
Advanced Micro Devices

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 4:
128-Bit Media Instructions

Publication No. Revision Date

26568 3.09 July 2007

AMD64 Technology 26568—Rev. 3.09—July 2007

Trademarks

AMD, the AMD arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, and 3DNow! are trademarks,
and AMD-K6 is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

Windows NT is a registered trademark of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2002 – 2007 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

Contents i

26568—Rev. 3.09—July 2007 AMD64 Technology

Contents

Revision History . xi

Preface. xiii
About This Book. xiii
Audience . xiii
Contact Information . xiii
Organization . xiii
Definitions . xiv
Related Documents . xxiv

1 128-Bit Media Instruction Reference. .1
ADDPD . 3
ADDPS . 6
ADDSD . 9
ADDSS . 12
ADDSUBPD . 15
ADDSUBPS . 18
ANDNPD. 21
ANDNPS . 23
ANDPD . 25
ANDPS . 27
CMPPD . 29
CMPPS . 33
CMPSD . 36
CMPSS . 39
COMISD . 42
COMISS . 45
CVTDQ2PD . 48
CVTDQ2PS . 50
CVTPD2DQ . 52
CVTPD2PI. 54
CVTPD2PS . 57
CVTPI2PD. 60
CVTPI2PS . 62
CVTPS2DQ . 64
CVTPS2PD . 66
CVTPS2PI . 68
CVTSD2SI. 70
CVTSD2SS . 73
CVTSI2SD. 76
CVTSI2SS . 78
CVTSS2SD . 80
CVTSS2SI . 82
CVTTPD2DQ . 85
CVTTPD2PI . 87

ii Contents

AMD64 Technology 26568—Rev. 3.09—July 2007

CVTTPS2DQ. 90
CVTTPS2PI. 92
CVTTSD2SI . 94
CVTTSS2SI. 97
DIVPD . 100
DIVPS . 103
DIVSD . 106
DIVSS . 109
EXTRQ . 112
FXRSTOR . 114
FXSAVE . 116
HADDPD. 118
HADDPS . 121
HSUBPD . 124
HSUBPS . 127
INSERTQ. 130
LDDQU . 132
LDMXCSR . 134
MASKMOVDQU . 136
MAXPD. 138
MAXPS . 140
MAXSD. 142
MAXSS . 144
MINPD . 146
MINPS . 148
MINSD . 150
MINSS . 152
MOVAPD. 154
MOVAPS . 156
MOVD . 159
MOVDDUP . 162
MOVDQ2Q . 164
MOVDQA . 166
MOVDQU . 168
MOVHLPS . 170
MOVHPD . 172
MOVHPS. 174
MOVLHPS . 176
MOVLPD. 178
MOVLPS . 180
MOVMSKPD . 182
MOVMSKPS . 184
MOVNTDQ . 186
MOVNTPD . 188
MOVNTPS . 190
MOVNTSD . 192
MOVNTSS . 194

Contents iii

26568—Rev. 3.09—July 2007 AMD64 Technology

MOVQ . 196
MOVQ2DQ . 198
MOVSD . 200
MOVSHDUP . 203
MOVSLDUP . 205
MOVSS . 207
MOVUPD . 209
MOVUPS. 211
MULPD . 214
MULPS . 217
MULSD . 220
MULSS . 223
ORPD. 226
ORPS . 228
PACKSSDW . 230
PACKSSWB . 232
PACKUSWB . 234
PADDB . 236
PADDD . 238
PADDQ . 240
PADDSB . 242
PADDSW. 244
PADDUSB . 246
PADDUSW . 248
PADDW . 250
PAND. 252
PANDN . 254
PAVGB. 256
PAVGW . 258
PCMPEQB. 260
PCMPEQD . 262
PCMPEQW . 264
PCMPGTB. 266
PCMPGTD . 268
PCMPGTW . 270
PEXTRW . 272
PINSRW . 274
PMADDWD . 276
PMAXSW . 278
PMAXUB . 280
PMINSW . 282
PMINUB . 284
PMOVMSKB. 286
PMULHUW. 288
PMULHW . 290
PMULLW . 292
PMULUDQ . 294

iv Contents

AMD64 Technology 26568—Rev. 3.09—July 2007

POR . 296
PSADBW. 298
PSHUFD . 300
PSHUFHW . 303
PSHUFLW. 306
PSLLD . 309
PSLLDQ . 311
PSLLQ . 313
PSLLW. 315
PSRAD . 317
PSRAW . 319
PSRLD. 321
PSRLDQ . 323
PSRLQ. 325
PSRLW . 327
PSUBB. 329
PSUBD . 331
PSUBQ . 333
PSUBSB . 335
PSUBSW . 337
PSUBUSB . 339
PSUBUSW . 341
PSUBW . 343
PUNPCKHBW . 345
PUNPCKHDQ. 347
PUNPCKHQDQ . 349
PUNPCKHWD . 351
PUNPCKLBW. 353
PUNPCKLDQ . 355
PUNPCKLQDQ . 357
PUNPCKLWD. 359
PXOR. 361
RCPPS . 363
RCPSS . 365
RSQRTPS . 367
RSQRTSS . 369
SHUFPD . 371
SHUFPS. 373
SQRTPD . 376
SQRTPS. 378
SQRTSD . 380
SQRTSS. 382
STMXCSR. 384
SUBPD . 385
SUBPS . 388
SUBSD . 391
SUBSS . 394

Contents v

26568—Rev. 3.09—July 2007 AMD64 Technology

UCOMISD. 397
UCOMISS . 400
UNPCKHPD . 403
UNPCKHPS . 405
UNPCKLPD . 407
UNPCKLPS. 409
XORPD . 411
XORPS . 413

Index . 415

vi Contents

AMD64 Technology 26568—Rev. 3.09—July 2007

Figures vii

26568—Rev. 3.09—July 2007 AMD64 Technology

Figures

Figure 1-1. Diagram Conventions for 128-Bit Media Instructions . 1

viii Figures

AMD64 Technology 26568—Rev. 3.09—July 2007

Tables ix

26568—Rev. 3.09—July 2007 AMD64 Technology

Tables

Table 1-1. Immediate Operand Values for Comparison Operations . 31

Table 1-2. Immediate-Byte Operand Encoding for 128-Bit PEXTRW . 272

Table 1-3. Immediate-Byte Operand Encoding for 128-Bit PINSRW. 274

Table 1-4. Immediate-Byte Operand Encoding for PSHUFD . 301

Table 1-5. Immediate-Byte Operand Encoding for PSHUFHW . 304

Table 1-6. Immediate-Byte Operand Encoding for PSHUFLW . 307

Table 1-7. Immediate-Byte Operand Encoding for SHUFPD . 371

Table 1-8. Immediate-Byte Operand Encoding for SHUFPS . 373

x Tables

AMD64 Technology 26568—Rev. 3.09—July 2007

Revision History xi

26568—Rev. 3.09—July 2007 AMD64 Technology

Revision History

Date Revision Description

July 2007 3.09 Added the following instructions: EXTRQ on page 112, INSERTQ on
page 130, MOVNTSD on page 192, and MOVNTSS on page 194.
Added misaligned exception mask (MXCSR.MM) information.
Added imm8 values with corresponding mnemonics to CMPPD on page 29,
CMPPS on page 33, CMPSD on page 36, and CMPSS on page 39.
Reworded CPUID information in condition tables.
Added minor clarifications and corrected typographical and formatting
errors.

September
2006

3.08 Made minor corrections.

December
2005

3.07 Made minor editorial and formatting changes.

January 2005 3.06
Added documentation on SSE3 instructions. Corrected numerous minor
factual errors and typos.

September
2003

3.05 Made numerous small factual corrections.

April 2003 3.04 Made minor corrections.

xii Revision History

AMD64 Technology 26568—Rev. 3.09—July 2007

Preface xiii

26568—Rev. 3.09—July 2007 AMD64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience

This volume (Volume 4) is intended for all programmers writing application or system software for
processors that implement the AMD64 architecture.

Contact Information

To submit questions or comments concerning this document, contact our technical documentation staff
at AMD64.Feedback@amd.com.

Organization

Volumes 3, 4, and 5 describe the AMD64 architecture’s instruction set in detail. Together, they cover
each instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

• General-purpose instructions

• System instructions

• 128-bit media instructions

• 64-bit media instructions

• x87 floating-point instructions

Several instructions belong to—and are described identically in—multiple instruction subsets.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

xiv Preface

AMD64 Technology 26568—Rev. 3.09—July 2007

This volume describes the 128-bit media instructions. The index at the end cross-references topics
within this volume. For other topics relating to the AMD64 architecture, and for information on
instructions in other subsets, see the tables of contents and indexes of the other volumes.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents” on page xxiv for descriptions of the legacy x86 architecture.

Terms and Notation

In addition to the notation described below, “Opcode-Syntax Notation” in Volume 3 describes notation
relating specifically to opcodes.

1011b
A binary value—in this example, a 4-bit value.

F0EAh
A hexadecimal value—in this example a 2-byte value.

[1,2)
A range that includes the left-most value (in this case, 1) but excludes the right-most value (in this
case, 2).

7–4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

128-bit media instructions
Instructions that use the 128-bit XMM registers. These are a combination of the SSE, SSE2 and
SSE3 instruction sets.

64-bit media instructions
Instructions that use the 64-bit MMX registers. These are primarily a combination of MMX™ and
3DNow!™ instruction sets, with some additional instructions from the SSE and SSE2 instruction
sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

Preface xv

26568—Rev. 3.09—July 2007 AMD64 Technology

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP) with error code of 0.

absolute
Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

ASID
Address space identifier.

biased exponent
The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

CR0–CR4
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0.PE = 1
Notation indicating that the PE bit of the CR0 register has a value of 1.

direct
Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

xvi Preface

AMD64 Technology 26568—Rev. 3.09—July 2007

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement
A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI
The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER.LME = 0
Notation indicating that the LME bit of the EFER register has a value of 0.

effective address size
The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

FF /0
Notation indicating that FF is the first byte of an opcode, and a subopcode in the ModR/M byte has
a value of 0.

Preface xvii

26568—Rev. 3.09—July 2007 AMD64 Technology

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on page xxiv for descriptions of the legacy
x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

long mode
An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

xviii Preface

AMD64 Technology 26568—Rev. 3.09—July 2007

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory
Unless otherwise specified, main memory.

ModRM
A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
A combination of 128-bit media instructions and 64-bit media instructions.

octword
Same as double quadword.

offset
Same as displacement.

Preface xix

26568—Rev. 3.09—July 2007 AMD64 Technology

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ or IGN (see definitions).

Software must not depend on the state of a reserved field, nor upon the ability of such fields to
return to a previously written state.

If a reserved field is not marked with one of the above qualifiers, software must not change the state
of that field; it must reload that field with the same values returned from a prior read.

xx Preface

AMD64 Technology 26568—Rev. 3.09—July 2007

REX
An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD
Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3
Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SIMD (single-instruction multiple-data) operands.

Preface xxi

26568—Rev. 3.09—July 2007 AMD64 Technology

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

xxii Preface

AMD64 Technology 26568—Rev. 3.09—July 2007

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP

Preface xxiii

26568—Rev. 3.09—July 2007 AMD64 Technology

registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

xxiv Preface

AMD64 Technology 26568—Rev. 3.09—July 2007

TPR
Task priority register (CR8), a new register introduced in the AMD64 architecture to speed
interrupt management.

TR
Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.

• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

• AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.

• AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

• AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.

• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.

• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

Preface xxv

26568—Rev. 3.09—July 2007 AMD64 Technology

• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.

• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

xxvi Preface

AMD64 Technology 26568—Rev. 3.09—July 2007

• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium III,
www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.

• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.

• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.

• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.

• Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

Instruction Reference 1

26568—Rev. 3.09—July 2007 AMD64 Technology

1 128-Bit Media Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags of the 128-bit media
instructions and the possible exceptions they generate. These instructions load, store, or operate on
data located in 128-bit XMM registers. Most of the instructions operate in parallel on sets of packed
elements called vectors, although a few operate on scalars. These instructions define both integer and
floating-point operations. They include the SSE, SSE2 and SSE3 instructions.

Each instruction that performs a vector (packed) operation is illustrated with a diagram. Figure 1-1
shows the conventions used in these diagrams. The particular diagram shows the PSLLW (packed shift
left logical words) instruction.

Figure 1-1. Diagram Conventions for 128-Bit Media Instructions

Gray areas in diagrams indicate unmodified operand bits.

shift left

xmm1 xmm2/mem128

shift left

513-323.eps

.

.
127 63 0649596111112 7980 4748 15163132 127 63 0649596111112 7980 4748 15163132

Ellipses indicate that the operation
is repeated for each element of the
source vectors. In this case, there are
8 elements in each source vector, so
the operation is performed 8 times,
in parallel.

Arrowheads coming from a source operand
indicate that the source operand provides
a control function. In this case, the second
source operand specifies the number of bits
to shift, and the first source operand specifies
the data to be shifted.

Arrowheads going to a source operand
indicate the writing of the result. In this
case, the result is written to the first source
operand, which is also the destination operand.

First Source Operand
(and Destination Operand) Second Source Operand

Operation.
In this case,
a bitwise
shift-left.

File name of
this figure (for
documentation
control)

2 Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

The 128-bit media instructions are useful in high-performance applications that operate on blocks of
data. Because each instruction can independently and simultaneously perform a single operation on
multiple elements of a vector, the instructions are classified as single-instruction, multiple-data
(SIMD) instructions. A few 128-bit media instructions convert operands in XMM registers to operands
in GPR, MMX™, or x87 registers (or vice versa), or save or restore XMM state.

Hardware support for a specific 128-bit media instruction depends on the presence of at least one of
the following CPUID functions:

• FXSAVE and FXRSTOR, indicated by EDX bit 24 returned by CPUID function 0000_0001h and
function 8000_0001h.

• SSE, indicated by EDX bit 25 returned by CPUID function 0000_0001h.

• SSE2, indicated by EDX bit 26 returned by CPUID function 0000_0001h.

• SSE3, indicated by ECX bit 0 returned by CPUID function 0000_0001h.

The 128-bit media instructions can be used in legacy mode or long mode. Their use in long mode is
available if the following CPUID function is set:

• Long Mode, indicated by EDX bit 29 returned by CPUID function 8000_0001h.

Compilation of 128-bit media programs for execution in 64-bit mode offers four primary advantages:
access to the eight extended XMM registers (for a register set consisting of XMM0–XMM15), access
to the eight extended, 64-bit general-purpose registers (for a register set consisting of GPR0–GPR15),
access to the 64-bit virtual address space, and access to the RIP-relative addressing mode.

For further information, see:

• “128-Bit Media and Scientific Programming” in Volume 1.

• “Summary of Registers and Data Types” in Volume 3.

• “Notation” in Volume 3.

• “Instruction Prefixes” in Volume 3.

Instruction Reference ADDPD 3

26568—Rev. 3.09—July 2007 AMD64 Technology

Adds each packed double-precision floating-point value in the first source operand to the
corresponding packed double-precision floating-point value in the second source operand and writes
the result of each addition in the corresponding quadword of the destination (first source). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 128-bit memory location.

The ADDPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ADDPS, ADDSD, ADDSS

rFLAGS Affected

None

ADDPD Add Packed Double-Precision Floating-Point

Mnemonic Opcode Description

ADDPD xmm1, xmm2/mem128 66 0F 58 /r

Adds two packed double-precision floating-point values
in an XMM register and another XMM register or 128-bit
memory location and writes the result in the destination
XMM register.

addpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

add

add

4 ADDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was added to –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Instruction Reference ADDPD 5

26568—Rev. 3.09—July 2007 AMD64 Technology

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

6 ADDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds each packed single-precision floating-point value in the first source operand to the
corresponding packed single-precision floating-point value in the second source operand and writes
the result of each addition in the corresponding quadword of the destination (first source). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 128-bit memory location.

The ADDPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ADDPD, ADDSD, ADDSS

rFLAGS Affected

None

ADDPS Add Packed Single-Precision Floating-Point

Mnemonic Opcode Description

ADDPS xmm1, xmm2/mem128 0F 58 /r

Adds four packed single-precision floating-point values in
an XMM register and another XMM register or 128-bit
memory location and writes the result in the destination
XMM register.

addps.eps

xmm1 xmm2/mem128

add

add

add

add

127 63 0649596 3132127 63 0649596 3132

Instruction Reference ADDPS 7

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was added to –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

8 ADDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference ADDSD 9

26568—Rev. 3.09—July 2007 AMD64 Technology

Adds the double-precision floating-point value in the low-order quadword of the first source operand
to the double-precision floating-point value in the low-order quadword of the second source operand
and writes the result in the low-order quadword of the destination (first source). The high-order
quadword of the destination is not modified. The first source/destination operand is an XMM register.
The second source operand is another XMM register or 64-bit memory location.

The ADDSD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ADDPD, ADDPS, ADDSS

rFLAGS Affected

None

ADDSD Add Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

ADDSD xmm1, xmm2/mem64 F2 0F 58 /r

Adds low-order double-precision floating-point values in
an XMM register and another XMM register or 64-bit
memory location and writes the result in the destination
XMM register.

addsd.eps

xmm1 xmm2/mem64

add

127 63 064 127 63 064

10 ADDSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X

A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was added to –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Instruction Reference ADDSD 11

26568—Rev. 3.09—July 2007 AMD64 Technology

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

12 ADDSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds the single-precision floating-point value in the low-order doubleword of the first source operand
to the single-precision floating-point value in the low-order doubleword of the second source operand
and writes the result in the low-order doubleword of the destination (first source). The three high-order
doublewords of the destination are not modified. The first source/destination operand is an XMM
register. The second source operand is another XMM register or 32-bit memory location.

The ADDSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ADDPD, ADDPS, ADDSD

rFLAGS Affected

None

ADDSS Add Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

ADDSS xmm1, xmm2/mem32 F3 0F 58 /r

Adds low-order single-precision floating-point values in
an XMM register and another XMM register or 32-bit
memory location and writes the result in the destination
XMM register.

addss.eps

xmm1 xmm2/mem32

add

127 31 032 127 31 032

Instruction Reference ADDSS 13

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was added to –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

14 ADDSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference ADDSUBPD 15

26568—Rev. 3.09—July 2007 AMD64 Technology

Adds the packed double-precision floating-point value in the high 64 bits of the source operand to the
double-precision floating-point value in the high 64 bits of the destination operand and stores the sum
in the high 64 bits of the destination operand; subtracts the packed double-precision floating-point
value in the low 64 bits of the source operand from the low 64 bits of the destination operand and stores
the difference in the low 64 bits of the destination operand.

The ADDSUBPD instruction is an SSE3 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ADDSUBPS

rFLAGS Affected

None

ADDSUBPD Add and Subtract Packed Double-Precision

Mnemonic Opcode Description

ADDSUBPD xmm1,
xmm2/mem128 66 0F D0 /r

Adds the value in the upper 64 bits of the source
operand to the value in the upper 64 bits of the
destination operand and stores the result in the upper
64 bits of the destination operand; subtracts the value in
the lower 64 bits of the source operand from the value in
the lower 64 bits of the destination operand and stores
the result in the lower 64 bits of the destination operand.

xmm1 xmm2/mem128

add
sub

06364127 06364127

16 ADDSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE3 instructions are not supported, as
indicated by ECX bit 0 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCP was cleared to 0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was added to –infinity.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Instruction Reference ADDSUBPD 17

26568—Rev. 3.09—July 2007 AMD64 Technology

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

18 ADDSUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Subtracts the first and third single-precision floating-point values in the source operand from the first
and third single-precision floating-point values of the destination operand and stores the result in the
first and third values of the destination operand. Simultaneously, the instruction adds the second and
fourth single-precision floating-point values in the source operand to the second and fourth single-
precision floating-point values in the destination operand and stores the result in the second and fourth
values of the destination operand.

The ADDSUBPS instruction is an SSE3 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ADDSUBPD

rFLAGS Affected

None

ADDSUBPS Add and Subtract Packed Single-Precision

Mnemonic Opcode Description

ADDSUBPS xmm1,
xmm2/mem128 F2 0F D0 /r

Subtracts the first and third packed single-precision
values in the source XMM register or 128-bit memory
operand from the corresponding values in the
destination XMM register and stores the resulting
values in the corresponding positions in the destination
register; simultaneously, adds the second and fourth
packed single-precision values in the source XMM
register or 128-bit memory operand to the
corresponding values in the destination register and
stores the result in the corresponding positions in the
destination register.

sub
add

sub
add

xmm1 xmm2/mem128

06364127 319596 32 06364127 319596 32

Instruction Reference ADDSUBPS 19

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE3 instructions are not supported, as
indicated by ECX bit 0 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions below for details.

20 ADDSUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was added to –infinity.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference ANDNPD 21

26568—Rev. 3.09—July 2007 AMD64 Technology

Performs a bitwise logical AND of the two packed double-precision floating-point values in the
second source operand and the one’s-complement of the corresponding two packed double-precision
floating-point values in the first source operand and writes the result in the destination (first source).
The first source/destination operand is an XMM register. The second source operand is another XMM
register or 128-bit memory location.

The ADDNPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ANDNPS, ANDPD, ANDPS, ORPD, ORPS, XORPD, XORPS

rFLAGS Affected

None

MXCSR Flags Affected

None

ANDNPD Logical Bitwise AND NOT
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

ANDNPD xmm1, xmm2/mem128 66 0F 55 /r

Performs bitwise logical AND NOT of two packed
double-precision floating-point values in an XMM
register and another XMM register or 128-bit memory
location and writes the result in the destination XMM
register.

andnpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

AND

AND

invert

AND

AND

invert

22 ANDNPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM was
set to 1.

Instruction Reference ANDNPS 23

26568—Rev. 3.09—July 2007 AMD64 Technology

Performs a bitwise logical AND of the four packed single-precision floating-point values in the second
source operand and the one’s-complement of the corresponding four packed single-precision floating-
point values in the first source operand and writes the result in the destination (first source). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 128-bit memory location.

The ADDNPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ANDNPD, ANDPD, ANDPS, ORPD, ORPS, XORPD, XORPS

rFLAGS Affected

None

MXCSR Flags Affected

None

ANDNPS Logical Bitwise AND NOT
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

ANDNPS xmm1,
xmm2/mem128 0F 55 /r

Performs bitwise logical AND NOT of four packed single-
precision floating-point values in an XMM register and in
another XMM register or 128-bit memory location and
writes the result in the destination XMM register.

andnps.eps

xmm1 xmm2/mem128

AND

AND

AND

AND

127 63 0649596 3132127 63 0649596 3132

invert
invert

invert

invert

24 ANDNPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM was
set to 1.

Instruction Reference ANDPD 25

26568—Rev. 3.09—July 2007 AMD64 Technology

Performs a bitwise logical AND of the two packed double-precision floating-point values in the first
source operand and the corresponding two packed double-precision floating-point values in the second
source operand and writes the result in the destination (first source). The first source/destination
operand is an XMM register. The second source operand is another XMM register or 128-bit memory
location.

The ANDPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ANDNPD, ANDNPS, ANDPS, ORPD, ORPS, XORPD, XORPS

rFLAGS Affected

None

MXCSR Flags Affected

None

ANDPD Logical Bitwise AND
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

ANDPD xmm1, xmm2/mem128 66 0F 54 /r

Performs bitwise logical AND of two packed double-
precision floating-point values in an XMM register and in
another XMM register or 128-bit memory location and
writes the result in the destination XMM register.

andpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

AND
AND

26 ANDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM was
set to 1.

Instruction Reference ANDPS 27

26568—Rev. 3.09—July 2007 AMD64 Technology

Performs a bitwise logical AND of the four packed single-precision floating-point values in the first
source operand and the corresponding four packed single-precision floating-point values in the second
source operand and writes the result in the destination (first source). The first source/destination
operand is an XMM register. The second source operand is another XMM register or 128-bit memory
location.

The ADDPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ANDNPD, ANDNPS, ANDPD, ORPD, ORPS, XORPD, XORPS

rFLAGS Affected

None

MXCSR Flags Affected

None

ANDPS Logical Bitwise AND
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

ANDPS xmm1,
xmm2/mem128 0F 54 /r

Performs bitwise logical AND of four packed single-precision
floating-point values in an XMM register and in another XMM
register or 128-bit memory location and writes the result in
the destination XMM register.

andps.eps

xmm1 xmm2/mem128

AND

AND

AND

AND

127 63 0649596 3132127 63 0649596 3132

28 ANDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated by
EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM was
set to 1.

Instruction Reference CMPPD 29

26568—Rev. 3.09—July 2007 AMD64 Technology

Compares each of the two packed double-precision floating-point values in the first source operand
with the corresponding packed double-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding 64 bits of the destination (first source). The
type of comparison is specified by the three low-order bits of the immediate-byte operand, as shown in
Table 1-1. The result of each compare is a 64-bit value of all 1s (TRUE) or all 0s (FALSE). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 128-bit memory location.

Signed compares return TRUE only if both operands are valid numbers, and the numbers have the
relation specified by the type of compare. "Ordered" compare returns TRUE if both operands are valid
numbers, or FALSE if either operand is a NaN. "Unordered" compare returns TRUE only if one or
both operands are NaN, and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception only if the compare type isn't "Equal",
"Unequal", "Ordered", or "Unordered". SNaN operands always generate an Invalid Operation
Exception (IE).

Some comparison operations that are not directly supported by the immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and then executing the
appropriate compare instruction using the swapped values. These additional comparison operations
are shown, together with the directly supported comparison operations, in Table 1-1. When swapping
operands, the first source XMM register is overwritten by the result.

The CMPPD instruction with appropriate value of imm8 is aliased to the following mnemonics to
facilitate coding with this instruction.

CMPPD Compare Packed Double-Precision
Floating-Point

Mnemonic
Implied Value of

imm8

CMPEQPD 0

CMPLTPD 1

CMPLEPD 2

CMPUNORDPD 3

CMPNEQPD 4

CMPNLTPD 5

CMPNLEPD 6

CMPORDPD 7

30 CMPPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

The CMPPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Mnemonic Opcode Description

CMPPD xmm1, xmm2/mem128,
imm8 66 0F C2 /r ib

Compares two pairs of packed double-
precision floating-point values in an XMM
register and an XMM register or 128-bit
memory location.

cmppd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

imm8
7 0

compare

all 1s or 0s all 1s or 0s

compare

Instruction Reference CMPPD 31

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

CMPPS, CMPSD, CMPSS, COMISD, COMISS, UCOMISD, UCOMISS

rFLAGS Affected

None

MXCSR Flags Affected

Table 1-1. Immediate Operand Values for Comparison Operations

Immediate-Byte Value
(bits 2–0) Compare Operation Result If NaN Operand

QNaN Operand Causes
Invalid Operation

Exception

000 Equal FALSE No

001
Less than FALSE Yes

Greater than
(uses swapped operands)

FALSE Yes

010
Less than or equal FALSE Yes

Greater than or equal
(uses swapped operands)

FALSE Yes

011 Unordered TRUE No

100 Not equal TRUE No

101
Not less than TRUE Yes

Not greater than
(uses swapped operands)

TRUE Yes

110
Not less than or equal TRUE Yes

Not greater than or equal
(uses swapped operands)

TRUE Yes

111 Ordered FALSE No

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

32 CMPPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X
There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT was cleared to 0.
See SIMD Floating-Point Exceptions, below, for details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM was
set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point exception
while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X
A source operand was a QNaN value, and the
comparison does not allow QNaN values (refer to
Table 1-1 on page 31).

Denormalized-
operand exception
(DE)

X X X A source operand was a denormal value.

Instruction Reference CMPPS 33

26568—Rev. 3.09—July 2007 AMD64 Technology

Compares each of the four packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding 32 bits of the destination (first source). The
type of comparison is specified by the three low-order bits of the immediate-byte operand, as shown in
Table 1-1 on page 31. The result of each compare is a 32-bit value of all 1s (TRUE) or all 0s (FALSE).
The first source/destination operand is an XMM register. The second source operand is another XMM
register or 128-bit memory location.

Signed compares return TRUE only if both operands are valid numbers, and the numbers have the
relation specified by the type of compare. "Ordered" compare returns TRUE if both operands are valid
numbers, or FALSE if either operand is a NaN. "Unordered" compare returns TRUE only if one or
both operands are NaN, and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception only if the compare type isn't "Equal",
"Unequal", "Ordered", or "Unordered". SNaN operands always generate an Invalid Operation
Exception (IE).

Some comparison operations that are not directly supported by the immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and then executing the
appropriate compare instruction using the swapped values. These additional comparison operations
are shown in Table 1-1 on page 31. When swapping operands, the first source XMM register is
overwritten by the result.

The CMPPS instruction with appropriate value of imm8 is aliased to the following mnemonics to
facilitate coding with this instruction.

CMPPS Compare Packed Single-Precision
Floating-Point

Mnemonic
Implied Value of

imm8

CMPEQPS 0

CMPLTPS 1

CMPLEPS 2

CMPUNORDPS 3

CMPNEQPS 4

CMPNLTPS 5

CMPNLEPS 6

CMPORDPS 7

34 CMPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

The CMPPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CMPPD, CMPSD, CMPSS, COMISD, COMISS, UCOMISD, UCOMISS

rFLAGS Affected

None

Mnemonic Opcode Description

CMPPS xmm1, xmm2/mem128, imm8 0F C2 /r ib

Compares four pairs of packed single-
precision floating-point values in an XMM
register and an XMM register or 64-bit
memory location.

cmpps.eps

xmm1 xmm2/mem128

imm8
7 0

compare

all 1s or 0s all 1s or 0s

compare

127 63 0649596 3132127 63 0649596 3132

..

..

..

Instruction Reference CMPPS 35

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X
A source operand was a QNaN value, and the
comparison does not allow QNaN values (refer to
Table 1-1 on page 31).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

36 CMPSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares the double-precision floating-point value in the low-order 64 bits of the first source operand
with the double-precision floating-point value in the low-order 64 bits of the second source operand
and writes the result in the low-order 64 bits of the destination (first source). The type of comparison is
specified by the three low-order bits of the immediate-byte operand, as shown in Table 1-1 on page 31.
The result of the compare is a 64-bit value of all 1s (TRUE) or all 0s (FALSE). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 64-bit memory location. The high-order 64 bits of the destination XMM register are not modified.

Signed compares return TRUE only if both operands are valid numbers, and the numbers have the
relation specified by the type of compare. "Ordered" compare returns TRUE if both operands are valid
numbers, or FALSE if either operand is a NaN. "Unordered" compare returns TRUE only if one or
both operands are NaN, and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception only if the compare type isn't "Equal",
"Unequal", "Ordered", or "Unordered". SNaN operands always generate an Invalid Operation
Exception (IE).

Some comparison operations that are not directly supported by the immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and then executing the
appropriate compare instruction using the swapped values. These additional comparison operations
are shown in Table 1-1 on page 31. When swapping operands, the first source XMM register is
overwritten by the result.

The CMPSD instruction with appropriate value of imm8 is aliased to the following mnemonics to
facilitate coding with this instruction.

CMPSD Compare Scalar Double-Precision
Floating-Point

Mnemonic
Implied Value of

imm8

CMPEQSD 0

CMPLTSD 1

CMPLESD 2

CMPUNORDSD 3

CMPNEQSD 4

CMPNLTSD 5

CMPNLESD 6

CMPORDSD 7

Instruction Reference CMPSD 37

26568—Rev. 3.09—July 2007 AMD64 Technology

This CMPSD instruction should not be confused with the same-mnemonic CMPSD (compare strings
by doubleword) instruction in the general-purpose instruction set. Assemblers can distinguish the
instructions by the number and type of operands.

The CMPSD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CMPPD, CMPPS, CMPSS, COMISD, COMISS, UCOMISD, UCOMISS

rFLAGS Affected

None

Mnemonic Opcode Description

CMPSD xmm1, xmm2/mem64, imm8 F2 0F C2 /r ib
Compares double-precision floating-point
values in an XMM register and an XMM
register or 64-bit memory location.

cmpsd.eps

xmm1 xmm2/mem64

imm8
7 0

compare

all 1s or 0s

127 63 064 127 63 064

38 CMPSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X
A source operand was a QNaN value, and the
comparison does not allow QNaN values (refer to
Table 1-1 on page 31).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Instruction Reference CMPSS 39

26568—Rev. 3.09—July 2007 AMD64 Technology

Compares the single-precision floating-point value in the low-order 32 bits of the first source operand
with the single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the result in the low-order 32 bits of the destination (first source). The type of comparison is
specified by the three low-order bits of the immediate-byte operand, as shown in Table 1-1 on page 31.
The result of the compare is a 32-bit value of all 1s (TRUE) or all 0s (FALSE). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 32-bit memory location. The three high-order doublewords of the destination XMM register are not
modified.

Signed compares return TRUE only if both operands are valid numbers, and the numbers have the
relation specified by the type of compare. "Ordered" compare returns TRUE if both operands are valid
numbers, or FALSE if either operand is a NaN. "Unordered" compare returns TRUE only if one or
both operands are NaN, and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception only if the compare type isn't "Equal",
"Unequal", "Ordered", or "Unordered". SNaN operands always generate an Invalid Operation
Exception (IE).

Some comparison operations that are not directly supported by the immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and then executing the
appropriate compare instruction using the swapped values. These additional comparison operations
are shown in Table 1-1 on page 31. When swapping operands, the first source XMM register is
overwritten by the result.

The CMPSS instruction with appropriate value of imm8 is aliased to the following mnemonics to
facilitate coding with this instruction.

CMPSS Compare Scalar Single-Precision
Floating-Point

Mnemonic
Implied Value of

imm8

CMPEQSS 0

CMPLTSS 1

CMPLESS 2

CMPUNORDSS 3

CMPNEQSS 4

CMPNLTSS 5

CMPNLESS 6

CMPORDSS 7

40 CMPSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

The CMPSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CMPPD, CMPPS, CMPSD, COMISD, COMISS, UCOMISD, UCOMISS

rFLAGS Affected

None

Mnemonic Opcode Description

CMPSS xmm1, xmm2/mem32,
imm8 F3 0F C2 /r ib

Compares single-precision floating-point
values in an XMM register and an XMM
register or 32-bit memory location.

cmpss.eps

xmm1 xmm2/mem32

imm8
7 0

compare

127 31 032 127 31 032

Instruction Reference CMPSS 41

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X
A source operand was a QNaN value, and the
comparison does not allow QNaN values (refer to
Table 1-1 on page 31).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

42 COMISD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares the double-precision floating-point value in the low-order 64 bits of an XMM register with
the double-precision floating-point value in the low-order 64 bits of another XMM register or a 64-bit
memory location and sets the ZF, PF, and CF bits in the rFLAGS register to reflect the result of the
comparison. The OF, AF, and SF bits in rFLAGS are set to zero. The result is unordered if one or both
of the operand values is a NaN.

If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not
updated.

The COMISD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CMPPD, CMPPS, CMPSD, CMPSS, COMISS, UCOMISD, UCOMISS

COMISD Compare Ordered Scalar Double-Precision
Floating-Point

Mnemonic Opcode Description

COMISD xmm1, xmm2/mem64 66 0F 2F /r
Compares double-precision floating-point values in an
XMM register and an XMM register or 64-bit memory
location and sets rFLAGS.

Result of Compare ZF PF CF

Unordered 1 1 1

Greater Than 0 0 0

Less Than 0 0 1

Equal 1 0 0

comisd.eps

compare

127 63 064

03163

127 63 064

xmm1

rFLAGS0

xmm2/mem64

Instruction Reference COMISD 43

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set either to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

44 COMISD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference COMISS 45

26568—Rev. 3.09—July 2007 AMD64 Technology

Performs an ordered comparison of the single-precision floating-point value in the low-order 32 bits of
an XMM register with the single-precision floating-point value in the low-order 32 bits of another
XMM register or a 32-bit memory location and sets the ZF, PF, and CF bits in the rFLAGS register to
reflect the result of the comparison. The OF, AF, and SF bits in rFLAGS are set to zero. The result is
unordered if one or both of the operand values is a NaN.

If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not
updated.

The COMISS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CMPPD, CMPPS, CMPSD, CMPSS, COMISD, UCOMISD, UCOMISS

COMISS Compare Ordered Scalar Single-Precision
Floating-Point

Mnemonic Opcode Description

COMISS xmm1, xmm2/mem32 0F 2F /r
Compares single-precision floating-point values in an XMM
register and an XMM register or 32-bit memory location.
Sets rFLAGS.

Result of Compare ZF PF CF

Unordered 1 1 1

Greater Than 0 0 0

Less Than 0 0 1

Equal 1 0 0

comiss.eps

compare

127 031 127 031

xmm1 xmm2/mem32

03163

rFLAGS0

46 COMISS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

rFLAGS Affected

MXCSR Flags Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

Instruction Reference COMISS 47

26568—Rev. 3.09—July 2007 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

48 CVTDQ2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or a 64-
bit memory location to two packed double-precision floating-point values and writes the converted
values in another XMM register.

The CVTDQ2PD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

None

CVTDQ2PD Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point

Mnemonic Opcode Description

CVTDQ2PD xmm1, xmm2/mem64 F3 0F E6 /r

Converts packed doubleword signed integers in an
XMM register or 64-bit memory location to double-
precision floating-point values in the destination XMM
register.

cvtdq2pd.eps

127 63 064

xmm1 xmm2/mem64

convert
convert

127 63 064 3132

Instruction Reference CVTDQ2PD 49

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

50 CVTDQ2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location to
four packed single-precision floating-point values and writes the converted values in another XMM
register. If the result of the conversion is an inexact value, the value is rounded as specified by the
rounding control bits (RC) in the MXCSR register.

The CVTDQ2PS instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTPI2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

CVTDQ2PS Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point

Mnemonic Opcode Description

CVTDQ2PS xmm1, xmm2/mem128 0F 5B /r

Converts packed doubleword integer values in an
XMM register or 128-bit memory location to packed
single-precision floating-point values in the destination
XMM register.

cvtdq2ps.eps

xmm1 xmm2/mem128

convert

convert

convert

convert

127 63 0649596 3132127 63 0649596 3132

Instruction Reference CVTDQ2PS 51

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

52 CVTPD2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed 32-bit signed integers and writes the converted values in the low-order 64 bits
of another XMM register. The high-order 64 bits in the destination XMM register are cleared to all 0s.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPD2DQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PD, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

CVTPD2DQ Convert Packed Double-Precision Floating-Point to
Packed Doubleword Integers

Mnemonic Opcode Description

CVTPD2DQ xmm1, xmm2/mem128 F2 0F E6 /r

Converts packed double-precision floating-point
values in an XMM register or 128-bit memory
location to packed doubleword integers in the
destination XMM register.

cvtpd2dq.eps

xmm1 xmm2/mem128

convert
convert

127 63 064 3132 127 63 064

0

Instruction Reference CVTPD2DQ 53

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

54 CVTPD2PI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed 32-bit signed integer values and writes the converted values in an MMX
register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPD2PI instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

CVTPD2PI Convert Packed Double-Precision Floating-Point to
Packed Doubleword Integers

Mnemonic Opcode Description

CVTPD2PI mmx, xmm/mem128 66 0F 2D /r

Converts packed double-precision floating-point
values in an XMM register or 128-bit memory location
to packed doubleword integers values in the
destination MMX register.

cvtpd2pi.eps

127 63 0643132

xmm/mem128mmx

convert
convert

63 0

Instruction Reference CVTPD2PI 55

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

x87 floating-point
exception pending, #MF X X X An exception is pending due to an x87 floating-point

instruction.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

56 CVTPD2PI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference CVTPD2PS 57

26568—Rev. 3.09—July 2007 AMD64 Technology

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values in the
low-order 64 bits of another XMM register. The high-order 64 bits in the destination XMM register are
cleared to all 0s.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register.

The CVTPD2PS instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTPS2PD, CVTSD2SS, CVTSS2SD

rFLAGS Affected

None

CVTPD2PS Convert Packed Double-Precision Floating-Point to
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

CVTPD2PS xmm1,
xmm2/mem128 66 0F 5A /r

Converts packed double-precision floating-point
values in an XMM register or 128-bit memory
location to packed single-precision floating-point
values in the destination XMM register.

cvtpd2ps.eps

127 63 064

xmm1 xmm2/mem128

convert
convert

127 63 0643132

0

58 CVTPD2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Instruction Reference CVTPD2PS 59

26568—Rev. 3.09—July 2007 AMD64 Technology

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

60 CVTPI2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit memory location to
two double-precision floating-point values and writes the converted values in an XMM register.

The CVTPI2PD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

None

CVTPI2PD Convert Packed Doubleword Integers to Packed
Double-Precision Floating-Point

Mnemonic Opcode Description

CVTPI2PD xmm, mmx/mem64 66 0F 2A /r

Converts two packed doubleword integer values in an
MMX register or 64-bit memory location to two packed
double-precision floating-point values in the destination
XMM register.

cvtpi2pd.eps

127 63 064 3132

mmx/mem64xmm

convert
convert

63 0

Instruction Reference CVTPI2PD 61

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An exception was pending due to an x87 floating-

point instruction.

Alignment check, #AC X X An unaligned memory reference was performed
while alignment checking was enabled.

62 CVTPI2PS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts two packed 32-bit signed integer values in an MMX register or a 64-bit memory location to
two single-precision floating-point values and writes the converted values in the low-order 64 bits of
an XMM register. The high-order 64 bits of the XMM register are not modified.

The CVTPI2PS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

CVTPI2PS Convert Packed Doubleword Integers to
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

CVTPI2PS xmm, mmx/mem64 0F 2A /r
Converts packed doubleword integer values in an MMX
register or 64-bit memory location to single-precision
floating-point values in the destination XMM register.

cvtpi2ps.eps

3132

mmx/mem64xmm

convert
convert

63 0127 63 064 3132

Instruction Reference CVTPI2PS 63

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An exception was pending due to an x87 floating-

point instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

64 CVTPS2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed 32-bit signed integer values and writes the converted values in another XMM
register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPS2DQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

CVTPS2DQ Convert Packed Single-Precision Floating-Point to
Packed Doubleword Integers

Mnemonic Opcode Description

CVTPS2DQ xmm1, xmm2/mem128 66 0F 5B /r

Converts four packed single-precision floating-point
values in an XMM register or 128-bit memory
location to four packed doubleword integers in the
destination XMM register.

cvtps2dq.eps

xmm1 xmm2/mem128

convert
convert

convert

convert

127 63 0649596 3132127 63 0649596 3132

Instruction Reference CVTPS2DQ 65

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

66 CVTPS2PD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts two packed single-precision floating-point values in the low-order 64 bits of an XMM
register or a 64-bit memory location to two packed double-precision floating-point values and writes
the converted values in another XMM register.

The CVTPS2PD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTPD2PS, CVTSD2SS, CVTSS2SD

rFLAGS Affected

None

CVTPS2PD Convert Packed Single-Precision Floating-Point
to Packed Double-Precision Floating-Point

Mnemonic Opcode Description

CVTPS2PD xmm1,
xmm2/mem64 0F 5A /r

Converts packed single-precision floating-point values in
an XMM register or 64-bit memory location to packed
double-precision floating-point values in the destination
XMM register.

cvtps2pd.eps

xmm2/mem64xmm1

convert
convert

127 63 064 3132127 63 064

Instruction Reference CVTPS2PD 67

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

68 CVTPS2PI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts two packed single-precision floating-point values in the low-order 64 bits of an XMM
register or a 64-bit memory location to two packed 32-bit signed integers and writes the converted
values in an MMX register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPS2PI instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTSI2SS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

CVTPS2PI Convert Packed Single-Precision Floating-Point to
Packed Doubleword Integers

Mnemonic Opcode Description

CVTPS2PI mmx,
xmm/mem64 0F 2D /r

Converts packed single-precision floating-point values in an
XMM register or 64-bit memory location to packed
doubleword integers in the destination MMX register.

cvtps2pi.eps

xmm/mem64mmx

convert
convert

127 63 064 3132313263 0

Instruction Reference CVTPS2PI 69

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An exception was pending due to an x87 floating-

point instruction.

Alignment check, #AC X X An unaligned memory reference was performed
while alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

70 CVTSD2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts a scalar double-precision floating-point value in the low-order 64 bits of an XMM register or
a 64-bit memory location to a 32-bit or 64-bit signed integer and writes the converted value in a
general-purpose register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1) or quadword value
(–263 to +263 – 1), the instruction returns the indefinite integer value (8000_0000h for 32-bit integers,
8000_0000_0000_0000h for 64-bit integers) when the invalid-operation exception (IE) is masked.

The CVTSD2SI instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

CVTSD2SI Convert Scalar Double-Precision Floating-Point to
Signed Doubleword or Quadword Integer

Mnemonic Opcode Description

CVTSD2SI reg32, xmm/mem64 F2 0F 2D /r
Converts a packed double-precision floating-point value
in an XMM register or 64-bit memory location to a
doubleword integer in a general-purpose register.

CVTSD2SI reg64, xmm/mem64 F2 0F 2D /r
Converts a packed double-precision floating-point value
in an XMM register or 64-bit memory location to a
quadword integer in a general-purpose register.

cvtsd2si.epswith REX prefix

031 127 63 064

reg32 xmm2/mem64

63 0 127 63 064

reg64 xmm2/mem64

convert

convert

Instruction Reference CVTSD2SI 71

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

72 CVTSD2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference CVTSD2SS 73

26568—Rev. 3.09—July 2007 AMD64 Technology

Converts a scalar double-precision floating-point value in the low-order 64 bits of an XMM register or
a 64-bit memory location to a single-precision floating-point value and writes the converted value in
the low-order 32 bits of another XMM register. The three high-order doublewords in the destination
XMM register are not modified. If the result of the conversion is an inexact value, the value is rounded
as specified by the rounding control bits (RC) in the MXCSR register.

The CVTSD2SS instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTPD2PS, CVTPS2PD, CVTSS2SD

rFLAGS Affected

None

CVTSD2SS Convert Scalar Double-Precision Floating-Point
to Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

CVTSD2SS xmm1, xmm2/mem64 F2 0F 5A /r

Converts a scalar double-precision floating-point
value in an XMM register or 64-bit memory location
to a scalar single-precision floating-point value in
the destination XMM register.

cvtsd2ss.eps

xmm1 xmm2/mem64

convert

127 63 064127 31 032

74 CVTSD2SS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Instruction Reference CVTSD2SS 75

26568—Rev. 3.09—July 2007 AMD64 Technology

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

76 CVTSI2SD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts a 32-bit or 64-bit signed integer value in a general-purpose register or memory location to a
double-precision floating-point value and writes the converted value in the low-order 64 bits of an
XMM register. The high-order 64 bits in the destination XMM register are not modified.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register.

The CVTSI2SD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

CVTSI2SD Convert Signed Doubleword or Quadword
Integer to Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

CVTSI2SD xmm, reg/mem32 F2 0F 2A /r
Converts a doubleword integer in a general-purpose
register or 32-bit memory location to a double-precision
floating-point value in the destination XMM register.

CVTSI2SD xmm, reg/mem64 F2 0F 2A /r
Converts a quadword integer in a general-purpose
register or 64-bit memory location to a double-precision
floating-point value in the destination XMM register.

cvtsi2sd.eps

031

reg/mem32xmm

convert

127 63 064

reg/mem64xmm

convert

127 63 064

with REX prefix

63 0

Instruction Reference CVTSI2SD 77

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

78 CVTSI2SS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts a 32-bit or 64-bit signed integer value in a general-purpose register or memory location to a
single-precision floating-point value and writes the converted value in the low-order 32 bits of an
XMM register. The three high-order doublewords in the destination XMM register are not modified.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register.

The CVTSI2SS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTPS2PI, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

CVTSI2SS Convert Signed Doubleword or Quadword Integer
to Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

CVTSI2SS xmm, reg/mem32 F3 0F 2A /r
Converts a doubleword integer in a general-purpose
register or 32-bit memory location to a single-precision
floating-point value in the destination XMM register.

CVTSI2SS xmm, reg/mem64 F3 0F 2A /r
Converts a quadword integer in a general-purpose register
or 64-bit memory location to a single-precision floating-
point value in the destination XMM register.

cvtsi2ss.eps

031

reg/mem32xmm

convert

127 03132

127 03132

reg/mem64xmm

convert

with REX prefix

63 0

Instruction Reference CVTSI2SS 79

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

80 CVTSS2SD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts a single-precision floating-point value in the low-order 32 bits of an XMM register or a 32-bit
memory location to a double-precision floating-point value and writes the converted value in the low-
order 64 bits of another XMM register. The high-order 64 bits in the destination XMM register are not
modified.

The CVTSS2SD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTPD2PS, CVTPS2PD, CVTSD2SS

rFLAGS Affected

None

CVTSS2SD Convert Scalar Single-Precision Floating-Point
to Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

CVTSS2SD xmm1, xmm2/mem32 F3 0F 5A /r

Converts scalar single-precision floating-point value
in an XMM register or 32-bit memory location to
double-precision floating-point value in the
destination XMM register.

cvtss2sd.eps

xmm1 xmm2/mem32

convert

127 31 032127 63 064

Instruction Reference CVTSS2SD 81

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

82 CVTSS2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

The CVTSS2SI instruction converts a single-precision floating-point value in the low-order 32 bits of
an XMM register or a 32-bit memory location to a 32-bit or 64-bit signed integer value and writes the
converted value in a general-purpose register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) in the MXCSR register. If the floating-point value is a NaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (–231 to +231 – 1) or quadword value
(–263 to +263 – 1), the instruction returns the indefinite integer value (8000_0000h for 32-bit integers,
8000_0000_0000_0000h for 64-bit integers) when the invalid-operation exception (IE) is masked.

The CVTSS2SI instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

CVTSS2SI Convert Scalar Single-Precision Floating-Point
to Signed Doubleword or Quadword Integer

Mnemonic Opcode Description

CVTSS2SI reg32,
xmm2/mem32 F3 0F 2D /r

Converts a single-precision floating-point value in an
XMM register or 32-bit memory location to a
doubleword integer value in a general-purpose register.

CVTSS2SI reg64,
xmm2/mem32 F3 0F 2D /r

Converts a single-precision floating-point value in an
XMM register or 32-bit memory location to a quadword
integer value in a general-purpose register.

cvtss2si.epswith REX prefix

63 0

031 127 31 032

reg32 xmm2/mem32

convert

0 127 31 032

reg64 xmm2/mem32

convert

Instruction Reference CVTSS2SI 83

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

84 CVTSS2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference CVTTPD2DQ 85

26568—Rev. 3.09—July 2007 AMD64 Technology

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed 32-bit signed integer values and writes the converted values in the low-order 64
bits of another XMM register. The high-order 64 bits of the destination XMM register are cleared to all
0s.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPD2DQ instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

CVTTPD2DQ Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPD2DQ xmm1, xmm2/mem128 66 0F E6 /r

Converts packed double-precision floating-point
values in an XMM register or 128-bit memory
location to packed doubleword integer values in
the destination XMM register. Inexact results are
truncated.

cvttpd2dq.eps

127 63 064

xmm1 xmm2/mem128

convert

0

convert

127 63 0643132

86 CVTTPD2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Instruction Reference CVTTPD2PI 87

26568—Rev. 3.09—July 2007 AMD64 Technology

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed 32-bit signed integer values and writes the converted values in an MMX
register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPD2PI instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ,
CVTTSD2SI

rFLAGS Affected

None

CVTTPD2PI Convert Packed Double-Precision Floating-Point
to Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPD2PI mmx,
xmm/mem128 66 0F 2C /r

Converts packed double-precision floating-point values
in an XMM register or 128-bit memory location to
packed doubleword integer values in the destination
MMX register. Inexact results are truncated.

cvttpd2pi.eps

127 63 0643132

xmm/mem128mmx

convert
convert

63 0

88 CVTTPD2PI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM1.

x87 floating-point
exception pending, #MF X X X An exception is pending due to an x87 floating-point

instruction.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

Instruction Reference CVTTPD2PI 89

26568—Rev. 3.09—July 2007 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN value,
or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

90 CVTTPS2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed 32-bit signed integers and writes the converted values in another XMM
register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPS2DQ instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2PI,
CVTTSS2SI

rFLAGS Affected

None

CVTTPS2DQ Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPS2DQ xmm1, xmm2/mem128 F3 0F 5B /r

Converts packed single-precision floating-point
values in an XMM register or 128-bit memory
location to packed doubleword integer values in
the destination XMM register. Inexact results are
truncated.

cvttps2dq.eps

xmm1 xmm2/mem128

convert

convert

convert

convert

127 63 0649596 3132127 63 0649596 3132

Instruction Reference CVTTPS2DQ 91

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

92 CVTTPS2PI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts two packed single-precision floating-point values in the low-order 64 bits of an XMM
register or a 64-bit memory location to two packed 32-bit signed integer values and writes the
converted values in an MMX register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPS2PI instruction is an SSE instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ,
CVTTSS2SI

rFLAGS Affected

None

CVTTPS2PI Convert Packed Single-Precision Floating-Point
to Packed Doubleword Integers, Truncated

Mnemonic Opcode Description

CVTTPS2PI mmx,
xmm/mem64 0F 2C /r

Converts packed single-precision floating-point values in
an XMM register or 64-bit memory location to doubleword
integer values in the destination MMX register. Inexact
results are truncated.

cvttps2pi.eps

xmm/mem64mmx

convert
convert

127 63 064 3132313263 0

Instruction Reference CVTTPS2PI 93

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending, #MF X X X An exception was pending due to an x87 floating-point

instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN value,
or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

94 CVTTSD2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts a double-precision floating-point value in the low-order 64 bits of an XMM register or a 64-
bit memory location to a 32-bit or 64-bit signed integer value and writes the converted value in a
general-purpose register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the instruction returns the
indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers)
when the invalid-operation exception (IE) is masked.

The CVTTSD2SI instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

CVTTSD2SI Convert Scalar Double-Precision Floating-Point
to Signed Doubleword of Quadword Integer,

Truncated

Mnemonic Opcode Description

CVTTSD2SI reg32,
xmm/mem64 F2 0F 2C /r

Converts scalar double-precision floating-point value in
an XMM register or 64-bit memory location to a
doubleword signed integer value in a general-purpose
register. Inexact results are truncated.

CVTTSD2SI reg64,
xmm/mem64 F2 0F 2C /r

Converts scalar double-precision floating-point value in
an XMM register or 64-bit memory location to a
quadword signed integer value in a general-purpose
register. Inexact results are truncated.

cvttsd2si.epswith REX prefix

031 127 63 064

reg32 xmm2/mem64

63 0 127 63 064

reg64 xmm2/mem64

convert

convert

Instruction Reference CVTTSD2SI 95

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ,
CVTTPD2PI

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

96 CVTTSD2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference CVTTSS2SI 97

26568—Rev. 3.09—July 2007 AMD64 Technology

Converts a single-precision floating-point value in the low-order 32 bits of an XMM register or a 32-bit
memory location to a 32-bit or 64-bit signed integer value and writes the converted value in a general-
purpose register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is a NaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (–231 to +231 – 1) or quadword value (–263 to +263 – 1), the instruction returns the
indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers)
when the invalid-operation exception (IE) is masked.

The CVTTSS2SI instruction is an SSE instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

CVTTSS2SI Convert Scalar Single-Precision Floating-Point to
Signed Doubleword or Quadword Integer,

Truncated

Mnemonic Opcode Description

CVTTSS2SI reg32,
xmm/mem32 F3 0F 2C /r

Converts scalar single-precision floating-point value in
an XMM register or 32-bit memory location to a signed
doubleword integer value in a general-purpose register.
Inexact results are truncated.

CVTTSS2SI reg64,
xmm/mem32 F3 0F 2C /r

Converts scalar single-precision floating-point value in
an XMM register or 32-bit memory location to a signed
quadword integer value in a general-purpose register.
Inexact results are truncated.

cvttss2si.epswith REX prefix

63 0

031 127 31 032

reg32 xmm2/mem64

convert

0 127 31 032

reg64 xmm2/mem64

convert

98 CVTTSS2SI Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ,
CVTTPS2PI

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

Instruction Reference CVTTSS2SI 99

26568—Rev. 3.09—July 2007 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value, a QNaN
value, or ±infinity.

X X X A source operand was too large to fit in the
destination format.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

100 DIVPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Divides each of the two packed double-precision floating-point values in the first source operand by
the corresponding packed double-precision floating-point value in the second source operand and
writes the result of each division in the corresponding quadword of the destination (first source). The
first source/destination operand is an XMM register. The second source operand is another XMM
register or 128-bit memory location.

The DIVPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

DIVPS, DIVSD, DIVSS

rFLAGS Affected

None

DIVPD Divide Packed Double-Precision Floating-Point

Mnemonic Opcode Description

DIVPD xmm1, xmm2/mem128 66 0F 5E /r

Divides packed double-precision floating-point values in
an XMM register by the packed double-precision
floating-point values in another XMM register or 128-bit
memory location.

divpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

divide

divide

Instruction Reference DIVPD 101

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X ±Zero was divided by ±zero.

X X X ±infinity was divided by ±infinity.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

102 DIVPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Zero-divide exception
(ZE) X X X A non-zero number was divided by zero.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference DIVPS 103

26568—Rev. 3.09—July 2007 AMD64 Technology

Divides each of the four packed single-precision floating-point values in the first source operand by the
corresponding packed single-precision floating-point value in the second source operand and writes
the result of each division in the corresponding quadword of the destination (first source). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 128-bit memory location.

The DIVPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

DIVPD, DIVSD, DIVSS

rFLAGS Affected

None

DIVPS Divide Packed Single-Precision Floating-Point

Mnemonic Opcode Description

DIVPS xmm1, xmm/2mem128 0F 5E /r

Divides packed single-precision floating-point values in an
XMM register by the packed single-precision floating-point
values in another XMM register or 128-bit memory
location.

divps.eps

xmm1 xmm2/mem128

divide

divide

divide

divide

127 63 0649596 3132127 63 0649596 3132

104 DIVPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X ±Zero was divided by ±zero.

X X X ±infinity was divided by ±infinity.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Instruction Reference DIVPS 105

26568—Rev. 3.09—July 2007 AMD64 Technology

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Zero-divide exception
(ZE) X X X A non-zero number was divided by zero.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

106 DIVSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Divides the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the result in the low-order quadword of the destination (first source). The high-
order quadword of the destination is not modified. The first source/destination operand is an XMM
register. The second source operand is another XMM register or 128-bit memory location.

The DIVSD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

DIVPD, DIVPS, DIVSS

rFLAGS Affected

None

DIVSD Divide Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

DIVSD xmm1, xmm2/mem64 F2 0F 5E /r

Divides low-order double-precision floating-point value in
an XMM register by the low-order double-precision
floating-point value in another XMM register or in a 64- or
128-bit memory location.

divsd.eps

xmm1 xmm2/mem64

divide

127 63 064 127 63 064

Instruction Reference DIVSD 107

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X ±Zero was divided by ±zero.

X X X ±infinity was divided by ±infinity.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

108 DIVSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Zero-divide exception
(ZE) X X X A non-zero number was divided by zero.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference DIVSS 109

26568—Rev. 3.09—July 2007 AMD64 Technology

Divides the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the result in the low-order doubleword of the destination (first source). The three
high-order doublewords of the destination are not modified. The first source/destination operand is an
XMM register. The second source operand is another XMM register or 128-bit memory location.

The DIVSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

DIVPD, DIVPS, DIVSD

rFLAGS Affected

None

DIVSS Divide Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

DIVSS xmm1, xmm2/mem32 F3 0F 5E /r

Divides low-order single-precision floating-point value in
an XMM register by the low-order single-precision
floating-point value in another XMM register or in a 32-bit
memory location.

divss.eps

xmm1 xmm2/mem32

divide

127 31 032 127 31 032

110 DIVSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X ±Zero was divided by ±zero.

X X X ±infinity was divided by ±infinity.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Instruction Reference DIVSS 111

26568—Rev. 3.09—July 2007 AMD64 Technology

Zero-divide exception
(ZE) X X X A non-zero number was divided by zero.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

112 EXTRQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Extracts specified bits from the lower 64 bits of the first operand (the destination XMM register). The
extracted bits are saved in the least-significant bit positions of the destination; the remaining bits in the
lower 64 bits of the destination register are cleared to 0. The upper 64 bits of the destination register are
undefined.

The portion of the source data being extracted is defined by the bit index and the field length. The bit
index defines the least-significant bit of the source operand being extracted. Bits [bit index + length
field – 1]:[bit index] are extracted. If the sum of the bit index + length field is greater than 64, the results
are undefined.

For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the
destination register will be source [47:32] in bits 15:0, with zeros in bits 63:16.

A value of zero in the field length is defined as a length of 64. If the length field is 0 and the
bit index is 0, bits 63:0 of the source are extracted. For any other value of the bit index, the results are
undefined.

The bit index and field length can be specified as immediate values (second and first immediate
operands, respectively, in the case of the three argument version of the instruction), or they can both be
specified by fields in an XMM source operand. In the latter case, bits [5:0] of the XMM register
specify the number of bits to extract (the field length) and bits [13:8] of the XMM register specify the
index of the first bit in the field to extract. The bit index and field length are each six bits in length;
other bits of the field are ignored.

Support for the EXTRQ instruction is indicated by ECX bit 6 (SSE4A) as returned by CPUID function
8000_0001h. Software must check the CPUID bit once per program or library initialization before
using the EXTRQ instruction, or inconsistent behavior may result.

EXTRQ Extract Field From Register

Mnemonic Opcode Description

EXTRQ xmm1, imm8, imm8 66 0F 78 /0 ib ib

Extract field from xmm1, with the least significant bit
of the extracted data starting at the bit index
specified by [5:0] of the second immediate byte, with
the length specified by [5:0] of the first immediate
byte.

EXTRQ xmm1, xmm2 66 0F 79 /r

Extract field from xmm1, with the least significant bit
of the extracted data starting at the bit index
specified by xmm2[13:8], with the length specified
by xmm2[5:0].

Instruction Reference EXTRQ 113

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

INSERTQ, PINSRW, PEXTRW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE4A instructions are not supported, as
indicated by ECX bit 6 (SSE4A) of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

xmm1 xmm2

06364127 127

shift right

mask to field length

xmm1 second imm8

06364127 05

shift right

mask to field length

first imm8

05

13 8 5 0

7 7

114 FXRSTOR Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Restores the XMM, MMX, and x87 state. The data loaded from memory is the state information
previously saved using the FXSAVE instruction. Restoring data with FXRSTOR that had been
previously saved with an FSAVE (rather than FXSAVE) instruction results in an incorrect restoration.

If FXRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

If the restored MXCSR register contains a set bit in an exception status flag, and the corresponding
exception mask bit is cleared (indicating an unmasked exception), loading the MXCSR register from
memory does not cause a SIMD floating-point exception (#XF).

FXRSTOR does not restore the x87 error pointers (last instruction pointer, last data pointer, and last
opcode), except in the relatively rare cases in which the exception-summary (ES) bit in the x87 status
word is set to 1, indicating that an unmasked x87 exception has occurred.

The architecture supports two 512-bit memory formats for FXRSTOR, a 64-bit format that loads
XMM0-XMM15, and a 32-bit legacy format that loads only XMM0-XMM7. If FXRSTOR is executed
in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-bit format is
used, if the operand-size is 64-bit, FXRSTOR loads the x87 pointer registers as offset64, otherwise it
loads them as sel:offset32. For details about the memory format used by FXRSTOR, see "Saving
Media and x87 Processor State" in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXRSTOR does not restore the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is restored
whether fast-FXSAVE/FXRSTOR is enabled or not. Software can use CPUID to determine whether
the fast-FXSAVE/FXRSTOR feature is available. (See “CPUID” in Volume 3.)

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, the saved
image of XMM0–XMM15 and MXCSR is not loaded into the processor. A general-protection
exception occurs if the FXRSTOR instruction attempts to load non-zero values into reserved MXCSR
bits. Software can use MXCSR_MASK to determine which bits of MXCSR are reserved. For details
on the MXCSR_MASK, see “128-Bit, 64-Bit, and x87 Programming” in Volume 2.
.

Related Instructions

FWAIT, FXSAVE

rFLAGS Affected

None

FXRSTOR Restore XMM, MMX, and x87 State

Mnemonic Opcode Description

FXRSTOR mem512env 0F AE /1 Restores XMM, MMX™, and x87 state from 512-byte
memory location.

Instruction Reference FXRSTOR 115

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The FXSAVE/FXRSTOR instructions are not
supported, as indicated by EDX bit 24 of CPUID
function 0000_0001h or function 8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary.

X X X Ones were written to the reserved bits in MXCSR.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

116 FXSAVE Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Saves the XMM, MMX, and x87 state. A memory location that is not aligned on a 16-byte boundary
causes a general-protection exception.

Unlike FSAVE and FNSAVE, FXSAVE does not alter the x87 tag bits. The contents of the saved
MMX/x87 data registers are retained, thus indicating that the registers may be valid (or whatever other
value the x87 tag bits indicated prior to the save). To invalidate the contents of the MMX/x87 data
registers after FXSAVE, software must execute an FINIT instruction. Also, FXSAVE (like FNSAVE)
does not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction can be
used for this purpose.

FXSAVE does not save the x87 pointer registers (last instruction pointer, last data pointer, and last
opcode), except in the relatively rare cases in which the exception-summary (ES) bit in the x87 status
word is set to 1, indicating that an unmasked x87 exception has occurred.

The architecture supports two 512-bit memory formats for FXSAVE, a 64-bit format that saves
XMM0-XMM15, and a 32-bit legacy format that saves only XMM0-XMM7. If FXSAVE is executed
in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-bit format is
used, if the operand-size is 64-bit, FXSAVE saves the x87 pointer registers as offset64, otherwise it
saves them as sel:offset32. For more details about the memory format used by FXSAVE, see “Saving
Media and x87 Processor State” in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE does not save the
XMM registers (XMM0-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is saved whether
fast-FXSAVE/FXRSTOR is enabled or not. Software can use CPUID to determine whether the fast-
FXSAVE/FXRSTOR feature is available. (See “CPUID” in Volume 3.)

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, FXSAVE
does not save the image of XMM0–XMM15 or MXCSR. For details about the CR4.OSFXSR bit, see
“FXSAVE/FXRSTOR Support (OSFXSR) Bit” in Volume 2.

Related Instructions

FINIT, FNSAVE, FRSTOR, FSAVE, FXRSTOR, LDMXCSR, STMXCSR

rFLAGS Affected

None

MXCSR Flags Affected

None

FXSAVE Save XMM, MMX, and x87 State

Mnemonic Opcode Description

FXSAVE mem512env 0F AE /0 Saves XMM, MMX, and x87 state to 512-byte memory
location.

Instruction Reference FXSAVE 117

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The FXSAVE/FXRSTOR instructions are not
supported, as indicated by EDX bit 24 of CPUID
function 0000_0001h or function 8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

X X X The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

118 HADDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds the double-precision floating-point values in the high and low quadwords of the destination
operand and stores the result in the low quadword of the destination operand. Simultaneously, the
instruction adds the double-precision floating-point values in the high and low quadwords of the
source operand and stores the result in the high quadword of the destination operand.

The HADDPD instruction is an SSE3 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

HADDPS, HSUBPD, HSUBPS

rFLAGS Affected

None

HADDPD Horizontal Add Packed Double

Mnemonic Opcode Description

HADDPD xmm1,
xmm2/mem128 66 0F 7C /r

Adds two packed double-precision values in xmm1 and
stores the result in the lower 64 bits of xmm1; adds two
packed double-precision values in xmm2 or a 128-bit
memory operand and stores the result in the upper 64
bits of xmm1.

xmm1 xmm2/mem128

add
add

06364127 06364127

Instruction Reference HADDPD 119

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE3 instructions are not supported, as
indicated by ECX bit 0 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was added to –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

120 HADDPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference HADDPS 121

26568—Rev. 3.09—July 2007 AMD64 Technology

Adds pairs of packed single-precision floating-point values simultaneously. The sum of the values in
the first and second doublewords of the destination operand is stored in the first doubleword of the
destination operand; the sum of the values in the third and fourth doubleword of the destination
operand is stored in the second doubleword of the destination operand; the sum of the values in the first
and second doubleword of the source operand is stored in the third doubleword of the destination
operand; and the sum of the values in the third and fourth doubleword of the source operand is stored in
the fourth doubleword of the destination operand.

The HADDPS instruction is an SSE3 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

HADDPD, HSUBPD, HSUBPS

rFLAGS Affected

None

HADDPS Horizontal Add Packed Single

Mnemonic Opcode Description

HADDPS xmm1,
xmm2/mem128 F2 0F 7C /r

Adds the first and second packed single-precision
values in xmm1 and stores the sum in xmm1[0-31];
adds the third and fourth single-precision values in
xmm1 and stores the sum in xmm1[32–63]; adds the
first and second packed single-precision values in
xmm2 or a 128-bit memory operand and stores the sum
in the xmm1[64–95]; adds the third and fourth packed
single-precision values in xmm2 or a 128-bit memory
operand and stores the result in xmm1[96–127].

add

xmm1 xmm2/mem128

add
add

add

06364127 319596 32 06364127 319596 32

122 HADDPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE3 instructions are not supported, as
indicated by ECX bit 0 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

Instruction Reference HADDPS 123

26568—Rev. 3.09—July 2007 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was added to –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

124 HSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Subtracts the packed double-precision floating-point value in the upper quadword of the destination
XMM register operand from the lower quadword of the destination operand and stores the result in the
lower quadword of the destination operand; subtracts the value in the upper quadword of the source
XMM register or 128-bit memory operand from the value in the lower quadword of the source operand
and stores the result in the upper quadword of the destination XMM register.

The HSUBPD instruction is an SSE3 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

HSUBPS, HADDPD, HADDPS

rFLAGS Affected

None

HSUBPD Horizontal Subtract Packed Double

Mnemonic Opcode Description

HSUBPD xmm1,
xmm2/mem128 66 0F 7D /r

Subtracts the packed double-precision value in the
upper 64 bits of the source register from the value in the
lower 64 bits of the source register or 128-bit memory
operand and stores the difference in the upper 64 bits of
the destination XMM register; Subtracts the upper 64
bits of the destination register from the lower 64 bits of
the destination register and stores the result in the lower
64 bits of the destination XMM register.

xmm1 xmm2/mem128

sub
sub

06364127 06364127

Instruction Reference HSUBPD 125

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE3 instructions are not supported, as
indicated by ECX bit 0 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions below for details.

126 HSUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference HSUBPS 127

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts the packed single-precision floating-point value in the second doubleword of the destination
XMM register from that in the first doubleword of the destination register and stores the difference in
the first doubleword of the destination register; subtracts the value in the fourth doubleword of the
destination register from that in the third doubleword of the destination register and stores the result in
the second doubleword of the destination register; subtracts the value in the second doubleword of the
source XMM register or 128-bit memory operand from the first doubleword of the source operand and
stores the result in the third doubleword of the destination XMM register; subtracts the single-
precision floating-point value in the fourth doubleword of the source operand from the third
doubleword of the source operand and stores the result in the fourth doubleword of the destination
XMM register.

The HSUBPS instruction is an SSE3 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

HSUBPD, HADDPD, HADDPS

HSUBPS Horizontal Subtract Packed Single

Mnemonic Opcode Description

HSUBPS xmm1,
xmm2/mem128 F2 0F 7D /r

Subtracts the second 32 bits of the destination operand
from the first 32 bits of the destination operand and
stores the difference in the first doubleword of the
destination operand; subtracts the fourth 32 bits of the
destination operand from the third 32-bits of the
destination operand and stores the difference in the
second doubleword of the destination operand;
subtracts the second 32 bits of the source operand from
the first 32 bits of the source operand and stores the
difference in the third doubleword of the destination
operand; subtracts the fourth 32-bits of the source
operand from the third 32 bits of the source operand
and stores the difference in the fourth doubleword of the
destination operand.

sub

xmm1 xmm2/mem128

sub
sub

sub

06364127 319596 32 06364127 319596 32

128 HSUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE3 instructions are not supported, as
indicated by ECX bit 0 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions below for details.

Instruction Reference HSUBPS 129

26568—Rev. 3.09—July 2007 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

130 INSERTQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Inserts bits from the lower 64 bits of the source operand into the lower 64 bits of the destination
operand. No other bits in the lower 64 bits of the destination are modified. The upper 64 bits of the
destination are undefined.

The least-significant l bits of the source operand are inserted into the destination, with the least-
significant bit of the source operand inserted at bit position n, where l and n are defined as the field
length and bit index, respectively.

Bits (field length – 1):0 of the source operand are inserted into bits (bit index + field length – 1):(bit
index) of the destination. If the sum of the bit index + length field is greater than 64, the results are
undefined.

For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the
destination register will be source operand[15:0] in bits 47:32. Bits 63:48 and bits 31:0 are not
modified.

A value of zero in the field length is defined as a length of 64. If the length field is 0 and the bit index is
0, bits 63:0 of the source operand are inserted. For any other value of the bit index, the results are
undefined.

The bits to insert are located in the XMM2 source operand. The bit index and field length can be
specified as immediate values or can be specified in the XMM source operand. In the immediate form,
the bit index and the field length are specified by the fourth (second immediate byte) and third
operands (first immediate byte), respectively. In the register form, the bit index and field length are
specified in bits [77:72] and bits [69:64] of the source XMM register, respectively. The bit index and
field length are each six bits in length; other bits in the field are ignored.

Support for the INSERTQ instruction is indicated by ECX bit 6 (SSE4A) as returned by CPUID
function 8000_0001h. Software must check the CPUID bit once per program or library initialization
before using the INSERTQ instruction, or inconsistent behavior may result.

INSERTQ Insert Field

Mnemonic Opcode Description

INSERTQ xmm1, xmm2, imm8,
imm8 F2 0F 78 /r ib ib

Insert field starting at bit 0 of xmm2 with the length
specified by [5:0] of the first immediate byte. This
field is inserted into xmm1 starting at the bit
position specified by [5:0] of the second immediate
byte.

INSERTQ xmm1, xmm2 F2 0F 79 /r

Insert field starting at bit 0 of xmm2 with the length
specified by xmm2[69:64]. This field is inserted into
xmm1 starting at the bit position specified by
xmm2[77:72].

Instruction Reference INSERTQ 131

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

EXTRQ, PINSRW, PEXTRW

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE4A instructions are not supported, as
indicated by ECX bit 6 (SSE4A) of CPUID function
8000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

7

xmm1 xmm2

06364127 0127

xmm2
second

06364127 05

select number of bits to insert

select bit position for insert

first

05

imm8imm8

06364127

xmm1

 69
 64 63

select bit position for insert

select number of bits to insert

77
 72

7

132 LDDQU Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves an unaligned 128-bit (double quadword) value from a 128-bit memory location to a destination
XMM register.

Like the MOVUPD instruction, the LDDQU instruction loads a 128-bit operand from an unaligned
memory location. However, to improve performance when the memory operand is actually
misaligned, LDDQU may read an aligned 16 bytes to get the first part of the operand, and an aligned
16 bytes to get the second part of the operand. This behavior is implementation-specific, and LDDQU
may only read the exact 16 bytes needed for the memory operand. If the memory operand is in a
memory range where reading extra bytes can cause performance or functional issues, use the
MOVUPD instruction instead of LDDQU.

Memory operands that are not aligned on a 16-byte boundary do not cause a general-protection
exception.

The LDDQU instruction is an SSE3 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVDQU

rFLAGS Affected

None

MXCSR Flags Affected

None

LDDQU Load Unaligned Double Quadword

Mnemonic Opcode Description

LDDQU xmm1, mem128 F2 0F F0 /r Moves a 128-bit value from an unaligned 128-bit
memory location to the destination XMM register.

copy

0127 0127

xmm1 mem128

Instruction Reference LDDQU 133

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE3 instructions are not supported, as indicated
by ECX bit 0 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

134 LDMXCSR Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Loads the MXCSR register with a 32-bit value from memory.

A general protection exception occurs if the LDMXCSR instruction attempts to load non-zero values
into reserved MXCSR bits. Software can use MXCSR_MASK to determine which bits of MXCSR are
reserved. For details on the MXCSR_MASK, see “128-Bit, 64-Bit, and x87 Programming” in
Volume 2.

The MXCSR register is described in “Registers” in Volume 1.

The LDMXCSR instruction is an SSE instruction; check the status of EDX bit 25 returned by CPUID
function 0000_0001h to verify that the processor supports this function. (See “CPUID” in Volume 3.)

Related Instructions

STMXCSR

rFLAGS Affected

None

MXCSR Flags Affected

Exceptions

LDMXCSR Load MXCSR Control/Status Register

Mnemonic Opcode Description

LDMXCSR mem32 0F AE /2 Loads MXCSR register with 32-bit value in memory.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M M M M M M M M M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE instructions are not supported, as
indicated by EDX bit 25 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment
limit or was non-canonical.

Instruction Reference LDMXCSR 135

26568—Rev. 3.09—July 2007 AMD64 Technology

General protection, #GP

X X X A memory address exceeded a data segment limit
or was non-canonical.

X A null data segment was used to reference memory.

X X X Ones were written to the reserved bits in MXCSR.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed
while alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

136 MASKMOVDQU Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Stores bytes from the first source operand as selected by the sign bits in the second source operand
(sign-bit is 0 = no write and sign-bit is 1 = write) to a memory location specified in the DS:rDI
registers. The first source operand is an XMM register, and the second source operand is another
XMM register. The store address may be unaligned.

A mask value of all 0s results in the following behavior:

• No data is written to memory.

• Code and data breakpoints are not guaranteed to be signaled in all implementations.

• Exceptions associated with memory addressing and page faults are not guaranteed to be signaled in
all implementations.

MASKMOVDQU implicitly uses weakly-ordered, write-combining buffering for the data, as
described in “Buffering and Combining Memory Writes” in Volume 2. For data that is shared by
multiple processors, this instruction should be used together with a fence instruction in order to ensure
data coherency (refer to “Cache and TLB Management” in Volume 2).

The MASKMOVDQU instruction is an SSE2 instruction. The presence of this instruction set is
indicated by a CPUID feature bit. (See “CPUID” in Volume 3.)

MASKMOVDQU Masked Move Double Quadword Unaligned

Mnemonic Opcode Description

MASKMOVDQU xmm1, xmm2 66 0F F7 /r Store bytes from an XMM register selected by a mask
value in another XMM register to DS:rDI.

xmm1

select

maskmovdqu.eps

127 0

select
.

.

.

xmm2
127 0

store address
Memory

DS:rDI

Instruction Reference MASKMOVDQU 137

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

MASKMOVQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

138 MAXPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares each of the two packed double-precision floating-point values in the first source operand
with the corresponding packed double-precision floating-point value in the second source operand and
writes the numerically greater of the two values for each comparison in the corresponding quadword of
the destination (first source). The first source/destination operand is an XMM register. The second
source operand is another XMM register or 128-bit memory location.

If both source operands are equal to zero, the value in the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

The MAXPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MAXPS, MAXSD, MAXSS, MINPD, MINPS, MINSD, MINSS

rFLAGS Affected

None

MAXPD Maximum Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MAXPD xmm1, xmm2/mem128 66 0F 5F /r

Compares two pairs of packed double-precision values
in an XMM register and another XMM register or 128-bit
memory location and writes the greater value of each
comparison in the destination XMM register.

maxpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

maximum

maximum

Instruction Reference MAXPD 139

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

140 MAXPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares each of the four packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the numerically greater of the two values for each comparison in the corresponding doubleword
of the destination (first source). The first source/destination operand is an XMM register. The second
source operand is another XMM register or 128-bit memory location.

If both source operands are equal to zero, the value in the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

The MAXPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MAXPD, MAXSD, MAXSS, MINPD, MINPS, MINSD, MINSS

rFLAGS Affected

None

MAXPS Maximum Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MAXPS xmm1, xmm2/mem128 0F 5F /r

Compares four pairs of packed single-precision values in an
XMM register and another XMM register or 128-bit memory
location and writes the maximum value of each comparison
in the destination XMM register.

maxps.eps

xmm1 xmm2/mem128

maximum

maximum

maximum

maximum

127 63 0649596 3132127 63 0649596 3132

Instruction Reference MAXPS 141

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions for details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

142 MAXSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares the double-precision floating-point value in the low-order 64 bits of the first source operand
with the double-precision floating-point value in the low-order 64 bits of the second source operand
and writes the numerically greater of the two values in the low-order quadword of the destination (first
source). The first source/destination operand is an XMM register. The second source operand is
another XMM register or a 64-bit memory location. The high-order quadword of the destination XMM
register is not modified.

If both source operands are equal to zero, the value in the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

The MAXSD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MAXPD, MAXPS, MAXSS, MINPD, MINPS, MINSD, MINSS

rFLAGS Affected

None

MAXSD Maximum Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

MAXSD xmm1, xmm2/mem64 F2 0F 5F /r

Compares scalar double-precision values in an XMM
register and another XMM register or 64-bit memory
location and writes the greater of the two values in the
destination XMM register.

maxsd.eps

xmm1 xmm2/mem64

maximum

127 63 064 127 63 064

Instruction Reference MAXSD 143

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions for details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

144 MAXSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares the single-precision floating-point value in the low-order 32 bits of the first source operand
with the single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the numerically greater of the two values in the low-order 32 bits of the destination (first
source). The first source/destination operand is an XMM register. The second source operand is
another XMM register or a 32-bit memory location. The three high-order doublewords of the
destination XMM register are not modified.

If both source operands are equal to zero, the value in the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

The MAXSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MAXPD, MAXPS, MAXSD, MINPD, MINPS, MINSD, MINSS, PFMAX

rFLAGS Affected

None

MAXSS Maximum Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

MAXSS xmm1, xmm2/mem32 F3 0F 5F /r

Compares scalar single-precision floating-point values in
an XMM register and another XMM register or 32-bit
memory location and writes the greater of the two values
in the destination XMM register.

maxss.eps

xmm1 xmm2/mem32

maximum

127 31 032 127 31 032

Instruction Reference MAXSS 145

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions for details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

146 MINPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares each of the two packed double-precision floating-point values in the first source operand
with the corresponding packed double-precision floating-point value in the second source operand and
writes the numerically lesser of the two values for each comparison in the corresponding quadword of
the destination (first source). The first source/destination operand is an XMM register. The second
source operand is another XMM register or a 128-bit memory location.

If both source operands are equal to zero, the value in the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

The MINPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MAXPD, MAXPS, MAXSD, MAXSS, MINPS, MINSD, MINSS

rFLAGS Affected

None

MINPD Minimum Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MINPD xmm1, xmm2/mem128 66 0F 5D /r

Compares two pairs of packed double-precision floating-
point values in an XMM register and another XMM
register or 128-bit memory location and writes the
lesser value of each comparison in the destination XMM
register.

minpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

minimum

minimum

Instruction Reference MINPD 147

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

148 MINPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

The MINPS instruction compares each of the four packed single-precision floating-point values in the
first source operand with the corresponding packed single-precision floating-point value in the second
source operand and writes the numerically lesser of the two values for each comparison in the
corresponding doubleword of the destination (first source). The first source/destination operand is an
XMM register. The second source operand is another XMM register or a 128-bit memory location.

If both source operands are equal to zero, the value in the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

The MINPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MAXPD, MAXPS, MAXSD, MAXSS, MINPD, MINSD, MINSS, PFMIN

rFLAGS Affected

None

MINPS Minimum Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MINPS xmm1,
xmm2/mem128 0F 5D /r

Compares four pairs of packed single-precision values in an
XMM register and another XMM register or 128-bit memory
location and writes the numerically lesser value of each
comparison in the destination XMM register.

minps.eps

xmm1 xmm2/mem128

minimum

minimum

minimum

minimum

127 63 0649596 3132127 63 0649596 3132

Instruction Reference MINPS 149

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

150 MINSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares the double-precision floating-point value in the low-order 64 bits of the first source operand
with the double-precision floating-point value in the low-order 64 bits of the second source operand
and writes the numerically lesser of the two values in the low-order 64 bits of the destination (first
source). The first source/destination operand is an XMM register. The second source operand is
another XMM register or a 64-bit memory location. The high-order quadword of the destination XMM
register is not modified.

If both source operands are equal to zero, the value in the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

The MINSD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MAXPD, MAXPS, MAXSD, MAXSS, MINPD, MINPS, MINSS

rFLAGS Affected

None

MINSD Minimum Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

MINSD xmm1, xmm2/mem64 F2 0F 5D /r

Compares scalar double-precision floating-point values in
an XMM register and another XMM register or 64-bit
memory location and writes the lesser of the two values
in the destination XMM register.

minsd.eps

xmm1 xmm2/mem64

minimum

127 63 064 127 63 064

Instruction Reference MINSD 151

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

152 MINSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares the single-precision floating-point value in the low-order 32 bits of the first source operand
with the single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the numerically lesser of the two values in the low-order 32 bits of the destination (first source).
The first source/destination operand is an XMM register. The second source operand is another XMM
register or a 32-bit memory location. The three high-order doublewords of the destination XMM
register are not modified.

If both source operands are equal to zero, the value in the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

The MINSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MAXPD, MAXPS, MAXSD, MAXSS, MINPD, MINPS, MINSD

rFLAGS Affected

None

MINSS Minimum Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

MINSS xmm1, xmm2/mem32 F3 0F 5D /r

Compares scalar single-precision floating-point values in
an XMM register and another XMM register or 32-bit
memory location and writes the lesser of the two values in
the destination XMM register.

minss.eps

xmm1 xmm2/mem32

minimum

127 31 032 127 31 032

Instruction Reference MINSS 153

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN or QNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

154 MOVAPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves two packed double-precision floating-point values:

• from an XMM register or 128-bit memory location to another XMM register, or

• from an XMM register to another XMM register or 128-bit memory location.

A memory operand that is not aligned on a 16-byte boundary causes a general-protection exception.

The MOVAPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVHPD, MOVLPD, MOVMSKPD, MOVSD, MOVUPD

MOVAPD Move Aligned Packed Double-Precision
Floating-Point

Mnemonic Opcode Description

MOVAPD xmm1, xmm2/mem128 66 0F 28 /r
Moves packed double-precision floating-point value
from an XMM register or 128-bit memory location to
an XMM register.

MOVAPD xmm1/mem128, xmm2 66 0F 29 /r
Moves packed double-precision floating-point value
from an XMM register to an XMM register or 128-bit
memory location.

movapd.eps

127 63 064

xmm1 xmm2/mem128

copy
copy

127 63 064

127 63 064

xmm1/mem128 xmm2

copy
copy

127 63 064

Instruction Reference MOVAPD 155

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

X X X The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

156 MOVAPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves four packed single-precision floating-point values:

• from an XMM register or 128-bit memory location to another XMM register, or

• from an XMM register to another XMM register or 128-bit memory location.

The MOVAPS instruction is an SSE instruction; check the status of EDX bit 25 returned by CPUID
function 0000_0001h to verify that the processor supports this function. (See “CPUID” in Volume 3.)

A memory operand that is not aligned on a 16-byte boundary causes a general-protection exception.

MOVAPS Move Aligned Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

MOVAPS xmm1, xmm2/mem128 0F 28 /r
Moves aligned packed single-precision floating-point
value from an XMM register or 128-bit memory location
to the destination XMM register.

MOVAPS xmm1/mem128, xmm2 0F 29 /r
Moves aligned packed single-precision floating-point
value from an XMM register to the destination XMM
register or 128-bit memory location.

Instruction Reference MOVAPS 157

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

MOVHLPS, MOVHPS, MOVLHPS, MOVLPS, MOVMSKPS, MOVSS, MOVUPS

rFLAGS Affected

None

MXCSR Flags Affected

None

movaps.eps

xmm1 xmm2/mem128

copy

copy

copy

copy

127 63 0649596 3132127 63 0649596 3132

xmm1/mem128 xmm2

copy

copy

copy

copy

127 63 0649596 3132127 63 0649596 3132

158 MOVAPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

X X X The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Instruction Reference MOVD 159

26568—Rev. 3.09—July 2007 AMD64 Technology

Moves a 32-bit or 64-bit value in one of the following ways:

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 or 64 bits
of an XMM register, with zero-extension to 128 bits

• from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose register or
memory location

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 bits (with
zero-extension to 64 bits) or the full 64 bits of an MMX register

• from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit general-purpose
register or memory location

The MOVD instruction is an MMX instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

MOVD Move Doubleword or Quadword

Mnemonic Opcode Description

MOVD xmm, reg/mem32 66 0F 6E /r Move 32-bit value from a general-purpose register or
32-bit memory location to an XMM register.

MOVD xmm, reg/mem64 66 0F 6E /r Move 64-bit value from a general-purpose register or
64-bit memory location to an XMM register.

MOVD reg/mem32, xmm 66 0F 7E /r Move 32-bit value from an XMM register to a 32-bit
general-purpose register or memory location.

MOVD reg/mem64, xmm 66 0F 7E /r Move 64-bit value from an XMM register to a 64-bit
general-purpose register or memory location.

160 MOVD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

movd.eps

with REX prefix

All operations
are "copy"

with REX prefix

reg/mem64xmm

63 0

63 0

127 63 064

127 63 064

reg/mem64 xmm

0

031

reg/mem32xmm

reg/mem32 xmm

127 0313231 0

127 31 032

0

0

reg/mem64mmx

reg/mem64 mmx

0

with REX prefix

with REX prefix

63 063 0

63 063 0

0310

reg/mem32mmx

reg/mem32 mmx

31 0

313263 0

313263 0

0

Instruction Reference MOVD 161

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions (All Modes)

Exception Real
Virtual
8086 Protected Description

Invalid opcode, #UD

X X X
The MMX™ instructions are not supported, as
indicated by EDX bit 23 of CPUID function
0000_0001h.

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The instruction used XMM registers while
CR4.OSFXSR=0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP X X X A memory address exceeded a data segment limit or

was non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An x87 floating-point exception was pending and the
instruction referenced an MMX register.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

162 MOVDDUP Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves a quadword value with its duplicate from the source operand to each quadword half of the
XMM destination operand. The source operand may be an XMM register or the address of the least-
significant byte of 64 bits of data in memory. When an XMM register is specified as the source
operand, the lower 64-bits are duplicated and copied. When a memory address is specified, the 8 bytes
of data at mem64 are duplicated and loaded.

The MOVDDUP instruction is an SSE3 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVSHDUP, MOVSLDUP

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVDDUP Move Double-Precision and Duplicate

Mnemonic Opcode Description

MOVDDUP xmm1,
xmm2/mem64 F2 0F 12 /r

Moves two copies of the lower 64 bits of the source
XMM or 128-bit memory operand to the lower and upper
quadwords of the destination XMM register.

xmm1 xmm2/mem64

06306364127 64128

Instruction Reference MOVDDUP 163

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE3 instructions are not supported, as
indicated by ECX bit 0 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

164 MOVDQ2Q Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves the low-order 64-bit value in an XMM register to a 64-bit MMX register.

The MOVDQ2Q instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

MOVDQ2Q Move Quadword to Quadword

Mnemonic Opcode Description

MOVDQ2Q mmx, xmm F2 0F D6 /r Moves low-order 64-bit value from an XMM register to the
destination MMX register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

movdq2q.eps

mmx xmm

copy

63 0 127 63 064

Instruction Reference MOVDQ2Q 165

26568—Rev. 3.09—July 2007 AMD64 Technology

General protection X The destination operand was in a non-writable
segment.

x87 floating-point
exception pending,
#MF

X X X An exception was pending due to an x87 floating-point
instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

166 MOVDQA Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves an aligned 128-bit (double quadword) value:

• from an XMM register or 128-bit memory location to another XMM register, or

• from an XMM register to a 128-bit memory location or another XMM register.

A memory operand that is not aligned on a 16-byte boundary causes a general-protection exception.

The MOVDQA instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVD, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MOVDQA Move Aligned Double Quadword

Mnemonic Opcode Description

MOVDQA xmm1, xmm2/mem128 66 0F 6F /r Moves 128-bit value from an XMM register or 128-bit
memory location to the destination XMM register.

MOVDQA xmm1/mem128, xmm2 66 0F 7F /r Moves 128-bit value from an XMM register to the
destination XMM register or 128-bit memory location.

movdqa.eps

xmm1 xmm2/mem128

copy

127 0127 0

xmm1/mem128 xmm2

copy

127 0127 0

Instruction Reference MOVDQA 167

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

X X X The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

168 MOVDQU Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves an unaligned 128-bit (double quadword) value:

• from an XMM register or 128-bit memory location to another XMM register, or

• from an XMM register to another XMM register or 128-bit memory location.

Memory operands that are not aligned on a 16-byte boundary do not cause a general-protection
exception.

The MOVDQU instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVD, MOVDQA, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MOVDQU Move Unaligned Double Quadword

Mnemonic Opcode Description

MOVDQU xmm1, xmm2/mem128 F3 0F 6F /r
Moves 128-bit value from an XMM register or
unaligned 128-bit memory location to the
destination XMM register.

MOVDQU xmm1/mem128, xmm2 F3 0F 7F /r
Moves 128-bit value from an XMM register to the
destination XMM register or unaligned 128-bit
memory location.

movdqu.eps

xmm1 xmm2/mem128

copy

127 0127 0

xmm1/mem128 xmm2

copy

127 0127 0

Instruction Reference MOVDQU 169

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

170 MOVHLPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves two packed single-precision floating-point values from the high-order 64 bits of an XMM
register to the low-order 64 bits of another XMM register. The high-order 64 bits of the destination
XMM register are not modified.

The MOVHLPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVAPS, MOVHPS, MOVLHPS, MOVLPS, MOVMSKPS, MOVSS, MOVUPS

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVHLPS Move Packed Single-Precision Floating-Point
High to Low

Mnemonic Opcode Description

MOVHLPS xmm1, xmm2 0F 12 /r Moves two packed single-precision floating-point values from
an XMM register to the destination XMM register.

127 63 0649596

xmm1 xmm2

copy copy

movhlps.eps

127 63 064 3132

Instruction Reference MOVHLPS 171

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

172 MOVHPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves a double-precision floating-point value:

• from a 64-bit memory location to the high-order 64 bits of an XMM register, or

• from the high-order 64 bits of an XMM register to a 64-bit memory location.

The low-order 64 bits of the destination XMM register are not modified.

The MOVHPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVAPD, MOVLPD, MOVMSKPD, MOVSD, MOVUPD

rFLAGS Affected

None

MOVHPD Move High Packed Double-Precision
Floating-Point

Mnemonic Opcode Description

MOVHPD xmm, mem64 66 0F 16 /r Moves double-precision floating-point value from a 64-bit
memory location to an XMM register.

MOVHPD mem64, xmm 66 0F 17 /r Moves double-precision floating-point value from an XMM
register to a 64-bit memory location.

127 63 064

xmm mem64

copy

63 0

movhpd.eps

127 31 032

xmmmem64

copy

63 0

Instruction Reference MOVHPD 173

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

174 MOVHPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves two packed single-precision floating-point values:

• from a 64-bit memory location to the high-order 64 bits of an XMM register, or

• from the high-order 64 bits of an XMM register to a 64-bit memory location.

The low-order 64 bits of the destination XMM register are not modified.

The MOVHPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVAPS, MOVHLPS, MOVLHPS, MOVLPS, MOVMSKPS, MOVSS, MOVUPS

rFLAGS Affected

None

MOVHPS Move High Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MOVHPS xmm, mem64 0F 16 /r Moves two packed single-precision floating-point values from a
64-bit memory location to an XMM register.

MOVHPS mem64, xmm 0F 17 /r Moves two packed single-precision floating-point values from an
XMM register to a 64-bit memory location.

127 63 0649596

xmm mem64

copy copy

63 03132

movhps.eps

xmmmem64

copy copy

63 03132 127 63 0649596

Instruction Reference MOVHPS 175

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

176 MOVLHPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves two packed single-precision floating-point values from the low-order 64 bits of an XMM
register to the high-order 64 bits of another XMM register. The low-order 64 bits of the destination
XMM register are not modified.

The MOVLHPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVAPS, MOVHLPS, MOVHPS, MOVLPS, MOVMSKPS, MOVSS, MOVUPS

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVLHPS Move Packed Single-Precision Floating-Point
Low to High

Mnemonic Opcode Description

MOVLHPS xmm1, xmm2 0F 16 /r Moves two packed single-precision floating-point values from an
XMM register to another XMM register.

127 63 0649596

xmm1 xmm2

copy copy

movlhps.eps

127 63 064 3132

Instruction Reference MOVLHPS 177

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

178 MOVLPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves a double-precision floating-point value:

• from a 64-bit memory location to the low-order 64 bits of an XMM register, or

• from the low-order 64 bits of an XMM register to a 64-bit memory location.

The high-order 64 bits of the destination XMM register are not modified.

The MOVLPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVAPD, MOVHPD, MOVMSKPD, MOVSD, MOVUPD

rFLAGS Affected

None

MOVLPD Move Low Packed Double-Precision
Floating-Point

Mnemonic Opcode Description

MOVLPD xmm, mem64 66 0F 12 /r Moves double-precision floating-point value from a 64-bit
memory location to an XMM register.

MOVLPD mem64, xmm 66 0F 13 /r Moves double-precision floating-point value from an XMM
register to a 64-bit memory location.

127 63 064

xmm mem64

copy

63 0

movlpd.eps

xmmmem64

copy

63 0 127 63 064

Instruction Reference MOVLPD 179

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

180 MOVLPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves two packed single-precision floating-point values:

• from a 64-bit memory location to the low-order 64 bits of an XMM register, or

• from the low-order 64 bits of an XMM register to a 64-bit memory location

The high-order 64 bits of the destination XMM register are not modified.

The MOVLPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVAPS, MOVHLPS, MOVHPS, MOVLHPS, MOVMSKPS, MOVSS, MOVUPS

MOVLPS Move Low Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

MOVLPS xmm, mem64 0F 12 /r Moves two packed single-precision floating-point values from a
64-bit memory location to an XMM register.

MOVLPS mem64, xmm 0F 13 /r Moves two packed single-precision floating-point values from an
XMM register to a 64-bit memory location.

127 63 064 3132

xmm mem64

copy copy

63 03132

movlps.eps

xmmmem64

copy copy

63 03132 127 63 064 3132

Instruction Reference MOVLPS 181

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X
The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of the control register (CR4) was cleared to
0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

182 MOVMSKPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves the sign bits of two packed double-precision floating-point values in an XMM register to the
two low-order bits of a 32-bit general-purpose register, with zero-extension.

The MOVMSKPD instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVMSKPS, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPD Extract Packed Double-Precision Floating-Point
Sign Mask

Mnemonic Opcode Description

MOVMSKPD reg32, xmm 66 0F 50 /r Move sign bits in an XMM register to a 32-bit general-
purpose register.

movmskpd.eps

reg32 xmm

copy sign
copy sign

127 63 00

0

131

Instruction Reference MOVMSKPD 183

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

184 MOVMSKPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves the sign bits of four packed single-precision floating-point values in an XMM register to the
four low-order bits of a 32-bit general-purpose register, with zero-extension.

The MOVMSKPS instruction is an SSE instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVMSKPD, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPS Extract Packed Single-Precision Floating-Point
Sign Mask

Mnemonic Opcode Description

MOVMSKPS reg32, xmm 0F 50 /r Move sign bits in an XMM register to a 32-bit general-purpose
register.

movmskps.eps

03 127 63 095 31

reg32 xmm

copy signcopy signcopy signcopy sign

0

31

Instruction Reference MOVMSKPS 185

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated by
EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

186 MOVNTDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Stores a 128-bit (double quadword) XMM register value into a 128-bit memory location. This
instruction indicates to the processor that the data is non-temporal, and is unlikely to be used again
soon. The processor treats the store as a write-combining (WC) memory write, which minimizes cache
pollution. The exact method by which cache pollution is minimized depends on the hardware
implementation of the instruction. For further information, see “Memory Optimization” in Volume 1.

MOVNTDQ is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE instruction to force strong memory ordering of MOVNTDQ with respect to
other stores.

The MOVNTDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVNTI, MOVNTPD, MOVNTPS, MOVNTQ

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVNTDQ Move Non-Temporal Double Quadword

Mnemonic Opcode Description

MOVNTDQ mem128, xmm 66 0F E7 /r Stores a 128-bit XMM register value into a 128-bit memory
location, minimizing cache pollution.

movntdq.eps

mem128 xmm

copy

127 0127 0

Instruction Reference MOVNTDQ 187

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (CR0.EM) was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.OSFXSR) was cleared to 0.

Device not available,
#NM X X X The task-switch bit (CR0.TS) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

X X X The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from executing the instruction.

188 MOVNTPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Stores two double-precision floating-point XMM register values into a 128-bit memory location. This
instruction indicates to the processor that the data is non-temporal, and is unlikely to be used again
soon. The processor treats the store as a write-combining (WC) memory write, which minimizes cache
pollution. The exact method by which cache pollution is minimized depends on the hardware
implementation of the instruction. For further information, see “Memory Optimization” in Volume 1.

The MOVNTPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

MOVNTPD is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE instruction to force strong memory ordering of MOVNTPD with respect to
other stores.

Related Instructions

MOVNTDQ, MOVNTI, MOVNTPS, MOVNTQ

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVNTPD Move Non-Temporal Packed Double-Precision
Floating-Point

Mnemonic Opcode Description

MOVNTPD mem128, xmm 66 0F 2B /r
Stores two packed double-precision floating-point XMM
register values into a 128-bit memory location, minimizing
cache pollution.

movntpd.eps

mem128 xmm

copy copy

127 63 064 127 63 064

Instruction Reference MOVNTPD 189

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (CR0.EM) was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.OSFXSR) was cleared to 0.

Device not available,
#NM X X X The task-switch bit (CR0.TS) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

X X X The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from executing the instruction.

190 MOVNTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Stores four single-precision floating-point XMM register values into a 128-bit memory location. This
instruction indicates to the processor that the data is non-temporal, and is unlikely to be used again
soon. The processor treats the store as a write-combining (WC) memory write, which minimizes cache
pollution. The exact method by which cache pollution is minimized depends on the hardware
implementation of the instruction. For further information, see “Memory Optimization” in Volume 1.

The MOVNTPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

MOVNTPD is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE instruction to force strong memory ordering of MOVNTPD with respect to
other stores.

Related Instructions

MOVNTDQ, MOVNTI, MOVNTPD, MOVNTQ

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVNTPS Move Non-Temporal Packed
Single-Precision Floating-Point

Mnemonic Opcode Description

MOVNTPS mem128, xmm 0F 2B /r
Stores four packed single-precision floating-point XMM
register values into a 128-bit memory location, minimizing
cache pollution.

movntps.eps

mem128 xmm

copy
copy

copy
copy

127 63 0649596 3132127 63 0649596 3132

Instruction Reference MOVNTPS 191

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (CR0.EM) was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.OSFXSR) was cleared to 0.

Device not available,
#NM X X X The task-switch bit (CR0.TS) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

X X X The memory operand was not aligned on a 16-byte
boundary.

Page fault, #PF X X A page fault resulted from executing the instruction.

192 MOVNTSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Stores one double-precision floating-point XMM register value into a 64-bit memory location. This
instruction indicates to the processor that the data is non-temporal, and is unlikely to be used again
soon. The processor treats the store as a write-combining memory write, which minimizes cache
pollution.

Support for the MOVNTSD instruction is indicated by ECX bit 6 (SSE4A) as returned by CPUID
function 8000_0001h. Software must check the CPUID bit once per program or library initialization
before using the MOVNTSD instruction or inconsistent behavior may result.

Related Instructions

MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS, MOVNTQ, MOVNTSS

rFLAGS Affected

None

MOVNTSD Move Non-Temporal Scalar
Double-Precision Floating-Point

Mnemonic Opcode Description

MOVNTSD mem64, xmm F2 0F 2B /r
Stores one double-precision floating-point XMM
register value into a 64 bit memory location. Treat as
a non-temporal store.

mem64 xmm

copy

063 06364127

Instruction Reference MOVNTSD 193

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE4A instructions are not supported, as
indicated by ECX bit 6 (SSE4A) of CPUID function
8000_0001h.

X X X The emulate bit (CR0.EM) was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.OSFXSR) was cleared to 0.

Device not available,
#NM X X X The task-switch bit (CR0.TS) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from executing the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

194 MOVNTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Stores one single-precision floating-point XMM register value into a 32-bit memory location. This
instruction indicates to the processor that the data is non-temporal, and is unlikely to be used again
soon. The processor treats the store as a write-combining memory write, which minimizes cache
pollution.

Support for the MOVNTSS instruction is indicated by ECX bit 6 (SSE4A) as returned by CPUID
function 8000_0001h. Software must check the CPUID bit once per program or library initialization
before using the MOVNTSS instruction, or inconsistent behavior may result.

Related Instructions

MOVNTDQ, MOVNTI, MOVNTOPD, MOVNTPS, MOVNTQ, MOVNTSD

rFLAGS Affected

None

MOVNTSS Move Non-Temporal Scalar
Single-Precision Floating-Point

Mnemonic Opcode Description

MOVNTSS mem32, xmm F3 0F 2B /r
Stores one single-precision floating-point XMM
register value into a 32-bit memory location. Treat as
a non-temporal store.

mem32 xmm

copy

0 03112731

Instruction Reference MOVNTSS 195

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE4A instructions are not supported, as
indicated by ECX bit 6 (SSE4A) of CPUID function
8000_0001h.

X X X The emulate bit (CR0.EM) was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.OSFXSR) was cleared to 0.

Device not available,
#NM X X X The task-switch bit (CR0.TS) was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from executing the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

196 MOVQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves a 64-bit value in one of the following ways:

• from the low-order 64 bits of an XMM register or a 64-bit memory location to the low-order 64 bits
of another XMM register, with zero-extension to 128 bits

• from the low-order 64 bits of an XMM register to the low-order 64 bits of another XMM register,
with zero-extension to 128 bits or to a 64-bit memory location

The MOVQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ2DQ

rFLAGS Affected

None

MOVQ Move Quadword

Mnemonic Opcode Description

MOVQ xmm1, xmm2/mem64 F3 0F 7E /r Moves 64-bit value from an XMM register or memory
location to an XMM register.

MOVQ xmm1/mem64, xmm2 66 0F D6 /r Moves 64-bit value from an XMM register to an XMM
register or memory location.

xmm1 xmm2/mem64

copy

movq-128.eps

xmm2xmm1/mem64

copy

127 63 064127

0

63 064

127 63 064127

0

63 064

Instruction Reference MOVQ 197

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

198 MOVQ2DQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves a 64-bit value from an MMX register to the low-order 64 bits of an XMM register, with zero-
extension to 128 bits.

The MOVQ2DQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

MOVQ2DQ Move Quadword to Quadword

Mnemonic Opcode Description

MOVQ2DQ xmm, mmx F3 0F D6 /r Moves 64-bit value from an MMX™ register to an XMM
register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

127 63 064

xmm mmx

copy

63 0

movq2dq.eps

0

Instruction Reference MOVQ2DQ 199

26568—Rev. 3.09—July 2007 AMD64 Technology

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

x87 floating-point
exception pending,
#MF

X X X An exception was pending due to an x87 floating-point
instruction.

Exception Real
Virtual
8086 Protected Cause of Exception

200 MOVSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves a scalar double-precision floating-point value:

• from the low-order 64 bits of an XMM register or a 64-bit memory location to the low-order 64 bits
of another XMM register, or

• from the low-order 64 bits of an XMM register to the low-order 64 bits of another XMM register or
a 64-bit memory location.

If the source operand is an XMM register, the high-order 64 bits of the destination XMM register are
not modified. If the source operand is a memory location, the high-order 64 bits of the destination
XMM register are cleared to all 0s.

This MOVSD instruction should not be confused with the MOVSD (move string doubleword)
instruction with the same mnemonic in the general-purpose instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

The MOVSD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

MOVSD Move Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

MOVSD xmm1, xmm2/mem64 F2 0F 10 /r
Moves double-precision floating-point value from an
XMM register or 64-bit memory location to an XMM
register.

MOVSD xmm1/mem64, xmm2 F2 0F 11 /r
Moves double-precision floating-point value from an
XMM register to an XMM register or 64-bit memory
location.

Instruction Reference MOVSD 201

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

MOVAPD, MOVHPD, MOVLPD, MOVMSKPD, MOVUPD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

xmm1 xmm2

copy

mem64xmm1

copy

63 0127

0

63 064

movsd.eps

xmm2mem64

copy

127 63 06463 0

127 63 064127 63 064

202 MOVSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference MOVSHDUP 203

26568—Rev. 3.09—July 2007 AMD64 Technology

Moves two copies of the second doubleword of data in the source XMM register or 128-bit memory
operand to bits 31–0 and bits 63–32 of the destination XMM register; moves two copies of the fourth
doubleword of data in the source operand to bits 95–64 and bits 127–96 of the destination XMM
register.

The MOVSHDUP instruction is an SSE3 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVDDUP, MOVSLDUP

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVSHDUP Move Single-Precision High and Duplicate

Mnemonic Opcode Description

MOVSHDUP xmm1,
xmm2/mem128 F3 0F 16 /r

Copies the second 32-bits from the source operand to
the first and second 32-bit segments of the destination
XMM register; copies the fourth 32-bits from the source
operand to the third and fourth 32-bit segments of the
destination XMM register.

xmm1 xmm2/mem128

03132636495961270313263649596127

204 MOVSHDUP Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE3 instructions are not supported, as
indicated by ECX bit 0 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

Instruction Reference MOVSLDUP 205

26568—Rev. 3.09—July 2007 AMD64 Technology

Moves two copies of the first doubleword of data in the source XMM register or 128-bit memory
operand to bits 31–0 and bits 32–63 of the destination XMM register and moves two copies of the third
doubleword of data in the source operand to bits 95–64 and bits 127–96 of the destination XMM
register.

The MOVSLDUP instruction is an SSE3 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVDDUP, MOVSHDUP

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVSLDUP Move Single-Precision Low and Duplicate

Mnemonic Opcode Description

MOVSLDUP xmm1,
xmm2/mem128 F3 0F 12 /r

Copies the first 32-bits from the source operand to the
first and second 32-bit segments of the destination
XMM register; copies the third 32-bits from the source
operand to the third and fourth 32-bit segments of the
destination XMM register.

xmm1 xmm2/mem128

03132636495961270313263649596127

206 MOVSLDUP Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE3 instructions are not supported, as
indicated by ECX bit 0 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

Instruction Reference MOVSS 207

26568—Rev. 3.09—July 2007 AMD64 Technology

Moves a scalar single-precision floating-point value:

• from the low-order 32 bits of an XMM register or a 32-bit memory location to the low-order 32 bits
of another XMM register, or

• from a 32-bit memory location to the low-order 32 bits of an XMM register, with zero-extension to
128 bits.

If the source operand is an XMM register, the high-order 96 bits of the destination XMM register are
not modified. If the source operand is a memory location, the high-order 96 bits of the destination
XMM register are cleared to all 0s.

The MOVSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

MOVSS Move Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

MOVSS xmm1, xmm2/mem32 F3 0F 10 /r Moves single-precision floating-point value from an XMM
register or 32-bit memory location to an XMM register.

MOVSS xmm1/mem32, xmm2 F3 0F 11 /r Moves single-precision floating-point value from an XMM
register to an XMM register or 32-bit memory location.

127 31 032

xmm1 xmm2

copy

mem32xmm1

copy

0

0

movss.eps

xmm2mem32

copy

127 31 032

31 0127 31 032

31 0 127 31 032

208 MOVSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

MOVAPS, MOVHLPS, MOVHPS, MOVLHPS, MOVLPS, MOVMSKPS, MOVUPS

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference MOVUPD 209

26568—Rev. 3.09—July 2007 AMD64 Technology

Moves two packed double-precision floating-point values:

• from an XMM register or 128-bit memory location to another XMM register, or

• from an XMM register to another XMM register or 128-bit memory location.

Memory operands that are not aligned on a 16-byte boundary do not cause a general-protection
exception.

The MOVUPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

MOVUPD Move Unaligned Packed Double-Precision
Floating-Point

Mnemonic Opcode Description

MOVUPD xmm1, xmm2/mem128 66 0F 10 /r
Moves two packed double-precision floating-point
values from an XMM register or unaligned 128-bit
memory location to an XMM register.

MOVUPD xmm1/mem128, xmm2 66 0F 11 /r
Moves two packed double-precision floating-point
values from an XMM register to an XMM register or
unaligned 128-bit memory location.

127 63 064

xmm1 xmm2/mem28

copy
copy

127 63 064

movupd.eps

127 63 064

xmm1/mem28 xmm2

copy
copy

127 6364

210 MOVUPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

MOVAPD, MOVHPD, MOVLPD, MOVMSKPD, MOVSD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference MOVUPS 211

26568—Rev. 3.09—July 2007 AMD64 Technology

Moves four packed single-precision floating-point values:

• from an XMM register or 128-bit memory location to another XMM register, or

• from an XMM register to another XMM register or 128-bit memory location.

Memory operands that are not aligned on a 16-byte boundary do not cause a general-protection
exception.

The MOVUPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

MOVUPS Move Unaligned Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

MOVUPS xmm1, xmm2/mem128 0F 10 /r
Moves four packed single-precision floating-point values
from an XMM register or unaligned 128-bit memory
location to an XMM register.

MOVUPS xmm1/mem128, xmm2 0F 11 /r
Moves four packed single-precision floating-point values
from an XMM register to an XMM register or unaligned
128-bit memory location.

212 MOVUPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

MOVAPS, MOVHLPS, MOVHPS, MOVLHPS, MOVLPS, MOVMSKPS, MOVSS

rFLAGS Affected

None

MXCSR Flags Affected

None

movups.eps

xmm1 xmm2/mem128

copy

copy

copy

copy

127 63 0649596 3132127 63 0649596 3132

xmm1/mem128 xmm2

copy

copy

copy

copy

127 63 0649596 3132127 63 0649596 3132

Instruction Reference MOVUPS 213

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

214 MULPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Multiplies each of the two packed double-precision floating-point values in the first source operand by
the corresponding packed double-precision floating-point value in the second source operand and
writes the result of each multiplication operation in the corresponding quadword of the destination
(first source). The first source/destination operand is an XMM register. The second source operand is
another XMM register or 128-bit memory location.

The MULPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MULPS, MULSD, MULSS, PFMUL

rFLAGS Affected

None

MULPD Multiply Packed Double-Precision Floating-Point

Mnemonic Opcode Description

MULPD xmm1, xmm2/mem128 66 0F 59 /r

Multiplies packed double-precision floating-point values
in an XMM register and another XMM register or 128-bit
memory location and writes the results in the destination
XMM register.

mulpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

multiply

multiply

Instruction Reference MULPD 215

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X ±Zero was multiplied by ±infinity.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

216 MULPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference MULPS 217

26568—Rev. 3.09—July 2007 AMD64 Technology

Multiplies each of the four packed single-precision floating-point values in first source operand by the
corresponding packed single-precision floating-point value in the second source operand and writes
the result of each multiplication operation in the corresponding doubleword of the destination (first
source). The first source/destination operand is an XMM register. The second source operand is
another XMM register or 128-bit memory location.

The MULPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MULPD, MULSD, MULSS, PFMUL

rFLAGS Affected

None

MULPS Multiply Packed Single-Precision Floating-Point

Mnemonic Opcode Description

MULPS xmm1, xmm2/mem128 0F 59 /r

Multiplies packed single-precision floating-point values in
an XMM register and another XMM register or 128-bit
memory location and writes the results in the destination
XMM register.

mulps.eps

xmm1 xmm2/mem128

multiply

multiply

multiply

multiply

127 63 0649596 3132127 63 0649596 3132

218 MULPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X ±Zero was multiplied by ±infinity.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Instruction Reference MULPS 219

26568—Rev. 3.09—July 2007 AMD64 Technology

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

220 MULSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Multiplies the double-precision floating-point value in the low-order quadword of first source operand
by the double-precision floating-point value in the low-order quadword of the second source operand
and writes the result in the low-order quadword of the destination (first source). The high-order
quadword of the destination is not modified. The first source/destination operand is an XMM register.
The second source operand is another XMM register or 64-bit memory location.

The MULSD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MULPD, MULPS, MULSS, PFMUL

rFLAGS Affected

None

MULSD Multiply Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

MULSD xmm1, xmm2/mem64 F2 0F 59 /r

Multiplies low-order double-precision floating-point values
in an XMM register and another XMM register or 64-bit
memory location and writes the result in the low-order
quadword of the destination XMM register.

mulsd.eps

xmm1 xmm2/mem64

multiply

127 63 064 127 63 064

Instruction Reference MULSD 221

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X ±Zero was multiplied by ±infinity.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

222 MULSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference MULSS 223

26568—Rev. 3.09—July 2007 AMD64 Technology

Multiplies the single-precision floating-point value in the low-order doubleword of first source
operand by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the result in the low-order doubleword of the destination (first source). The three
high-order doublewords of the destination are not modified. The first source/destination operand is an
XMM register. The second source operand is another XMM register or 32-bit memory location.

The MULSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MULPD, MULPS, MULSD, PFMUL

rFLAGS Affected

None

MULSS Multiply Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

MULSS xmm1, xmm2/mem32 F3 0F 59 /r

Multiplies low-order single-precision floating-point values
in an XMM register and another XMM register or 32-bit
memory location and writes the result in the low-order
doubleword of the destination XMM register.

mulss.eps

xmm1 xmm2/mem32

multiply

127 31 032 127 31 032

224 MULSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X ±Zero was multiplied by ±infinity.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Instruction Reference MULSS 225

26568—Rev. 3.09—July 2007 AMD64 Technology

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

226 ORPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Performs a bitwise logical OR of the two packed double-precision floating-point values in the first
source operand and the corresponding two packed double-precision floating-point values in the second
source operand and writes the result in the destination (first source). The first source/destination
operand is an XMM register. The second source operand is another XMM register or 128-bit memory
location.

The ORPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ANDNPD, ANDNPS, ANDPD, ANDPS, ORPS, XORPD, XORPS

rFLAGS Affected

None

MXCSR Flags Affected

None

ORPD Logical Bitwise OR
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

ORPD xmm1,
xmm2/mem128 66 0F 56 /r

Performs bitwise logical OR of two packed double-
precision floating-point values in an XMM register and in
another XMM register or 128-bit memory location and
writes the result in the destination XMM register.

orpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

OR

OR

Instruction Reference ORPD 227

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM was
set to 1.

228 ORPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Performs a bitwise logical OR of the four packed single-precision floating-point values in the first
source operand and the corresponding four packed single-precision floating-point values in the second
source operand and writes the result in the destination (first source). The first source/destination
operand is an XMM register. The second source operand is another XMM register or 128-bit memory
location.

The ORPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ANDNPD, ANDNPS, ANDPD, ANDPS, ORPD, XORPD, XORPS

rFLAGS Affected

None

MXCSR Flags Affected

None

ORPS Logical Bitwise OR
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

ORPS xmm1,
xmm2/mem128 0F 56 /r

Performs bitwise logical OR of four packed single-precision
floating-point values in an XMM register and in another XMM
register or 128-bit memory location and writes the result in the
destination XMM register.

orps.eps

xmm1 xmm2/mem128

OR

OR

OR

OR

127 63 0649596 3132127 63 0649596 3132

Instruction Reference ORPS 229

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM was
set to 1.

230 PACKSSDW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts each 32-bit signed integer in the first and second source operands to a 16-bit signed integer
and packs the converted values into words in the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

Converted values from the first source operand are packed into the low-order words of the destination,
and the converted values from the second source operand are packed into the high-order words of the
destination.

The PACKSSDW instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

For each packed value in the destination, if the value is larger than the largest signed 16-bit integer, it is
saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.

Related Instructions

PACKSSWB, PACKUSWB

rFLAGS Affected

None

PACKSSDW Pack with Saturation Signed Doubleword to Word

Mnemonic Opcode Description

PACKSSDW xmm1, xmm2/mem128 66 0F 6B /r

Packs 32-bit signed integers in an XMM register
and another XMM register or 128-bit memory
location into 16-bit signed integers in an XMM
register.

127 63 0649596111112 7980 4748 15163132

xmm1 xmm2/mem128

packssdw-128.eps

convert convert convertconvert

127 63 0649596 3132127 63 0649596 3132

. . .

....

.

Instruction Reference PACKSSDW 231

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

232 PACKSSWB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts each 16-bit signed integer in the first and second source operands to an 8-bit signed integer
and packs the converted values into bytes in the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

Converted values from the first source operand are packed into the low-order bytes of the destination,
and the converted values from the second source operand are packed into the high-order bytes of the
destination.

The PACKSSWB instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

For each packed value in the destination, if the value is larger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to 80h.

Related Instructions

PACKSSDW, PACKUSWB

rFLAGS Affected

None

PACKSSWB Pack with Saturation Signed Word to Byte

Mnemonic Opcode Description

PACKSSWB xmm1, xmm2/mem128 66 0F 63 /r

Packs 16-bit signed integers in an XMM register
and another XMM register or 128-bit memory
location into 8-bit signed integers in an XMM
register.

packsswb-128.eps

......

...

.

xmm1 xmm2/mem128

convertconvert

127 064 63

127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PACKSSWB 233

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

234 PACKUSWB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Converts each 16-bit signed integer in the first and second source operands to an 8-bit unsigned integer
and packs the converted values into bytes in the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

Converted values from the first source operand are packed into the low-order bytes of the destination,
and the converted values from the second source operand are packed into the high-order bytes of the
destination.

The PACKUSWB instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

For each packed value in the destination, if the value is larger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

Related Instructions

PACKSSDW, PACKSSWB

PACKUSWB Pack with Saturation Signed Word to
Unsigned Byte

Mnemonic Opcode Description

PACKUSWB xmm1, xmm2/mem128 66 0F 67 /r

Packs 16-bit signed integers in an XMM register
and another XMM register or 128-bit memory
location into 8-bit unsigned integers in an XMM
register.

......

...

.

xmm1 xmm2/mem128

convertconvert

127 064 63 packuswb-128.eps

127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PACKUSWB 235

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

236 PADDB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds each packed 8-bit integer value in the first source operand to the corresponding packed 8-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
byte of the destination (first source). The first source/destination operand is an XMM register and the
second source operand is another XMM register or 128-bit memory location.

The PADDB instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written in the destination.

Related Instructions

PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDB Packed Add Bytes

Mnemonic Opcode Description

PADDB xmm1, xmm2/mem128 66 0F FC /r
Adds packed byte integer values in an XMM register
and another XMM register or 128-bit memory location
and writes the result in the destination XMM register.

add

127 0 127 0

xmm1 xmm2/mem128

add

.

.

.

paddb-128.eps

Instruction Reference PADDB 237

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

238 PADDD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds each packed 32-bit integer value in the first source operand to the corresponding packed 32-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
doubleword of the destination (first source). The first source/destination operand is an XMM register
and the second source operand is another XMM register or 128-bit memory location.

The PADDD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written in the destination.

Related Instructions

PADDB, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDD Packed Add Doublewords

Mnemonic Opcode Description

PADDD xmm1, xmm2/mem128 66 0F FE /r
Adds packed 32-bit integer values in an XMM register
and another XMM register or 128-bit memory location
and writes the result in the destination XMM register.

add

xmm1 xmm2/mem128

add

. .

paddd-128.eps

127 63 0649596 3132

. .

. .
127 63 0649596 3132

Instruction Reference PADDD 239

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

240 PADDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds each packed 64-bit integer value in the first source operand to the corresponding packed 64-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
quadword of the destination (first source). The first source/destination operand is an XMM register
and the second source operand is another XMM register or 128-bit memory location.

The PADDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written in the destination.

Related Instructions

PADDB, PADDD, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDQ Packed Add Quadwords

Mnemonic Opcode Description

PADDQ xmm1, xmm2/mem128 66 0F D4 /r
Adds packed 64-bit integer values in an XMM register
and another XMM register or 128-bit memory location
and writes the result in the destination XMM register.

add

xmm1 xmm2/mem128

add

paddq-128.eps

127 63 064127 63 064

Instruction Reference PADDQ 241

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

242 PADDSB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds each packed 8-bit signed integer value in the first source operand to the corresponding packed 8-
bit signed integer in the second source operand and writes the signed integer result of each addition in
the corresponding byte of the destination (first source). The first source/destination operand is an
XMM register and the second source operand is another XMM register or 128-bit memory location.

The PADDSB instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

For each packed value in the destination, if the value is larger than the largest representable signed 8-
bit integer, it is saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is
saturated to 80h.

Related Instructions

PADDB, PADDD, PADDQ, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDSB Packed Add Signed with Saturation Bytes

Mnemonic Opcode Description

PADDSB xmm1, xmm2/mem128 66 0F EC /r

Adds packed byte signed integer values in an XMM
register and another XMM register or 128-bit memory
location and writes the result in the destination XMM
register.

add

127 0 127 0

xmm1 xmm2/mem128

add

saturate
saturate

.

.

.

paddsb-128.eps

Instruction Reference PADDSB 243

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

244 PADDSW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds each packed 16-bit signed integer value in the first source operand to the corresponding packed
16-bit signed integer in the second source operand and writes the signed integer result of each addition
in the corresponding word of the destination (first source). The first source/destination operand is an
XMM register and the second source operand is another XMM register or 128-bit memory location.

The PADDSW instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

For each packed value in the destination, if the value is larger than the largest representable signed 16-
bit integer, it is saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it
is saturated to 8000h.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDSW Packed Add Signed with Saturation Words

Mnemonic Opcode Description

PADDSW xmm1, xmm2/mem128 66 0F ED /r

Adds packed 16-bit signed integer values in an XMM
register and another XMM register or 128-bit memory
location and writes the result in the destination XMM
register.

add

xmm1 xmm2/mem128

add

saturate
saturate

paddsw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PADDSW 245

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

246 PADDUSB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds each packed 8-bit unsigned integer value in the first source operand to the corresponding packed
8-bit unsigned integer in the second source operand and writes the unsigned integer result of each
addition in the corresponding byte of the destination (first source). The first source/destination operand
is an XMM register and the second source operand is another XMM register or 128-bit memory
location.

The PADDUSB instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

For each packed value in the destination, if the value is larger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSW, PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDUSB Packed Add Unsigned with Saturation Bytes

Mnemonic Opcode Description

PADDUSB xmm1, xmm2/mem128 66 0F DC /r

Adds packed byte unsigned integer values in an
XMM register and another XMM register or 128-bit
memory location and writes the result in the
destination XMM register.

add

127 0 127 0

xmm1 xmm2/mem128

add

saturate
saturate

.

.

.

paddusb-128.eps

Instruction Reference PADDUSB 247

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

248 PADDUSW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds each packed 16-bit unsigned integer value in the first source operand to the corresponding
packed 16-bit unsigned integer in the second source operand and writes the unsigned integer result of
each addition in the corresponding word of the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

The PADDUSW instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

For each packed value in the destination, if the value is larger than the largest unsigned 16-bit integer,
it is saturated to FFFFh, and if the value is smaller than the smallest unsigned 16-bit integer, it is
saturated to 0000h.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDUSW Packed Add Unsigned with Saturation Words

Mnemonic Opcode Description

PADDUSW xmm1, xmm2/mem128 66 0F DD /r

Adds packed 16-bit unsigned integer values in an
XMM register and another XMM register or 128-bit
memory location and writes result in the destination
XMM register.

add

xmm1 xmm2/mem128

add

saturate
saturate

paddusw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PADDUSW 249

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled and MXCSR.MM
was set to 1.

250 PADDW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Adds each packed 16-bit integer value in the first source operand to the corresponding packed 16-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
word of the destination (first source). The first source/destination operand is an XMM register and the
second source operand is another XMM register or 128-bit memory location.

The PADDW instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of the
result are written in the destination.

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW

rFLAGS Affected

None

MXCSR Flags Affected

None

PADDW Packed Add Words

Mnemonic Opcode Description

PADDW xmm1, xmm2/mem128 66 0F FD /r
Adds packed 16-bit integer values in an XMM register
and another XMM register or 128-bit memory location
and writes the result in the destination XMM register.

add

xmm1 xmm2/mem128

add

paddw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PADDW 251

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

252 PAND Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Performs a bitwise logical AND of the values in the first and second source operands and writes the
result in the destination (first source). The first source/destination operand is an XMM register and the
second source operand is another XMM register or 128-bit memory location.

The PAND instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PANDN, POR, PXOR

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

PAND Packed Logical Bitwise AND

Mnemonic Opcode Description

PAND xmm1, xmm2/mem128 66 0F DB /r

Performs bitwise logical AND of values in an XMM
register and in another XMM register or 128-bit memory
location and writes the result in the destination XMM
register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

pand-128.eps

AND

xmm1 xmm2/mem128

127 0127 0

Instruction Reference PAND 253

26568—Rev. 3.09—July 2007 AMD64 Technology

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Exception Real
Virtual
8086 Protected Cause of Exception

254 PANDN Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Performs a bitwise logical AND of the value in the second source operand and the one’s complement
of the value in the first source operand and writes the result in the destination (first source). The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

The PANDN instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PAND, POR, PXOR

rFLAGS Affected

None

MXCSR Flags Affected

None

PANDN Packed Logical Bitwise AND NOT

Mnemonic Opcode Description

PANDN xmm1, xmm2/mem128 66 0F DF /r

Performs bitwise logical AND NOT of values in an XMM
register and in another XMM register or 128-bit memory
location and writes the result in the destination XMM
register.

pandn-128.eps

AND

xmm1 xmm2/mem128

127 0127 0

invert

Instruction Reference PANDN 255

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

256 PAVGB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Computes the rounded average of each packed unsigned 8-bit integer value in the first source operand
and the corresponding packed 8-bit unsigned integer in the second source operand and writes each
average in the corresponding byte of the destination (first source). The average is computed by adding
each pair of operands, adding 1 to the 9-bit temporary sum, and then right-shifting the temporary sum
by one bit position. The destination and source operands are an XMM register and another XMM
register or 128-bit memory location.

The PAVGB instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PAVGW

rFLAGS Affected

None

MXCSR Flags Affected

None

PAVGB Packed Average Unsigned Bytes

Mnemonic Opcode Description

PAVGB xmm1, xmm2/mem128 66 0F E0 /r

Averages packed 8-bit unsigned integer values in an
XMM register and another XMM register or 128-bit
memory location and writes the result in the
destination XMM register.

average

127 0 127 0

xmm1 xmm2/mem128

average

.

.

.

pavgb-128.eps

Instruction Reference PAVGB 257

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

258 PAVGW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Computes the rounded average of each packed unsigned 16-bit integer value in the first source operand
and the corresponding packed 16-bit unsigned integer in the second source operand and writes each
average in the corresponding word of the destination (first source). The average is computed by adding
each pair of operands, adding 1 to the 17-bit temporary sum, and then right-shifting the temporary sum
by one bit position. The first source/destination operand is an XMM register and the second source
operand is another XMM register or 128-bit memory location.

The PAVGW instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PAVGB

rFLAGS Affected

None

MXCSR Flags Affected

None

PAVGW Packed Average Unsigned Words

Mnemonic Opcode Description

PAVGW xmm1, xmm2/mem128 66 0F E3 /r

Averages packed 16-bit unsigned integer values in an
XMM register and another XMM register or 128-bit
memory location and writes the result in the
destination XMM register.

average

xmm1 xmm2/mem128

average

pavgw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PAVGW 259

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

260 PCMPEQB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares corresponding packed bytes in the first and second source operands and writes the result of
each comparison in the corresponding byte of the destination (first source). For each pair of bytes, if
the values are equal, the result is all 1s. If the values are not equal, the result is all 0s. The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

The PCMPEQB instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPEQB Packed Compare Equal Bytes

Mnemonic Opcode Description

PCMPEQB xmm1, xmm2/mem128 66 0F 74 /r Compares packed bytes in an XMM register and an
XMM register or 128-bit memory location.

compare

127 0 127 0

xmm1 xmm2/mem128

compare
.

.

.

all 1s or 0s

all 1s or 0s

pcmpeqb-128.eps

Instruction Reference PCMPEQB 261

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

262 PCMPEQD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares corresponding packed 32-bit values in the first and second source operands and writes the
result of each comparison in the corresponding 32 bits of the destination (first source). For each pair of
doublewords, if the values are equal, the result is all 1s. If the values are not equal, the result is all 0s.
The first source/destination operand is an XMM register and the second source operand is another
XMM register or 128-bit memory location.

The PCMPEQD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPEQD Packed Compare Equal Doublewords

Mnemonic Opcode Description

PCMPEQD xmm1,
xmm2/mem128 66 0F 76 /r Compares packed doublewords in an XMM register

and an XMM register or 128-bit memory location.

compare

all 1s or 0s

xmm1 xmm2/mem128

compare

all 1s or 0s

. .

pcmpeqd-128.eps

127 63 0649596 3132

. .

. .
127 63 0649596 3132

Instruction Reference PCMPEQD 263

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

264 PCMPEQW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares corresponding packed 16-bit values in the first and second source operands and writes the
result of each comparison in the corresponding 16 bits of the destination (first source). For each pair of
words, if the values are equal, the result is all 1s. If the values are not equal, the result is all 0s. The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

The PCMPEQW instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQD, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPEQW Packed Compare Equal Words

Mnemonic Opcode Description

PCMPEQW xmm1, xmm2/mem128 66 0F 75 /r Compares packed 16-bit values in an XMM register
and an XMM register or 128-bit memory location.

compare

xmm1 xmm2/mem128

compare

all 1s or 0s

all 1s or 0s

pcmpeqw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PCMPEQW 265

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

266 PCMPGTB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares corresponding packed signed bytes in the first and second source operands and writes the
result of each comparison in the corresponding byte of the destination (first source). For each pair of
bytes, if the value in the first source operand is greater than the value in the second source operand, the
result is all 1s. If the value in the first source operand is less than or equal to the value in the second
source operand, the result is all 0s. The first source/destination operand is an XMM register and the
second source operand is another XMM register or 128-bit memory location.

The PCMPGTB instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTD, PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPGTB Packed Compare Greater Than Signed Bytes

Mnemonic Opcode Description

PCMPGTB xmm1, xmm2/mem128 66 0F 64 /r Compares packed signed bytes in an XMM register
and an XMM register or 128-bit memory location.

compare

127 0 127 0

xmm1 xmm2/mem128

compare
.

.

.

all 1s or 0s
all 1s or 0s

pcmpgtb-128.eps

Instruction Reference PCMPGTB 267

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

268 PCMPGTD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares corresponding packed signed 32-bit values in the first and second source operands and
writes the result of each comparison in the corresponding 32 bits of the destination (first source). For
each pair of doublewords, if the value in the first source operand is greater than the value in the second
source operand, the result is all 1s. If the value in the first source operand is less than or equal to the
value in the second source operand, the result is all 0s. The first source/destination operand is an XMM
register and the second source operand is another XMM register or 128-bit memory location.

The PCMPGTD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPGTD Packed Compare Greater Than Signed
Doublewords

Mnemonic Opcode Description

PCMPGTD xmm1, xmm2/mem128 66 0F 66 /r
Compares packed signed 32-bit values in an XMM
register and an XMM register or 128-bit memory
location.

compare

all 1s or 0s

xmm1 xmm2/mem128

compare

all 1s or 0s

. .

pcmpgtd-128.eps

127 63 0649596 3132

. .

. .
127 63 0649596 3132

Instruction Reference PCMPGTD 269

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

270 PCMPGTW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares corresponding packed signed 16-bit values in the first and second source operands and
writes the result of each comparison in the corresponding 16 bits of the destination (first source). For
each pair of words, if the value in the first source operand is greater than the value in the second source
operand, the result is all 1s. If the value in the first source operand is less than or equal to the value in
the second source operand, the result is all 0s. The first source/destination operand is an XMM register
and the second source operand is another XMM register or 128-bit memory location.

The PCMPGTW instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD

rFLAGS Affected

None

MXCSR Flags Affected

None

PCMPGTW Packed Compare Greater Than Signed Words

Mnemonic Opcode Description

PCMPGTW xmm1, xmm2/mem128 66 0F 65 /r
Compares packed signed 16-bit values in an XMM
register and an XMM register or 128-bit memory
location.

127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

compare

xmm1 xmm2/mem128

compare

all 1s or 0s
all 1s or 0s

pcmpgtw-128.eps

.

.

Instruction Reference PCMPGTW 271

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

272 PEXTRW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Extracts a 16-bit value from an XMM register, as selected by the immediate byte operand (as shown in
Table 1-2) and writes it to the low-order word of a 32-bit general-purpose register, with zero-extension
to 32 bits.

The PEXTRW instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PINSRW

PEXTRW Extract Packed Word

Mnemonic Opcode Description

PEXTRW reg32, xmm, imm8 66 0F C5 /r ib
Extracts a 16-bit value from an XMM register and
writes it to low-order 16 bits of a general-purpose
register.

Table 1-2. Immediate-Byte Operand Encoding for 128-Bit PEXTRW

Immediate-Byte
Bit Field Value of Bit Field Source Bits Extracted

2–0

0 15–0

1 31–16

2 47–32

3 63–48

4 79–64

5 95–80

6 111–96

7 127–112

reg32 xmm

imm8
7 0

mux

015

0

pextrw-128.eps

127 63 0649596111112 7980 4748 1516313232

Instruction Reference PEXTRW 273

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

274 PINSRW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Inserts a 16-bit value from the low-order word of a 32-bit general purpose register or a 16-bit memory
location into an XMM register. The location in the destination register is selected by the immediate
byte operand, as shown in Table 1-3 on page 274. The other words in the destination register operand
are not modified.

The PINSRW instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

PINSRW Packed Insert Word

Mnemonic Opcode Description

PINSRW xmm, reg32/mem16,
imm8 66 0F C4 /r ib

Inserts a 16-bit value from a general-purpose
register or memory location into an XMM
register.

Table 1-3. Immediate-Byte Operand Encoding for 128-Bit PINSRW

Immediate-Byte
Bit Field Value of Bit Field Destination Bits Filled

2–0

0 15–0

1 31–16

2 47–32

3 63–48

4 79–64

5 95–80

6 111–96

7 127–112

reg32/mem16xmm

imm8
7 0

select word position for insert

015

pinsrw-128.eps

127 63 0649596111112 7980 4748 15163132 32

Instruction Reference PINSRW 275

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

PEXTRW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

276 PMADDWD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Multiplies each packed 16-bit signed value in the first source operand by the corresponding packed 16-
bit signed value in the second source operand, adds the adjacent intermediate 32-bit results of each
multiplication (for example, the multiplication results for the adjacent bit fields 63–48 and 47–32, and
31–16 and 15–0), and writes the 32-bit result of each addition in the corresponding doubleword of the
destination (first source). The first source/destination operand is an XMM register and the second
source operand is another XMM register or 128-bit memory location.

The PMADDWD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

There is only one case in which the result of the multiplication and addition will not fit in a signed 32-
bit destination. If all four of the 16-bit source operands used to produce a 32-bit multiply-add result
have the value 8000h, the 32-bit result is 8000_0000h, which is incorrect.

Related Instructions

PMULHUW, PMULHW, PMULLW, PMULUDQ

PMADDWD Packed Multiply Words and Add Doublewords

Mnemonic Opcode Description

PMADDWD xmm1, xmm2/mem128 66 0F F5 /r

Multiplies eight packed 16-bit signed values in an
XMM register and another XMM register or 128-bit
memory location, adds intermediate results, and
writes the result in the destination XMM register.

xmm1 xmm2/mem128

multiply

multiply

addmultiply

multiply

add

pmaddwd-128.eps

..

..
127 63 0649596 3132

127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PMADDWD 277

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

278 PMAXSW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares each of the packed 16-bit signed integer values in the first source operand with the
corresponding packed 16-bit signed integer value in the second source operand and writes the
numerically greater of the two values for each comparison in the corresponding word of the destination
(first source). The first source/destination and second source operands are an XMM register and an
XMM register or 128-bit memory location.

The PMAXSW instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PMAXUB, PMINSW, PMINUB

rFLAGS Affected

None

MXCSR Flags Affected

None

PMAXSW Packed Maximum Signed Words

Mnemonic Opcode Description

PMAXSW xmm1, xmm2/mem128 66 0F EE
/r

Compares packed signed 16-bit integer values in an XMM
register and another XMM register or 128-bit memory
location and writes the greater value of each comparison
in destination XMM register.

maximum

xmm1 xmm2/mem128

maximum

pmaxsw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PMAXSW 279

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

280 PMAXUB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares each of the packed 8-bit unsigned integer values in the first source operand with the
corresponding packed 8-bit unsigned integer value in the second source operand and writes the
numerically greater of the two values for each comparison in the corresponding byte of the destination
(first source). The first source/destination and second source operands are an XMM register and an
XMM register or 128-bit memory location.

The PMAXUB instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PMAXSW, PMINSW, PMINUB

rFLAGS Affected

None

MXCSR Flags Affected

None

PMAXUB Packed Maximum Unsigned Bytes

Mnemonic Opcode Description

PMAXUB xmm1, xmm2/mem128 66 0F DE /r

Compares packed unsigned 8-bit integer values in an
XMM register and another XMM register or 128-bit
memory location and writes the greater value of each
compare in the destination XMM register.

maximum

127 0 127 0

xmm1 xmm2/mem128

maximum

.

.

.

pmaxub-128.eps

Instruction Reference PMAXUB 281

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

282 PMINSW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares each of the packed 16-bit signed integer values in the first source operand with the
corresponding packed 16-bit signed integer value in the second source operand and writes the
numerically lesser of the two values for each comparison in the corresponding word of the destination
(first source). The first source/destination and second source operands are an XMM register and an
XMM register or 128-bit memory location.

The PMINSW instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PMAXSW, PMAXUB, PMINUB

rFLAGS Affected

None

MXCSR Flags Affected

None

PMINSW Packed Minimum Signed Words

Mnemonic Opcode Description

PMINSW xmm1, xmm2/mem128 66 0F EA /r

Compares packed signed 16-bit integer values in an
XMM register and another XMM register or 128-bit
memory location and writes the lesser value of each
compare in the destination XMM register.

minimum

xmm1 xmm2/mem128

minimum

pminsw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

Instruction Reference PMINSW 283

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

284 PMINUB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Compares each of the packed 8-bit unsigned integer values in the first source operand with the
corresponding packed 8-bit unsigned integer value in the second source operand and writes the
numerically lesser of the two values for each comparison in the corresponding byte of the destination
(first source). The first source/destination operand is an XMM register and the second source operand
is another XMM register or 128-bit memory location.

The PMINUB instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PMAXSW, PMAXUB, PMINSW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMINUB Packed Minimum Unsigned Bytes

Mnemonic Opcode Description

PMINUB xmm1, xmm2/mem128 66 0F DA /r

Compares packed unsigned 8-bit integer values in an
XMM register and another XMM register or 128-bit
memory location and writes the lesser value of each
comparison in the destination XMM register.

minimum

127 0 127 0

xmm1 xmm2/mem128

minimum

.

.

.

pminub-128.eps

Instruction Reference PMINUB 285

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

286 PMOVMSKB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves the most-significant bit of each byte in the source operand to the destination, with zero-
extension to 32 bits. The destination and source operands are a 32-bit general-purpose register and an
XMM register. The result is written to the low-order word of the general-purpose register.

The PMOVMSKB instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

MOVMSKPD, MOVMSKPS

rFLAGS Affected

None

MXCSR Flags Affected

None

PMOVMSKB Packed Move Mask Byte

Mnemonic Opcode Description

PMOVMSKB reg32, xmm 66 0F D7 /r Moves most-significant bit of each byte in an XMM register
to low-order word of a 32-bit general-purpose register.

reg32 xmm

copy
copy

pmovmskb-128.eps

..

127 01523313947556371798795103111119 7015

0

.
32

Instruction Reference PMOVMSKB 287

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

288 PMULHUW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Multiplies each packed unsigned 16-bit values in the first source operand by the corresponding packed
unsigned word in the second source operand and writes the high-order 16 bits of each intermediate 32-
bit result in the corresponding word of the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

The PMULHUW instruction is an SSE instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PMADDWD, PMULHW, PMULLW, PMULUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMULHUW Packed Multiply High Unsigned Word

Mnemonic Opcode Description

PMULHUW xmm1, xmm2/mem128 66 0F E4 /r

Multiplies packed 16-bit values in an XMM register
by the packed 16-bit values in another XMM register
or 128-bit memory location and writes the high-order
16 bits of each result in the destination XMM
register.

multiply

xmm1 xmm2/mem128

multiply

.

pmulhuw-128.eps

127 63 0649596111112 7980 4748 15163132

.

.
127 63 0649596111112 7980 4748 15163132

Instruction Reference PMULHUW 289

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

290 PMULHW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer in the second source operand and writes the high-order 16 bits of the
intermediate 32-bit result of each multiplication in the corresponding word of the destination (first
source). The first source/destination operand is an XMM register and the second source operand is
another XMM register or 128-bit memory location.

The PMULHW instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PMADDWD, PMULHUW, PMULLW, PMULUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMULHW Packed Multiply High Signed Word

Mnemonic Opcode Description

PMULHW xmm1, xmm2/mem128 66 0F E5 /r

Multiplies packed 16-bit signed integer values in an
XMM register and another XMM register or 128-bit
memory location and writes the high-order 16 bits of
each result in the destination XMM register.

multiply

xmm1 xmm2/mem128

multiply

.

pmulhw-128.eps

127 63 0649596111112 7980 4748 15163132

.

.
127 63 0649596111112 7980 4748 15163132

Instruction Reference PMULHW 291

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

292 PMULLW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer in the second source operand and writes the low-order 16 bits of the
intermediate 32-bit result of each multiplication in the corresponding word of the destination (first
source). The first source/destination operand is an XMM register and the second source operand is
another XMM register or 128-bit memory location.

The PMULLW instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULUDQ

rFLAGS Affected

None

MXCSR Flags Affected

None

PMULLW Packed Multiply Low Signed Word

Mnemonic Opcode Description

PMULLW xmm1, xmm2/mem128 66 0F D5 /r

Multiplies packed 16-bit signed integer values in an
XMM register and another XMM register or 128-bit
memory location and writes the low-order 16 bits of
each result in the destination XMM register.

multiply

xmm1 xmm2/mem128

multiply

.

pmullw-128.eps

127 63 0649596111112 7980 4748 15163132

.

.
127 63 0649596111112 7980 4748 15163132

Instruction Reference PMULLW 293

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

294 PMULUDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Multiplies two pairs of 32-bit unsigned integer values in the first and second source operands and
writes the two 64-bit results in the destination (first source). The first source/destination operand is an
XMM register and the second source operand is another XMM register or 128-bit memory location.
The source operands are in the first (low-order) and third doublewords of the source operands, and the
result of each multiply is stored in the first and second quadwords of the destination XMM register.

The PMULUDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULLW

rFLAGS Affected

None

MXCSR Flags Affected

None

PMULUDQ Packed Multiply Unsigned Doubleword and Store
Quadword

Mnemonic Opcode Description

PMULUDQ xmm1, xmm2/mem128 66 0F F4 /r

Multiplies two pairs of 32-bit unsigned integer values
in an XMM register and another XMM register or
128-bit memory location and writes the two 64-bit
results in the destination XMM register.

multiply

xmm1 xmm2/mem128

multiply

pmuludq-128.eps

127 63 0649596 3132127 63 0649596 3132

Instruction Reference PMULUDQ 295

26568—Rev. 3.09—July 2007 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

296 POR Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Performs a bitwise logical OR of the values in the first and second source operands and writes the
result in the destination (first source). The first source/destination operand is an XMM register and the
second source operand is another XMM register or 128-bit memory location.

The POR instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PAND, PANDN, PXOR

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

POR Packed Logical Bitwise OR

Mnemonic Opcode Description

POR xmm1,
xmm2/mem128 66 0F EB /r

Performs bitwise logical OR of values in an XMM register
and in another XMM register or 128-bit memory location and
writes the result in the destination XMM register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

por-128.eps

OR

xmm1 xmm2/mem128

127 0 127 0

Instruction Reference POR 297

26568—Rev. 3.09—July 2007 AMD64 Technology

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Exception Real
Virtual
8086 Protected Cause of Exception

298 PSADBW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Computes the absolute differences of eight corresponding packed 8-bit unsigned integers in the first
and second source operands and writes the unsigned 16-bit integer result of the sum of the eight
differences in a word in the destination (first source). The first source/destination operand is an XMM
register and the second source operand is another XMM register or 128-bit memory location.

The sum of the differences of the eight bytes in the high-order quadwords of the source operands are
written in the least-significant word of the high-order quadword in the destination XMM register, with
the remaining bytes cleared to all 0s. The sum of the differences of the eight bytes in the low-order
quadwords of the source operands are written in the least-significant word of the low-order quadword
in the destination XMM register, with the remaining bytes cleared to all 0s.

The PSADBW instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

PSADBW Packed Sum of Absolute Differences of Bytes Into
a Word

Mnemonic Opcode Description

PSADBW xmm1, xmm2/mem128 66 0F F6 /r

Compute the sum of the absolute differences of two
sets of packed 8-bit unsigned integer values in an
XMM register and another XMM register or 128-bit
memory location and writes the 16-bit unsigned integer
result in the destination XMM register.

psadbw-128.eps

.

xmm1 xmm2/mem128

127 0127 0

absolute
difference

absolute
difference

0

absolute
difference

add 8
pairs

add 8
pairs

absolute
difference

6364 6364

63 015127 6479

0

Instruction Reference PSADBW 299

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 in CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

300 PSHUFD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves any one of the four packed doublewords in an XMM register or 128-bit memory location to
each doubleword in another XMM register. In each case, the value of the destination doubleword is
determined by a two-bit field in the immediate-byte operand, with bits 0 and 1 selecting the contents of
the low-order doubleword, bits 2 and 3 selecting the second doubleword, bits 4 and 5 selecting the third
doubleword, and bits 6 and 7 selecting the high-order doubleword. Refer to Table 1-4 on page 301. A
doubleword in the source operand may be copied to more than one doubleword in the destination.

The PSHUFD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

PSHUFD Packed Shuffle Doublewords

Mnemonic Opcode Description

PSHUFD xmm1, xmm2/mem128,
imm8 66 0F 70 /r ib

Moves packed 32-bit values in an XMM
register or 128-bit memory location to
doubleword locations in another XMM
register, as selected by the immediate-byte
operand.

pshufd.eps

xmm1 xmm2/mem128

imm8
7 0

mux
mux

mux
mux

127 63 0649596 3132127 63 0649596 3132

Instruction Reference PSHUFD 301

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

PSHUFHW, PSHUFLW, PSHUFW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Table 1-4. Immediate-Byte Operand Encoding for PSHUFD

Destination Bits Filled
Immediate-Byte

Bit Field Value of Bit Field Source Bits Moved

31–0 1–0

0 31–0

1 63–32

2 95–64

3 127–96

63–32 3–2

0 31–0

1 63–32

2 95–64

3 127–96

95–64 5–4

0 31–0

1 63–32

2 95–64

3 127–96

127–96 7–6

0 31–0

1 63–32

2 95–64

3 127–96

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

302 PSHUFD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PSHUFHW 303

26568—Rev. 3.09—July 2007 AMD64 Technology

Moves any one of the four packed words in the high-order quadword of an XMM register or 128-bit
memory location to each word in the high-order quadword of another XMM register. In each case, the
value of the destination word is determined by a two-bit field in the immediate-byte operand, with bits
0 and 1 selecting the contents of the low-order word, bits 2 and 3 selecting the second word, bits 4 and
5 selecting the third word, and bits 6 and 7 selecting the high-order word. Refer to Table 1-5 on
page 304. A word in the source operand may be copied to more than one word in the destination. The
low-order quadword of the source operand is copied to the low-order quadword of the destination
register.

The PSHUFHW instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

PSHUFHW Packed Shuffle High Words

Mnemonic Opcode Description

PSHUFHW xmm1, xmm2/mem128, imm8 F3 0F 70 /r ib

Shuffles packed 16-bit values in high-
order quadword of an XMM register or
128-bit memory location and puts the
result in high-order quadword of another
XMM register.

pshufhw.eps

xmm1 xmm2/mem128

imm8
7 0

127 63 0649596111112 7980127 63 0649596111112 7980

mux
mux

mux
mux

304 PSHUFHW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

PSHUFD, PSHUFLW, PSHUFW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Table 1-5. Immediate-Byte Operand Encoding for PSHUFHW

Destination Bits Filled
Immediate-Byte

Bit Field Value of Bit Field Source Bits Moved

79–64 1–0

0 79–64

1 95–80

2 111–96

3 127–112

95–80 3–2

0 79–64

1 95–80

2 111–96

3 127–112

111–96 5–4

0 79–64

1 95–80

2 111–96

3 127–112

127–112 7–6

0 79–64

1 95–80

2 111–96

3 127–112

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Instruction Reference PSHUFHW 305

26568—Rev. 3.09—July 2007 AMD64 Technology

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Exception Real
Virtual
8086 Protected Cause of Exception

306 PSHUFLW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Moves any one of the four packed words in the low-order quadword of an XMM register or 128-bit
memory location to each word in the low-order quadword of another XMM register. In each case, the
selection of the value of the destination word is determined by a two-bit field in the immediate-byte
operand, with bits 0 and 1 selecting the contents of the low-order word, bits 2 and 3 selecting the
second word, bits 4 and 5 selecting the third word, and bits 6 and 7 selecting the high-order word.
Refer to Table 1-6 on page 307. A word in the source operand may be copied to more than one word in
the destination. The high-order quadword of the source operand is copied to the high-order quadword
of the destination register.

The PSHUFLW instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

PSHUFLW Packed Shuffle Low Words

Mnemonic Opcode Description

PSHUFLW xmm1, xmm2/mem128, imm8 F2 0F 70 /r ib

Shuffles packed 16-bit values in low-
order quadword of an XMM register or
128-bit memory location and puts the
result in low-order quadword of another
XMM register.

pshuflw.eps

xmm1 xmm2/mem128

imm8
7 0

mux
mux

mux
mux

127 064 63 4748 15163132127 064 63 4748 15163132

Instruction Reference PSHUFLW 307

26568—Rev. 3.09—July 2007 AMD64 Technology

Related Instructions

PSHUFD, PSHUFHW, PSHUFW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Table 1-6. Immediate-Byte Operand Encoding for PSHUFLW

Destination Bits Filled
Immediate-Byte

Bit Field Value of Bit Field Source Bits Moved

15–0 1–0

0 15–0

1 31–16

2 47–32

3 63–48

31–16 3–2

0 15–0

1 31–16

2 47–32

3 63–48

47–32 5–4

0 15–0

1 31–16

2 47–32

3 63–48

63–48 7–6

0 15–0

1 31–16

2 47–32

3 63–48

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

308 PSHUFLW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference PSLLD 309

26568—Rev. 3.09—July 2007 AMD64 Technology

Left-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

• an XMM register and another XMM register or 128-bit memory location, or

• an XMM register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 31, the destination is cleared to all 0s.

The PSLLD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

PSLLD Packed Shift Left Logical Doublewords

Mnemonic Opcode Description

PSLLD xmm1,
xmm2/mem128 66 0F F2 /r

Left-shifts packed doublewords in an XMM register
by the amount specified in the low 64 bits of an XMM
register or 128-bit memory location.

PSLLD xmm, imm8 66 0F 72 /6 ib Left-shifts packed doublewords in an XMM register
by the amount specified in an immediate byte value.

shift left

xmm1 xmm2/mem128

shift left

pslld-128.eps

xmm imm8

127 63 064127 63 0649596 3132

..

..

shift left

shift left

127 63 0649596 3132

..

..
7 0

310 PSLLD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSLLDQ 311

26568—Rev. 3.09—July 2007 AMD64 Technology

Left-shifts the 128-bit (double quadword) value in an XMM register by the number of bytes specified
in an immediate byte value. The low-order bytes that are emptied by the shift operation are cleared to
0. If the shift value is greater than 15, the destination XMM register is cleared to all 0s.

The PSLLDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PSLLD, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSLLDQ Packed Shift Left Logical Double Quadword

Mnemonic Opcode Description

PSLLDQ xmm, imm8 66 0F 73 /7 ib Left-shifts double quadword value in an XMM register by the
amount specified in an immediate byte value.

pslldq.eps

127 0

xmm imm8

shift left

7 0

312 PSLLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Instruction Reference PSLLQ 313

26568—Rev. 3.09—July 2007 AMD64 Technology

Left-shifts each 64-bit value in the first source operand by the number of bits specified in the second
source operand and writes each shifted value in the corresponding quadword of the destination (first
source). The first source/destination and second source operands are:

• an XMM register and another XMM register or 128-bit memory location, or

• an XMM register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 63, the destination is cleared to all 0s.

The PSLLQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PSLLD, PSLLDQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

PSLLQ Packed Shift Left Logical Quadwords

Mnemonic Opcode Description

PSLLQ xmm1, xmm2/mem128 66 0F F3 /r
Left-shifts packed quadwords in XMM register by the
amount specified in the low 64 bits of an XMM
register or 128-bit memory location.

PSLLQ xmm, imm8 66 0F 73 /6 ib Left-shifts packed quadwords in an XMM register by
the amount specified in an immediate byte value.

shift left

xmm1 xmm2/mem128

shift left

psllq-128.eps

xmm imm8

127 63 064

shift left
shift left

127 63 064 7 0

127 63 064

314 PSLLQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSLLW 315

26568—Rev. 3.09—July 2007 AMD64 Technology

Left-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding word of the
destination (first source). The first source/destination and second source operands are:

• an XMM register and another XMM register or 128-bit memory location, or

• an XMM register and an immediate byte value

The low-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 15, the destination is cleared to all 0s.

The PSLLW instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

PSLLW Packed Shift Left Logical Words

Mnemonic Opcode Description

PSLLW xmm1,
xmm2/mem128 66 0F F1 /r

Left-shifts packed words in an XMM register by the
amount specified in the low 64 bits of an XMM
register or 128-bit memory location.

PSLLW xmm, imm8 66 0F 71 /6 ib Left-shifts packed words in an XMM register by the
amount specified in an immediate byte value.

shift left

xmm1 xmm2/mem128

shift left

psllw-128.eps

xmm imm8

shift left
shift left

.

.
7 0127 63 0649596111112 7980 4748 15163132

.

.
127 63 0649596111112 7980 4748 15163132 127 63 064

316 PSLLW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSRAD 317

26568—Rev. 3.09—July 2007 AMD64 Technology

Right-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

• an XMM register and another XMM register or 128-bit memory location, or

• an XMM register and an immediate byte value.

The high-order bits that are emptied by the shift operation are filled with the sign bit of the
doubleword’s initial value. If the shift value is greater than 31, each doubleword in the destination is
filled with the sign bit of the doubleword’s initial value.

The PSRAD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

PSRAD Packed Shift Right Arithmetic Doublewords

Mnemonic Opcode Description

PSRAD xmm1,
xmm2/mem128 66 0F E2 /r

Right-shifts packed doublewords in an XMM register
by the amount specified in the low 64 bits of an XMM
register or 128-bit memory location.

PSRAD xmm, imm8 66 0F 72 /4 ib Right-shifts packed doublewords in an XMM register
by the amount specified in an immediate byte value.

shift right

xmm1 xmm2/mem128

shift right

psrad-128.eps

xmm imm8

127 63 0649596 3132

..

..

..

shift right

shift right

127 63 0649596 3132

..

7 0

127 63 064

318 PSRAD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSRAW 319

26568—Rev. 3.09—July 2007 AMD64 Technology

Right-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding word of the
destination (first source). The first source/destination and second source operands are:

• an XMM register and another XMM register or 128-bit memory location, or

• an XMM register and an immediate byte value.

The high-order bits that are emptied by the shift operation are filled with the sign bit of the word’s
initial value. If the shift value is greater than 15, each word in the destination is filled with the sign bit
of the word’s initial value.

The PSRAW instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

PSRAW Packed Shift Right Arithmetic Words

Mnemonic Opcode Description

PSRAW xmm1, xmm2/mem128 66 0F E1 /r
Right-shifts packed words in an XMM register by the
amount specified in the low 64 bits of an XMM
register or 128-bit memory location.

PSRAW xmm, imm8 66 0F 71 /4 ib Right-shifts packed words in an XMM register by the
amount specified in an immediate byte value.

shift right
arithmetic

xmm1 xmm2/mem128

shift right
arithmetic

psraw-128.eps

xmm imm8

shift right
arithmetic

shift right
arithmetic

.

.

.

7 0127 63 0649596111112 7980 4748 15163132

.

127 63 0649596111112 7980 4748 15163132 127 63 064

320 PSRAW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSRLD 321

26568—Rev. 3.09—July 2007 AMD64 Technology

Right-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

• an XMM register and another XMM register or 128-bit memory location, or

• an XMM register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 31, the destination is cleared to 0.

The PSRLD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

PSRLD Packed Shift Right Logical Doublewords

Mnemonic Opcode Description

PSRLD xmm1,
xmm2/mem128 66 0F D2 /r

Right-shifts packed doublewords in an XMM register
by the amount specified in the low 64 bits of an XMM
register or 128-bit memory location.

PSRLD xmm, imm8 66 0F 72 /2 ib Right-shifts packed doublewords in an XMM register
by the amount specified in an immediate byte value.

psrld-128.eps

shift right

xmm1 xmm2/mem128

shift right

xmm imm8

127 63 0649596 3132

..

..

..

shift right

shift right

127 63 0649596 3132

..

7 0

127 63 064

322 PSRLD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSRLDQ 323

26568—Rev. 3.09—July 2007 AMD64 Technology

Right-shifts the 128-bit (double quadword) value in an XMM register by the number of bytes specified
in an immediate byte value. The high-order bytes that are emptied by the shift operation are cleared to
0. If the shift value is greater than 15, the destination XMM register is cleared to all 0s.

The PSRLDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLQ, PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSRLDQ Packed Shift Right Logical Double Quadword

Mnemonic Opcode Description

PSRLDQ xmm, imm8 66 0F 73 /3 ib
Right-shifts double quadword value in an XMM
register by the amount specified in an immediate byte
value.

psrldq.eps

127 0

xmm imm8

shift right

7 0

324 PSRLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Instruction Reference PSRLQ 325

26568—Rev. 3.09—July 2007 AMD64 Technology

Right-shifts each 64-bit value in the first source operand by the number of bits specified in the second
source operand and writes each shifted value in the corresponding quadword of the destination (first
source). The first source/destination and second source operands are:

• an XMM register and another XMM register or 128-bit memory location, or

• an XMM register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 63, the destination is cleared to 0.

The PSRLQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

PSRLQ Packed Shift Right Logical Quadwords

Mnemonic Opcode Description

PSRLQ xmm1,
xmm2/mem128 66 0F D3 /r

Right-shifts packed quadwords in an XMM register by
the amount specified in the low 64 bits of an XMM
register or 128-bit memory location.

PSRLQ xmm, imm8 66 0F 73 /2 ib Right-shifts packed quadwords in an XMM register by
the amount specified in an immediate byte value.

shift right

xmm1 xmm2/mem128

shift right

psrlq-128.eps

xmm imm8

127 63 064

shift right

shift right

127 63 064 7 0

127 63 064

326 PSRLQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLW

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSRLW 327

26568—Rev. 3.09—July 2007 AMD64 Technology

Right-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second operand and writes each shifted value in the corresponding word of the destination (first
source). The first source/destination and second source operands are:

• an XMM register and another XMM register or 128-bit memory location, or

• an XMM register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift value is greater
than 15, the destination is cleared to 0.

The PSRLW instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

PSRLW Packed Shift Right Logical Words

Mnemonic Opcode Description

PSRLW xmm1, xmm2/mem128 66 0F D1 /r
Right-shifts packed words in an XMM register by the
amount specified in the low 64 bits of an XMM
register or 128-bit memory location.

PSRLW xmm, imm8 66 0F 71 /2 ib Right-shifts packed words in an XMM register by the
amount specified in an immediate byte value.

shift right

xmm1 xmm2/mem128

shift right

psrlw-128.eps

xmm imm8

shift right

shift right

.

.

.

7 0127 63 0649596111112 7980 4748 15163132

.

127 63 0649596111112 7980 4748 15163132 127 63 064

328 PSRLW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X X X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSUBB 329

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts each packed 8-bit integer value in the second source operand from the corresponding packed
8-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding byte of the destination (first source). The first source/destination operand is an XMM
register and the second source operand is another XMM register or 128-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written in the destination.

The PSUBB instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBB Packed Subtract Bytes

Mnemonic Opcode Description

PSUBB xmm1,
xmm2/mem128 66 0F F8 /r

Subtracts packed byte integer values in an XMM register
or 128-bit memory location from packed byte integer
values in another XMM register and writes the result in
the destination XMM register.

subtract

127 0 127 0

xmm1 xmm2/mem128

subtract

.

.

.

psubb-128.eps

330 PSUBB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSUBD 331

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts each packed 32-bit integer value in the second source operand from the corresponding
packed 32-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding doubleword of the destination (first source). The first source/destination operand is an
XMM register and the second source operand is another XMM register or 128-bit memory location.

The PSUBD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written in the destination.

Related Instructions

PSUBB, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBD Packed Subtract Doublewords

Mnemonic Opcode Description

PSUBD xmm1, xmm2/mem128 66 0F FA /r

Subtracts packed 32-bit integer values in an XMM
register or 128-bit memory location from packed 32-bit
integer values in another XMM register and writes the
result in the destination XMM register.

subtract

xmm1 xmm2/mem128

subtract

. .

psubd-128.eps

127 63 0649596 3132

. .

. .
127 63 0649596 3132

332 PSUBD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSUBQ 333

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts each packed 64-bit integer value in the second source operand from the corresponding
packed 64-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding quadword of the destination (first source). The first source/destination and source
operands are an XMM register and another XMM register or 128-bit memory location.

The PSUBQ instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written in the destination.

Related Instructions

PSUBB, PSUBD, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBQ Packed Subtract Quadword

Mnemonic Opcode Description

PSUBQ xmm1,
xmm2/mem128 66 0F FB /r

Subtracts packed 64-bit integer values in an XMM
register or 128-bit memory location from packed 64-bit
integer values in another XMM register and writes the
result in the destination XMM register.

subtract

xmm1 xmm2/mem128

subtract

psubq-128.eps

127 63 064127 63 064

334 PSUBQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSUBSB 335

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts each packed 8-bit signed integer value in the second source operand from the corresponding
packed 8-bit signed integer in the first source operand and writes the signed integer result of each
subtraction in the corresponding byte of the destination (first source). The first source/destination
operand is an XMM register and the second source operand is another XMM register or 128-bit
memory location.

The PSUBSB instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

For each packed value in the destination, if the value is larger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to 80h.

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBSB Packed Subtract Signed With Saturation Bytes

Mnemonic Opcode Description

PSUBSB xmm1, xmm2/mem128 66 0F E8 /r

Subtracts packed byte signed integer values in an
XMM register or 128-bit memory location from packed
byte integer values in another XMM register and writes
the result in the destination XMM register.

subtract

127 0 127 0

xmm1 xmm2/mem128

subtract

saturate

saturate

.

.

.

psubsb-128.eps

336 PSUBSB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSUBSW 337

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts each packed 16-bit signed integer value in the second source operand from the
corresponding packed 16-bit signed integer in the first source operand and writes the signed integer
result of each subtraction in the corresponding word of the destination (first source). The first
source/destination and source operands are an XMM register and another XMM register or 128-bit
memory location.

For each packed value in the destination, if the value is larger than the largest signed 16-bit integer, it is
saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.

The PSUBSW instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBSW Packed Subtract Signed With Saturation Words

Mnemonic Opcode Description

PSUBSW xmm1,
xmm2/mem128 66 0F E9 /r

Subtracts packed 16-bit signed integer values in an
XMM register or 128-bit memory location from packed
16-bit integer values in another XMM register and
writes the result in the destination XMM register.

subtract

xmm1 xmm2/mem128

subtract

saturate
saturate

psubsw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

338 PSUBSW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSUBUSB 339

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts each packed 8-bit unsigned integer value in the second source operand from the
corresponding packed 8-bit unsigned integer in the first source operand and writes the unsigned integer
result of each subtraction in the corresponding byte of the destination (first source). The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

The PSUBUSB instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSW, PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBUSB Packed Subtract Unsigned and Saturate Bytes

Mnemonic Opcode Description

PSUBUSB xmm1, xmm2/mem128 66 0F D8 /r

Subtracts packed byte unsigned integer values in an
XMM register or 128-bit memory location from
packed byte integer values in another XMM register
and writes the result in the destination XMM register.

subtract

127 0 127 0

xmm1 xmm2/mem128

subtract

saturate

saturate

.

.

.

psubusb-128.eps

340 PSUBUSB Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Instruction Reference PSUBUSW 341

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts each packed 16-bit unsigned integer value in the second source operand from the
corresponding packed 16-bit unsigned integer in the first source operand and writes the unsigned
integer result of each subtraction in the corresponding word of the destination (first source). The first
source/destination operand is an XMM register and the second source operand is another XMM
register or 128-bit memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 16-bit integer,
it is saturated to FFFFh, and if the value is smaller than the smallest unsigned 16-bit integer, it is
saturated to 0000h.

The PSUBUSW instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBW

rFLAGS Affected

None

MXCSR Flags Affected

None

PSUBUSW Packed Subtract Unsigned and Saturate Words

Mnemonic Opcode Description

PSUBUSW xmm1,
xmm2/mem128 66 0F D9 /r

Subtracts packed 16-bit unsigned integer values in
an XMM register or 128-bit memory location from
packed 16-bit integer values in another XMM register
and writes the result in the destination XMM register.

subtract

xmm1 xmm2/mem128

subtract

saturate

saturate

psubusw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

342 PSUBUSW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PSUBW 343

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts each packed 16-bit integer value in the second source operand from the corresponding
packed 16-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding word of the destination (first source). The first source/destination operand is an XMM
register and the second source operand is another XMM register or 128-bit memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 16-bit integer,
it is saturated to FFFFh, and if the value is smaller than the smallest unsigned 16-bit integer, it is
saturated to 0000h.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of the
result are written in the destination.

The PSUBW instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW

rFLAGS Affected

None

PSUBW Packed Subtract Words

Mnemonic Opcode Description

PSUBW xmm1, xmm2/mem128 66 0F F9 /r

Subtracts packed 16-bit integer values in an XMM
register or 128-bit memory location from packed 16-bit
integer values in another XMM register and writes the
result in the destination XMM register.

subtract

xmm1 xmm2/mem128

subtract

psubw-128.eps

.

.
127 63 0649596111112 7980 4748 15163132127 63 0649596111112 7980 4748 15163132

344 PSUBW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PUNPCKHBW 345

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the high-order bytes from the first and second source operands and packs them into
interleaved bytes in the destination (first source). The low-order bytes of the source operands are
ignored. The first source/destination operand is an XMM register and the second source operand is
another XMM register or 128-bit memory location.

If the second source operand is all 0s, the destination contains the bytes from the first source operand
zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to unsigned 16-
bit operands for subsequent processing that requires higher precision.

The PUNPCKHBW instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHDQ, PUNP CKHQDQ, PUNPCKH WD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKHBW Unpack and Interleave High Bytes

Mnemonic Opcode Description

PUNPCKHBW xmm1,
xmm2/mem128 66 0F 68 /r

Unpacks the eight high-order bytes in an XMM register
and another XMM register or 128-bit memory location
and packs them into interleaved bytes in the
destination XMM register.

punpckhbw-128.eps

..

127 63 064127 63 064

...

xmm1 xmm2/mem128

copy copy

127 064 63

copy copy

346 PUNPCKHBW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PUNPCKHDQ 347

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the high-order doublewords from the first and second source operands and packs them into
interleaved doublewords in the destination (first source). The low-order doublewords of the source
operands are ignored. The first source/destination operand is an XMM register and the second source
operand is another XMM register or 128-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from the first source
operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit values to
unsigned 64-bit operands for subsequent processing that requires higher precision.

The PUNPCKHDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHQDQ, PUNPCKHWD, PUNPCKL BW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKHDQ Unpack and Interleave High Doublewords

Mnemonic Opcode Description

PUNPCKHDQ xmm1,
xmm2/mem128 66 0F 6A /r

Unpacks two high-order doublewords in an XMM
register and another XMM register or 128-bit memory
location and packs them into interleaved doublewords
in the destination XMM register.

punpckhdq-128.eps127 63 0649596 3132

127 63 0649596127 63 0649596

xmm1 xmm2/mem128

copy copycopy copy

348 PUNPCKHDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PUNPCKHQDQ 349

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the high-order quadwords from the first and second source operands and packs them into
interleaved quadwords in the destination (first source). The first source/destination is an XMM
register, and the second source operand is another XMM register or 128-bit memory location. The low-
order quadwords of the source operands are ignored.

If the second source operand is all 0s, the destination contains the quadword from the first source
operand zero-extended to 128 bits. This operation is useful for expanding unsigned 64-bit values to
unsigned 128-bit operands for subsequent processing that requires higher precision.

The PUNPCKHQDQ instruction is an SSE2 instruction. The presence of this instruction set is
indicated by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ, PUNPCKLQDQ,
PUNPCKLWD

rFLAGS Affected

None

PUNPCKHQDQ Unpack and Interleave High Quadwords

Mnemonic Opcode Description

PUNPCKHQDQ xmm1, xmm2/mem128 66 0F 6D /r

Unpacks high-order quadwords in an XMM
register and another XMM register or 128-bit
memory location and packs them into
interleaved quadwords in the destination XMM
register.

punpckhqdq.eps

127 63 064127 63 064

63 064127

xmm1 xmm2/mem128

copy copy

350 PUNPCKHQDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PUNPCKHWD 351

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the high-order words from the first and second source operands and packs them into
interleaved words in the destination (first source). The low-order words of the source operands are
ignored. The first source/destination operand is an XMM register and the second source operand is
another XMM register or 128-bit memory location.

If the second source operand is all 0s, the destination contains the words from the first source operand
zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values to unsigned 32-
bit operands for subsequent processing that requires higher precision.

The PUNPCKHWD instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKLBW, PUNPCKLDQ, PUNPCKLQDQ,
PUNPCKLWD

rFLAGS Affected

None

PUNPCKHWD Unpack and Interleave High Words

Mnemonic Opcode Description

PUNPCKHWD xmm1,
xmm2/mem128 66 0F 69 /r

Unpacks four high-order words in an XMM register
and another XMM register or 128-bit memory
location and packs them into interleaved words in
the destination XMM register.

punpckhwd-128.eps

127 63 0649596111112 7980127 63 0649596111112 7980

. .

. . . .

. .

127 63 0649596111112 7980 4748 15163132...

xmm1 xmm2/mem128

copy copycopy copy

352 PUNPCKHWD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PUNPCKLBW 353

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the low-order bytes from the first and second source operands and packs them into
interleaved bytes in the destination (first source). The high-order bytes of the source operands are
ignored. The first source/destination operand is an XMM register and the second source operand is
another XMM register or 128-bit memory location.

If the second source operand is all 0s, the destination contains the bytes from the first source operand
zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to unsigned 16-
bit operands for subsequent processing that requires higher precision.

The PUNPCKLBW instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, P UNPCKHQ DQ, PUNPCKHWD, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKLBW Unpack and Interleave Low Bytes

Mnemonic Opcode Description

PUNPCKLBW xmm1,
xmm2/mem128 66 0F 60 /r

Unpacks the eight low-order bytes in an XMM
register and another XMM register or 128-bit
memory location and packs them into interleaved
bytes in the destination XMM register.

punpcklbw-128.eps

..

127 63 064127 63 064

...

xmm1 xmm2/mem128

copy copy

127 064 63

copy copy

354 PUNPCKLBW Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PUNPCKLDQ 355

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the low-order doublewords from the first and second source operands and packs them into
interleaved doublewords in the destination (first source). The high-order doublewords of the source
operands are ignored. The first source/destination operand is an XMM register and the second source
operand is another XMM register or 128-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from the first source
operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit values to
unsigned 64-bit operands for subsequent processing that requires higher precision.

The PUNPCKLDQ instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKH QDQ, PUNPCKHWD , PUNPCKLBW,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

PUNPCKLDQ Unpack and Interleave Low Doublewords

Mnemonic Opcode Description

PUNPCKLDQ xmm1,
xmm2/mem128 66 0F 62 /r

Unpacks two low-order doublewords in an XMM
register and another XMM register or 128-bit memory
location and packs them into interleaved doublewords
in the destination XMM register.

punpckldq-128.eps

127 63 064 3132127 63 064 3132

127 63 0649596 3132

xmm1 xmm2/mem128

copycopy copycopy

356 PUNPCKLDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PUNPCKLQDQ 357

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the low-order quadwords from the first and second source operands and packs them into
interleaved quadwords in the destination (first source). The first source/destination is an XMM
register, and the second source operand is another XMM register or 128-bit memory location. The
high-order quadwords of the source operands are ignored.

If the second source operand is all 0s, the destination contains the quadword from the first source
operand zero-extended to 128 bits. This operation is useful for expanding unsigned 64-bit values to
unsigned 128-bit operands for subsequent processing that requires higher precision.

The PUNPCKLQDQ instruction is an SSE2 instruction. The presence of this instruction set is
indicated by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLWD

rFLAGS Affected

None

PUNPCKLQDQ Unpack and Interleave Low Quadwords

Mnemonic Opcode Description

PUNPCKLQDQ xmm1, xmm2/mem128 66 0F 6C /r

Unpacks low-order quadwords in an XMM
register and another XMM register or 128-bit
memory location and packs them into
interleaved quadwords in the destination XMM
register.

punpcklqdq.eps

127 63 064127 63 064

63 064127

xmm1 xmm2/mem128

copy copy

358 PUNPCKLQDQ Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PUNPCKLWD 359

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the low-order words from the first and second source operands and packs them into
interleaved words in the destination (first source). The high-order words of the source operands are
ignored. The first source/destination operand is an XMM register and the second source operand is
another XMM register or 128-bit memory location.

If the second source operand is all 0s, the destination contains the words from the first source operand
zero-extended to 32 bits. This operation is useful for expanding unsigned 16-bit values to unsigned 32-
bit operands for subsequent processing that requires higher precision.

The PUNPCKLWD instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ

rFLAGS Affected

None

PUNPCKLWD Unpack and Interleave Low Words

Mnemonic Opcode Description

PUNPCKLWD xmm1,
xmm2/mem128 66 0F 61 /r

Unpacks the four low-order words in an XMM
register and another XMM register or 128-bit
memory location and packs them into interleaved
words in the destination XMM register.

punpcklwd-128.eps

127 63 064 4748 15163132127 63 064 4748 15163132

. .. .

. .. .

127 63 0649596111112 7980 4748 15163132...

xmm1 xmm2/mem128

copy copycopy copy

360 PUNPCKLWD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference PXOR 361

26568—Rev. 3.09—July 2007 AMD64 Technology

Performs a bitwise exclusive OR of the values in the first and second source operands and writes the
result in the destination (first source). The first source/destination operand is an XMM register and the
second source operand is another XMM register or 128-bit memory location.

The PXOR instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

PAND, PANDN, POR

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

PXOR Packed Logical Bitwise Exclusive OR

Mnemonic Opcode Description

PXOR xmm1,
xmm2/mem128 66 0F EF /r

Performs bitwise logical XOR of values in an XMM register
and in another XMM register or 128-bit memory location
and writes the result in the destination XMM register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

pxor-128.eps

XOR

xmm1 xmm2/mem128

127 0127 0

362 PXOR Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference RCPPS 363

26568—Rev. 3.09—July 2007 AMD64 Technology

Computes the approximate reciprocal of each of the four packed single-precision floating-point values
in an XMM register or 128-bit memory location and writes the result in the corresponding doubleword
of another XMM register. The rounding control bits (RC) in the MXCSR register have no effect on the
result.

The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal. A source value that is
±zero or denormal returns an infinity of the source value’s sign. Results that underflow are changed to
signed zero. For both SNaN and QNaN source operands, a QNaN is returned.

The RCPPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

RCPSS, RSQRTPS, RSQRTSS

rFLAGS Affected

None

MXCSR Flags Affected

None

RCPPS Reciprocal Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

RCPPS xmm1,
xmm2/mem128 0F 53 /r

Computes reciprocals of packed single-precision floating-
point values in an XMM register or 128-bit memory location
and writes result in the destination XMM register.

rcpps.eps

xmm1 xmm2/mem128

reciprocal

reciprocal

reciprocal

reciprocal

127 63 0649596 3132127 63 0649596 3132

364 RCPPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference RCPSS 365

26568—Rev. 3.09—July 2007 AMD64 Technology

Computes the approximate reciprocal of the low-order single-precision floating-point value in an
XMM register or in a 32-bit memory location and writes the result in the low-order doubleword of
another XMM register. The three high-order doublewords in the destination XMM register are not
modified. The rounding control bits (RC) in the MXCSR register have no effect on the result.

The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal. A source value that is
±zero or denormal returns an infinity of the source value’s sign. Results that underflow are changed to
signed zero. For both SNaN and QNaN source operands, a QNaN is returned.

The RCPSS instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

RCPPS, RSQRTPS, RSQRTSS

rFLAGS Affected

None

MXCSR Flags Affected

None

RCPSS Reciprocal Scalar Single-Precision
Floating-Point

Mnemonic Opcode Description

RCPSS xmm1,
xmm2/mem32 F3 0F 53 /r

Computes reciprocal of scalar single-precision floating-
point value in an XMM register or 32-bit memory location
and writes the result in the destination XMM register.

rcpss.eps

xmm1 xmm2/mem32

reciprocal

127 31 032 127 31 032

366 RCPSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference RSQRTPS 367

26568—Rev. 3.09—July 2007 AMD64 Technology

Computes the approximate reciprocal of the square root of each of the four packed single-precision
floating-point values in an XMM register or 128-bit memory location and writes the result in the
corresponding doubleword of another XMM register. The rounding control bits (RC) in the MXCSR
register have no effect on the result.

The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal square root. A source
value that is ±zero or denormal returns an infinity of the source value’s sign. Negative source values
other than –zero and –denormal return a QNaN floating-point indefinite value (“Indefinite Values” in
Volume 1). For both SNaN and QNaN source operands, a QNaN is returned.

The RSQRTPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

RSQRTSS, SQRTPD, SQRTPS, SQRTSD, SQRTSS

rFLAGS Affected

None

RSQRTPS Reciprocal Square Root Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

RSQRTPS xmm1, xmm2/mem128 0F 52 /r

Computes reciprocals of square roots of packed
single-precision floating-point values in an XMM
register or 128-bit memory location and writes the
result in the destination XMM register.

rsqrtps.eps

xmm1 xmm2/mem128

reciprocal
square root reciprocal

square root
reciprocal

square root
reciprocal

square root

127 63 0649596 3132127 63 0649596 3132

368 RSQRTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference RSQRTSS 369

26568—Rev. 3.09—July 2007 AMD64 Technology

Computes the approximate reciprocal of the square root of the low-order single-precision floating-
point value in an XMM register or in a 32-bit memory location and writes the result in the low-order
doubleword of another XMM register. The three high-order doublewords in the destination XMM
register are not modified. The rounding control bits (RC) in the MXCSR register have no effect on the
result.

The maximum error is less than or equal to 1.5 * 2–12 times the true reciprocal square root. A source
value that is ±zero or denormal returns an infinity of the source value’s sign. Negative source values
other than –zero and –denormal return a QNaN floating-point indefinite value (“Indefinite Values” in
Volume 1). For both SNaN and QNaN source operands, a QNaN is returned.

The RSQRTSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

RSQRTPS, SQRTPD, SQRTPS, SQRTSD, SQRTSS

rFLAGS Affected

None

MXCSR Flags Affected

None

RSQRTSS Reciprocal Square Root Scalar Single-Precision
Floating-Point

Mnemonic Opcode Description

RSQRTSS xmm1, xmm2/mem32 F3 0F 52
/r

Computes reciprocal of square root of single-precision
floating-point value in an XMM register or 32-bit memory
location and writes the result in the destination XMM
register.

rsqrtss.eps

xmm1 xmm2/mem32

reciprocal
square root

127 31 032 127 31 032

370 RSQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference SHUFPD 371

26568—Rev. 3.09—July 2007 AMD64 Technology

Moves either of the two packed double-precision floating-point values in the first source operand to the
low-order quadword of the destination (first source) and moves either of the two packed double-
precision floating-point values in the second source operand to the high-order quadword of the
destination. In each case, the value of the destination quadword is determined by the least-significant
two bits in the immediate-byte operand, as shown in Table 1-7 on page 371. The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 128-bit memory location.

The SHUFPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

SHUFPD Shuffle Packed Double-Precision Floating-Point

Mnemonic Opcode Description

SHUFPD xmm1, xmm2/mem128, imm8 66 0F C6 /r ib

Shuffles packed double-precision floating-
point values in an XMM register and
another XMM register or 128-bit memory
location and puts the result in the
destination XMM register.

Table 1-7. Immediate-Byte Operand Encoding for SHUFPD

Destination Bits
Filled

Immediate-Byte
Bit Field

Value of Bit
Field Source 1 Bits MovedSource 2 Bits Moved

63–0 0
0 63–0 —

1 127–64 —

127–64 1
0 — 63–0

1 — 127–64

shufpd.eps

xmm1 xmm2/mem128

imm8
7 0

mux mux

127 63 064127 63 064

372 SHUFPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

SHUFPS

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Instruction Reference SHUFPS 373

26568—Rev. 3.09—July 2007 AMD64 Technology

Moves two of the four packed single-precision floating-point values in the first source operand to the
low-order quadword of the destination (first source) and moves two of the four packed single-precision
floating-point values in the second source operand to the high-order quadword of the destination. In
each case, the value of the destination doubleword is determined by a two-bit field in the immediate-
byte operand, as shown in Table 1-8 on page 373. The first source/destination operand is an XMM
register. The second source operand is another XMM register or 128-bit memory location.

The SHUFPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

SHUFPS Shuffle Packed Single-Precision Floating-Point

Mnemonic Opcode Description

SHUFPS xmm1, xmm2/mem128,
imm8 0F C6 /r ib

Shuffles packed single-precision floating-
point values in an XMM register and another
XMM register or 128-bit memory location and
puts the result in the destination XMM
register.

Table 1-8. Immediate-Byte Operand Encoding for SHUFPS

Destination Bits
Filled

Immediate-Byte
Bit Field

Value of Bit
Field

Source 1
Bits Moved

Source 2
Bits Moved

31–0 1–0

0 31–0 —

1 63–32 —

2 95–64 —

3 127–96 —

shufps.eps

xmm1 xmm2/mem128

imm8
7 0

muxmux

127 63 0649596 3132127 63 064

374 SHUFPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Related Instructions

SHUFPD

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

63–32 3–2

0 31–0 —

1 63–32 —

2 95–64 —

3 127–96 —

95–64 5–4

0 — 31–0

1 — 63–32

2 — 95–64

3 — 127–96

127–96 7–6

0 — 31–0

1 — 63–32

2 — 95–64

3 — 127–96

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

Table 1-8. Immediate-Byte Operand Encoding for SHUFPS

Destination Bits
Filled

Immediate-Byte
Bit Field

Value of Bit
Field

Source 1
Bits Moved

Source 2
Bits Moved

Instruction Reference SHUFPS 375

26568—Rev. 3.09—July 2007 AMD64 Technology

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Exception Real
Virtual
8086 Protected Cause of Exception

376 SQRTPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Computes the square root of each of the two packed double-precision floating-point values in an XMM
register or 128-bit memory location and writes the result in the corresponding quadword of another
XMM register. Taking the square root of +infinity returns +infinity.

The SQRTPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

RSQRTPS, RSQRTSS, SQRTPS, SQRTSD, SQRTSS

rFLAGS Affected

None

SQRTPD Square Root Packed Double-Precision
Floating-Point

Mnemonic Opcode Description

SQRTPD xmm1,
xmm2/mem128 66 0F 51 /r

Computes square roots of packed double-precision
floating-point values in an XMM register or 128-bit
memory location and writes the result in the destination
XMM register.

sqrtpd.eps

127 63 064

xmm1 xmm2/mem128

square root
square root

127 63 064

Instruction Reference SQRTPD 377

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X A source operand was negative (not including –0).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

378 SQRTPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Computes the square root of each of the four packed single-precision floating-point values in an XMM
register or 128-bit memory location and writes the result in the corresponding doubleword of another
XMM register. Taking the square root of +infinity returns +infinity.

The SQRTPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

RSQRTPS, RSQRTSS, SQRTPD, SQRTSD, SQRTSS

rFLAGS Affected

None

SQRTPS Square Root Packed Single-Precision
Floating-Point

Mnemonic Opcode Description

SQRTPS xmm1,
xmm2/mem128 0F 51 /r

Computes square roots of packed single-precision
floating-point values in an XMM register or 128-bit
memory location and writes the result in the destination
XMM register.

sqrtps.eps

xmm1 xmm2/mem128

square root

square root

square root

square root

127 63 0649596 3132127 63 0649596 3132

Instruction Reference SQRTPS 379

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X A source operand was negative (not including –0).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

380 SQRTSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Computes the square root of the low-order double-precision floating-point value in an XMM register
or in a 64-bit memory location and writes the result in the low-order quadword of another XMM
register. The high-order quadword of the destination XMM register is not modified. Taking the square
root of +infinity returns +infinity.

The SQRTSD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

RSQRTPS, RSQRTSS, SQRTPD, SQRTPS, SQRTSS

rFLAGS Affected

None

SQRTSD Square Root Scalar Double-Precision
Floating-Point

Mnemonic Opcode Description

SQRTSD xmm1, xmm2/mem64 F2 0F 51 /r
Computes square root of double-precision floating-point
value in an XMM register or 64-bit memory location and
writes the result in the destination XMM register.

sqrtsd.eps

xmm1 xmm2/mem64

127 63 064 127 63 064

square root

Instruction Reference SQRTSD 381

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X A source operand was negative (not including –0).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

382 SQRTSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Computes the square root of the low-order single-precision floating-point value in an XMM register or
32-bit memory location and writes the result in the low-order doubleword of another XMM register.
The three high-order doublewords of the destination XMM register are not modified. Taking the
square root of +infinity returns +infinity.

The SQRTSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

RSQRTPS, RSQRTSS, SQRTPD, SQRTPS, SQRTSD

rFLAGS Affected

None

SQRTSS Square Root Scalar Single-Precision
Floating-Point

Mnemonic Opcode Description

SQRTSS xmm1, xmm2/mem32 F3 0F 51 /r
Computes square root of single-precision floating-point
value in an XMM register or 32-bit memory location and
writes the result in the destination XMM register.

sqrtss.eps

xmm1 xmm2/mem32

127 31 032 127 31 032

square root

Instruction Reference SQRTSS 383

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X A source operand was negative (not including –0).

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

384 STMXCSR Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Saves the contents of the MXCSR register in a 32-bit location in memory. The MXCSR register is
described in “Registers” in Volume 1.

The STMXCSR instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

LDMXCSR

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

STMXCSR Store MXCSR Control/Status Register

Mnemonic Opcode Description

STMXCSR mem32 0F AE /3 Stores contents of MXCSR in 32-bit memory location.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference SUBPD 385

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts each packed double-precision floating-point value in the second source operand from the
corresponding packed double-precision floating-point value in the first source operand and writes the
result of each subtraction in the corresponding quadword of the destination (first source). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 128-bit memory location.

The SUBPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

SUBPS, SUBSD, SUBSS

rFLAGS Affected

None

SUBPD Subtract Packed Double-Precision Floating-Point

Mnemonic Opcode Description

SUBPD xmm1,
xmm2/mem128 66 0F 5C /r

Subtracts packed double-precision floating-point values
in an XMM register or 128-bit memory location from
packed double-precision floating-point values in another
XMM register and writes the result in the destination
XMM register.

subpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

subtract

subtract

386 SUBPD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Instruction Reference SUBPD 387

26568—Rev. 3.09—July 2007 AMD64 Technology

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

388 SUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Subtracts each packed single-precision floating-point value in the second source operand from the
corresponding packed single-precision floating-point value in the first source operand and writes the
result of each subtraction in the corresponding doubleword of the destination (first source). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 128-bit memory location.

The SUBPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

SUBPD, SUBSD, SUBSS

rFLAGS Affected

None

SUBPS Subtract Packed Single-Precision Floating-Point

Mnemonic Opcode Description

SUBPS xmm1,
xmm2/mem128 0F 5C /r

Subtracts packed single-precision floating-point values in an
XMM register or 128-bit memory location from packed
single-precision floating-point values in another XMM
register and writes the result in the destination XMM
register.

subps.eps

xmm1 xmm2/mem128

subtract

subtract

subtract

subtract

127 63 0649596 3132127 63 0649596 3132

Instruction Reference SUBPS 389

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

390 SUBPS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

Instruction Reference SUBSD 391

26568—Rev. 3.09—July 2007 AMD64 Technology

Subtracts the double-precision floating-point value in the low-order quadword of the second source
operand from the double-precision floating-point value in the low-order quadword of the first source
operand and writes the result in the low-order quadword of the destination (first source). The high-
order quadword of the destination is not modified. The first source/destination operand is an XMM
register. The second source operand is another XMM register or 64-bit memory location.

The SUBSD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

SUBPD, SUBPS, SUBSS

rFLAGS Affected

None

SUBSD Subtract Scalar Double-Precision Floating-Point

Mnemonic Opcode Description

SUBSD xmm1,
xmm2/mem64 F2 0F 5C /r

Subtracts low-order double-precision floating-point value
in an XMM register or in a 64-bit memory location from
low-order double-precision floating-point value in another
XMM register and writes the result in the destination
XMM register.

subsd.eps

xmm1 xmm2/mem64

subtract

127 63 064 127 63 064

392 SUBSD Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

Instruction Reference SUBSD 393

26568—Rev. 3.09—July 2007 AMD64 Technology

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

394 SUBSS Instruction Reference

AMD64 Technology 26568—Rev. 3.09—July 2007

Subtracts the single-precision floating-point value in the low-order doubleword of the second source
operand from the single-precision floating-point value in the low-order doubleword of the first source
operand and writes the result in the low-order doubleword of the destination (first source). The three
high-order doublewords of the destination are not modified. The first source/destination operand is an
XMM register. The second source operand is another XMM register or 32-bit memory location.

The SUBSS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

SUBPD, SUBPS, SUBSD

rFLAGS Affected

None

SUBSS Subtract Scalar Single-Precision Floating-Point

Mnemonic Opcode Description

SUBSS xmm1,
xmm2/mem32 F3 0F 5C /r

Subtracts low-order single-precision floating-point value
in an XMM register or in a 32-bit memory location from
low-order single-precision floating-point value in another
XMM register and writes the result in the destination
XMM register.

subss.eps

xmm1 xmm2/mem32

subtract

127 31 032 127 31 032

395

26568—Rev. 3.09—July 2007 AMD64 Technology

MXCSR Flags Affected

Exceptions

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M M M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE)

X X X A source operand was an SNaN value.

X X X +infinity was subtracted from +infinity.

X X X –infinity was subtracted from –infinity.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Overflow exception (OE) X X X A rounded result was too large to fit into the format of
the destination operand.

396

AMD64 Technology 26568—Rev. 3.09—July 2007

Underflow exception
(UE) X X X A rounded result was too small to fit into the format of

the destination operand.

Precision exception
(PE) X X X A result could not be represented exactly in the

destination format.

Exception Real
Virtual
8086 Protected Cause of Exception

397

26568—Rev. 3.09—July 2007 AMD64 Technology

Performs an unordered compare of the double-precision floating-point value in the low-order 64 bits of
an XMM register with the double-precision floating-point value in the low-order 64 bits of another
XMM register or a 64-bit memory location and sets the ZF, PF, and CF bits in the rFLAGS register to
reflect the result of the compare. The OF, AF, and SF bits in rFLAGS are set to zero. The result is
unordered if one or both of the operand values is a NaN.

If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not
updated.

The UCOMISD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CMPPD, CMPPS, CMPSD, CMPSS, COMISD, COMISS, UCOMISS

UCOMISD Unordered Compare Scalar
Double-Precision Floating-Point

Mnemonic Opcode Description

UCOMISD xmm1, xmm2/mem64 66 0F 2E /r
Compares scalar double-precision floating-point
values in an XMM register and an XMM register or 64-
bit memory location. Sets rFLAGS.

Result of Compare ZF PF CF

Unordered 1 1 1

Greater Than 0 0 0

Less Than 0 0 1

Equal 1 0 0

ucomisd.eps

compare

127 63 064

03163

127 63 064

xmm1

rFLAGS0

xmm2/mem64

398

AMD64 Technology 26568—Rev. 3.09—July 2007

rFLAGS Affected

MXCSR Flags Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

399

26568—Rev. 3.09—July 2007 AMD64 Technology

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

400

AMD64 Technology 26568—Rev. 3.09—July 2007

Performs an unordered compare of the single-precision floating-point value in the low-order 32 bits of
an XMM register with the single-precision floating-point value in the low-order 32 bits of another
XMM register or a 32-bit memory location and sets the ZF, PF, and CF bits in the rFLAGS register to
reflect the result. The OF, AF, and SF bits in rFLAGS are set to zero. The result is unordered if one or
both of the operand values is a NaN.

If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not
updated.

The UCOMISS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

CMPPD, CMPPS, CMPSD, CMPSS, COMISD, COMISS, UCOMISD

UCOMISS Unordered Compare Scalar
Single-Precision Floating-Point

Mnemonic Opcode Description

UCOMISS xmm1, xmm2/mem32 0F 2E /r
Compares scalar single-precision floating-point values in
an XMM register and an XMM register or 32-bit memory
location. Sets rFLAGS.

Result of Compare ZF PF CF

Unordered 1 1 1

Greater Than 0 0 0

Less Than 0 0 1

Equal 1 0 0

ucomiss.eps

compare

127 031 127 031
xmm1 xmm2/mem32

03163

rFLAGS0

401

26568—Rev. 3.09—July 2007 AMD64 Technology

rFLAGS Affected

MXCSR Flags Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Note: If the instruction causes an unmasked SIMD floating-point exception (#XF), the rFLAGS bits are not updated.

MM FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

M M

17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that may be set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was cleared to
0.
See SIMD Floating-Point Exceptions, below, for
details.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

SIMD Floating-Point
Exception, #XF X X X

There was an unmasked SIMD floating-point
exception while CR4.OSXMMEXCPT was set to 1.
See SIMD Floating-Point Exceptions, below, for
details.

402

AMD64 Technology 26568—Rev. 3.09—July 2007

SIMD Floating-Point Exceptions

Invalid-operation
exception (IE) X X X A source operand was an SNaN value.

Denormalized-operand
exception (DE) X X X A source operand was a denormal value.

Exception Real
Virtual
8086 Protected Cause of Exception

403

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the high-order double-precision floating-point values in the first and second source operands
and packs them into quadwords in the destination (first source). The value from the first source
operand is packed into the low-order quadword of the destination, and the value from the second
source operand is packed into the high-order quadword of the destination. The low-order quadwords of
the source operands are ignored. The first source/destination operand is an XMM register. The second
source operand is another XMM register or 128-bit memory location.

The UNPCKHPD instruction is an SSE2 instruction. The presence of this instruction set is indicated
by a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

UNPCKHPS, UNPCKLPD, UNPCKLPS

rFLAGS Affected

None

MXCSR Flags Affected

None

UNPCKHPD Unpack High Double-Precision Floating-Point

Mnemonic Opcode Description

UNPCKHPD xmm1, xmm2/mem128 66 0F 15 /r

Unpacks high-order double-precision floating-point
values in an XMM register and another XMM
register or 128-bit memory location and packs them
into the destination XMM register.

unpckhpd.eps

127 63 064127 63 064

63 064127

xmm1 xmm2/mem128

copy copy

404

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDXX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

405

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the high-order single-precision floating-point values in the first and second source operands
and packs them into interleaved doublewords in the destination (first source). The low-order
quadwords of the source operands are ignored. The first source/destination operand is an XMM
register. The second source operand is another XMM register or 128-bit memory location.

The UNPCKHPS instruction is an SSE instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

UNPCKHPD, UNPCKLPD, UNPCKLPS

rFLAGS Affected

None

MXCSR Flags Affected

None

UNPCKHPS Unpack High Single-Precision Floating-Point

Mnemonic Opcode Description

UNPCKHPS xmm1, xmm2/mem128 0F 15 /r

Unpacks high-order single-precision floating-point
values in an XMM register and another XMM register
or 128-bit memory location and packs them into the
destination XMM register.

unpckhps.eps127 63 0649596 3132

127 63 0649596127 63 0649596

xmm1 xmm2/mem128

copy copycopy copy

406

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

407

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the low-order double-precision floating-point values in the first and second source operands
and packs them into the destination (first source). The value from the first source operand is packed
into the low-order quadword of the destination, and the value from the second source operand is
packed into the high-order quadword of the destination. The high-order quadwords of the source
operands are ignored. The first source/destination operand is an XMM register. The second source
operand is another XMM register or 128-bit memory location.

The UNPCKLPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

UNPCKHPD, UNPCKHPS, UNPCKLPS

rFLAGS Affected

None

MXCSR Flags Affected

None

UNPCKLPD Unpack Low Double-Precision Floating-Point

Mnemonic Opcode Description

UNPCKLPD xmm1, xmm2/mem128 66 0F 14 /r

Unpacks low-order double-precision floating-point
values in an XMM register and another XMM
register or 128-bit memory location and packs
them into the destination XMM register.

unpcklpd.eps

127 63 064127 63 064

63 064127

xmm1 xmm2/mem128

copy copy

408

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SSE2 instructions are not supported, as
indicated by EDX bit 26 of CPUID function
0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

409

26568—Rev. 3.09—July 2007 AMD64 Technology

Unpacks the low-order single-precision floating-point values in the first and second source operands
and packs them into interleaved doublewords in the destination (first source). The high-order
quadwords of the source operands are ignored. The first source/destination operand is an XMM
register. The second source operand is another XMM register or 128-bit memory location.

The UNPCKLPS instruction is an SSE instruction. The presence of this instruction set is indicated by
a CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

UNPCKHPD, UNPCKHPS, UNPCKLPD

rFLAGS Affected

None

MXCSR Flags Affected

None

UNPCKLPS Unpack Low Single-Precision Floating-Point

Mnemonic Opcode Description

UNPCKLPS xmm1, xmm2/mem128 0F 14 /r

Unpacks low-order single-precision floating-point
values in an XMM register and another XMM register
or 128-bit memory location and packs them into the
destination XMM register.

unpcklps.eps127 63 0649596 3132

127 63 064 3132127 63 064 3132

xmm1 xmm2/mem128

copycopy copycopy

410

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

411

26568—Rev. 3.09—July 2007 AMD64 Technology

Performs a bitwise logical Exclusive OR of the two packed double-precision floating-point values in
the first source operand and the corresponding two packed double-precision floating-point values in
the second source operand and writes the result in the destination (first source). The first
source/destination operand is an XMM register. The second source operand is another XMM register
or 128-bit memory location.

The XORPD instruction is an SSE2 instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ANDNPD, ANDNPS, ANDPD, ANDPS, ORPD, ORPS, XORPS

rFLAGS Affected

None

MXCSR Flags Affected

None

XORPD Logical Bitwise Exclusive OR
Packed Double-Precision Floating-Point

Mnemonic Opcode Description

XORPD xmm1, xmm2/mem128 66 0F 57 /r

Performs bitwise logical XOR of two packed double-
precision floating-point values in an XMM register and in
another XMM register or 128-bit memory location and
writes the result in the destination XMM register.

xorpd.eps

127 63 064 127 63 064

xmm1 xmm2/mem128

XOR

XOR

412

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE2 instructions are not supported, as indicated
by EDX bit 26 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

413

26568—Rev. 3.09—July 2007 AMD64 Technology

Performs a bitwise Exclusive OR of the four packed single-precision floating-point values in the first
source operand and the corresponding four packed single-precision floating-point values in the second
source operand and writes the result in the destination (first source). The first source/destination
operand is an XMM register. The second source operand is another XMM register or 128-bit memory
location.

The XORPS instruction is an SSE instruction. The presence of this instruction set is indicated by a
CPUID feature bit. (See “CPUID” in Volume 3.)

Related Instructions

ANDNPD, ANDNPS, ANDPD, ANDPS, ORPD, ORPS, XORPD

rFLAGS Affected

None

MXCSR Flags Affected

None

XORPS Logical Bitwise Exclusive OR
Packed Single-Precision Floating-Point

Mnemonic Opcode Description

XORPS xmm1,
xmm2/mem128 0F 57 /r

Performs bitwise logical XOR of four packed single-precision
floating-point values in an XMM register and in another XMM
register or 128-bit memory location and writes the result in
the destination XMM register.

xorps.eps

xmm1 xmm2/mem128

XOR

XOR

XOR

XOR

127 63 0649596 3132127 63 0649596 3132

414

AMD64 Technology 26568—Rev. 3.09—July 2007

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X The SSE instructions are not supported, as indicated
by EDX bit 25 of CPUID function 0000_0001h.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded the data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM was cleared to 0.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X
An unaligned memory reference was performed while
alignment checking was enabled with
MXCSR.MM set to 1.

Index 415

26568—Rev. 3.09—July 2007 AMD64 Technology

Numerics

16-bit mode.. xiv
32-bit mode.. xiv
64-bit mode... xv

A

ADDPD .. 3
ADDPS... 6
addressing

RIP-relative.. xx
ADDSD .. 9
ADDSS... 12
ADDSUBPD... 15
ADDSUBPS.. 18
ANDNPD ... 21
ANDNPS .. 23
ANDPD .. 25
ANDPS... 27

B

biased exponent ... xv

C

CMPPD .. 29
CMPPS... 33
CMPSD .. 36
CMPSS... 39
COMISD .. 42
COMISS ... 45
commit ... xv
compatibility mode .. xv
CVTDQ2PD.. 48
CVTDQ2PS .. 50
CVTPD2DQ.. 52
CVTPD2PI.. 54
CVTPD2PS... 57
CVTPI2PD.. 60
CVTPI2PS .. 62
CVTPS2DQ .. 64
CVTPS2PD... 66
CVTPS2PI .. 68
CVTSD2SI.. 70
CVTSD2SS... 73
CVTSI2SD.. 76
CVTSI2SS .. 78
CVTSS2SD... 80
CVTSS2SI .. 82

CVTTPD2DQ.. 85
CVTTPD2PI.. 87
CVTTPS2DQ .. 90
CVTTPS2PI .. 92
CVTTSD2SI.. 94
CVTTSS2SI .. 97

D

direct referencing ... xv
displacements ... xvi
DIVPD.. 100
DIVPS .. 103
DIVSD.. 106
DIVSS .. 109
double quadword .. xvi
doubleword... xvi

E

eAX–eSP register.. xxi
effective address size ... xvi
effective operand size .. xvi
eFLAGS register .. xxii
eIP register .. xxii
element .. xvi
endian order.. xxiv
exceptions .. xvi
exponent.. xv
EXTRQ... 112

F

flush.. xvii
FXRSTOR .. 114
FXSAVE ... 116

H

HADDPD.. 118
HADDPS .. 121
HSUBPD .. 124
HSUBPS ... 127

I

IGN .. xvii
indirect.. xvii
INSERTQ.. 130
instructions

128-bit media ... 1
SSE ... 1
SSE-2 .. 1

Index

416 Index

AMD64 Technology 26568—Rev. 3.09—July 2007

L

LDDQU.. 132
LDMXCSR ... 134
legacy mode .. xvii
legacy x86... xvii
long mode ... xvii
LSB... xviii
lsb ... xviii

M

mask.. xviii
MASKMOVDQU.. 136
MAXPD ... 138
MAXPS .. 140
MAXSD ... 142
MAXSS .. 144
MBZ.. xviii
MINPD... 146
MINPS ... 148
MINSD... 150
MINSS ... 152
modes

16-bit.. xiv
32-bit.. xiv
64-bit... xv
compatibility .. xv
legacy .. xvii
long... xvii
protected... xix
real ... xix
virtual-8086 .. xxi

moffset... xviii
MOVAPD ... 154
MOVAPS .. 156
MOVD.. 159
MOVDDUP .. 162
MOVDQ2Q... 164
MOVDQA .. 166
MOVDQU .. 168
MOVHLPS ... 170
MOVHPD ... 172
MOVHPS.. 174
MOVLHPS ... 176
MOVLPD ... 178
MOVLPS .. 180
MOVMSKPD.. 182
MOVMSKPS .. 184
MOVNTDQ .. 186
MOVNTPD... 188
MOVNTPS ... 190
MOVNTSD... 192
MOVNTSS ... 194

MOVQ.. 196
MOVQ2DQ... 198
MOVSD.. 200
MOVSHDUP... 203
MOVSLDUP ... 205
MOVSS .. 207
MOVUPD ... 209
MOVUPS.. 211
MSB .. xviii
msb.. xviii
MSR ... xxii
MULPD .. 214
MULPS... 217
MULSD .. 220
MULSS... 223

O

octword .. xviii
offset.. xviii
ORPD ... 226
ORPS.. 228
overflow... xix

P

packed.. xix
PACKSSDW.. 230
PACKSSWB.. 232
PACKUSWB ... 234
PADDB... 236
PADDD... 238
PADDQ... 240
PADDSB... 242
PADDSW.. 244
PADDUSB .. 246
PADDUSW ... 248
PADDW.. 250
PAND ... 252
PANDN... 254
PAVGB ... 256
PAVGW .. 258
PCMPEQB.. 260
PCMPEQD.. 262
PCMPEQW... 264
PCMPGTB.. 266
PCMPGTD.. 268
PCMPGTW... 270
PEXTRW .. 272
PINSRW ... 274
PMADDWD.. 276
PMAXSW... 278
PMAXUB ... 280

Index 417

26568—Rev. 3.09—July 2007 AMD64 Technology

PMINSW .. 282
PMINUB .. 284
PMOVMSKB.. 286
PMULHUW.. 288
PMULHW .. 290
PMULLW ... 292
PMULUDQ... 294
POR ... 296
protected mode ... xix
PSADBW ... 298
PSHUFD... 300
PSHUFHW ... 303
PSHUFLW.. 306
PSLLD ... 309
PSLLDQ... 311
PSLLQ ... 313
PSLLW... 315
PSRAD... 317
PSRAW .. 319
PSRLD ... 321
PSRLDQ... 323
PSRLQ ... 325
PSRLW... 327
PSUBB ... 329
PSUBD... 331
PSUBQ... 333
PSUBSB ... 335
PSUBSW .. 337
PSUBUSB .. 339
PSUBUSW ... 341
PSUBW .. 343
PUNPCKHBW.. 345
PUNPCKHDQ .. 347
PUNPCKHQDQ.. 349
PUNPCKHWD.. 351
PUNPCKLBW .. 353
PUNPCKLDQ... 355
PUNPCKLQDQ .. 357
PUNPCKLWD .. 359
PXOR... 361

Q

quadword ... xix

R

r8–r15... xxii
rAX–rSP ... xxii
RAZ .. xix
RCPPS.. 363
RCPSS.. 365
real address mode. See real mode

real mode ... xix
registers

eAX–eSP .. xxi
eFLAGS... xxii
eIP... xxii
r8–r15.. xxii
rAX–rSP .. xxii
rFLAGS.. xxiii
rIP .. xxiii

relative ... xix
reserved.. xix
revision history ... xi
rFLAGS register ... xxiii
rIP register.. xxiii
RIP-relative addressing... xx
RSQRTPS ... 367
RSQRTSS ... 369

S

set... xx
SHUFPD... 371
SHUFPS ... 373
SQRTPD ... 376
SQRTPS.. 378
SQRTSD ... 380
SQRTSS.. 382
SSE... xx
SSE2... xx
SSE3... xx
sticky bits .. xx
STMXCSR.. 384
SUBPD ... 385
SUBPS.. 388
SUBSD ... 391
SUBSS.. 394

T

TSS... xx

U

UCOMISD .. 397
UCOMISS... 400
underflow .. xx
UNPCKHPD ... 403
UNPCKHPS.. 405
UNPCKLPD.. 407
UNPCKLPS .. 409

V

vector.. xx
virtual-8086 mode... xxi

418 Index

AMD64 Technology 26568—Rev. 3.09—July 2007

X

XORPD .. 411
XORPS... 413

	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Contact Information
	Organization
	Definitions
	Terms and Notation
	Registers
	Endian Order

	Related Documents

	1 128-Bit Media Instruction Reference
	ADDPD
	ADDPS
	ADDSD
	ADDSS
	ADDSUBPD
	ADDSUBPS
	ANDNPD
	ANDNPS
	ANDPD
	ANDPS
	CMPPD
	CMPPS
	CMPSD
	CMPSS
	COMISD
	COMISS
	CVTDQ2PD
	CVTDQ2PS
	CVTPD2DQ
	CVTPD2PI
	CVTPD2PS
	CVTPI2PD
	CVTPI2PS
	CVTPS2DQ
	CVTPS2PD
	CVTPS2PI
	CVTSD2SI
	CVTSD2SS
	CVTSI2SD
	CVTSI2SS
	CVTSS2SD
	CVTSS2SI
	CVTTPD2DQ
	CVTTPD2PI
	CVTTPS2DQ
	CVTTPS2PI
	CVTTSD2SI
	CVTTSS2SI
	DIVPD
	DIVPS
	DIVSD
	DIVSS
	EXTRQ
	FXRSTOR
	FXSAVE
	HADDPD
	HADDPS
	HSUBPD
	HSUBPS
	INSERTQ
	LDDQU
	LDMXCSR
	MASKMOVDQU
	MAXPD
	MAXPS
	MAXSD
	MAXSS
	MINPD
	MINPS
	MINSD
	MINSS
	MOVAPD
	MOVAPS
	MOVD
	MOVDDUP
	MOVDQ2Q
	MOVDQA
	MOVDQU
	MOVHLPS
	MOVHPD
	MOVHPS
	MOVLHPS
	MOVLPD
	MOVLPS
	MOVMSKPD
	MOVMSKPS
	MOVNTDQ
	MOVNTPD
	MOVNTPS
	MOVNTSD
	MOVNTSS
	MOVQ
	MOVQ2DQ
	MOVSD
	MOVSHDUP
	MOVSLDUP
	MOVSS
	MOVUPD
	MOVUPS
	MULPD
	MULPS
	MULSD
	MULSS
	ORPD
	ORPS
	PACKSSDW
	PACKSSWB
	PACKUSWB
	PADDB
	PADDD
	PADDQ
	PADDSB
	PADDSW
	PADDUSB
	PADDUSW
	PADDW
	PAND
	PANDN
	PAVGB
	PAVGW
	PCMPEQB
	PCMPEQD
	PCMPEQW
	PCMPGTB
	PCMPGTD
	PCMPGTW
	PEXTRW
	PINSRW
	PMADDWD
	PMAXSW
	PMAXUB
	PMINSW
	PMINUB
	PMOVMSKB
	PMULHUW
	PMULHW
	PMULLW
	PMULUDQ
	POR
	PSADBW
	PSHUFD
	PSHUFHW
	PSHUFLW
	PSLLD
	PSLLDQ
	PSLLQ
	PSLLW
	PSRAD
	PSRAW
	PSRLD
	PSRLDQ
	PSRLQ
	PSRLW
	PSUBB
	PSUBD
	PSUBQ
	PSUBSB
	PSUBSW
	PSUBUSB
	PSUBUSW
	PSUBW
	PUNPCKHBW
	PUNPCKHDQ
	PUNPCKHQDQ
	PUNPCKHWD
	PUNPCKLBW
	PUNPCKLDQ
	PUNPCKLQDQ
	PUNPCKLWD
	PXOR
	RCPPS
	RCPSS
	RSQRTPS
	RSQRTSS
	SHUFPD
	SHUFPS
	SQRTPD
	SQRTPS
	SQRTSD
	SQRTSS
	STMXCSR
	SUBPD
	SUBPS
	SUBSD
	SUBSS
	UCOMISD
	UCOMISS
	UNPCKHPD
	UNPCKHPS
	UNPCKLPD
	UNPCKLPS
	XORPD
	XORPS

	Index

