 16/32-byte nonaligned, VEX.L = 1 (no memory argument for
SSE)

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S CR0.EM = 1.

S S S CR4.OSFXSR = 0.
A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.

A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Page fault, #PF A Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

794

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 4G — AVX, 16/32-byte nonaligned, VEX.W = 1, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
X X AVX instructions are only recognized in protected mode.

X X X CR0.EM = 1.
X X X CR4.OSFXSR = 0.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

X XfeatureEnabledMask[2:1] ! = 11b.
X VEX.W = 1.
X VEX.vvvv ! = 1111b.

X REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.

Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X X X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF X X Instruction execution caused a page fault.
X — AVX exception

795

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 5 — AVX, SSE, <16-byte

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

796

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 5A — AVX, SSE, <16-byte, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

797

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 5B — AVX, SSE, <16-byte, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

798

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 5C — AVX, SSE, <16-byte, VEX.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

799

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 5C-1 — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

800

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 5D — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant)

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination enoding only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.

Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

801

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 5E — AVX, SSE, <16-byte, write to RO, VEX.vvvv != 1111b (variant), VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b (for memory destination encoding only).
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

X Null data segment used to reference memory.
Page fault, #PF S X Instruction execution caused a page fault.

Alignment check, #AC S X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

802

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 6 — AVX, mixed memory argument

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A Lock prefix (F0h) preceding opcode.
Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

803

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 6A — AVX, mixed memory argument, VEX.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

804

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 6A-1 — AVX, mixed memory argument, write to RO, VEX.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.

Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

S S X Write to a read-only data segment.
Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

805

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 6B — AVX, mixed memory argument, VEX.W = 1, VEX.L = 0

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

806

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 6B-1 — AVX, mixed memory argument, write to RO, VEX.W = 1, VEX.L = 0

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

A Memory address exceeding data segment limit or non-canonical.

A Write to a read-only data segment.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

807

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 6C — AVX, mixed memory argument, VEX.W = 1, VEX.L = 0

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A VEX.vvvv ! = 1111b.
A VEX.L = 0.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

A Lock prefix (F0h) preceding opcode.
Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.
A Null data segment used to reference memory.

Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

808

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 6D — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

809

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 6E — AVX, mixed memory argument, VEX.W = 1, VEX.vvvv != 1111b (variant)

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A VEX.vvvv ! = 1111b (for versions with immediate byte operand only).
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
Stack, #SS A Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
A Memory address exceeding data segment limit or non-canonical.

A Null data segment used to reference memory.
Page fault, #PF A Instruction execution caused a page fault.

Alignment check, #AC A 4 or 8-byte unaligned memory reference with alignment checking enabled
and MXCSR.MM = 1.

A — AVX exception.

810

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 7 — AVX, SSE, no memory argument

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

811

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 7A — AVX, SSE, no memory argument, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.L = 1.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

812

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 7B — AVX, SSE, no memory argument, VEX.vvvv != 1111b

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM S S X CR0.TS = 1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

813

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 7C — AVX, SSE, no memory argument, VEX.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv field ! = 1111b.
A VEX.L field = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

814

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 8 — AVX, no memory argument, VEX.vvvv != 1111b, VEX.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

A Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.W = 1.

A VEX.vvvv ! = 1111b.
A REX, F2, F3, or 66 prefix preceding VEX prefix.
A Lock prefix (F0h) preceding opcode.

Device not available, #NM A CR0.TS = 1.
A — AVX exception.

815

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 9 — AVX, 4-byte argument, write to RO, vex.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S X Write to a read-only data segment.

S S S Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

816

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 9A — AVX, 4-byte argument, reserved MBZ = 1, vex.vvvv != 1111b, VEX.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.

A CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S CR0.EM = 1.
S S S CR4.OSFXSR = 0.

A XfeatureEnabledMask[2:1] ! = 11b.
A VEX.vvvv ! = 1111b.
A VEX.L = 1.

A REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM S S X CR0.TS = 1.

Stack, #SS S S X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
S S X Memory address exceeding data segment limit or non-canonical.
S S S Null data segment used to reference memory.

S S X Attempt to load non-zero values into reserved MXCSR bits
Page fault, #PF X Instruction execution caused a page fault.
Alignment check, #AC S X Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

817

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 10 — XOP Base

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

818

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 10A — XOP Base, XOP.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.L = 1.

X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.

Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

819

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 10B — XOP Base, XOP.W = 1, XOP.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.

X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

820

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 10C — XOP Base, XOP.W = 1, XOP.vvvv != 1111b, XOP.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.

A XOP.vvvv ! = 1111b.
X XOP.L = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Lock prefix (F0h) preceding opcode.
Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.
X Null data segment used to reference memory.

Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

821

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 10D — XOP Base, SIMD 11011, XOP.vvvv != 1111b, XOP.W = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.W = 1.

X XOP.vvvv ! = 1111b.
X REX, F2, F3, or 66 prefix preceding XOP prefix.

X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0.
See SIMD Floating-Point Exceptions below for details.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF S S X Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
X A source operand was an SNaN value.
X Undefined operation.

Denormalized operand, DE X A source operand was a denormal value.

Underflow, UE X Rounded result too small to fit into the format of the destination operand.
Precision, PE X A result could not be represented exactly in the destination format.
X — XOP exception

822

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 10E — XOP Base, XOP.vvvv != 1111b (variant), XOP.L = 1

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X Instruction not supported, as indicated by CPUID feature identifier.
X X XOP instructions are only recognized in protected mode.

X CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
X XfeatureEnabledMask[2:1] ! = 11b.
X XOP.vvvv ! = 1111b (for immediate operand variant only)

X XOP.L field = 1.
X REX, F2, F3, or 66 prefix preceding XOP prefix.
X Lock prefix (F0h) preceding opcode.

Device not available, #NM X CR0.TS = 1.
Stack, #SS X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
X Memory address exceeding data segment limit or non-canonical.

X Null data segment used to reference memory.
Page fault, #PF X Instruction execution caused a page fault.

Alignment check, #AC X Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

X — XOP exception

823

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 11 — Reserved for future use

824

AMD64 Technology 26568—Rev. 3.14—December 2011

Class 12 — FMA4, 8/16-byte nonaligned, SIMD 111011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.

Alignment check, #AC F Unaligned memory reference with alignment checking enabled and
MXCSR.MM = 1.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.

F Undefined operation.
Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.

Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

825

26568—Rev. 3.14—December 2011 AMD64 Technology

Class 13 — FMA4, <16-byte, SIMD 111011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

F Instruction not supported, as indicated by CPUID feature identifier.
F F FMA4 instructions are only recognized in protected mode.

F CR4.OSXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
F XfeatureEnabledMask[2:1] ! = 11b.
F REX, F2, F3, or 66 prefix preceding VEX prefix.

F Lock prefix (F0h) preceding opcode.

F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

Device not available, #NM F CR0.TS = 1.

Stack, #SS F Memory address exceeding stack segment limit or non-canonical.

General protection, #GP
F Memory address exceeding data segment limit or non-canonical.
F Null data segment used to reference memory.

Page fault, #PF F Instruction execution caused a page fault.
Alignment check, #AC F Unaligned memory reference with alignment checking enabled.

SIMD floating-point, #XF F Unmasked SIMD floating-point exception while CR4.OSXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid operation, IE
F A source operand was an SNaN value.

F Undefined operation.
Denormalized operand, DE F A source operand was a denormal value.
Overflow, OE F Rounded result too large to fit into the format of the destination operand.

Underflow, UE F Rounded result too small to fit into the format of the destination operand.
Precision, PE F A result could not be represented exactly in the destination format.
F — FMA4 exception

826

AMD64 Technology 26568—Rev. 3.14—December 2011

XGETBV

XRSTOR

XSAVE/XSAVEOPT

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X Lock prefix (F0h) preceding opcode.

General protection, #GP X X X ECX specifies a reserved or unimplemented XCR address.
X — exception generated

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.

X X X Lock prefix (F0h) preceding opcode.
Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.
X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.

X X X Any must be zero (MBZ) bits in the save area were set.
X X X Attempt to set reserved bits in MXCSR.

Page fault, #PF X X X Instruction execution caused a page fault.

X — exception generated

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD
X X X Instruction not supported, as indicated by CPUID feature identifier.
X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

Device not available, #NM X X X CR0.TS = 1.
Stack, #SS X X X Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

X X X Memory address exceeding data segment limit or non-canonical.

X X X Null data segment used to reference memory.
X X X Memory operand not aligned on 64-byte boundary.
X X X Attempt to write read-only memory.

Page fault, #PF X X X Instruction execution caused a page fault.
X — exception generated

827

26568—Rev. 3.14—December 2011 AMD64 Technology

XSETBV

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X X Instruction not supported, as indicated by CPUID feature identifier.

X X X CR4.OSFXSR = 0.
X X X Lock prefix (F0h) preceding opcode.

General protection, #GP

X X X CPL != 0.

X X X ECX specifies a reserved or unimplemented XCR address.
X X X Any must be zero (MBZ) bits in the save area were set.
X X X Writing 0 to XCR0.

X — exception generated

Note:
In virtual mode, only #UD for Instruction not supported and #GP for CPL != 0 are supported.

828

AMD64 Technology 26568—Rev. 3.14—December 2011

829

26568—Rev. 3.14—December 2011 AMD64 Technology

Appendix A AES Instructions

This appendix gives background information concerning the use of the AES instruction subset in the
implementation of encryption compliant to the Advanced Encryption Standard (AES).

A.1 AES Overview

This section provides an overview of AMD64 instructions that support AES software implementation.

The U.S. National Institute of Standards and Technology has adopted the Rijndael algorithm, a block
cipher that processes 16-byte data blocks using a shared key of variable length, as the Advanced
Encryption Standard (AES). The standard is defined in Federal Information Processing Standards
Publication 197 (FIPS 197), Specification for the Advanced Encryption Standard (AES). There are
three versions of the algorithm, based on key widths of 16 (AES-128), 24 (AES-192), and 32 (AES-
256) bytes.

The following AMD64 instructions support AES implementation:

• AESDEC/VAESDEC and AESDECLAST/VAESDECLAST
Perform one round of AES decryption

• AESENC/VAESENC and AESENCLAST/VAESENCLAST
Perform one round of AES encryption

• AESIMC/VAESIMC
Perform the AES InvMixColumn transformation

- AESKEYGENASSIST/VAESKEYGENASSIST
Assist AES round key generation

- PCLMULQDQ, VPCLMULQDQ
Perform carry-less multiplication

See Chapter 2, “Instruction Reference” for detailed descriptions of the instructions.

A.2 Coding Conventions

This overview uses descriptive code that has the following basic characteristics.

• Syntax and notation based on the C language

• Four numerical data types:

- bool: The numbers 0 and 1, the values of the Boolean constants false and true

- nat: The infinite set of all natural numbers, including bool as a subtype

- int: The infinite set of all integers, including nat as a subtype

- rat: The infinite set of all rational numbers, including int as a subtype

830

AMD64 Technology 26568—Rev. 3.14—December 2011

• Standard logical and arithmetic operators

• Enumeration (enum) types, arrays, structures (struct), and union types

• Global and local variable and constant declarations, initializations, and assignments

• Standard control constructs (if, then, else, for, while, switch, break, and continue)

• Function subroutines

• Macro definitions (#define)

A.3 AES Data Structures

The AES instructions operate on 16-byte blocks of text called the state. Each block is represented as a
4 × 4 matrix of bytes which is assigned the Galois field matrix data type (GFMatrix). In the AMD64
implementation, the matrices are formatted as 16-byte vectors in XMM registers or 128-bit memory
locations. This overview represents each matrix as a sequence of 16 bytes in little-endian format (least
significant byte on the right and most significant byte on the left).

Figure A-1 shows a state block in 4 × 4 matrix representation.

Figure A-1. GFMatrix Representation of 16-byte Block

Figure A-2 shows the AMD64 AES format, with the corresponding mapping of FIPS 197 AES
“words” to operand bytes.

Figure A-2. GFMatrix to Operand Byte Mappings

GFMatrix =

X3,0

X3,1

X3,2

X3,3

X2,0

X2,1

X2,2

X2,3

X1,0

X1,1

X1,2

X1,3

X0,0

X0,1

X0,2

X0,3

0715 81623243140 323948 47555663647172798087889596103104111112119120127

X3,0X3,1X3,2X3,3 X2,0X2,1X2,2X2,3 X1,0X1,1X1,2X1,3 X0,0X0,1X0,2X0,3

⎨ ⎩⎧⎨ ⎩⎧ ⎨ ⎩⎧ ⎨ ⎩⎧

AES Word 0AES Word 1AES Word 2AES Word 3

XMM Register or 128-bit Memory Operand

831

26568—Rev. 3.14—December 2011 AMD64 Technology

A.4 Algebraic Preliminaries

AES operations are based on the Galois field GF = GF(28), of order 256, constructed by adjoining a
root of the irreducible polynomial

to the field of two elements, ℤ2. Equivalently, GF is the quotient field ℤ2[X]/p(X) and thus may be
viewed as the set of all polynomials of degree less than 8 in ℤ2[X] with the operations of addition and
multiplication modulo p(X). These operations may be implemented efficiently by exploiting the
mapping from ℤ2[X] to the natural numbers given by

anXn + … + a1X+a0 → 2nan + … + 2a1 + a0 → an … a1a0b

For example:

1 → 01h
X → 02h
X2 → 04h

X4 + X3 + 1 → 19h

p(X)→ 11Bh

Thus, each element of GF is identified with a unique byte. This overview uses the data type GF256 as
an alias of nat, to identify variables that are to be thought of as elements of GF.

The operations of addition and multiplication in GF are denoted by ⊕ and ⊙, respectively. Since ℤ2 is
of characteristic 2, addition is simply the “exclusive or” operation:

x ⊕ y = x^ y

In particular, every element of GF is its own additive inverse.

Multiplication in GF may be computed as a sequence of additions and multiplications by 2. Note that
this operation may be viewed as multiplication in ℤ2[X] followed by a possible reduction modulo p(X).
Since 2 corresponds to the polynomial X and 11B corresponds to p(X), for any x ∈ GF,

Now, if y = b7…b1b0b, then

x ⊙ y = 2 ⊙ (…(2 ⊙ (2 ⊙ (b7 ⊙ x) ⊕ b6 ⊙x) ⊕ b5 ⊙ x) …b0.

This computation is performed by the GFMul() function.

p X() X
8

X
4

X
3

X 1+ + + +=

⎧
⎨
⎩

2 ⊙ x = x << 1

(x << 1) ⊕ 11Bh

if x < 80h

if x ≥ 80h

832

AMD64 Technology 26568—Rev. 3.14—December 2011

A.4.1 Multiplication in the Field GF

The GFMul() function operates on GF256 elements in SRC1 and SRC2 and returns a GF256 matrix
in the destination.

GF256 GFMul(GF256 x, GF256 y) {
 nat sum = 0;
 for (int i=7; i>=0; i--) {
 // Multiply sum by 2. This amounts to a shift followed
 // by reduction mod 0x11B:
 sum <<= 1;
 if (sum > 0xFF) {sum = sum ^ 0x11B;}
 // Add y[i]*x:
 if (y[i]) {sum = sum ^ x;}
 }
 return sum;
}

Because the multiplicative group GF* is of order 255, the inverse of an element x of GF may be
computed by repeated multiplication as x--1 = x254. A more efficient computation, however, is
performed by the GFInv() function as an application of Euclid’s greatest common divisor algorithm.
See Section A.11, “Computation of GFInv with Euclidean Greatest Common Divisor” for an analysis
of this computation and the GFInv() function.

The AES algorithms operate on the vector space GF4, of dimension 4 over GF, which is represented by
the array type GFWord. FIPS 197 refers to an object of this type as a word. This overview uses the
term GF word in order to avoid confusion with the AMD64 notion of a 16-bit word.

A GFMatrix is an array of four GF words, which are viewed as the rows of a 4 × 4 matrix over GF.

The field operation symbols ⊕ and ⊙ are used to denote addition and multiplication of matrices over
GF as well. The GFMatrixMul() function computes the product A ⊙ B of 4 × 4 matrices.

A.4.2 Multiplication of 4x4 Matrices Over GF
, GFMatrix GFMatrixMul(GFMatrix a, GFMatrix b) {
 GFMatrix c;
 for (nat i=0; i<4; i++) {
 for (nat j=0; j<4; j++) {
 c[i][j] = 0;
 for (nat k=0; k<4; k++) {
 c[i][j] = c[i][j] ^ GFMul(a[i][k], b[k][j]);
 }
 }
 }
 return c;
}

833

26568—Rev. 3.14—December 2011 AMD64 Technology

A.5 AES Operations

The AES encryption and decryption procedures may be specified as follows, in terms of a set of basic
operations that are defined later in this section. See the alphabetic instruction reference for detailed
descriptions of the instructions that are used to implement the procedures.

Call the Encrypt or Decrypt procedure, which pass the same expanded key to the functions

TextBlock Cipher(TextBlock in, ExpandedKey w, nat Nk)

and

TextBlock InvCipher(TextBlock in, ExpandedKey w, nat Nk)

In both cases, the input text is converted by

GFMatrix Text2Matrix(TextBlock A)

to a matrix, which becomes the initial state of the process. This state is transformed through the
sequence of Nr + 1 rounds and ultimately converted back to a linear array by

TextBlock Matrix2Text(GFMatrix M).

In each round i, the round key Ki is extracted from the expanded key w and added to the state by

GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round).

Note that AddRoundKey does not explicitly construct Ki , but operates directly on the bytes of w.

The rounds of Cipher are numbered 0,…Nr . Let X be the initial state an an execution, i.e., the input in
matrix format, let Si be the state produced by round i, and let Y = SNr be the final state. Let Σ, R , and C
denote the operations performed by SubBytes, ShiftRows, MixColumns, respectively. Then

The initial round is a simple addition:

Each of the next Nr + 1 rounds is a composition of four operations:

The MixColumns transformation is omitted from the final round:

Composing these expressions yields

for

834

AMD64 Technology 26568—Rev. 3.14—December 2011

Note that the rounds of InvCipher are numbered in reverse order, Nr ,…,0. If Ʃ’ and Y’ are the initial
and final states and S’i is the state following round i , then

Composing these expressions yields

In order to show that InvCipher is the inverse of Cipher, it is only necessary to combine these
expanded expressions by replacing X’ with Y and cancel inverse operations to yield Y’ = X.

A.5.1 Sequence of Operations
• Use predefined SBox and InvSBox matrices or initialize the matrices using the ComputeSBox

and ComputeInvSBox functions.

• Call the Encrypt or Decrypt procedure.

• For the Encrypt procedure:

1. Load the input TextBlock and CipherKey.

2. Expand the cipher key using the KeyExpansion function.

3. Call the Cipher function to perform the number of rounds determined by the cipher key length.

4. Perform round entry operations.
a. Convert input text block to state matrix using the Text2Matrix function.
b. Combine state and round key bytes by bitwise XOR using the AddRoundKey function.

5. Perform round iteration operations.
a. Replace each state byte with another by non-linear substitution using the SubBytes function.
b. Shift each row of the state cyclically using the ShiftRows function.
c. Combine the four bytes in each column of the state using the MixColumns function.
d. Perform AddRoundKey.

6. Perform round exit operations.
a. Perform SubBytes.
b. Perform ShiftRows.
c. Perform AddRoundKey.
d. Convert state matrix to output text block using the Matrix2Text function and return TextBlock.

for

835

26568—Rev. 3.14—December 2011 AMD64 Technology

• For the Decrypt procedure:

1. Load the input TextBlock and CipherKey.

2. Expand the cipher key using the KeyExpansion function.

3. Call the InvCipher function to perform the number of rounds determined by the cipher key
length.

4. Perform round entry operations.
a. Convert input text block to state matrix using the Text2Matrix function.
b. Combine state and round key bytes by bitwise XOR using the AddRoundKey function.

5. Perform round iteration operations.
a. Shift each row of the state cyclically using the InvShiftRows function.
b. Replace each state byte with another by non-linear substitution using the InvSubBytes function.
c. Perform AddRoundKey.
d. Combine the four bytes in each column of the state using the InvMixColumns function.

6. Perform round exit operations.
a. Perform InvShiftRows.
b. Perform InvSubBytes (InvSubWord).
c. Perform AddRoundKey.
d. Convert state matrix to output text block using the Matrix2Text function and return TextBlock.

A.6 Initializing the Sbox and InvSBox Matrices

The AES makes use of a bijective mapping σ : GF → GF, which is encoded, along with its inverse
mapping, in the 16 × 16 arrays SBox (for encryption) and InvSBox (for decryption), as follows:

for all x ∈ G,

σ(x) = SBox[x[7:4], x[3:0]]

and

σ−1(x) = InvSBox[x[7:4], x[3:0]]

While the FIPS 197 standard defines the contents of the SBox[] and InvSbox [] matrices, the
matrices may also be initialized algebraically (and algorithmically) by means of the ComputeSBox()
and ComputeInvSBox() functions, discussed below.

The bijective mappings for encryption and decryption are computed by the SubByte() and
InvSubByte () functions, respectively:

SubByte() computation:

GF256 SubByte(GF256 x) {
 return SBox[x[7:4]][x[3:0]];
}

InvSubByte () computation:

836

AMD64 Technology 26568—Rev. 3.14—December 2011

GF256 InvSubByte(GF256 x) {
 return InvSBox[x[7:4]][x[3:0]];
}

A.6.1 Computation of SBox and InvSBox

Computation of SBox and InvSBox elements has a direct relationship to the cryptographic properties
of the AES, but not to the algorithms that use the tables. Readers who prefer to view σ as a primitive
operation may skip the remainder of this section.

The algorithmic definition of the bijective mapping σ is based on the consideration of GF as an
8-dimensional vector space over the subfield ℤ2. Let ϕ be a linear operator on this vector space and let
M = [aij] be the matrix representation of ϕ with respect to the ordered basis {1, 2, 4, 10, 20, 40, 80}.
Then ϕ may be encoded concisely as an array of bytes A of dimension 8, each entry of which is the
concatenation of the corresponding row of M:

A[i] = ai8ai7…ai0

This expression may be represented algorithmically by means of the ApplyLinearOp() function,
which applies a linear operator to an element of GF. The ApplyLinear Op() function is used in the
initialization of both the sBox[] and InvSBox[] matrices.

// The following function takes the array A representing a linear operator phi and
// an element x of G and returns phi(x):

GF256 ApplyLinearOp(GF256 A[8], GF256 x) {
 GF256 result = 0;
 for (nat i=0; i<8; i++) {
 bool sum = 0;
 for (nat j=0; j<8; j++) {
 sum = sum ^ (A[i][j] & x[j]);
 }
 result[i] = sum;
 }
 return result;
}

The definition of σ involves the linear operator ϕ with matrix

In this case,

A = {F1, E3, C7, 8F, 1F, 3E, 7C, F8}.

837

26568—Rev. 3.14—December 2011 AMD64 Technology

Initialization of SBox[]

The mapping σ : G → G is defined by

σ(x) = ϕ (x–1) ⊕ 63

This computation is performed by ComputeSBox().

ComputeSBox()

GF256[16][16] ComputeSBox() {
 GF256 result[16][16];
 GF256 A[8] = {0xF1, 0xE3, 0xC7, 0x8F, 0x1F, 0x3E, 0x7C, 0xF8};
 for (nat i=0; i<16; i++) {
 for (nat j=0; j<16; j++) {
 GF256 x = (i << 4) | j;
 result[i][j] = ApplyLinearOp(A, GFInv(x)) ^ 0x63;
 }
 }
 return result;
}

const GF256 SBox[16][16] = ComputeSBox();

Table A-1 shows the resulting SBox[], as defined in FIPS 197.

838

AMD64 Technology 26568—Rev. 3.14—December 2011

A.6.2 Initialization of InvSBox[]

A straightforward calculation confirms that the matrix M is nonsingular with inverse.

Thus, ϕ is invertible and ϕ–1 is encoded as the array

B = {A4, 49, 92, 25, 4A, 94, 29, 52}.

If y = σ(x), then

Table A-1. SBox Definition

S[3:0]

S[7:4]

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 a5

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

M–1 =

0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1

1
0
0
1
0
1
0
0

1
0
1
0
0
1
0
0

0
1
0
0
1
0
1
0

0
0
1
0
0
1
0
1

1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1

839

26568—Rev. 3.14—December 2011 AMD64 Technology

and σ is a permutation of GF with

σ-1(y) = (ϕ-1(y) ⊕ 5)–1

This computation is performed by ComputeInvSBox().

ComputeInvSBox()

GF256[16][16] ComputeInvSBox() {
 GF256 result[16][16];
 GF256 B[8] = {0xA4, 0x49, 0x92, 0x25, 0x4A, 0x94, 0x29, 0x52};
 for (nat i=0; i<16; i++) {
 for (nat j=0; j<16; j++) {
 GF256 y = (i << 4) | j;
 result[i][j] = GFInv(ApplyLinearOp(B, y) ^ 0x5);
 }
 }
 return result;
}

const GF256 InvSBox[16][16] = ComputeInvSBox();

Table A-2 shows the resulting InvSBox[], as defined in the FIPS 197.

(ϕ-1((y) ⊕ 5) –1= (ϕ-1(y ⊕ ϕ(5))–1

= (ϕ-1(y ⊕ 63))–1

= (ϕ-1(ϕ(x–1) ⊕ 63 ⊕ 63))–1

= x,

= (ϕ-1(ϕ(x–1)))–1

840

AMD64 Technology 26568—Rev. 3.14—December 2011

A.7 Encryption and Decryption

The AMD64 architecture implements the AES algorithm by means of an iterative function called a
round for both encryption and the inverse operation, decryption.

The top-level encryption and decryption procedures Encrypt() and Decrypt() set up the rounds and
invoke the functions that perform them. Each of the procedures takes two 128-bit binary arguments:

• input data — a 16-byte block of text stored in a source 128-bit XMM register

• cipher key — a 16-, 24-, or 32-byte cipher key stored in either a second 128-bit XMM register or
128-bit memory location

A.7.1 The Encrypt() and Decrypt() Procedures

TextBlock Encrypt(TextBlock in, CipherKey key, nat Nk) {
 return Cipher(in, ExpandKey(key, Nk), Nk);
}

TextBlock Decrypt(TextBlock in, CipherKey key, nat Nk) {
 return InvCipher(in, ExpandKey(key, Nk), Nk);

Table A-2. InvSBox Definition

S[3:0]

S[7:4]

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

841

26568—Rev. 3.14—December 2011 AMD64 Technology

}

The array types TextBlock and CipherKey are introduced to accommodate the text and key
parameters. The 16-, 24-, or 32-byte cipher keys correspond to AES-128, AES-192, or AES-256 key
sizes. The cipher key is logically partitioned into Nk = 4, 6, or 8 AES 32-bit words. Nk is passed as a
parameter to determine the AES version to be executed, and the number of rounds to be performed.

Both the Encrypt() and Decrypt() procedures invoke the ExpandKey() function to expand the
cipher key for use in round key generation. When key expansion is complete, either the Cipher() or
InvCipher() functions are invoked.

The Cipher() and InvCipher() functions are the key components of the encryption and decryption
process. See Section A.8, “The Cipher Function” and Section A.9, “The InvCipher Function” for
detailed information.

A.7.2 Round Sequences and Key Expansion

Encryption and decryption are performed in a sequence of rounds indexed by 0, …, Nr, where Nr is
determined by the number Nk of GF words in the cipher key. A key matrix called a round key is
generated for each round. The number of GF words required to form Nr + 1 round keys is equal to ,
4(Nr + 1). Table A-3 shows the relationship between cipher key length, round sequence length, and
round key length.

Expanded keys are generated from the cipher key by the ExpandKey() function, where the array type
ExpandedKey is defined to accommodate 60 words (the maximum required) corresponding to Nk = 8.

The ExpandKey() Function

ExpandedKey ExpandKey(CipherKey key, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 ExpandedKey w;

 // Copy key into first Nk rows of w:
 for (nat i=0; i<Nk; i++) {
 for (nat j=0; j<4; j++) {
 w[i][j] = key[4*i+j];
 }
 }

Table A-3. Cipher Key, Round Sequence, and Round Key Length
Nk Nr 4(Nr + 1)

4 10 44

6 12 52

8 14 60

842

AMD64 Technology 26568—Rev. 3.14—December 2011

 // Write next row of w:
 for (nat i=Nk; i<4*(Nr+1); i++) {

 // Encode preceding row:
 GFWord tmp = w[i-1];
 if (mod(i, Nk) == 0) {
 tmp = SubWord(RotWord(tmp));
 tmp[0] = tmp[0] ^ RCON[i/Nk];
 }
 else if ((Nk == 8) && (mod(i, Nk) == 4)) {
 tmp = SubWord(tmp);
 }

 // XOR tmp with w[i-Nk]:
 for (nat j=0; j<4; j++) {
 w[i][j] = w[i-Nk][j] ^ tmp[j];
 }
 }
 return w;
}

ExpandKey() begins by copying the input cipher key into the first Nk GF words of the expanded key
w. The remaining 4(Nr + 1) – Nk GF words are computed iteratively. For each i ≥ Nk, w[i] is derived
from the two GF words w[i – 1] and w[i – Nk]. In most cases, w[i] is simply the sum w[i – 1] ⊕ w[i –
Nk]. There are two exceptions:

• If i is divisible by Nk, then before adding it to w[i – Nk], w[i – 1] is first rotated by one position to
the left by RotWord(), then transformed by the substitution SubWord(), and an element of the
array RCON is added to it.

RCON[11] = {00h, 01h, 02h, 04h, 08h, 10h, 20h, 40h, 80h, 1Bh, 36h}

• In the case Nk = 8, if i is divisible by 4 but not 8, then w[i – 1] is transformed by the substitution
SubWord().

The ith round keyKi comprises the four GF words w[4i], …, w[4i + 3]. More precisely, let Wi be the
matrix

W= {w[4i], w[4i + 1], w[4i + 2], w[4i + 3]}

Then Ki = Wi
t, the transpose of Wi. Thus, the entries of the array w are the columns of the round keys.

A.8 The Cipher Function

This function performs encryption. It converts the input text to matrix form, generates the round key
from the expanded key matrix, and iterates through the transforming functions the number of times
determined by encryption key size to produce a 128-bit binary cipher matrix. As a final step, it
converts the matrix to an output text block.

843

26568—Rev. 3.14—December 2011 AMD64 Technology

TextBlock Cipher(TextBlock in, ExpandedKey w, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 GFMatrix state = Text2Matrix(in);
 state = AddRoundKey(state, w, 0);
 for (nat round=1; round<Nr; round++) {
 state = SubBytes(state);
 state = ShiftRows(state);
 state = MixColumns(state);
 state = AddRoundKey(state, w, round);
 }
 state = SubBytes(state);
 state = ShiftRows(state);
 state = AddRoundKey(state, w, Nr);
 return Matrix2Text(state);
}

A.8.1 Text to Matrix Conversion

Prior to processing, the input text block must be converted to matrix form. The Text2Matrix()
function stores a TextBlock in a GFMatrix in column-major order as follows.

GFMatrix Text2Matrix(TextBlock A) {
 GFMatrix result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[i][j] = A[4*j+i];
 }
 }
 return result;
}

A.8.2 Cipher Transformations

The Cipher function employs the following transformations.

SubBytes() — Applies a non-linear substitution table (SBox) to each byte of the state.

SubWord() — Uses a non-linear substitution table (SBox) to produce a four-byte AES output
word from the four bytes of an AES input word.

ShiftRows() — Cyclically shifts the last three rows of the state by various offsets.

RotWord() — Rotates an AES (4-byte) word to the right.

MixColumns() — Mixes data in all the state columns independently to produce new columns.

AddRoundKey() — Extracts a 128-bit round key from the expanded key matrix and adds it to the
128-bit state using an XOR operation.

Inverses of SubBytes(), SubWord(), ShiftRows() and MixColumns() are used in decryption. See
Section A.9, “The InvCipher Function” for more information.

844

AMD64 Technology 26568—Rev. 3.14—December 2011

SubBytes() Function

Performs a byte substitution operation using the invertible substitution table (SBox) to convert input
text to an intermediate encryption state.

GFMatrix SubBytes(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = SubWord(M[i]);
 }
 return result;
}

SubWord() Function

Applies SubBytes to each element of a vector or a matrix:

GFWord SubWord(GFWord x) {
 GFWord result;
 for (nat i=0; i<4; i++) {
 result[i] = SubByte(x[i]);
 }
 return result;
}

ShiftRows() Function

Cyclically shifts the last three rows of the state by various offsets.

GFMatrix ShiftRows(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = RotateLeft(M[i], -i);
 }
 return result;

RotWord() Function

Performs byte-wise cyclic permutation of a 32-bit AES word.

GFWord RotWord(GFWord x)
{ return RotateLeft(x, 1); }

MixColumns() Function

Performs a byte-oriented column-by-column matrix multiplication

M → C ⊙ M , where C is the predefined fixed matrix

C =

2
1
1
3

3
2
1
1

1
3
2
1

1
1
3
2

845

26568—Rev. 3.14—December 2011 AMD64 Technology

The function is implemented as follows:

GFMatrix MixColumns(GFMatrix M) {
 GFMatrix C = {
 {0x02,0x03,0x01,0x01},
 {0x01,0x02,0x03,0x01},
 {0x01,0x01,0x02,0x03},
 {0x03,0x01,0x01,0x02}
 };
 return GFMatrixMul(C, M);
}

AddRoundKey() Function

Extracts the round key from the expanded key and adds it to the state using a bitwise XOR operation.

GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round) {
 GFMatrix result = state;
 for (nat i=0; i<4; i++) {
 for (nat j=0; j<4; j++) {
 result[i][j] = result[i][j] ^ w[4*round+j][i];
 }
 }
 return result;
}

A.8.3 Matrix to Text Conversion

After processing, the output matrix must be converted to a text block. The Matrix2Text() function
converts a GFMatrix in column-major order to a TextBlock as follows.

TextBlock Matrix2Text(GFMatrix M) {
 TextBlock result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[4*j+i] = M[i][j];
 }
 }
 return result;
}

A.9 The InvCipher Function

This function performs decryption. It iterates through the round function the number of times
determined by encryption key size and produces a 128-bit block of text as output.

TextBlock InvCipher(TextBlock in, ExpandedKey w, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 GFMatrix state = Text2Matrix(in);
 state = AddRoundKey(state, w, Nr);
 for (nat round=Nr-1; round>0; round--) {
 state = InvShiftRows(state);
 state = InvSubBytes(state);

846

AMD64 Technology 26568—Rev. 3.14—December 2011

 state = AddRoundKey(state, w, round);
 state = InvMixColumns(state);
 }
 state = InvShiftRows(state);
 state = InvSubBytes(state);
 state = AddRoundKey(state, w, 0);
 return Matrix2Text(state);
}

A.9.1 Text to Matrix Conversion

Prior to processing, the input text block must be converted to matrix form. The Text2Matrix()
function stores a TextBlock in a GFMatrix in column-major order as follows.

GFMatrix Text2Matrix(TextBlock A) {
 GFMatrix result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[i][j] = A[4*j+i];
 }
 }
 return result;
}

A.9.2 InvCypher Transformations

The following functions are used in decryption:

InvShiftRows() — The inverse of ShiftRows().

InvSubBytes() — The inverse of SubBytes().

InvSubWord() — The inverse of SubWord().

InvMixColumns() — The inverse of MixColumns().

AddRoundKey() — Is its own inverse.

Decryption is the inverse of encryption and is accomplished by means of the inverses of the,
SubBytes(), SubWord(), ShiftRows() and MixColumns() transformations used in encryption.

SubWord(), SubBytes(), and ShiftRows() are injective. This is also the case with MixColumns().
A simple computation shows that C is invertible with

InvShiftRows() Function

The inverse of ShiftRows().

GFMatrix InvShiftRows(GFMatrix M) {
 GFMatrix result;

C–1 =

E
9
D
B

B
E
9
D

D
B
E
9

9
D
B
E

847

26568—Rev. 3.14—December 2011 AMD64 Technology

 for (nat i=0; i<4; i++) {
 result[i] = RotateLeft(M[i], -i);
 }
 return result;

InvSubBytes() Function

The inverse of SubBytes().

GFMatrix InvSubBytes(GFMatrix M) {
 GFMatrix result;
 for (nat i=0; i<4; i++) {
 result[i] = InvSubWord(M[i]);
 }
 return result;
}

InvSubWord() Function

The inverse of SubWord(), InvSubBytes() applied to each element of a vector or a matrix.

GFWord InvSubWord(GFWord x) {
 GFWord result;
 for (nat i=0; i<4; i++) {
 result[i] = InvSubByte(x[i]);
 }
 return result;
}

InvMixColumns() Function

The inverse of the MixColumns() function. Multiplies by the inverse of the predefined fixed matrix,
C, C–1, as discussed previously.

GFMatrix InvMixColumns(GFMatrix M) {
 GFMatrix D = {
 {0x0e,0x0b,0x0d,0x09},
 {0x09,0x0e,0x0b,0x0d},
 {0x0d,0x09,0x0e,0x0b},
 {0x0b,0x0d,0x09,0x0e}
 };
 return GFMatrixMul(D, M);
}

AddRoundKey() Function

Extracts the round key from the expanded key and adds it to the state using a bitwise XOR operation.

GFMatrix AddRoundKey(GFMatrix state, ExpandedKey w, nat round) {
 GFMatrix result = state;
 for (nat i=0; i<4; i++) {
 for (nat j=0; j<4; j++) {
 result[i][j] = result[i][j] ^ w[4*round+j][i];
 }
 }
 return result;

848

AMD64 Technology 26568—Rev. 3.14—December 2011

}

A.9.3 Matrix to Text Conversion

After processing, the output matrix must be converted to a text block. The Matrix2Text() function
converts a GFMatrix in column-major order to a TextBlock as follows.

TextBlock Matrix2Text(GFMatrix M) {
 TextBlock result;
 for (nat j=0; j<4; j++) {
 for (nat i=0; i<4; i++) {
 result[4*j+i] = M[i][j];
 }
 }
 return result;
}

A.10 An Alternative Decryption Procedure

This section outlines an alternative decrypting procedure,

TextBlock EqDecrypt(TextBlock in, CipherKey key, nat Nk):

TextBlock EqDecrypt(TextBlock in, CipherKey key, nat Nk) {
 return EqInvCipher(in, MixRoundKeys(ExpandKey(key, Nk), Nk), Nk);
}

The procedure is based on a variation of InvCipher,

TextBlock EqInvCipher(TextBlock in, ExpandedKey w, nat Nk):

TextBlock EqInvCipher(TextBlock in, ExpandedKey dw, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 GFMatrix state = Text2Matrix(in);
 state = AddRoundKey(state, dw, Nr);
 for (nat round=Nr-1; round>0; round--) {
 state = InvSubBytes(state);
 state = InvShiftRows(state);
 state = InvMixColumns(state);
 state = AddRoundKey(state, dw, round);
 }
 state = InvSubBytes(state);
 state = InvShiftRows(state);
 state = AddRoundKey(state, dw, 0);
 return Matrix2Text(state);
}

The variant structure more closely resembles that of Cipher. This requires a modification of the
expanded key generated by ExpandKey,

ExpandedKey MixRoundKeys(ExpandedKey w, nat Nk):

849

26568—Rev. 3.14—December 2011 AMD64 Technology

ExpandedKey MixRoundKeys(ExpandedKey w, nat Nk) {
 assert((Nk == 4) || (Nk == 6) || (Nk == 8));
 nat Nr = Nk + 6;
 ExpandedKey result;
 GFMatrix roundKey;
 for (nat round=0; round<Nr+1; round++) {
 for (nat i=0; i<4; i++) {
 roundKey[i] = w[4*round+i];
 }
 if ((round > 0) && (round < Nr)) {
 roundKey = InvMixRows(roundKey);
 }
 for (nat i=0; i<4; i++) {
 result[4*round+i] = roundKey[i];
 }
 }
 return result;
}

The transformation MixRoundKeys leaves K0 and KNr unchanged, but for i = 1,…,Nr – 1, it replaces Wi with the matrix product Wi ⊙ Q, where

The effect of this is to replace Ki with

for i = 1,…,Nr – 1.

The equivalence of EqDecrypt and Decrypt follows from two properties of the basic operations: C is a linear transformation and therefore, so is C–1; Ʃ and R commute, and hence so do Ʃ–1 and R–1, for if

then

850

AMD64 Technology 26568—Rev. 3.14—December 2011

Now let X’’ and Y’’ be the initial and final states of an execution of EqDecrypt and let S’’i be the state
following round i . Suppose X’’ = X’. Appealing to the definitions of EqDecrypt and EqInvCipher, we
have

and for i = Nr – 1,…,1, by induction,

Finally,

A.11 Computation of GFInv with Euclidean Greatest
Common Divisor

Note that the operations performed by GFInv() are in the ring ℤ2[X] rather than the quotient field GF.

The initial values of the variables x1 and x2 are the inputs x and 11b, the latter representing the
polynomial p(X). The variables a1 and a2 are initialized to 1 and 0.

=

=

=

=

=

=

=

=

=

851

26568—Rev. 3.14—December 2011 AMD64 Technology

On each iteration of the loop, a multiple of the lesser of x1 and x2 is added to the other. If x1 ≤ x2, then
the values of x2 and a2 are adjusted as follows:

x2 → x2 ⊕ 2s ⊙ x1

a2 → a2 ⊕ 2s ⊙ a1

where s is the difference in the exponents (i.e., degrees) of x1 and x2 . In the remaining case, x1 and a1
are similarly adjusted. This step is repeated until either x1 = 0 or x2 = 0.

We make the following observations:

• On each iteration, the value added to xi has the same exponent as xi, and hence the sum has lesser
exponent. Therefore, termination is guaranteed.

• Since p(X) is irreducible and x is of smaller degree than p(X), the initial values of x1 and x2 have no
non-trivial common factor. This property is clearly preserved by each step.

• Initially,

x1 ⊕ a1 ⊙ x = x ⊕ x = 0

and

x2 ⊕ a2 ⊙ x = 11b ⊕ 0 = 11b

are both divisible by 11b. This property is also invariant, since, for example, the above assignments
result in

x2 ⊕ a2 ⊙ x → (x2 ⊕ 2s ⊙ x1) ⊕ (a2 ⊕ 2s ⊙ a1) ⊙ x = (x2 ⊕ a2 ⊙ x) ⊕ 2s ⊙ (x1 ⊕ a1 ⊙ x).

Now suppose that the loop terminates with x2 = 0. Then x1 has no non-trivial factor and, hence, x1 = 1.
Thus, 1 ⊕ a1 ⊙ x is divisible by 11b. Since the final result y is derived by reducing a1 modulo 11b, it
follows that 1 ⊕ y ⊙ x is also divisible by 11b and, hence, in the quotient field GF, 1 + y ⊙ x = 0,
which implies y ⊙ x = 1.

The computation of the multiplicative inverse utilizing Euclid’s algorithm is as follows:

852

AMD64 Technology 26568—Rev. 3.14—December 2011

// Computation of multiplicative inverse based on Euclid's algorithm:

GF256 GFInv(GF256 x) {
 if (x == 0) {
 return 0;
 }
 // Initialization:
 nat x1 = x;
 nat x2 = 0x11B; // the irreducible polynomial p(X)
 nat a1 = 1;
 nat a2 = 0;
 nat shift; // difference in exponents
 while ((x1 != 0) && (x2!= 0)) {

 // Termination is guaranteed, since either x1 or x2 decreases on each iteration.
 // We have the following loop invariants, viewing natural numbers as elements of
 // the polynomial ring Z2[X]:
 // (1) x1 and x2 have no common divisor other than 1.
 // (2) x1 ^ GFMul(a1, x) and x2 ^ GFMul(a2, x) are both divisible by p(X).

 if (x1 <= x2) {
 shift = expo(x2) - expo(x1);
 x2 = x2 ^ (x1 << shift);
 a2 = a2 ^ (a1 << shift);
 }
 else {
 shift = expo(x1) - expo(x2);
 x1 = x1 ^ (x2 << shift);
 a1 = a1 ^ (a2 << shift);
 }
 }
 nat y;

 // Since either x1 or x2 is 0, it follows from (1) above that the other is 1.

 if (x1 == 1) { // x2 == 0
 y = a1;
 }
 else if (x2 == 1) { // x1 == 0
 y = a2;
 }
 else {
 assert(false);
 }

 // Now it follows from (2) that GFMul(y, x) ^ 1 is divisible by 0x11b.
 // We need only reduce y modulo 0x11b:

 nat e = expo(y);
 while (e >= 8) {
 y = y ^ (0x11B << (e - 8));
 e = expo(y);
 }
 return y;
}

853

26568—Rev. 3.14—December 2011 AMD64 Technology

Numeric

128-bit media instruction...................................... xxvii
16-bit mode... xxvii
256-bit media instruction...................................... xxvii
32-bit mode... xxvii
64-bit media instructions xxvii
64-bit mode... xxvii

A

absolute displacement .. xxvii
ADDPD .. 19
ADDPS... 21
Address space identifier xxviii
Address space identifier (ASID)........................... xxviii
ADDSD .. 23
ADDSS... 25
ADDSUBPD ... 27
ADDSUBPS.. 29
Advanced Encryption Standard (AES)........... xxviii, 829

data structures .. 830
decryption... 833, 840, 848
encryption... 833, 840
Euclidean common divisor 850
InvSbox ... 835
operations .. 834
Sbox.. 835

AESDEC .. 31
AESDECLAST ... 33
AESENC .. 35
AESENCLAST ... 37
AESIMC... 39
AESKEYGENASSIST... 41
ANDNPD ... 43
ANDNPS .. 45
ANDPD .. 47
ANDPS... 49
ASID ... xxviii
AVX .. xxviii

B

biased exponent .. xxviii
BLENDPD.. 51
BLENDPS .. 53
BLENDVPD ... 55
BLENDVPS.. 57
byte ... xxviii

C

clear... xxviii
cleared ... xxviii
CMPPD .. 59
CMPPS ... 62
CMPSD .. 65
CMPSS ... 68
COMISD... 71
COMISS ... 73
commit... xxviii
compatibility mode ... xxviii
Current privilege level (CPL)............................... xxviii
CVTDQ2PD.. 75
CVTDQ2PS .. 77
CVTPD2DQ.. 79
CVTPD2PS ... 81
CVTPS2DQ .. 83
CVTPS2PD ... 85
CVTSD2SI.. 87
CVTSD2SS ... 90
CVTSI2SD.. 92
CVTSI2SS .. 94
CVTSS2SD ... 96
CVTSS2SI .. 98
CVTTPD2DQ.. 100
CVTTPS2DQ .. 102
CVTTSD2SI.. 104
CVTTSS2SI .. 106

D

Definitions .. xxvii
direct referencing .. xxviii
displacement... xxviii
DIVPD.. 109
DIVPS .. 111
DIVSD.. 113
DIVSS .. 115
double quadword .. xxviii
doubleword .. xxviii
DPPD.. 117
DPPS .. 120

E

effective address size... xxix
effective operand size .. xxix
element .. xxix
endian order... xxxvii

Index

854

AMD64 Technology 26568—Rev. 3.14—December 2011

exception ... xxix
exponent .. xxviii
extended SSE ... xxix
extended-register prefix.. xxxii
EXTRQ .. 125

F

flush .. xxix
FMA.. xxix
FMA4.. xxix
four-operand instruction ... 6

G

General notation ... xxvi
Global descriptor table (GDT) xxix
Global interrupt flag (GIF) xxix

H

HADDPD ... 127
HADDPS .. 129
HSUBPD .. 131
HSUBPS, VHSUBPS... 133

I

IGN .. xxx
immediate operands ... 4
indirect ... xxx
INSERTPS .. 135
INSERTQ ... 137
instructions

AES ... xxviii
Interrupt descriptor table (IDT) xxix
Interrupt redirection bitmap (IRB)........................... xxx
Interrupt stack table (IST)....................................... xxx
Interrupt vector table (IVT) xxx

L

LDDQU.. 139
LDMXCSR... 141
least significant byte .. xxx
least-significant bit... xxx
legacy mode .. xxx
legacy x86... xxx
little endian ... xxxvii
Local descriptor table (LDT) xxx
long mode ... xxx
LSB.. xxx
lsb .. xxx

M

main memory ... xxxi

mask .. xxxi
MASKMOVDQU.. 143
MAXPD.. 145
MAXPS .. 147
MAXSD.. 149
MAXSS .. 151
memory.. xxxi
MINPD ... 153
MINPS.. 155
MINSD ... 157
MINSS.. 159
modes

32-bit ... xxvii
64-bit ... xxvii
compatibility ... xxviii
legacy .. xxx
long ... xxx
protected .. xxxii
real .. xxxii
virtual-8086... xxxiv

most significant bit.. xxxi
most significant byte ... xxxi
MOVAPD.. 161
MOVAPS .. 163
MOVD.. 165
MOVDDUP .. 167
MOVDQA .. 169
MOVDQU .. 171
MOVHLPS ... 173
MOVHPD ... 175
MOVHPS.. 177
MOVLHPS ... 179
MOVLPD ... 181
MOVLPS .. 183
MOVMSKPD.. 185
MOVMSKPS .. 187
MOVNTDQ .. 189
MOVNTDQA.. 191
MOVNTPD... 193
MOVNTPS ... 195
MOVNTSD... 197
MOVNTSS ... 199
MOVQ.. 201
MOVSD.. 203
MOVSHDUP .. 205
MOVSLDUP... 207
MOVSS .. 209
MOVUPD ... 211
MOVUPS.. 213
MPSADBW .. 215
MSB .. xxxi
msb.. xxxi

855

26568—Rev. 3.14—December 2011 AMD64 Technology

MULPD.. 217
MULPS .. 219
MULSD.. 221
MULSS .. 223
Must be zero (MBZ) ... xxxi

N

Notation
conventions... xxvi
register ... xxxiv

O

octword.. xxxi
offset ... xxxi
operands

immediate .. 4
ORPD... 225
ORPS ... 227
overflow .. xxxi

P

PABSB ... 229
PABSD ... 231
PABSW .. 233
packed ... xxxi
PACKSSDW ... 235
PACKSSWB ... 237
PACKUSDW .. 239
PACKUSWB... 241
PADDB... 243
PADDD .. 245
PADDQ .. 247
PADDSB... 249
PADDSW.. 251
PADDUSB.. 253
PADDUSW... 255
PADDW.. 257
PALIGNR ... 259
PAND ... 261
PANDN .. 263
PAVGB ... 265
PAVGW .. 267
PBLENDVB ... 269
PBLENDW... 271
PCLMULQDQ.. 273
PCMPEQB.. 275
PCMPEQD ... 277
PCMPEQQ ... 279
PCMPEQW... 281
PCMPESTRI... 283
PCMPESTRM... 286
PCMPGTB.. 289

PCMPGTD.. 291
PCMPGTQ.. 293
PCMPGTW... 295
PCMPISTRI .. 297
PCMPISTRM .. 300
PEXTRB... 303
PEXTRD... 305
PEXTRQ... 307
PEXTRW .. 309
PHADDD.. 311
PHADDSW... 313
PHADDUBD... 662
PHADDW... 315
PHMINPOSUW .. 317
PHSUBD .. 319
PHSUBSW.. 321
PHSUBW.. 323
Physical address extension (PAE) xxxi
physical memory... xxxi
PINSRB .. 325
PINSRD.. 327
PINSRQ.. 329
PINSRW ... 331
PMADDUBSW ... 333
PMADDWD.. 335
PMAXSB.. 337
PMAXSD.. 339
PMAXSW... 341
PMAXUB ... 343
PMAXUD ... 345
PMAXUW .. 347
PMINSB ... 349
PMINSD ... 351
PMINSW .. 353
PMINUB... 355
PMINUD .. 357
PMINUW.. 359
PMOVMSKB .. 361
PMOVSXBD... 363
PMOVSXBQ... 365
PMOVSXBW.. 367
PMOVSXDQ .. 369
PMOVSXWD.. 371
PMOVSXWQ.. 373
PMOVZXBD .. 375
PMOVZXBQ .. 377
PMOVZXBW.. 379
PMOVZXDQ .. 381
PMOVZXWD ... 383
PMOVZXWQ ... 385
PMULDQ ... 387

856

AMD64 Technology 26568—Rev. 3.14—December 2011

PMULHRSW.. 389
PMULHUW.. 391
PMULHW .. 393
PMULLD.. 395
PMULLW ... 397
PMULUDQ... 399
POR ... 401
probe .. xxxii
protected mode .. xxxii
PSADBW ... 403
PSHUFB... 405
PSHUFD... 407
PSHUFHW ... 409
PSHUFLW.. 411
PSIGNB, VPSIGNB .. 413
PSIGND ... 415
PSIGNW... 417
PSLLD ... 419
PSLLDQ... 421
PSLLQ ... 423
PSLLW... 425
PSRAD... 427
PSRAW .. 429
PSRLD ... 431
PSRLDQ... 433
PSRLQ ... 435
PSRLW... 437
PSUBB ... 439
PSUBD... 441
PSUBQ... 443
PSUBSB ... 445
PSUBSW .. 447
PSUBUSB .. 449
PSUBUSW ... 451
PSUBW .. 453
PTEST.. 455
PUNPCKHBW.. 457
PUNPCKHDQ .. 459
PUNPCKHQDQ.. 461
PUNPCKHWD.. 463
PUNPCKLBW .. 465
PUNPCKLDQ... 467
PUNPCKLQDQ .. 469
PUNPCKLWD .. 471
PXOR... 473

Q

quadword .. xxxii

R

RCPPS.. 475

RCPSS.. 477
Read as zero (RAZ).. xxxii
real address mode. See real mode
real mode .. xxxii
Register extension prefix (REX)............................ xxxii
Register notation... xxxiv
relative .. xxxii
Relative instruction pointer (RIP) xxxii
reserved .. xxxii
revision history ... xxiii
RIP-relative addressing... xxxii
Rip-relative addressing ... xxxii
ROUNDPD ... 479
ROUNDSD ... 485
ROUNDSS.. 488
ROUNDTPS.. 482
RSQRTPS ... 491
RSQRTSS ... 493

S

SBZ .. xxxii
scalar .. xxxii
set.. xxxiii
SHUFPD... 495
SHUFPS, VSHUFPS.. 497
Single instruction multiple data (SIMD)................ xxxiii
SQRTPD ... 500
SQRTPS.. 502
SQRTSD ... 504
SQRTSS.. 506
SSE.. xxxiii
SSE Instructions

legacy .. xxx
SSE instructions

AVX ... xxviii
SSE1.. xxxiii
SSE2.. xxxiii
SSE3.. xxxiii
SSE4.1 ... xxxiii
SSE4.2 ... xxxiii
SSE4A ... xxxiii
SSSE3.. xxxiii
sticky bit .. xxxiii
STMXCSR.. 508
Streaming SIMD Extensions xxxiii
string compare instructions ... 7
string comparison... 7
SUBPD ... 510
SUBPS.. 512
SUBSD ... 514
SUBSS.. 516

857

26568—Rev. 3.14—December 2011 AMD64 Technology

T

Task state segment (TSS)..................................... xxxiii
Terminology.. xxvii
three-operand instruction.. 5
two-operand instruction.. 4

U

UCOMISD.. 518
UCOMISS .. 520
underflow... xxxiii
UNPCKHPD ... 522
UNPCKHPS.. 524
UNPCKLPD ... 526
UNPCKLPS .. 528

V

VADDPD.. 19
VADDPS .. 21
VADDSD.. 23
VADDSUBPD... 27
VADDSUBPS ... 29
VADSS ... 25
VAESDEC .. 31
VAESDECLAST ... 33
VAESENC .. 35
VAESENCLAST ... 37
VAESIMC... 39
VAESKEYGENASSIST .. 41
VANDNPD ... 43
VANDNPS.. 45
VANDPD.. 47
VANDPS .. 49
VBLENDPD ... 51
VBLENDPS.. 53
VBLENDVPD... 55
VBLENDVPS ... 57
VBROADCASTF128 .. 530
VBROADCASTSD ... 532
VBROADCASTSS.. 534
VCMPPD.. 59
VCMPPS .. 62
VCMPSD.. 65
VCMPSS .. 68
VCOMISD.. 71
VCOMISS .. 73
VCVTDQ2PD... 75
VCVTDQ2PS.. 77
VCVTPD2DQ... 79
VCVTPD2PS .. 81
VCVTPH2PS .. 536
VCVTPS2DQ.. 83

VCVTPS2PD .. 85
VCVTPS2PH .. 539
VCVTSD2SI ... 87
VCVTSD2SS .. 90
VCVTSI2SD ... 92
VCVTSI2SS.. 94
VCVTSS2SD .. 96
VCVTSS2SI.. 98
VCVTTPD2DQ... 100
VCVTTPS2DQ.. 102
VCVTTSD2SI ... 104
VCVTTSS2SI.. 106
VDIVPD ... 109
VDIVPS.. 111
VDIVSD ... 113
VDIVSS.. 115
VDPPD... 117
VDPPS ... 120
vector... xxxiv
VEX prefix... xxxiv
VEXTRACT128 .. 543
VFMADD132PD... 545
VFMADD132PS.. 548
VFMADD132SD... 551
VFMADD132SS.. 554
VFMADD213PD... 545
VFMADD213PS.. 548
VFMADD213SD... 551
VFMADD213SS.. 554
VFMADD231PD... 545
VFMADD231PS.. 548
VFMADD231SD... 551
VFMADD231SS.. 554
VFMADDPD .. 545
VFMADDPS ... 548
VFMADDSD .. 551
VFMADDSS ... 554
VFMADDSUB132PD.. 557
VFMADDSUB132PS .. 560
VFMADDSUB213PD.. 557
VFMADDSUB213PS .. 560
VFMADDSUB231PD.. 557
VFMADDSUB231PS .. 560
VFMADDSUBPD ... 557
VFMADDSUBPS.. 560
VFMSUB132PD.. 569
VFMSUB132PS .. 572
VFMSUB132SD.. 575
VFMSUB132SS .. 578
VFMSUB213PD.. 569
VFMSUB213PS .. 572

858

AMD64 Technology 26568—Rev. 3.14—December 2011

VFMSUB213SD ... 575
VFMSUB213SS .. 578
VFMSUB231PD ... 569
VFMSUB231PS .. 572
VFMSUB231SD ... 575
VFMSUB231SS .. 578
VFMSUBADD132PD.. 563
VFMSUBADD132PS .. 566
VFMSUBADD213PD.. 563
VFMSUBADD213PS .. 566
VFMSUBADD231PD.. 563
VFMSUBADD231PS .. 566
VFMSUBADDPD ... 563
VFMSUBADDPS.. 566
VFMSUBPD... 569
VFMSUBPS.. 572
VFMSUBSD... 575
VFMSUBSS.. 578
VFNMADD132PD .. 581
VFNMADD132PS... 584
VFNMADD132SS... 590
VFNMADD213PD .. 581
VFNMADD213PS... 584
VFNMADD213SS... 590
VFNMADD231PD .. 581
VFNMADD231PS... 584
VFNMADD231SS... 590
VFNMADDPD.. 581
VFNMADDPS .. 584
VFNMADDSD.. 587
VFNMADDSS .. 590
VFNMSUB132PD... 593
VFNMSUB132PS ... 596
VFNMSUB132SD... 599
VFNMSUB132SS ... 602
VFNMSUB213PD... 593
VFNMSUB213PS ... 596
VFNMSUB213SD... 599
VFNMSUB213SS ... 602
VFNMSUB231PD... 593
VFNMSUB231PS ... 596
VFNMSUB231SD... 599
VFNMSUB231SS ... 602
VFNMSUBPD .. 593
VFNMSUBPS... 596
VFNMSUBSD .. 599
VFNMSUBSS... 602
VFRCZPD .. 605
VFRCZPS... 607
VFRCZSD .. 609
VFRCZSS... 611

VHADDPD ... 127
VHADDPS.. 129
VHSUBPD.. 131
VINSERTF128 .. 613
VINSERTPS.. 135
Virtual machine control block (VMCB) xxxiv
Virtual machine monitor (VMM).......................... xxxiv
virtual-8086 mode... xxxiv
VLDDQU ... 139
VLDMXCSR... 141
VMASKMOVDQU ... 143
VMASKMOVPD... 615
VMASKMOVPS ... 617
VMAXPD ... 145
VMAXPS.. 147
VMAXSD ... 149
VMAXSS.. 151
VMINPD .. 153
VMINPS ... 155
VMINSD .. 157
VMINSS ... 159
VMOVAPS ... 163
VMOVD ... 165
VMOVDDUP.. 167
VMOVDQA.. 169
VMOVDQU.. 171
VMOVHLPS... 173
VMOVHPD .. 175
VMOVHPS ... 177
VMOVLHPS... 179
VMOVLPD... 181
VMOVLPS ... 183
VMOVMSKPD ... 185
VMOVMSKPS.. 187
VMOVNTDQ.. 189
VMOVNTDQA... 191
VMOVNTPD .. 193
VMOVNTPS... 195
VMOVQ ... 201
VMOVSD ... 203
VMOVSHDUP.. 205
VMOVSLDUP .. 207
VMOVSS.. 209
VMOVUPD .. 211
VMOVUPS ... 213
VMPSADBW.. 215
VMULPD ... 217
VMULPS .. 219
VMULSD ... 221
VMULSS .. 223
VORPD .. 225

859

26568—Rev. 3.14—December 2011 AMD64 Technology

VORPS... 227
VPABSB... 229
VPABSD... 231
VPABSW.. 233
VPACKSSDW .. 235
VPACKSSWB... 237
VPACKUSDW.. 239
VPACKUSWB .. 241
VPADDD.. 245
VPADDQ.. 247
VPADDSB.. 249
VPADDSW... 251
VPADDUSB ... 253
VPADDUSW .. 255
VPADDW... 257
VPALIGNR... 259
VPAND .. 261
VPANDN.. 263
VPAVGB .. 265
VPAVGW ... 267
VPBLENDVB... 269
VPBLENDW .. 271
VPCLMULQDQ ... 273
VPCMOV ... 619
VPCMPEQB... 275
VPCMPEQD... 277
VPCMPEQQ... 279
VPCMPEQW.. 281
VPCMPESTRI .. 283
VPCMPESTRM .. 286
VPCMPGTB... 289
VPCMPGTD... 291
VPCMPGTQ... 293
VPCMPGTW.. 295
VPCMPISTRI ... 297
VPCMPISTRM ... 300
VPCOMB ... 621
VPCOMD ... 623
VPCOMQ ... 625
VPCOMUB... 627
VPCOMUD .. 629
VPCOMUQ .. 631
VPCOMUW.. 633
VPCOMW .. 635
VPERM2F128... 637
VPERMIL2PD .. 639
VPERMIL2PS... 643
VPERMILPD.. 647
VPERMILPS... 650
VPEXTRB.. 303
VPEXTRD.. 305

VPEXTRQ .. 307
VPEXTRW ... 309
VPHADDBD... 654
VPHADDBQ... 656
VPHADDBW.. 658
VPHADDD ... 311
VPHADDDQ .. 660
VPHADDSW .. 313
VPHADDUBQ .. 664
VPHADDUBW ... 666
VPHADDUDQ.. 668
VPHADDUWD... 670
VPHADDUWQ... 672
VPHADDW .. 315
VPHADDWD.. 674
VPHADDWQ.. 676
VPHMINPOSUW.. 317
VPHSUBBW... 678
VPHSUBD.. 319
VPHSUBDQ ... 680
VPHSUBSW ... 321
VPHSUBW ... 323
VPHSUBWD .. 682
VPINSRB ... 325
VPINSRD ... 327
VPINSRQ ... 329
VPINSRW... 331
VPMACSDD... 684
VPMACSDQH .. 686
VPMACSDQL .. 688
VPMACSSDD... 690
VPMACSSDQL .. 694
VPMACSSQH... 692
VPMACSSWD.. 696
VPMACSSWW... 698
VPMACSWD.. 700
VPMACSWW ... 702
VPMADCSSWD ... 704
VPMADCSWD ... 706
VPMADDUBSW... 333
VPMADDWD ... 335
VPMAXSB ... 337
VPMAXSD ... 339
VPMAXSW .. 341
VPMAXUB... 343
VPMAXUD .. 345
VPMAXUW.. 347
VPMINSB... 349
VPMINSD .. 351
VPMINSW.. 353
VPMINUB .. 355

860

AMD64 Technology 26568—Rev. 3.14—December 2011

VPMINUD.. 357
VPMINUW... 359
VPMOVMSKB ... 361
VPMOVSXBD.. 363
VPMOVSXBQ.. 365
VPMOVSXBW... 367
VPMOVSXDQ.. 369
VPMOVSXWD... 371
VPMOVSXWQ... 373
VPMOVZXBD.. 375
VPMOVZXBQ.. 377
VPMOVZXBW... 379
VPMOVZXDQ ... 381
VPMOVZXWD... 383
VPMOVZXWQ... 385
VPMULDQ... 387
VPMULHRSW ... 389
VPMULHUW ... 391
VPMULHW.. 393
VPMULLD ... 395
VPMULLW .. 397
VPMULUDQ.. 399
VPOR... 401
VPPERM .. 708
VPROTB .. 710
VPROTD .. 712
VPROTQ .. 714
VPROTW ... 716
VPSADBW... 403
VPSHAB .. 718
VPSHAD .. 720
VPSHAQ .. 722
VPSHAW ... 724
VPSHLB... 726
VPSHLD .. 728
VPSHLQ .. 730
VPSHLW.. 732
VPSHUFB .. 405
VPSHUFD .. 407
VPSHUFHW... 409
VPSHUFLW ... 411
VPSIGND... 415
VPSIGNW.. 417
VPSLLD... 419
VPSLLDQ .. 421
VPSLLQ... 423
VPSLLW .. 425
VPSRAD .. 427
VPSRAW.. 429
VPSRLD... 431
VPSRLDQ .. 433

VPSRLQ... 435
VPSRLW .. 437
VPSUBB... 439
VPSUBD .. 441
VPSUBQ .. 443
VPSUBSB... 445
VPSUBSW.. 447
VPSUBUSB .. 449
VPSUBUSW ... 451
VPSUBW.. 453
VPTEST ... 455
VPTESTPD... 734
VPTESTPS ... 736
VPUNPCKHBW ... 457
VPUNPCKHDQ.. 459
VPUNPCKHQDQ ... 461
VPUNPCKHWD ... 463
VPUNPCKLBW.. 465
VPUNPCKLDQ .. 467
VPUNPCKLQDQ.. 469
VPUNPCKLWD.. 471
VPXOR .. 473
VRCPPS ... 475
VRCPSS ... 477
VROUNDPD... 479
VROUNDPS ... 482
VROUNDSD... 485
VROUNDSS ... 488
VRSQRTPS... 491
VRSQRTSS... 493
VSHUFPD .. 495
VSQRTPD .. 500
VSQRTPS ... 502
VSQRTSD .. 504
VSQRTSS ... 506
VSTMXCSR ... 508
VSUBPD .. 510
VSUBPS ... 512
VSUBSD .. 514
VSUBSS ... 516
VUCOMISD ... 518
VUCOMISS .. 520
VUNPCKHPD... 522
VUNPCKHPS ... 524
VUNPCKLPD ... 526
VUNPCKLPS.. 528
VXORPD.. 740
VXORPS .. 742
VZEROALL.. 738
VZEROUPPER ... 739

861

26568—Rev. 3.14—December 2011 AMD64 Technology

W

word .. xxxiv

X

x86 .. xxxiv
XGETBV.. 744
XOP instructions .. xxxiv
XOP prefix... xxxiv
XORPD .. 740
XORPS... 742
XRSTOR .. 745
XSAVE... 747
XSAVEOPT .. 749
XSETBV .. 751

	Contents
	Figures
	Tables
	Revision History
	Preface
	1 Introduction
	1.1 Syntax and Notation
	1.2 Extended Instruction Encoding
	1.2.1 Immediate Byte Usage Unique to the SSE instructions
	1.2.2 Instruction Format Examples

	1.3 Enabling SSE Instruction Execution
	1.4 String Compare Instructions
	1.4.1 Source Data Format
	1.4.2 Comparison Type
	1.4.3 Comparison Summary Bit Vector
	1.4.4 Intermediate Result Post-processing
	1.4.5 Output Option Selection
	1.4.6 Affect on Flags

	2 Instruction Reference
	ADDPD VADDPD
	ADDPS VADDPS
	ADDSD VADDSD
	ADDSS VADDSS
	ADDSUBPD VADDSUBPD
	ADDSUBPS VADDSUBPS
	AESDEC VAESDEC
	AESDECLAST VAESDECLAST
	AESENC VAESENC
	AESENCLAST VAESENCLAST
	AESIMC VAESIMC
	AESKEYGENASSIST VAESKEYGENASSIST
	ANDNPD VANDNPD
	ANDNPS VANDNPS
	ANDPD VANDPD
	ANDPS VANDPS
	BLENDPD VBLENDPD
	BLENDPS VBLENDPS
	BLENDVPD VBLENDVPD
	BLENDVPS VBLENDVPS
	CMPPD VCMPPD
	CMPPS VCMPPS
	CMPSD VCMPSD
	CMPSS VCMPSS
	COMISD VCOMISD
	COMISS VCOMISS
	CVTDQ2PD VCVTDQ2PD
	CVTDQ2PS VCVTDQ2PS
	CVTPD2DQ VCVTPD2DQ
	CVTPD2PS VCVTPD2PS
	CVTPS2DQ VCVTPS2DQ
	CVTPS2PD VCVTPS2PD
	CVTSD2SI VCVTSD2SI
	CVTSD2SS VCVTSD2SS
	CVTSI2SD VCVTSI2SD
	CVTSI2SS VCVTSI2SS
	CVTSS2SD VCVTSS2SD
	CVTSS2SI VCVTSS2SI
	CVTTPD2DQ VCVTTPD2DQ
	CVTTPS2DQ VCVTTPS2DQ
	CVTTSD2SI VCVTTSD2SI
	CVTTSS2SI VCVTTSS2SI
	DIVPD VDIVPD
	DIVPS VDIVPS
	DIVSD VDIVSD
	DIVSS VDIVSS
	DPPD VDPPD
	DPPS VDPPS
	EXTRACTPS VEXTRACTPS
	EXTRQ
	HADDPD VHADDPD
	HADDPS VHADDPS
	HSUBPD VHSUBPD
	HSUBPS VHSUBPS
	INSERTPS VINSERTPS
	INSERTQ
	LDDQU VLDDQU
	LDMXCSR VLDMXCSR
	MASKMOVDQU VMASKMOVDQU
	MAXPD VMAXPD
	MAXPS VMAXPS
	MAXSD VMAXSD
	MAXSS VMAXSS
	MINPD VMINPD
	MINPS VMINPS
	MINSD VMINSD
	MINSS VMINSS
	MOVAPD VMOVAPD
	MOVAPS VMOVAPS
	MOVD VMOVD
	MOVDDUP VMOVDDUP
	MOVDQA VMOVDQA
	MOVDQU VMOVDQU
	MOVHLPS VMOVHLPS
	MOVHPD VMOVHPD
	MOVHPS VMOVHPS
	MOVLHPS VMOVLHPS
	MOVLPD VMOVLPD
	MOVLPS VMOVLPS
	MOVMSKPD VMOVMSKPD
	MOVMSKPS VMOVMSKPS
	MOVNTDQ VMOVNTDQ
	MOVNTDQA VMOVNTDQA
	MOVNTPD VMOVNTPD
	MOVNTPS VMOVNTPS
	MOVNTSD
	MOVNTSS
	MOVQ VMOVQ
	MOVSD VMOVSD
	MOVSHDUP VMOVSHDUP
	MOVSLDUP VMOVSLDUP
	MOVSS VMOVSS
	MOVUPD VMOVUPD
	MOVUPS VMOVUPS
	MPSADBW VMPSADBW
	MULPD VMULPD
	MULPS VMULPS
	MULSD VMULSD
	MULSS VMULSS
	ORPD VORPD
	ORPS VORPS
	PABSB VPABSB
	PABSD VPABSD
	PABSW VPABSW
	PACKSSDW VPACKSSDW
	PACKSSWB VPACKSSWB
	PACKUSDW VPACKUSDW
	PACKUSWB VPACKUSWB
	PADDB VPADDB
	PADDD VPADDD
	PADDQ VPADDQ
	PADDSB VPADDSB
	PADDSW VPADDSW
	PADDUSB VPADDUSB
	PADDUSW VPADDUSW
	PADDW VPADDW
	PALIGNR VPALIGNR
	PAND VPAND
	PANDN VPANDN
	PAVGB VPAVGB
	PAVGW VPAVGW
	PBLENDVB VPBLENDVB
	PBLENDW VPBLENDW
	PCLMULQDQ VPCLMULQDQ
	PCMPEQB VPCMPEQB
	PCMPEQD VPCMPEQD
	PCMPEQQ VPCMPEQQ
	PCMPEQW VPCMPEQW
	PCMPESTRI VPCMPESTRI
	PCMPESTRM VPCMPESTRM
	PCMPGTB VPCMPGTB
	PCMPGTD VPCMPGTD
	PCMPGTQ VPCMPGTQ
	PCMPGTW VPCMPGTW
	PCMPISTRI VPCMPISTRI
	PCMPISTRM VPCMPISTRM
	PEXTRB VPEXTRB
	PEXTRD VPEXTRD
	PEXTRQ VPEXTRQ
	PEXTRW VPEXTRW
	PHADDD VPHADDD
	PHADDSW VPHADDSW
	PHADDW VPHADDW
	PHMINPOSUW VPHMINPOSUW
	PHSUBD VPHSUBD
	PHSUBSW VPHSUBSW
	PHSUBW VPHSUBW
	PINSRB VPINSRB
	PINSRD VPINSRD
	PINSRQ VPINSRQ
	PINSRW VPINSRW
	PMADDUBSW VPMADDUBSW
	PMADDWD VPMADDWD
	PMAXSB VPMAXSB
	PMAXSD VPMAXSD
	PMAXSW VPMAXSW
	PMAXUB VPMAXUB
	PMAXUD VPMAXUD
	PMAXUW VPMAXUW
	PMINSB VPMINSB
	PMINSD VPMINSD
	PMINSW VPMINSW
	PMINUB VPMINUB
	PMINUD VPMINUD
	PMINUW VPMINUW
	PMOVMSKB VPMOVMSKB
	PMOVSXBD VPMOVSXBD
	PMOVSXBQ VPMOVSXBQ
	PMOVSXBW VPMOVSXBW
	PMOVSXDQ VPMOVSXDQ
	PMOVSXWD VPMOVSXWD
	PMOVSXWQ VPMOVSXWQ
	PMOVZXBD VPMOVZXBD
	PMOVZXBQ VPMOVZXBQ
	PMOVZXBW VPMOVZXBW
	PMOVZXDQ VPMOVZXDQ
	PMOVZXWD VPMOVZXWD
	PMOVZXWQ VPMOVZXWQ
	PMULDQ VPMULDQ
	PMULHRSW VPMULHRSW
	PMULHUW VPMULHUW
	PMULHW VPMULHW
	PMULLD VPMULLD
	PMULLW VPMULLW
	PMULUDQ VPMULUDQ
	POR VPOR
	PSADBW VPSADBW
	PSHUFB VPSHUFB
	PSHUFD VPSHUFD
	PSHUFHW VPSHUFHW
	PSHUFLW VPSHUFLW
	PSIGNB VPSIGNB
	PSIGND VPSIGND
	PSIGNW VPSIGNW
	PSLLD VPSLLD
	PSLLDQ VPSLLDQ
	PSLLQ VPSLLQ
	PSLLW VPSLLW
	PSRAD VPSRAD
	PSRAW VPSRAW
	PSRLD VPSRLD
	PSRLDQ VPSRLDQ
	PSRLQ VPSRLQ
	PSRLW VPSRLW
	PSUBB VPSUBB
	PSUBD VPSUBD
	PSUBQ VPSUBQ
	PSUBSB VPSUBSB
	PSUBSW VPSUBSW
	PSUBUSB VPSUBUSB
	PSUBUSW VPSUBUSW
	PSUBW VPSUBW
	PTEST VPTEST
	PUNPCKHBW VPUNPCKHBW
	PUNPCKHDQ VPUNPCKHDQ
	PUNPCKHQDQ VPUNPCKHQDQ
	PUNPCKHWD VPUNPCKHWD
	PUNPCKLBW VPUNPCKLBW
	PUNPCKLDQ VPUNPCKLDQ
	PUNPCKLQDQ VPUNPCKLQDQ
	PUNPCKLWD VPUNPCKLWD
	PXOR VPXOR
	RCPPS VRCPPS
	RCPSS VRCPSS
	ROUNDPD VROUNDPD
	ROUNDPS VROUNDPS
	ROUNDSD VROUNDSD
	ROUNDSS VROUNDSS
	RSQRTPS VRSQRTPS
	RSQRTSS VRSQRTSS
	SHUFPD VSHUFPD
	SHUFPS VSHUFPS
	SQRTPD VSQRTPD
	SQRTPS VSQRTPS
	SQRTSD VSQRTSD
	SQRTSS VSQRTSS
	STMXCSR VSTMXCSR
	SUBPD VSUBPD
	SUBPS VSUBPS
	SUBSD VSUBSD
	SUBSS VSUBSS
	UCOMISD VUCOMISD
	UCOMISS VUCOMISS
	UNPCKHPD VUNPCKHPD
	UNPCKHPS VUNPCKHPS
	UNPCKLPD VUNPCKLPD
	UNPCKLPS VUNPCKLPS
	VBROADCASTF128
	VBROADCASTSD
	VBROADCASTSS
	VCVTPS2PH
	VEXTRACTF128
	VFMADDPD VFMADD132PD VFMADD213PD VFMADD231PD
	VFMADDPS VFMADD132PS VFMADD213PS VFMADD231PS
	VFMADDSD VFMADD132SD VFMADD213SD VFMADD231SD
	VFMADDSS VFMADD132SS VFMADD213SS VFMADD231SS
	VFMADDSUBPD VFMADDSUB132PD VFMADDSUB213PD VFMADDSUB231PD
	VFMADDSUBPS VFMADDSUB132PS VFMADDSUB213PS VFMADDSUB231PS
	VFMSUBADDPD VFMSUBADD132PD VFMSUBADD213PD VFMSUBADD231PD
	VFMSUBADDPS VFMSUBADD132PS VFMSUBADD213PS VFMSUBADD231PS
	VFMSUBPD VFMSUB132PD VFMSUB213PD VFMSUB231PD
	VFMSUBPS VFMSUB132PS VFMSUB213PS VFMSUB231PS
	VFMSUBSD VFMSUB132SD VFMSUB213SD VFMSUB231SD
	VFMSUBSS VFMSUB132SS VFMSUB213SS VFMSUB231SS
	VFNMADDPD VFNMADD132PD VFNMADD213PD VFNMADD231PD
	VFNMADDPS VFNMADD132PS VFNMADD213PS VFNMADD231PS
	VFNMADDSD VFNMADD132SD VFNMADD213SD VFNMADD231SD
	VFNMADDSS VFNMADD132SS VFNMADD213SS VFNMADD231SS
	VFNMSUBPD VFNMSUB132PD VFNMSUB213PD VFNMSUB231PD
	VFNMSUBPS VFNMSUB132PS VFNMSUB213PS VFNMSUB231PS
	VFNMSUBSD VFNMSUB132SD VFNMSUB213SD VFNMSUB231SD
	VFNMSUBSS VFNMSUB132SS VFNMSUB213SS VFNMSUB231SS
	VFRCZPD
	VFRCZPS
	VFRCZSD
	VFRCZSS
	VINSERTF128
	VMASKMOVPD
	VMASKMOVPS
	VPCMOV
	VPCOMB
	VPCOMD
	VPCOMQ
	VPCOMUB
	VPCOMUD
	VPCOMUQ
	VPCOMUW
	VPCOMW
	VPERM2F128
	VPERMIL2PD
	VPERMIL2PS
	VPERMILPD
	VPERMILPS
	VPHADDBD
	VPHADDBQ
	VPHADDBW
	VPHADDDQ
	VPHADDUBD
	VPHADDUBQ
	VPHADDUBW
	VPHADDUDQ
	VPHADDUWD
	VPHADDUWQ
	VPHADDWD
	VPHADDWQ
	VPHSUBBW
	VPHSUBDQ
	VPHSUBWD
	VPMACSDD
	VPMACSDQH
	VPMACSDQL
	VPMACSSDD
	VPMACSSDQH
	VPMACSSDQL
	VPMACSSWD
	VPMACSSWW
	VPMACSWD
	VPMACSWW
	VPMADCSSWD
	VPMADCSWD
	VPPERM
	VPROTB
	VPROTD
	VPROTQ
	VPROTW
	VPSHAB
	VPSHAD
	VPSHAQ
	VPSHAW
	VPSHLB
	VPSHLD
	VPSHLQ
	VPSHLW
	VTESTPD
	VTESTPS
	VZEROALL
	VZEROUPPER
	XORPD VXORPD
	XORPS VXORPS
	XGETBV
	XRSTOR
	XSAVE
	XSAVEOPT
	XSETBV

	3 Exception Summary
	Appendix A AES Instructions
	A.1 AES Overview
	A.2 Coding Conventions
	A.3 AES Data Structures
	A.4 Algebraic Preliminaries
	A.5 AES Operations
	A.6 Initializing the Sbox and InvSBox Matrices
	A.7 Encryption and Decryption
	A.8 The Cipher Function
	A.9 The InvCipher Function
	A.10 An Alternative Decryption Procedure
	A.11 Computation of GFInv with Euclidean Greatest Common Divisor
	Index

