
Advanced Micro Devices

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 3:
General-Purpose and
System Instructions

Publication No. Revision Date
24594 3.16 September 2011

AMD64 Technology 24594—Rev. 3.16—September 2011

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, and 3DNow! are trademarks,
and AMD-K6 is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2002 – 2011 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

Contents i

24594—Rev. 3.16—September 2011 AMD64 Technology

Contents

Contents . i

Figures. ix

Tables . xi

Revision History . xv

Preface. xvii
About This Book. xvii
Audience . xvii
Organization . xvii
Conventions and Definitions . xviii
Related Documents . xxviii

1 Instruction Encoding .1
1.1 Instruction Encoding Overview. 1

1.1.1 Encoding Syntax. 1
1.1.2 Representation in Memory . 4

1.2 Instruction Prefixes . 5
1.2.1 Summary of Legacy Prefixes . 6
1.2.2 Operand-Size Override Prefix . 7
1.2.3 Address-Size Override Prefix . 9
1.2.4 Segment-Override Prefixes. 10
1.2.5 Lock Prefix . 11
1.2.6 Repeat Prefixes . 12
1.2.7 REX Prefix . 14
1.2.8 VEX and XOP Prefixes . 16

1.3 Opcode. 16
1.4 ModRM and SIB Bytes . 17

1.4.1 ModRM Byte Format . 17
1.4.2 SIB Byte Format . 18
1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes 20
1.4.4 Operand Addressing in 64-bit Mode . 23

1.5 Displacement Bytes . 24
1.6 Immediate Bytes . 24
1.7 RIP-Relative Addressing . 24

1.7.1 Encoding . 25
1.7.2 REX Prefix and RIP-Relative Addressing . 25
1.7.3 Address-Size Prefix and RIP-Relative Addressing . 25

1.8 Encoding Considerations Using REX . 26
1.8.1 Byte-Register Addressing . 26
1.8.2 Special Encodings for Registers . 26

1.9 Encoding Using the VEX and XOP Prefixes . 29
1.9.1 Three-Byte Escape Sequences . 29
1.9.2 Two-Byte Escape Sequence . 32

ii Contents

AMD64 Technology 24594—Rev. 3.16—September 2011

2 Instruction Overview. .35
2.1 Instruction Subsets. 35
2.2 Reference-Page Format . 36
2.3 Summary of Registers and Data Types . 38

2.3.1 General-Purpose Instructions . 38
2.3.2 System Instructions. 41
2.3.3 SSE Instructions . 43
2.3.4 64-Bit Media Instructions . 48
2.3.5 x87 Floating-Point Instructions . 50

2.4 Summary of Exceptions. 51
2.5 Notation . 52

2.5.1 Mnemonic Syntax. 52
2.5.2 Opcode Syntax . 55
2.5.3 Pseudocode Definitions . 56

3 General-Purpose Instruction Reference .67
AAA. 69
AAD. 70
AAM . 71
AAS . 72
ADC. 73
ADD. 75
AND. 77
ANDN . 79
BEXTR
(register form) . 81
BEXTR
(immediate form) . 83
BLCFILL . 85
BLCI . 87
BLCIC . 89
BLCMSK. 91
BLCS . 93
BLSFILL . 95
BLSI. 97
BLSIC . 99
BLSMSK . 101
BLSR . 103
BOUND . 105
BSF . 107
BSR . 108
BSWAP . 109
BT . 110
BTC . 112
BTR . 114
BTS . 116
CALL (Near) . 118
CALL (Far) . 120

Contents iii

24594—Rev. 3.16—September 2011 AMD64 Technology

CBW
CWDE
CDQE . 126
CWD
CDQ
CQO. 127
CLC . 128
CLD . 129
CLFLUSH . 130
CMC . 132
CMOVcc . 133
CMP. 136
CMPS
CMPSB
CMPSW
CMPSD
CMPSQ . 139
CMPXCHG . 141
CMPXCHG8B
CMPXCHG16B. 143
CPUID . 145
CRC32 . 147
DAA. 149
DAS . 150
DEC . 151
DIV . 153
ENTER . 155
IDIV. 157
IMUL . 159
IN . 161
INC . 162
INS
INSB
INSW
INSD . 164
INT. 166
INTO . 173
Jcc . 174
JCXZ
JECXZ
JRCXZ . 178
JMP (Near). 179
JMP (Far) . 181
LAHF. 186
LDS
LES
LFS

iv Contents

AMD64 Technology 24594—Rev. 3.16—September 2011

LGS
LSS . 187
LEA . 189
LEAVE. 191
LFENCE . 192
LLWPCB . 193
LODS
LODSB
LODSW
LODSD
LODSQ . 196
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ . 198
LWPINS. 200
LWPVAL . 202
LZCNT . 204
MFENCE . 206
MOV . 207
MOVD . 210
MOVMSKPD . 214
MOVMSKPS. 216
MOVNTI . 218
MOVS
MOVSB
MOVSW
MOVSD
MOVSQ. 220
MOVSX. 222
MOVSXD . 223
MOVZX. 224
MUL . 225
NEG . 227
NOP . 229
NOT . 230
OR . 231
OUT . 233
OUTS
OUTSB
OUTSW
OUTSD . 234
PAUSE . 236
POP . 237
POPA
POPAD. 239

Contents v

24594—Rev. 3.16—September 2011 AMD64 Technology

POPCNT . 240
POPF
POPFD
POPFQ. 242
PREFETCH
PREFETCHW . 245
PREFETCHlevel . 247
PUSH . 249
PUSHA
PUSHAD . 251
PUSHF
PUSHFD
PUSHFQ . 252
RCL . 254
RCR . 256
RET (Near) . 258
RET (Far). 259
ROL . 263
ROR . 265
SAHF . 267
SAL
SHL . 268
SAR . 271
SBB . 273
SCAS
SCASB
SCASW
SCASD
SCASQ . 275
SETcc . 277
SFENCE . 279
SHL . 280
SHLD. 281
SHR . 283
SHRD. 285
SLWPCB . 287
STC . 289
STD . 290
STOS
STOSB
STOSW
STOSD
STOSQ. 291
SUB . 293
T1MSKC . 295
TEST . 297
TZCNT . 299

vi Contents

AMD64 Technology 24594—Rev. 3.16—September 2011

TZMSK . 301
XADD . 303
XCHG . 305
XLAT . 307
XLATB . 307
XOR. 308

4 System Instruction Reference .311
ARPL . 312
CLGI . 314
CLI. 315
CLTS . 317
HLT . 318
INT 3 . 319
INVD . 322
INVLPG. 323
INVLPGA . 324
IRET
IRETD
IRETQ . 325
LAR . 331
LGDT. 333
LIDT . 335
LLDT . 337
LMSW . 339
LSL . 340
LTR . 342
MONITOR. 344
MOV (CRn) . 346
MOV(DRn) . 348
MWAIT . 350
RDMSR . 352
RDPMC . 353
RDTSC . 355
RDTSCP . 356
RSM. 358
SGDT. 360
SIDT . 361
SKINIT . 362
SLDT . 364
SMSW . 366
STI . 367
STGI . 369
STR . 370
SWAPGS . 371
SYSCALL . 373
SYSENTER . 377
SYSEXIT. 379

Contents vii

24594—Rev. 3.16—September 2011 AMD64 Technology

SYSRET . 381
UD2 . 385
VERR. 386
VERW . 388
VMLOAD . 389
VMMCALL. 391
VMRUN . 392
VMSAVE. 397
WBINVD. 399
WRMSR . 400

Appendix A Opcode and Operand Encodings .401
A.1 Opcode Maps . 404

Legacy Opcode Maps . 404
3DNow!™ Opcodes . 421
x87 Encodings . 424
rFLAGS Condition Codes for x87 Opcodes . 433
Extended Instruction Opcode Maps. 433

A.2 Operand Encodings . 444
ModRM Operand References . 444
SIB Operand References . 449

Appendix B General-Purpose Instructions in 64-Bit Mode .453
B.1 General Rules for 64-Bit Mode . 453
B.2 Operation and Operand Size in 64-Bit Mode . 454
B.3 Invalid and Reassigned Instructions in 64-Bit Mode . 479
B.4 Instructions with 64-Bit Default Operand Size . 480
B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode . 481
B.6 NOP in 64-Bit Mode . 482
B.7 Segment Override Prefixes in 64-Bit Mode . 482

Appendix C Differences Between Long Mode and Legacy Mode.483

Appendix D Instruction Subsets and CPUID Feature Sets .485
D.1 Instruction Subsets. 485
D.2 CPUID Feature Sets. 487
D.3 Instruction List. 489

Appendix E Instruction Effects on RFLAGS .515

Index . 519

viii Contents

AMD64 Technology 24594—Rev. 3.16—September 2011

Figures ix

24594—Rev. 3.16—September 2011 AMD64 Technology

Figures
Figure 1-1. Instruction Encoding Syntax. 2

Figure 1-2. An Instruction as Stored in Memory. 5

Figure 1-3. REX Prefix Format . 15

Figure 1-4. ModRM-Byte Format . 17

Figure 1-5. SIB Byte Format . 19

Figure 1-6. Encoding Examples Using REX R, X, and B Bits . 28

Figure 1-7. VEX/XOP Three-byte Escape Sequence Format . 29

Figure 1-8. VEX Two-byte Escape Sequence Format. 33

Figure 2-1. Format of Instruction-Detail Pages . 37

Figure 2-2. General Registers in Legacy and Compatibility Modes . 38

Figure 2-3. General Registers in 64-Bit Mode . 39

Figure 2-4. Segment Registers. 40

Figure 2-5. General-Purpose Data Types . 41

Figure 2-6. System Registers . 42

Figure 2-7. System Data Structures . 43

Figure 2-8. SSE Registers . 44

Figure 2-9. 128-Bit SSE Data Types . 45

Figure 2-10. SSE 256-bit Data Types . 46

Figure 2-11. SSE 256-Bit Data Types (Continued). 47

Figure 2-12. 64-Bit Media Registers . 48

Figure 2-13. 64-Bit Media Data Types . 49

Figure 2-14. x87 Registers. 50

Figure 2-15. x87 Data Types . 51

Figure 2-16. Syntax for Typical Two-Operand Instruction. 53

Figure 3-1. MOVD Instruction Operation . 211

Figure A-1. ModRM-Byte Fields . 413

Figure A-2. ModRM-Byte Format . 444

Figure A-3. SIB Byte Format . 450

Figure D-1. Instruction Subsets vs. CPUID Feature Sets. 486

x Figures

AMD64 Technology 24594—Rev. 3.16—September 2011

Tables xi

24594—Rev. 3.16—September 2011 AMD64 Technology

Tables
Table 1-1. Legacy Instruction Prefixes . 7
Table 1-2. Operand-Size Overrides . 8
Table 1-3. Address-Size Overrides. 9
Table 1-4. Pointer and Count Registers and the Address-Size Prefix . 10
Table 1-5. Segment-Override Prefixes . 11
Table 1-6. REP Prefix Opcodes . 12
Table 1-7. REPE and REPZ Prefix Opcodes . 13
Table 1-8. REPNE and REPNZ Prefix Opcodes . 14
Table 1-9. Instructions Not Requiring REX Prefix in 64-Bit Mode . 15
Table 1-10. ModRM.reg and .r/m Field Encodings . 18
Table 1-11. SIB.scale Field Encodings . 19
Table 1-12. SIB.index and .base Field Encodings . 20
Table 1-13. Operand Addressing Using ModRM and SIB Bytes . 21
Table 1-14. REX Prefix-Byte Fields . 23
Table 1-15. Encoding for RIP-Relative Addressing. 25
Table 1-16. Special REX Encodings for Registers . 27
Table 1-17. Three-byte Escape Sequence Field Definitions . 30
Table 1-18. VEX.map_select Encoding . 30
Table 1-19. XOP.map_select Encoding . 31
Table 1-20. VEX/XOP.vvvv Encoding . 32
Table 1-21. VEX/XOP.pp Encoding . 32
Table 1-22. VEX Two-byte Escape Sequence Field Definitions . 33
Table 1-23. Fixed Field Values for VEX 2-Byte Format. 33
Table 2-1. Interrupt-Vector Source and Cause. 52
Table 2-2. +rb, +rw, +rd, and +rq Register Value . 56
Table 3-1. Instruction Support Indicated by CPUID Feature Bits . 67
Table 3-2. Processor Vendor Return Values . 146
Table 3-3. Locality References for the Prefetch Instructions. 247
Table A-1. Primary Opcode Map (One-byte Opcodes), Low Nibble 0–7h . 405
Table A-2. Primary Opcode Map (One-byte Opcodes), Low Nibble 8–Fh . 406
Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0–7h . 408
Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh . 410
Table A-5. rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc . 412
Table A-6. ModRM.reg Extensions for the Primary Opcode Map1 . 413

xii Tables

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-7. ModRM.reg Extensions for the Secondary Opcode Map . 415
Table A-8. Opcode 01h ModRM Extensions . 416
Table A-9. 0F_38h Opcode Map, Low Nibble = [0h:7h] . 418
Table A-10. 0F_38h Opcode Map, Low Nibble = [8h:Fh] . 419
Table A-11. 0F_3Ah Opcode Map, Low Nibble = [0h:7h] . 420
Table A-12. 0F_3Ah Opcode Map, Low Nibble = [8h:Fh] . 420
Table A-13. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0–7h . 422
Table A-14. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8–Fh. 423
Table A-15. x87 Opcodes and ModRM Extensions . 425
Table A-16. rFLAGS Condition Codes for FCMOVcc . 433
Table A-17. VEX Opcode Map 1, Low Nibble = [0h:7h] . 434
Table A-18. VEX Opcode Map 1, Low Nibble = [0h:7h] Continued. 435
Table A-19. VEX Opcode Map 1, Low Nibble = [8h:Fh] . 436
Table A-20. VEX Opcode Map 2, Low Nibble = [0h:7h] . 437
Table A-21. VEX Opcode Map 2, Low Nibble = [8h:Fh] . 438
Table A-22. VEX Opcode Map 3, Low Nibble = [0h:7h] . 439
Table A-23. VEX Opcode Map 3, Low Nibble = [8h:Fh] . 440
Table A-24. VEX Opcode Groups . 441
Table A-25. XOP Opcode Map 8h, Low Nibble = [0h:7h]. 441
Table A-26. XOP Opcode Map 8h, Low Nibble = [8h:Fh] . 442
Table A-27. XOP Opcode Map 9h, Low Nibble = [0h:7h]. 442
Table A-28. XOP Opcode Map 9h, Low Nibble = [8h:Fh] . 443
Table A-29. XOP Opcode Map Ah, Low Nibble = [0h:7h] . 443
Table A-30. XOP Opcode Map Ah, Low Nibble = [8h:Fh] . 443
Table A-31. XOP Opcode Groups . 443
Table A-32. ModRM Register References, 16-Bit Addressing . 445
Table A-33. ModRM Memory References, 16-Bit Addressing . 445
Table A-34. ModRM Register References, 32-Bit and 64-Bit Addressing . 447
Table A-35. ModRM Memory References, 32-Bit and 64-Bit Addressing . 448
Table A-36. SIB base Field References . 450
Table A-37. SIB Memory References. 451
Table B-1. Operations and Operands in 64-Bit Mode . 454
Table B-2. Invalid Instructions in 64-Bit Mode . 479
Table B-3. Reassigned Instructions in 64-Bit Mode. 480
Table B-4. Invalid Instructions in Long Mode . 480
Table B-5. Instructions Defaulting to 64-Bit Operand Size . 481

Tables xiii

24594—Rev. 3.16—September 2011 AMD64 Technology

Table C-1. Differences Between Long Mode and Legacy Mode . 483
Table D-1. Instruction Subsets and CPUID Feature Sets . 489
Table E-1. Instruction Effects on RFLAGS . 515

xiv Tables

AMD64 Technology 24594—Rev. 3.16—September 2011

Revision History xv

24594—Rev. 3.16—September 2011 AMD64 Technology

Revision History

Date Revision Description

September
2011 3.16

Reworked “Instruction Byte Order” section of Chapter 1. See
“Instruction Encoding Overview” on page 1.
Added clarification: Execution of VMRUN is disallowed while in
System Management Mode.
Made wording for F16C, BMI, and TBM feature flag indication
consistent with other instructions.
Moved BMI and TBM instructions to this volume from Volume 4.
Added instruction reference page for CRC32 Instruction.
Removed one cause of #GP fault from exception table for LAR and
LSL instructions.
Added three-byte, VEX, and XOP opcode maps to Appendix A.
Revised RDPMC instruction description in Chapter 4, “System
Instruction Reference” on page 311.
Corrected spelling of CLFLUSH instruction mnemonic and corrected
CPUID specification of CLFLUSH size bit field offset in EBX on
CLFLUSH instruction page.
Corrected incorrect footnote to table A-15, “ModRM Memory
References, 32-Bit and 64-Bit Addressing” on page 448.

November
2009 3.15

Clarified MFENCE serializing behavior.
Added multibyte variant to “NOP” on page 229.
Corrected descriptive text to “CMPXCHG8B CMPXCHG16B” on
page 143.

September
2007 3.14 Added minor clarifications and corrected typographical and

formatting errors.

July 2007 3.13

Added the following instructions: LZCNT, POPCNT, MONITOR, and
MWAIT.
Reformatted information on instruction support indicated by CPUID
feature bits into a table.
Added minor clarifications and corrected typographical and
formatting errors.

September
2006 3.12 Added minor clarifications and corrected typographical and

formatting errors.

December
2005 3.11 Added SVM instructions; added PAUSE instructions; made factual

changes.

xvi Revision History

AMD64 Technology 24594—Rev. 3.16—September 2011

January
2005 3.10

Clarified CPUID information in exception tables on instruction pages.
Added information under “CPUID” on page 145. Made numerous
small corrections.

September
2003 3.09

Corrected table of valid descriptor types for LAR and LSL
instructions and made several minor formatting, stylistic and factual
corrections. Clarified several technical definitions.

April 2003 3.08

Corrected description of the operation of flags for RCL, RCR, ROL,
and ROR instructions. Clarified description of the MOVSXD and
IMUL instructions. Corrected operand specification for the STOS
instruction. Corrected opcode of SETcc, Jcc, instructions. Added
thermal control and thermal monitoring bits to CPUID instruction.
Corrected exception tables for POPF, SFENCE, SUB, XLAT, IRET,
LSL, MOV(CRn), SGDT/SIDT, SMSW, and STI instructions.
Corrected many small typos and incorporated branding terminology.

Date Revision Description

Preface xvii

24594—Rev. 3.16—September 2011 AMD64 Technology

Preface

About This Book
This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual.
This table lists each volume and its order number.

Audience
This volume (Volume 3) is intended for all programmers writing application or system software for a
processor that implements the AMD64 architecture. Descriptions of general-purpose instructions
assume an understanding of the application-level programming topics described in Volume 1.
Descriptions of system instructions assume an understanding of the system-level programming topics
described in Volume 2.

Organization
Volumes 3, 4, and 5 describe the AMD64 architecture’s instruction set in detail. Together, they cover
each instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

• General-purpose instructions
• System instructions
• Streaming SIMD Extensions–SSE (includes 128-bit and 256-bit media instructions)
• 64-bit media instructions (MMX™)
• x87 floating-point instructions

Several instructions belong to—and are described identically in—multiple instruction subsets.

This volume describes the general-purpose and system instructions. The index at the end cross-
references topics within this volume. For other topics relating to the AMD64 architecture, and for

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

xviii Preface

AMD64 Technology 24594—Rev. 3.16—September 2011

information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Conventions and Definitions

Notational Conventions

#GP(0)
Notation indicating a general-protection exception (#GP) with error code of 0.

1011b
A binary value—in this example, a 4-bit value.

F0EA_0B02h
A hexadecimal value. Underscore characters may be inserted to improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

[7:4]
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]
Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “_RRR” notation is followed by
“_xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CR0–CR4
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0[PE]
Notation for referring to a field within a register—in this case, the PE field of the CR0 register.

CR0[PE] = 1
Notation indicating that the PE bit of the CR0 register has a value of 1.

DS:rSI
The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

Preface xix

24594—Rev. 3.16—September 2011 AMD64 Technology

EFER[LME] = 0
Notation indicating that the LME bit of the EFER register has a value of 0.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents” on page xxviii for descriptions of the legacy x86 architecture.

128-bit media instructions
Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instructions
Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions
Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX™ and 3DNow!™ instruction sets, with some additional instructions from the SSE1 and
SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute
Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

biased exponent
The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

xx Preface

AMD64 Technology 24594—Rev. 3.16—September 2011

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct
Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement
A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size
The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit

Preface xxi

24594—Rev. 3.16—September 2011 AMD64 Technology

media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

IDT
Interrupt descriptor table.

IGN
Ignore. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on page xxviii for descriptions of the
legacy x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

xxii Preface

AMD64 Technology 24594—Rev. 3.16—September 2011

long mode
An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory
Unless otherwise specified, main memory.

ModRM
A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
A combination of 128-bit media instructions and 64-bit media instructions.

octword
Same as double quadword.

Preface xxiii

24594—Rev. 3.16—September 2011 AMD64 Technology

offset
Same as displacement.

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. See reserved.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.
To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

xxiv Preface

AMD64 Technology 24594—Rev. 3.16—September 2011

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.
Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX
An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

SBZ
Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD
Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3
Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CR8).

Preface xxv

24594—Rev. 3.16—September 2011 AMD64 Technology

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SIMD (single-instruction multiple-data) operands.
(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

xxvi Preface

AMD64 Technology 24594—Rev. 3.16—September 2011

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

Preface xxvii

24594—Rev. 3.16—September 2011 AMD64 Technology

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

xxviii Preface

AMD64 Technology 24594—Rev. 3.16—September 2011

SS
Stack segment register.

TPR
Task priority register, a new register introduced in the AMD64 architecture to speed interrupt
management.

TR
Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.
• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood

Cliffs, NJ, 1991.
• AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
• AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.
• AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.
• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New

York, 1995.
• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,

1992.
• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,

Macmillan Publishing Co., New York, 1994.
• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,

Prentice-Hall, Englewood Cliffs, NJ, 1995.
• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.
• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest

McGraw-Hill, 1993.
• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.
• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and

Technologies, Inc., San Jose, 1992.
• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Preface xxix

24594—Rev. 3.16—September 2011 AMD64 Technology

• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.
• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,

TX, 1996.
• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.
• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,

NY, 1991.
• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New

York, 1991.
• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.
• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,

San Mateo, CA, 1996.
• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.
• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo

Park, CA, 1997.
• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,

1993.
• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,

1993.
• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex

Junction, VT, 1995.
• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,

VT, 1995.
• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,

1994.
• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point

Arithmetic, ANSI/IEEE Std 754-1985.
• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-

Point Arithmetic, ANSI/IEEE Std 854-1987.
• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,

Prentice-Hall, Englewood Cliffs, NJ, 1997.
• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.
• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel

Pentium, Oxford University Press, New York, 1999.
• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &

Sons, New York, 1987.
• NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.

xxx Preface

AMD64 Technology 24594—Rev. 3.16—September 2011

• NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.
• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium III,

www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.
• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,

Redmond, WA, 1993.
• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.
• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,

New York, 1993.
• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite

class, 1992.
• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.
• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson

Corporation, 1995.
• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
• Web sites and newsgroups:

- www.amd.com
- news.comp.arch
- news.comp.lang.asm.x86
- news.intel.microprocessors
- news.microsoft

Instruction Encoding 1

24594—Rev. 3.16—September 2011 AMD64 Technology

1 Instruction Encoding

AMD64 technology instructions are encoded as byte strings of variable length. The order and meaning
of each byte of an instruction’s encoding is specifed by the architecture. Fields within the encoding
specify the instruction’s basic operation, the location of the one or more source operands, and the
destination of the result of the operation. Data to be used in the execution of the instruction or the
computation of addresses for memory-based operands may also be included. This section describes the
general format and parameters used by all instructions.

For information on the specific encoding(s) for each instruction, see:

• Chapter 3, “General-Purpose Instruction Reference.”
• Chapter 4, “System Instruction Reference.”
• “SSE Instruction Reference” in Volume 4.
• “64-Bit Media Instruction Reference” in Volume 5.
• “x87 Floating-Point Instruction Reference” in Volume 5.

For information on determining the instruction form and operands specified by a given binary
encoding, see Appendix A.

1.1 Instruction Encoding Overview
An instruction is encoded as a string between one and 15 bytes in length. The entire sequence of bytes
that represents an instruction, including the basic operation, the location of source and destination
operands, any operation modifiers, and any immediate and/or displacement values, is called the
instruction encoding.The following sections discuss instruction encoding syntax and representation in
memory.

1.1.1 Encoding Syntax

Figure 1-1 provides a schematic representation of the encoding syntax of an instruction.

2 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

Figure 1-1. Instruction Encoding Syntax

Each square in this diagram represents an instruction byte of a particular type and function. To
understand the diagram, follow the connecting paths in the direction indicated by the arrows from
“Start” to “End.” The squares passed through as the graph is traversed indicate the order and number

REX
prefix¹

Start legacy
prefix

EndPrimary
opcode

map

0Fh
escape

0Fh
escape

38h
escape

3Ah
escape

ModRM SIB
Second.
opcode

map

VEX
opcode
map 1

1,2,4,8
byte
Disp

1,2,4,8
byte

immed

3DNow!
opcode

map

VEX
prefix

R.vvvv
.L.pp

C5 2-byte sequence

C4 3-byte sequence

VEX
prefix

RXB.
map_sel

W.vvvv
.L.pp

map=01h
map=02h

map=03h

0F_38h
opcode

map

VEX
opcode
map 2

0F_3Ah
opcode

map

VEX
opcode
map 3

XOP
opcode
map 8

XOP
opcode
map 9

XOP
opcode
map A

XOP
prefix

RXB.
map_sel

W.vvvv
.L.pp

map=09h

map=0Ah

map=08h

≤ 4 additional

3DNow!

VEX or XOP

NOTES:
1. REX prefix is not allowed in extended

instruction encodings that employ the
VEX or XOP prefixes

2. map = VEX/XOP.map_select field
3. The total number of bytes in an

instruction encoding must be less than
or equal to 15

4. Instructions that encode an 8-byte
immediate field do not use a displace-
ment field and vice versa.

v3_instr_encode_syntax.eps

note 4

Instruction Encoding 3

24594—Rev. 3.16—September 2011 AMD64 Technology

of bytes used to encode the instruction. Note that the path shown above the legacy prefix byte loops
back indicating that up to four additional prefix bytes may be used in the encoding of a single
instruction. Branches indicate points in the syntax where alternate semantics are employed based on
the instruction being encoded. The “VEX or XOP” gate across the path leading down to the VEX
prefix and XOP prefix blocks means that only extended instructions employing the VEX or XOP
prefixes use this particular branch of the syntax diagram. This diagram will be further explained in the
sections that follow.

1.1.1.1 Legacy Prefixes

As shown in the figure, an instruction optionally begins with up to five legacy prefixes. These prefixes
are described in “Summary of Legacy Prefixes” on page 6. The legacy prefixes modify an
instruction’s default address size, operand size, or segment, or they invoke a special function such as
modification of the opcode, atomic bus-locking, or repetition.

In the encoding of most SSE instructions, a legacy operand-size or repeat prefix is repurposed to
modify the opcode. For the extended encodings utilizing the XOP or VEX prefixes, these prefixes are
not allowed.

1.1.1.2 REX Prefix

Following the optional legacy prefix or prefixes, the REX prefix can be used in 64-bit mode to access
the AMD64 register number and size extensions. Refer to the diagram in “Application-Programming
Register Set” in Volume 1 for an illustration of these facilities. If a REX prefix is used, it must
immediately precede the opcode byte or the first byte of a legacy escape sequence. The REX prefix is
not allowed in extended instruction encodings using the VEX or XOP encoding escape prefixes.
Violating this restriction results in an #UD exception.

1.1.1.3 Opcode

The opcode is a single byte that specifies the basic operation of an instruction. Every instruction
requires an opcode. The correspondence between the binary value of an opcode and the operation it
represents is presented in a table called an opcode map. Because it is indexed by an 8-bit value, an
opcode map has 256 entries. Since there are more than 256 instructions defined by the architecture,
multiple different opcode maps must be defined and the selection of these alternate opcode maps must
be encoded in the instruction. Escape sequences provide this access to alternate opcode maps.

If there are no opcode escapes, the primary (“one-byte”) opcode map is used. In the figure this is the
path pointing from the REX Prefix block to the Primary opcode map block.

Section , “Primary Opcode Map” of Appendix A provides details concerning this opcode map.

1.1.1.4 Escape Sequences

Escape sequences allow access to alternate opcode maps that are distinct from the primary opcode
map. Escape sequences may be one, two, or three bytes in length and begin with a unique byte value
designated for this purpose in the primary opcode map. Escape sequences are of two distinct types:

4 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

legacy escape sequences and extended escape sequences. The legacy escape sequences will be covered
here. For more details on the extended escape sequences, see “VEX and XOP Prefixes” on page 16.

Legacy Escape Sequences

The legacy syntax allows one 1-byte escape sequence (0Fh), and three 2-byte escape sequences
(0F_0Fh, 0F_38h, and 0F_3Ah). The 1-byte legacy escape sequence 0Fh selects the secondary (“two-
byte”) opcode map. In legacy terminology, the sequence {0Fh, opcode} is called a two-byte opcode.
See Section , “Secondary Opcode Map” of Appendix A for details concerning this opcode map.

The 2-byte escape sequence 0F_0Fh selects the 3DNow! opcode map which is indexed using an
immediate byte rather than an opcode byte. In this case, the byte following the escape sequence is the
ModRM byte instead of the opcode byte. In Figure 1-1 this is indicated by the path labeled “3DNow!”
leaving the second 0Fh escape block. Details concerning the 3DNow! opcode map are presented in
Section A.1.2, “3DNow!™ Opcodes” of Appendix A.

The 2-byte escape sequences 0F_38h and 0F_3Ah respectively select the 0F_38h opcode map and the
0F_3Ah opcode map. These are used primarily to encode SSE instructions and are described in
Section , “0F_38h and 0F_3Ah Opcode Maps” of Appendix A.

1.1.1.5 ModRM and SIB Bytes

The opcode can be followed by a mode-register-memory (ModRM) byte, which further describes the
operation and/or operands. The ModRM byte may also be followed by a scale-index-base (SIB) byte,
which is used to specify indexed register-indirect forms of memory addressing. The ModRM and SIB
bytes are described in “ModRM and SIB Bytes” on page 17. Their legacy functions can be augmented
by the REX prefix (see “REX Prefix” on page 14) or the VEX and XOP escape sequences (See “VEX
and XOP Prefixes” on page 16).

1.1.1.6 Displacement and Immediate Fields

The instruction encoding may end with a 1-, 2-, or 4-byte displacement field and/or a 1-, 2-, or 4-byte
immediate field depending on the instruction and/or the addressing mode. Specific instructions also
allow either an 8-byte immediate field or an 8-byte displacement field.

1.1.2 Representation in Memory

Instructions are stored in memory in little-endian order. The first byte of an instruction is stored at the
lowest memory address, as shown in Figure 1-2 below. Since instructions are strings of bytes, they
may start at any memory address. The total instruction length must be less than or equal to 15. If this
limit is exceeded, a general-protection exception results.

Instruction Encoding 5

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 1-2. An Instruction as Stored in Memory

1.2 Instruction Prefixes
Instruction prefixes are of two types: instruction modifier prefixes and encoding escape prefixes.
Instruction modifier prefixes can change the operation of the instruction (including causing its
execution to repeat), change its operand types, specify an alternate operand size, augment register
specification, or even change the interpretation of the opcode byte.

The instruction modifier prefixes comprise the legacy prefixes and the REX prefix. The legacy
prefixes are discussed in the next section. The REX prefix is discussed in “REX Prefix” on page 14.

Encoding escape prefixes, on the other hand, signal that the two or three bytes that follow obey a
different encoding syntax. As a group, the encoding escape prefix and its subsequent bytes constitute a
multi-byte escape sequence. These multi-byte escape sequences perform functions similar to that of

v3_instruct_mem.eps

‡ optional, with most instructions

≤ 15 Bytes

7 0

Immediate

Immediate

Immediate

Immediate
Displacement
Displacement

Displacement
Displacement

SIB†

ModRM*
Opcode
Escape*
Escape*

REX¹
Legacy Prefix

Legacy Prefix

Legacy Prefix

Legacy Prefix
7 0

Immediate

Immediate

Immediate

Immediate
Displacement
Displacement

Displacement
Displacement

SIB†

ModRM*
Opcode

W.vvvv.L.pp
RXB.map_select

VEX/XOP
Legacy Prefix³
Legacy Prefix³
Legacy Prefix³

≤ 4≤ 5

†1,2,4, or 8†

1,2,4, or 8

Highest
Address

Lowest
Address

Legacy encoding including
optional REX Prefix

Extended encoding
using VEX/XOP²

not present for VEX C5

* optional, based on instruction
† optional, based addressing mode

Legacy Prefix³
‡

 see note 4

Notes:
¹ Available only in 64-Bit Mode
² Available only in Long or Protected Mode
³ F0, F2, F3, and 66 prefixes not allowed
 Instructions that specify an 8-byte immediate field do
not include a displacement field and vice versa.
4

6 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

the instruction modifier prefixes, but they also provide a means to directly specify alternate opcode
maps.

The currently defined encoding escape prefixes are the VEX and XOP prefixes. They are discussed
further in the section entitled “VEX and XOP Prefixes” on page 16.

1.2.1 Summary of Legacy Prefixes

Table 1-1 on page 7 shows the legacy prefixes. The legacy prefixes are organized into five groups, as
shown in the left-most column of Table 1-1. An instruction encoding may include a maximum of one
prefix from each of the five groups. The legacy prefixes can appear in any order within the position
shown in Figure 1-1 for legacy prefixes. The result of using multiple prefixes from a single group is
undefined.

Some of the restrictions on legacy prefixes are:

• Operand-Size Override—This prefix only affects the operand size for general-purpose instructions
or for other instructions whose source or destination is a general-pupose register. When used in the
encoding of SIMD and some other instructions, this prefix is repurposed to modify the opcode.

• Address-Size Override—This prefix only affects the address size of memory operands.
• Segment Override—In 64-bit mode, the CS, DS, ES, and SS segment override prefixes are

ignored.
• LOCK Prefix—This prefix is allowed only with certain instructions that modify memory.
• Repeat Prefixes—These prefixes affect only certain string instructions. When used in the encoding

of SIMD and some other instructions, these prefixes are repurposed to modify the opcode.

Instruction Encoding 7

24594—Rev. 3.16—September 2011 AMD64 Technology

1.2.2 Operand-Size Override Prefix

The default operand size for an instruction is determined by a combination of its opcode, the D
(default) bit in the current code-segment descriptor, and the current operating mode, as shown in
Table 1-2. The operand-size override prefix (66h) selects the non-default operand size. The prefix can

Table 1-1. Legacy Instruction Prefixes

Prefix Group1 Mnemonic Prefix
Byte (Hex) Description

Operand-Size
Override none 662 Changes the default operand size of a memory or

register operand, as shown in Table 1-2 on page 8.

Address-Size Override none 673 Changes the default address size of a memory operand,
as shown in Table 1-3 on page 9.

Segment Override

CS 2E4 Forces use of the current CS segment for memory
operands.

DS 3E4 Forces use of the current DS segment for memory
operands.

ES 264 Forces use of the current ES segment for memory
operands.

FS 64 Forces use of the current FS segment for memory
operands.

GS 65 Forces use of the current GS segment for memory
operands.

SS 364 Forces use of the current SS segment for memory
operands.

Lock LOCK F05 Causes certain kinds of memory read-modify-write
instructions to occur atomically.

Repeat

REP

F36

Repeats a string operation (INS, MOVS, OUTS, LODS,
and STOS) until the rCX register equals 0.

REPE or
REPZ

Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is cleared to 0.

REPNE or
REPNZ F26

Repeats a compare-string or scan-string operation
(CMPSx and SCASx) until the rCX register equals 0 or
the zero flag (ZF) is set to 1.

Notes:
1. A single instruction should include a maximum of one prefix from each of the five groups.
2. When used in the encoding of SIMD instructions, this prefix acts in a special way to modify the opcode. The prefix

is ignored by 64-bit media floating-point (3DNow!™) instructions. See “Instructions that Cannot Use the Operand-
Size Prefix” on page 8.

3. This prefix also changes the size of the RCX register when used as an implied count register.
4. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.
5. The LOCK prefix should not be used for instructions other than those listed in “Lock Prefix” on page 11.
6. This prefix should be used only with compare-string and scan-string instructions. When used in the encoding of

SIMD instructions, the prefix acts in a special way to modify the opcode.

8 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

be used with any general-purpose instruction that accesses non-fixed-size operands in memory or
general-purpose registers (GPRs), and it can also be used with the x87 FLDENV, FNSTENV,
FNSAVE, and FRSTOR instructions.

In 64-bit mode, the prefix allows mixing of 16-bit, 32-bit, and 64-bit data on an instruction-by-
instruction basis. In compatibility and legacy modes, the prefix allows mixing of 16-bit and 32-bit
operands on an instruction-by-instruction basis.

In 64-bit mode, most instructions default to a 32-bit operand size. For these instructions, a REX prefix
(page 14) can specify a 64-bit operand size, and a 66h prefix specifies a 16-bit operand size. The REX
prefix takes precedence over the 66h prefix. However, if an instruction defaults to a 64-bit operand
size, it does not need a REX prefix and it can only be overridden to a 16-bit operand size. It cannot be
overridden to a 32-bit operand size, because there is no 32-bit operand-size override prefix in 64-bit
mode. Two groups of instructions have a default 64-bit operand size in 64-bit mode:

• Near branches. For details, see “Near Branches in 64-Bit Mode” in Volume 1.
• All instructions, except far branches, that implicitly reference the RSP. For details, see “Stack

Operation” in Volume 1.

Instructions that Cannot Use the Operand-Size Prefix. The operand-size prefix should be used
only with general-purpose instructions and the x87 FLDENV, FNSTENV, FNSAVE, and FRSTOR

Table 1-2. Operand-Size Overrides

Operating Mode
Default

Operand
Size (Bits)

Effective
Operand

Size
(Bits)

Instruction Prefix1

66h REX.W3

Long
Mode

64-Bit
Mode 322

64 don’t care yes
32 no no
16 yes no

Compatibility
Mode

32
32 no

Not Appli-
cable

16 yes

16
32 yes
16 no

Legacy Mode
(Protected, Virtual-8086,
or Real Mode)

32
32 no
16 yes

16
32 yes
16 no

Notes:
1. A “no’ indicates that the default operand size is used.
2. This is the typical default, although some instructions default to other operand

sizes. See Appendix B, “General-Purpose Instructions in 64-Bit Mode,” for details.
3. See “REX Prefix” on page 14.

Instruction Encoding 9

24594—Rev. 3.16—September 2011 AMD64 Technology

instructions, in which the prefix selects between 16-bit and 32-bit operand size. The prefix is ignored
by all other x87 instructions and by 64-bit media floating-point (3DNow!™) instructions.

For other instructions (mostly SIMD instructions) the 66h, F2h, and F3h prefixes are used as
instruction modifiers to extend the instruction encoding space in the 0Fh, 0F_38h, and 0F_3Ah opcode
maps.

Operand-Size and REX Prefixes. The W bit field of the REX prefix takes precedence over the 66h
prefix. See “REX.W: Operand width (Bit 3)” on page 23 for details.

1.2.3 Address-Size Override Prefix

The default address size for instructions that access non-stack memory is determined by the current
operating mode, as shown in Table 1-3. The address-size override prefix (67h) selects the non-default
address size. Depending on the operating mode, this prefix allows mixing of 16-bit and 32-bit, or of
32-bit and 64-bit addresses, on an instruction-by-instruction basis. The prefix changes the address size
for memory operands. It also changes the size of the RCX register for instructions that use RCX
implicitly.

For instructions that implicitly access the stack segment (SS), the address size for stack accesses is
determined by the D (default) bit in the stack-segment descriptor. In 64-bit mode, the D bit is ignored,
and all stack references have a 64-bit address size. However, if an instruction accesses both stack and
non-stack memory, the address size of the non-stack access is determined as shown in Table 1-3.

As Table 1-3 shows, the default address size is 64 bits in 64-bit mode. The size can be overridden to 32
bits, but 16-bit addresses are not supported in 64-bit mode. In compatibility and legacy modes, the

Table 1-3. Address-Size Overrides

Operating Mode
Default

Address
Size (Bits)

Effective
Address Size

(Bits)

Address-
Size Prefix

(67h)1
Required?

Long Mode

64-Bit
Mode 64

64 no
32 yes

Compatibility
Mode

32
32 no
16 yes

16
32 yes
16 no

Legacy Mode
(Protected, Virtual-8086, or Real
Mode)

32
32 no
16 yes

16
32 yes
16 no

Notes:
1. A “no” indicates that the default address size is used.

10 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

default address size is 16 bits or 32 bits, depending on the operating mode (see “Processor
Initialization and Long Mode Activation” in Volume 2 for details). In these modes, the address-size
prefix selects the non-default size, but the 64-bit address size is not available.

Certain instructions reference pointer registers or count registers implicitly, rather than explicitly. In
such instructions, the address-size prefix affects the size of such addressing and count registers, just as
it does when such registers are explicitly referenced. Table 1-4 lists all such instructions and the
registers referenced using the three possible address sizes.

1.2.4 Segment-Override Prefixes

Segment overrides can be used only with instructions that reference non-stack memory. Most
instructions that reference memory are encoded with a ModRM byte (page 17). The default segment

Table 1-4. Pointer and Count Registers and the Address-Size Prefix

Instruction
Pointer or Count Register

16-Bit
Address Size

32-Bit
Address Size

64-Bit
Address Size

CMPS, CMPSB, CMPSW,
CMPSD, CMPSQ—Compare
Strings

SI, DI, CX ESI, EDI, ECX RSI, RDI, RCX

INS, INSB, INSW, INSD—
Input String DI, CX EDI, ECX RDI, RCX

JCXZ, JECXZ, JRCXZ—
Jump on CX/ECX/RCX Zero CX ECX RCX

LODS, LODSB, LODSW,
LODSD, LODSQ—Load
String

SI, CX ESI, ECX RSI, RCX

LOOP, LOOPE, LOOPNZ,
LOOPNE, LOOPZ—Loop CX ECX RCX

MOVS, MOVSB, MOVSW,
MOVSD, MOVSQ—Move
String

SI, DI, CX ESI, EDI, ECX RSI, RDI, RCX

OUTS, OUTSB, OUTSW,
OUTSD—Output String SI, CX ESI, ECX RSI, RCX

REP, REPE, REPNE, REPNZ,
REPZ—Repeat Prefixes CX ECX RCX

SCAS, SCASB, SCASW,
SCASD, SCASQ—Scan
String

DI, CX EDI, ECX RDI, RCX

STOS, STOSB, STOSW,
STOSD, STOSQ—Store
String

DI, CX EDI, ECX RDI, RCX

XLAT, XLATB—Table Look-
up Translation BX EBX RBX

Instruction Encoding 11

24594—Rev. 3.16—September 2011 AMD64 Technology

for such memory-referencing instructions is implied by the base register indicated in its ModRM byte,
as follows:

• Instructions that Reference a Non-Stack Segment—If an instruction encoding references any base
register other than rBP or rSP, or if an instruction contains an immediate offset, the default segment
is the data segment (DS). These instructions can use the segment-override prefix to select one of
the non-default segments, as shown in Table 1-5.

• String Instructions—String instructions reference two memory operands. By default, they
reference both the DS and ES segments (DS:rSI and ES:rDI). These instructions can override their
DS-segment reference, as shown in Table 1-5, but they cannot override their ES-segment
reference.

• Instructions that Reference the Stack Segment—If an instruction’s encoding references the rBP or
rSP base register, the default segment is the stack segment (SS). All instructions that reference the
stack (push, pop, call, interrupt, return from interrupt) use SS by default. These instructions cannot
use the segment-override prefix.

Segment Overrides in 64-Bit Mode. In 64-bit mode, the CS, DS, ES, and SS segment-override
prefixes have no effect. These four prefixes are not treated as segment-override prefixes for the
purposes of multiple-prefix rules. Instead, they are treated as null prefixes.

The FS and GS segment-override prefixes are treated as true segment-override prefixes in 64-bit
mode. Use of the FS or GS prefix causes their respective segment bases to be added to the effective
address calculation. See “FS and GS Registers in 64-Bit Mode” in Volume 2 for details.

1.2.5 Lock Prefix

The LOCK prefix causes certain kinds of memory read-modify-write instructions to occur atomically.
The mechanism for doing so is implementation-dependent (for example, the mechanism may involve
bus signaling or packet messaging between the processor and a memory controller). The prefix is
intended to give the processor exclusive use of shared memory in a multiprocessor system.

Table 1-5. Segment-Override Prefixes

Mnemonic Prefix Byte
(Hex) Description

CS1 2E Forces use of current CS segment for memory operands.
DS1 3E Forces use of current DS segment for memory operands.
ES1 26 Forces use of current ES segment for memory operands.
FS 64 Forces use of current FS segment for memory operands.
GS 65 Forces use of current GS segment for memory operands.
SS1 36 Forces use of current SS segment for memory operands.

Notes:
1. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

12 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

The LOCK prefix can only be used with forms of the following instructions that write a memory
operand: ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, CMPXCHG16B, DEC,
INC, NEG, NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-opcode exception occurs if
the LOCK prefix is used with any other instruction.

1.2.6 Repeat Prefixes

The repeat prefixes cause repetition of certain instructions that load, store, move, input, or output
strings. The prefixes should only be used with such string instructions. Two pairs of repeat prefixes,
REPE/REPZ and REPNE/REPNZ, perform the same repeat functions for certain compare-string and
scan-string instructions. The repeat function uses rCX as a count register. The size of rCX is based on
address size, as shown in Table 1-4 on page 10.

REP. The REP prefix repeats its associated string instruction the number of times specified in the
counter register (rCX). It terminates the repetition when the value in rCX reaches 0. The prefix can be
used with the INS, LODS, MOVS, OUTS, and STOS instructions. Table 1-6 shows the valid REP
prefix opcodes.

Table 1-6. REP Prefix Opcodes
Mnemonic Opcode
REP INS reg/mem8, DX
REP INSB

F3 6C

REP INS reg/mem16/32, DX
REP INSW
REP INSD

F3 6D

REP LODS mem8
REP LODSB

F3 AC

REP LODS mem16/32/64
REP LODSW
REP LODSD
REP LODSQ

F3 AD

REP MOVS mem8, mem8
REP MOVSB

F3 A4

REP MOVS mem16/32/64, mem16/32/64
REP MOVSW
REP MOVSD
REP MOVSQ

F3 A5

REP OUTS DX, reg/mem8
REP OUTSB

F3 6E

Instruction Encoding 13

24594—Rev. 3.16—September 2011 AMD64 Technology

REPE and REPZ. REPE and REPZ are synonyms and have identical opcodes. These prefixes repeat
their associated string instruction the number of times specified in the counter register (rCX). The
repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is cleared to 0. The
REPE and REPZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS, SCASB,
SCASD, and SCASW instructions. Table 1-7 shows the valid REPE and REPZ prefix opcodes.

REPNE and REPNZ. REPNE and REPNZ are synonyms and have identical opcodes. These prefixes
repeat their associated string instruction the number of times specified in the counter register (rCX).
The repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is set to 1. The
REPNE and REPNZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS,
SCASB, SCASD, and SCASW instructions. Table 1-8 on page 14 shows the valid REPNE and
REPNZ prefix opcodes.

REP OUTS DX, reg/mem16/32
REP OUTSW
REP OUTSD

F3 6F

REP STOS mem8
REP STOSB

F3 AA

REP STOS mem16/32/64
REP STOSW
REP STOSD
REP STOSQ

F3 AB

Table 1-7. REPE and REPZ Prefix Opcodes
Mnemonic Opcode
REPx CMPS mem8, mem8
REPx CMPSB

F3 A6

REPx CMPS mem16/32/64, mem16/32/64
REPx CMPSW
REPx CMPSD
REPx CMPSQ

F3 A7

REPx SCAS mem8
REPx SCASB

F3 AE

REPx SCAS mem16/32/64
REPx SCASW
REPx SCASD
REPx SCASQ

F3 AF

Table 1-6. REP Prefix Opcodes (continued)
Mnemonic Opcode

14 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

Instructions that Cannot Use Repeat Prefixes. In general, the repeat prefixes should only be used
in the string instructions listed in tables 1-6, 1-7, and 1-8 above. For other instructions (mostly SIMD
instructions) the 66h, F2h, and F3h prefixes are used as instruction modifiers to extend the instruction
encoding space in the 0Fh, 0F_38h, and 0F_3Ah opcode maps.

Optimization of Repeats. Depending on the hardware implementation, the repeat prefixes can have
a setup overhead. If the repeated count is variable, the overhead can sometimes be avoided by
substituting a simple loop to move or store the data. Repeated string instructions can be expanded into
equivalent sequences of inline loads and stores or a sequence of stores can be used to emulate a REP
STOS.

For repeated string moves, performance can be maximized by moving the largest possible operand
size. For example, use REP MOVSD rather than REP MOVSW and REP MOVSW rather than REP
MOVSB. Use REP STOSD rather than REP STOSW and REP STOSW rather than REP MOVSB.

Depending on the hardware implementation, string moves with the direction flag (DF) cleared to 0
(up) may be faster than string moves with DF set to 1 (down). DF = 1 is only needed for certain cases
of overlapping REP MOVS, such as when the source and the destination overlap.

1.2.7 REX Prefix

The REX prefix, available in 64-bit mode, enables use of the AMD64 register and operand size
extensions. Unlike the legacy instruction modification prefixes, REX is not a single unique value, but
occupies a range (40h to 4Fh). Figure 1-1 on page 2 shows how the REX prefix fits within the
encoding syntax of instructions.

The REX prefix enables the following features in 64-bit mode:

• Use of the extended GPR (Figure 2-3 on page 39) and YMM/XMM registers (Figure 2-8 on
page 44).

Table 1-8. REPNE and REPNZ Prefix Opcodes
Mnemonic Opcode
REPNx CMPS mem8, mem8
REPNx CMPSB

F2 A6

REPNx CMPS mem16/32/64, mem16/32/64
REPNx CMPSW
REPNx CMPSD
REPNx CMPSQ

F2 A7

REPNx SCAS mem8
REPNx SCASB

F2 AE

REPNx SCAS mem16/32/64
REPNx SCASW
REPNx SCASD
REPNx SCASQ

F2 AF

Instruction Encoding 15

24594—Rev. 3.16—September 2011 AMD64 Technology

• Use of the 64-bit operand size when accessing GPRs.
• Use of the extended control and debug registers, as described in Section 2.4 “Registers” in

Volume 2.
• Use of the uniform byte registers (AL–R15).

REX contains five fields. The upper nibble is unique to the REX prefix and identifies it is as such. The
lower nibble is divided into four 1-bit fields (W, R, X, and B). See below for a discussion of these
fields.Figure 1-3 below shows the format of the REX prefix. Since each bit of the lower nibble can be
a 1 or a 0, REX spans one full row of the primary opcode map occupying entries 40h through 4Fh.

Figure 1-3. REX Prefix Format

A REX prefix is normally required with an instruction that accesses a 64-bit GPR or one of the
extended GPR or YMM/XMM registers. A few instructions have an operand size that defaults to (or is
fixed at) 64 bits in 64-bit mode, and thus do not need a REX prefix. These instructions are listed in
Table 1-9 below.

An instruction may have only one REX prefix which must immediately precede the opcode or first
escape byte in the instruction encoding. The use of a REX prefix in an instruction that does not access
an extended register is ignored. The instruction-size limit of 15 bytes applies to instructions that
contain a REX prefix.

Table 1-9. Instructions Not Requiring REX Prefix in 64-Bit Mode
CALL (Near) POP reg/mem
ENTER POP reg
Jcc POP FS
JrCXZ POP GS
JMP (Near) POPF, POPFD, POPFQ
LEAVE PUSH imm8
LGDT PUSH imm32
LIDT PUSH reg/mem
LLDT PUSH reg
LOOP PUSH FS
LOOPcc PUSH GS
LTR PUSHF, PUSHFD, PUSHFQ
MOV CR(n) RET (Near)
MOV DR(n)

v3_REX_byte_format.eps

01234567
W R X B4

16 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

Implications for INC and DEC Instructions

The REX prefix values are taken from the 16 single-byte INC and DEC instructions, one for each of
the eight legacy GPRs. Therefore, these single-byte opcodes for INC and DEC are not available in 64-
bit mode, although they are available in legacy and compatibility modes. The functionality of these
INC and DEC instructions is still available in 64-bit mode, however, using the ModRM forms of those
instructions (opcodes FF /0 and FF /1).

1.2.8 VEX and XOP Prefixes

The extended instruction encoding syntax, available in protected and long modes, provides one 2-byte
and three 3-byte escape sequences introduced by either the VEX or XOP prefixes. These multi-byte
sequences not only select opcode maps, they also provide instruction modifiers similar to, but in lieu
of, the REX prefix.

The 2-byte escape sequence initiated by the VEX C5h prefix implies a map_select encoding of 1. The
three-byte escape sequences, initiated by the VEX C4h prefix or the XOP (8Fh) prefix, select the target
opcode map explicitly via the VEX/XOP.map_select field. The five-bit VEX.map_select field allows
the selection of one of 31 different opcode maps (opcode map 00h is reserved). The XOP.map_select
field is restricted to the range 08h – 1Fh and thus can only select one of 24 different opcode maps.

The VEX and XOP escape sequences contain fields that extend register addressing to a total of 16,
increase the operand specification capability to four operands, and modify the instruction operation.

The extended SSE instruction subsets AVX, AES, CLMU, FMA, FMA4, and XOP and a few non-SSE
instructions utilize the extended encoding syntax. See “Encoding Using the VEX and XOP Prefixes”
on page 29 for details on the encoding of the two- and three-byte extended escape sequences.

1.3 Opcode
The opcode is a single byte that specifies the basic operation of an instruction. In some cases, it also
specifies the operands for the instruction. Every instruction requires an opcode. The correspondence
between the binary value of the opcode and the operation it represents is defined by a table called an
opcode map. As discussed in the previous sections, the legacy prefixes 66h, F2h, and F3h and other
fields within the instruction encoding may be used to modify the operation encoded by the opcode.

The effect of the presence of a 66h, F2h, or F3h prefix on the operation performed by the opcode is
represented in the opcode map by additional rows in the table indexed by the applicable prefix. The 3-
bit reg and r/m fields of the ModRM byte (“ModRM and SIB Bytes” on page 17) are used as well in
the encoding of certain instructions. This is represented in the opcode maps via instruction group
tables that detail the modifications represented via the extra encoding bits. See Section A.1, “Opcode
Maps” of Appendix A for examples.

Even though each instruction has a unique opcode map and opcode, assemblers often support multiple
alternate mnemonics for the same instruction to improve the readability of assembly language code.

Instruction Encoding 17

24594—Rev. 3.16—September 2011 AMD64 Technology

The 64-bit floating-point 3DNow! instructions utilize the two-byte escape sequence 0F_0Fh to select
the 3DNow! opcode map. For these instructions the opcode is encoded in the immediate field at the
end of the instruction encoding.

For details on how the opcode byte encodes the basic operation for specifc instructions, see Section
A.1, “Opcode Maps” of Appendix A

1.4 ModRM and SIB Bytes
The ModRM byte is optional depending on the instruction. When present, it follows the opcode and is
used to specify:

• two register-based operands, or
• one register-based operand and a second memory-based operand and an addressing mode.

In the encoding of some instructions, fields within the ModRM byte are repurposed to provide
additional opcode bits used to define the instruction’s function.

The ModRM byte is partitioned into three fields—mod, reg, and r/m. Normally the reg field specifies a
register-based operand and the mod and r/m fields used together specify a second operand that is either
register-based or memory-based. The addressing mode is also specified when the operand is memory-
based.

In 64-bit mode, the REX.R and REX.B bits augment the reg and r/m fields respectively allowing the
specification of twice the number of registers.

1.4.1 ModRM Byte Format

Figure 1-4 below shows the format of a ModRM byte.

Figure 1-4. ModRM-Byte Format

Depending on the addressing mode, the SIB byte may appear after the ModRM byte. SIB is used in the
specification of various forms of indexed register-indirect addressing. See the following section for
details.

v3_ModRM_format.eps

mod

REX.R, VEX.R or XOP.R
extend this field to 4 bits

REX.B, VEX.B, or XOP.B
extend this field to 4 bits

reg r/m ModRM
01234567

18 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

ModRM.mod (Bits[7:6]). The mod field is used with the r/m field to specify the addressing mode for
an operand. ModRM.mod = 11b specifies the register-direct addressing mode. In the register-direct
mode, the operand is held in the specified register. ModRM.mod values less than 11b specify register-
indirect addressing modes. In register-indirect addresing modes, values held in registers along with an
optional displacement specified in the instruction encoding are used to calculate the address of a
memory-based operand. Other encodings of the 5 bits {mod, r/m} are discussed below.

ModRM.reg (Bits[5:3]). The reg field is used to specify a register-based operand, although for some
instructions, this field is used to extend the operation encoding. The encodings for this field are shown
in Table 1-10 below.

ModRM.r/m (Bits[2:0]). As stated above, the r/m field is used in combination with the mod field to
encode 32 different operand specifications (See Table 1-13 on page 21). The encodings for this field
are shown in Table 1-10 below.

Similar to the reg field, r/m is used in some instructions to extend the operation encoding.

1.4.2 SIB Byte Format

The SIB byte has three fields—scale, index, and base—that define the scale factor, index-register
number, and base-register number for the 32-bit and 64-bit indexed register-indirect addressing
modes.

The basic formula for computing the effective address of a memory-based operand using the indexed
register-indirect address modes is:

Table 1-10. ModRM.reg and .r/m Field Encodings

Encoded value
(binary) ModRM.reg1 ModRM.r/m (mod = 11b)1

ModRM.r/m
(mod ≠ 11b)2

000 rAX, MMX0, XMM0, YMM0 rAX, MMX0, XMM0, YMM0 [rAX]
001 rCX, MMX1, XMM1, YMM1 rCX, MMX1, XMM1, YMM1 [rCX]
010 rDX, MMX2, XMM2, YMM2 rDX, MMX2, XMM2, YMM2 [rDX]
011 rBX, MMX3, XMM3, YMM3 rBX, MMX3, XMM3, YMM3 [rBX]

100 AH, rSP, MMX4, XMM4, YMM4 AH, rSP, MMX4, XMM4, YMM4 SIB3

101 CH, rBP, MMX5, XMM5, YMM5 CH, rBP, MMX5, XMM5, YMM5 [rBP]4

110 DH, rSI, MMX6, XMM6, YMM6 DH, rSI, MMX6, XMM6, YMM6 [rSI]
111 BH, rDI, MMX7, XMM7, YMM7 BH, rDI, MMX7, XMM7, YMM7 [rDI]

Notes:
1. Specific register is instruction-dependent.
2. mod = 01 and mod = 10 include an offset specified by the instruction displacement field.

The notation [*] signifies that the specified register holds the address of the operand.
3. Indexed register-indirect addressing. SIB byte follows ModRM byte.
4. For mod=00, the r/m value is used to encode absolute addressing mode.

Instruction Encoding 19

24594—Rev. 3.16—September 2011 AMD64 Technology

effective_address = scale * index + base + offset

Specific variants of this addressing mode set one or more elements of the sum to zero.

Figure 1-5 below shows the format of the SIB byte.

Figure 1-5. SIB Byte Format

SIB.scale (Bits[7:6]). The scale field is used to specify the scale factor used in computing the
scale*index portion of the effective address. In normal usage scale represents the size of data elements
in an array expressed in number of bytes. SIB.scale is encoded as shown in Table 1-11 below.

SIB.index (Bits[5:3]). The index field is used to specify the register containing the index portion of
the indexed register-indirect effective address. SIB.index is encoded as shown in Table 1-12 below.

SIB.base (Bits[2:0]). The base field is used to specify the register containing the base address
portion of the indexed register-indirect effective address. SIB.base is encoded as shown in Table 1-12
below.

Table 1-11. SIB.scale Field Encodings

Encoded value
(binary)

scale
factor

00 1
01 2
10 4
11 8

513-306.eps

Bits:

scale index base SIB
01234567

REX.X bit of REX prefix can
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

20 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

More discussion of operand addressing follows in the next two sections.

1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes

The mod and r/m fields of the ModRM byte provide a total of five bits used to encode 32 operand
specification and memory addressing modes. Table 1-13 below shows these encodings.

Table 1-12. SIB.index and .base Field Encodings

Encoded value
(binary) SIB.index SIB.base

000 [rAX] [rAX]

001 [rCX] [rCX]

010 [rDX] [rDX]

011 [rBX] [rBX]
100 (none)1 [rSP]
101 [rBP] [rBP], (none)2

110 [rSI] DH, [rSI]
111 [rDI] BH, [rDI]

Notes:
1. Register specification is null. The scale*index portion of the indexed register-indirect effec-

tive address is set to 0.
2. If ModRM.mod = 00b, the register specification is null. The base portion of the indexed reg-

ister-indirect effective address is set to 0. Otherwise, base encodes the rBP register as
the source of the base address used in the effective address calculation.

Instruction Encoding 21

24594—Rev. 3.16—September 2011 AMD64 Technology

Table 1-13. Operand Addressing Using ModRM and SIB Bytes
ModRM.mod ModRM.r/m Register / Effective Address

00

000 [rAX]
001 [rCX]
010 [rDX]
011 [rBX]

100 SIB1

101 disp32
110 [rSI]
111 [rDI]

01

000 [rAX]+disp8
001 [rCX]+disp8
010 [rDX]+disp8
011 [rBX]+disp8

100 SIB+disp82

101 [rBP]+disp8
110 [rSI]+disp8
111 [rDI]+disp8

10

000 [rAX]+disp32
001 [rCX]+disp32
010 [rDX]+disp32
011 [rBX]+disp32

100 SIB+disp323

101 [rBP]+disp32
110 [rSI]+disp32
111 [rDI]+disp32]

Notes:
1. SIB byte follows ModRM byte. Effective address is calculated using

scaled_index+base.
2. SIB byte follows ModRM byte. Effective address is calculated using

scaled_index+base+8-bit_offset. One-byte Displacement field provides the
offset.

3. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base+32-bit_offset. Four-byte Displacement field provides the
offset.

22 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

Note that the addressing mode mod = 11b is a register-direct mode, that is, the operand is contained in
the specified register, while the modes mod = [00b:10b] specify different addressing modes for a
memory-based operand.

For mod = 11b, the register containing the operand is specified by the r/m field. For the other modes
(mod = [00b:10b]), the mod and r/m fields are combined to specify the addressing mode for the
memory-based operand. Most are register-indirect addressing modes meaning that the address of the
memory-based operand is contained in the register specified by r/m. For these register-indirect modes,
mod = 01b and mod = 10b include an offset encoded in the displacement field of the instruction.

The encodings {mod ≠ 11b, r/m = 100b} specify the indexed register-indirect addressing mode in
which the target address is computed using a combination of values stored in registers and a scale
factor encoded directly in the SIB byte. For these addressing modes the effective address is given by
the formula:

effective_address = scale * index + base + offset

Scale is encoded in SIB.scale field. Index is contained in the register specified by SIB.index field and
base is contained in the register specified by SIB.base field. Offset is encoded in the displacement field
of the instruction using either one or four bytes.

If {mod, r/m} = 00100b, the offset portion of the formula is set to 0. For {mod, r/m} = 01100b and
{mod, r/m} =10100b, offset is encoded in the one- or 4-byte displacement field of the instruction.

Finally, the encoding {mod, r/m} = 00101b specifies an absolute addressing mode. In this mode, the
address is provided directly in the instruction encoding using a 4-byte displacement field. In 64-bit
mode this addressing mode is changed to RIP-relative (see “RIP-Relative Addressing” on page 24).

11

000 AL/rAX/MMX0/XMM0/YMM0
001 CL/rCX/MMX1/XMM1/YMM1
010 DL/rDX/MMX2/XMM2/YMM2
011 BL/rBX/MMX3/XMM3/YMM3
100 AH/SPL/rSP/MMX4/XMM4/YMM4
101 CH/BPL/rBP/MMX5/XMM5/YMM5
110 DH/SIL/rSI/MMX6/XMM6/YMM6
111 BH/DIL/rDI/MMX7/XMM7/YMM7

Table 1-13. Operand Addressing Using ModRM and SIB Bytes (continued)
ModRM.mod ModRM.r/m Register / Effective Address

Notes:
1. SIB byte follows ModRM byte. Effective address is calculated using

scaled_index+base.
2. SIB byte follows ModRM byte. Effective address is calculated using

scaled_index+base+8-bit_offset. One-byte Displacement field provides the
offset.

3. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base+32-bit_offset. Four-byte Displacement field provides the
offset.

Instruction Encoding 23

24594—Rev. 3.16—September 2011 AMD64 Technology

1.4.4 Operand Addressing in 64-bit Mode

AMD64 architecture doubles the number of GPRs and increases their width to 64-bits. It also doubles
the number of YMM/XMM registers. In order to support the specification of register operands
contained in the eight additional GPRs or YMM/XMM registers and to make the additional GPRs
available to hold addresses to be used in the addressing modes, the REX prefix provides the R, X, and
B bit fields to extend the reg, r/m, index, and base fields of the ModRM and SIB bytes in the various
operand addressing modes to four bits. A fourth REX bit field (W) allows instruction encodings to
specify a 64-bit operand size.

Table 1-14 below and the sections that follow describe each of these bit fields.

REX.W: Operand width (Bit 3). Setting the REX.W bit to 1 specifies a 64-bit operand size. Like the
existing 66h operand-size override prefix, the REX 64-bit operand-size override has no effect on byte
operations. For non-byte operations, the REX operand-size override takes precedence over the 66h
prefix. If a 66h prefix is used together with a REX prefix that has the W bit set to 1, the 66h prefix is
ignored. However, if a 66h prefix is used together with a REX prefix that has the W bit cleared to 0,
the 66h prefix is not ignored and the operand size becomes 16 bits.

REX.R: Register field extension (Bit 2). The REX.R bit adds a 1-bit extension (in the most
significant bit position) to the ModRM.reg field when that field encodes a GPR, YMM/XMM, control,
or debug register. REX.R does not modify ModRM.reg when that field specifies other registers or is
used to extend the opcode. REX.R is ignored in such cases.

REX.X: Index field extension (Bit 1). The REX.X bit adds a 1-bit (msb) extension to the SIB.index
field. See “ModRM and SIB Bytes” on page 17.

Table 1-14. REX Prefix-Byte Fields
Mnemonic Bit Position(s) Definition

— 7:4 0100 (4h)

REX.W 3 0 = Default operand size
1 = 64-bit operand size

REX.R 2
1-bit (msb) extension of the ModRM reg
field1, permitting access to 16 registers.

REX.X 1 1-bit (msb) extension of the SIB index field1,
permitting access to 16 registers.

REX.B 0
1-bit (msb) extension of the ModRM r/m
field1, SIB base field1, or opcode reg field,
permitting access to 16 registers.

Notes:
1. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on

page 17.

24 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

REX.B: Base field extension (Bit 0). The REX.B bit adds a 1-bit (msb) extension to either the
ModRM.r/m field to specify a GPR or XMM register, or to the SIB.base field to specify a GPR. (See
Table 2-2 on page 56 for more about the B bit.)

1.5 Displacement Bytes
A displacement (also called an offset) is a signed value that is added to the base of a code segment
(absolute addressing) or to an instruction pointer (relative addressing), depending on the addressing
mode. The size of a displacement is 1, 2, or 4 bytes. If an addressing mode requires a displacement, the
bytes (1, 2, or 4) for the displacement follow the opcode, ModRM, or SIB byte (whichever comes last)
in the instruction encoding.

In 64-bit mode, the same ModRM and SIB encodings are used to specify displacement sizes as those
used in legacy and compatibility modes. However, the displacement is sign-extended to 64 bits during
effective-address calculations. Also, in 64-bit mode, support is provided for some 64-bit displacement
and immediate forms of the MOV instruction. See “Immediate Operand Size” in Volume 1 for more
information on this.

1.6 Immediate Bytes
An immediate is a value—typically an operand value—encoded directly into the instruction.
Depending on the opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8
bytes. 64-bit immediates are allowed in 64-bit mode on MOV instructions that load GPRs, otherwise
they are limited to 4 bytes. See “Immediate Operand Size” in Volume 1 for more information.

If an instruction takes an immediate operand, the bytes (1, 2, 4, or 8) for the immediate follow the
opcode, ModRM, SIB, or displacement bytes (whichever come last) in the instruction encoding. Some
128-bit media instructions use the immediate byte as a condition code.

1.7 RIP-Relative Addressing
In 64-bit mode, addressing relative to the contents of the 64-bit instruction pointer (program
counter)—called RIP-relative addressing or PC-relative addressing—is implemented for certain
instructions. In such cases, the effective address is formed by adding the displacement to the 64-bit
RIP of the next instruction.

In the legacy x86 architecture, addressing relative to the instruction pointer is available only in control-
transfer instructions. In the 64-bit mode, any instruction that uses ModRM addressing can use RIP-
relative addressing. This feature is particularly useful for addressing data in position-independent code
and for code that addresses global data.

Without RIP-relative addressing, ModRM instructions address memory relative to zero. With RIP-
relative addressing, ModRM instructions can address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of ±2 Gbytes from the RIP.

Instruction Encoding 25

24594—Rev. 3.16—September 2011 AMD64 Technology

Programs usually have many references to data, especially global data, that are not register-based. To
load such a program, the loader typically selects a location for the program in memory and then adjusts
program references to global data based on the load location. RIP-relative addressing of data makes
this adjustment unnecessary.

1.7.1 Encoding

Table 1-15 shows the ModRM and SIB encodings for RIP-relative addressing. Redundant forms of
32-bit displacement-only addressing exist in the current ModRM and SIB encodings. There is one
ModRM encoding with several SIB encodings. RIP-relative addressing is encoded using one of the
redundant forms. In 64-bit mode, the ModRM disp32 (32-bit displacement) encoding is redefined to
be RIP + disp32 rather than displacement-only.

1.7.2 REX Prefix and RIP-Relative Addressing

ModRM encoding for RIP-relative addressing does not depend on a REX prefix. In particular, the r/m
encoding of 101, used to select RIP-relative addressing, is not affected by the REX prefix. For
example, selecting R13 (REX.B = 1, r/m = 101) with mod = 00 still results in RIP-relative addressing.

The four-bit r/m field of ModRM is not fully decoded. Therefore, in order to address R13 with no
displacement, software must encode it as R13 + 0 using a one-byte displacement of zero.

1.7.3 Address-Size Prefix and RIP-Relative Addressing

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. Conversely, use of the
address-size prefix (“Address-Size Override Prefix” on page 9) does not disable RIP-relative
addressing. The effect of the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits, like any other addressing mode.

Table 1-15. Encoding for RIP-Relative Addressing

ModRM SIB Legacy and
Compatibility Modes 64-bit Mode Additional 64-bit

Implications

• mod = 00

• r/m = 101
not present disp32 RIP + disp32

Zero-based (normal)
displacement addressing
must use SIB form (see
next row).

• mod = 10

• r/m = 1001

• base = 1012

• index = 1003

• scale = xx

disp32 Same as Legacy None

Notes:
1. Encodes the indexed register-indirect addressing mode with 32-bit offset.
2. Base register specification is null (base portion of effective address calculation is set to 0)
3. index register specification is null (scale*index portion of effective address calculation is set to 0)

26 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

1.8 Encoding Considerations Using REX
Figure 1-6 on page 28 shows four examples of how the R, X, and B bits of the REX prefix are
concatenated with fields from the ModRM byte, SIB byte, and opcode to specify register and memory
addressing.

1.8.1 Byte-Register Addressing

In the legacy architecture, the byte registers (AH, AL, BH, BL, CH, CL, DH, and DL, shown in
Figure 2-2 on page 38) are encoded in the ModRM reg or r/m field or in the opcode reg field as
registers 0 through 7. The REX prefix provides an additional byte-register addressing capability that
makes the least-significant byte of any GPR available for byte operations (Figure 2-3 on page 39).
This provides a uniform set of byte, word, doubleword, and quadword registers better suited for
register allocation by compilers.

1.8.2 Special Encodings for Registers

Readers who need to know the details of instruction encodings should be aware that certain
combinations of the ModRM and SIB fields have special meaning for register encodings. For some of
these combinations, the instruction fields expanded by the REX prefix are not decoded (treated as
don’t cares), thereby creating aliases of these encodings in the extended registers. Table 1-16 on
page 27 describes how each of these cases behaves.

Instruction Encoding 27

24594—Rev. 3.16—September 2011 AMD64 Technology

Table 1-16. Special REX Encodings for Registers

ModRM and SIB
Encodings2

Meaning in Legacy and
Compatibility Modes

Implications in Legacy
and Compatibility

Modes

Additional REX
Implications

ModRM Byte:
• mod ≠ 11

• r/m1 = 100 (ESP)
SIB byte is present. SIB byte is required for

ESP-based addressing.

REX prefix adds a fourth
bit (b), which is decoded
and modifies the base
register in the SIB byte.
Therefore, the SIB byte is
also required for R12-
based addressing.

ModRM Byte:
• mod = 00

• r/m1 = x101 (EBP)
Base register is not used.

Using EBP without a
displacement must be
done by setting mod = 01
with a displacement of 0
(with or without an index
register).

REX prefix adds a fourth
bit (x), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0.

SIB Byte:

• index1 = x100 (ESP)
Index register is not used. ESP cannot be used as

an index register.

REX prefix adds a fourth
bit (x), which is decoded.
Therefore, there are no
additional implications.
The expanded index field
is used to distinguish RSP
from R12, allowing R12 to
be used as an index.

SIB Byte:
• base = b101 (EBP)
• ModRM.mod = 00

Base register is not used
if ModRM.mod = 00.

Base register depends on
mod encoding. Using
EBP with a scaled index
and without a
displacement must be
done by setting mod = 01
with a displacement of 0.

REX prefix adds a fourth
bit (b), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0 (with or
without an index register).

Notes:
1. The REX-prefix bit is shown in the fourth (most-significant) bit position of the encodings for the ModRM r/m, SIB

index, and SIB base fields. The lower-case “x” for ModRM r/m (rather than the upper-case “B” shown in Figure 1-6
on page 28) indicates that the REX-prefix bit is not decoded (don’t care).

2. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 17.

28 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

Examples of Operand Addressing Extension Using REX

Figure 1-6. Encoding Examples Using REX R, X, and B Bits

v3_REX_reg_addr.eps

REX Prefix

Case 1: Register-Register Addressing (No Memory Operand)

REX.X is not used4WRXB
Opcode

ModRM Byte
mod reg r/m

rrr11 bbb

Rrrr Bbbb

4
4

mod reg r/mREX Prefix

Case 3: Memory Addressing With an SIB Byte

Rrrr

4WRXB
Opcode

ModRM Byte

rrr!11 100

SIB Byte
scale index base

xxxbb bbb

BbbbXxxx

44
4

REX.X is not used
mod reg r/mREX Prefix

Case 2: Memory Addressing Without an SIB Byte

Rrrr

4WRXB
Opcode

ModRM Byte

rrr!11 bbb

Bbbb

4
4

ModRM reg field != 100

REX.R is not used
REX.X is not used

REX Prefix

Case 4: Register Operand Coded in Opcode Byte

Bbbb

4WRXB bbb

4

op reg

Instruction Encoding 29

24594—Rev. 3.16—September 2011 AMD64 Technology

1.9 Encoding Using the VEX and XOP Prefixes
An extended escape sequence is introduced by an encoding escape prefix which establishes the context
and the format of the bytes that follow. The currently defined prefixes fall in two classes: the XOP and
the VEX prefixes (of which there are two). The XOP prefix and the VEX C4h prefix introduce a three
byte sequence with identical syntax, while the VEX C5h prefix introduces a two-byte escape sequence
with a different syntax.

These escape sequences supply fields used to extend operand specification as well as provide for the
selection of alternate opcode maps. Encodings support up to two additional operands and the
addressing of the extended (beyond 7) registers. The specification of two of the operands is
accomplished using the legacy ModRM and optional SIB bytes with the reg, r/m, index, and base
fields extended by one bit in a manner analogous to the REX prefix.

The encoding of the extended SSE instructions utilize extended escape sequences. XOP instructions
use three-byte escape sequences introduced by the XOP prefix. The AVX, FMA, FMA4, and CLMUL
instruction subsets use three-byte or two-byte escape sequences introduced by the VEX prefixes.

1.9.1 Three-Byte Escape Sequences

All the extended instructions can be encoded using a three-byte escape sequence, but certain VEX-
encoded instructions that comply with the constraints described below in Section 1.9.2, “Two-Byte
Escape Sequence” can also utilize a two-byte escape sequence. Figure 1-7 below shows the format of
the three-byte escape sequence which is common to the XOP and VEX-based encodings.

Figure 1-7. VEX/XOP Three-byte Escape Sequence Format

Byte 0 Byte 1 Byte 2
7 0 7 6 5 4 0 7 6 3 2 1 0

Encoding escape prefix R X B map_select W vvvv L pp

Byte Bit Mnemonic Description
0 [7:0] VEX, XOP Value specific to the extended instruction set
1 [7] R Inverted one-bit extension of ModRM reg field

[6] X Inverted one-bit extension of SIB index field
[5] B Inverted one-bit extension, r/m field or SIB base

field
[4:0] map_select Opcode map select

30 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

Table 1-17. Three-byte Escape Sequence Field Definitions

Byte 0 (VEX/XOP Prefix)

Byte 0 is the encoding escape prefix byte which introduces the encoding escape sequence and
establishes the context for the bytes that follow. The VEX and XOP prefixes have the following
encodings:

• VEX prefix is encoded as C4h
• XOP prefix is encoded as 8Fh

Byte 1

VEX/XOP.R (Bit 7). The bit-inverted equivalent of the REX.R bit. A one-bit extension of the
ModRM.reg field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, the value must be 1.

VEX/XOP.X (Bit 6). The bit-inverted equivalent of the REX.X bit. A one-bit extension of the
SIB.index field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, this value must be 1.

VEX/XOP.B (Bit 5). The bit-inverted equivalent of the REX.B bit, available only in the 3-byte prefix
format. A one-bit extension of either the ModRM.r/m field, to specify a GPR or XMM register, or of
the SIB base field, to specify a GPR. This permits access to all 16 GPR and YMM/XMM registers. In
32-bit protected and compatibility modes, this bit is ignored.

VEX/XOP.map_select (Bits [4:0]). The five-bit map_select field is used to select an alternate
opcode map. The map_select encoding spaces for VEX and XOP are disjoint. Table 1-18 below lists
the encodings for VEX.map_select and Table 1-19 lists the encodings for XOP.map_select.

2 [7] W Default operand size override for a general
purpose register to 64-bit size in 64-bit mode;

operand configuration specifier for certain
YMM/XMM-based operations.

[6:3] vvvv Source or destination register selector, in ones’
complement format

[2] L Vector length specifier
[1:0] pp Implied 66, F2, or F3 opcode extension

Table 1-18. VEX.map_select Encoding
Binary Value Opcode Map Analogous Legacy Opcode Map

00000 Reserved –
00001 VEX opcode map 1 Secondary (“two-byte”) opcode map

Byte Bit Mnemonic Description

Instruction Encoding 31

24594—Rev. 3.16—September 2011 AMD64 Technology

AVX instructions are encoded using the VEX opcode maps 1–3. The AVX instruction set includes
instructions that provide operations similar to most legacy SSE instructions. For those AVX
instructions that have an analogous legacy SSE instruction, the VEX opcode maps use the same binary
opcode value and modifiers as the legacy version. The correspondence between the VEX opcode maps
and the legacy opcode maps are shown in Table 1-18 above.

VEX opcode maps 1–3 are also used to encode the FMA4 and FMA instructions. In addition, not all
legacy SSE instructions have AVX equivalents. Therefore, the VEX opcode maps are not the same as
the legacy opcode maps.

The XOP opcode maps are unique to the XOP instructions. The XOP.map_select value is restricted to
the range [08h:1Fh]. If the value of the XOP.map_select field is less than 8, the first two bytes of the
three-byte XOP escape sequence are interpreted as a form of the POP instruction.

Both legacy and extended opcode maps are covered in detail in Appendix A.

Byte 2

VEX/XOP.W (Bit 7). Function is instruction-specific. The bit is often used to configure source
operand order.

VEX/XOP.vvvv (Bits [6:3]). Used to specify an additional operand for three and four operand
instructions. Encodes an XMM or YMM register in inverted ones’ complement form, as shown in
Table 1-20.

00010 VEX opcode map 2 0F_38h (“three-byte”) opcode map
00011 VEX opcode map 3 0F_3Ah (“three-byte”) opcode map

00100 – 1111 Reserved –

Table 1-19. XOP.map_select Encoding
Binary Value Opcode Map
00000 – 00111 Reserved

01000 XOP opcode map 8
01001 XOP opcode map 9

00100 – 1111 Reserved

Table 1-18. VEX.map_select Encoding
Binary Value Opcode Map Analogous Legacy Opcode Map

32 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

Values 0000h to 0111h are not valid in 32-bit modes. vvvv is typically used to encode the first source
operand, but for the VPSLLDQ, VPSRLDQ, VPSRLW, VPSRLD, VPSRLQ, VPSRAW, VPSRAD,
VPSLLW, VPSLLD, and VPSLLQ shift instructions, the field specifies the destination register.

VEX/XOP.L (Bit 2). L = 0 specifies 128-bit vector length (XMM registers/128-bit memory
locations). L=1 specifies 256-bit vector length (YMM registers/256-bit memory locations). For SSE or
XOP instructions with scalar operands, the L bit is ignored. Some vector SSE instructions support only
the 128 bit vector size. For these instructions, L is cleared to 0.

VEX/XOP.pp (Bits [1:0]). Specifies an implied 66h, F2h, or F3h opcode extension which is used in a
way analogous to the legacy instruction encodings to extend the opcode encoding space. The
correspondence between the encoding of the VEX/XOP.pp field and its function as an opcode modifier
is shown in Table 1-21. The legacy prefixes 66h, F2h, and F3h are not allowed in the encoding of
extended instructions.

1.9.2 Two-Byte Escape Sequence

All VEX-encoded instructions can be encoded using the three-byte escape sequence, but certain
instructions can also be encoded utilizing a more compact, two-byte VEX escape sequence. The
format of the two-byte escape sequence is shown in Figure 1-8 below.

Table 1-20. VEX/XOP.vvvv Encoding
Binary Value Register Binary Value Register

0000 XMM15/YMM15 1000 XMM07/YMM07
0001 XMM14/YMM14 1001 XMM06/YMM06
0010 XMM13/YMM13 1010 XMM05/YMM05
0011 XMM12/YMM12 1011 XMM04/YMM04
0100 XMM11/YMM11 1100 XMM03/YMM03
0101 XMM10/YMM10 1101 XMM02/YMM02
0110 XMM09/YMM09 1110 XMM01/YMM01
0111 XMM08/YMM08 1111 XMM00/YMM00

Table 1-21. VEX/XOP.pp Encoding
Binary Value Implied Prefix

00 None
01 66h
10 F3h
11 F2h

Instruction Encoding 33

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 1-8. VEX Two-byte Escape Sequence Format

Table 1-22. VEX Two-byte Escape Sequence Field Definitions

The R, vvvv, L, and pp fields are defined as in the three-byte escape sequence.

When the two-byte escape sequence is used, specific fields from the three-byte format take on fixed
values as shown in Table 1-23 below.

Although they may be encoded using the VEX three-byte escape sequence, all instructions that
conform with the constraints listed in Table 1-23 may be encoded using the two-byte escape sequence.
Note that the implied value of map_select is 00001b, which means that only instructions included in
the VEX opcode map 1 may be encoded using this format.

VEX-encoded instructions that use the other defined values of map_select (00010b and 00011b)
cannot be encoded using this a two-byte escape sequence format. Note that the VEX.pp field value is
explicitly encoded in this form and can be used to specify any of the implied legacy prefixes as defined
in Table 1-21.

Byte 0 Byte 1
7 0 7 6 3 2 1 0

VEX R vvvv L pp

Prefix Byte Bit Mnemonic Description
0 [7:0] VEX VEX 2-byte encoding escape prefix
1 [7] R Inverted one-bit extension of ModRM.reg field

[6:3] vvvv Source or destination register selector, in ones’
complement format.

[2] L Vector length specifier
[1:0] pp Implied 66, F2, or F3 opcode extension.

Table 1-23. Fixed Field Values for VEX 2-Byte Format
VEX Field Value

X 1
B 1
W 0

map_select 00001b

34 Instruction Encoding

AMD64 Technology 24594—Rev. 3.16—September 2011

Instruction Overview 35

24594—Rev. 3.16—September 2011 AMD64 Technology

2 Instruction Overview

2.1 Instruction Subsets
For easier reference, the instruction descriptions are divided into five groups based on usage. The
following sections describe the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by all instructions in the AMD64 architecture:

• Chapter 3, “General-Purpose Instruction Reference”—The general-purpose instructions are used
in basic software execution. Most of these load, store, or operate on data in the general-purpose
registers (GPRs), in memory, or in both. Other instructions are used to alter sequential program
flow by branching to other locations within the program or to entirely different programs.

• Chapter 4, “System Instruction Reference”—The system instructions establish the processor
operating mode, access processor resources, handle program and system errors, and manage
memory.

• “SSE Instruction Reference” in Volume 4—The Streaming SIMD Extensions (SSE) instructions
load, store, or operate on data located in the YMM/XMM registers. These instructions define both
vector and scalar operations on floating-point and integer data types. They include the SSE and
SSE2 instructions that operate on the YMM/XMM registers. Some of these instructions convert
source operands in YMM/XMM registers to destination operands in GPR, MMX, or x87 registers
or otherwise affect YMM/XMM state.

• “64-Bit Media Instruction Reference” in Volume 5—The 64-bit media instructions load, store, or
operate on data located in the 64-bit MMX registers. These instructions define both vector and
scalar operations on integer and floating-point data types. They include the legacy MMX™
instructions, the 3DNow!™ instructions, and the AMD extensions to the MMX and 3DNow!
instruction sets. Some of these instructions convert source operands in MMX registers to
destination operands in GPR, YMM/XMM, or x87 registers or otherwise affect MMX state.

• “x87 Floating-Point Instruction Reference” in Volume 5—The x87 instructions are used in legacy
floating-point applications. Most of these instructions load, store, or operate on data located in the
x87 ST(0)–ST(7) stack registers (the FPR0–FPR7 physical registers). The remaining instructions
within this category are used to manage the x87 floating-point environment.

The description of each instruction covers its behavior in all operating modes, including legacy mode
(real, virtual-8086, and protected modes) and long mode (compatibility and 64-bit modes). Details of
certain kinds of complex behavior—such as control-flow changes in CALL, INT, or FXSAVE
instructions—have cross-references in the instruction-detail pages to detailed descriptions in volumes
1 and 2.

Two instructions—CMPSD and MOVSD—use the same mnemonic for different instructions.
Assemblers can distinguish them on the basis of the number and type of operands with which they are
used.

36 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

2.2 Reference-Page Format
Figure 2-1 on page 37 shows the format of an instruction-detail page. The instruction mnemonic is
shown in bold at the top-left, along with its name. In this example, POPFD is the mnemonic and POP
to EFLAGS Doubleword is the name. Next, there is a general description of the instruction’s operation.
Many descriptions have cross-references to more detail in other parts of the manual.

Beneath the general description, the mnemonic is shown again, together with the related opcode(s) and
a description summary. Related instructions are listed below this, followed by a table showing the
flags that the instruction can affect. Finally, each instruction has a summary of the possible exceptions
that can occur when executing the instruction. The columns labeled “Real” and “Virtual-8086” apply
only to execution in legacy mode. The column labeled “Protected” applies both to legacy mode and
long mode, because long mode is a superset of legacy protected mode.

The 128-bit and 64-bit media instructions also have diagrams illustrating the operation. A few
instructions have examples or pseudocode describing the action.

Instruction Overview 37

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 2-1. Format of Instruction-Detail Pages

24594 Rev. 3.07 September 2003 AMD64 Technology

AAM 63

Converts the value in the AL register from binary to two unpacked BCD digits in the
AH (most significant) and AL (least significant) registers using the following formula:

AH = (AL/10d)
AL = (AL mod 10d).

In most modern assemblers, the AAM instruction adjusts to base-10 values. However,
by coding the instruction directly in binary, it can adjust to any base specified by the
immediate byte value (ib) suffixed onto the D4h opcode. For example, code D408h for
octal, D40Ah for decimal, and D40Ch for duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAD, AAS

rFLAGS Affected

Exceptions

AAM ASCII Adjust After Multiply

Mnemonic Opcode Description

AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)

(None) D4 ib Create a pair of unpacked values to the immediate byte base.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M U M U

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Divide by zero, #DE X X X 8-bit immediate value was 0.

Invalid opcode, #UD X This instruction was executed in 64-bit mode.

Mnemonic and any operands Opcode Description of operation

“M” means the flag is either set or
cleared, depending on the result.

Possible exceptions
and causes, by mode of
operation

“Protected” column
covers both legacy

and long mode

Alphabetic mnemonic locator

38 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

2.3 Summary of Registers and Data Types
This section summarizes the registers available to software using the five instruction subsets described
in “Instruction Subsets” on page 35. For details on the organization and use of these registers, see their
respective chapters in volumes 1 and 2.

2.3.1 General-Purpose Instructions

Registers. The size and number of general-purpose registers (GPRs) depends on the operating
mode, as do the size of the flags and instruction-pointer registers. Figure 2-2 shows the registers
available in legacy and compatibility modes.

Figure 2-2. General Registers in Legacy and Compatibility Modes

Figure 2-3 on page 39 shows the registers accessible in 64-bit mode. Compared with legacy mode,
registers become 64 bits wide, eight new data registers (R8–R15) are added and the low byte of all 16
GPRs is available for byte operations, and the four high-byte registers of legacy mode (AH, BH, CH,
and DH) are not available if the REX prefix is used. The high 32 bits of doubleword operands are zero-
extended to 64 bits, but the high bits of word and byte operands are not modified by operations in 64-

513-311.eps

31 15 016

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

AX

16-bit
low
8-bit

high
8-bit 32-bit

BX

CX

DX

SI

DI

BP

SP

AH (4)

BH (7)

CH (5)

DH (6)

AL

BL

CL

DL

SI

DI

BP

SP

FLAGS

IP

31 0

FLAGS

IP

EFLAGS

EIP

0

3

1

2

6

7

5

4

register
encoding

Instruction Overview 39

24594—Rev. 3.16—September 2011 AMD64 Technology

bit mode. The RFLAGS register is 64 bits wide, but the high 32 bits are reserved. They can be written
with anything but they read as zeros (RAZ).

Figure 2-3. General Registers in 64-Bit Mode

For most instructions running in 64-bit mode, access to the extended GPRs requires a either a REX
instruction modification prefix or extended encoding encoding using the VEX or XOP sequences
(page 14).

GPRs_64b_mode.eps

R8D

R9D

R10D

R11D

R12D

R13D

R14D

R15D

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

32-bit

R8

R9

R10

R11

R12

R13

R14

R15

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

64-bit

R8W

R9W

R10W

R11W

R12W

R13W

R14W

R15W

AX

16-bit

BX

CX

DX

SI

DI

BP

SP

63 31 15 7 081632

8

9

10

11

12

13

14

15

0

3

1

2

6

7

5

4

zero-extended
for 32-bit operands

not modified for 8-bit operands
not modified for 16-bit operands low

8 bits

BPL**

AH*

BH*

CH*

DH*

AL

BL

CL

DL

R8B

R9B

R10B

R11B

R12B

R13B

R14B

R15B

SIL**

DIL**

SPL**

63 31 032

RFLAGS

RIP

0

* Not addressable in REX prefix instruction forms
** Only addressable in REX prefix instruction forms

Re
g

is
te

r E
n

co
d

in
g

40 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

Figure 2-4 shows the segment registers which, like the instruction pointer, are used by all instructions.
In legacy and compatibility modes, all segments are accessible. In 64-bit mode, which uses the flat
(non-segmented) memory model, only the CS, FS, and GS segments are recognized, whereas the
contents of the DS, ES, and SS segment registers are ignored (the base for each of these segments is
assumed to be zero, and neither their segment limit nor attributes are checked). For details, see
“Segmented Virtual Memory” in Volume 2.

Figure 2-4. Segment Registers

Data Types. Figure 2-5 on page 41 shows the general-purpose data types. They are all scalar, integer
data types. The 64-bit (quadword) data types are only available in 64-bit mode, and for most
instructions they require a REX instruction prefix.

513-312.eps

15 0

ES

FS

GS

SS

CS

DS

15 0

FS
(Base only)

GS
(Base only)

CS
(Attributes only)

Legacy Mode and
Compatibility Mode

64-Bit
Mode

ignored

ignored

ignored

Instruction Overview 41

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 2-5. General-Purpose Data Types

2.3.2 System Instructions

Registers. The system instructions use several specialized registers shown in Figure 2-6 on page 42.
System software uses these registers to, among other things, manage the processor’s operating
environment, define system resource characteristics, and monitor software execution. With the
exception of the RFLAGS register, system registers can be read and written only from privileged
software.

All system registers are 64 bits wide, except for the descriptor-table registers and the task register,
which include 64-bit base-address fields and other fields.

513-326.eps

127

63

63

31

15

7 0

Quadword

Double
Quadword

Doubleword

Word

Byte

0

s

s

s

s

Quadword

Unsigned Integer

Signed Integer

Doubleword

Word

Byte

Bit

8 bytes (64-bit mode only)

s 16 bytes (64-bit mode only)

127
Double
Quadword

0

16 bytes (64-bit mode only)

4 bytes

2 bytes

31

15

7 3

Packed BCD

BCD Digit

0

8 bytes (64-bit mode only)

4 bytes

2 bytes

42 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

Figure 2-6. System Registers

Data Structures. Figure 2-7 on page 43 shows the system data structures. These are created and
maintained by system software for use in protected mode. A processor running in protected mode uses
these data structures to manage memory and protection, and to store program-state information when
an interrupt or task switch occurs.

Control Registers

CR0

CR2

CR3

CR4

CR8

System-Flags Register

RFLAGS

Debug Registers

DR0

DR1

DR2

DR3

DR6

DR7

513-260.eps

Memory-Typing Registers

MTRRcap

MTRRdefType

MTRRphysBasen

MTRRphysMaskn

MTRRfixn

PAT

TOP_MEM

TOP_MEM2

Machine-Check Registers

MCG_CAP

MCG_STAT

MCG_CTL

MCi_CTL

MCi_STATUS

MCi_ADDR

MCi_MISC

Performance-Monitoring Registers

TSC

PerfEvtSeln

PerfCtrn

Model-Specific Registers

Descriptor-Table Registers

GDTR

IDTR

LDTR

Task Register

TR

Extended-Feature-Enable Register

EFER

Debug-Extension Registers

DebugCtlMSR

LastBranchFromIP

LastBranchToIP

LastIntFromIP

LastIntToIP

System-Configuration Register

SYSCFG

System-Linkage Registers

STAR

LSTAR

CSTAR

FS.base

GS.base

KernelGSbase

SYSENTER_CS

SYSENTER_ESP

SYSENTER_EIP

SFMASK

Instruction Overview 43

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 2-7. System Data Structures

2.3.3 SSE Instructions

Registers. The SSE instructions operate primarily on 128-bit and 256-bit floating-point vector
operands located in the 256-bit YMM/XMM registers. Each 128-bit XMM register is defined as the
lower octword of the corresponding YMM register. The number of available YMM/XMM data
registers depends on the operating mode, as shown in Figure 2-8 below. In legacy and compatibility
modes, eight YMM/XMM registers (YMM/XMM0–7) are available. In 64-bit mode, eight additional
YMM/XMM data registers (YMM/XMM8–15) are available. These eight additional registers are
addressed via the encoding extensions provided by the REX, VEX, and XOP prefixes.

513-261.eps

Segment Descriptors (Contained in Descriptor Tables)

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Task-State Segment

Page-Translation Tables

Page-Map Level-4 Page TablePage DirectoryPage-Directory Pointer

Global-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Interrupt-Descriptor Table

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

Local-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Descriptor Tables

44 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

The MXCSR register contains floating-point and other control and status flags used by the 128-bit
media instructions. Some 128-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and
the MMX registers (Figure 2-12 on page 48) or set or clear flags in the rFLAGS register (see
Figure 2-2 and Figure 2-3).

Figure 2-8. SSE Registers

Data Types. The SSE instruction set architecture provides support for 128-bit and 256-bit packed
floating-point and integer data types as well as integer and floating-point scalars. Figure 2-9 below
shows the 128-bit data types. Figure 2-10 on page 46 and Figure 2-11 on page 47 show the 256-bit
data types. The floating-point data types include IEEE-754 single precision and double precision
types.

513-314 ymm.eps

255 127 0

YMM0

YMM1

YMM2

YMM3

YMM4

YMM5

YMM6

YMM7

YMM8

YMM9

YMM10

YMM11

YMM12

YMM13

YMM14

YMM15

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

XMM8

XMM9

XMM10

XMM11

XMM12

XMM13

XMM14

XMM15

Available in all modes

Available only in 64-bit mode

31 0

MXCSRMedia eXtension Control and Status Register

Instruction Overview 45

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 2-9. 128-Bit SSE Data Types
128-bit datatypes.eps

s

s

s

Scalar Floating-Point – Double Precision and Single Precision

significand

exp significand

63 51 exp

s

31 22 0

0

127 0

Scalar Unsigned Integers

127

double quadword (octword)

15

31

63

quadword

doubleword

word

7

byte

0

bit

sss

s

31 2263 5495 86127 118 0

Vector (Packed) Floating-Point – Double Precision and Single Precision

significand

exp significand

063 51127 115

exp significand

expsignificandexpsignificandexpsignificandexp

s

s

71523313947556371798795103111119127 0

quadwordquadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

Vector (Packed) Signed Integer – Quadword, Doubleword, Word, Byte

s s s s s sssss

s

s s

ss

s

s

s

s s

s

s

s s

s

s

s

s

byte byte byte byte byte byte byte byte byte byte byte byte byte bytebytebytes s

71523313947556371798795103111119127 0

Vector (Packed) Unsigned Integer – Quadword, Doubleword, Word, Byte

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

doubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

quadword

doubleword

Scalar Signed Integers

127

double quadword (octword)

15

31

63

quadword

doubleword

word

7

byte

ss

s

s

s

s

1

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

46 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

Figure 2-10. SSE 256-bit Data Types

256-bit datatypes_a.eps

Vector (Packed) Floating-Point – Double Precision and Single Precision

ssss

ss

ssss

ss

31 2263 5495 86127 118 0

significand

exp significand

063 51127 115

exp significand

expsignificandexpsignificandexpsignificandexp

ssss

ss

ssss

ss

159 150191 182223 214255 246 128

significand

exp significand

128191 179255 243

exp significand

expsignificandexpsignificandexpsignificandexp

Vector (Packed) Signed Integer – Double Quadword, Quadword, Doubleword, Word, Byte

ssssssss

ssss

ss

ssssssssssssssss

ssssssss

ssss

ss

s

ssssssssssssssss

135143151159167175183191199207215223231239247255 128

quadword

double quadword (octword)

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

ssssssss

ssss

s

ssssssssssssssss

ssssssss

ssss

ss

ssssssssssssssss

71523313947556371798795103111119127 0

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

s

quadword

Instruction Overview 47

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 2-11. SSE 256-Bit Data Types (Continued)

256-bit datatypes_b.eps

Vector (Packed) Unsigned Integer – Double Quadword, Quadword, Doubleword, Word, ByteVector (Packed) Unsigned Integer – Double Quadword, Quadword, Doubleword, Word, Byte

135143151159167175183191199207215223231239247255 128

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

71523313947556371798795103111119127 0

bytebytebytebytebytebytebytebytebytebytebytebytebytebytebytebyte

quadword

double quadword (octword)

quadword

doubleworddoubleworddoubleworddoubleword

wordwordwordwordwordwordwordword

127 0

Scalar Unsigned Integers

127

double quadword

15

31

63

quadword

doubleword

word

7

0

byte

bit

Scalar Signed Integers

127

double quadword

15

31

63

quadword

doubleword

word

7 0

byte

ss

s

s

s

s

s

s

s

s

31 22 0

Scalar Floating-Point – Double Precision and Single Precision

significand

exp significand
63 51 exp

1

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

48 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

2.3.4 64-Bit Media Instructions

Registers. The 64-bit media instructions use the eight 64-bit MMX registers, as shown in
Figure 2-12. These registers are mapped onto the x87 floating-point registers, and 64-bit media
instructions write the x87 tag word in a way that prevents an x87 instruction from using MMX data.

Some 64-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and the XMM registers
(Figure 2-8).

Figure 2-12. 64-Bit Media Registers

Data Types. Figure 2-13 on page 49 shows the 64-bit media data types. They include floating-point
and integer vectors and integer scalars. The floating-point data type, used by 3DNow! instructions,
consists of a packed vector or two IEEE-754 32-bit single-precision data types. Unlike other kinds of
floating-point instructions, however, the 3DNow!™ instructions do not generate floating-point
exceptions. For this reason, there is no register for reporting or controlling the status of exceptions in
the 64-bit-media instruction subset.

513-327.eps

MMX Data Registers
63 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

Instruction Overview 49

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 2-13. 64-Bit Media Data Types

ss ss

ssss

ss

ssssssss

ssss

ss

ssssssss

513-319.eps

715233139475563 0

bytebytebytebytebytebytebytebyte

31 2263 54 0

Vector (Packed) Single-Precision Floating-Point

Vector (Packed) Unsigned Integers

715233139475563 0

doubleworddoubleword

wordwordwordword

doubleworddoubleword

wordwordwordword

bytebytebytebytebytebytebytebyte

Vector (Packed) Signed Integers

significandexpsignificandexp

63

31

15

7 0

s

s

s

s

Unsigned Integers

Signed Integers

quadword

doubleword

word

byte

63

31

15

7

0

quadword

doubleword

word

byte

50 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

2.3.5 x87 Floating-Point Instructions

Registers. The x87 floating-point instructions use the x87 registers shown in Figure 2-14. There are
eight 80-bit data registers, three 16-bit registers that hold the x87 control word, status word, and tag
word, and three registers (last instruction pointer, last opcode, last data pointer) that hold information
about the last x87 operation.

The physical data registers are named FPR0–FPR7, although x87 software references these registers
as a stack of registers, named ST(0)–ST(7). The x87 instructions store operands only in their own 80-
bit floating-point registers or in memory. They do not access the GPR or XMM registers.

Figure 2-14. x87 Registers

Data Types. Figure 2-15 on page 51 shows all x87 data types. They include three floating-point
formats (80-bit double-extended precision, 64-bit double precision, and 32-bit single precision), three
signed-integer formats (quadword, doubleword, and word), and an 80-bit packed binary-coded
decimal (BCD) format.

Tag Word

Status Word

Control Word

513-321.eps

x87 Data Registers
79 0

fpr0

fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

015

63

010

Instruction Pointer (rIP)

Data Pointer (rDP)

Tag Word

Status Word

Control Word

Opcode

Instruction Overview 51

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 2-15. x87 Data Types

2.4 Summary of Exceptions
Table 2-1 on page 52 lists all possible exceptions. The table shows the interrupt-vector numbers,
names, mnemonics, source, and possible causes. Exceptions that apply to specific instructions are
documented with each instruction in the instruction-detail pages that follow.

s

513-317.eps

63

31

31

22

15 0

0

0

Quadword

Doubleword

Words

s

s

Signed Integer

Binary-Coded Decimal (BCD)

Floating-Point

8 bytes

4 bytes

63

63

51

Double Precision

Single Precisions

s

2 bytes

79

79

079 71

Double-Extended
Precision

Packed Decimal

s i

significand

exp significand

exp significand

exp

s

52 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

2.5 Notation

2.5.1 Mnemonic Syntax

Each instruction has a syntax that includes the mnemonic and any operands that the instruction can
take. Figure 2-16 shows an example of a syntax in which the instruction takes two operands. In most

Table 2-1. Interrupt-Vector Source and Cause
Vector Interrupt (Exception) Mnemonic Source Cause

0 Divide-By-Zero-Error #DE Software DIV, IDIV, AAM instructions
1 Debug #DB Internal Instruction accesses and data accesses
2 Non-Maskable-Interrupt #NMI External External NMI signal
3 Breakpoint #BP Software INT3 instruction
4 Overflow #OF Software INTO instruction
5 Bound-Range #BR Software BOUND instruction
6 Invalid-Opcode #UD Internal Invalid instructions
7 Device-Not-Available #NM Internal x87 instructions
8 Double-Fault #DF Internal Interrupt during an interrupt
9 Coprocessor-Segment-Overrun — External Unsupported (reserved)

10 Invalid-TSS #TS Internal Task-state segment access and task
switch

11 Segment-Not-Present #NP Internal Segment access through a descriptor
12 Stack #SS Internal SS register loads and stack references

13 General-Protection #GP Internal Memory accesses and protection
checks

14 Page-Fault #PF Internal Memory accesses when paging
enabled

15 Reserved —

16 Floating-Point Exception-
Pending #MF Software x87 floating-point and 64-bit media

floating-point instructions
17 Alignment-Check #AC Internal Memory accesses

18 Machine-Check #MC Internal
External Model specific

19 SIMD Floating-Point #XF Internal 128-bit media floating-point instructions
20—29 Reserved (Internal and External) —

30 SVM Security Exception #SX External Security-Sensitive Events
31 Reserved (Internal and External) —

0—255 External Interrupts (Maskable) #INTR External External interrupt signal
0—255 Software Interrupts — Software INTn instruction

Instruction Overview 53

24594—Rev. 3.16—September 2011 AMD64 Technology

instructions that take two operands, the first (left-most) operand is both a source operand (the first
source operand) and the destination operand. The second (right-most) operand serves only as a source,
not a destination.

Figure 2-16. Syntax for Typical Two-Operand Instruction

The following notation is used to denote the size and type of source and destination operands:

• cReg—Control register.
• dReg—Debug register.
• imm8—Byte (8-bit) immediate.
• imm16—Word (16-bit) immediate.
• imm16/32—Word (16-bit) or doubleword (32-bit) immediate.
• imm32—Doubleword (32-bit) immediate.
• imm32/64—Doubleword (32-bit) or quadword (64-bit) immediate.
• imm64—Quadword (64-bit) immediate.
• mem—An operand of unspecified size in memory.
• mem8—Byte (8-bit) operand in memory.
• mem16—Word (16-bit) operand in memory.
• mem16/32—Word (16-bit) or doubleword (32-bit) operand in memory.
• mem32—Doubleword (32-bit) operand in memory.
• mem32/48—Doubleword (32-bit) or 48-bit operand in memory.
• mem48—48-bit operand in memory.
• mem64—Quadword (64-bit) operand in memory.
• mem128—Double quadword (128-bit) operand in memory.
• mem16:16—Two sequential word (16-bit) operands in memory.
• mem16:32—A doubleword (32-bit) operand followed by a word (16-bit) operand in memory.
• mem32real—Single-precision (32-bit) floating-point operand in memory.

513-322.eps

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

ADDPD xmm1, xmm2/mem128

54 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

• mem32int—Doubleword (32-bit) integer operand in memory.
• mem64real—Double-precision (64-bit) floating-point operand in memory.
• mem64int—Quadword (64-bit) integer operand in memory.
• mem80real—Double-extended-precision (80-bit) floating-point operand in memory.
• mem80dec—80-bit packed BCD operand in memory, containing 18 4-bit BCD digits.
• mem2env—16-bit x87 control word or x87 status word.
• mem14/28env—14-byte or 28-byte x87 environment. The x87 environment consists of the x87

control word, x87 status word, x87 tag word, last non-control instruction pointer, last data pointer,
and opcode of the last non-control instruction completed.

• mem94/108env—94-byte or 108-byte x87 environment and register stack.
• mem512env—512-byte environment for 128-bit media, 64-bit media, and x87 instructions.
• mmx—Quadword (64-bit) operand in an MMX register.
• mmx1—Quadword (64-bit) operand in an MMX register, specified as the left-most (first) operand

in the instruction syntax.
• mmx2—Quadword (64-bit) operand in an MMX register, specified as the right-most (second)

operand in the instruction syntax.
• mmx/mem32—Doubleword (32-bit) operand in an MMX register or memory.
• mmx/mem64—Quadword (64-bit) operand in an MMX register or memory.
• mmx1/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the left-

most (first) operand in the instruction syntax.
• mmx2/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the right-

most (second) operand in the instruction syntax.
• moffset—Direct memory offset that specifies an operand in memory.
• moffset8—Direct memory offset that specifies a byte (8-bit) operand in memory.
• moffset16—Direct memory offset that specifies a word (16-bit) operand in memory.
• moffset32—Direct memory offset that specifies a doubleword (32-bit) operand in memory.
• moffset64—Direct memory offset that specifies a quadword (64-bit) operand in memory.
• pntr16:16—Far pointer with 16-bit selector and 16-bit offset.
• pntr16:32—Far pointer with 16-bit selector and 32-bit offset.
• reg—Operand of unspecified size in a GPR register.
• reg8—Byte (8-bit) operand in a GPR register.
• reg16—Word (16-bit) operand in a GPR register.
• reg16/32—Word (16-bit) or doubleword (32-bit) operand in a GPR register.
• reg32—Doubleword (32-bit) operand in a GPR register.
• reg64—Quadword (64-bit) operand in a GPR register.
• reg/mem8—Byte (8-bit) operand in a GPR register or memory.

Instruction Overview 55

24594—Rev. 3.16—September 2011 AMD64 Technology

• reg/mem16—Word (16-bit) operand in a GPR register or memory.
• reg/mem32—Doubleword (32-bit) operand in a GPR register or memory.
• reg/mem64—Quadword (64-bit) operand in a GPR register or memory.
• rel8off—Signed 8-bit offset relative to the instruction pointer.
• rel16off—Signed 16-bit offset relative to the instruction pointer.
• rel32off—Signed 32-bit offset relative to the instruction pointer.
• segReg or sReg—Word (16-bit) operand in a segment register.
• ST(0)—x87 stack register 0.
• ST(i)—x87 stack register i, where i is between 0 and 7.
• xmm—Double quadword (128-bit) operand in an XMM register.
• xmm1—Double quadword (128-bit) operand in an XMM register, specified as the left-most (first)

operand in the instruction syntax.
• xmm2—Double quadword (128-bit) operand in an XMM register, specified as the right-most

(second) operand in the instruction syntax.
• xmm/mem64—Quadword (64-bit) operand in a 128-bit XMM register or memory.
• xmm/mem128—Double quadword (128-bit) operand in an XMM register or memory.
• xmm1/mem128—Double quadword (128-bit) operand in an XMM register or memory, specified as

the left-most (first) operand in the instruction syntax.
• xmm2/mem128—Double quadword (128-bit) operand in an XMM register or memory, specified as

the right-most (second) operand in the instruction syntax.

2.5.2 Opcode Syntax

In addition to the notation shown above in “Mnemonic Syntax” on page 52, the following notation
indicates the size and type of operands in the syntax of an instruction opcode:

• /digit—Indicates that the ModRM byte specifies only one register or memory (r/m) operand. The
digit is specified by the ModRM reg field and is used as an instruction-opcode extension. Valid
digit values range from 0 to 7.

• /r—Indicates that the ModRM byte specifies both a register operand and a reg/mem (register or
memory) operand.

• cb, cw, cd, cp—Specifies a code-offset value and possibly a new code-segment register value. The
value following the opcode is either one byte (cb), two bytes (cw), four bytes (cd), or six bytes
(cp).

• ib, iw, id, iq—Specifies an immediate-operand value. The opcode determines whether the value is
signed or unsigned. The value following the opcode, ModRM, or SIB byte is either one byte (ib),
two bytes (iw), or four bytes (id). Word and doubleword values start with the low-order byte.

• +rb, +rw, +rd, +rq—Specifies a register value that is added to the hexadecimal byte on the left,
forming a one-byte opcode. The result is an instruction that operates on the register specified by
the register code. Valid register-code values are shown in Table 2-2.

56 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

• m64—Specifies a quadword (64-bit) operand in memory.
• +i—Specifies an x87 floating-point stack operand, ST(i). The value is used only with x87 floating-

point instructions. It is added to the hexadecimal byte on the left, forming a one-byte opcode. Valid
values range from 0 to 7.

2.5.3 Pseudocode Definitions

Pseudocode examples are given for the actions of several complex instructions (for example, see
“CALL (Near)” on page 118). The following definitions apply to all such pseudocode examples:

///
// Basic Definitions
///

// All comments start with these double slashes.

REAL_MODE = (cr0.pe=0)
PROTECTED_MODE = ((cr0.pe=1) && (rflags.vm=0))
VIRTUAL_MODE = ((cr0.pe=1) && (rflags.vm=1))
LEGACY_MODE = (efer.lma=0)
LONG_MODE = (efer.lma=1)
64BIT_MODE = ((efer.lma=1) && (cs.L=1) && (cs.d=0))

Table 2-2. +rb, +rw, +rd, and +rq Register Value
REX.B

Bit1
Value

Specified Register
+rb +rw +rd +rq

0
or no REX

Prefix

0 AL AX EAX RAX
1 CL CX ECX RCX
2 DL DX EDX RDX
3 BL BX EBX RBX
4 AH, SPL1 SP ESP RSP
5 CH, BPL1 BP EBP RBP
6 DH, SIL1 SI ESI RSI
7 BH, DIL1 DI EDI RDI

1

0 R8B R8W R8D R8
1 R9B R9W R9D R9
2 R10B R10W R10D R10
3 R11B R11W R11D R11
4 R12B R12W R12D R12
5 R13B R13W R13D R13
6 R14B R14W R14D R14
7 R15B R15W R15D R15

1. See “REX Prefix” on page 14.

Instruction Overview 57

24594—Rev. 3.16—September 2011 AMD64 Technology

COMPATIBILITY_MODE = (efer.lma=1) && (cs.L=0)
PAGING_ENABLED = (cr0.pg=1)
ALIGNMENT_CHECK_ENABLED = ((cr0.am=1) && (eflags.ac=1) && (cpl=3))
CPL = the current privilege level (0-3)
OPERAND_SIZE = 16, 32, or 64 (depending on current code and 66h/rex prefixes)
ADDRESS_SIZE = 16, 32, or 64 (depending on current code and 67h prefixes)
STACK_SIZE = 16, 32, or 64 (depending on current code and SS.attr.B)

old_RIP = RIP at the start of current instruction
old_RSP = RSP at the start of current instruction
old_RFLAGS = RFLAGS at the start of the instruction
old_CS = CS selector at the start of current instruction
old_DS = DS selector at the start of current instruction
old_ES = ES selector at the start of current instruction
old_FS = FS selector at the start of current instruction
old_GS = GS selector at the start of current instruction
old_SS = SS selector at the start of current instruction

RIP = the current RIP register
RSP = the current RSP register
RBP = the current RBP register
RFLAGS = the current RFLAGS register
next_RIP = RIP at start of next instruction

CS = the current CS descriptor, including the subfields:
 sel base limit attr
SS = the current SS descriptor, including the subfields:
 sel base limit attr

SRC = the instruction’s Source operand
DEST = the instruction’s Destination operand

temp_* // 64-bit temporary register

temp_*_desc // temporary descriptor, with subfields:
 // if it points to a block of memory: sel base limit attr
 // if it’s a gate descriptor: sel offset segment attr

NULL = 0x0000 // null selector is all zeros

// V,Z,A,S are integer variables, assigned a value when an instruction begins
// executing (they can be assigned a different value in the middle of an
// instruction, if needed)

V = 2 if OPERAND_SIZE=16
 4 if OPERAND_SIZE=32
 8 if OPERAND_SIZE=64

Z = 2 if OPERAND_SIZE=16
 4 if OPERAND_SIZE=32
 4 if OPERAND_SIZE=64

58 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

A = 2 if ADDRESS_SIZE=16
 4 if ADDRESS_SIZE=32
 8 if ADDRESS_SIZE=64

S = 2 if STACK_SIZE=16
 4 if STACK_SIZE=32
 8 if STACK_SIZE=64

///
// Bit Range Inside a Register
///

temp_data.[X:Y] // Bit X through Y in temp_data, with the other bits
 // in the register masked off.

///
// Moving Data From One Register To Another
///

temp_dest.b = temp_src // 1-byte move (copies lower 8 bits of temp_src to
 // temp_dest, preserving the upper 56 bits of temp_dest)
temp_dest.w = temp_src // 2-byte move (copies lower 16 bits of temp_src to
 // temp_dest, preserving the upper 48 bits of temp_dest)
temp_dest.d = temp_src // 4-byte move (copies lower 32 bits of temp_src to
 // temp_dest, and zeros out the upper 32 bits of temp_dest)
temp_dest.q = temp_src // 8-byte move (copies all 64 bits of temp_src to
 // temp_dest)

temp_dest.v = temp_src // 2-byte move if V=2,
 // 4-byte move if V=4,
 // 8-byte move if V=8

temp_dest.z = temp_src // 2-byte move if Z=2,
 // 4-byte move if Z=4

temp_dest.a = temp_src // 2-byte move if A=2,
 // 4-byte move if A=4,
 // 8-byte move if A=8

temp_dest.s = temp_src // 2-byte move if S=2,
 // 4-byte move if S=4,
 // 8-byte move if S=8

///
// Bitwise Operations
///

Instruction Overview 59

24594—Rev. 3.16—September 2011 AMD64 Technology

temp = a AND b
temp = a OR b
temp = a XOR b
temp = NOT a
temp = a SHL b
temp = a SHR b

///
// Logical Operations
///

IF (FOO && BAR)
IF (FOO || BAR)
IF (FOO = BAR)
IF (FOO != BAR)
IF (FOO > BAR)
IF (FOO < BAR)
IF (FOO >= BAR)
IF (FOO <= BAR)

///
// IF-THEN-ELSE
///

IF (FOO)
 ...

IF (FOO)
 ...
ELSIF (BAR)
 ...
ELSE
 ...

IF ((FOO && BAR) || (CONE && HEAD))
 ...

///
// Exceptions
///

EXCEPTION [#GP(0)] // error code in parenthesis
EXCEPTION [#UD] // if no error code

possible exception types:

#DE // Divide-By-Zero-Error Exception (Vector 0)
#DB // Debug Exception (Vector 1)

60 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

#BP // INT3 Breakpoint Exception (Vector 3)
#OF // INTO Overflow Exception (Vector 4)
#BR // Bound-Range Exception (Vector 5)
#UD // Invalid-Opcode Exception (Vector 6)
#NM // Device-Not-Available Exception (Vector 7)
#DF // Double-Fault Exception (Vector 8)
#TS // Invalid-TSS Exception (Vector 10)
#NP // Segment-Not-Present Exception (Vector 11)
#SS // Stack Exception (Vector 12)
#GP // General-Protection Exception (Vector 13)
#PF // Page-Fault Exception (Vector 14)
#MF // x87 Floating-Point Exception-Pending (Vector 16)
#AC // Alignment-Check Exception (Vector 17)
#MC // Machine-Check Exception (Vector 18)
#XF // SIMD Floating-Point Exception (Vector 19)

///
// READ_MEM
// General memory read. This zero-extends the data to 64 bits and returns it.
///

usage:
 temp = READ_MEM.x [seg:offset] // where x is one of {v, z, b, w, d, q}
 // and denotes the size of the memory read

definition:

 IF ((seg AND 0xFFFC) = NULL) // GP fault for using a null segment to
 // reference memory
 EXCEPTION [#GP(0)]

 IF ((seg=CS) || (seg=DS) || (seg=ES) || (seg=FS) || (seg=GS))
 // CS,DS,ES,FS,GS check for segment limit or canonical
 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 EXCEPTION [#GP(0)]
 // #GP fault for segment limit violation in non-64-bit mode
 IF ((64BIT_MODE) && (offset is non-canonical))
 EXCEPTION [#GP(0)]
 // #GP fault for non-canonical address in 64-bit mode
 ELSIF (seg=SS) // SS checks for segment limit or canonical
 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 EXCEPTION [#SS(0)]
 // stack fault for segment limit violation in non-64-bit mode
 IF ((64BIT_MODE) && (offset is non-canonical))
 EXCEPTION [#SS(0)]
 // stack fault for non-canonical address in 64-bit mode
 ELSE // ((seg=GDT) || (seg=LDT) || (seg=IDT) || (seg=TSS))
 // GDT,LDT,IDT,TSS check for segment limit and canonical
 IF (offset > seg.limit)
 EXCEPTION [#GP(0)] // #GP fault for segment limit violation

Instruction Overview 61

24594—Rev. 3.16—September 2011 AMD64 Technology

 // in all modes
 IF ((LONG_MODE) && (offset is non-canonical))
 EXCEPTION [#GP(0)] // #GP fault for non-canonical address in long mode

 IF ((ALIGNMENT_CHECK_ENABLED) && (offset misaligned, considering its
 size and alignment))
 EXCEPTION [#AC(0)]

 IF ((64_bit_mode) && ((seg=CS) || (seg=DS) || (seg=ES) || (seg=SS))
 temp_linear = offset
 ELSE
 temp_linear = seg.base + offset

 IF ((PAGING_ENABLED) && (virtual-to-physical translation for temp_linear
 results in a page-protection violation))
 EXCEPTION [#PF(error_code)] // page fault for page-protection violation
 // (U/S violation, Reserved bit violation)

 IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
 EXCEPTION [#PF(error_code)] // page fault for not-present page

 temp_data = memory [temp_linear].x // zero-extends the data to 64
 // bits, and saves it in temp_data

 RETURN (temp_data) // return the zero-extended data

///
// WRITE_MEM // General memory write
///

usage:
 WRITE_MEM.x [seg:offset] = temp.x // where <X> is one of these:
 // {V, Z, B, W, D, Q} and denotes the
 // size of the memory write

definition:

 IF ((seg & 0xFFFC)= NULL) // GP fault for using a null segment
 // to reference memory
 EXCEPTION [#GP(0)]

 IF (seg isn’t writable) // GP fault for writing to a read-only segment
 EXCEPTION [#GP(0)]

 IF ((seg=CS) || (seg=DS) || (seg=ES) || (seg=FS) || (seg=GS))
 // CS,DS,ES,FS,GS check for segment limit or canonical
 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 EXCEPTION [#GP(0)]
 // #GP fault for segment limit violation in non-64-bit mode
 IF ((64BIT_MODE) && (offset is non-canonical))

62 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

 EXCEPTION [#GP(0)]
 // #GP fault for non-canonical address in 64-bit mode
 ELSIF (seg=SS) // SS checks for segment limit or canonical
 IF ((!64BIT_MODE) && (offset is outside seg’s limit))
 EXCEPTION [#SS(0)]
 // stack fault for segment limit violation in non-64-bit mode
 IF ((64BIT_MODE) && (offset is non-canonical))
 EXCEPTION [#SS(0)]
 // stack fault for non-canonical address in 64-bit mode
 ELSE // ((seg=GDT) || (seg=LDT) || (seg=IDT) || (seg=TSS))
 // GDT,LDT,IDT,TSS check for segment limit and canonical
 IF (offset > seg.limit)
 EXCEPTION [#GP(0)]
 // #GP fault for segment limit violation in all modes
 IF ((LONG_MODE) && (offset is non-canonical))
 EXCEPTION [#GP(0)]
 // #GP fault for non-canonical address in long mode

 IF ((ALIGNMENT_CHECK_ENABLED) && (offset is misaligned, considering
 its size and alignment))
 EXCEPTION [#AC(0)]

 IF ((64_bit_mode) && ((seg=CS) || (seg=DS) || (seg=ES) || (seg=SS))
 temp_linear = offset
 ELSE
 temp_linear = seg.base + offset

 IF ((PAGING_ENABLED) && (the virtual-to-physical translation for
 temp_linear results in a page-protection violation))
 {
 EXCEPTION [#PF(error_code)]
 // page fault for page-protection violation
 // (U/S violation, Reserved bit violation)
 }

 IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
 EXCEPTION [#PF(error_code)] // page fault for not-present page

 memory [temp_linear].x = temp.x // write the bytes to memory

///
// PUSH // Write data to the stack
///

usage:
 PUSH.x temp // where x is one of these: {v, z, b, w, d, q} and
 // denotes the size of the push

definition:

Instruction Overview 63

24594—Rev. 3.16—September 2011 AMD64 Technology

 WRITE_MEM.x [SS:RSP.s - X] = temp.x // write to the stack
 RSP.s = RSP - X // point rsp to the data just written

///
// POP // Read data from the stack, zero-extend it to 64 bits
///

usage:
 POP.x temp // where x is one of these: {v, z, b, w, d, q} and
 // denotes the size of the pop

definition:

 temp = READ_MEM.x [SS:RSP.s] // read from the stack
 RSP.s = RSP + X // point rsp above the data just written

///
// READ_DESCRIPTOR // Read 8-byte descriptor from GDT/LDT, return the descriptor
///

usage:
 temp_descriptor = READ_DESCRIPTOR (selector, chktype)
 // chktype field is one of the following:
 // cs_chk used for far call and far jump
 // clg_chk used when reading CS for far call or far jump through call gate
 // ss_chk used when reading SS
 // iret_chk used when reading CS for IRET or RETF
 // intcs_chk used when readin the CS for interrupts and exceptions

definition:

 temp_offset = selector AND 0xfff8 // upper 13 bits give an offset
 // in the descriptor table

 IF (selector.TI = 0) // read 8 bytes from the gdt, split it into
 // (base,limit,attr) if the type bits
 temp_desc = READ_MEM.q [gdt:temp_offset]
 // indicate a block of memory, or split
 // it into (segment,offset,attr)
 // if the type bits indicate
 // a gate, and save the result in temp_desc
 ELSE
 temp_desc = READ_MEM.q [ldt:temp_offset]
 // read 8 bytes from the ldt, split it into
 // (base,limit,attr) if the type bits
 // indicate a block of memory, or split
 // it into (segment,offset,attr) if the type
 // bits indicate a gate, and save the result
 // in temp_desc

64 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

 IF (selector.rpl or temp_desc.attr.dpl is illegal for the current mode/cpl)
 EXCEPTION [#GP(selector)]

 IF (temp_desc.attr.type is illegal for the current mode/chktype)
 EXCEPTION [#GP(selector)]

 IF (temp_desc.attr.p=0)
 EXCEPTION [#NP(selector)]

 RETURN (temp_desc)

///
// READ_IDT // Read an 8-byte descriptor from the IDT, return the descriptor
///

usage:
 temp_idt_desc = READ_IDT (vector)
 // "vector" is the interrupt vector number

definition:

 IF (LONG_MODE) // long-mode idt descriptors are 16 bytes long
 temp_offset = vector*16
 ELSE // (LEGACY_MODE) legacy-protected-mode idt descriptors are 8 bytes long
 temp_offset = vector*8

 temp_desc = READ_MEM.q [idt:temp_offset]
 // read 8 bytes from the idt, split it into
 // (segment,offset,attr), and save it in temp_desc

 IF (temp_desc.attr.dpl is illegal for the current mode/cpl)
 // exception, with error code that indicates this idt gate
 EXCEPTION [#GP(vector*8+2)]

 IF (temp_desc.attr.type is illegal for the current mode)
 // exception, with error code that indicates this idt gate
 EXCEPTION [#GP(vector*8+2)]

 IF (temp_desc.attr.p=0)
 EXCEPTION [#NP(vector*8+2)]
 // segment-not-present exception, with an error code that
 // indicates this idt gate

 RETURN (temp_desc)

///
// READ_INNER_LEVEL_STACK_POINTER
// Read a new stack pointer (rsp or ss:esp) from the tss

Instruction Overview 65

24594—Rev. 3.16—September 2011 AMD64 Technology

///

usage:
 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER (new_cpl, ist_index)

definition:

 IF (LONG_MODE)
 {
 IF (ist_index>0)
 // if IST is selected, read an ISTn stack pointer from the tss
 temp_RSP = READ_MEM.q [tss:ist_index*8+28]
 ELSE // (ist_index=0)
 // otherwise read an RSPn stack pointer from the tss
 temp_RSP = READ_MEM.q [tss:new_cpl*8+4]

 temp_SS_desc.sel = NULL + new_cpl
 // in long mode, changing to lower cpl sets SS.sel to
 // NULL+new_cpl
 }
 ELSE // (LEGACY_MODE)
 {
 temp_RSP = READ_MEM.d [tss:new_cpl*8+4] // read ESPn from the tss
 temp_sel = READ_MEM.d [tss:new_cpl*8+8] // read SSn from the tss
 temp_SS_desc = READ_DESCRIPTOR (temp_sel, ss_chk)
 }

 return (temp_RSP:temp_SS_desc)

66 Instruction Overview

AMD64 Technology 24594—Rev. 3.16—September 2011

///
// READ_BIT_ARRAY // Read 1 bit from a bit array in memory
///

usage:
 temp_value = READ_BIT_ARRAY ([mem], bit_number)

definition:

 temp_BYTE = READ_MEM.b [mem + (bit_number SHR 3)]
 // read the byte containing the bit

 temp_BIT = temp_BYTE SHR (bit_number & 7)
 // shift the requested bit position into bit 0

 return (temp_BIT & 0x01) // return ’0’ or ’1’

Instruction Reference 67

24594—Rev. 3.16—September 2011 AMD64 Technology

3 General-Purpose Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the general-purpose instructions. General-purpose instructions are used in
basic software execution. Most of these instructions load, store, or operate on data located in the
general-purpose registers (GPRs), in memory, or in both. The remaining instructions are used to alter
the sequential flow of the program by branching to other locations within the program, or to entirely
different programs. With the exception of the MOVD, MOVMSKPD and MOVMSKPS instructions,
which operate on MMX/XMM registers, the instructions within the category of general-purpose
instructions do not operate on any other register set.

Most general-purpose instructions are supported in all hardware implementations of the AMD64
architecture, however it may be necessary to use the CPUID instruction to test for support for a small
set of general-purpose instructions. These instructions are listed in Table 3-1, along with the CPUID
function, the register and bit used to test for the presence of the instruction.

Table 3-1. Instruction Support Indicated by CPUID Feature Bits
Instruction Register[Bit] Feature Mnemonic CPUID Function(s)

Bit Manipulation Instructions EBX[3] BMI 0000_0007h (ECX=0)
CMPXCHG8B EDX[8] CMPXCHG8B 0000_0001h, 8000_0001h
CMPXCHG16B ECX[13] CMPXCHG16B 0000_0001h
CMOVcc (Conditional Moves) EDX[15] CMOV 0000_0001h, 8000_0001h
CLFLUSH EDX[19] CLFSH 0000_0001h
CRC32 ECX[20] SSE42 0000_0001h

LZCNT ECX[5] Advanced Bit
Manipulation (ABM) 8000_0001h

Long Mode instructions EDX[29] Long Mode (LM) 8000_0001h
MFENCE, LFENCE EDX[26] SSE2 0000_0001h

MOVD
EDX[25] SSE

0000_0001h
EDX[26] SSE2

MOVNTI EDX[26] SSE2 0000_0001h
POPCNT ECX[23] POPCNT 0000_0001h

PREFETCH/W
ECX[8] 3DNow!™ Prefetch

8000_0001hEDX[29] LM
EDX[31] 3DNow!™

SFENCE EDX[25] FXSR 0000_0001h
Trailing Bit Manipulation
Instructions ECX[21] TBM 8000_0001h

68 Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

The general-purpose instructions can be used in legacy mode or 64-bit long mode. Compilation of
general-purpose programs for execution in 64-bit long mode offers three primary advantages: access
to the eight extended, 64-bit general-purpose registers (for a register set consisting of GPR0–GPR15),
access to the 64-bit virtual address space, and access to the RIP-relative addressing mode.

For further information about the general-purpose instructions and register resources, see:

• “General-Purpose Programming” in Volume 1.
• “Summary of Registers and Data Types” on page 38.
• “Notation” on page 52.
• “Instruction Prefixes” on page 5.
• Appendix B, “General-Purpose Instructions in 64-Bit Mode.” In particular, see “General Rules for

64-Bit Mode” on page 453.

Instruction Reference AAA 69

24594—Rev. 3.16—September 2011 AMD64 Technology

Adjusts the value in the AL register to an unpacked BCD value. Use the AAA instruction after using
the ADD instruction to add two unpacked BCD numbers.

If the value in the lower nibble of AL is greater than 9 or the AF flag is set to 1, the instruction
increments the AH register, adds 6 to the AL register, and sets the CF and AF flags to 1. Otherwise, it
does not change the AH register and clears the CF and AF flags to 0. In either case, AAA clears bits
7–4 of the AL register, leaving the correct decimal digit in bits 3–0.

This instruction also makes it possible to add ASCII numbers without having to mask off the upper
nibble ‘3’.

MXCSR Flags Affected

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAD, AAM, AAS

rFLAGS Affected

Exceptions

AAA ASCII Adjust After Addition

Mnemonic Opcode Description

AAA 37 Create an unpacked BCD number.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U M U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

70 AAD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Converts two unpacked BCD digits in the AL (least significant) and AH (most significant) registers to
a single binary value in the AL register using the following formula:
AL = ((10d * AH) + (AL))

After the conversion, AH is cleared to 00h.

In most modern assemblers, the AAD instruction adjusts from base-10 values. However, by coding the
instruction directly in binary, it can adjust from any base specified by the immediate byte value (ib)
suffixed onto the D5h opcode. For example, code D508h for octal, D50Ah for decimal, and D50Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAM, AAS

rFLAGS Affected

Exceptions

AAD ASCII Adjust Before Division

Mnemonic Opcode Description

AAD D5 0A Adjust two BCD digits in AL and AH.
(Invalid in 64-bit mode.)

(None) D5 ib Adjust two BCD digits to the immediate byte base.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M U M U

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

Instruction Reference AAM 71

24594—Rev. 3.16—September 2011 AMD64 Technology

Converts the value in the AL register from binary to two unpacked BCD digits in the AH (most
significant) and AL (least significant) registers using the following formula:
AH = (AL/10d)
AL = (AL mod 10d)

In most modern assemblers, the AAM instruction adjusts to base-10 values. However, by coding the
instruction directly in binary, it can adjust to any base specified by the immediate byte value (ib)
suffixed onto the D4h opcode. For example, code D408h for octal, D40Ah for decimal, and D40Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAD, AAS

rFLAGS Affected

Exceptions

AAM ASCII Adjust After Multiply

Mnemonic Opcode Description

AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)

(None) D4 ib
Create a pair of unpacked values to the immediate byte
base.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M U M U

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined
flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Divide by zero, #DE X X X 8-bit immediate value was 0.
Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

72 AAS Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Adjusts the value in the AL register to an unpacked BCD value. Use the AAS instruction after using
the SUB instruction to subtract two unpacked BCD numbers.

If the value in AL is greater than 9 or the AF flag is set to 1, the instruction decrements the value in
AH, subtracts 6 from the AL register, and sets the CF and AF flags to 1. Otherwise, it clears the CF and
AF flags and the AH register is unchanged. In either case, the instruction clears bits 7–4 of the AL
register, leaving the correct decimal digit in bits 3–0.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

AAA, AAD, AAM

rFLAGS Affected

Exceptions

AAS ASCII Adjust After Subtraction

Mnemonic Opcode Description

AAS 3F
Create an unpacked BCD number from the contents of
the AL register.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U M U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

Instruction Reference ADC 73

24594—Rev. 3.16—September 2011 AMD64 Technology

Adds the carry flag (CF), the value in a register or memory location (first operand), and an immediate
value or the value in a register or memory location (second operand), and stores the result in the first
operand location. The instruction cannot add two memory operands. The CF flag indicates a pending
carry from a previous addition operation. The instruction sign-extends an immediate value to the
length of the destination register or memory location.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

Use the ADC instruction after an ADD instruction as part of a multibyte or multiword addition.

The forms of the ADC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

ADC Add with Carry

Mnemonic Opcode Description

ADC AL, imm8 14 ib Add imm8 to AL + CF.

ADC AX, imm16 15 iw Add imm16 to AX + CF.

ADC EAX, imm32 15 id Add imm32 to EAX + CF.

ADC RAX, imm32 15 id Add sign-extended imm32 to RAX + CF.

ADC reg/mem8, imm8 80 /2 ib Add imm8 to reg/mem8 + CF.

ADC reg/mem16, imm16 81 /2 iw Add imm16 to reg/mem16 + CF.

ADC reg/mem32, imm32 81 /2 id Add imm32 to reg/mem32 + CF.

ADC reg/mem64, imm32 81 /2 id Add sign-extended imm32 to reg/mem64 + CF.

ADC reg/mem16, imm8 83 /2 ib Add sign-extended imm8 to reg/mem16 + CF.

ADC reg/mem32, imm8 83 /2 ib Add sign-extended imm8 to reg/mem32 + CF.

ADC reg/mem64, imm8 83 /2 ib Add sign-extended imm8 to reg/mem64 + CF.

ADC reg/mem8, reg8 10 /r Add reg8 to reg/mem8 + CF

ADC reg/mem16, reg16 11 /r Add reg16 to reg/mem16 + CF.

ADC reg/mem32, reg32 11 /r Add reg32 to reg/mem32 + CF.

ADC reg/mem64, reg64 11 /r Add reg64 to reg/mem64 + CF.

ADC reg8, reg/mem8 12 /r Add reg/mem8 to reg8 + CF.

ADC reg16, reg/mem16 13 /r Add reg/mem16 to reg16 + CF.

ADC reg32, reg/mem32 13 /r Add reg/mem32 to reg32 + CF.

ADC reg64, reg/mem64 13 /r Add reg/mem64 to reg64 + CF.

74 ADC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

ADD, SBB, SUB

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference ADD 75

24594—Rev. 3.16—September 2011 AMD64 Technology

Adds the value in a register or memory location (first operand) and an immediate value or the value in
a register or memory location (second operand), and stores the result in the first operand location. The
instruction cannot add two memory operands. The instruction sign-extends an immediate value to the
length of the destination register or memory operand.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

The forms of the ADD instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

ADC, SBB, SUB

ADD Signed or Unsigned Add

Mnemonic Opcode Description

ADD AL, imm8 04 ib Add imm8 to AL.

ADD AX, imm16 05 iw Add imm16 to AX.

ADD EAX, imm32 05 id Add imm32 to EAX.

ADD RAX, imm32 05 id Add sign-extended imm32 to RAX.

ADD reg/mem8, imm8 80 /0 ib Add imm8 to reg/mem8.

ADD reg/mem16, imm16 81 /0 iw Add imm16 to reg/mem16

ADD reg/mem32, imm32 81 /0 id Add imm32 to reg/mem32.

ADD reg/mem64, imm32 81 /0 id Add sign-extended imm32 to reg/mem64.

ADD reg/mem16, imm8 83 /0 ib Add sign-extended imm8 to reg/mem16

ADD reg/mem32, imm8 83 /0 ib Add sign-extended imm8 to reg/mem32.

ADD reg/mem64, imm8 83 /0 ib Add sign-extended imm8 to reg/mem64.

ADD reg/mem8, reg8 00 /r Add reg8 to reg/mem8.

ADD reg/mem16, reg16 01 /r Add reg16 to reg/mem16.

ADD reg/mem32, reg32 01 /r Add reg32 to reg/mem32.

ADD reg/mem64, reg64 01 /r Add reg64 to reg/mem64.

ADD reg8, reg/mem8 02 /r Add reg/mem8 to reg8.

ADD reg16, reg/mem16 03 /r Add reg/mem16 to reg16.

ADD reg32, reg/mem32 03 /r Add reg/mem32 to reg32.

ADD reg64, reg/mem64 03 /r Add reg/mem64 to reg64.

76 ADD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference AND 77

24594—Rev. 3.16—September 2011 AMD64 Technology

Performs a bitwise AND operation on the value in a register or memory location (first operand) and an
immediate value or the value in a register or memory location (second operand), and stores the result
in the first operand location. The instruction cannot AND two memory operands.

The instruction sets each bit of the result to 1 if the corresponding bit of both operands is set;
otherwise, it clears the bit to 0. The following table shows the truth table for the AND operation:

The forms of the AND instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

AND Logical AND

X Y X AND Y

0 0 0

0 1 0

1 0 0

1 1 1

Mnemonic Opcode Description

AND AL, imm8 24 ib AND the contents of AL with an immediate 8-bit value
and store the result in AL.

AND AX, imm16 25 iw AND the contents of AX with an immediate 16-bit value
and store the result in AX.

AND EAX, imm32 25 id AND the contents of EAX with an immediate 32-bit
value and store the result in EAX.

AND RAX, imm32 25 id AND the contents of RAX with a sign-extended
immediate 32-bit value and store the result in RAX.

AND reg/mem8, imm8 80 /4 ib AND the contents of reg/mem8 with imm8.

AND reg/mem16, imm16 81 /4 iw AND the contents of reg/mem16 with imm16.

AND reg/mem32, imm32 81 /4 id AND the contents of reg/mem32 with imm32.

AND reg/mem64, imm32 81 /4 id AND the contents of reg/mem64 with sign-extended
imm32.

AND reg/mem16, imm8 83 /4 ib AND the contents of reg/mem16 with a sign-extended
8-bit value.

AND reg/mem32, imm8 83 /4 ib AND the contents of reg/mem32 with a sign-extended
8-bit value.

AND reg/mem64, imm8 83 /4 ib AND the contents of reg/mem64 with a sign-extended
8-bit value.

AND reg/mem8, reg8 20 /r AND the contents of an 8-bit register or memory location
with the contents of an 8-bit register.

78 AND Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

TEST, OR, NOT, NEG, XOR

rFLAGS Affected

Exceptions

AND reg/mem16, reg16 21 /r AND the contents of a 16-bit register or memory location
with the contents of a 16-bit register.

AND reg/mem32, reg32 21 /r AND the contents of a 32-bit register or memory location
with the contents of a 32-bit register.

AND reg/mem64, reg64 21 /r AND the contents of a 64-bit register or memory location
with the contents of a 64-bit register.

AND reg8, reg/mem8 22 /r AND the contents of an 8-bit register with the contents
of an 8-bit memory location or register.

AND reg16, reg/mem16 23 /r AND the contents of a 16-bit register with the contents
of a 16-bit memory location or register.

AND reg32, reg/mem32 23 /r AND the contents of a 32-bit register with the contents
of a 32-bit memory location or register.

AND reg64, reg/mem64 23 /r AND the contents of a 64-bit register with the contents
of a 64-bit memory location or register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference ANDN 79

24594—Rev. 3.16—September 2011 AMD64 Technology

Performs a bitwise AND of the second source operand and the one's complement of the first source
operand and stores the result into the destination operand.

This instruction has three operands:

ANDN dest, src1, src2

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination operand (dest) is always a general purpose register.

The first source operand (src1) is a general purpose register and the second source operand (src2) is
either a general purpose register or a memory operand.

This instruction implements the following operation:
not tmp, src1
and dst, tmp, src2

The flags are set according to the result of the AND pseudo-operation.

The ANDN instruction is a BMI instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI]. (See the CPUID Specification, order# 25481.)

Related Instructions
BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

ANDN Logical And-Not

Mnemonic Encoding

VEX
RXB.mmmm

m W.vvvv.L.pp Opcode

ANDN reg32, reg32, reg/mem32 C4 RXB.02 0.src1.0.00 F2 /r

ANDN reg64, reg64, reg/mem64 C4 RXB.02 1.src1.0.00 F2 /r

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

80 ANDN Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception
Mode

Cause of Exception
Real Virt Prot

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported as indicated by CPUID
Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was non-

canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BEXTR (register form) 81

24594—Rev. 3.16—September 2011 AMD64 Technology

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:

BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is either a general purpose register or a memory operand.

The control (cntl) operand is a general purpose register that provides two fields describing the range of
bits to extract:

• lsb_index (in bits 7:0)—specifies the index of the least significant bit of the field
• length (in bits 15:8)—specifies the number of bits in the field.

The position of the extracted field can be expressed as:

[lsb_ index + length – 1] : [lsb_index]

For example, if the lsb_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a BMI instruction. Support for this instruction is indicated by
CPUID Fn0000_0007_EBX_x0[BMI]. (See the CPUID Specification, order# 25481.)

BEXTR
(register form)

 Bit Field Extract

82 BEXTR (register form) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

Exceptions

Mnemonic Encoding

VEX
RXB.mmm

mm W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, reg32 C4 RXB.02 0.cntl.0.00 F7 /r

BEXTR reg64, reg/mem64, reg64 C4 RXB.02 1.cntl.0.00 F7 /r

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 U M U U 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BEXTR (immediate form) 83

24594—Rev. 3.16—September 2011 AMD64 Technology

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:

BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is either a general purpose register or a memory operand.

The control (cntl) operand is a 32-bit immediate value that provides two fields describing the range of
bits to extract:

• lsb_index (in immediate operand bits 7:0)—specifies the index of the least significant bit of the
field

• length (in immediate operand bits 15:8)—specifies the number of bits in the field.

The position of the extracted field can be expressed as:

[lsb_ index + length – 1] : [lsb_index]

For example, if the lsb_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a TBM instruction. Support for this instruction is indicated by
CPUID Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

BEXTR
(immediate form)

 Bit Field Extract

84 BEXTR (immediate form) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

Exceptions

Mnemonic Encoding

XOP
RXB.mmm

mm W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, imm32 8F RXB.0A 0.1111.0.00 10 /r /id

BEXTR reg64, reg/mem64, imm32 8F RXB.0A 1.1111.0.00 10 /r /id

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 U M U U 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLCFILL 85

24594—Rev. 3.16—September 2011 AMD64 Technology

Finds the least significant zero bit in the source operand, clears all bits below that bit to 0 and writes
the result to the destination. If there is no zero bit in the source operand, the destination is written with
all zeros.

This instruction has two operands:

BLCFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCFILL instruction effectively performs a bitwise AND of the source operand and the result of
incrementing the source operand by 1 and stores the result to the destination register:
add tmp, src, 1
and dest,tmp, src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCFILL Fill From Lowest Clear Bit

Mnemonic Encoding

XOP
RXB.mmmm

m W.vvvv.L.pp Opcode

BLCFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /1

BLCFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /1

86 BLCFILL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLCI 87

24594—Rev. 3.16—September 2011 AMD64 Technology

Finds the least significant zero bit in the source operand, sets all other bits to 1 and writes the result to
the destination. If there is no zero bit in the source operand, the destination is written with all ones.

This instruction has two operands:

BLCI dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCI instruction effectively performs a bitwise OR of the source operand and the inverse of the
result of incrementing the source operand by 1, and stores the result to the destination register:
add tmp, src, 1
not tmp, tmp
or dest, tmp, src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the or pseudo-instruction.

The BLCI instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCFILL, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCI Isolate Lowest Clear Bit

Mnemonic Encoding

XOP
RXB.mmm

mm W.vvvv.L.pp Opcode

BLCI reg32, reg/mem32 8F RXB.09 0.dest.0.00 02 /6

BLCI reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /6

88 BLCI Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLCIC 89

24594—Rev. 3.16—September 2011 AMD64 Technology

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all other bits to 0 and
writes the result to the destination. If there is no zero bit in the source operand, the destination is
written with all zeros.

This instruction has two operands:

BLCIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCIC instruction effectively performs a bitwise and of the negation of the source operand and
the result of incrementing the source operand by 1, and stores the result to the destination register:
add tmp1, src, 1
not tmp2, src
and dest, tmp1,tmp2

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCIC instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCIC Isolate Lowest Set Bit and Complement

Mnemonic Encoding

XOP
RXB.mmm

mm W.vvvv.L.pp Opcode

BLCIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /5

BLCIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /5

90 BLCIC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLCMSK 91

24594—Rev. 3.16—September 2011 AMD64 Technology

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all bits above that bit
to 0 and writes the result to the destination. If there is no zero bit in the source operand, the destination
is written with all ones.

This instruction has two operands:

BLCMSK dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCMSK instruction effectively performs a bitwise xor of the source operand and the result of
incrementing the source operand by 1 and stores the result to the destination register:
add tmp1, src, 1
xor dest, tmp1,src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the xor pseudo-instruction.

The BLCMSK instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCMSK Mask From Lowest Clear Bit

Mnemonic Encoding

XOP
RXB.mmm

mm W.vvvv.L.pp Opcode

BLCMSK reg32, reg/mem32 8F RXB.09 0.dest.0.00 02 /1

BLCMSK reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /1

92 BLCMSK Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLCS 93

24594—Rev. 3.16—September 2011 AMD64 Technology

Finds the least significant zero bit in the source operand, sets that bit to 1 and writes the result to the
destination. If there is no zero bit in the source operand, the source is copied to the destination (and CF
in rFLAGS is set to 1).

This instruction has two operands:

BLCS dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLCS instruction effectively performs a bitwise or of the source operand and the result of incre-
menting the source operand by 1, and stores the result to the destination register:
add tmp, src, 1
or dest, tmp, src

The value of the carry flag of rFLAGS is generated by the add pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLCS instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLCS Set Lowest Clear Bit

Mnemonic Encoding

XOP
RXB.mmm

mm W.vvvv.L.pp Opcode

BLCS reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /3

BLCS reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /3

94 BLCS Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLSFILL 95

24594—Rev. 3.16—September 2011 AMD64 Technology

Finds the least significant one bit in the source operand, sets all bits below that bit to 1 and writes the
result to the destination. If there is no one bit in the source operand, the destination is written with all
ones.

This instruction has two operands:

BLSFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLSFILL instruction effectively performs a bitwise or of the source operand and the result of
subtracting 1 from the source operand, and stores the result to the destination register:
sub tmp, src, 1
or dest, tmp, src

The value of the carry flag of rFLAGs is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

Related Instructions
ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

BLSFILL Fill From Lowest Set Bit

Mnemonic Encoding

XOP
RXB.mmm

mm W.vvvv.L.pp Opcode

BLSFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /2

BLSFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /2

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

96 BLSFILL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions
Exception Real

Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLSI 97

24594—Rev. 3.16—September 2011 AMD64 Technology

Clears all bits in the source operand except for the least significant bit that is set to 1 and writes the
result to the destination.

This instruction has two operands:

BLSI dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is either a general purpose register or a bit memory operand.

This instruction implements the following operation:
neg tmp, src1
and dst, tmp, src1

The value of the carry flag is generated by the neg pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSI instruction is a BMI instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

BLSI Isolate Lowest Set Bit

Mnemonic Encoding

VEX
RXB.mmm

mm W.vvvv.L.pp Opcode

BLSI reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3 /3

BLSI reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3 /3

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

98 BLSI Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLSIC 99

24594—Rev. 3.16—September 2011 AMD64 Technology

Finds the least significant bit that is set to 1 in the source operand, clears that bit to 0, sets all other bits
to 1 and writes the result to the destination. If there is no one bit in the source operand, the destination
is written with all ones.

This instruction has two operands:

BLSIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The BLSIC instruction effectively performs a bitwise or of the inverse of the source operand and the
result of subtracting 1 from the source operand, and stores the result to the destination register:
sub tmp1, src, 1
not tmp2, src
or dest, tmp1, tmp2

The value of the carry flag of rFLAGS is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSR instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSIC Isolate Lowest Set Bit and Complement

Mnemonic Encoding

XOP
RXB.mmm

mm W.vvvv.L.pp Opcode

BLSIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /6

BLSIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /6

100 BLSIC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLSMSK 101

24594—Rev. 3.16—September 2011 AMD64 Technology

Forms a mask with bits set to 1 from bit 0 up to and including the least significant bit position that is set
to 1 in the source operand and writes the mask to the destination.

This instruction has two operands:

BLSMSK dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.

The source operand (src) is either a general purpose register or a memory operand and the destination
operand (dest) is a general purpose register.

This instruction implements the operation:
sub tmp, src1, 1
xor dst, tmp, src1

The value of the carry flag is generated by the sub pseudo-instruction and the remaining status flags
are generated by the xor pseudo-instruction.

If the input is zero, the output is a value with all bits set to 1. If this is considered a corner case input,
software may test the carry flag to detect the zero input value.

The BLSMSK instruction is a BMI instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

BLSMSK Mask From Lowest Set Bit

Mnemonic Encoding

VEX
RXB.mmm

mm W.vvvv.L.pp Opcode

BLSMSK reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3 /2

BLSMSK reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3 /2

102 BLSMSK Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BLSR 103

24594—Rev. 3.16—September 2011 AMD64 Technology

Clears the least-significant bit that is set to 1 in the input operand and writes the modified operand to
the destination.

This instruction has two operands:

BLSR dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.

The source operand (src) is either a general purpose register or a memory operand.

This instruction implements the operation:
sub tmp, src1, 1
and dst, tmp, src1

The value of the carry flag is generated by the sub pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSR instruction is a BMI instruction. Support for this instruction is indicated by CPUID
Fn0000_0007_EBX_x0[BMI]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSMSK, BSF, BSR,
LZCNT, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

BLSR Reset Lowest Set Bit

Mnemonic Encoding

VEX
RXB.mmm

mm W.vvvv.L.pp Opcode

BLSR reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3 /1

BLSR reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3 /1

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

104 BLSR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD

X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference BOUND 105

24594—Rev. 3.16—September 2011 AMD64 Technology

Checks whether an array index (first operand) is within the bounds of an array (second operand). The
array index is a signed integer in the specified register. If the operand-size attribute is 16, the array
operand is a memory location containing a pair of signed word-integers; if the operand-size attribute is
32, the array operand is a pair of signed doubleword-integers. The first word or doubleword specifies
the lower bound of the array and the second word or doubleword specifies the upper bound.

The array index must be greater than or equal to the lower bound and less than or equal to the upper
bound. If the index is not within the specified bounds, the processor generates a BOUND range-
exceeded exception (#BR).

The bounds of an array, consisting of two words or doublewords containing the lower and upper limits
of the array, usually reside in a data structure just before the array itself, making the limits addressable
through a constant offset from the beginning of the array. With the address of the array in a register,
this practice reduces the number of bus cycles required to determine the effective address of the array
bounds.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

INT, INT3, INTO

rFLAGS Affected

None

Exceptions

BOUND Check Array Bound

Mnemonic Opcode Description

BOUND reg16, mem16&mem16 62 /r
Test whether a 16-bit array index is within the bounds
specified by the two 16-bit values in mem16&mem16.
(Invalid in 64-bit mode.)

BOUND reg32, mem32&mem32 62 /r
Test whether a 32-bit array index is within the bounds
specified by the two 32-bit values in mem32&mem32.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Bound range, #BR X X X The bound range was exceeded.

Invalid opcode,
#UD

X X X The source operand was a register.
X Instruction was executed in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit

General protection,
#GP

X X X A memory address exceeded a data segment limit.
X A null data segment was used to reference memory.

106 BOUND Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Instruction Reference BSF 107

24594—Rev. 3.16—September 2011 AMD64 Technology

Searches the value in a register or a memory location (second operand) for the least-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the least-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Related Instructions

BSR

rFLAGS Affected

Exceptions

BSF Bit Scan Forward

Mnemonic Opcode Description

BSF reg16, reg/mem16 0F BC /r Bit scan forward on the contents of reg/mem16.

BSF reg32, reg/mem32 0F BC /r Bit scan forward on the contents of reg/mem32.

BSF reg64, reg/mem64 0F BC /r Bit scan forward on the contents of reg/mem64

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U U

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

108 BSR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Searches the value in a register or a memory location (second operand) for the most-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the most-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Related Instructions

BSF

rFLAGS Affected

Exceptions

BSR Bit Scan Reverse

Mnemonic Opcode Description

BSR reg16, reg/mem16 0F BD /r Bit scan reverse on the contents of reg/mem16.

BSR reg32, reg/mem32 0F BD /r Bit scan reverse on the contents of reg/mem32.

BSR reg64, reg/mem64 0F BD /r Bit scan reverse on the contents of reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U U

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded the data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference BSWAP 109

24594—Rev. 3.16—September 2011 AMD64 Technology

Reverses the byte order of the specified register. This action converts the contents of the register from
little endian to big endian or vice versa. In a doubleword, bits 7–0 are exchanged with bits 31–24, and
bits 15–8 are exchanged with bits 23–16. In a quadword, bits 7–0 are exchanged with bits 63–56, bits
15–8 with bits 55–48, bits 23–16 with bits 47–40, and bits 31–24 with bits 39–32. A subsequent use of
the BSWAP instruction with the same operand restores the original value of the operand.

The result of applying the BSWAP instruction to a 16-bit register is undefined. To swap the bytes of a
16-bit register, use the XCHG instruction and specify the respective byte halves of the 16-bit register
as the two operands. For example, to swap the bytes of AX, use XCHG AL, AH.

Related Instructions

XCHG

rFLAGS Affected

None

Exceptions

None

BSWAP Byte Swap

Mnemonic Opcode Description

BSWAP reg32 0F C8 +rd Reverse the byte order of reg32.

BSWAP reg64 0F C8 +rq Reverse the byte order of reg64.

110 BT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on operand size.

When the instruction attempts to copy a bit from memory, it accesses 2, 4, or 8 bytes starting from the
specified memory address for 16-bit, 32-bit, or 64-bit operand sizes, respectively, using the following
formula:

Effective Address + (NumBytesi * (BitOffset DIV NumBitsi*8))

When using this bit addressing mechanism, avoid referencing areas of memory close to address space
holes, such as references to memory-mapped I/O registers. Instead, use a MOV instruction to load a
register from such an address and use a register form of the BT instruction to manipulate the data.

Related Instructions

BTC, BTR, BTS

BT Bit Test

Mnemonic Opcode Description

BT reg/mem16, reg16 0F A3 /r Copy the value of the selected bit to the carry flag.

BT reg/mem32, reg32 0F A3 /r Copy the value of the selected bit to the carry flag.

BT reg/mem64, reg64 0F A3 /r Copy the value of the selected bit to the carry flag.

BT reg/mem16, imm8 0F BA /4 ib Copy the value of the selected bit to the carry flag.

BT reg/mem32, imm8 0F BA /4 ib Copy the value of the selected bit to the carry flag.

BT reg/mem64, imm8 0F BA /4 ib Copy the value of the selected bit to the carry flag.

Instruction Reference BT 111

24594—Rev. 3.16—September 2011 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

112 BTC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
complements (toggles) the bit in the bit string.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such an
application should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Related Instructions

BT, BTR, BTS

BTC Bit Test and Complement

Mnemonic Opcode Description

BTC reg/mem16, reg16 0F BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem32, reg32 0F BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem64, reg64 0F BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem16, imm8 0F BA /7 ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem32, imm8 0F BA /7 ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem64, imm8 0F BA /7 ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

Instruction Reference BTC 113

24594—Rev. 3.16—September 2011 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

114 BTR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
clears the bit in the bit string to 0.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Related Instructions

BT, BTC, BTS

BTR Bit Test and Reset

Mnemonic Opcode Description

BTR reg/mem16, reg16 0F B3 /r Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem32, reg32 0F B3 /r Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem64, reg64 0F B3 /r Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem16, imm8 0F BA /6 ib Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem32, imm8 0F BA /6 ib Copy the value of the selected bit to the carry flag, then
clear the selected bit.

BTR reg/mem64, imm8 0F BA /6 ib Copy the value of the selected bit to the carry flag, then
clear the selected bit.

Instruction Reference BTR 115

24594—Rev. 3.16—September 2011 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

116 BTS Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Copies a bit, specified by bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
sets the bit in the bit string to 1.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range –263 to +263 – 1 if the operand size is 64, –231 to +231 – 1, if the operand size is 32, and
–215 to +215 – 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Related Instructions

BT, BTC, BTR

BTS Bit Test and Set

Mnemonic Opcode Description

BTS reg/mem16, reg16 0F AB /r Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem32, reg32 0F AB /r Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem64, reg64 0F AB /r Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem16, imm8 0F BA /5 ib Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem32, imm8 0F BA /5 ib Copy the value of the selected bit to the carry flag, then
set the selected bit.

BTS reg/mem64, imm8 0F BA /5 ib Copy the value of the selected bit to the carry flag, then
set the selected bit.

Instruction Reference BTS 117

24594—Rev. 3.16—September 2011 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

118 CALL (Near) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Pushes the offset of the next instruction onto the stack and branches to the target address, which
contains the first instruction of the called procedure. The target operand can specify a register, a
memory location, or a label. A procedure accessed by a near CALL is located in the same code
segment as the CALL instruction.

If the CALL target is specified by a register or memory location, then a 16-, 32-, or 64-bit rIP is read
from the operand, depending on the operand size. A 16- or 32-bit rIP is zero-extended to 64 bits.

If the CALL target is specified by a displacement, the signed displacement is added to the rIP (of the
following instruction), and the result is truncated to 16, 32, or 64 bits, depending on the operand size.
The signed displacement is 16 or 32 bits, depending on the operand size.

In all cases, the rIP of the instruction after the CALL is pushed on the stack, and the size of the stack
push (16, 32, or 64 bits) depends on the operand size of the CALL instruction.

For near calls in 64-bit mode, the operand size defaults to 64 bits. The E8 opcode results in
RIP = RIP + 32-bit signed displacement and the FF /2 opcode results in RIP = 64-bit offset from
register or memory. No prefix is available to encode a 32-bit operand size in 64-bit mode.

At the end of the called procedure, RET is used to return control to the instruction following the
original CALL. When RET is executed, the rIP is popped off the stack, which returns control to the
instruction after the CALL.

See CALL (Far) for information on far calls—calls to procedures located outside of the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Related Instructions

CALL(Far), RET(Near), RET(Far)

CALL (Near) Near Procedure Call

Mnemonic Opcode Description

CALL rel16off E8 iw Near call with the target specified by a 16-bit relative
displacement.

CALL rel32off E8 id Near call with the target specified by a 32-bit relative
displacement.

CALL reg/mem16 FF /2 Near call with the target specified by reg/mem16.

CALL reg/mem32 FF /2 Near call with the target specified by reg/mem32. (There
is no prefix for encoding this in 64-bit mode.)

CALL reg/mem64 FF /2 Near call with the target specified by reg/mem64.

Instruction Reference CALL (Near) 119

24594—Rev. 3.16—September 2011 AMD64 Technology

rFLAGS Affected

None.

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Alignment Check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.
Page Fault, #PF X X A page fault resulted from the execution of the instruction.

120 CALL (Far) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Pushes procedure linking information onto the stack and branches to the target address, which contains
the first instruction of the called procedure. The operand specifies a target selector and offset.

The instruction can specify the target directly, by including the far pointer in the CALL (Far) opcode
itself, or indirectly, by referencing a far pointer in memory. In 64-bit mode, only indirect far calls are
allowed, executing a direct far call (opcode 9A) generates an undefined opcode exception. For both
direct and indirect far calls, if the CALL (Far) operand-size is 16 bits, the instruction's operand is a 16-
bit selector followed by a 16-bit offset. If the operand-size is 32 or 64 bits, the operand is a 16-bit
selector followed by a 32-bit offset.

The target selector used by the instruction can be a code selector in all modes. Additionally, the target
selector can reference a call gate in protected mode, or a task gate or TSS selector in legacy protected
mode.

• Target is a code selector—The CS:rIP of the next instruction is pushed to the stack, using operand-
size stack pushes. Then code is executed from the target CS:rIP. In this case, the target offset can
only be a 16- or 32-bit value, depending on operand-size, and is zero-extended to 64 bits. No CPL
change is allowed.

• Target is a call gate—The call gate specifies the actual target code segment and offset. Call gates
allow calls to the same or more privileged code. If the target segment is at the same CPL as the
current code segment, the CS:rIP of the next instruction is pushed to the stack.
If the CALL (Far) changes privilege level, then a stack-switch occurs, using an inner-level stack
pointer from the TSS. The CS:rIP of the next instruction is pushed to the new stack. If the mode is
legacy mode and the param-count field in the call gate is non-zero, then up to 31 operands are
copied from the caller's stack to the new stack. Finally, the caller's SS:rSP is pushed to the new
stack.
When calling through a call gate, the stack pushes are 16-, 32-, or 64-bits, depending on the size of
the call gate. The size of the target rIP is also 16, 32, or 64 bits, depending on the size of the call
gate. If the target rIP is less than 64 bits, it is zero-extended to 64 bits. Long mode only allows 64-
bit call gates that must point to 64-bit code segments.

• Target is a task gate or a TSS—If the mode is legacy protected mode, then a task switch occurs.
See “Hardware Task-Management in Legacy Mode” in volume 2 for details about task switches.
Hardware task switches are not supported in long mode.

See CALL (Near) for information on near calls—calls to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

CALL (Far) Far Procedure Call

Instruction Reference CALL (Far) 121

24594—Rev. 3.16—September 2011 AMD64 Technology

Action
// See “Pseudocode Definitions” on page 56.

CALLF_START:

IF (REAL_MODE)
 CALLF_REAL_OR_VIRTUAL
ELSIF (PROTECTED_MODE)
 CALLF_PROTECTED
ELSE // (VIRTUAL_MODE)
 CALLF_REAL_OR_VIRTUAL

CALLF_REAL_OR_VIRTUAL:

 IF (OPCODE = callf [mem]) // CALLF Indirect
 {
 temp_RIP = READ_MEM.z [mem]
 temp_CS = READ_MEM.w [mem+Z]
 }
 ELSE // (OPCODE = callf direct)
 {
 temp_RIP = z-sized offset specified in the instruction
 zero-extended to 64 bits
 temp_CS = selector specified in the instruction
 }

 PUSH.v old_CS
 PUSH.v next_RIP

 IF (temp_RIP>CS.limit)
 EXCEPTION [#GP(0)]

 CS.sel = temp_CS
 CS.base = temp_CS SHL 4
 RIP = temp_RIP
 EXIT

Mnemonic Opcode Description

CALL FAR pntr16:16 9A cd Far call direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

CALL FAR pntr16:32 9A cp Far call direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

CALL FAR mem16:16 FF /3 Far call indirect, with the target specified by a far pointer
in memory.

CALL FAR mem16:32 FF /3 Far call indirect, with the target specified by a far pointer
in memory.

122 CALL (Far) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

CALLF_PROTECTED:

 IF (OPCODE = callf [mem]) //CALLF Indirect
 {
 temp_offset = READ_MEM.z [mem]
 temp_sel = READ_MEM.w [mem+Z]
 }
 ELSE // (OPCODE = callf direct)
 {
 IF (64BIT_MODE)
 EXCEPTION [#UD] // ’CALLF direct’ is illegal in 64-bit mode.
 temp_offset = z-sized offset specified in the instruction
 zero-extended to 64 bits
 temp_sel = selector specified in the instruction
 }

 temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)

 IF (temp_desc.attr.type = ’available_tss’)
 TASK_SWITCH // Using temp_sel as the target TSS selector.
 ELSIF (temp_desc.attr.type = ’taskgate’)
 TASK_SWITCH // Using the TSS selector in the task gate
 // as the target TSS.
 ELSIF (temp_desc.attr.type = ’code’)
 // If the selector refers to a code descriptor, then
 // the offset we read is the target RIP.
 {
 temp_RIP = temp_offset
 CS = temp_desc
 PUSH.v old_CS
 PUSH.v next_RIP
 IF ((!64BIT_MODE) && (temp_RIP > CS.limit))
 // temp_RIP can’t be non-canonical because
 EXCEPTION [#GP(0)] // it’s a 16- or 32-bit offset, zero-extended
 // to 64 bits.
 RIP = temp_RIP
 EXIT
 }
 ELSE // (temp_desc.attr.type = ’callgate’)
 // If the selector refers to a call gate, then
 // the target CS and RIP both come from the call gate.
 {
 IF (LONG_MODE)
 // The size of the gate controls the size of the stack pushes.
 V=8-byte
 // Long mode only uses 64-bit call gates, force 8-byte opsize.
 ELSIF (temp_desc.attr.type = ’callgate32’)
 V=4-byte
 // Legacy mode, using a 32-bit call-gate, force 4-byte opsize.
 ELSE // (temp_desc.attr.type = ’callgate16’)
 V=2-byte

Instruction Reference CALL (Far) 123

24594—Rev. 3.16—September 2011 AMD64 Technology

 // Legacy mode, using a 16-bit call-gate, force 2-byte opsize.

 temp_RIP = temp_desc.offset

 IF (LONG_MODE) // In long mode, we need to read the 2nd half of a
 // 16-byte call-gate from the GDT/LDT, to get the upper
 // 32 bits of the target RIP.
 {
 temp_upper = READ_MEM.q [temp_sel+8]
 IF (temp_upper’s extended attribute bits != 0)
 EXCEPTION [#GP(temp_sel)]
 temp_RIP = tempRIP + (temp_upper SHL 32)
 // Concatenate both halves of RIP
 }

 CS = READ_DESCRIPTOR (temp_desc.segment, clg_chk)

 IF (CS.attr.conforming=1)
 temp_CPL = CPL
 ELSE
 temp_CPL = CS.attr.dpl

 IF (CPL=temp_CPL)
 {
 PUSH.v old_CS
 PUSH.v next_RIP

 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 {
 EXCEPTION[#GP(0)]
 }

 RIP = temp_RIP
 EXIT
 }
 ELSE // (CPL != temp_CPL), Changing privilege level.
 {
 CPL = temp_CPL
 temp_ist = 0 // Call-far doesn’t use ist pointers.
 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER (CPL, temp_ist)

 RSP.q = temp_RSP
 SS = temp_SS_desc
 PUSH.v old_SS // #SS on this and following pushes use
 // SS.sel as error code.
 PUSH.v old_RSP
 IF (LEGACY_MODE) // Legacy-mode call gates have
 { // a param_count field.
 temp_PARAM_COUNT = temp_desc.attr.param_count

124 CALL (Far) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

 FOR (I=temp_PARAM_COUNT; I>0; I--)
 {
 temp_DATA = READ_MEM.v [old_SS:(old_RSP+I*V)]
 PUSH.v temp_DATA
 }
 }
 PUSH.v old_CS
 PUSH.v next_RIP
 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 {
 EXCEPTION [#GP(0)]
 }
 RIP = temp_RIP
 EXIT
 }
 }

Related Instructions

CALL (Near), RET (Near), RET (Far)

rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD

X X X The far CALL indirect opcode (FF /3) had a register operand.
X The far CALL direct opcode (9A) was executed in 64-bit mode.

Invalid TSS, #TS
(selector)

X As part of a stack switch, the target stack segment selector or
rSP in the TSS was beyond the TSS limit.

X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.

X As part of a stack switch, the target stack selector’s TI bit was
set, but LDT selector was a null selector.

X
As part of a stack switch, the target stack segment selector in
the TSS was beyond the limit of the GDT or LDT descriptor
table.

X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.

X
As part of a stack switch, the target stack segment selector in
the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

Instruction Reference CALL (Far) 125

24594—Rev. 3.16—September 2011 AMD64 Technology

Segment not
present, #NP
(selector)

X The accessed code segment, call gate, task gate, or TSS was
not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical, and no stack switch occurred.

Stack, #SS
(selector)

X After a stack switch, a memory access exceeded the stack
segment limit or was non-canonical.

X
As part of a stack switch, the SS register was loaded with a
non-null segment selector and the segment was marked not
present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X The target code segment selector was a null selector.

X A code, call gate, task gate, or TSS descriptor exceeded the
descriptor table limit.

X A segment selector’s TI bit was set but the LDT selector was a
null selector.

X
The segment descriptor specified by the instruction was not a
code segment, task gate, call gate or available TSS in legacy
mode, or not a 64-bit code segment or a 64-bit call gate in long
mode.

X
The RPL of the non-conforming code segment selector
specified by the instruction was greater than the CPL, or its
DPL was not equal to the CPL.

X The DPL of the conforming code segment descriptor specified
by the instruction was greater than the CPL.

X
The DPL of the callgate, taskgate, or TSS descriptor specified
by the instruction was less than the CPL, or less than its own
RPL.

X The segment selector specified by the call gate or task gate
was a null selector.

X
The segment descriptor specified by the call gate was not a
code segment in legacy mode, or not a 64-bit code segment in
long mode.

X The DPL of the segment descriptor specified by the call gate
was greater than the CPL.

X The 64-bit call gate’s extended attribute bits were not zero.
X The TSS descriptor was found in the LDT.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

126 CBW, CWDE, CDQE Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Copies the sign bit in the AL or eAX register to the upper bits of the rAX register. The effect of this
instruction is to convert a signed byte, word, or doubleword in the AL or eAX register into a signed
word, doubleword, or quadword in the rAX register. This action helps avoid overflow problems in
signed number arithmetic.

The CDQE mnemonic is meaningful only in 64-bit mode.

Related Instructions

CWD, CDQ, CQO

rFLAGS Affected

None

Exceptions

None

CBW
CWDE
CDQE

Convert to Sign-Extended

Mnemonic Opcode Description

CBW 98 Sign-extend AL into AX.

CWDE 98 Sign-extend AX into EAX.

CDQE 98 Sign-extend EAX into RAX.

Instruction Reference CWD, CDQ, CQO 127

24594—Rev. 3.16—September 2011 AMD64 Technology

Copies the sign bit in the rAX register to all bits of the rDX register. The effect of this instruction is to
convert a signed word, doubleword, or quadword in the rAX register into a signed doubleword,
quadword, or double-quadword in the rDX:rAX registers. This action helps avoid overflow problems
in signed number arithmetic.

The CQO mnemonic is meaningful only in 64-bit mode.

Related Instructions

CBW, CWDE, CDQE

rFLAGS Affected

None

Exceptions

None

CWD
CDQ
CQO

Convert to Sign-Extended

Mnemonic Opcode Description

CWD 99 Sign-extend AX into DX:AX.

CDQ 99 Sign-extend EAX into EDX:EAX.

CQO 99 Sign-extend RAX into RDX:RAX.

128 CLC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Clears the carry flag (CF) in the rFLAGS register to zero.

Related Instructions

STC, CMC

rFLAGS Affected

Exceptions

None

CLC Clear Carry Flag

Mnemonic Opcode Description

CLC F8 Clear the carry flag (CF) to zero.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Instruction Reference CLD 129

24594—Rev. 3.16—September 2011 AMD64 Technology

Clears the direction flag (DF) in the rFLAGS register to zero. If the DF flag is 0, each iteration of a
string instruction increments the data pointer (index registers rSI or rDI). If the DF flag is 1, the string
instruction decrements the pointer. Use the CLD instruction before a string instruction to make the
data pointer increment.

Related Instructions

CMPSx, INSx, LODSx, MOVSx, OUTSx, SCASx, STD, STOSx

rFLAGS Affected

Exceptions

None

CLD Clear Direction Flag

Mnemonic Opcode Description

CLD FC Clear the direction flag (DF) to zero.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

130 CLFLUSH Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Flushes the cache line specified by the mem8 linear-address. The instruction checks all levels of the
cache hierarchy—internal caches and external caches—and invalidates the cache line in every cache
in which it is found. If a cache contains a dirty copy of the cache line (that is, the cache line is in the
modified or owned MOESI state), the line is written back to memory before it is invalidated. The
instruction sets the cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address operand against
the processor’s write-combining buffers. If the write-combining buffer holds data intended for that
physical address, the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the instruction checks
the write-combining buffers only on the processor that executed the CLFLUSH instruction.

The CLFLUSH instruction is weakly-ordered with respect to other instructions that operate on
memory. Speculative loads initiated by the processor, or specified explicitly using cache-prefetch
instructions, can be reordered around a CLFLUSH instruction. Such reordering can invalidate a
speculatively prefetched cache line, unintentionally defeating the prefetch operation. The only way to
avoid this situation is to use the MFENCE instruction after the CLFLUSH instruction to force strong-
ordering of the CLFLUSH instruction with respect to subsequent memory operations. The CLFLUSH
instruction may also take effect on a cache line while stores from previous store instructions are still
pending in the store buffer. To ensure that such stores are included in the cache line that is flushed, use
an MFENCE instruction ahead of the CLFLUSH instruction. Such stores would otherwise cause the
line to be re-cached and modified after the CLFLUSH completed. The LFENCE, SFENCE, and
serializing instructions are not ordered with respect to CLFLUSH.

The CLFLUSH instruction behaves like a load instruction with respect to setting the page-table
accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but does not set the page-table
dirty bit.

The CLFLUSH instruction is supported if CPUID function 0000_0001h sets EDX bit 19. CPUID
function 0000_0001h returns the CLFLUSH size in EBX bits 15:8. This value reports the size of a line
flushed by CLFLUSH in quadwords. See CPUID for details.

The CLFLUSH instruction executes at any privilege level. CLFLUSH performs all the segmentation
and paging checks that a 1-byte read would perform, except that it also allows references to execute-
only segments.

Related Instructions

INVD, WBINVD

CLFLUSH Cache Line Flush

Mnemonic Opcode Description

CLFLUSH mem8 0F AE /7 flush cache line containing mem8.

Instruction Reference CLFLUSH 131

24594—Rev. 3.16—September 2011 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X CLFLUSH instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[CLFSH] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

132 CMC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Complements (toggles) the carry flag (CF) bit of the rFLAGS register.

Related Instructions

CLC, STC

rFLAGS Affected

Exceptions

None

CMC Complement Carry Flag

Mnemonic Opcode Description

CMC F5 Complement the carry flag (CF).

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Instruction Reference CMOVcc 133

24594—Rev. 3.16—September 2011 AMD64 Technology

Conditionally moves a 16-bit, 32-bit, or 64-bit value in memory or a general-purpose register (second
operand) into a register (first operand), depending upon the settings of condition flags in the rFLAGS
register. If the condition is not satisfied, the destination register is not modified. For the memory-
based forms of CMOVcc, memory-related exceptions may be reported even if the condition is false.
In 64-bit mode, CMOVcc with a 32-bit operand size will clear the upper 32 bits of the destination
register even if the condition is false.

The mnemonics of CMOVcc instructions denote the condition that must be satisfied. Most assemblers
provide instruction mnemonics with A (above) and B (below) tags to supply the semantics for
manipulating unsigned integers. Those with G (greater than) and L (less than) tags deal with signed
integers. Many opcodes may be represented by synonymous mnemonics. For example, the CMOVL
instruction is synonymous with the CMOVNGE instruction and denote the instruction with the opcode
0F 4C.

Support for CMOVcc instructions depends on the processor implementation. To determine whether a
processor can perform CMOVcc instructions, use the CPUID instruction to determine whether EDX
bit 15 of CPUID function 0000_0001h or function 8000_0001h is set to 1.

CMOVcc Conditional Move

Mnemonic Opcode Description

CMOVO reg16, reg/mem16
CMOVO reg32, reg/mem32
CMOVO reg64, reg/mem64

0F 40 /r Move if overflow (OF = 1).

CMOVNO reg16, reg/mem16
CMOVNO reg32, reg/mem32
CMOVNO reg64, reg/mem64

0F 41 /r Move if not overflow (OF = 0).

CMOVB reg16, reg/mem16
CMOVB reg32, reg/mem32
CMOVB reg64, reg/mem64

0F 42 /r Move if below (CF = 1).

CMOVC reg16, reg/mem16
CMOVC reg32, reg/mem32
CMOVC reg64, reg/mem64

0F 42 /r Move if carry (CF = 1).

CMOVNAE reg16, reg/mem16
CMOVNAE reg32, reg/mem32
CMOVNAE reg64, reg/mem64

0F 42 /r Move if not above or equal (CF = 1).

CMOVNB reg16,reg/mem16
CMOVNB reg32,reg/mem32
CMOVNB reg64,reg/mem64

0F 43 /r Move if not below (CF = 0).

CMOVNC reg16,reg/mem16
CMOVNC reg32,reg/mem32
CMOVNC reg64,reg/mem64

0F 43 /r Move if not carry (CF = 0).

CMOVAE reg16, reg/mem16
CMOVAE reg32, reg/mem32
CMOVAE reg64, reg/mem64

0F 43 /r Move if above or equal (CF = 0).

134 CMOVcc Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

CMOVZ reg16, reg/mem16
CMOVZ reg32, reg/mem32
CMOVZ reg64, reg/mem64

0F 44 /r Move if zero (ZF = 1).

CMOVE reg16, reg/mem16
CMOVE reg32, reg/mem32
CMOVE reg64, reg/mem64

0F 44 /r Move if equal (ZF =1).

CMOVNZ reg16, reg/mem16
CMOVNZ reg32, reg/mem32
CMOVNZ reg64, reg/mem64

0F 45 /r Move if not zero (ZF = 0).

CMOVNE reg16, reg/mem16
CMOVNE reg32, reg/mem32
CMOVNE reg64, reg/mem64

0F 45 /r Move if not equal (ZF = 0).

CMOVBE reg16, reg/mem16
CMOVBE reg32, reg/mem32
CMOVBE reg64, reg/mem64

0F 46 /r Move if below or equal (CF = 1 or ZF = 1).

CMOVNA reg16, reg/mem16
CMOVNA reg32, reg/mem32
CMOVNA reg64, reg/mem64

0F 46 /r Move if not above (CF = 1 or ZF = 1).

CMOVNBE reg16, reg/mem16
CMOVNBE reg32,reg/mem32
CMOVNBE reg64,reg/mem64

0F 47 /r Move if not below or equal (CF = 0 and ZF = 0).

CMOVA reg16, reg/mem16
CMOVA reg32, reg/mem32
CMOVA reg64, reg/mem64

0F 47 /r Move if above (CF = 0 and ZF = 0).

CMOVS reg16, reg/mem16
CMOVS reg32, reg/mem32
CMOVS reg64, reg/mem64

0F 48 /r Move if sign (SF =1).

CMOVNS reg16, reg/mem16
CMOVNS reg32, reg/mem32
CMOVNS reg64, reg/mem64

0F 49 /r Move if not sign (SF = 0).

CMOVP reg16, reg/mem16
CMOVP reg32, reg/mem32
CMOVP reg64, reg/mem64

0F 4A /r Move if parity (PF = 1).

CMOVPE reg16, reg/mem16
CMOVPE reg32, reg/mem32
CMOVPE reg64, reg/mem64

0F 4A /r Move if parity even (PF = 1).

CMOVNP reg16, reg/mem16
CMOVNP reg32, reg/mem32
CMOVNP reg64, reg/mem64

0F 4B /r Move if not parity (PF = 0).

CMOVPO reg16, reg/mem16
CMOVPO reg32, reg/mem32
CMOVPO reg64, reg/mem64

0F 4B /r Move if parity odd (PF = 0).

CMOVL reg16, reg/mem16
CMOVL reg32, reg/mem32
CMOVL reg64, reg/mem64

0F 4C /r Move if less (SF <> OF).

Mnemonic Opcode Description

Instruction Reference CMOVcc 135

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

MOV

rFLAGS Affected

None

Exceptions

CMOVNGE reg16, reg/mem16
CMOVNGE reg32, reg/mem32
CMOVNGE reg64, reg/mem64

0F 4C /r Move if not greater or equal (SF <> OF).

CMOVNL reg16, reg/mem16
CMOVNL reg32, reg/mem32
CMOVNL reg64, reg/mem64

0F 4D /r Move if not less (SF = OF).

CMOVGE reg16, reg/mem16
CMOVGE reg32, reg/mem32
CMOVGE reg64, reg/mem64

0F 4D /r Move if greater or equal (SF = OF).

CMOVLE reg16, reg/mem16
CMOVLE reg32, reg/mem32
CMOVLE reg64, reg/mem64

0F 4E /r Move if less or equal (ZF = 1 or SF <> OF).

CMOVNG reg16, reg/mem16
CMOVNG reg32, reg/mem32
CMOVNG reg64, reg/mem64

0F 4E /r Move if not greater (ZF = 1 or SF <> OF).

CMOVNLE reg16, reg/mem16
CMOVNLE reg32, reg/mem32
CMOVNLE reg64, reg/mem64

0F 4F /r Move if not less or equal (ZF = 0 and SF = OF).

CMOVG reg16, reg/mem16
CMOVG reg32, reg/mem32
CMOVG reg64, reg/mem64

0F 4F /r Move if greater (ZF = 0 and SF = OF).

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X

CMOVcc instruction is not supported, as indicated by CPUID
Fn0000_0001_EDX[CMOV] or Fn8000_0001_EDX[CMOV] =
0.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

136 CMP Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Compares the contents of a register or memory location (first operand) with an immediate value or the
contents of a register or memory location (second operand), and sets or clears the status flags in the
rFLAGS register to reflect the results. To perform the comparison, the instruction subtracts the second
operand from the first operand and sets the status flags in the same manner as the SUB instruction, but
does not alter the first operand. If the second operand is an immediate value, the instruction sign-
extends the value to the length of the first operand.

Use the CMP instruction to set the condition codes for a subsequent conditional jump (Jcc),
conditional move (CMOVcc), or conditional SETcc instruction. Appendix E, “Instruction Effects on
RFLAGS” shows how instructions affect the rFLAGS status flags.
.

CMP Compare

Mnemonic Opcode Description

CMP AL, imm8 3C ib Compare an 8-bit immediate value with the contents of
the AL register.

CMP AX, imm16 3D iw Compare a 16-bit immediate value with the contents of
the AX register.

CMP EAX, imm32 3D id Compare a 32-bit immediate value with the contents of
the EAX register.

CMP RAX, imm32 3D id Compare a 32-bit immediate value with the contents of
the RAX register.

CMP reg/mem8, imm8 80 /7 ib Compare an 8-bit immediate value with the contents of
an 8-bit register or memory operand.

CMP reg/mem16, imm16 81 /7 iw Compare a 16-bit immediate value with the contents of a
16-bit register or memory operand.

CMP reg/mem32, imm32 81 /7 id Compare a 32-bit immediate value with the contents of a
32-bit register or memory operand.

CMP reg/mem64, imm32 81 /7 id Compare a 32-bit signed immediate value with the
contents of a 64-bit register or memory operand.

CMP reg/mem16, imm8 83 /7 ib Compare an 8-bit signed immediate value with the
contents of a 16-bit register or memory operand.

CMP reg/mem32, imm8 83 /7 ib Compare an 8-bit signed immediate value with the
contents of a 32-bit register or memory operand.

CMP reg/mem64, imm8 83 /7 ib Compare an 8-bit signed immediate value with the
contents of a 64-bit register or memory operand.

CMP reg/mem8, reg8 38 /r Compare the contents of an 8-bit register or memory
operand with the contents of an 8-bit register.

CMP reg/mem16, reg16 39 /r Compare the contents of a 16-bit register or memory
operand with the contents of a 16-bit register.

CMP reg/mem32, reg32 39 /r Compare the contents of a 32-bit register or memory
operand with the contents of a 32-bit register.

CMP reg/mem64, reg64 39 /r Compare the contents of a 64-bit register or memory
operand with the contents of a 64-bit register.

Instruction Reference CMP 137

24594—Rev. 3.16—September 2011 AMD64 Technology

When interpreting operands as unsigned, flag settings are as follows:

When interpreting operands as signed, flag settings are as follows:

Related Instructions

SUB, CMPSx, SCASx

CMP reg8, reg/mem8 3A /r Compare the contents of an 8-bit register with the
contents of an 8-bit register or memory operand.

CMP reg16, reg/mem16 3B /r Compare the contents of a 16-bit register with the
contents of a 16-bit register or memory operand.

CMP reg32, reg/mem32 3B /r Compare the contents of a 32-bit register with the
contents of a 32-bit register or memory operand.

CMP reg64, reg/mem64 3B /r Compare the contents of a 64-bit register with the
contents of a 64-bit register or memory operand.

Operands CF ZF

dest > source 0 0

dest = source 0 1

dest < source 1 0

Operands OF ZF

dest > source SF 0

dest = source 0 1

dest < source NOT SF 0

Mnemonic Opcode Description

138 CMP Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference CMPSx 139

24594—Rev. 3.16—September 2011 AMD64 Technology

Compares the bytes, words, doublewords, or quadwords pointed to by the rSI and rDI registers, sets or
clears the status flags of the rFLAGS register to reflect the results, and then increments or decrements
the rSI and rDI registers according to the state of the DF flag in the rFLAGS register. To perform the
comparison, the instruction subtracts the second operand from the first operand and sets the status
flags in the same manner as the SUB instruction, but does not alter the first operand. The two operands
must be the same size.

If the DF flag is 0, the instruction increments rSI and rDI; otherwise, it decrements the pointers. It
increments or decrements the pointers by 1, 2, 4, or 8, depending on the size of the operands.

The forms of the CMPSx instruction with explicit operands address the first operand at seg:[rSI]. The
value of seg defaults to the DS segment, but may be overridden by a segment prefix. These instructions
always address the second operand at ES:[rDI]. ES may not be overridden. The explicit operands serve
only to specify the type (size) of the values being compared and the segment used by the first operand.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to point to the values
to be compared. The mnemonic determines the size of the operands.

Do not confuse this CMPSD instruction with the same-mnemonic CMPSD (compare scalar double-
precision floating-point) instruction in the 128-bit media instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

For block comparisons, the CMPS instruction supports the REPE or REPZ prefixes (they are
synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For details about the REP
prefixes, see “Repeat Prefixes” on page 12. If a conditional jump instruction like JL follows a CMPSx
instruction, the jump occurs if the value of the seg:[rSI] operand is less than the ES:[rDI] operand. This
action allows lexicographical comparisons of string or array elements. A CMPSx instruction can also
operate inside a loop controlled by the LOOPcc instruction.

CMPS
CMPSB
CMPSW
CMPSD
CMPSQ

Compare Strings

Mnemonic Opcode Description

CMPS mem8, mem8 A6 Compare the byte at DS:rSI with the byte at ES:rDI and
then increment or decrement rSI and rDI.

CMPS mem16, mem16 A7 Compare the word at DS:rSI with the word at ES:rDI and
then increment or decrement rSI and rDI.

CMPS mem32, mem32 A7 Compare the doubleword at DS:rSI with the doubleword
at ES:rDI and then increment or decrement rSI and rDI.

CMPS mem64, mem64 A7 Compare the quadword at DS:rSI with the quadword at
ES:rDI and then increment or decrement rSI and rDI.

140 CMPSx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

CMP, SCASx

rFLAGS Affected

Exceptions

CMPSB A6 Compare the byte at DS:rSI with the byte at ES:rDI and
then increment or decrement rSI and rDI.

CMPSW A7 Compare the word at DS:rSI with the word at ES:rDI and
then increment or decrement rSI and rDI.

CMPSD A7 Compare the doubleword at DS:rSI with the doubleword
at ES:rDI and then increment or decrement rSI and rDI.

CMPSQ A7 Compare the quadword at DS:rSI with the quadword at
ES:rDI and then increment or decrement rSI and rDI.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference CMPXCHG 141

24594—Rev. 3.16—September 2011 AMD64 Technology

Compares the value in the AL, AX, EAX, or RAX register with the value in a register or a memory
location (first operand). If the two values are equal, the instruction copies the value in the second
operand to the first operand and sets the ZF flag in the rFLAGS register to 1. Otherwise, it copies the
value in the first operand to the AL, AX, EAX, or RAX register and clears the ZF flag to 0.

The OF, SF, AF, PF, and CF flags are set to reflect the results of the compare.

When the first operand is a memory operand, CMPXCHG always does a read-modify-write on the
memory operand. If the compared operands were unequal, CMPXCHG writes the same value to the
memory operand that was read.

The forms of the CMPXCHG instruction that write to memory support the LOCK prefix. For details
about the LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

CMPXCHG8B, CMPXCHG16B

CMPXCHG Compare and Exchange

Mnemonic Opcode Description

CMPXCHG reg/mem8, reg8 0F B0 /r
Compare AL register with an 8-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AL.

CMPXCHG reg/mem16, reg16 0F B1 /r
Compare AX register with a 16-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AX.

CMPXCHG reg/mem32, reg32 0F B1 /r
Compare EAX register with a 32-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to EAX.

CMPXCHG reg/mem64, reg64 0F B1 /r
Compare RAX register with a 64-bit register or memory
location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to RAX.

142 CMPXCHG Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference CMPXCHG8/16B 143

24594—Rev. 3.16—September 2011 AMD64 Technology

Compares the value in the rDX:rAX registers with a 64-bit or 128-bit value in the specified memory
location. If the values are equal, the instruction copies the value in the rCX:rBX registers to the
memory location and sets the zero flag (ZF) of the rFLAGS register to 1. Otherwise, it copies the value
in memory to the rDX:rAX registers and clears ZF to 0.

If the effective operand size is 16-bit or 32-bit, the CMPXCHG8B instruction is used. This instruction
uses the EDX:EAX and ECX:EBX register operands and a 64-bit memory operand. If the effective
operand size is 64-bit, the CMPXCHG16B instruction is used; this instruction uses RDX:RAX register
operands and a 128-bit memory operand.

The CMPXCHG8B and CMPXCHG16B instructions always do a read-modify-write on the memory
operand. If the compared operands were unequal, the instructions write the same value to the memory
operand that was read.

The CMPXCHG8B and CMPXCHG16B instructions support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Support for the CMPXCHG8B and CMPXCHG16B instructions is implementation dependent.
Suppo r t f o r t he CMPXCHG8B in s t ruc t i o n i s i n d i c a t e d b y C P U I D
Fn0000_0001_EDX[CMPXCHG8B] or Fn8000_0001_EDX[CMPXCHG8B] = 1. Support for the
CMPXCHG16B instruction is indicated by CPUID Fn0000_0001_ECX[CMPXCHG16B] = 1.

The memory operand used by CMPXCHG16B must be 16-byte aligned or else a general-protection
exception is generated.

Related Instructions

CMPXCHG

CMPXCHG8B
CMPXCHG16B

Compare and Exchange Eight Bytes
Compare and Exchange Sixteen Bytes

Mnemonic Opcode Description

CMPXCHG8B mem64 0F C7 /1 m64

Compare EDX:EAX register to 64-bit memory location.
If equal, set the zero flag (ZF) to 1 and copy the
ECX:EBX register to the memory location. Otherwise,
copy the memory location to EDX:EAX and clear the
zero flag.

CMPXCHG16B mem128 0F C7 /1
m128

Compare RDX:RAX register to 128-bit memory location.
If equal, set the zero flag (ZF) to 1 and copy the
RCX:RBX register to the memory location. Otherwise,
copy the memory location to RDX:RAX and clear the
zero flag.

144 CMPXCHG8/16B Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD

X X X
CMPXCHG8B instruction is not supported, as indicated by
CPUID Fn0000_0001_EDX[CMPXCHG8B] or
Fn8000_0001_EDX[CMPXCHG8B] = 0.

X CMPXCHG16B instruction is not supported, as indicated by
CPUID Fn0000_0001_ECX[CMPXCHG16B] = 0.

X X X The operand was a register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

X The memory operand for CMPXCHG16B was not aligned on a
16-byte boundary.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference CPUID 145

24594—Rev. 3.16—September 2011 AMD64 Technology

Provides information about the processor and its capabilities through a number of different functions.
Software should load the number of the CPUID function to execute into the EAX register before
executing the CPUID instruction. The processor returns information in the EAX, EBX, ECX, and
EDX registers; the contents and format of these registers depend on the function.

The architecture supports CPUID information about standard functions and extended functions. The
standard functions have numbers in the 0000_xxxxh series (for example, standard function 1). To
determine the largest standard function number that a processor supports, execute CPUID function 0.

The extended functions have numbers in the 8000_xxxxh series (for example, extended
function 8000_0001h). To determine the largest extended function number that a processor supports,
execute CPUID extended function 8000_0000h. If the value returned in EAX is greater than
8000_0000h, the processor supports extended functions.

Software operating at any privilege level can execute the CPUID instruction to collect this
information. In 64-bit mode, this instruction works the same as in legacy mode except that it zero-
extends 32-bit register results to 64 bits.

CPUID is a serializing instruction.

Testing for the CPUID Instruction

To avoid an invalid-opcode exception (#UD) on those processor implementations that do not support
the CPUID instruction, software must first test to determine if the CPUID instruction is supported.
Support for the CPUID instruction is indicated by the ability to write the ID bit in the rFLAGS register.
Normally, 32-bit software uses the PUSHFD and POPFD instructions in an attempt to write
rFLAGS.ID. After reading the updated rFLAGS.ID bit, a comparison determines if the operation
changed its value. If the value changed, the processor executing the code supports the CPUID
instruction. If the value did not change, rFLAGS.ID is not writable, and the processor does not support
the CPUID instruction.

The following code sample shows how to test for the presence of the CPUID instruction using 32-bit
code.
pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for later testing
xor eax, 00200000h ; toggle bit 21
push eax ; push to stack
popfd ; save changed EAX to EFLAGS

CPUID Processor Identification

Mnemonic Opcode Description

CPUID 0F A2
Returns information about the processor and its
capabilities. EAX specifies the function number, and the
data is returned in EAX, EBX, ECX, EDX.

146 CPUID Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

pushfd ; push EFLAGS to TOS
pop eax ; store EFLAGS in EAX
cmp eax, ebx ; see if bit 21 has changed
jz NO_CPUID ; if no change, no CPUID

Standard Function 0 and Extended Function 8000_0000h

CPUID standard function 0 loads the EAX register with the largest CPUID standard function number
supported by the processor implementation; similarly, CPUID extended function 8000_0000h loads
the EAX register with the largest extended function number supported.

Standard function 0 and extended function 8000_0000h both load a 12-character string into the EBX,
EDX, and ECX registers identifying the processor vendor. For AMD processors, the string is
AuthenticAMD. This string informs software that it should follow the AMD CPUID definition for
subsequent CPUID function calls. If the function returns another vendor’s string, software must use
that vendor’s CPUID definition when interpreting the results of subsequent CPUID function calls.
Table 3-2 shows the contents of the EBX, EDX, and ECX registers after executing function 0 on an
AMD processor.

For more detailed on CPUID standard and extended functions, see the AMD CPUID Specification,
order# 25481.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

Table 3-2. Processor Vendor Return Values
Register Return Value ASCII Characters

EBX 6874_7541h “h t u A”

EDX 6974_6E65h “i t n e”

ECX 444D_4163h “D M A c”

Instruction Reference CRC32 147

24594—Rev. 3.16—September 2011 AMD64 Technology

Performs one step of a 32-bit cyclic redundancy check.

The first source, which is also the destination, is a doubleword value in either a 32-bit or 64-bit GPR
depending on the presence of a REX prefix and the value of the REX.W bit. The second source is a
GPR or memory location of width 8, 16, or 32 bits. A vector of width 40, 48, or 64 bits is derived from
the two operands as follows:

1. The low-order 32 bits of the first operand is bitwise inverted and shifted left by the width of the
second operand.

2. The second operand is bit-wise inverted and shifted left by 32 bits

3. The results of steps 1 and 2 are XORed.

This vector is interpreted as a polynomial of degree 40, 48, or 64 over the field of two elements (i.e., bit
i is interpreted as the coefficient of X^i). This polynomial is divided by the polynomial of degree 32
that is similarly represented by the vector 11EDC6F41h. (The division admits an efficient iterative
implementation based on the XOR operation.) The remainder is encoded as a 32-bit vector, which is
bit-wise inverted and written to the destination. In the case of a 64-bit destination, the upper 32 bits are
cleared.

In an application of the CRC algorithm, a data block is partitioned into byte, word, or doubleword
segments and CRC32 is executed iteratively, once for each segment.

CRC32 is a SSE4.2 instruction. Support for SSE4.2 instructions is indicated by CPUID
Fn0000_0001_ECX[SSE42] = 1.

Instruction Encoding

rFLAGS Affected

None

CRC32 CRC32 Cyclical Redundancy Check

Mnemonic Encoding Notes

CRC32 reg32, reg/mem8 F2 0F 38 F0 /r Perform CRC32 operation on 8-bit values

CRC32 reg32, reg/mem8 F2 REX 0F 38 F0 /r Encoding using REX prefix allows access to
GPR8–15

CRC32 reg32, reg/mem16 F2 0F 38 F1 /r Effective operand size determines size of second
operand.CRC32 reg32, reg/mem32 F2 0F 38 F1 /r

CRC32 reg64, reg/mem8 F2 REX.W 0F 38 F0 /r REX.W = 1.

CRC32 reg64, reg/mem64 F2 REX.W 0F 38 F1 /r REX.W = 1.

148 CRC32 Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode,
#UD

X X X Lock prefix used

X X X SSE42 instructions are not supported as indicated by CPUID
Fn0000_0001_ECX[SSE42] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference DAA 149

24594—Rev. 3.16—September 2011 AMD64 Technology

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal carry out of either nibble of AL.

Use this instruction to adjust the result of a byte ADD instruction that performed the binary addition of
one 2-digit packed BCD values to another.

The instruction performs the adjustment by adding 06h to AL if the lower nibble is greater than 9 or if
AF = 1. Then 60h is added to AL if the original AL was greater than 99h or if CF = 1.

If the lower nibble of AL was adjusted, the AF flag is set to 1. Otherwise AF is not modified. If the
upper nibble of AL was adjusted, the CF flag is set to 1. Otherwise, CF is not modified. SF, ZF, and PF
are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

rFLAGS Affected

Exceptions

DAA Decimal Adjust after Addition

Mnemonic Opcode Description

DAA 27 Decimal adjust AL.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

150 DAS Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal borrow.

Use this instruction to adjust the result of a byte SUB instruction that performed a binary subtraction of
one 2-digit, packed BCD value from another.

This instruction performs the adjustment by subtracting 06h from AL if the lower nibble is greater than
9 or if AF = 1. Then 60h is subtracted from AL if the original AL was greater than 99h or if CF = 1.

If the adjustment changes the lower nibble of AL, the AF flag is set to 1; otherwise AF is not modified.
If the adjustment results in a borrow for either nibble of AL, the CF flag is set to 1; otherwise CF is not
modified. The SF, ZF, and PF flags are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Related Instructions

DAA

rFLAGS Affected

Exceptions

DAS Decimal Adjust after Subtraction

Mnemonic Opcode Description

DAS 2F Decimal adjusts AL after subtraction.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

Instruction Reference DEC 151

24594—Rev. 3.16—September 2011 AMD64 Technology

Subtracts 1 from the specified register or memory location. The CF flag is not affected.

The one-byte forms of this instruction (opcodes 48 through 4F) are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.

The forms of the DEC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

To perform a decrement operation that updates the CF flag, use a SUB instruction with an immediate
operand of 1.

Related Instructions

INC, SUB

rFLAGS Affected

DEC Decrement by 1

Mnemonic Opcode Description

DEC reg/mem8 FE /1 Decrement the contents of an 8-bit register or memory
location by 1.

DEC reg/mem16 FF /1 Decrement the contents of a 16-bit register or memory
location by 1.

DEC reg/mem32 FF /1 Decrement the contents of a 32-bit register or memory
location by 1.

DEC reg/mem64 FF /1 Decrement the contents of a 64-bit register or memory
location by 1.

DEC reg16 48 +rw Decrement the contents of a 16-bit register by 1.
(See “REX Prefix” on page 14.)

DEC reg32 48 +rd Decrement the contents of a 32-bit register by 1.
(See “REX Prefix” on page 14.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

152 DEC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded the data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference DIV 153

24594—Rev. 3.16—September 2011 AMD64 Technology

Divides the unsigned value in a register by the unsigned value in the specified register or memory
location. The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the quotient in the AL
register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant word of the
dividend is in the rDX register and the least-significant word is in the rAX register. After the division,
the instruction stores the quotient in the rAX register and the remainder in the rDX register.

The following table summarizes the action of this instruction:

The instruction truncates non-integral results towards 0 and the remainder is always less than the
divisor. An overflow generates a #DE (divide error) exception, rather than setting the CF flag.

Division by zero generates a divide-by-zero exception.

Related Instructions

MUL

DIV Unsigned Divide

Division Size Dividend Divisor Quotient Remainder Maximum Quotient

Word/byte AX reg/mem8 AL AH 255

Doubleword/word DX:AX reg/mem16 AX DX 65,535

Quadword/doubleword EDX:EAX reg/mem32 EAX EDX 2 32 – 1

Double quadword/
quadword RDX:RAX reg/mem64 RAX RDX 264 – 1

Mnemonic Opcode Description

DIV reg/mem8 F6 /6
Perform unsigned division of AX by the contents of an 8-
bit register or memory location and store the quotient in
AL and the remainder in AH.

DIV reg/mem16 F7 /6
Perform unsigned division of DX:AX by the contents of a
16-bit register or memory operand store the quotient in
AX and the remainder in DX.

DIV reg/mem32 F7 /6
Perform unsigned division of EDX:EAX by the contents
of a 32-bit register or memory location and store the
quotient in EAX and the remainder in EDX.

DIV reg/mem64 F7 /6
Perform unsigned division of RDX:RAX by the contents
of a 64-bit register or memory location and store the
quotient in RAX and the remainder in RDX.

154 DIV Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U U

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Divide by zero, #DE
X X X The divisor operand was 0.
X X X The quotient was too large for the designated register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference ENTER 155

24594—Rev. 3.16—September 2011 AMD64 Technology

Creates a stack frame for a procedure.

The first operand specifies the size of the stack frame allocated by the instruction.

The second operand specifies the nesting level (0 to 31—the value is automatically masked to 5 bits).
For nesting levels of 1 or greater, the processor copies earlier stack frame pointers before adjusting the
stack pointer. This action provides a called procedure with access points to other nested stack frames.

The 32-bit enter N, 0 (a nesting level of 0) instruction is equivalent to the following 32-bit
instruction sequence:

push ebp ; save current EBP
mov ebp, esp ; set stack frame pointer value
sub esp, N ; allocate space for local variables

The ENTER and LEAVE instructions provide support for block structured languages. The LEAVE
instruction releases the stack frame on returning from a procedure.

In 64-bit mode, the operand size of ENTER defaults to 64 bits, and there is no prefix available for
encoding a 32-bit operand size.

Action
// See “Pseudocode Definitions” on page 56.

ENTER_START:

 temp_ALLOC_SPACE = word-sized immediate specified in the instruction
 (first operand), zero-extended to 64 bits
 temp_LEVEL = byte-sized immediate specified in the instruction
 (second operand), zero-extended to 64 bits

 temp_LEVEL = temp_LEVEL AND 0x1f
 // only keep 5 bits of level count

 PUSH.v old_RBP

 temp_RBP = RSP // This value of RSP will eventually be loaded
 // into RBP.
 IF (temp_LEVEL>0) // Push "temp_LEVEL" parameters to the stack.
 {
 FOR (I=1; I<temp_LEVEL; I++)

ENTER Create Procedure Stack Frame

Mnemonic Opcode Description

ENTER imm16, 0 C8 iw 00 Create a procedure stack frame.

ENTER imm16, 1 C8 iw 01 Create a nested stack frame for a procedure.

ENTER imm16, imm8 C8 iw ib Create a nested stack frame for a procedure.

156 ENTER Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

 // All but one of the parameters are copied
 // from higher up on the stack.
 {
 temp_DATA = READ_MEM.v [SS:old_RBP-I*V]
 PUSH.v temp_DATA
 }
 PUSH.v temp_RBP // The last parameter is the offset of the old
 // value of RSP on the stack.
 }
 RSP.s = RSP - temp_ALLOC_SPACE // Leave "temp_ALLOC_SPACE" free bytes on
 // the stack

 WRITE_MEM.v [SS:RSP.s] = temp_unused // ENTER finishes with a memory write
 // check on the final stack pointer,
 // but no write actually occurs.

 RBP.v = temp_RBP
 EXIT

Related Instructions

LEAVE

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack-segment limit or was
non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference IDIV 157

24594—Rev. 3.16—September 2011 AMD64 Technology

Divides the signed value in a register by the signed value in the specified register or memory location.
The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the quotient in the AL
register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant word of the
dividend is in the rDX register and the least-significant word is in the rAX register. After the division,
the instruction stores the quotient in the rAX register and the remainder in the rDX register.

The following table summarizes the action of this instruction:

The instruction truncates non-integral results towards 0. The sign of the remainder is always the same
as the sign of the dividend, and the absolute value of the remainder is less than the absolute value of the
divisor. An overflow generates a #DE (divide error) exception, rather than setting the OF flag.

To avoid overflow problems, precede this instruction with a CBW, CWD, CDQ, or CQO instruction to
sign-extend the dividend.

IDIV Signed Divide

Division Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX reg/mem8 AL AH –128 to +127

Doubleword/word DX:AX reg/mem16 AX DX –32,768 to +32,767

Quadword/doubleword EDX:EAX reg/mem32 EAX EDX –2 31 to 2 31– 1

Double quadword/
quadword RDX:RAX reg/mem64 RAX RDX –2 63 to 263– 1

Mnemonic Opcode Description

IDIV reg/mem8 F6 /7
Perform signed division of AX by the contents of an 8-bit
register or memory location and store the quotient in AL
and the remainder in AH.

IDIV reg/mem16 F7 /7
Perform signed division of DX:AX by the contents of a
16-bit register or memory location and store the quotient
in AX and the remainder in DX.

IDIV reg/mem32 F7 /7
Perform signed division of EDX:EAX by the contents of
a 32-bit register or memory location and store the
quotient in EAX and the remainder in EDX.

IDIV reg/mem64 F7 /7
Perform signed division of RDX:RAX by the contents of
a 64-bit register or memory location and store the
quotient in RAX and the remainder in RDX.

158 IDIV Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

IMUL

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U U U U U

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Divide by zero, #DE
X X X The divisor operand was 0.
X X X The quotient was too large for the designated register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference IMUL 159

24594—Rev. 3.16—September 2011 AMD64 Technology

Multiplies two signed operands. The number of operands determines the form of the instruction.

If a single operand is specified, the instruction multiplies the value in the specified general-purpose
register or memory location by the value in the AL, AX, EAX, or RAX register (depending on the
operand size) and stores the product in AX, DX:AX, EDX:EAX, or RDX:RAX, respectively.

If two operands are specified, the instruction multiplies the value in a general-purpose register (first
operand) by an immediate value or the value in a general-purpose register or memory location (second
operand) and stores the product in the first operand location.

If three operands are specified, the instruction multiplies the value in a general-purpose register or
memory location (second operand), by an immediate value (third operand) and stores the product in a
register (first operand).

The IMUL instruction sign-extends an immediate operand to the length of the other register/memory
operand.

The CF and OF flags are set if, due to integer overflow, the double-width multiplication result cannot
be represented in the half-width destination register. Otherwise the CF and OF flags are cleared.

IMUL Signed Multiply

Mnemonic Opcode Description

IMUL reg/mem8 F6 /5
Multiply the contents of AL by the contents of an 8-bit
memory or register operand and put the signed result in
AX.

IMUL reg/mem16 F7 /5
Multiply the contents of AX by the contents of a 16-bit
memory or register operand and put the signed result in
DX:AX.

IMUL reg/mem32 F7 /5
Multiply the contents of EAX by the contents of a 32-bit
memory or register operand and put the signed result in
EDX:EAX.

IMUL reg/mem64 F7 /5
Multiply the contents of RAX by the contents of a 64-bit
memory or register operand and put the signed result in
RDX:RAX.

IMUL reg16, reg/mem16 0F AF /r
Multiply the contents of a 16-bit destination register by
the contents of a 16-bit register or memory operand and
put the signed result in the 16-bit destination register.

IMUL reg32, reg/mem32 0F AF /r
Multiply the contents of a 32-bit destination register by
the contents of a 32-bit register or memory operand and
put the signed result in the 32-bit destination register.

IMUL reg64, reg/mem64 0F AF /r
Multiply the contents of a 64-bit destination register by
the contents of a 64-bit register or memory operand and
put the signed result in the 64-bit destination register.

IMUL reg16, reg/mem16, imm8 6B /r ib
Multiply the contents of a 16-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 16-bit destination register.

160 IMUL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

IDIV

rFLAGS Affected

Exceptions

IMUL reg32, reg/mem32, imm8 6B /r ib
Multiply the contents of a 32-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 32-bit destination register.

IMUL reg64, reg/mem64, imm8 6B /r ib
Multiply the contents of a 64-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 64-bit destination register.

IMUL reg16, reg/mem16,
imm16 69 /r iw

Multiply the contents of a 16-bit register or memory
operand by a sign-extended immediate word and put
the signed result in the 16-bit destination register.

IMUL reg32, reg/mem32,
imm32 69 /r id

Multiply the contents of a 32-bit register or memory
operand by a sign-extended immediate double and put
the signed result in the 32-bit destination register.

IMUL reg64, reg/mem64,
imm32 69 /r id

Multiply the contents of a 64-bit register or memory
operand by a sign-extended immediate double and put
the signed result in the 64-bit destination register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M U U U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference IN 161

24594—Rev. 3.16—September 2011 AMD64 Technology

Transfers a byte, word, or doubleword from an I/O port (second operand) to the AL, AX or EAX
register (first operand). The port address can be an 8-bit immediate value (00h to FFh) or contained in
the DX register (0000h to FFFFh).

The port is in the processor’s I/O address space. For 8-bit I/O port accesses, the opcode determines the
port size. For 16-bit and 32-bit accesses, the operand-size attribute determines the port size. If the
operand size is 64-bits, IN reads only 32 bits from the I/O port.

If the CPL is higher than IOPL, or the mode is virtual mode, IN checks the I/O permission bitmap in
the TSS before allowing access to the I/O port. (See Volume 2 for details on the TSS I/O permission
bitmap.)

Related Instructions

INSx, OUT, OUTSx

rFLAGS Affected

None

Exceptions

IN Input from Port

Mnemonic Opcode Description

IN AL, imm8 E4 ib Input a byte from the port at the address specified by
imm8 and put it into the AL register.

IN AX, imm8 E5 ib Input a word from the port at the address specified by
imm8 and put it into the AX register.

IN EAX, imm8 E5 ib Input a doubleword from the port at the address
specified by imm8 and put it into the EAX register.

IN AL, DX EC Input a byte from the port at the address specified by the
DX register and put it into the AL register.

IN AX, DX ED Input a word from the port at the address specified by
the DX register and put it into the AX register.

IN EAX, DX ED
Input a doubleword from the port at the address
specified by the DX register and put it into the EAX
register.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

162 INC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Adds 1 to the specified register or memory location. The CF flag is not affected, even if the operand is
incremented to 0000.

The one-byte forms of this instruction (opcodes 40 through 47) are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.

The forms of the INC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

To perform an increment operation that updates the CF flag, use an ADD instruction with an
immediate operand of 1.

Related Instructions

ADD, DEC

INC Increment by 1

Mnemonic Opcode Description

INC reg/mem8 FE /0 Increment the contents of an 8-bit register or memory
location by 1.

INC reg/mem16 FF /0 Increment the contents of a 16-bit register or memory
location by 1.

INC reg/mem32 FF /0 Increment the contents of a 32-bit register or memory
location by 1.

INC reg/mem64 FF /0 Increment the contents of a 64-bit register or memory
location by 1.

INC reg16 40 +rw
Increment the contents of a 16-bit register by 1.
(These opcodes are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.)

INC reg32 40 +rd
Increment the contents of a 32-bit register by 1.
(These opcodes are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.)

Instruction Reference INC 163

24594—Rev. 3.16—September 2011 AMD64 Technology

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

164 INSx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Transfers data from the I/O port specified in the DX register to an input buffer specified in the rDI
register and increments or decrements the rDI register according to the setting of the DF flag in the
rFLAGS register.

If the DF flag is 0, the instruction increments rDI by 1, 2, or 4, depending on the number of bytes read.
If the DF flag is 1, it decrements the pointer by 1, 2, or 4.

In 16-bit and 32-bit mode, the INS instruction always uses ES as the data segment. The ES segment
cannot be overridden with a segment override prefix. In 64-bit mode, INS always uses the
unsegmented memory space.

The INS instructions use the explicit memory operand (first operand) to determine the size of the I/O
port, but always use ES:[rDI] for the location of the input buffer. The explicit register operand (second
operand) specifies the I/O port address and must always be DX.

The INSB, INSW, and INSD instructions copy byte, word, and doubleword data, respectively, from
the I/O port (0000h to FFFFh) specified in the DX register to the input buffer specified in the ES:rDI
registers.

If the operand size is 64-bits, the instruction behaves as if the operand size were 32-bits.

If the CPL is higher than the IOPL or the mode is virtual mode, INSx checks the I/O permission bitmap
in the TSS before allowing access to the I/O port. (See volume 2 for details on the TSS I/O permission
bitmap.)

The INSx instructions support the REP prefix for block input of rCX bytes, words, or doublewords.
For details about the REP prefix, see “Repeat Prefixes” on page 12.

INS
INSB
INSW
INSD

Input String

Mnemonic Opcode Description

INS mem8, DX 6C
Input a byte from the port specified by DX, put it into the
memory location specified in ES:rDI, and then
increment or decrement rDI.

INS mem16, DX 6D
Input a word from the port specified by DX register, put it
into the memory location specified in ES:rDI, and then
increment or decrement rDI.

INS mem32, DX 6D
Input a doubleword from the port specified by DX, put it
into the memory location specified in ES:rDI, and then
increment or decrement rDI.

INSB 6C
Input a byte from the port specified by DX, put it into the
memory location specified in ES:rDI, and then
increment or decrement rDI.

Instruction Reference INSx 165

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

IN, OUT, OUTSx

rFLAGS Affected

None

Exceptions

INSW 6D
Input a word from the port specified by DX, put it into the
memory location specified in ES:rDI, and then
increment or decrement rDI.

INSD 6D
Input a doubleword from the port specified by DX, put it
into the memory location specified in ES:rDI, and then
increment or decrement rDI.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

X A null data segment was used to reference memory.
X The destination operand was in a non-writable segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

166 INT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Transfers execution to the interrupt handler specified by an 8-bit unsigned immediate value. This value
is an interrupt vector number (00h to FFh), which the processor uses as an index into the interrupt-
descriptor table (IDT).

For detailed descriptions of the steps performed by INTn instructions, see the following:

• Legacy-Mode Interrupts: “Virtual-8086 Mode Interrupt Control Transfers” in Volume 2.
• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

See also the descriptions of the INT3 instruction on page 319 and the INTO instruction on page 173.

Action
// See “Pseudocode Definitions” on page 56.

INT_N_START:

IF (REAL_MODE)
 INT_N_REAL
ELSIF (PROTECTED_MODE)
 INT_N_PROTECTED
ELSE // (VIRTUAL_MODE)
 INT_N_VIRTUAL

INT_N_REAL:
 temp_int_n_vector = byte-sized interrupt vector specified in the instruction,
 zero-extended to 64 bits

 temp_RIP = READ_MEM.w [idt:temp_int_n_vector*4]
 // read target CS:RIP from the real-mode idt
 temp_CS = READ_MEM.w [idt:temp_int_n_vector*4+2]

 PUSH.w old_RFLAGS
 PUSH.w old_CS
 PUSH.w next_RIP

 IF (temp_RIP>CS.limit)
 EXCEPTION [#GP]

 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

 RFLAGS.AC,TF,IF,RF cleared

INT Interrupt to Vector

Mnemonic Opcode Description

INT imm8 CD ib Call interrupt service routine specified by interrupt
vector imm8.

Instruction Reference INT 167

24594—Rev. 3.16—September 2011 AMD64 Technology

 RIP = temp_RIP
 EXIT

INT_N_PROTECTED:

 temp_int_n_vector = byte-sized interrupt vector specified in the instruction,
 zero-extended to 64 bits
 temp_idt_desc = READ_IDT (temp_int_n_vector)

 IF (temp_idt_desc.attr.type = ’taskgate’)
 TASK_SWITCH // using tss selector in the task gate as the target tss

 IF (LONG_MODE) // The size of the gate controls the size of the
 // stack pushes.
 V=8-byte // Long mode only uses 64-bit gates.
 ELSIF ((temp_idt_desc.attr.type = ’intgate32’)
 || (temp_idt_desc.attr.type = ’trapgate32’))
 V=4-byte // Legacy mode, using a 32-bit gate
 ELSE // gate is intgate16 or trapgate16
 V=2-byte // Legacy mode, using a 16-bit gate

 temp_RIP = temp_idt_desc.offset

 IF (LONG_MODE)
 // In long mode, we need to read the 2nd half of a
 // 16-byte interrupt-gate from the IDT, to get the
 // upper 32 bits of the target RIP
 {
 temp_upper = READ_MEM.q [idt:temp_int_n_vector*16+8]

 temp_RIP = tempRIP + (temp_upper SHL 32) // concatenate both halves of RIP
 }

 CS = READ_DESCRIPTOR (temp_idt_desc.segment, intcs_chk)

 IF (CS.attr.conforming=1)
 temp_CPL = CPL
 ELSE
 temp_CPL = CS.attr.dpl

 IF (CPL=temp_CPL) // no privilege-level change
 {
 IF (LONG_MODE)
 {
 IF (temp_idt_desc.ist!=0)
 // In long mode, if the IDT gate specifies an IST pointer,
 // a stack-switch is always done
 RSP = READ_MEM.q [tss:ist_index*8+28]

 RSP = RSP AND 0xFFFFFFFFFFFFFFF0

168 INT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

 // In long mode, interrupts/exceptions align RSP to a
 // 16-byte boundary

 PUSH.q old_SS // In long mode, SS:RSP is always pushed to the stack
 PUSH.q old_RSP
 }

 PUSH.v old_RFLAGS
 PUSH.v old_CS
 PUSH.v next_RIP

 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

 RFLAGS.VM,NT,TF,RF cleared
 RFLAGS.IF cleared if interrupt gate

 RIP = temp_RIP
 EXIT
 }
 ELSE // (CPL > temp_CPL), changing privilege level
 {
 CPL = temp_CPL

 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER
 (CPL, temp_idt_desc.ist)

 IF (LONG_MODE)
 temp_RSP = temp_RSP AND 0xFFFFFFFFFFFFFFF0
 // in long mode, interrupts/exceptions align rsp
 // to a 16-byte boundary

 RSP.q = temp_RSP
 SS = temp_SS_desc

 PUSH.v old_SS // #SS on the following pushes uses SS.sel as error code
 PUSH.v old_RSP
 PUSH.v old_RFLAGS
 PUSH.v old_CS
 PUSH.v next_RIP

 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

 RFLAGS.VM,NT,TF,RF cleared
 RFLAGS.IF cleared if interrupt gate
 RIP = temp_RIP
 EXIT
 }

Instruction Reference INT 169

24594—Rev. 3.16—September 2011 AMD64 Technology

INT_N_VIRTUAL:

 temp_int_n_vector = byte-sized interrupt vector specified in the instruction,
 zero-extended to 64 bits

 IF (CR4.VME=0) // vme isn’t enabled
 {
 IF (RFLAGS.IOPL=3)
 INT_N_VIRTUAL_TO_PROTECTED
 ELSE
 EXCEPTION [#GP(0)]
 }

 temp_IRB_BASE = READ_MEM.w [tss:102] - 32
 // check the vme Int-n Redirection Bitmap (IRB), to see
 // if we should redirect this interrupt to a virtual-mode
 // handler
 temp_VME_REDIRECTION_BIT = READ_BIT_ARRAY ([tss:temp_IRB_BASE],
 temp_int_n_vector)

 IF (temp_VME_REDIRECTION_BIT=1)
 { // the virtual-mode int-n bitmap bit is set, so don’t
 // redirect this interrupt
 IF (RFLAGS.IOPL=3)
 INT_N_VIRTUAL_TO_PROTECTED
 ELSE
 EXCEPTION [#GP(0)]
 }
 ELSE // redirect interrupt through virtual-mode idt
 {
 temp_RIP = READ_MEM.w [0:temp_int_n_vector*4]
 // read target CS:RIP from the virtual-mode idt at
 // linear address 0
 temp_CS = READ_MEM.w [0:temp_int_n_vector*4+2]

 IF (RFLAGS.IOPL < 3)
 old_RFLAGS = old_RFLAGS with VIF bit shifted into IF bit, and IOPL = 3

 PUSH.w old_RFLAGS
 PUSH.w old_CS
 PUSH.w next_RIP

 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

 RFLAGS.TF,RF cleared
 RIP = temp_RIP // RFLAGS.IF cleared if IOPL = 3
 // RFLAGS.VIF cleared if IOPL < 3
 EXIT
 }

170 INT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

INT_N_VIRTUAL_TO_PROTECTED:

 temp_idt_desc = READ_IDT (temp_int_n_vector)
 IF (temp_idt_desc.attr.type = ’taskgate’)
 TASK_SWITCH // using tss selector in the task gate as the target tss

 IF ((temp_idt_desc.attr.type = ’intgate32’)
 || (temp_idt_desc.attr.type = ’trapgate32’))
 // the size of the gate controls the size of the stack pushes
 V=4-byte // legacy mode, using a 32-bit gate
 ELSE // gate is intgate16 or trapgate16
 V=2-byte // legacy mode, using a 16-bit gate

 temp_RIP = temp_idt_desc.offset
 CS = READ_DESCRIPTOR (temp_idt_desc.segment, intcs_chk)

 IF (CS.attr.dpl!=0) // Handler must run at CPL 0.
 EXCEPTION [#GP(CS.sel)]

 CPL = 0

 temp_ist = 0 // Legacy mode doesn’t use ist pointers
 temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER (CPL, temp_ist)

 RSP.q = temp_RSP
 SS = temp_SS_desc

 PUSH.v old_GS // #SS on the following pushes use SS.sel as error code.
 PUSH.v old_FS
 PUSH.v old_DS
 PUSH.v old_ES
 PUSH.v old_SS
 PUSH.v old_RSP
 PUSH.v old_RFLAGS // Pushed with RF clear.
 PUSH.v old_CS
 PUSH.v next_RIP

 IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

 DS = NULL // can’t use virtual-mode selectors in protected mode
 ES = NULL // can’t use virtual-mode selectors in protected mode
 FS = NULL // can’t use virtual-mode selectors in protected mode
 GS = NULL // can’t use virtual-mode selectors in protected mode

 RFLAGS.VM,NT,TF,RF cleared
 RFLAGS.IF cleared if interrupt gate

 RIP = temp_RIP
 EXIT

Instruction Reference INT 171

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

INT 3, INTO, BOUND

rFLAGS Affected

If a task switch occurs, all flags are modified. Otherwise settings are as follows:

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 M M 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid TSS, #TS
(selector)

X X As part of a stack switch, the target stack segment selector or
rSP in the TSS was beyond the TSS limit.

X X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.

X X As part of a stack switch, the target stack segment selector’s
TI bit was set, but the LDT selector was a null selector.

X X
As part of a stack switch, the target stack segment selector in
the TSS was beyond the limit of the GDT or LDT descriptor
table.

X X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.

X X
As part of a stack switch, the target stack segment selector in
the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

Segment not
present, #NP
(selector)

X X The accessed code segment, interrupt gate, trap gate, task
gate, or TSS was not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical, and no stack switch occurred.

Stack, #SS
(selector)

X X After a stack switch, a memory address exceeded the stack
segment limit or was non-canonical.

X X
As part of a stack switch, the SS register was loaded with a
non-null segment selector and the segment was marked not
present.

172 INT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X The IOPL was less than 3 and CR4.VME was 0.

X
IOPL was less than 3, CR4.VME was 1, and the
corresponding bit in the VME interrupt redirection bitmap was
1.

General protection,
#GP
(selector)

X X X The interrupt vector was beyond the limit of IDT.

X X
The descriptor in the IDT was not an interrupt, trap, or task
gate in legacy mode or not a 64-bit interrupt or trap gate in
long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less
than the CPL.

X X The segment selector specified by the interrupt or trap gate
had its TI bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X
The segment descriptor specified by the interrupt or trap gate
was not a code segment in legacy mode, or not a 64-bit code
segment in long mode.

X The DPL of the segment specified by the interrupt or trap gate
was greater than the CPL.

X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Instruction Reference INTO 173

24594—Rev. 3.16—September 2011 AMD64 Technology

Checks the overflow flag (OF) in the rFLAGS register and calls the overflow exception (#OF) handler
if the OF flag is set to 1. This instruction has no effect if the OF flag is cleared to 0. The INTO
instruction detects overflow in signed number addition. See AMD64 Architecture Programmer’s
Manual Volume 1: Application Programming for more information on the OF flag.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

For detailed descriptions of the steps performed by INT instructions, see the following:

• Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.
• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action
IF (64BIT_MODE)
 EXCEPTION[#UD]
IF (RFLAGS.OF = 1) // #OF is a trap, and pushes the rIP of the instruction
 EXCEPTION [#OF] // following INTO.
EXIT

Related Instructions

INT, INT 3, BOUND

rFLAGS Affected

None.

Exceptions

INTO Interrupt to Overflow Vector

Mnemonic Opcode Description

INTO CE Call overflow exception if the overflow flag is set.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Overflow, #OF X X X The INTO instruction was executed with 0F set to 1.
Invalid opcode,
#UD X Instruction was executed in 64-bit mode.

174 Jcc Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Checks the status flags in the rFLAGS register and, if the flags meet the condition specified by the
condition code in the mnemonic (cc), jumps to the target instruction located at the specified relative
offset. Otherwise, execution continues with the instruction following the Jcc instruction.

Unlike the unconditional jump (JMP), conditional jump instructions have only two forms—short and
near conditional jumps. Different opcodes correspond to different forms of one instruction. For
example, the JO instruction (jump if overflow) has opcode 0Fh 80h for its near form and 70h for its
short form, but the mnemonic is the same for both forms. The only difference is that the near form has
a 16- or 32-bit relative displacement, while the short form always has an 8-bit relative displacement.

Mnemonics are provided to deal with the programming semantics of both signed and unsigned
numbers. Instructions tagged A (above) and B (below) are intended for use in unsigned integer code;
those tagged G (greater) and L (less) are intended for use in signed integer code.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-bit or 32-bit
displacement value to 64 bits before adding it to the RIP.

These instructions cannot perform far jumps (to other code segments). To create a far-conditional-
jump code sequence corresponding to a high-level language statement like:

IF A = B THEN GOTO FarLabel

where FarLabel is located in another code segment, use the opposite condition in a conditional short
jump before an unconditional far jump. Such a code sequence might look like:

cmp A,B ; compare operands
jne NextInstr ; continue program if not equal
jmp far FarLabel ; far jump if operands are equal

NextInstr: ; continue program

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Jcc Jump on Condition

Mnemonic Opcode Description

JO rel8off
JO rel16off
JO rel32off

70 cb
0F 80 cw
0F 80 cd

Jump if overflow (OF = 1).

JNO rel8off
JNO rel16off
JNO rel32off

71 cb
0F 81 cw
0F 81 cd

Jump if not overflow (OF = 0).

JB rel8off
JB rel16off
JB rel32off

72 cb
0F 82 cw
0F 82 cd

Jump if below (CF = 1).

Instruction Reference Jcc 175

24594—Rev. 3.16—September 2011 AMD64 Technology

JC rel8off
JC rel16off
JC rel32off

72 cb
0F 82 cw
0F 82 cd

Jump if carry (CF = 1).

JNAE rel8off
JNAE rel16off
JNAE rel32off

72 cb
0F 82 cw
0F 82 cd

Jump if not above or equal (CF = 1).

JNB rel8off
JNB rel16off
JNB rel32off

73 cb
0F 83 cw
0F 83 cd

Jump if not below (CF = 0).

JNC rel8off
JNC rel16off
JNC rel32off

73 cb
0F 83 cw
0F 83 cd

Jump if not carry (CF = 0).

JAE rel8off
JAE rel16off
JAE rel32off

73 cb
0F 83 cw
0F 83 cd

Jump if above or equal (CF = 0).

JZ rel8off
JZ rel16off
JZ rel32off

74 cb
0F 84 cw
0F 84 cd

Jump if zero (ZF = 1).

JE rel8off
JE rel16off
JE rel32off

74 cb
0F 84 cw
0F 84 cd

Jump if equal (ZF = 1).

JNZ rel8off
JNZ rel16off
JNZ rel32off

75 cb
0F 85 cw
0F 85 cd

Jump if not zero (ZF = 0).

JNE rel8off
JNE rel16off
JNE rel32off

75 cb
0F 85 cw
0F 85 cd

Jump if not equal (ZF = 0).

JBE rel8off
JBE rel16off
JBE rel32off

76 cb
0F 86 cw
0F 86 cd

Jump if below or equal (CF = 1 or ZF = 1).

JNA rel8off
JNA rel16off
JNA rel32off

76 cb
0F 86 cw
0F 86 cd

Jump if not above (CF = 1 or ZF = 1).

JNBE rel8off
JNBE rel16off
JNBE rel32off

77 cb
0F 87 cw
0F 87 cd

Jump if not below or equal (CF = 0 and ZF = 0).

JA rel8off
JA rel16off
JA rel32off

77 cb
0F 87 cw
0F 87 cd

Jump if above (CF = 0 and ZF = 0).

JS rel8off
JS rel16off
JS rel32off

78 cb
0F 88 cw
0F 88 cd

Jump if sign (SF = 1).

JNS rel8off
JNS rel16off
JNS rel32off

79 cb
0F 89 cw
0F 89 cd

Jump if not sign (SF = 0).

Mnemonic Opcode Description

176 Jcc Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

JMP (Near), JMP (Far), JrCXZ

rFLAGS Affected

None

JP rel8off
JP rel16off
JP rel32off

7A cb
0F 8A cw
0F 8A cd

Jump if parity (PF = 1).

JPE rel8off
JPE rel16off
JPE rel32off

7A cb
0F 8A cw
0F 8A cd

Jump if parity even (PF = 1).

JNP rel8off
JNP rel16off
JNP rel32off

7B cb
0F 8B cw
0F 8B cd

Jump if not parity (PF = 0).

JPO rel8off
JPO rel16off
JPO rel32off

7B cb
0F 8B cw
0F 8B cd

Jump if parity odd (PF = 0).

JL rel8off
JL rel16off
JL rel32off

7C cb
0F 8C cw
0F 8C cd

Jump if less (SF <> OF).

JNGE rel8off
JNGE rel16off
JNGE rel32off

7C cb
0F 8C cw
0F 8C cd

Jump if not greater or equal (SF <> OF).

JNL rel8off
JNL rel16off
JNL rel32off

7D cb
0F 8D cw
0F 8D cd

Jump if not less (SF = OF).

JGE rel8off
JGE rel16off
JGE rel32off

7D cb
0F 8D cw
0F 8D cd

Jump if greater or equal (SF = OF).

JLE rel8off
JLE rel16off
JLE rel32off

7E cb
0F 8E cw
0F 8E cd

Jump if less or equal (ZF = 1 or SF <> OF).

JNG rel8off
JNG rel16off
JNG rel32off

7E cb
0F 8E cw
0F 8E cd

Jump if not greater (ZF = 1 or SF <> OF).

JNLE rel8off
JNLE rel16off
JNLE rel32off

7F cb
0F 8F cw
0F 8F cd

Jump if not less or equal (ZF = 0 and SF = OF).

JG rel8off
JG rel16off
JG rel32off

7F cb
0F 8F cw
0F 8F cd

Jump if greater (ZF = 0 and SF = OF).

Mnemonic Opcode Description

Instruction Reference Jcc 177

24594—Rev. 3.16—September 2011 AMD64 Technology

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

178 JrCXZ Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Checks the contents of the count register (rCX) and, if 0, jumps to the target instruction located at the
specified 8-bit relative offset. Otherwise, execution continues with the instruction following the
JrCXZ instruction.

The size of the count register (CX, ECX, or RCX) depends on the address-size attribute of the JrCXZ
instruction. Therefore, JRCXZ can only be executed in 64-bit mode and JCXZ cannot be executed in
64-bit mode.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-bit displacement
value to 64 bits before adding it to the RIP.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Related Instructions

Jcc, JMP (Near), JMP (Far)

rFLAGS Affected

None

Exceptions

JCXZ
JECXZ
JRCXZ

Jump if rCX Zero

Mnemonic Opcode Description

JCXZ rel8off E3 cb Jump short if the 16-bit count register (CX) is zero.

JECXZ rel8off E3 cb Jump short if the 32-bit count register (ECX) is zero.

JRCXZ rel8off E3 cb Jump short if the 64-bit count register (RCX) is zero.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical

Instruction Reference JMP (Near) 179

24594—Rev. 3.16—September 2011 AMD64 Technology

Unconditionally transfers control to a new address without saving the current rIP value. This form of
the instruction jumps to an address in the current code segment and is called a near jump. The target
operand can specify a register, a memory location, or a label.

If the JMP target is specified in a register or memory location, then a 16-, 32-, or 64-bit rIP is read from
the operand, depending on operand size. This rIP is zero-extended to 64 bits.

If the JMP target is specified by a displacement in the instruction, the signed displacement is added to
the rIP (of the following instruction), and the result is truncated to 16, 32, or 64 bits depending on
operand size. The signed displacement can be 8 bits, 16 bits, or 32 bits, depending on the opcode and
the operand size.

For near jumps in 64-bit mode, the operand size defaults to 64 bits. The E9 opcode results in RIP = RIP
+ 32-bit signed displacement, and the FF /4 opcode results in RIP = 64-bit offset from register or
memory. No prefix is available to encode a 32-bit operand size in 64-bit mode.

See JMP (Far) for information on far jumps—jumps to procedures located outside of the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Related Instructions

JMP (Far), Jcc, JrCX

rFLAGS Affected

None.

JMP (Near) Near Jump

Mnemonic Opcode Description

JMP rel8off EB cb Short jump with the target specified by an 8-bit signed
displacement.

JMP rel16off E9 cw Near jump with the target specified by a 16-bit signed
displacement.

JMP rel32off E9 cd Near jump with the target specified by a 32-bit signed
displacement.

JMP reg/mem16 FF /4 Near jump with the target specified reg/mem16.

JMP reg/mem32 FF /4 Near jump with the target specified reg/mem32.
(No prefix for encoding in 64-bit mode.)

JMP reg/mem64 FF /4 Near jump with the target specified reg/mem64.

180 JMP (Near) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference JMP (Far) 181

24594—Rev. 3.16—September 2011 AMD64 Technology

Unconditionally transfers control to a new address without saving the current CS:rIP values. This form
of the instruction jumps to an address outside the current code segment and is called a far jump. The
operand specifies a target selector and offset.

The target operand can be specified by the instruction directly, by containing the far pointer in the jmp
far opcode itself, or indirectly, by referencing a far pointer in memory. In 64-bit mode, only indirect far
jumps are allowed, executing a direct far jmp (opcode EA) will generate an undefined opcode
exception. For both direct and indirect far calls, if the JMP (Far) operand-size is 16 bits, the
instruction's operand is a 16-bit selector followed by a 16-bit offset. If the operand-size is 32 or 64 bits,
the operand is a 16-bit selector followed by a 32-bit offset.

In all modes, the target selector used by the instruction can be a code selector. Additionally, the target
selector can also be a call gate in protected mode, or a task gate or TSS selector in legacy protected
mode.

• Target is a code segment—Control is transferred to the target CS:rIP. In this case, the target offset
can only be a 16 or 32 bit value, depending on operand-size, and is zero-extended to 64 bits. No
CPL change is allowed.

• Target is a call gate—The call gate specifies the actual target code segment and offset, and control
is transferred to the target CS:rIP. When jumping through a call gate, the size of the target rIP is 16,
32, or 64 bits, depending on the size of the call gate. If the target rIP is less than 64 bits, it's zero-
extended to 64 bits. In long mode, only 64-bit call gates are allowed, and they must point to 64-bit
code segments. No CPL change is allowed.

• Target is a task gate or a TSS—If the mode is legacy protected mode, then a task switch occurs. See
“Hardware Task-Management in Legacy Mode” in volume 2 for details about task switches.
Hardware task switches are not supported in long mode.

See JMP (Near) for information on near jumps—jumps to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

JMP (Far) Far Jump

Mnemonic Opcode Description

JMP FAR pntr16:16 EA cd Far jump direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

JMP FAR pntr16:32 EA cp Far jump direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

JMP FAR mem16:16 FF /5 Far jump indirect, with the target specified by a far
pointer in memory.

JMP FAR mem16:32 FF /5 Far jump indirect, with the target specified by a far
pointer in memory.

182 JMP (Far) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Action
// Far jumps (JMPF)
// See “Pseudocode Definitions” on page 56.

JMPF_START:

IF (REAL_MODE)
 JMPF_REAL_OR_VIRTUAL
ELSIF (PROTECTED_MODE)
 JMPF_PROTECTED
ELSE // (VIRTUAL_MODE)
 JMPF_REAL_OR_VIRTUAL

JMPF_REAL_OR_VIRTUAL:

 IF (OPCODE = jmpf [mem]) //JMPF Indirect
 {
 temp_RIP = READ_MEM.z [mem]
 temp_CS = READ_MEM.w [mem+Z]
 }
 ELSE // (OPCODE = jmpf direct)
 {
 temp_RIP = z-sized offset specified in the instruction,
 zero-extended to 64 bits
 temp_CS = selector specified in the instruction
 }

 IF (temp_RIP>CS.limit)
 EXCEPTION [#GP(0)]

 CS.sel = temp_CS
 CS.base = temp_CS SHL 4
 RIP = temp_RIP
 EXIT

JMPF_PROTECTED:
 IF (OPCODE = jmpf [mem]) // JMPF Indirect
 {
 temp_offset = READ_MEM.z [mem]
 temp_sel = READ_MEM.w [mem+Z]
 }
 ELSE // (OPCODE = jmpf direct)
 {
 IF (64BIT_MODE)
 EXCEPTION [#UD] // ’jmpf direct’ is illegal in 64-bit mode

 temp_offset = z-sized offset specified in the instruction,
 zero-extended to 64 bits
 temp_sel = selector specified in the instruction
 }

Instruction Reference JMP (Far) 183

24594—Rev. 3.16—September 2011 AMD64 Technology

 temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)
 // read descriptor, perform protection and type checks

 IF (temp_desc.attr.type = ’available_tss’)
 TASK_SWITCH // using temp_sel as the target tss selector
 ELSIF (temp_desc.attr.type = ’taskgate’)
 TASK_SWITCH // using the tss selector in the task gate as the
 // target tss
 ELSIF (temp_desc.attr.type = ’code’)
 // if the selector refers to a code descriptor, then
 // the offset we read is the target RIP
 {
 temp_RIP = temp_offset
 CS = temp_desc
 IF ((!64BIT_MODE) && (temp_RIP > CS.limit))
 // temp_RIP can’t be non-canonical because
 // it’s a 16- or 32-bit offset, zero-extended to 64 bits
 {
 EXCEPTION [#GP(0)]
 }
 RIP = temp_RIP
 EXIT
 }
 ELSE
 {
 // (temp_desc.attr.type = ’callgate’)
 // if the selector refers to a call gate, then
 // the target CS and RIP both come from the call gate
 temp_RIP = temp_desc.offset

 IF (LONG_MODE)
 {
 // in long mode, we need to read the 2nd half of a 16-byte call-gate
 // from the gdt/ldt to get the upper 32 bits of the target RIP
 temp_upper = READ_MEM.q [temp_sel+8]
 IF (temp_upper’s extended attribute bits != 0)
 EXCEPTION [#GP(temp_sel)] // Make sure the extended
 // attribute bits are all zero.

 temp_RIP = tempRIP + (temp_upper SHL 32)
 // concatenate both halves of RIP
 }
 CS = READ_DESCRIPTOR (temp_desc.segment, clg_chk)
 // set up new CS base, attr, limits
 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]
 RIP = temp_RIP
 EXIT
 }

184 JMP (Far) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

JMP (Near), Jcc, JrCX

rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD

X X X The far JUMP indirect opcode (FF /5) had a register operand.

X The far JUMP direct opcode (EA) was executed in 64-bit
mode.

Segment not
present, #NP
(selector)

X The accessed code segment, call gate, task gate, or TSS was
not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Instruction Reference JMP (Far) 185

24594—Rev. 3.16—September 2011 AMD64 Technology

General protection,
#GP
(selector)

X The target code segment selector was a null selector.

X A code, call gate, task gate, or TSS descriptor exceeded the
descriptor table limit.

X A segment selector’s TI bit was set, but the LDT selector was
a null selector.

X
The segment descriptor specified by the instruction was not a
code segment, task gate, call gate or available TSS in legacy
mode, or not a 64-bit code segment or a 64-bit call gate in long
mode.

X
The RPL of the non-conforming code segment selector
specified by the instruction was greater than the CPL, or its
DPL was not equal to the CPL.

X The DPL of the conforming code segment descriptor specified
by the instruction was greater than the CPL.

X
The DPL of the callgate, taskgate, or TSS descriptor specified
by the instruction was less than the CPL or less than its own
RPL.

X The segment selector specified by the call gate or task gate
was a null selector.

X
The segment descriptor specified by the call gate was not a
code segment in legacy mode or not a 64-bit code segment in
long mode.

X The DPL of the segment descriptor specified the call gate was
greater than the CPL and it is a conforming segment.

X The DPL of the segment descriptor specified by the callgate
was not equal to the CPL and it is a non-conforming segment.

X The 64-bit call gate’s extended attribute bits were not zero.
X The TSS descriptor was found in the LDT.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

186 LAHF Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Loads the lower 8 bits of the rFLAGS register, including sign flag (SF), zero flag (ZF), auxiliary carry
flag (AF), parity flag (PF), and carry flag (CF), into the AH register.

The instruction sets the reserved bits 1, 3, and 5 of the rFLAGS register to 1, 0, and 0, respectively, in
the AH register.

The LAHF instruction can only be executed in 64-bit mode if supported by the processor
implementation. Check the status of ECX bit 0 returned by CPUID function 8000_0001h to verify that
the processor supports LAHF in 64-bit mode.

Related Instructions

SAHF

rFLAGS Affected

None.

Exceptions

LAHF Load Status Flags into AH Register

Mnemonic Opcode Description

LAHF 9F Load the SF, ZF, AF, PF, and CF flags into the AH
register.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X The LAHF instruction is not supported, as indicated by CPUID

Fn8000_0001_ECX[LahfSahf] = 0.

Instruction Reference LxS 187

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads a far pointer from a memory location (second operand) into a segment register (mnemonic) and
general-purpose register (first operand). The instruction stores the 16-bit segment selector of the
pointer into the segment register and the 16-bit or 32-bit offset portion into the general-purpose
register. The operand-size attribute determines whether the pointer is 32-bit or 48-bit.

These instructions load associated segment-descriptor information into the hidden portion of the
specified segment register.

Using LDS or LES in 64-bit mode generates an invalid-opcode exception.

Executing LFS, LGS, or LSS with a 64-bit operand size only loads a 32-bit general purpose register
and the specified segment register.

Related Instructions

None

rFLAGS Affected

None

LDS
LES
LFS
LGS
LSS

Load Far Pointer

Mnemonic Opcode Description

LDS reg16, mem16:16 C5 /r Load DS:reg16 with a far pointer from memory.
(Invalid in 64-bit mode.)

LDS reg32, mem16:32 C5 /r Load DS:reg32 with a far pointer from memory.
(Invalid in 64-bit mode.)

LES reg16, mem16:16 C4 /r Load ES:reg16 with a far pointer from memory.
(Invalid in 64-bit mode.)

LES reg32, mem16:32 C4 /r Load ES:reg32 with a far pointer from memory.
(Invalid in 64-bit mode.)

LFS reg16, mem16:16 0F B4 /r Load FS:reg16 with a far pointer from memory.

LFS reg32, mem16:32 0F B4 /r Load FS:reg32 with a far pointer from memory.

LGS reg16, mem16:16 0F B5 /r Load GS:reg16 with a far pointer from memory.

LGS reg32, mem16:32 0F B5 /r Load GS:reg32 with a far pointer from memory.

LSS reg16, mem16:16 0F B2 /r Load SS:reg16 with a far pointer from memory.

LSS reg32, mem16:32 0F B2 /r Load SS:reg32 with a far pointer from memory.

188 LxS Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD

X X X The source operand was a register.
X LDS or LES was executed in 64-bit mode.

Segment not
present, #NP
(selector)

X The DS, ES, FS, or GS register was loaded with a non-null
segment selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector

and the segment was marked not present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X A segment register was loaded, but the segment descriptor
exceeded the descriptor table limit.

X A segment register was loaded and the segment selector’s TI
bit was set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL
and the segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was
not a writable data segment.

X
The DS, ES, FS, or GS register was loaded and the segment
pointed to was a data or non-conforming code segment, but
the RPL or CPL was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference LEA 189

24594—Rev. 3.16—September 2011 AMD64 Technology

Computes the effective address of a memory location (second operand) and stores it in a general-
purpose register (first operand).

The address size of the memory location and the size of the register determine the specific action taken
by the instruction, as follows:

• If the address size and the register size are the same, the instruction stores the effective address as
computed.

• If the address size is longer than the register size, the instruction truncates the effective address to
the size of the register.

• If the address size is shorter than the register size, the instruction zero-extends the effective address
to the size of the register.

If the second operand is a register, an undefined-opcode exception occurs.

The LEA instruction is related to the MOV instruction, which copies data from a memory location to a
register, but LEA takes the address of the source operand, whereas MOV takes the contents of the
memory location specified by the source operand. In the simplest cases, LEA can be replaced with
MOV. For example:

lea eax, [ebx]

has the same effect as:
mov eax, ebx

However, LEA allows software to use any valid ModRM and SIB addressing mode for the source
operand. For example:

lea eax, [ebx+edi]

loads the sum of the EBX and EDI registers into the EAX register. This could not be accomplished by
a single MOV instruction.

The LEA instruction has a limited capability to perform multiplication of operands in general-purpose
registers using scaled-index addressing. For example:

lea eax, [ebx+ebx*8]

loads the value of the EBX register, multiplied by 9, into the EAX register. Possible values of
multipliers are 2, 4, 8, 3, 5, and 9.

The LEA instruction is widely used in string-processing and array-processing to initialize an index
register (rSI or rDI) before performing string instructions such as MOVSx. It is also used to initialize
the rBX register before performing the XLAT instruction in programs that perform character
translations. In data structures, the LEA instruction can calculate addresses of operands stored in
memory, and in particular, addresses of array or string elements.

LEA Load Effective Address

190 LEA Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

MOV

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

LEA reg16, mem 8D /r Store effective address in a 16-bit register.

LEA reg32, mem 8D /r Store effective address in a 32-bit register.

LEA reg64, mem 8D /r Store effective address in a 64-bit register.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X The source operand was a register.

Instruction Reference LEAVE 191

24594—Rev. 3.16—September 2011 AMD64 Technology

Releases a stack frame created by a previous ENTER instruction. To release the frame, it copies the
frame pointer (in the rBP register) to the stack pointer register (rSP), and then pops the old frame
pointer from the stack into the rBP register, thus restoring the stack frame of the calling procedure.

The 32-bit LEAVE instruction is equivalent to the following 32-bit operation:
MOV ESP,EBP
POP EBP

To return program control to the calling procedure, execute a RET instruction after the LEAVE
instruction.

In 64-bit mode, the LEAVE operand size defaults to 64 bits, and there is no prefix available for
encoding a 32-bit operand size.

Related Instructions

ENTER

rFLAGS Affected

None

Exceptions

LEAVE Delete Procedure Stack Frame

Mnemonic Opcode Description

LEAVE C9 Set the stack pointer register SP to the value in the BP
register and pop BP.

LEAVE C9
Set the stack pointer register ESP to the value in the
EBP register and pop EBP.
(No prefix for encoding this in 64-bit mode.)

LEAVE C9 Set the stack pointer register RSP to the value in the
RBP register and pop RBP.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

192 LFENCE Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Acts as a barrier to force strong memory ordering (serialization) between load instructions preceding
the LFENCE and load instructions that follow the LFENCE. Loads from differing memory types may
be performed out of order, in particular between WC/WC+ and other memory types. The LFENCE
instruction assures that the system completes all previous loads before executing subsequent loads.

The LFENCE instruction is weakly-ordered with respect to store instructions, data and instruction
prefetches, and the SFENCE instruction. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around an LFENCE.

In addition to load instructions, the LFENCE instruction is strongly ordered with respect to other
LFENCE instructions, as well as MFENCE and other serializing instructions. Further details on the
use of MFENCE to order accesses among differing memory types may be found in AMD64
Architecture Programmer’s Manual Volume 2: System Programming, section 7.4 “Memory Types” on
page 172.

LFENCE is an SSE2 instruction. Support for SSE2 instructions is indicated by CPUID
Fn0000_0001_EDX[SSE2] = 1.

Related Instructions

MFENCE, SFENCE

rFLAGS Affected

None

Exceptions

LFENCE Load Fence

Mnemonic Opcode Description

LFENCE 0F AE E8 Force strong ordering of (serialize) load operations.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X SSE2 instructions are not supported, as indicated by CPUID

Fn0000_0001_EDX[SSE2] = 0.

Instruction Reference LLWPCB 193

24594—Rev. 3.16—September 2011 AMD64 Technology

Parses the Lightweight Profiling Control Block at the address contained in the specified register. If the
LWPCB is valid, writes the address into the LWP_CBADDR MSR and enables Lightweight Profiling.

The LWPCB must be in memory that is readable and writable in user mode. For better performance, it
should be aligned on a 64-byte boundary in memory and placed so that it does not cross a page
boundary, though neither of these suggestions is required.

The LWPCB address in the register is truncated to 32 bits if the operand size is 32.

Action
1. If LWP is not available or if the machine is not in protected mode, LLWPCB immediately causes

a #UD exception.

2. If LWP is already enabled, the processor flushes the LWP state to memory in the old LWPCB. See
“SLWPCB” on page 287 for details on saving the active LWP state.
If the flush causes a #PF exception, LWP remains enabled with the old LWPCB still active. Note
that the flush is done before LWP attempts to access the new LWPCB.

3. If the specified LWPCB address is 0, LWP is disabled and the execution of LLWPCB is complete.

4. The LWPCB address is non-zero. LLWPCB validates it as follows:
- If any part of the LWPCB or the ring buffer is beyond the data segment limit, LLWPCB causes

a #GP exception.
- If the ring buffer size is below the implementation’s minimum ring buffer size, LLWPCB

causes a #GP exception.
- While doing these checks, LWP reads and writes the LWPCB, which may cause a #PF

exception.
If any of these exceptions occurs, LLWPCB aborts and LWP is left disabled. Usually, the operating
system will handle a #PF exception by making the memory available and returning to retry the
LLWPCB instruction. The #GP exceptions indicate application programming errors.

5. LWP converts the LWPCB address and the ring buffer address to linear address form by adding
the DS base address and stores the addresses internally.

6. LWP examines the LWPCB.Flags field to determine which events should be enabled and whether
threshold interrupts should be taken. It clears the bits for any features that are not available and
stores the result back to LWPCB.Flags to inform the application of the actual LWP state.

7. For each event being enabled, LWP examines the EventIntervaln value and, if necessary, sets it to
an implementation-defined minimum. (The minimum event interval for LWPVAL is zero.) It
loads its internal counter for the event from the value in EventCountern. A zero or negative value
in EventCountern means that the next event of that type will cause an event record to be stored. To

LLWPCB Load Lightweight Profiling Control Block
Address

194 LLWPCB Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

count every jth event, a program should set EventIntervaln to j-1 and EventCountern to some
starting value (where j-1 is a good initial count). If the counter value is larger than the interval, the
first event record will be stored after a larger number of events than subsequent records.

8. LWP is started. The execution of LLWPCB is complete.

Notes

If none of the bits in the LWPCB.Flags specifies an available event, LLWPCB still enables LWP to
allow the use of the LWPINS instruction. However, no other event records will be stored.

A program can temporarily disable LWP by executing SLWPCB to obtain the current LWPCB
address, saving that value, and then executing LLWPCB with a register containing 0. It can later re-
enable LWP by executing LLWPCB with a register containing the saved address.

When LWP is enabled, it is typically an error to execute LLWPCB with the address of the active
LWPCB. When the hardware flushes the existing LWP state into the LWPCB, it may overwrite fields
that the application may have set to new LWP parameter values. The flushed values will then be loaded
as LWP is restarted. To reuse an LWPCB, an application should stop LWP by passing a zero to
LLWPCB, then prepare the LWPCB with new parameters and execute LLWPCB again to restart LWP.

Internally, LWP keeps the linear address of the LWPCB and the ring buffer. If the application changes
the value of DS, LWP will continue to collect samples even if the new DS value would no longer allow
access the LWPCB or the ring buffer. However, a #GP fault will occur if the application uses XRSTOR
to restore LWP state saved by XSAVE. Programs should avoid using XSAVE/XRSTOR on LWP state
if DS has changed. This only applies when the CPL != 0; kernel mode operation of XRSTOR is
unaffected by changes to DS. See instruction listing for XSAVE in Volume 4 for details.

Operating system and hypervisor code that runs when CPL ≠ 3 should use XSAVE and XRSTOR to
control LWP rather than using LLWPCB. Use WRMSR to write 0 to LWP_CBADDR to immediately
stop LWP without saving its current state (see).

It is possible to execute LLWPCB when the CPL != 3 or when SMM is active, but the system software
must ensure that the LWPCB and the entire ring buffer are properly mapped into writable memory in
order to avoid a #PF or #GP fault. Furthermore, if LWP is enabled when a kernel executes LLWPCB,
both the old and new control blocks and ring buffers must be accessible. Using LLWPCB in these
situations is not recommended.

LLWPCB is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000_0001_ECX[LWP] = 1.

Instruction Reference LLWPCB 195

24594—Rev. 3.16—September 2011 AMD64 Technology

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 0. ModRM.r/m (augmented by XOP.R)
specifies the register containing the effective address of the LWPCB. ModRM.mod is 11b.

Related Instructions

SLWPCB, LWPVAL, LWPINS

rFLAGS Affected

None

Exceptions

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

LLWPCB reg32 8F RXB.09 0.1111.0.00 12 /0

LLWPCB reg64 8F RXB.09 1.1111.0.00 12 /0

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X LWP instructions are not supported, as indicated by CPUID
Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.
X LWP is not available, or mod != 11b, or vvvv != 1111b.

General protection,
#GP

X Any part of the LWPCB or the event ring buffer is beyond the
DS segment limit.

X Any restrictions on the contents of the LWPCB are violated

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X LWP was already enabled and a page fault resulted from
reading or writing the old LWPCB.

X LWP was already enabled and a page fault resulted from
flushing an event to the old ring buffer.

196 LODSx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Copies the byte, word, doubleword, or quadword in the memory location pointed to by the DS:rSI
registers to the AL, AX, EAX, or RAX register, depending on the size of the operand, and then
increments or decrements the rSI register according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It increments or
decrements rSI by 1, 2, 4, or 8, depending on the number of bytes being loaded.

The forms of the LODS instruction with an explicit operand address the operand at seg:[rSI]. The
value of seg defaults to the DS segment, but may be overridden by a segment prefix. The explicit
operand serves only to specify the type (size) of the value being copied and the specific registers used.

The no-operands forms of the instruction always use the DS:[rSI] registers to point to the value to be
copied (they do not allow a segment prefix). The mnemonic determines the size of the operand and the
specific registers used.

The LODSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12. More often, software uses the LODSx instruction inside a loop controlled by a
LOOPcc instruction as a more efficient replacement for instructions like:

mov eax, dword ptr ds:[esi]
add esi, 4

The LODSQ instruction can only be used in 64-bit mode.

LODS
LODSB
LODSW
LODSD
LODSQ

Load String

Mnemonic Opcode Description

LODS mem8 AC Load byte at DS:rSI into AL and then increment or
decrement rSI.

LODS mem16 AD Load word at DS:rSI into AX and then increment or
decrement rSI.

LODS mem32 AD Load doubleword at DS:rSI into EAX and then
increment or decrement rSI.

LODS mem64 AD Load quadword at DS:rSI into RAX and then increment
or decrement rSI.

LODSB AC Load byte at DS:rSI into AL and then increment or
decrement rSI.

LODSW AD Load the word at DS:rSI into AX and then increment or
decrement rSI.

Instruction Reference LODSx 197

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

MOVSx, STOSx

rFLAGS Affected

None

Exceptions

LODSD AD Load doubleword at DS:rSI into EAX and then
increment or decrement rSI.

LODSQ AD Load quadword at DS:rSI into RAX and then increment
or decrement rSI.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

198 LOOPcc Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Decrements the count register (rCX) by 1, then, if rCX is not 0 and the ZF flag meets the condition
specified by the mnemonic, it jumps to the target instruction specified by the signed 8-bit relative
offset. Otherwise, it continues with the next instruction after the LOOPcc instruction.

The size of the count register used (CX, ECX, or RCX) depends on the address-size attribute of the
LOOPcc instruction.

The LOOP instruction ignores the state of the ZF flag.

The LOOPE and LOOPZ instructions jump if rCX is not 0 and the ZF flag is set to 1. In other words,
the instruction exits the loop (falls through to the next instruction) if rCX becomes 0 or ZF = 0.

The LOOPNE and LOOPNZ instructions jump if rCX is not 0 and ZF flag is cleared to 0. In other
words, the instruction exits the loop if rCX becomes 0 or ZF = 1.

The LOOPcc instruction does not change the state of the ZF flag. Typically, the loop contains a
compare instruction to set or clear the ZF flag.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits without the need for a REX prefix, and the
processor sign-extends the 8-bit offset before adding it to the RIP.

Related Instructions

None

LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ

Loop

Mnemonic Opcode Description

LOOP rel8off E2 cb Decrement rCX, then jump short if rCX is not 0.

LOOPE rel8off E1 cb Decrement rCX, then jump short if rCX is not 0 and ZF is
1.

LOOPNE rel8off E0 cb Decrement rCX, then Jump short if rCX is not 0 and ZF
is 0.

LOOPNZ rel8off E0 cb Decrement rCX, then Jump short if rCX is not 0 and ZF
is 0.

LOOPZ rel8off E1 cb Decrement rCX, then Jump short if rCX is not 0 and ZF
is 1.

Instruction Reference LOOPcc 199

24594—Rev. 3.16—September 2011 AMD64 Technology

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

200 LWPINS Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Inserts a record into the LWP event ring buffer in memory and advances the ring buffer pointer.

The record has an EventId of 255. The value in the register specified by vvvv (first operand) is stored
in the Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register or
memory location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value (third
operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2. See Figure 13-20 on
page 364.

If the ring buffer is not full or if LWP is running in Continuous Mode, the head pointer is advanced and
the CF flag is cleared. If the ring buffer threshold is exceeded and threshold interrupts are enabled, an
interrupt is signaled. If LWP is in Continuous Mode and the new head pointer equals the tail pointer,
the MissedEvents counter is incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in Synchronized Mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, the head pointer is not
advanced, and the CF flag is set.

LWPINS generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPINS simply clears CF if LWP is not enabled. This allows LWPINS instructions to be harmlessly
ignored if profiling is turned off.

It is possible to execute LWPINS when the CPL ≠ 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPINS in these situations
is not recommended.

LWPINS can be used by a program to mark significant events in the ring buffer as they occur. For
instance, a program might capture information on changes in the process’ address space such as library
loads and unloads, or changes in the execution environment such as a change in the state of a user-
mode thread of control.

Note that when the LWPINS instruction finishes writing a event record in the event ring buffer, it
counts as an instruction retired. If the Instructions Retired event is active, this might cause that counter
to become negative and immediately store another event record with the same instruction address (but
different EventId values).

LWPINS is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000_0001_ECX[LWP] = 1.

LWPINS Lightweight Profiling Insert Record

Instruction Reference LWPINS 201

24594—Rev. 3.16—September 2011 AMD64 Technology

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 0. The {mod, r/m} field of the ModRM
byte (augmented by XOP.R) encodes the second operand. A 4-byte immediate field follows ModRM.

Related Instructions

LLWPCB, SLWPCB, LWPVAL

rFLAGS Affected

Exceptions

Mnemonic Encoding

XOP RXB.mmmmm W.vvvv.L.pp Opcode

LWPINS reg32.vvvv, reg/mem32, imm32 8F RXB.0A 0.src1.0.00 12 /0 /imm32

LWPINS reg64.vvvv, reg/mem32, imm32 8F RXB.0A 1.src1.0.00 12 /0 /imm32

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X LWP instructions are not supported, as indicated by CPUID
Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.
X LWP is not available.

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.
X A page fault resulted from writing the event to the ring buffer.

X A page fault resulted from reading a modrm operand from
memory.

General protection,
#GP X A modrm operand in memory exceeded the segment limit.

202 LWPVAL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Decrements the event counter associated with the Programmed Value Sample event (see “Programmed
Value Sample” on page 358). If the resulting counter value is negative, inserts an event record into the
LWP event ring buffer in memory and advances the ring buffer pointer. If the counter is not negative
and the modrm operand specifies a memory location, that location is not accessed.

The event record has an EventId of 1. The value in the register specified by vvvv (first operand) is
stored in the Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register
or memory location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value
(third operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2. See Figure 13-14 on
page 358.

If the ring buffer is not full or if LWP is running in continuous mode, the head pointer is advanced and
the event counter is reset to the interval for the event (subject to randomization). If the ring buffer
threshold is exceeded and threshold interrupts are enabled, an interrupt is signaled. If LWP is in
Continuous Mode and the new head pointer equals the tail pointer, the MissedEvents counter is
incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in Synchronized Mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, and the head pointer is
not advanced.

LWPVAL generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPVAL does nothing if LWP is not enabled or if the Programmed Value Sample event is not enabled
in LWPCB.Flags. This allows LWPVAL instructions to be harmlessly ignored if profiling is turned off.

It is possible to execute LWPVAL when the CPL != 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPVAL in these situations
is not recommended.

LWPVAL can be used by a program to perform value profiling. This is the technique of sampling the
value of some program variable at a predetermined frequency. For example, a managed runtime might
use LWPVAL to sample the value of the divisor for a frequently executed divide instruction in order to
determine whether to generate specialized code for a common division. It might sample the target
location of an indirect branch or call to see if one destination is more frequent than others. Since
LWPVAL does not modify any registers or condition codes, it can be inserted harmlessly between any
instructions.

Note

When LWPVAL completes (whether or not it stored an event record in the event ring buffer), it counts
as an instruction retired. If the Instructions Retired event is active, this might cause that counter to

LWPVAL Lightweight Profiling Insert Value

Instruction Reference LWPVAL 203

24594—Rev. 3.16—September 2011 AMD64 Technology

become negative and immediately store an event record. If LWPVAL also stored an event record, the
buffer will contain two records with the same instruction address (but different EventId values).

LWPVAL is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000_0001_ECX[LWP] = 1.

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 001b. The {mod, r/m} field of the
ModRM byte (augmented by XOP.R) encodes the second operand. A four-byte immediate field
follows ModRM.

Related Instructions

LLWPCB, SLWPCB, LWPINS

rFLAGS Affected

None

Exceptions

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

LWPVAL reg32.vvvv, reg/mem32, imm32 8F RXB.0A 0.src1.0.00 12 /1 /imm32

LWPVAL reg64.vvvv, reg/mem32, imm32 8F RXB.0A 1.src1.0.00 12 /1 /imm32

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X LWP instructions are not supported, as indicated by CPUID
Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.
X LWP is not available.

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.
X A page fault resulted from writing the event to the ring buffer.

X A page fault resulted from reading a modrm operand from
memory.

General protection,
#GP X A modrm operand in memory exceeded the segment limit.

204 LZCNT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Counts the number of leading zero bits in the 16-, 32-, or 64-bit general purpose register or memory
source operand. Counting starts downward from the most significant bit and stops when the highest
bit having a value of 1 is encountered or when the least significant bit is encountered. The count is
written to the destination register.

This instruction has two operands:

LZCNT dest, src

If the input operand is zero, CF is set to 1 and the size (in bits) of the input operand is written to the
destination register. Otherwise, CF is cleared.
If the most significant bit is a one, the ZF flag is set to 1, zero is written to the destination register.
Otherwise, ZF is cleared.
LZCNT is a BMI instruction. Support for the LZCNT instruction is indicated by CPUID
Fn8000_0001_ECX[ABM] or CPUID Fn0000_0007_EBX_x0[BMI]. If the LZCNT instruction is
not available, the encoding is interpreted as the BSR instruction. Software MUST check the CPUID
bit once per program or library initialization before using the LZCNT instruction, or inconsistent
behavior may result.

Related Instructions
ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, POPCNT, T1MSKC, TZCNT, TZMSK

rFLAGS Affected

LZCNT Count Leading Zeros

Mnemonic Opcode Description

LZCNT reg16, reg/mem16 F3 0F BD /r Count the number of leading zeros in reg/mem16.

LZCNT reg32, reg/mem32 F3 0F BD /r Count the number of leading zeros in reg/mem32.

LZCNT reg64, reg/mem64 F3 0F BD /r Count the number of leading zeros in reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Instruction Reference LZCNT 205

24594—Rev. 3.16—September 2011 AMD64 Technology

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, UD#
X X BMI instructions are only recognized in protected mode.

X Instruction not supported, as indicated by CPUID
Fn0000_0007_EBX_x0[BMI] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

206 MFENCE Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Acts as a barrier to force strong memory ordering (serialization) between load and store instructions
preceding the MFENCE, and load and store instructions that follow the MFENCE. The processor may
perform loads out of program order with respect to non-conflicting stores for certain memory types.
The MFENCE instruction guarantees that the system completes all previous memory accesses before
executing subsequent accesses.

The MFENCE instruction is weakly-ordered with respect to data and instruction prefetches.
Speculative loads initiated by the processor, or specified explicitly using cache-prefetch instructions,
can be reordered around an MFENCE.

In addition to load and store instructions, the MFENCE instruction is strongly ordered with respect to
other MFENCE instructions, LFENCE instructions, SFENCE instructions, serializing instructions,
and CLFLUSH instructions. Further details on the use of MFENCE to order accesses among differing
memory types may be found in AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, section 7.4 “Memory Types” on page 172.

The MFENCE instruction is a serializing instruction.

MFENCE is an SSE2 instruction. Support for SSE2 instructions is indicated by CPUID
Fn0000_0001_EDX[SSE2] = 1.

Instruction Encoding

Related Instructions

LFENCE, SFENCE

rFLAGS Affected

None

Exceptions

MFENCE Memory Fence

Mnemonic Opcode Description

MFENCE 0F AE F0 Force strong ordering of (serialized) load and store
operations.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X SSE2 instructions are not supported, as indicated by CPUID

Fn0000_0001_EDX[SSE2] = 0.

Instruction Reference MOV 207

24594—Rev. 3.16—September 2011 AMD64 Technology

Copies an immediate value or the value in a general-purpose register, segment register, or memory
location (second operand) to a general-purpose register, segment register, or memory location. The
source and destination must be the same size (byte, word, doubleword, or quadword) and cannot both
be memory locations.

In opcodes A0 through A3, the memory offsets (called moffsets) are address sized. In 64-bit mode,
memory offsets default to 64 bits. Opcodes A0–A3, in 64-bit mode, are the only cases that support a
64-bit offset value. (In all other cases, offsets and displacements are a maximum of 32 bits.) The B8
through BF (B8 +rq) opcodes, in 64-bit mode, are the only cases that support a 64-bit immediate value
(in all other cases, immediate values are a maximum of 32 bits).

When reading segment-registers with a 32-bit operand size, the processor zero-extends the 16-bit
selector results to 32 bits. When reading segment-registers with a 64-bit operand size, the processor
zero-extends the 16-bit selector to 64 bits. If the destination operand specifies a segment register (DS,
ES, FS, GS, or SS), the source operand must be a valid segment selector.

It is possible to move a null segment selector value (0000–0003h) into the DS, ES, FS, or GS register.
This action does not cause a general protection fault, but a subsequent reference to such a segment
does cause a #GP exception. For more information about segment selectors, see “Segment Selectors
and Registers” on page 69.

When the MOV instruction is used to load the SS register, the processor blocks external interrupts until
after the execution of the following instruction. This action allows the following instruction to be a
MOV instruction to load a stack pointer into the ESP register (MOV ESP,val) before an interrupt
occurs. However, the LSS instruction provides a more efficient method of loading SS and ESP.

Attempting to use the MOV instruction to load the CS register generates an invalid opcode exception
(#UD). Use the far JMP, CALL, or RET instructions to load the CS register.

To initialize a register to 0, rather than using a MOV instruction, it may be more efficient to use the
XOR instruction with identical destination and source operands.

MOV Move

Mnemonic Opcode Description

MOV reg/mem8, reg8 88 /r Move the contents of an 8-bit register to an 8-bit
destination register or memory operand.

MOV reg/mem16, reg16 89 /r Move the contents of a 16-bit register to a 16-bit
destination register or memory operand.

MOV reg/mem32, reg32 89 /r Move the contents of a 32-bit register to a 32-bit
destination register or memory operand.

MOV reg/mem64, reg64 89 /r Move the contents of a 64-bit register to a 64-bit
destination register or memory operand.

MOV reg8, reg/mem8 8A /r Move the contents of an 8-bit register or memory
operand to an 8-bit destination register.

208 MOV Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

MOV reg16, reg/mem16 8B /r Move the contents of a 16-bit register or memory
operand to a 16-bit destination register.

MOV reg32, reg/mem32 8B /r Move the contents of a 32-bit register or memory
operand to a 32-bit destination register.

MOV reg64, reg/mem64 8B /r Move the contents of a 64-bit register or memory
operand to a 64-bit destination register.

MOV reg16/32/64/mem16,
segReg 8C /r

Move the contents of a segment register to a 16-bit, 32-
bit, or 64-bit destination register or to a 16-bit memory
operand.

MOV segReg, reg/mem16 8E /r Move the contents of a 16-bit register or memory
operand to a segment register.

MOV AL, moffset8 A0 Move 8-bit data at a specified memory offset to the AL
register.

MOV AX, moffset16 A1 Move 16-bit data at a specified memory offset to the AX
register.

MOV EAX, moffset32 A1 Move 32-bit data at a specified memory offset to the
EAX register.

MOV RAX, moffset64 A1 Move 64-bit data at a specified memory offset to the
RAX register.

MOV moffset8, AL A2 Move the contents of the AL register to an 8-bit memory
offset.

MOV moffset16, AX A3 Move the contents of the AX register to a 16-bit memory
offset.

MOV moffset32, EAX A3 Move the contents of the EAX register to a 32-bit
memory offset.

MOV moffset64, RAX A3 Move the contents of the RAX register to a 64-bit
memory offset.

MOV reg8, imm8 B0 +rb ib Move an 8-bit immediate value into an 8-bit register.

MOV reg16, imm16 B8 +rw iw Move a 16-bit immediate value into a 16-bit register.

MOV reg32, imm32 B8 +rd id Move an 32-bit immediate value into a 32-bit register.

MOV reg64, imm64 B8 +rq iq Move an 64-bit immediate value into a 64-bit register.

MOV reg/mem8, imm8 C6 /0 ib Move an 8-bit immediate value to an 8-bit register or
memory operand.

MOV reg/mem16, imm16 C7 /0 iw Move a 16-bit immediate value to a 16-bit register or
memory operand.

MOV reg/mem32, imm32 C7 /0 id Move a 32-bit immediate value to a 32-bit register or
memory operand.

MOV reg/mem64, imm32 C7 /0 id Move a 32-bit signed immediate value to a 64-bit
register or memory operand.

Mnemonic Opcode Description

Instruction Reference MOV 209

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

MOV (CRn), MOV (DRn), MOVD, MOVSX, MOVZX, MOVSXD, MOVSx

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X An attempt was made to load the CS register.

Segment not
present, #NP
(selector)

X The DS, ES, FS, or GS register was loaded with a non-null
segment selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector,

and the segment was marked not present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X A segment register was loaded, but the segment descriptor
exceeded the descriptor table limit.

X A segment register was loaded and the segment selector’s TI
bit was set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL
and the segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was
not a writable data segment.

X
The DS, ES, FS, or GS register was loaded and the segment
pointed to was a data or non-conforming code segment, but
the RPL or CPL was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

210 MOVD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Moves a 32-bit or 64-bit value in one of the following ways:

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 or 64 bits
of an XMM register, with zero-extension to 128 bits

• from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose register or
memory location

• from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 bits (with
zero-extension to 64 bits) or the full 64 bits of an MMX register

• from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit general-purpose
register or memory location

Figure 3-1 on page 211 illustrates the operation of the MOVD instruction.

The MOVD instruction form that moves data to or from MMX registers is part of the MMX instruction
subset. Support for MMX instructions is indicated by CPUID Fn0000_0001_EDX[MMX] or
Fn0000_0001_EDX[MMX] = 1.

The MOVD instruction form that moves data to or from XMM registers is part of the SSE2 instruction
subset. Support for SSE2 instructions is indicated by CPUID Fn0000_0001_EDX[SSE2] = 1.

MOVD Move Doubleword or Quadword

Instruction Reference MOVD 211

24594—Rev. 3.16—September 2011 AMD64 Technology

Figure 3-1. MOVD Instruction Operation
movd.eps

with REX prefix

All operations
are "copy"

with REX prefix

reg/mem64xmm

63 0

63 0

127 63 064

127 63 064

reg/mem64 xmm

0

031

reg/mem32xmm

reg/mem32 xmm

127 0313231 0

127 31 032

0

0

reg/mem64mmx

reg/mem64 mmx

0

with REX prefix

with REX prefix

63 063 0

63 063 0

0310

reg/mem32mmx

reg/mem32 mmx

31 0

313263 0

313263 0

0

212 MOVD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Instruction Encoding

Related Instructions

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Mnemonic Opcode Description

MOVD xmm, reg/mem32 66 0F 6E /r Move 32-bit value from a general-purpose register or
32-bit memory location to an XMM register.

MOVD xmm, reg/mem64 66 0F 6E /r Move 64-bit value from a general-purpose register or
64-bit memory location to an XMM register.

MOVD reg/mem32, xmm 66 0F 7E /r Move 32-bit value from an XMM register to a 32-bit
general-purpose register or memory location.

MOVD reg/mem64, xmm 66 0F 7E /r Move 64-bit value from an XMM register to a 64-bit
general-purpose register or memory location.

MOVD mmx, reg/mem32 0F 6E /r Move 32-bit value from a general-purpose register or
32-bit memory location to an MMX register.

MOVD mmx, reg/mem64 0F 6E /r Move 64-bit value from a general-purpose register or
64-bit memory location to an MMX register.

MOVD reg/mem32, mmx 0F 7E /r Move 32-bit value from an MMX register to a 32-bit
general-purpose register or memory location.

MOVD reg/mem64, mmx 0F 7E /r Move 64-bit value from an MMX register to a 64-bit
general-purpose register or memory location.

Exception Real
Virtual
8086 Protected Description

Invalid opcode, #UD

X X X
MMX instructions are not supproted, as indicated by
CPUID Fn0000_0001_EDX[MMX] or
Fn0000_0001_EDX[MMX]= 0.

X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The emulate bit (EM) of CR0 was set to 1.

X X X The instruction used XMM registers while
CR4.OSFXSR=0.

Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

Instruction Reference MOVD 213

24594—Rev. 3.16—September 2011 AMD64 Technology

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP X X X A memory address exceeded a data segment limit or

was non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

x87 floating-point
exception pending,
#MF

X X X An x87 floating-point exception was pending and the
instruction referenced an MMX register.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception Real
Virtual
8086 Protected Description

214 MOVMSKPD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Moves the sign bits of two packed double-precision floating-point values in an XMM register (second
operand) to the two low-order bits of a general-purpose register (first operand) with zero-extension.

The function of the MOVMSKPD instruction is illustrated by the diagram below:

The MOVMSKPD instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000_0001_EDX[SSE2] = 1.

Instruction Encoding

Related Instructions

MOVMSKPS, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPD Extract Packed Double-Precision
Floating-Point Sign Mask

Mnemonic Opcode Description

MOVMSKPD reg32, xmm 66 0F 50 /r Move sign bits 127 and 63 in an XMM register to a 32-bit
general-purpose register.

movmskpd.eps

reg32 xmm

copy sign
copy sign

127 63 00

0

131

Instruction Reference MOVMSKPD 215

24594—Rev. 3.16—September 2011 AMD64 Technology

Exceptions

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X The emulate bit (EM) of CR0 was set to 1.
Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

216 MOVMSKPS Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Moves the sign bits of four packed single-precision floating-point values in an XMM register (second
operand) to the four low-order bits of a general-purpose register (first operand) with zero-extension.

The MOVMSKPD instruction is an SSE2 instruction; Check the status of EDX bit 26 of CPUID
function 0000_0001h to verify that the processor supports this function.

Related Instructions

MOVMSKPD, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

MOVMSKPS Extract Packed Single-Precision
Floating-Point Sign Mask

Mnemonic Opcode Description

MOVMSKPS reg32, xmm 0F 50 /r Move sign bits 127, 95, 63, 31 in an XMM register to a
32-bit general-purpose register.

movmskps.eps

03 127 63 095 31

reg32 xmm

copy signcopy signcopy signcopy sign

0

31

Instruction Reference MOVMSKPS 217

24594—Rev. 3.16—September 2011 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.

X X X The emulate bit (EM) of CR0 was set to 1.
Device not available,
#NM X X X The task-switch bit (TS) of CR0 was set to 1.

218 MOVNTI Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Stores a value in a 32-bit or 64-bit general-purpose register (second operand) in a memory location
(first operand). This instruction indicates to the processor that the data is non-temporal and is unlikely
to be used again soon. The processor treats the store as a write-combining (WC) memory write, which
minimizes cache pollution. The exact method by which cache pollution is minimized depends on the
hardware implementation of the instruction. For further information, see “Memory Optimization” in
Volume 1.

The MOVNTI instruction is weakly-ordered with respect to other instructions that operate on memory.
Software should use an SFENCE instruction to force strong memory ordering of MOVNTI with
respect to other stores.

Support for the MOVNTI instruction is indicated when the SSE2 bit (bit 26) is set to 1 in EDX after
executing CPUID function 0000_0001h.

Related Instructions

MOVNTDQ, MOVNTPD, MOVNTPS, MOVNTQ

rFLAGS Affected

None

Exceptions

MOVNTI Move Non-Temporal Doubleword or
Quadword

Mnemonic Opcode Description

MOVNTI mem32, reg32 0F C3 /r Stores a 32-bit general-purpose register value into a 32-
bit memory location, minimizing cache pollution.

MOVNTI mem64, reg64 0F C3 /r Stores a 64-bit general-purpose register value into a 64-
bit memory location, minimizing cache pollution.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSE2] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or
was non-canonical.

X A null data segment was used to reference memory.

X The destination operand was in a non-writable
segment.

Instruction Reference MOVNTI 219

24594—Rev. 3.16—September 2011 AMD64 Technology

Page fault, #PF X X A page fault resulted from the execution of the
instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

220 MOVSx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Moves a byte, word, doubleword, or quadword from the memory location pointed to by DS:rSI to the
memory location pointed to by ES:rDI, and then increments or decrements the rSI and rDI registers
according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments both pointers; otherwise, it decrements them. It
increments or decrements the pointers by 1, 2, 4, or 8, depending on the size of the operands.

The forms of the MOVSx instruction with explicit operands address the first operand at seg:[rSI]. The
value of seg defaults to the DS segment, but can be overridden by a segment prefix. These instructions
always address the second operand at ES:[rDI] (ES may not be overridden). The explicit operands
serve only to specify the type (size) of the value being moved.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to point to the value
to be moved (they do not allow a segment prefix). The mnemonic determines the size of the operands.

Do not confuse this MOVSD instruction with the same-mnemonic MOVSD (move scalar double-
precision floating-point) instruction in the 128-bit media instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

The MOVSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12.

MOVS
MOVSB
MOVSW
MOVSD
MOVSQ

Move String

Mnemonic Opcode Description

MOVS mem8, mem8 A4 Move byte at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

MOVS mem16, mem16 A5 Move word at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

MOVS mem32, mem32 A5 Move doubleword at DS:rSI to ES:rDI, and then
increment or decrement rSI and rDI.

MOVS mem64, mem64 A5 Move quadword at DS:rSI to ES:rDI, and then increment
or decrement rSI and rDI.

MOVSB A4 Move byte at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

MOVSW A5 Move word at DS:rSI to ES:rDI, and then increment or
decrement rSI and rDI.

Instruction Reference MOVSx 221

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

MOV, LODSx, STOSx

rFLAGS Affected

None

Exceptions

MOVSD A5 Move doubleword at DS:rSI to ES:rDI, and then
increment or decrement rSI and rDI.

MOVSQ A5 Move quadword at DS:rSI to ES:rDI, and then increment
or decrement rSI and rDI.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

222 MOVSX Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Copies the value in a register or memory location (second operand) into a register (first operand),
extending the most significant bit of an 8-bit or 16-bit value into all higher bits in a 16-bit, 32-bit, or
64-bit register.

Related Instructions

MOVSXD, MOVZX

rFLAGS Affected

None

Exceptions

MOVSX Move with Sign-Extension

Mnemonic Opcode Description

MOVSX reg16, reg/mem8 0F BE /r Move the contents of an 8-bit register or memory
location to a 16-bit register with sign extension.

MOVSX reg32, reg/mem8 0F BE /r Move the contents of an 8-bit register or memory
location to a 32-bit register with sign extension.

MOVSX reg64, reg/mem8 0F BE /r Move the contents of an 8-bit register or memory
location to a 64-bit register with sign extension.

MOVSX reg32, reg/mem16 0F BF /r Move the contents of an 16-bit register or memory
location to a 32-bit register with sign extension.

MOVSX reg64, reg/mem16 0F BF /r Move the contents of an 16-bit register or memory
location to a 64-bit register with sign extension.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference MOVSXD 223

24594—Rev. 3.16—September 2011 AMD64 Technology

Copies the 32-bit value in a register or memory location (second operand) into a 64-bit register (first
operand), extending the most significant bit of the 32-bit value into all higher bits of the 64-bit register.

This instruction requires the REX prefix 64-bit operand size bit (REX.W) to be set to 1 to sign-extend
a 32-bit source operand to a 64-bit result. Without the REX operand-size prefix, the operand size will
be 32 bits, the default for 64-bit mode, and the source is zero-extended into a 64-bit register. With a 16-
bit operand size, only 16 bits are copied, without modifying the upper 48 bits in the destination.

This instruction is available only in 64-bit mode. In legacy or compatibility mode this opcode is
interpreted as ARPL.

Related Instructions

MOVSX, MOVZX

rFLAGS Affected

None

Exceptions

MOVSXD Move with Sign-Extend Doubleword

Mnemonic Opcode Description

MOVSXD reg64, reg/mem32 63 /r Move the contents of a 32-bit register or memory
operand to a 64-bit register with sign extension.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X A memory address was non-canonical.
General protection,
#GP X A memory address was non-canonical.

Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

224 MOVZX Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Copies the value in a register or memory location (second operand) into a register (first operand), zero-
extending the value to fit in the destination register. The operand-size attribute determines the size of
the zero-extended value.

Related Instructions

MOVSXD, MOVSX

rFLAGS Affected

None

Exceptions

MOVZX Move with Zero-Extension

Mnemonic Opcode Description

MOVZX reg16, reg/mem8 0F B6 /r Move the contents of an 8-bit register or memory
operand to a 16-bit register with zero-extension.

MOVZX reg32, reg/mem8 0F B6 /r Move the contents of an 8-bit register or memory
operand to a 32-bit register with zero-extension.

MOVZX reg64, reg/mem8 0F B6 /r Move the contents of an 8-bit register or memory
operand to a 64-bit register with zero-extension.

MOVZX reg32, reg/mem16 0F B7 /r Move the contents of a 16-bit register or memory
operand to a 32-bit register with zero-extension.

MOVZX reg64, reg/mem16 0F B7 /r Move the contents of a 16-bit register or memory
operand to a 64-bit register with zero-extension.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference MUL 225

24594—Rev. 3.16—September 2011 AMD64 Technology

Multiplies the unsigned byte, word, doubleword, or quadword value in the specified register or
memory location by the value in AL, AX, EAX, or RAX and stores the result in AX, DX:AX,
EDX:EAX, or RDX:RAX (depending on the operand size). It puts the high-order bits of the product in
AH, DX, EDX, or RDX.

If the upper half of the product is non-zero, the instruction sets the carry flag (CF) and overflow flag
(OF) both to 1. Otherwise, it clears CF and OF to 0. The other arithmetic flags (SF, ZF, AF, PF) are
undefined.

Related Instructions

DIV

rFLAGS Affected

MUL Unsigned Multiply

Mnemonic Opcode Description

MUL reg/mem8 F6 /4
Multiplies an 8-bit register or memory operand by the
contents of the AL register and stores the result in the
AX register.

MUL reg/mem16 F7 /4
Multiplies a 16-bit register or memory operand by the
contents of the AX register and stores the result in the
DX:AX register.

MUL reg/mem32 F7 /4
Multiplies a 32-bit register or memory operand by the
contents of the EAX register and stores the result in the
EDX:EAX register.

MUL reg/mem64 F7 /4
Multiplies a 64-bit register or memory operand by the
contents of the RAX register and stores the result in the
RDX:RAX register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M U U U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

226 MUL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference is performed while alignment

checking was enabled.

Instruction Reference NEG 227

24594—Rev. 3.16—September 2011 AMD64 Technology

Performs the two’s complement negation of the value in the specified register or memory location by
subtracting the value from 0. Use this instruction only on signed integer numbers.

If the value is 0, the instruction clears the CF flag to 0; otherwise, it sets CF to 1. The OF, SF, ZF, AF,
and PF flag settings depend on the result of the operation.

The forms of the NEG instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

AND, NOT, OR, XOR

rFLAGS Affected

NEG Two’s Complement Negation

Mnemonic Opcode Description

NEG reg/mem8 F6 /3 Performs a two’s complement negation on an 8-bit
register or memory operand.

NEG reg/mem16 F7 /3 Performs a two’s complement negation on a 16-bit
register or memory operand.

NEG reg/mem32 F7 /3 Performs a two’s complement negation on a 32-bit
register or memory operand.

NEG reg/mem64 F7 /3 Performs a two’s complement negation on a 64-bit
register or memory operand.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

228 NEG Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand is in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference NOP 229

24594—Rev. 3.16—September 2011 AMD64 Technology

Does nothing. This instruction increments the rIP to point to next instruction, but does not affect the
machine state in any other way.

The single-byte variant is an alias for XCHG rAX,rAX.

The multi-byte NOP is supported on the AMD Athlon™ processor and later processors. Since the
NOP instruction takes an operand, it is useful for variable-sized alignment when the padding must be
executable. For detailed recommendations, see the Software Optimization Guide for AMD Family 10h
Processors, order# 40546, section 4.13, “Code Padding with Operand-Size Override and Multibyte
NOP.”

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

NOP No Operation

Mnemonic Opcode Description

NOP 90 Performs no operation.

NOP reg/mem16 0F 1F /0 Performs no operation on a 16-bit register or memory
operand.

NOP reg/mem32 0F 1F /0 Performs no operation on a 32-bit register or memory
operand.

NOP reg/mem64 0F 1F /0 Performs no operation on a 64-bit register or memory
operand.

230 NOT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Performs the one’s complement negation of the value in the specified register or memory location by
inverting each bit of the value.

The memory-operand forms of the NOT instruction support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

AND, NEG, OR, XOR

rFLAGS Affected

None

Exceptions

NOT One’s Complement Negation

Mnemonic Opcode Description

NOT reg/mem8 F6 /2 Complements the bits in an 8-bit register or memory
operand.

NOT reg/mem16 F7 /2 Complements the bits in a 16-bit register or memory
operand.

NOT reg/mem32 F7 /2 Complements the bits in a 32-bit register or memory
operand.

NOT reg/mem64 F7 /2 Compliments the bits in a 64-bit register or memory
operand.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference is performed while alignment

checking was enabled.

Instruction Reference OR 231

24594—Rev. 3.16—September 2011 AMD64 Technology

Performs a logical OR on the bits in a register, memory location, or immediate value (second operand)
and a register or memory location (first operand) and stores the result in the first operand location. The
two operands cannot both be memory locations.

If both corresponding bits are 0, the corresponding bit of the result is 0; otherwise, the corresponding
result bit is 1.

The forms of the OR instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

OR Logical OR

Mnemonic Opcode Description

OR AL, imm8 0C ib OR the contents of AL with an immediate 8-bit value.

OR AX, imm16 0D iw OR the contents of AX with an immediate 16-bit value.

OR EAX, imm32 0D id OR the contents of EAX with an immediate 32-bit value.

OR RAX, imm32 0D id OR the contents of RAX with a sign-extended
immediate 32-bit value.

OR reg/mem8, imm8 80 /1 ib OR the contents of an 8-bit register or memory operand
and an immediate 8-bit value.

OR reg/mem16, imm16 81 /1 iw OR the contents of a 16-bit register or memory operand
and an immediate 16-bit value.

OR reg/mem32, imm32 81 /1 id OR the contents of a 32-bit register or memory operand
and an immediate 32-bit value.

OR reg/mem64, imm32 81 /1 id OR the contents of a 64-bit register or memory operand
and sign-extended immediate 32-bit value.

OR reg/mem16, imm8 83 /1 ib OR the contents of a 16-bit register or memory operand
and a sign-extended immediate 8-bit value.

OR reg/mem32, imm8 83 /1 ib OR the contents of a 32-bit register or memory operand
and a sign-extended immediate 8-bit value.

OR reg/mem64, imm8 83 /1 ib OR the contents of a 64-bit register or memory operand
and a sign-extended immediate 8-bit value.

OR reg/mem8, reg8 08 /r OR the contents of an 8-bit register or memory operand
with the contents of an 8-bit register.

OR reg/mem16, reg16 09 /r OR the contents of a 16-bit register or memory operand
with the contents of a 16-bit register.

OR reg/mem32, reg32 09 /r OR the contents of a 32-bit register or memory operand
with the contents of a 32-bit register.

OR reg/mem64, reg64 09 /r OR the contents of a 64-bit register or memory operand
with the contents of a 64-bit register.

OR reg8, reg/mem8 0A /r OR the contents of an 8-bit register with the contents of
an 8-bit register or memory operand.

232 OR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

The following chart summarizes the effect of this instruction:

Related Instructions

AND, NEG, NOT, XOR

rFLAGS Affected

Exceptions

OR reg16, reg/mem16 0B /r OR the contents of a 16-bit register with the contents of
a 16-bit register or memory operand.

OR reg32, reg/mem32 0B /r OR the contents of a 32-bit register with the contents of
a 32-bit register or memory operand.

OR reg64, reg/mem64 0B /r OR the contents of a 64-bit register with the contents of
a 64-bit register or memory operand.

X Y X OR Y

0 0 0

0 1 1

1 0 1

1 1 1

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference OUT 233

24594—Rev. 3.16—September 2011 AMD64 Technology

Copies the value from the AL, AX, or EAX register (second operand) to an I/O port (first operand).
The port address can be a byte-immediate value (00h to FFh) or the value in the DX register (0000h to
FFFFh). The source register used determines the size of the port (8, 16, or 32 bits).

If the operand size is 64 bits, OUT only writes to a 32-bit I/O port.

If the CPL is higher than the IOPL or the mode is virtual mode, OUT checks the I/O permission bitmap
in the TSS before allowing access to the I/O port. See Volume 2 for details on the TSS I/O permission
bitmap.

Related Instructions

IN, INSx, OUTSx

rFLAGS Affected

None

Exceptions

OUT Output to Port

Mnemonic Opcode Description

OUT imm8, AL E6 ib Output the byte in the AL register to the port specified by
an 8-bit immediate value.

OUT imm8, AX E7 ib Output the word in the AX register to the port specified
by an 8-bit immediate value.

OUT imm8, EAX E7 ib Output the doubleword in the EAX register to the port
specified by an 8-bit immediate value.

OUT DX, AL EE Output byte in AL to the output port specified in DX.

OUT DX, AX EF Output word in AX to the output port specified in DX.

OUT DX, EAX EF Output doubleword in EAX to the output port specified in
DX.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

Page fault (#PF) X X A page fault resulted from the execution of the instruction.

234 OUTSx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Copies data from the memory location pointed to by DS:rSI to the I/O port address (0000h to FFFFh)
specified in the DX register, and then increments or decrements the rSI register according to the setting
of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It increments or
decrements the pointer by 1, 2, or 4, depending on the size of the value being copied.

The OUTSx instruction uses an explicit memory operand (second operand) to determine the type (size)
of the value being copied, but always uses DS:rSI for the location of the value to copy. The explicit
register operand specifies the I/O port address and must always be DX.

The no-operands forms of the instruction use the DS:[rSI] register pair to point to the data to be copied
and the DX register as the destination. The mnemonic specifies the size of the I/O port and the type
(size) of the value being copied.

The OUTSx instruction supports the REP prefix. For details about the REP prefix, see “Repeat
Prefixes” on page 12.

If the operand size is 64-bits, OUTS only writes to a 32-bit I/O port.

If the CPL is higher than the IOPL or the mode is virtual mode, OUTSx checks the I/O permission
bitmap in the TSS before allowing access to the I/O port. See Volume 2 for details on the TSS I/O
permission bitmap.

OUTS
OUTSB
OUTSW
OUTSD

Output String

Mnemonic Opcode Description

OUTS DX, mem8 6E Output the byte in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTS DX, mem16 6F Output the word in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTS DX, mem32 6F Output the doubleword in DS:rSI to the port specified in
DX, then increment or decrement rSI.

OUTSB 6E Output the byte in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTSW 6F Output the word in DS:rSI to the port specified in DX,
then increment or decrement rSI.

OUTSD 6F Output the doubleword in DS:rSI to the port specified in
DX, then increment or decrement rSI.

Instruction Reference OUTSx 235

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

IN, INSx, OUT

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

X One or more I/O permission bits were set in the TSS for the
accessed port.

X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference is performed while alignment

checking was enabled.

236 PAUSE Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Improves the performance of spin loops, by providing a hint to the processor that the current code is in
a spin loop. The processor may use this to optimize power consumption while in the spin loop.

Architecturally, this instruction behaves like a NOP instruction.

Processors that do not support PAUSE treat this opcode as a NOP instruction.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

PAUSE Pause

Mnemonic Opcode Description

PAUSE F3 90 Provides a hint to processor that a spin loop is being
executed.

Instruction Reference POP 237

24594—Rev. 3.16—September 2011 AMD64 Technology

Copies the value pointed to by the stack pointer (SS:rSP) to the specified register or memory location
and then increments the rSP by 2 for a 16-bit pop, 4 for a 32-bit pop, or 8 for a 64-bit pop.

The operand-size attribute determines the amount by which the stack pointer is incremented (2, 4 or 8
bytes). The stack-size attribute determines whether SP, ESP, or RSP is incremented.

For forms of the instruction that load a segment register (POP DS, POP ES, POP FS, POP GS, POP
SS), the source operand must be a valid segment selector. When a segment selector is popped into a
segment register, the processor also loads all associated descriptor information into the hidden part of
the register and validates it.

It is possible to pop a null segment selector value (0000–0003h) into the DS, ES, FS, or GS register.
This action does not cause a general protection fault, but a subsequent reference to such a segment
does cause a #GP exception. For more information about segment selectors, see “Segment Selectors
and Registers” on page 69.

In 64-bit mode, the POP operand size defaults to 64 bits and there is no prefix available to encode a 32-
bit operand size. Using POP DS, POP ES, or POP SS instruction in 64-bit mode generates an invalid-
opcode exception.

This instruction cannot pop a value into the CS register. The RET (Far) instruction performs this
function.

POP Pop Stack

Mnemonic Opcode Description

POP reg/mem16 8F /0 Pop the top of the stack into a 16-bit register or memory
location.

POP reg/mem32 8F /0
Pop the top of the stack into a 32-bit register or memory
location.
(No prefix for encoding this in 64-bit mode.)

POP reg/mem64 8F /0 Pop the top of the stack into a 64-bit register or memory
location.

POP reg16 58 +rw Pop the top of the stack into a 16-bit register.

POP reg32 58 +rd Pop the top of the stack into a 32-bit register.
(No prefix for encoding this in 64-bit mode.)

POP reg64 58 +rq Pop the top of the stack into a 64-bit register.

POP DS 1F Pop the top of the stack into the DS register.
(Invalid in 64-bit mode.)

POP ES 07 Pop the top of the stack into the ES register.
(Invalid in 64-bit mode.)

POP SS 17 Pop the top of the stack into the SS register.
(Invalid in 64-bit mode.)

238 POP Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

PUSH

rFLAGS Affected

None

Exceptions

POP FS 0F A1 Pop the top of the stack into the FS register.

POP GS 0F A9 Pop the top of the stack into the GS register.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X POP DS, POP ES, or POP SS was executed in 64-bit mode.

Segment not
present, #NP
(selector)

X The DS, ES, FS, or GS register was loaded with a non-null
segment selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector

and the segment was marked not present.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

General protection,
#GP
(selector)

X A segment register was loaded and the segment descriptor
exceeded the descriptor table limit.

X A segment register was loaded and the segment selector’s TI
bit was set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.

X The SS register was loaded and the segment selector RPL
and the segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was
not a writable data segment.

X
The DS, ES, FS, or GS register was loaded and the segment
pointed to was a data or non-conforming code segment, but
the RPL or the CPL was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference POPAx 239

24594—Rev. 3.16—September 2011 AMD64 Technology

Pops words or doublewords from the stack into the general-purpose registers in the following order:
eDI, eSI, eBP, eSP (image is popped and discarded), eBX, eDX, eCX, and eAX. The instruction
increments the stack pointer by 16 or 32, depending on the operand size.

Using the POPA or POPAD instructions in 64-bit mode generates an invalid-opcode exception.

Related Instructions

PUSHA, PUSHAD

rFLAGS Affected

None

Exceptions

POPA
POPAD

 POP All GPRs

Mnemonic Opcode Description

POPA 61 Pop the DI, SI, BP, SP, BX, DX, CX, and AX registers.
(Invalid in 64-bit mode.)

POPAD 61
Pop the EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX
registers.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode
(#UD) X This instruction was executed in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

240 POPCNT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Counts the number of bits having a value of 1 in the source operand and places the result in the
destination register. The source operand is a 16-, 32-, or 64-bit general purpose register or memory
operand; the destination operand is a general purpose register of the same size as the source operand
register.

If the input operand is zero, the ZF flag is set to 1 and zero is written to the destination register.
Otherwise, the ZF flag is cleared. The other flags are cleared.

Support for the POPCNT instruction is indicated by ECX bit 23 (POPCNT) as returned by CPUID
function 0000_0001h. Software MUST check the CPUID bit once per program or library initialization
before using the POPCNT instruction, or inconsistent behavior may result.

Related Instructions

BSF, BSR, LZCNT

rFLAGS Affected

POPCNT Bit Population Count

Mnemonic Opcode Description

POPCNT reg16, reg/mem16 F3 0F B8 /r Count the 1s in reg/mem16.

POPCNT reg32, reg/mem32 F3 0F B8 /r Count the 1s in reg/mem32.

POPCNT reg64, reg/mem64 F3 0F B8 /r Count the 1s in reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 M 0 0 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Instruction Reference POPCNT 241

24594—Rev. 3.16—September 2011 AMD64 Technology

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD X X X The POPCNT instruction is not supported, as indicated by

CPUID Fn0000_0001_ECX[POPCNT].

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

242 POPFx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Pops a word, doubleword, or quadword from the stack into the rFLAGS register and then increments
the stack pointer by 2, 4, or 8, depending on the operand size.

In protected or real mode, all the non-reserved flags in the rFLAGS register can be modified, except
the VIP, VIF, and VM flags, which are unchanged. In protected mode, at a privilege level greater than
0 the IOPL is also unchanged. The instruction alters the interrupt flag (IF) only when the CPL is less
than or equal to the IOPL.

In virtual-8086 mode, if IOPL field is less than 3, attempting to execute a POPFx or PUSHFx
instruction while VME is not enabled, or the operand size is not 16-bit, generates a #GP exception.

In 64-bit mode, this instruction defaults to a 64-bit operand size; there is no prefix available to encode
a 32-bit operand size.

Action
// See “Pseudocode Definitions” on page 56.

POPF_START:

IF (REAL_MODE)
 POPF_REAL
ELSIF (PROTECTED_MODE)
 POPF_PROTECTED
ELSE // (VIRTUAL_MODE)
 POPF_VIRTUAL

POPF_REAL:

 POP.v temp_RFLAGS
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
 // RF cleared
 EXIT

POPF
POPFD
POPFQ

 POP to rFLAGS

Mnemonic Opcode Description

POPF 9D Pop a word from the stack into the FLAGS register.

POPFD 9D Pop a double word from the stack into the EFLAGS
register. (No prefix for encoding this in 64-bit mode.)

POPFQ 9D Pop a quadword from the stack to the RFLAGS register.

Instruction Reference POPFx 243

24594—Rev. 3.16—September 2011 AMD64 Technology

POPF_PROTECTED:

 POP.v temp_RFLAGS
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
 // IOPL changed only if (CPL=0)
 // IF changed only if (CPL<=old_RFLAGS.IOPL)
 // RF cleared
 EXIT

POPF_VIRTUAL:

 IF (RFLAGS.IOPL=3)
 {
 POP.v temp_RFLAGS
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,IOPL unchanged
 // RF cleared
 EXIT
 }
 ELSIF ((CR4.VME=1) && (OPERAND_SIZE=16))
 {
 POP.w temp_RFLAGS
 IF (((temp_RFLAGS.IF=1) && (RFLAGS.VIP=1)) || (temp_RFLAGS.TF=1))
 EXCEPTION [#GP(0)]
 // notify the virtual-mode-manager to deliver
 // the task’s pending interrupts
 RFLAGS.w = temp_RFLAGS // IF,IOPL unchanged
 // RFLAGS.VIF=temp_RFLAGS.IF
 // RF cleared
 EXIT
 }
 ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME=0) || (OPERAND_SIZE!=16)))
 EXCEPTION [#GP(0)]

Related Instructions

PUSHF, PUSHFD, PUSHFQ

rFLAGS Affected

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M 0 M M M M M M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

244 POPFx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP X

The I/O privilege level was less than 3 and one of the following
conditions was true:
• CR4.VME was 0.
• The effective operand size was 32-bit.
• Both the original EFLAGS.VIP and the new EFLAGS.IF bits

were set.
• The new EFLAGS.TF bit was set.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference PREFETCHx 245

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads the entire 64-byte aligned memory sequence containing the specified memory address into the
L1 data cache. The position of the specified memory address within the 64-byte cache line is
irrelevant. If a cache hit occurs, or if a memory fault is detected, no bus cycle is initiated and the
instruction is treated as a NOP.

The PREFETCHW instruction loads the prefetched line and sets the cache-line state to Modified, in
anticipation of subsequent data writes to the line. The PREFETCH instruction, by contrast, typically
sets the cache-line state to Exclusive (depending on the hardware implementation).

The opcodes for the PREFETCH/PREFETCHW instructions include the ModRM byte; however, only
the memory form of ModRM is valid. The register form of ModRM causes an invalid-opcode
exception. Because there is no destination register, the three destination register field bits of the
ModRM byte define the type of prefetch to be performed. The bit patterns 000b and 001b define the
PREFETCH and PREFETCHW instructions, respectively. All other bit patterns are reserved for future
use.

The reserved PREFETCH types do not result in an invalid-opcode exception if executed. Instead, for
forward compatibility with future processors that may implement additional forms of the PREFETCH
instruction, all reserved PREFETCH types are implemented as synonyms of the basic PREFETCH
type (the PREFETCH instruction with type 000b).

The operation of these instructions is implementation-dependent. The processor implementation can
ignore or change these instructions. The size of the cache line also depends on the implementation,
with a minimum size of 32 bytes. For details on the use of this instruction, see the processor data sheets
or other software-optimization documentation relating to particular hardware implementations.

When paging is enabled and PREFETCHW performs a prefetch from a writable page, it may set the
PTE Dirty bit to 1.

Support for the PREFETCH and PREFETCHW instruct ions is indicated by CPUID
Fn8000_0001_ECX[3DNowPre fe t ch] O R F n 8 0 0 0 _ 0 0 0 1 _ E D X [L M] O R
Fn8000_0001_EDX[3DNow] = 1.

Related Instructions

PREFETCHlevel

PREFETCH
PREFETCHW

 Prefetch L1 Data-Cache Line

Mnemonic Opcode Description

PREFETCH mem8 0F 0D /0 Prefetch processor cache line into L1 data cache.

PREFETCHW mem8 0F 0D /1 Prefetch processor cache line into L1 data cache and
mark it modified.

246 PREFETCHx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

None

Exceptions

Exception (vector) Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

PREFETCH and PREFETCHW instructions are not
supported, as indicated by CPUID
Fn8000_0001_ECX[3DNowPrefetch] AND
Fn8000_0001_EDX[LM] AND
Fn8000_0001_EDX[3DNow] = 0.

X X X The operand was a register.

Instruction Reference PREFETCHlevel 247

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads a cache line from the specified memory address into the data-cache level specified by the
locality reference bits 5–3 of the ModRM byte. Table 3-3 on page 247 lists the locality reference
options for the instruction.

This instruction loads a cache line even if the mem8 address is not aligned with the start of the line. If
the cache line is already contained in a cache level that is lower than the specified locality reference, or
if a memory fault is detected, a bus cycle is not initiated and the instruction is treated as a NOP.

The operation of this instruction is implementation-dependent. The processor implementation can
ignore or change this instruction. The size of the cache line also depends on the implementation, with a
minimum size of 32 bytes. AMD processors alias PREFETCH1 and PREFETCH2 to PREFETCH0.
For details on the use of this instruction, see the software-optimization documentation relating to
particular hardware implementations.

Related Instructions

PREFETCH, PREFETCHW

PREFETCHlevel Prefetch Data to Cache Level level

Mnemonic Opcode Description

PREFETCHNTA mem8 0F 18 /0 Move data closer to the processor using the NTA
reference.

PREFETCHT0 mem8 0F 18 /1 Move data closer to the processor using the T0
reference.

PREFETCHT1 mem8 0F 18 /2 Move data closer to the processor using the T1
reference.

PREFETCHT2 mem8 0F 18 /3 Move data closer to the processor using the T2
reference.

Table 3-3. Locality References for the Prefetch Instructions
Locality

Reference Description

NTA

Non-Temporal Access—Move the specified data into the processor with
minimum cache pollution. This is intended for data that will be used only
once, rather than repeatedly. The specific technique for minimizing cache
pollution is implementation-dependent and may include such techniques
as allocating space in a software-invisible buffer, allocating a cache line in
only a single way, etc. For details, see the software-optimization
documentation for a particular hardware implementation.

T0 All Cache Levels—Move the specified data into all cache levels.

T1 Level 2 and Higher—Move the specified data into all cache levels except
0th level (L1) cache.

T2 Level 3 and Higher—Move the specified data into all cache levels except
0th level (L1) and 1st level (L2) caches.

248 PREFETCHlevel Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

None

Exceptions

None

Instruction Reference PUSH 249

24594—Rev. 3.16—September 2011 AMD64 Technology

Decrements the stack pointer and then copies the specified immediate value or the value in the
specified register or memory location to the top of the stack (the memory location pointed to by
SS:rSP).

The operand-size attribute determines the number of bytes pushed to the stack. The stack-size attribute
determines whether SP, ESP, or RSP is the stack pointer. The address-size attribute is used only to
locate the memory operand when pushing a memory operand to the stack.

If the instruction pushes the stack pointer (rSP), the resulting value on the stack is that of rSP before
execution of the instruction.

There is a PUSH CS instruction but no corresponding POP CS. The RET (Far) instruction pops a value
from the top of stack into the CS register as part of its operation.

In 64-bit mode, the operand size of all PUSH instructions defaults to 64 bits, and there is no prefix
available to encode a 32-bit operand size. Using the PUSH CS, PUSH DS, PUSH ES, or PUSH SS
instructions in 64-bit mode generates an invalid-opcode exception.

Pushing an odd number of 16-bit operands when the stack address-size attribute is 32 results in a
misaligned stack pointer.

PUSH Push onto Stack

Mnemonic Opcode Description

PUSH reg/mem16 FF /6 Push the contents of a 16-bit register or memory
operand onto the stack.

PUSH reg/mem32 FF /6
Push the contents of a 32-bit register or memory
operand onto the stack. (No prefix for encoding this in
64-bit mode.)

PUSH reg/mem64 FF /6 Push the contents of a 64-bit register or memory
operand onto the stack.

PUSH reg16 50 +rw Push the contents of a 16-bit register onto the stack.

PUSH reg32 50 +rd Push the contents of a 32-bit register onto the stack. (No
prefix for encoding this in 64-bit mode.)

PUSH reg64 50 +rq Push the contents of a 64-bit register onto the stack.

PUSH imm8 6A ib Push an 8-bit immediate value (sign-extended to 16, 32,
or 64 bits) onto the stack.

PUSH imm16 68 iw Push a 16-bit immediate value onto the stack.

PUSH imm32 68 id Push a 32-bit immediate value onto the stack. (No prefix
for encoding this in 64-bit mode.)

PUSH imm64 68 id Push a sign-extended 32-bit immediate value onto the
stack.

PUSH CS 0E Push the CS selector onto the stack. (Invalid in 64-bit
mode.)

250 PUSH Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

POP

rFLAGS Affected

None

Exceptions

PUSH SS 16 Push the SS selector onto the stack. (Invalid in 64-bit
mode.)

PUSH DS 1E Push the DS selector onto the stack. (Invalid in 64-bit
mode.)

PUSH ES 06 Push the ES selector onto the stack. (Invalid in 64-bit
mode.)

PUSH FS 0F A0 Push the FS selector onto the stack.

PUSH GS 0F A8 Push the GS selector onto the stack.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X PUSH CS, PUSH DS, PUSH ES, or PUSH SS was executed

in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference PUSHAx 251

24594—Rev. 3.16—September 2011 AMD64 Technology

Pushes the contents of the eAX, eCX, eDX, eBX, eSP (original value), eBP, eSI, and eDI general-
purpose registers onto the stack in that order. This instruction decrements the stack pointer by 16 or 32
depending on operand size.

Using the PUSHA or PUSHAD instruction in 64-bit mode generates an invalid-opcode exception.

Related Instructions

POPA, POPAD

rFLAGS Affected

None

Exceptions

PUSHA
PUSHAD

 Push All GPRs onto Stack

Mnemonic Opcode Description

PUSHA 60
Push the contents of the AX, CX, DX, BX, original SP,
BP, SI, and DI registers onto the stack.
(Invalid in 64-bit mode.)

PUSHAD 60
Push the contents of the EAX, ECX, EDX, EBX, original
ESP, EBP, ESI, and EDI registers onto the stack.
(Invalid in 64-bit mode.)

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X This instruction was executed in 64-bit mode.

Stack, #SS X X X A memory address exceeded the stack segment limit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

252 PUSHFx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Decrements the rSP register and copies the rFLAGS register (except for the VM and RF flags) onto the
stack. The instruction clears the VM and RF flags in the rFLAGS image before putting it on the stack.

The instruction pushes 2, 4, or 8 bytes, depending on the operand size.

In 64-bit mode, this instruction defaults to a 64-bit operand size and there is no prefix available to
encode a 32-bit operand size.

In virtual-8086 mode, if system software has set the IOPL field to a value less than 3, a general-
protection exception occurs if application software attempts to execute PUSHFx or POPFx while
VME is not enabled or the operand size is not 16-bit.

Action
// See “Pseudocode Definitions” on page 56.

PUSHF_START:
IF (REAL_MODE)
 PUSHF_REAL
ELSIF (PROTECTED_MODE)
 PUSHF_PROTECTED
ELSE // (VIRTUAL_MODE)
 PUSHF_VIRTUAL

PUSHF_REAL:
 PUSH.v old_RFLAGS // Pushed with RF and VM cleared.
 EXIT

PUSHF_PROTECTED:
 PUSH.v old_RFLAGS // Pushed with RF cleared.
 EXIT

PUSHF_VIRTUAL:
 IF (RFLAGS.IOPL=3)
 {
 PUSH.v old_RFLAGS // Pushed with RF,VM cleared.
 EXIT
 }

PUSHF
PUSHFD
PUSHFQ

 Push rFLAGS onto Stack

Mnemonic Opcode Description

PUSHF 9C Push the FLAGS word onto the stack.

PUSHFD 9C Push the EFLAGS doubleword onto stack. (No prefix
encoding this in 64-bit mode.)

PUSHFQ 9C Push the RFLAGS quadword onto stack.

Instruction Reference PUSHFx 253

24594—Rev. 3.16—September 2011 AMD64 Technology

 ELSIF ((CR4.VME=1) && (OPERAND_SIZE=16))
 {
 PUSH.v old_RFLAGS // Pushed with VIF in the IF position.
 // Pushed with IOPL=3.
 EXIT
 }
 ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME=0) || (OPERAND_SIZE!=16)))
 EXCEPTION [#GP(0)]

Related Instructions

POPF, POPFD, POPFQ

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP X The I/O privilege level was less than 3 and either VME was not

enabled or the operand size was not 16-bit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

254 RCL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Rotates the bits of a register or memory location (first operand) to the left (more significant bit
positions) and through the carry flag by the number of bit positions in an unsigned immediate value or
the CL register (second operand). The bits rotated through the carry flag are rotated back in at the right
end (lsb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit rotates, the instruction sets the OF flag to the exclusive OR of the CF bit (after the rotate) and
the most significant bit of the result. When the rotate count is greater than 1, the OF flag is undefined.
When the rotate count is 0, no flags are affected.

RCL Rotate Through Carry Left

Mnemonic Opcode Description

RCL reg/mem8,1 D0 /2 Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location left 1 bit.

RCL reg/mem8, CL D2 /2
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location left the number of bits
specified in the CL register.

RCL reg/mem8, imm8 C0 /2 ib
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location left the number of bits
specified by an 8-bit immediate value.

RCL reg/mem16, 1 D1 /2 Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location left 1 bit.

RCL reg/mem16, CL D3 /2
Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location left the number of bits
specified in the CL register.

RCL reg/mem16, imm8 C1 /2 ib
Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location left the number of bits
specified by an 8-bit immediate value.

RCL reg/mem32, 1 D1 /2 Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location left 1 bit.

RCL reg/mem32, CL D3 /2
Rotate 33 bits consisting of the carry flag and a 32-bit
register or memory location left the number of bits
specified in the CL register.

RCL reg/mem32, imm8 C1 /2 ib
Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location left the number of bits
specified by an 8-bit immediate value.

RCL reg/mem64, 1 D1 /2 Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location left 1 bit.

Instruction Reference RCL 255

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

RCR, ROL, ROR

rFLAGS Affected

Exceptions

RCL reg/mem64, CL D3 /2
Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location left the number of bits
specified in the CL register.

RCL reg/mem64, imm8 C1 /2 ib
Rotates the 65 bits consisting of the carry flag and a 64-
bit register or memory location left the number of bits
specified by an 8-bit immediate value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

256 RCR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Rotates the bits of a register or memory location (first operand) to the right (toward the less significant
bit positions) and through the carry flag by the number of bit positions in an unsigned immediate value
or the CL register (second operand). The bits rotated through the carry flag are rotated back in at the
left end (msb) of the first operand location.

The processor masks the upper three bits in the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit rotates, the instruction sets the OF flag to the exclusive OR of the CF flag (before the rotate)
and the most significant bit of the original value. When the rotate count is greater than 1, the OF flag is
undefined. When the rotate count is 0, no flags are affected.

RCR Rotate Through Carry Right

Mnemonic Opcode Description

RCR reg/mem8, 1 D0 /3 Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location right 1 bit.

RCR reg/mem8,CL D2 /3
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem8,imm8 C0 /3 ib
Rotate the 9 bits consisting of the carry flag and an 8-bit
register or memory location right the number of bits
specified by an 8-bit immediate value.

RCR reg/mem16,1 D1 /3 Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location right 1 bit.

RCR reg/mem16,CL D3 /3
Rotate the17 bits consisting of the carry flag and a 16-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem16, imm8 C1 /3 ib
Rotate the 17 bits consisting of the carry flag and a 16-
bit register or memory location right the number of bits
specified by an 8-bit immediate value.

RCR reg/mem32,1 D1 /3 Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location right 1 bit.

RCR reg/mem32,CL D3 /3
Rotate 33 bits consisting of the carry flag and a 32-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem32, imm8 C1 /3 ib
Rotate the 33 bits consisting of the carry flag and a 32-
bit register or memory location right the number of bits
specified by an 8-bit immediate value.

RCR reg/mem64,1 D1 /3 Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location right 1 bit.

Instruction Reference RCR 257

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

RCL, ROR, ROL

rFLAGS Affected

Exceptions

RCR reg/mem64,CL D3 /3
Rotate 65 bits consisting of the carry flag and a 64-bit
register or memory location right the number of bits
specified in the CL register.

RCR reg/mem64, imm8 C1 /3 ib
Rotate the 65 bits consisting of the carry flag and a 64-
bit register or memory location right the number of bits
specified by an 8-bit immediate value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

258 RET (Near) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Returns from a procedure previously entered by a CALL near instruction. This form of the RET
instruction returns to a calling procedure within the current code segment.

This instruction pops the rIP from the stack, with the size of the pop determined by the operand size.
The new rIP is then zero-extended to 64 bits. The RET instruction can accept an immediate value
operand that it adds to the rSP after it pops the target rIP. This action skips over any parameters
previously passed back to the subroutine that are no longer needed.

In 64-bit mode, the operand size defaults to 64 bits (eight bytes) without the need for a REX prefix. No
prefix is available to encode a 32-bit operand size in 64-bit mode.

See RET (Far) for information on far returns—returns to procedures located outside of the current
code segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Related Instructions

CALL (Near), CALL (Far), RET (Far)

rFLAGS Affected

None

Exceptions

RET (Near) Near Return from Called Procedure

Mnemonic Opcode Description

RET C3 Near return to the calling procedure.

RET imm16 C2 iw Near return to the calling procedure then pop the
specified number of bytes from the stack.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference RET (Far) 259

24594—Rev. 3.16—September 2011 AMD64 Technology

Returns from a procedure previously entered by a CALL Far instruction. This form of the RET
instruction returns to a calling procedure in a different segment than the current code segment. It can
return to the same CPL or to a less privileged CPL.

RET Far pops a target CS and rIP from the stack. If the new code segment is less privileged than the
current code segment, the stack pointer is incremented by the number of bytes indicated by the
immediate operand, if present; then a new SS and rSP are also popped from the stack.

The final value of rSP is incremented by the number of bytes indicated by the immediate operand, if
present. This action skips over the parameters (previously passed to the subroutine) that are no longer
needed.

All stack pops are determined by the operand size. If necessary, the target rIP is zero-extended to 64
bits before assuming program control.

If the CPL changes, the data segment selectors are set to NULL for any of the data segments (DS, ES,
FS, GS) not accessible at the new CPL.

See RET (Near) for information on near returns—returns to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Action
// Far returns (RETF)
// See “Pseudocode Definitions” on page 56.

RETF_START:

IF (REAL_MODE)
 RETF_REAL_OR_VIRTUAL
ELSIF (PROTECTED_MODE)
 RETF_PROTECTED
ELSE // (VIRTUAL_MODE)
 RETF_REAL_OR_VIRTUAL

RETF_REAL_OR_VIRTUAL:

 IF (OPCODE = retf imm16)
 temp_IMM = word-sized immediate specified in the instruction,
 zero-extended to 64 bits

RET (Far) Far Return from Called Procedure

Mnemonic Opcode Description

RETF CB Far return to the calling procedure.

RETF imm16 CA iw Far return to the calling procedure, then pop the
specified number of bytes from the stack.

260 RET (Far) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

 ELSE // (OPCODE = retf)
 temp_IMM = 0

 POP.v temp_RIP
 POP.v temp_CS

 IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

 RSP.s = RSP + temp_IMM
 RIP = temp_RIP
 EXIT

RETF_PROTECTED:

 IF (OPCODE = retf imm16)
 temp_IMM = word-sized immediate specified in the instruction,
 zero-extended to 64 bits
 ELSE // (OPCODE = retf)
 temp_IMM = 0

 POP.v temp_RIP
 POP.v temp_CS

 temp_CPL = temp_CS.rpl

 IF (CPL=temp_CPL)
 {
 CS = READ_DESCRIPTOR (temp_CS, iret_chk)

 RSP.s = RSP + temp_IMM

 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

 RIP = temp_RIP
 EXIT
 }
 ELSE // (CPL!=temp_CPL)
 {
 RSP.s = RSP + temp_IMM

 POP.v temp_RSP
 POP.v temp_SS

 CS = READ_DESCRIPTOR (temp_CS, iret_chk)

Instruction Reference RET (Far) 261

24594—Rev. 3.16—September 2011 AMD64 Technology

 CPL = temp_CPL

 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 EXCEPTION [#GP(0)]

 SS = READ_DESCRIPTOR (temp_SS, ss_chk)

 RSP.s = temp_RSP + temp_IMM

 IF (changing CPL)
 {
 FOR (seg = ES, DS, FS, GS)
 IF ((seg.attr.dpl < CPL) && ((seg.attr.type = ’data’)
 || (seg.attr.type = ’non-conforming-code’)))
 {
 seg = NULL // can’t use lower dpl data segment at higher cpl
 }
 }

 RIP = temp_RIP
 EXIT
 }

Related Instructions

CALL (Near), CALL (Far), RET (Near)

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Segment not
present, #NP
(selector)

X The return code segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The return stack segment was marked not present.

General protection,
#GP X X X The target offset exceeded the code segment limit or was non-

canonical.

262 RET (Far) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

General protection,
#GP
(selector)

X The return code selector was a null selector.

X The return stack selector was a null selector and the return
mode was non-64-bit mode or CPL was 3.

X The return code or stack descriptor exceeded the descriptor
table limit.

X The return code or stack selector’s TI bit was set but the LDT
selector was a null selector.

X The segment descriptor for the return code was not a code
segment.

X The RPL of the return code segment selector was less than
the CPL.

X
The return code segment was non-conforming and the
segment selector’s DPL was not equal to the RPL of the code
segment’s segment selector.

X
The return code segment was conforming and the segment
selector’s DPL was greater than the RPL of the code
segment’s segment selector.

X The segment descriptor for the return stack was not a writable
data segment.

X The stack segment descriptor DPL was not equal to the RPL
of the return code segment selector.

X The stack segment selector RPL was not equal to the RPL of
the return code segment selector.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned-memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Instruction Reference ROL 263

24594—Rev. 3.16—September 2011 AMD64 Technology

Rotates the bits of a register or memory location (first operand) to the left (toward the more significant
bit positions) by the number of bit positions in an unsigned immediate value or the CL register (second
operand). The bits rotated out left are rotated back in at the right end (lsb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, it masks the upper two bits of the count,
providing a count in the range of 0 to 63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated out (the lsb of the
result). For 1-bit rotates, the instruction sets the OF flag to the exclusive OR of the CF bit (after the
rotate) and the most significant bit of the result. When the rotate count is greater than 1, the OF flag is
undefined. When the rotate count is 0, no flags are affected.

Related Instructions

RCL, RCR, ROR

ROL Rotate Left

Mnemonic Opcode Description

ROL reg/mem8, 1 D0 /0 Rotate an 8-bit register or memory operand left 1 bit.

ROL reg/mem8, CL D2 /0 Rotate an 8-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem8, imm8 C0 /0 ib Rotate an 8-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

ROL reg/mem16, 1 D1 /0 Rotate a 16-bit register or memory operand left 1 bit.

ROL reg/mem16, CL D3 /0 Rotate a 16-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem16, imm8 C1 /0 ib Rotate a 16-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

ROL reg/mem32, 1 D1 /0 Rotate a 32-bit register or memory operand left 1 bit.

ROL reg/mem32, CL D3 /0 Rotate a 32-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem32, imm8 C1 /0 ib Rotate a 32-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

ROL reg/mem64, 1 D1 /0 Rotate a 64-bit register or memory operand left 1 bit.

ROL reg/mem64, CL D3 /0 Rotate a 64-bit register or memory operand left the
number of bits specified in the CL register.

ROL reg/mem64, imm8 C1 /0 ib Rotate a 64-bit register or memory operand left the
number of bits specified by an 8-bit immediate value.

264 ROL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference ROR 265

24594—Rev. 3.16—September 2011 AMD64 Technology

Rotates the bits of a register or memory location (first operand) to the right (toward the less significant
bit positions) by the number of bit positions in an unsigned immediate value or the CL register (second
operand). The bits rotated out right are rotated back in at the left end (the most significant bit) of the
first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated out (the most
significant bit of the result). For 1-bit rotates, the instruction sets the OF flag to the exclusive OR of the
two most significant bits of the result. When the rotate count is greater than 1, the OF flag is undefined.
When the rotate count is 0, no flags are affected.

Related Instructions

RCL, RCR, ROL

ROR Rotate Right

Mnemonic Opcode Description

ROR reg/mem8, 1 D0 /1 Rotate an 8-bit register or memory location right 1 bit.

ROR reg/mem8, CL D2 /1 Rotate an 8-bit register or memory location right the
number of bits specified in the CL register.

ROR reg/mem8, imm8 C0 /1 ib Rotate an 8-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

ROR reg/mem16, 1 D1 /1 Rotate a 16-bit register or memory location right 1 bit.

ROR reg/mem16, CL D3 /1 Rotate a 16-bit register or memory location right the
number of bits specified in the CL register.

ROR reg/mem16, imm8 C1 /1 ib Rotate a 16-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

ROR reg/mem32, 1 D1 /1 Rotate a 32-bit register or memory location right 1 bit.

ROR reg/mem32, CL D3 /1 Rotate a 32-bit register or memory location right the
number of bits specified in the CL register.

ROR reg/mem32, imm8 C1 /1 ib Rotate a 32-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

ROR reg/mem64, 1 D1 /1 Rotate a 64-bit register or memory location right 1 bit.

ROR reg/mem64, CL D3 /1 Rotate a 64-bit register or memory operand right the
number of bits specified in the CL register.

ROR reg/mem64, imm8 C1 /1 ib Rotate a 64-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

266 ROR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference SAHF 267

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corresponding
bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). The instruction ignores bits 1, 3, and 5 of
register AH; it sets those bits in the EFLAGS register to 1, 0, and 0, respectively.

The SAHF instruction can only be executed in 64-bit mode if supported by the processor
implementation. Check the status of ECX bit 0 returned by CPUID function 8000_0001h to verify that
the processor supports SAHF in 64-bit mode.

Related Instructions

LAHF

rFLAGS Affected

Exceptions

SAHF Store AH into Flags

Mnemonic Opcode Description

SAHF 9E
Loads the sign flag, the zero flag, the auxiliary flag, the
parity flag, and the carry flag from the AH register into
the lower 8 bits of the EFLAGS register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X The SAHF instruction is not supported, as indicated by CPUID

Fn8000_0001_ECX[LahfSahf] = 0.

268 SAL, SHL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Shifts the bits of a register or memory location (first operand) to the left through the CF bit by the
number of bit positions in an unsigned immediate value or the CL register (second operand). The
instruction discards bits shifted out of the CF flag. For each bit shift, the SAL instruction clears the
least-significant bit to 0. At the end of the shift operation, the CF flag contains the last bit shifted out of
the first operand.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

The effect of this instruction is multiplication by powers of two.

For 1-bit shifts, the instruction sets the OF flag to the exclusive OR of the CF bit (after the shift) and
the most significant bit of the result. When the shift count is greater than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

SHL is an alias to the SAL instruction.

SAL
SHL

Shift Left

Mnemonic Opcode Description

SAL reg/mem8, 1 D0 /4 Shift an 8-bit register or memory location left 1 bit.

SAL reg/mem8, CL D2 /4 Shift an 8-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem8, imm8 C0 /4 ib Shift an 8-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SAL reg/mem16, 1 D1 /4 Shift a 16-bit register or memory location left 1 bit.

SAL reg/mem16, CL D3 /4 Shift a 16-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem16, imm8 C1 /4 ib Shift a 16-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SAL reg/mem32, 1 D1 /4 Shift a 32-bit register or memory location left 1 bit.

SAL reg/mem32, CL D3 /4 Shift a 32-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem32, imm8 C1 /4 ib Shift a 32-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SAL reg/mem64, 1 D1 /4 Shift a 64-bit register or memory location left 1 bit.

SAL reg/mem64, CL D3 /4 Shift a 64-bit register or memory location left the number
of bits specified in the CL register.

SAL reg/mem64, imm8 C1 /4 ib Shift a 64-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

Instruction Reference SAL, SHL 269

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

SAR, SHR, SHLD, SHRD

rFLAGS Affected

SHL reg/mem8, 1 D0 /4 Shift an 8-bit register or memory location by 1 bit.

SHL reg/mem8, CL D2 /4 Shift an 8-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem8, imm8 C0 /4 ib Shift an 8-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SHL reg/mem16, 1 D1 /4 Shift a 16-bit register or memory location left 1 bit.

SHL reg/mem16, CL D3 /4 Shift a 16-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem16, imm8 C1 /4 ib Shift a 16-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SHL reg/mem32, 1 D1 /4 Shift a 32-bit register or memory location left 1 bit.

SHL reg/mem32, CL D3 /4 Shift a 32-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem32, imm8 C1 /4 ib Shift a 32-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

SHL reg/mem64, 1 D1 /4 Shift a 64-bit register or memory location left 1 bit.

SHL reg/mem64, CL D3 /4 Shift a 64-bit register or memory location left the number
of bits specified in the CL register.

SHL reg/mem64, imm8 C1 /4 ib Shift a 64-bit register or memory location left the number
of bits specified by an 8-bit immediate value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Mnemonic Opcode Description

270 SAL, SHL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference SAR 271

24594—Rev. 3.16—September 2011 AMD64 Technology

Shifts the bits of a register or memory location (first operand) to the right through the CF bit by the
number of bit positions in an unsigned immediate value or the CL register (second operand). The
instruction discards bits shifted out of the CF flag. At the end of the shift operation, the CF flag
contains the last bit shifted out of the first operand.

The SAR instruction does not change the sign bit of the target operand. For each bit shift, it copies the
sign bit to the next bit, preserving the sign of the result.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit shifts, the instruction clears the OF flag to 0. When the shift count is greater than 1, the OF
flag is undefined.

If the shift count is 0, no flags are modified.

Although the SAR instruction effectively divides the operand by a power of 2, the behavior is different
from the IDIV instruction. For example, shifting –11 (FFFFFFF5h) by two bits to the right (that is,
divide –11 by 4), gives a result of FFFFFFFDh, or –3, whereas the IDIV instruction for dividing –11
by 4 gives a result of –2. This is because the IDIV instruction rounds off the quotient to zero, whereas
the SAR instruction rounds off the remainder to zero for positive dividends and to negative infinity for
negative dividends. So, for positive operands, SAR behaves like the corresponding IDIV instruction.
For negative operands, it gives the same result if and only if all the shifted-out bits are zeroes;
otherwise, the result is smaller by 1.

SAR Shift Arithmetic Right

Mnemonic Opcode Description

SAR reg/mem8, 1 D0 /7 Shift a signed 8-bit register or memory operand right 1
bit.

SAR reg/mem8, CL D2 /7 Shift a signed 8-bit register or memory operand right the
number of bits specified in the CL register.

SAR reg/mem8, imm8 C0 /7 ib Shift a signed 8-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SAR reg/mem16, 1 D1 /7 Shift a signed 16-bit register or memory operand right 1
bit.

SAR reg/mem16, CL D3 /7 Shift a signed 16-bit register or memory operand right
the number of bits specified in the CL register.

SAR reg/mem16, imm8 C1 /7 ib
Shift a signed 16-bit register or memory operand right
the number of bits specified by an 8-bit immediate
value.

SAR reg/mem32, 1 D1 /7 Shift a signed 32-bit register or memory location 1 bit.

SAR reg/mem32, CL D3 /7 Shift a signed 32-bit register or memory location right
the number of bits specified in the CL register.

272 SAR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

SAL, SHL, SHR, SHLD, SHRD

rFLAGS Affected

Exceptions

SAR reg/mem32, imm8 C1 /7 ib
Shift a signed 32-bit register or memory location right
the number of bits specified by an 8-bit immediate
value.

SAR reg/mem64, 1 D1 /7 Shift a signed 64-bit register or memory location right 1
bit.

SAR reg/mem64, CL D3 /7 Shift a signed 64-bit register or memory location right
the number of bits specified in the CL register.

SAR reg/mem64, imm8 C1 /7 ib
Shift a signed 64-bit register or memory location right
the number of bits specified by an 8-bit immediate
value.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference SBB 273

24594—Rev. 3.16—September 2011 AMD64 Technology

Subtracts an immediate value or the value in a register or a memory location (second operand) from a
register or a memory location (first operand), and stores the result in the first operand location. If the
carry flag (CF) is 1, the instruction subtracts 1 from the result. Otherwise, it operates like SUB.

The SBB instruction sign-extends immediate value operands to the length of the first operand size.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a borrow in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

This instruction is useful for multibyte (multiword) numbers because it takes into account the borrow
from a previous SUB instruction.

The forms of the SBB instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

SBB Subtract with Borrow

Mnemonic Opcode Description

SBB AL, imm8 1C ib Subtract an immediate 8-bit value from the AL register
with borrow.

SBB AX, imm16 1D iw Subtract an immediate 16-bit value from the AX register
with borrow.

SBB EAX, imm32 1D id Subtract an immediate 32-bit value from the EAX
register with borrow.

SBB RAX, imm32 1D id Subtract a sign-extended immediate 32-bit value from
the RAX register with borrow.

SBB reg/mem8, imm8 80 /3 ib Subtract an immediate 8-bit value from an 8-bit register
or memory location with borrow.

SBB reg/mem16, imm16 81 /3 iw Subtract an immediate 16-bit value from a 16-bit register
or memory location with borrow.

SBB reg/mem32, imm32 81 /3 id Subtract an immediate 32-bit value from a 32-bit register
or memory location with borrow.

SBB reg/mem64, imm32 81 /3 id Subtract a sign-extended immediate 32-bit value from a
64-bit register or memory location with borrow.

SBB reg/mem16, imm8 83 /3 ib Subtract a sign-extended 8-bit immediate value from a
16-bit register or memory location with borrow.

SBB reg/mem32, imm8 83 /3 ib Subtract a sign-extended 8-bit immediate value from a
32-bit register or memory location with borrow.

SBB reg/mem64, imm8 83 /3 ib Subtract a sign-extended 8-bit immediate value from a
64-bit register or memory location with borrow.

SBB reg/mem8, reg8 18 /r Subtract the contents of an 8-bit register from an 8-bit
register or memory location with borrow.

SBB reg/mem16, reg16 19 /r Subtract the contents of a 16-bit register from a 16-bit
register or memory location with borrow.

274 SBB Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

SUB, ADD, ADC

rFLAGS Affected

Exceptions

SBB reg/mem32, reg32 19 /r Subtract the contents of a 32-bit register from a 32-bit
register or memory location with borrow.

SBB reg/mem64, reg64 19 /r Subtract the contents of a 64-bit register from a 64-bit
register or memory location with borrow.

SBB reg8, reg/mem8 1A /r
Subtract the contents of an 8-bit register or memory
location from the contents of an 8-bit register with
borrow.

SBB reg16, reg/mem16 1B /r
Subtract the contents of a 16-bit register or memory
location from the contents of a 16-bit register with
borrow.

SBB reg32, reg/mem32 1B /r
Subtract the contents of a 32-bit register or memory
location from the contents of a 32-bit register with
borrow.

SBB reg64, reg/mem64 1B /r
Subtract the contents of a 64-bit register or memory
location from the contents of a 64-bit register with
borrow.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference SCASx 275

24594—Rev. 3.16—September 2011 AMD64 Technology

Compares the AL, AX, EAX, or RAX register with the byte, word, doubleword, or quadword pointed
to by ES:rDI, sets the status flags in the rFLAGS register according to the results, and then increments
or decrements the rDI register according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the rDI register; otherwise, it decrements it. The
instruction increments or decrements the rDI register by 1, 2, 4, or 8, depending on the size of the
operands.

The forms of the SCASx instruction with an explicit operand address the operand at ES:rDI. The
explicit operand serves only to specify the size of the values being compared.

The no-operands forms of the instruction use the ES:rDI registers to point to the value to be compared.
The mnemonic determines the size of the operands and the specific register containing the other
comparison value.

For block comparisons, the SCASx instructions support the REPE or REPZ prefixes (they are
synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For details about the REP
prefixes, see “Repeat Prefixes” on page 12. A SCASx instruction can also operate inside a loop
controlled by the LOOPcc instruction.

SCAS
SCASB
SCASW
SCASD
SCASQ

Scan String

Mnemonic Opcode Description

SCAS mem8 AE Compare the contents of the AL register with the byte at
ES:rDI, and then increment or decrement rDI.

SCAS mem16 AF Compare the contents of the AX register with the word
at ES:rDI, and then increment or decrement rDI.

SCAS mem32 AF
Compare the contents of the EAX register with the
doubleword at ES:rDI, and then increment or decrement
rDI.

SCAS mem64 AF
Compare the contents of the RAX register with the
quadword at ES:rDI, and then increment or decrement
rDI.

SCASB AE Compare the contents of the AL register with the byte at
ES:rDI, and then increment or decrement rDI.

SCASW AF Compare the contents of the AX register with the word
at ES:rDI, and then increment or decrement rDI.

276 SCASx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

CMP, CMPSx

rFLAGS Affected

Exceptions

SCASD AF
Compare the contents of the EAX register with the
doubleword at ES:rDI, and then increment or decrement
rDI.

SCASQ AF
Compare the contents of the RAX register with the
quadword at ES:rDI, and then increment or decrement
rDI.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP

X A null ES segment was used to reference memory.

X X X A memory address exceeded the ES segment limit or was
non-canonical.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference SETcc 277

24594—Rev. 3.16—September 2011 AMD64 Technology

Checks the status flags in the rFLAGS register and, if the flags meet the condition specified in the
mnemonic (cc), sets the value in the specified 8-bit memory location or register to 1. If the flags do not
meet the specified condition, SETcc clears the memory location or register to 0.

Mnemonics with the A (above) and B (below) tags are intended for use when performing unsigned
integer comparisons; those with G (greater) and L (less) tags are intended for use with signed integer
comparisons.

Software typically uses the SETcc instructions to set logical indicators. Like the CMOVcc instructions
(page 133), the SETcc instructions can replace two instructions—a conditional jump and a move.
Replacing conditional jumps with conditional sets can help avoid branch-prediction penalties that may
result from conditional jumps.

If the logical value “true” (logical one) is represented in a high-level language as an integer with all
bits set to 1, software can accomplish such representation by first executing the opposite SETcc
instruction—for example, the opposite of SETZ is SETNZ—and then decrementing the result.

A ModR/M byte is used to identify the operand. The reg field in the ModR/M byte is unused.

SETcc Set Byte on Condition

Mnemonic Opcode Description

SETO reg/mem8 0F 90 /0 Set byte if overflow (OF = 1).

SETNO reg/mem8 0F 91 /0 Set byte if not overflow (OF = 0).

SETB reg/mem8
SETC reg/mem8
SETNAE reg/mem8

0F 92 /0
Set byte if below (CF = 1).
Set byte if carry (CF = 1).
Set byte if not above or equal (CF = 1).

SETNB reg/mem8
SETNC reg/mem8
SETAE reg/mem8

0F 93 /0
Set byte if not below (CF = 0).
Set byte if not carry (CF = 0).
Set byte if above or equal (CF = 0).

SETZ reg/mem8
SETE reg/mem8 0F 94 /0 Set byte if zero (ZF = 1).

Set byte if equal (ZF = 1).

SETNZ reg/mem8
SETNE reg/mem8 0F 95 /0 Set byte if not zero (ZF = 0).

Set byte if not equal (ZF = 0).

SETBE reg/mem8
SETNA reg/mem8 0F 96 /0 Set byte if below or equal (CF = 1 or ZF = 1).

Set byte if not above (CF = 1 or ZF = 1).

SETNBE reg/mem8
SETA reg/mem8 0F 97 /0 Set byte if not below or equal (CF = 0 and ZF = 0).

Set byte if above (CF = 0 and ZF = 0).

SETS reg/mem8 0F 98 /0 Set byte if sign (SF = 1).

SETNS reg/mem8 0F 99 /0 Set byte if not sign (SF = 0).

SETP reg/mem8
SETPE reg/mem8 0F 9A /0 Set byte if parity (PF = 1).

Set byte if parity even (PF = 1).

SETNP reg/mem8
SETPO reg/mem8 0F 9B /0 Set byte if not parity (PF = 0).

Set byte if parity odd (PF = 0).

278 SETcc Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

None

rFLAGS Affected

None

Exceptions

SETL reg/mem8
SETNGE reg/mem8 0F 9C /0 Set byte if less (SF <> OF).

Set byte if not greater or equal (SF <> OF).

SETNL reg/mem8
SETGE reg/mem8 0F 9D /0 Set byte if not less (SF = OF).

Set byte if greater or equal (SF = OF).

SETLE reg/mem8
SETNG reg/mem8 0F 9E /0 Set byte if less or equal (ZF = 1 or SF <> OF).

Set byte if not greater (ZF = 1 or SF <> OF).

SETNLE reg/mem8
SETG reg/mem8 0F 9F /0 Set byte if not less or equal (ZF = 0 and SF = OF).

Set byte if greater (ZF = 0 and SF = OF).

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Mnemonic Opcode Description

Instruction Reference SFENCE 279

24594—Rev. 3.16—September 2011 AMD64 Technology

Acts as a barrier to force strong memory ordering (serialization) between store instructions preceding
the SFENCE and store instructions that follow the SFENCE. Stores to differing memory types, or
within the WC memory type, may become visible out of program order; the SFENCE instruction
ensures that the system completes all previous stores in such a way that they are globally visible
before executing subsequent stores. This includes emptying the store buffer and all write-combining
buffers.

The SFENCE instruction is weakly-ordered with respect to load instructions, data and instruction
prefetches, and the LFENCE instruction. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around an SFENCE.

In addition to store instructions, SFENCE is strongly ordered with respect to other SFENCE
instructions, MFENCE instructions, and serializing instructions. Further details on the use of
MFENCE to order accesses among differing memory types may be found in AMD64 Architecture
Programmer’s Manual Volume 2: System Programming, section 7.4 “Memory Types” on page 172.

Support for the SFENCE instruction is indicated when the SSE bit (bit 25) is set to 1 in EDX after
executing CPUID function 0000_0001h.

Related Instructions

LFENCE, MFENCE

rFLAGS Affected

None

Exceptions

SFENCE Store Fence

Mnemonic Opcode Description

SFENCE 0F AE F8 Force strong ordering of (serialized) store operations.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid Opcode,
#UD X X X

The SSE instructions are not supported, as indicated by EDX
bit 25 of CPUID function 0000_0001h; and the AMD
extensions to MMX are not supported, as indicated by EDX bit
22 of CPUID function 8000_0001h.

280 SHL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

This instruction is synonymous with the SAL instruction. For information, see “SAL SHL” on
page 268.

SHL Shift Left

Instruction Reference SHLD 281

24594—Rev. 3.16—September 2011 AMD64 Technology

Shifts the bits of a register or memory location (first operand) to the left by the number of bit positions
in an unsigned immediate value or the CL register (third operand), and shifts in a bit pattern (second
operand) from the right. At the end of the shift operation, the CF flag contains the last bit shifted out of
the first operand.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63. If the masked count is greater than the operand size,
the result in the destination register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the operand being shifted changes, the instruction sets the OF flag to 1.
If the count is greater than 1, OF is undefined.

Related Instructions

SHRD, SAL, SAR, SHR, SHL

SHLD Shift Left Double

Mnemonic Opcode Description

SHLD reg/mem16, reg16, imm8 0F A4 /r ib
Shift bits of a 16-bit destination register or memory
operand to the left the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHLD reg/mem16, reg16, CL 0F A5 /r
Shift bits of a 16-bit destination register or memory
operand to the left the number of bits specified in the CL
register, while shifting in bits from the second operand.

SHLD reg/mem32, reg32, imm8 0F A4 /r ib
Shift bits of a 32-bit destination register or memory
operand to the left the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHLD reg/mem32, reg32, CL 0F A5 /r
Shift bits of a 32-bit destination register or memory
operand to the left the number of bits specified in the CL
register, while shifting in bits from the second operand.

SHLD reg/mem64, reg64, imm8 0F A4 /r ib
Shift bits of a 64-bit destination register or memory
operand to the left the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHLD reg/mem64, reg64, CL 0F A5 /r
Shift bits of a 64-bit destination register or memory
operand to the left the number of bits specified in the CL
register, while shifting in bits from the second operand.

282 SHLD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference SHR 283

24594—Rev. 3.16—September 2011 AMD64 Technology

Shifts the bits of a register or memory location (first operand) to the right through the CF bit by the
number of bit positions in an unsigned immediate value or the CL register (second operand). The
instruction discards bits shifted out of the CF flag. At the end of the shift operation, the CF flag
contains the last bit shifted out of the first operand.

For each bit shift, the instruction clears the most-significant bit to 0.

The effect of this instruction is unsigned division by powers of two.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit shifts, the instruction sets the OF flag to the most-significant bit of the original value. If the
count is greater than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

SHR Shift Right

Mnemonic Opcode Description

SHR reg/mem8, 1 D0 /5 Shift an 8-bit register or memory operand right 1 bit.

SHR reg/mem8, CL D2 /5 Shift an 8-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem8, imm8 C0 /5 ib Shift an 8-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SHR reg/mem16, 1 D1 /5 Shift a 16-bit register or memory operand right 1 bit.

SHR reg/mem16, CL D3 /5 Shift a 16-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem16, imm8 C1 /5 ib Shift a 16-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SHR reg/mem32, 1 D1 /5 Shift a 32-bit register or memory operand right 1 bit.

SHR reg/mem32, CL D3 /5 Shift a 32-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem32, imm8 C1 /5 ib Shift a 32-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

SHR reg/mem64, 1 D1 /5 Shift a 64-bit register or memory operand right 1 bit.

SHR reg/mem64, CL D3 /5 Shift a 64-bit register or memory operand right the
number of bits specified in the CL register.

SHR reg/mem64, imm8 C1 /5 ib Shift a 64-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.

284 SHR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

SHL, SAL, SAR, SHLD, SHRD

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference SHRD 285

24594—Rev. 3.16—September 2011 AMD64 Technology

Shifts the bits of a register or memory location (first operand) to the right by the number of bit
positions in an unsigned immediate value or the CL register (third operand), and shifts in a bit pattern
(second operand) from the left. At the end of the shift operation, the CF flag contains the last bit shifted
out of the first operand.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63. If the masked count is greater than the operand size,
the result in the destination register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the value being shifted changes, the instruction sets the OF flag to 1. If
the count is greater than 1, the OF flag is undefined.

Related Instructions

SHLD, SHR, SHL, SAR, SAL

SHRD Shift Right Double

Mnemonic Opcode Description

SHRD reg/mem16, reg16, imm8 0F AC /r ib
Shift bits of a 16-bit destination register or memory
operand to the right the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHRD reg/mem16, reg16, CL 0F AD /r
Shift bits of a 16-bit destination register or memory
operand to the right the number of bits specified in the
CL register, while shifting in bits from the second
operand.

SHRD reg/mem32, reg32, imm8 0F AC /r ib
Shift bits of a 32-bit destination register or memory
operand to the right the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHRD reg/mem32, reg32, CL 0F AD /r
Shift bits of a 32-bit destination register or memory
operand to the right the number of bits specified in the
CL register, while shifting in bits from the second
operand.

SHRD reg/mem64, reg64, imm8 0F AC /r ib
Shift bits of a 64-bit destination register or memory
operand to the right the number of bits specified in an 8-
bit immediate value, while shifting in bits from the
second operand.

SHRD reg/mem64, reg64, CL 0F AD /r
Shift bits of a 64-bit destination register or memory
operand to the right the number of bits specified in the
CL register, while shifting in bits from the second
operand.

286 SHRD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M U M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference SLWPCB 287

24594—Rev. 3.16—September 2011 AMD64 Technology

Flushes LWP state to memory and returns the current effective address of the LWPCB in the specified
register. The LWPCB address returned is truncated to 32 bits if the operand size is 32.

If LWP is not currently enabled, SLWPCB sets the specified register to zero.

The flush operation stores the internal event counters for active events and the current ring buffer head
pointer into the LWPCB. If there is an unwritten event record pending, it is written to the event ring
buffer.

If LWP_CBADDR is not zero, the value returned is an effective address that is calculated by
subtracting the current DS.Base address from the linear address kept in LWP_CBADDR. Note that if
DS has changed between the time LLWPCB was executed and the time SLWPCB is executed, this
might result in an address that is not currently accessible by the application.

SLWPCB generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

It is possible to execute SLWPCB when the CPL != 3 or when SMM is active, but if the LWPCB
pointer is not zero, the system software must ensure that the LWPCB and the entire ring buffer are
properly mapped into writable memory in order to avoid a #PF fault. Using SLWPCB in these
situations is not recommended.

Instruction Encoding

ModRM.reg augments the opcode and is assigned the value 001b. ModRM.r/m (augmented by
XOP.R) specifies the register in which to put the LWPCB address. ModRM.mod must be 11b.

Related Instructions

LLWPCB, LWPINS, LWPVAL

rFLAGS Affected

None

SLWPCB Store Lightweight Profiling Control Block
Address

Mnemonic Encoding

XOP RXB.mmmmm W.vvvv.L.pp Opcode

SLWPCB reg32 8F RXB.09 0.1111.0.00 12 /1

SLWPCB reg64 8F RXB.09 1.1111.0.00 12 /1

288 SLWPCB Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X The SLWPCB instruction is not supported, as indicated by
CPUID Fn8000_0001_ECX[LWP] = 0.

X X The system is not in protected mode.
X LWP is not available, or mod != 11b, or vvvv != 1111b.

Page fault, #PF
X A page fault resulted from reading or writing the LWPCB.
X A page fault resulted from flushing an event to the ring buffer.

Instruction Reference STC 289

24594—Rev. 3.16—September 2011 AMD64 Technology

Sets the carry flag (CF) in the rFLAGS register to one.

Related Instructions

CLC, CMC

rFLAGS Affected

Exceptions

None

STC Set Carry Flag

Mnemonic Opcode Description

STC F9 Set the carry flag (CF) to one.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

1

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

290 STD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Set the direction flag (DF) in the rFLAGS register to 1. If the DF flag is 0, each iteration of a string
instruction increments the data pointer (index registers rSI or rDI). If the DF flag is 1, the string
instruction decrements the pointer. Use the CLD instruction before a string instruction to make the
data pointer increment.

Related Instructions

CLD, INSx, LODSx, MOVSx, OUTSx, SCASx, STOSx, CMPSx

rFLAGS Affected

Exceptions

None

STD Set Direction Flag

Mnemonic Opcode Description

STD FD Set the direction flag (DF) to one.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

1

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Instruction Reference STOSx 291

24594—Rev. 3.16—September 2011 AMD64 Technology

Copies a byte, word, doubleword, or quadword from the AL, AX, EAX, or RAX registers to the
memory location pointed to by ES:rDI and increments or decrements the rDI register according to the
state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the pointer; otherwise, it decrements the pointer. It
increments or decrements the pointer by 1, 2, 4, or 8, depending on the size of the value being copied.

The forms of the STOSx instruction with an explicit operand use the operand only to specify the type
(size) of the value being copied.

The no-operands forms specify the type (size) of the value being copied with the mnemonic.

The STOSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12. The STOSx instructions can also operate inside a LOOPcc instruction.

Related Instructions

LODSx, MOVSx

STOS
STOSB
STOSW
STOSD
STOSQ

Store String

Mnemonic Opcode Description

STOS mem8 AA Store the contents of the AL register to ES:rDI, and then
increment or decrement rDI.

STOS mem16 AB Store the contents of the AX register to ES:rDI, and then
increment or decrement rDI.

STOS mem32 AB Store the contents of the EAX register to ES:rDI, and
then increment or decrement rDI.

STOS mem64 AB Store the contents of the RAX register to ES:rDI, and
then increment or decrement rDI.

STOSB AA Store the contents of the AL register to ES:rDI, and then
increment or decrement rDI.

STOSW AB Store the contents of the AX register to ES:rDI, and then
increment or decrement rDI.

STOSD AB Store the contents of the EAX register to ES:rDI, and
then increment or decrement rDI.

STOSQ AB Store the contents of the RAX register to ES:rDI, and
then increment or decrement rDI.

292 STOSx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP

X X X A memory address exceeded the ES segment limit or was
non-canonical.

X The ES segment was a non-writable segment.
X A null ES segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference SUB 293

24594—Rev. 3.16—September 2011 AMD64 Technology

Subtracts an immediate value or the value in a register or memory location (second operand) from a
register or a memory location (first operand) and stores the result in the first operand location. An
immediate value is sign-extended to the length of the first operand.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a borrow in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

The forms of the SUB instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

SUB Subtract

Mnemonic Opcode Description

SUB AL, imm8 2C ib Subtract an immediate 8-bit value from the AL register
and store the result in AL.

SUB AX, imm16 2D iw Subtract an immediate 16-bit value from the AX register
and store the result in AX.

SUB EAX, imm32 2D id Subtract an immediate 32-bit value from the EAX
register and store the result in EAX.

SUB RAX, imm32 2D id Subtract a sign-extended immediate 32-bit value from
the RAX register and store the result in RAX.

SUB reg/mem8, imm8 80 /5 ib Subtract an immediate 8-bit value from an 8-bit
destination register or memory location.

SUB reg/mem16, imm16 81 /5 iw Subtract an immediate 16-bit value from a 16-bit
destination register or memory location.

SUB reg/mem32, imm32 81 /5 id Subtract an immediate 32-bit value from a 32-bit
destination register or memory location.

SUB reg/mem64, imm32 81 /5 id Subtract a sign-extended immediate 32-bit value from a
64-bit destination register or memory location.

SUB reg/mem16, imm8 83 /5 ib Subtract a sign-extended immediate 8-bit value from a
16-bit register or memory location.

SUB reg/mem32, imm8 83 /5 ib Subtract a sign-extended immediate 8-bit value from a
32-bit register or memory location.

SUB reg/mem64, imm8 83 /5 ib Subtract a sign-extended immediate 8-bit value from a
64-bit register or memory location.

SUB reg/mem8, reg8 28 /r Subtract the contents of an 8-bit register from an 8-bit
destination register or memory location.

SUB reg/mem16, reg16 29 /r Subtract the contents of a 16-bit register from a 16-bit
destination register or memory location.

SUB reg/mem32, reg32 29 /r Subtract the contents of a 32-bit register from a 32-bit
destination register or memory location.

SUB reg/mem64, reg64 29 /r Subtract the contents of a 64-bit register from a 64-bit
destination register or memory location.

294 SUB Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

ADC, ADD, SBB

rFLAGS Affected

Exceptions

SUB reg8, reg/mem8 2A /r Subtract the contents of an 8-bit register or memory
operand from an 8-bit destination register.

SUB reg16, reg/mem16 2B /r Subtract the contents of a 16-bit register or memory
operand from a 16-bit destination register.

SUB reg32, reg/mem32 2B /r Subtract the contents of a 32-bit register or memory
operand from a 32-bit destination register.

SUB reg64, reg/mem64 2B /r Subtract the contents of a 64-bit register or memory
operand from a 64-bit destination register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Mnemonic Opcode Description

Instruction Reference T1MSKC 295

24594—Rev. 3.16—September 2011 AMD64 Technology

Finds the least significant zero bit in the source operand, clears all bits below that bit to 0, sets all other
bits to 1 (including the found bit) and writes the result to the destination. If the least significant bit of
the source operand is 0, the destination is written with all ones.

This instruction has two operands:

T1MSKC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The T1MSKC instruction effectively performs a bitwise or of the inverse of the source operand and
the result of incrementing the source operand by 1 and stores the result to the destination register:
add tmp1, src, 1
not tmp2, src
or dest, tmp1, tmp2

The value of the carry flag of rFLAGs is generated by the add pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The T1MSKC instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, TZMSK, TZCNT

T1MSKC Inverse Mask From Trailing Ones

Mnemonic Encoding

XOP
RXB.mmm

mm W.vvvv.L.pp Opcode

T1MSKC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /7

T1MSKC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /7

296 T1MSKC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference TEST 297

24594—Rev. 3.16—September 2011 AMD64 Technology

Performs a bit-wise logical AND on the value in a register or memory location (first operand) with an
immediate value or the value in a register (second operand) and sets the flags in the rFLAGS register
based on the result. While the AND instruction changes the contents of the destination and the flag
bits, the TEST instruction changes only the flag bits.

Related Instructions

AND, CMP

TEST Test Bits

Mnemonic Opcode Description

TEST AL, imm8 A8 ib AND an immediate 8-bit value with the contents of the
AL register and set rFLAGS to reflect the result.

TEST AX, imm16 A9 iw AND an immediate 16-bit value with the contents of the
AX register and set rFLAGS to reflect the result.

TEST EAX, imm32 A9 id AND an immediate 32-bit value with the contents of the
EAX register and set rFLAGS to reflect the result.

TEST RAX, imm32 A9 id
AND a sign-extended immediate 32-bit value with the
contents of the RAX register and set rFLAGS to reflect
the result.

TEST reg/mem8, imm8 F6 /0 ib
AND an immediate 8-bit value with the contents of an 8-
bit register or memory operand and set rFLAGS to
reflect the result.

TEST reg/mem16, imm16 F7 /0 iw
AND an immediate 16-bit value with the contents of a
16-bit register or memory operand and set rFLAGS to
reflect the result.

TEST reg/mem32, imm32 F7 /0 id
AND an immediate 32-bit value with the contents of a
32-bit register or memory operand and set rFLAGS to
reflect the result.

TEST reg/mem64, imm32 F7 /0 id
AND a sign-extended immediate32-bit value with the
contents of a 64-bit register or memory operand and set
rFLAGS to reflect the result.

TEST reg/mem8, reg8 84 /r
AND the contents of an 8-bit register with the contents
of an 8-bit register or memory operand and set rFLAGS
to reflect the result.

TEST reg/mem16, reg16 85 /r
AND the contents of a 16-bit register with the contents
of a 16-bit register or memory operand and set rFLAGS
to reflect the result.

TEST reg/mem32, reg32 85 /r
AND the contents of a 32-bit register with the contents
of a 32-bit register or memory operand and set rFLAGS
to reflect the result.

TEST reg/mem64, reg64 85 /r
AND the contents of a 64-bit register with the contents
of a 64-bit register or memory operand and set rFLAGS
to reflect the result.

298 TEST Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference TZCNT 299

24594—Rev. 3.16—September 2011 AMD64 Technology

Counts the number of trailing zero bits in the 16-, 32-, or 64-bit general purpose register or memory
source operand. Counting starts upward from the least significant bit and stops when the lowest bit
having a value of 1 is encountered or when the most significant bit is encountered. The count is written
to the destination register.

If the input operand is zero, CF is set to 1 and the size (in bits) of the input operand is written to the
destination register. Otherwise, CF is cleared.

If the least significant bit is a one, the ZF flag is set to 1 and zero is written to the destination register.
Otherwise, ZF is cleared.

Support for the TZCNT instruction is indicated by EBX bit 3 as returned by CPUID function
0000_0007h. If the TZCNT instruction is not available, the encoding is treated as the BSF instruction.
Software must check the CPUID bit once per program or library initialization before using the TZCNT
instruction or inconsistent behavior may result.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, T1MSKC, TZMSK

rFLAGS Affected

TZCNT Count Trailing Zeros

Mnemonic Opcode Description

TZCNT reg16, reg/mem16 F3 0F BC /r Count the number of trailing zeros in reg/mem16.

TZCNT reg32, reg/mem32 F3 0F BC /r Count the number of trailing zeros in reg/mem32.

TZCNT reg64, reg/mem64 F3 0F BC /r Count the number of trailing zeros in reg/mem64.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

U U M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

300 TZCNT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception
Mode

Cause of Exception
Real

Virtual
8086 Protected

Invalid opcode, #UD
X X BMI instructions are only recognized in protected mode.

X BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference TZMSK 301

24594—Rev. 3.16—September 2011 AMD64 Technology

Finds the least significant one bit in the source operand, sets all bits below that bit to 1, clears all other
bits to 0 (including the found bit) and writes the result to the destination. If the least significant bit of
the source operand is 1, the destination is written with all zeros.

This instruction has two operands:

TZMSK dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.

The source operand (src) is a general purpose register or a memory operand.

The TZMSK instruction effectively performs a bitwise and of the negation of the source operand and
the result of subtracting 1 from the source operand, and stores the result to the destination register:
sub tmp1, src, 1
not tmp2, src
and dest, tmp1, tmp2

The value of the carry flag of rFLAGs is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the and pseudo-instruction.

The TZMSK instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000_0001_ECX[TBM]. (See the CPUID Specification, order# 25481.)

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, T1MSKC, TZCNT

TZMSK Mask From Trailing Zeros

Mnemonic Encoding

XOP
RXB.mmm

mm W.vvvv.L.pp Opcode

TZMSK reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /4

TZMSK reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /4

302 TZMSK Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U U M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X TBM instructions are only recognized in protected mode.

X TBM instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[TBM] = 0.

X XOP.L is 1.

Stack, #SS X A memory address exceeded the stack segment limit or
was non-canonical.

General protection, #GP
X A memory address exceeded a data segment limit or was

non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference XADD 303

24594—Rev. 3.16—September 2011 AMD64 Technology

Exchanges the contents of a register (second operand) with the contents of a register or memory
location (first operand), computes the sum of the two values, and stores the result in the first operand
location.

The forms of the XADD instruction that write to memory support the LOCK prefix. For details about
the LOCK prefix, see “Lock Prefix” on page 11.

Related Instructions

None

rFLAGS Affected

XADD Exchange and Add

Mnemonic Opcode Description

XADD reg/mem8, reg8 0F C0 /r
Exchange the contents of an 8-bit register with the
contents of an 8-bit destination register or memory
operand and load their sum into the destination.

XADD reg/mem16, reg16 0F C1 /r
Exchange the contents of a 16-bit register with the
contents of a 16-bit destination register or memory
operand and load their sum into the destination.

XADD reg/mem32, reg32 0F C1 /r
Exchange the contents of a 32-bit register with the
contents of a 32-bit destination register or memory
operand and load their sum into the destination.

XADD reg/mem64, reg64 0F C1 /r
Exchange the contents of a 64-bit register with the
contents of a 64-bit destination register or memory
operand and load their sum into the destination.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

304 XADD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference XCHG 305

24594—Rev. 3.16—September 2011 AMD64 Technology

Exchanges the contents of the two operands. The operands can be two general-purpose registers or a
register and a memory location. If either operand references memory, the processor locks
automatically, whether or not the LOCK prefix is used and independently of the value of IOPL. For
details about the LOCK prefix, see “Lock Prefix” on page 11.

The x86 architecture commonly uses the XCHG EAX, EAX instruction (opcode 90h) as a one-byte
NOP. In 64-bit mode, the processor treats opcode 90h as a true NOP only if it would exchange rAX
with itself. Without this special handling, the instruction would zero-extend the upper 32 bits of RAX,
and thus it would not be a true no-operation. Opcode 90h can still be used to exchange rAX and r8 if
the appropriate REX prefix is used.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction.

XCHG Exchange

Mnemonic Opcode Description

XCHG AX, reg16 90 +rw Exchange the contents of the AX register with the
contents of a 16-bit register.

XCHG reg16, AX 90 +rw Exchange the contents of a 16-bit register with the
contents of the AX register.

XCHG EAX, reg32 90 +rd Exchange the contents of the EAX register with the
contents of a 32-bit register.

XCHG reg32, EAX 90 +rd Exchange the contents of a 32-bit register with the
contents of the EAX register.

XCHG RAX, reg64 90 +rq Exchange the contents of the RAX register with the
contents of a 64-bit register.

XCHG reg64, RAX 90 +rq Exchange the contents of a 64-bit register with the
contents of the RAX register.

XCHG reg/mem8, reg8 86 /r Exchange the contents of an 8-bit register with the
contents of an 8-bit register or memory operand.

XCHG reg8, reg/mem8 86 /r Exchange the contents of an 8-bit register or memory
operand with the contents of an 8-bit register.

XCHG reg/mem16, reg16 87 /r Exchange the contents of a 16-bit register with the
contents of a 16-bit register or memory operand.

XCHG reg16, reg/mem16 87 /r Exchange the contents of a 16-bit register or memory
operand with the contents of a 16-bit register.

XCHG reg/mem32, reg32 87 /r Exchange the contents of a 32-bit register with the
contents of a 32-bit register or memory operand.

XCHG reg32, reg/mem32 87 /r Exchange the contents of a 32-bit register or memory
operand with the contents of a 32-bit register.

XCHG reg/mem64, reg64 87 /r Exchange the contents of a 64-bit register with the
contents of a 64-bit register or memory operand.

XCHG reg64, reg/mem64 87 /r Exchange the contents of a 64-bit register or memory
operand with the contents of a 64-bit register.

306 XCHG Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

BSWAP, XADD

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The source or destination operand was in a non-writable
segment.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference XLATx 307

24594—Rev. 3.16—September 2011 AMD64 Technology

Uses the unsigned integer in the AL register as an offset into a table and copies the contents of the table
entry at that location to the AL register.

The instruction uses seg:[rBX] as the base address of the table. The value of seg defaults to the DS
segment, but may be overridden by a segment prefix.

This instruction writes AL without changing RAX[63:8]. This instruction ignores operand size.

The single-operand form of the XLAT instruction uses the operand to document the segment and
address size attribute, but it uses the base address specified by the rBX register.

This instruction is often used to translate data from one format (such as ASCII) to another (such as
EBCDIC).

Related Instructions

None

rFLAGS Affected

None

Exceptions

XLAT
XLATB

Translate Table Index

Mnemonic Opcode Description

XLAT mem8 D7 Set AL to the contents of DS:[rBX + unsigned AL].

XLATB D7 Set AL to the contents of DS:[rBX + unsigned AL].

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

308 XOR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Performs a bitwise exclusive OR operation on both operands and stores the result in the first operand
location. The first operand can be a register or memory location. The second operand can be an
immediate value, a register, or a memory location. XOR-ing a register with itself clears the register.

The forms of the XOR instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

The instruction performs the following operation for each bit:

XOR Logical Exclusive OR

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

Mnemonic Opcode Description

XOR AL, imm8 34 ib XOR the contents of AL with an immediate 8-bit
operand and store the result in AL.

XOR AX, imm16 35 iw XOR the contents of AX with an immediate 16-bit
operand and store the result in AX.

XOR EAX, imm32 35 id XOR the contents of EAX with an immediate 32-bit
operand and store the result in EAX.

XOR RAX, imm32 35 id XOR the contents of RAX with a sign-extended
immediate 32-bit operand and store the result in RAX.

XOR reg/mem8, imm8 80 /6 ib
XOR the contents of an 8-bit destination register or
memory operand with an 8-bit immediate value and
store the result in the destination.

XOR reg/mem16, imm16 81 /6 iw
XOR the contents of a 16-bit destination register or
memory operand with a 16-bit immediate value and
store the result in the destination.

XOR reg/mem32, imm32 81 /6 id
XOR the contents of a 32-bit destination register or
memory operand with a 32-bit immediate value and
store the result in the destination.

XOR reg/mem64, imm32 81 /6 id
XOR the contents of a 64-bit destination register or
memory operand with a sign-extended 32-bit immediate
value and store the result in the destination.

XOR reg/mem16, imm8 83 /6 ib
XOR the contents of a 16-bit destination register or
memory operand with a sign-extended 8-bit immediate
value and store the result in the destination.

Instruction Reference XOR 309

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

OR, AND, NOT, NEG

rFLAGS Affected

XOR reg/mem32, imm8 83 /6 ib
XOR the contents of a 32-bit destination register or
memory operand with a sign-extended 8-bit immediate
value and store the result in the destination.

XOR reg/mem64, imm8 83 /6 ib
XOR the contents of a 64-bit destination register or
memory operand with a sign-extended 8-bit immediate
value and store the result in the destination.

XOR reg/mem8, reg8 30 /r
XOR the contents of an 8-bit destination register or
memory operand with the contents of an 8-bit register
and store the result in the destination.

XOR reg/mem16, reg16 31 /r
XOR the contents of a 16-bit destination register or
memory operand with the contents of a 16-bit register
and store the result in the destination.

XOR reg/mem32, reg32 31 /r
XOR the contents of a 32-bit destination register or
memory operand with the contents of a 32-bit register
and store the result in the destination.

XOR reg/mem64, reg64 31 /r
XOR the contents of a 64-bit destination register or
memory operand with the contents of a 64-bit register
and store the result in the destination.

XOR reg8, reg/mem8 32 /r
XOR the contents of an 8-bit destination register with
the contents of an 8-bit register or memory operand and
store the results in the destination.

XOR reg16, reg/mem16 33 /r
XOR the contents of a 16-bit destination register with
the contents of a 16-bit register or memory operand and
store the results in the destination.

XOR reg32, reg/mem32 33 /r
XOR the contents of a 32-bit destination register with
the contents of a 32-bit register or memory operand and
store the results in the destination.

XOR reg64, reg/mem64 33 /r
XOR the contents of a 64-bit destination register with
the contents of a 64-bit register or memory operand and
store the results in the destination.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 M M U M 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Mnemonic Opcode Description

310 XOR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was non-
canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference 311

24594—Rev. 3.16—September 2011 AMD64 Technology

4 System Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the system instructions. The system instructions are used to establish the
operating mode, access processor resources, handle program and system errors, and manage memory.
Many of these instructions can only be executed by privileged software, such as the operating system
kernel and interrupt handlers, that run at the highest privilege level. Only system instructions can
access certain processor resources, such as the control registers, model-specific registers, and debug
registers.

System instructions are supported in all hardware implementations of the AMD64 architecture, except
that the following system instructions are implemented only if their associated CPUID function bits
are set:

• RDMSR and WRMSR, indicated by bit 5 of CPUID function 0000_0001h or function
8000_0001h.

• SYSENTER and SYSEXIT, indicated by bit 11 of CPUID function 0000_0001h.
• SYSCALL and SYSRET, indicated by bit 11 of CPUID function 8000_0001h.
• Long Mode instructions, indicated by bit 29 of CPUID function 8000_0001h.
• There are also several other CPUID function bits that control the use of system resources and

functions, such as paging functions, virtual-mode extensions, machine-check exceptions,
advanced programmable interrupt control (APIC), memory-type range registers (MTRRs), etc. For
details, see “Processor Feature Identification” in Volume 2.

For further information about the system instructions and register resources, see:

• “System-Management Instructions” in Volume 2.
• “Summary of Registers and Data Types” on page 38.
• “Notation” on page 52.
• “Instruction Prefixes” on page 5.

312 ARPL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Compares the requestor privilege level (RPL) fields of two segment selectors in the source and
destination operands of the instruction. If the RPL field of the destination operand is less than the RPL
field of the segment selector in the source register, then the zero flag is set and the RPL field of the
destination operand is increased to match that of the source operand. Otherwise, the destination
operand remains unchanged and the zero flag is cleared.

The destination operand can be either a 16-bit register or memory location; the source operand must be
a 16-bit register.

The ARPL instruction is intended for use by operating-system procedures to adjust the RPL of a
segment selector that has been passed to the operating system by an application program to match the
privilege level of the application program. The segment selector passed to the operating system is
placed in the destination operand and the segment selector for the code segment of the application
program is placed in the source operand. The RPL field in the source operand represents the privilege
level of the application program. The ARPL instruction then insures that the RPL of the segment
selector received by the operating system is no lower than the privilege level of the application
program.

See “Adjusting Access Rights” in Volume 2, for more information on access rights.

In 64-bit mode, this opcode (63H) is used for the MOVSXD instruction.

Related Instructions

LAR, LSL, VERR, VERW

rFLAGS Affected

ARPL Adjust Requestor Privilege Level

Mnemonic Opcode Description

ARPL reg/mem16, reg16 63 /r
Adjust the RPL of a destination segment selector to
a level not less than the RPL of the segment
selector specified in the 16-bit source register.
(Invalid in 64-bit mode.)

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Instruction Reference ARPL 313

24594—Rev. 3.16—September 2011 AMD64 Technology

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected legacy and
compatibility mode.

Stack, #SS X A memory address exceeded the stack segment limit.

General protection,
#GP

X A memory address exceeded a data segment limit.
X The destination operand was in a non-writable segment.
X A null segment selector was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

314 CLGI Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Clears the global interrupt flag (GIF). While GIF is zero, all external interrupts are disabled.

This is a Secure Virtual Machine instruction. This instruction generates a #UD exception if SVM is
not enabled. See “Enabling SVM” on page 425 in AMD64 Architecture Programmer’s Manual
Volume-2: System Instructions, order# 24593.

Related Instructions

STGI

rFLAGS Affected

None.

Exceptions

CLGI Clear Global Interrupt Flag

Mnemonic Opcode Description

CLGI 0F 01 DD Clears the global interrupt flag (GIF).

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X The SVM instructions are not supported as indicated by ECX

bit 2 as returned by CPUID function 8000_0001h.
X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X Instruction is only recognized in protected mode.
General protection,
#GP X CPL was not zero.

Instruction Reference CLI 315

24594—Rev. 3.16—September 2011 AMD64 Technology

Clears the interrupt flag (IF) in the rFLAGS register to zero, thereby masking external interrupts
received on the INTR input. Interrupts received on the non-maskable interrupt (NMI) input are not
affected by this instruction.

In real mode, this instruction clears IF to 0.

In protected mode and virtual-8086-mode, this instruction is IOPL-sensitive. If the CPL is less than or
equal to the rFLAGS.IOPL field, the instruction clears IF to 0.

In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are enabled (CR4.PVI
= 1), then the instruction instead clears rFLAGS.VIF to 0. If none of these conditions apply, the
processor raises a general-purpose exception (#GP). For more information, see “Protected Mode
Virtual Interrupts” in Volume 2.

In virtual-8086 mode, if IOPL < 3 and the virtual-8086-mode extensions are enabled (CR4.VME = 1),
the CLI instruction clears the virtual interrupt flag (rFLAGS.VIF) to 0 instead.

See “Virtual-8086 Mode Extensions” in Volume 2 for more information about IOPL-sensitive
instructions.

Action
IF (CPL <= IOPL)

RFLAGS.IF = 0

ELSEIF (((VIRTUAL_MODE) && (CR4.VME = 1))
 || ((PROTECTED_MODE) && (CR4.PVI = 1) && (CPL == 3)))

RFLAGS.VIF = 0;

ELSE
EXCEPTION[#GP(0)]

Related Instructions

STI

CLI Clear Interrupt Flag

Mnemonic Opcode Description

CLI FA Clear the interrupt flag (IF) to zero.

316 CLI Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP

X The CPL was greater than the IOPL and virtual mode
extensions are not enabled (CR4.VME = 0).

X
The CPL was greater than the IOPL and either the CPL was
not 3 or protected mode virtual interrupts were not enabled
(CR4.PVI = 0).

Instruction Reference CLTS 317

24594—Rev. 3.16—September 2011 AMD64 Technology

Clears the task-switched (TS) flag in the CR0 register to 0. The processor sets the TS flag on each task
switch. The CLTS instruction is intended to facilitate the synchronization of FPU context saves during
multitasking operations.

This instruction can only be used if the current privilege level is 0.

See “System-Control Registers” in Volume 2 for more information on FPU synchronization and the
TS flag.

Related Instructions

LMSW, MOV (CRn)

rFLAGS Affected

None

Exceptions

CLTS Clear Task-Switched Flag in CR0

Mnemonic Opcode Description

CLTS 0F 06 Clear the task-switched (TS) flag in CR0 to 0.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP X X CPL was not 0.

318 HLT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Causes the microprocessor to halt instruction execution and enter the HALT state. Entering the HALT
state puts the processor in low-power mode. Execution resumes when an unmasked hardware interrupt
(INTR), non-maskable interrupt (NMI), system management interrupt (SMI), RESET, or INIT occurs.

If an INTR, NMI, or SMI is used to resume execution after a HLT instruction, the saved instruction
pointer points to the instruction following the HLT instruction.

Before executing a HLT instruction, hardware interrupts should be enabled. If rFLAGS.IF = 0, the
system will remain in a HALT state until an NMI, SMI, RESET, or INIT occurs.

If an SMI brings the processor out of the HALT state, the SMI handler can decide whether to return to
the HALT state or not. See Volume 2: System Programming, for information on SMIs.

Current privilege level must be 0 to execute this instruction.

Related Instructions

STI, CLI

rFLAGS Affected

None

Exceptions

HLT Halt

Mnemonic Opcode Description

HLT F4 Halt instruction execution.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP X X CPL was not 0.

Instruction Reference INT 3 319

24594—Rev. 3.16—September 2011 AMD64 Technology

Calls the debug exception handler. This instruction maps to a 1-byte opcode (CC) that raises a #BP
exception. The INT 3 instruction is normally used by debug software to set instruction breakpoints by
replacing the first byte of the instruction opcode bytes with the INT 3 opcode.

This one-byte INT 3 instruction behaves differently from the two-byte INT 3 instruction (opcode CD
03) (see “INT” in Chapter 3 “General Purpose Instructions” for further information) in two ways:

The #BP exception is handled without any IOPL checking in virtual x86 mode. (IOPL mismatches
will not trigger an exception.)

• In VME mode, the #BP exception is not redirected via the interrupt redirection table. (Instead, it is
handled by a protected mode handler.)

For complete descriptions of the steps performed by INT instructions, see the following:

• Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.
• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action

// Refer to INT instruction’s Action section for the details on INT_N_REAL,
// INT_N_PROTECTED, and INT_N_VIRTUAL_TO_PROTECTED.
INT3_START:

If (REAL_MODE)
 INT_N_REAL //N = 3

ELSEIF (PROTECTED_MODE)
 INT_N_PROTECTED //N = 3

ELSE // VIRTUAL_MODE
 INT_N_VIRTUAL_TO_PROTECTED //N = 3

Related Instructions

INT, INTO, IRET

INT 3 Interrupt to Debug Vector

Mnemonic Opcode Description

INT 3 CC Trap to debugger at Interrupt 3.

320 INT 3 Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

If a task switch occurs, all flags are modified; otherwise, setting are as follows:

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M 0 0 M M 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Breakpoint, #BP X X X INT 3 instruction was executed.

Invalid TSS, #TS
(selector)

X X As part of a stack switch, the target stack segment selector or
rSP in the TSS that was beyond the TSS limit.

X X
As part of a stack switch, the target stack segment selector in
the TSS was beyond the limit of the GDT or LDT descriptor
table.

X X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.

X X As part of a stack switch, the target stack segment selector’s
TI bit was set, but the LDT selector was a null selector.

X X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.

X X
As part of a stack switch, the target stack segment selector in
the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

Segment not
present, #NP
(selector)

X X The accessed code segment, interrupt gate, trap gate, task
gate, or TSS was not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector)

X X
After a stack switch, a memory address exceeded the stack
segment limit or was non-canonical and a stack switch
occurred.

X X
As part of a stack switch, the SS register was loaded with a
non-null segment selector and the segment was marked not
present.

General protection,
#GP

X X X A memory address exceeded the data segment limit or was
non-canonical.

X X X The target offset exceeded the code segment limit or was non-
canonical.

Instruction Reference INT 3 321

24594—Rev. 3.16—September 2011 AMD64 Technology

General protection,
#GP
(selector)

X X X The interrupt vector was beyond the limit of IDT.

X X
The descriptor in the IDT was not an interrupt, trap, or task
gate in legacy mode or not a 64-bit interrupt or trap gate in
long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less
than the CPL.

X X The segment selector specified by the interrupt or trap gate
had its TI bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X
The segment descriptor specified by the interrupt or trap gate
was not a code segment in legacy mode, or not a 64-bit code
segment in long mode.

X The DPL of the segment specified by the interrupt or trap gate
was greater than the CPL.

X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

322 INVD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Invalidates internal caches (data cache, instruction cache, and on-chip L2 cache) and triggers a bus
cycle that causes external caches to invalidate themselves as well.

No data is written back to main memory from invalidating internal caches. After invalidating internal
caches, the processor proceeds immediately with the execution of the next instruction without waiting
for external hardware to invalidate its caches.

This is a privileged instruction. The current privilege level (CPL) of a procedure invalidating the
processor’s internal caches must be 0.

To insure that data is written back to memory prior to invalidating caches, use the WBINVD
instruction.

This instruction does not invalidate TLB caches.

INVD is a serializing instruction.

Related Instructions

WBINVD, CLFLUSH

rFLAGS Affected

None

Exceptions

INVD Invalidate Caches

Mnemonic Opcode Description

INVD 0F 08 Invalidate internal caches and trigger external cache
invalidations.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP X X CPL was not 0.

Instruction Reference INVLPG 323

24594—Rev. 3.16—September 2011 AMD64 Technology

Invalidates the TLB entry that would be used for the 1-byte memory operand.

This instruction invalidates the TLB entry, regardless of the G (Global) bit setting in the associated
PDE or PTE entry and regardless of the page size (4 Kbytes, 2 Mbytes, 4 Mbytes, or 1 Gbyte). It may
invalidate any number of additional TLB entries, in addition to the targeted entry.

INVLPG is a serializing instruction and a privileged instruction. The current privilege level must be
to execute this instruction.

See “Page Translation and Protection” in Volume 2 for more information on page translation.

Related Instructions

INVLPGA, MOV CRn (CR3 and CR4)

rFLAGS Affected

None

Exceptions

INVLPG Invalidate TLB Entry

Mnemonic Opcode Description

INVLPG mem8 0F 01 /7 Invalidate the TLB entry for the page containing a specified
memory location.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP X X CPL was not 0.

324 INVLPGA Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Invalidates the TLB mapping for a given virtual page and a given ASID. The virtual address is
specified in the implicit register operand rAX. The portion of RAX used to form the address is
determined by the effective address size. The ASID is taken from ECX.

The INVLPGA instruction may invalidate any number of additional TLB entries, in addition to the
targeted entry.

The INVLPGA instruction is a serializing instruction and a privileged instruction. The current
privilege level must be 0 to execute this instruction.

This is a Secure Virtual Machine instruction. This instruction generates a #UD exception if SVM is
not enabled. See “Enabling SVM” on page 425 in AMD64 Architecture Programmer’s Manual
Volume-2: System Instructions, order# 24593.

Related Instructions

INVLPG.

rFLAGS Affected

None.

Exceptions

INVLPGA Invalidate TLB Entry in a Specified ASID

Mnemonic Opcode Description

INVLPGA rAX, ECX 0F 01 DF Invalidates the TLB mapping for the virtual page
specified in rAX and the ASID specified in ECX.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD
X X X The SVM instructions are not supported as indicated by ECX

bit 2 as returned by CPUID function 8000_0001h.
X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X Instruction is only recognized in protected mode.
General protection,
#GP X CPL was not zero.

Instruction Reference IRETx 325

24594—Rev. 3.16—September 2011 AMD64 Technology

Returns program control from an exception or interrupt handler to a program or procedure previously
interrupted by an exception, an external interrupt, or a software-generated interrupt. These instructions
also perform a return from a nested task. All flags, CS, and rIP are restored to the values they had
before the interrupt so that execution may continue at the next instruction following the interrupt or
exception. In 64-bit mode or if the CPL changes, SS and RSP are also restored.

IRET, IRETD, and IRETQ are synonyms mapping to the same opcode. They are intended to provide
semantically distinct forms for various opcode sizes. The IRET instruction is used for 16-bit operand
size; IRETD is used for 32-bit operand sizes; IRETQ is used for 64-bit operands. The latter form is
only meaningful in 64-bit mode.

IRET, IRETD, or IRETQ must be used to terminate the exception or interrupt handler associated with
the exception, external interrupt, or software-generated interrupt.

IRETx is a serializing instruction.

For detailed descriptions of the steps performed by IRETx instructions, see the following:

• Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.
• Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action

IRET_START:

IF (REAL_MODE)
 IRET_REAL
ELSIF (PROTECTED_MODE)
 IRET_PROTECTED
ELSE // (VIRTUAL_MODE)
 IRET_VIRTUAL

IRET_REAL:

 POP.v temp_RIP
 POP.v temp_CS
 POP.v temp_RFLAGS

IRET
IRETD
IRETQ

Return from Interrupt

Mnemonic Opcode Description

IRET CF Return from interrupt (16-bit operand size).

IRETD CF Return from interrupt (32-bit operand size).

IRETQ CF Return from interrupt (64-bit operand size).

326 IRETx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

 IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
 RIP = temp_RIP
 EXIT

IRET_PROTECTED:

 IF (RFLAGS.NT=1) // iret does a task-switch to a previous task
 IF (LEGACY_MODE)
 TASK_SWITCH // using the ’back link’ field in the tss
 ELSE // (LONG_MODE)
 EXCEPTION [#GP(0)] // task switches aren’t supported in long mode

 POP.v temp_RIP
 POP.v temp_CS
 POP.v temp_RFLAGS

 IF ((temp_RFLAGS.VM=1) && (CPL=0) && (LEGACY_MODE))
 IRET_FROM_PROTECTED_TO_VIRTUAL

 temp_CPL = temp_CS.rpl

 IF ((64BIT_MODE) || (temp_CPL!=CPL))
 {
 POP.v temp_RSP // in 64-bit mode, iret always pops ss:rsp
 POP.v temp_SS
 }

 CS = READ_DESCRIPTOR (temp_CS, iret_chk)

 IF ((64BIT_MODE) && (temp_RIP is non-canonical)
 || (!64BIT_MODE) && (temp_RIP > CS.limit))
 {
 EXCEPTION [#GP(0)]
 }

 CPL = temp_CPL

 IF ((started in 64-bit mode) || (changing CPL))
 // ss:rsp were popped, so load them into the registers
 {
 SS = READ_DESCRIPTOR (temp_SS, ss_chk)
 RSP.s = temp_RSP
 }

Instruction Reference IRETx 327

24594—Rev. 3.16—September 2011 AMD64 Technology

 IF (changing CPL)
 {
 FOR (seg = ES, DS, FS, GS)
 IF ((seg.attr.dpl < CPL) && ((seg.attr.type = ’data’)
 || (seg.attr.type = ’non-conforming-code’)))
 {
 seg = NULL // can’t use lower dpl data segment at higher cpl
 }
 }
 RFLAGS.v = temp_RFLAGS // VIF,VIP,IOPL only changed if (old_CPL=0)
 // IF only changed if (old_CPL<=old_RFLAGS.IOPL)
 // VM unchanged
 // RF cleared
 RIP = temp_RIP
 EXIT

IRET_VIRTUAL:

 IF ((RFLAGS.IOPL<3) && (CR4.VME=0))
 EXCEPTION [#GP(0)]

 POP.v temp_RIP
 POP.v temp_CS
 POP.v temp_RFLAGS

 IF (temp_RIP > CS.limit)
 EXCEPTION [#GP(0)]

 IF (RFLAGS.IOPL=3)
 {
 RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,IOPL unchanged
 // RF cleared
 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

 RIP = temp_RIP
 EXIT
 }

 // now ((IOPL<3) && (CR4.VME=1)

 ELSIF ((OPERAND_SIZE=16)
 && !((temp_RFLAGS.IF=1) && (RFLAGS.VIP=1))
 && (temp_RFLAGS.TF=0))
 {
 RFLAGS.w = temp_RFLAGS // RFLAGS.VIF=temp_RFLAGS.IF
 // IF,IOPL unchanged
 // RF cleared
 CS.sel = temp_CS
 CS.base = temp_CS SHL 4

328 IRETx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

 RIP = temp_RIP
 EXIT
 }
 ELSE // ((RFLAGS.IOPL<3) && (CR4.VME=1) && ((OPERAND_SIZE=32) ||
 // ((temp_RFLAGS.IF=1) && (RFLAGS.VIP=1)) || (temp_RFLAGS.TF=1)))
 EXCEPTION [#GP(0)]

IRET_FROM_PROTECTED_TO_VIRTUAL:

 // temp_RIP already popped
 // temp_CS already popped
 // temp_RFLAGS already popped, temp_RFLAGS.VM=1

 POP.d temp_RSP
 POP.d temp_SS
 POP.d temp_ES
 POP.d temp_DS
 POP.d temp_FS
 POP.d temp_GS

 CS.sel = temp_CS // force the segments to have virtual-mode values
 CS.base = temp_CS SHL 4
 CS.limit= 0x0000FFFF
 CS.attr = 16-bit dpl3 code

 SS.sel = temp_SS
 SS.base = temp_SS SHL 4
 SS.limit= 0x0000FFFF
 SS.attr = 16-bit dpl3 stack

 DS.sel = temp_DS
 DS.base = temp_DS SHL 4
 DS.limit= 0x0000FFFF
 DS.attr = 16-bit dpl3 data

 ES.sel = temp_ES
 ES.base = temp_ES SHL 4
 ES.limit= 0x0000FFFF
 ES.attr = 16-bit dpl3 data

 FS.sel = temp_FS
 FS.base = temp_FS SHL 4
 FS.limit= 0x0000FFFF
 FS.attr = 16-bit dpl3 data

 GS.sel = temp_GS
 GS.base = temp_GS SHL 4
 GS.limit= 0x0000FFFF
 GS.attr = 16-bit dpl3 data

Instruction Reference IRETx 329

24594—Rev. 3.16—September 2011 AMD64 Technology

 RSP.d = temp_RSP
 RFLAGS.d = temp_RFLAGS
 CPL = 3

 RIP = temp_RIP AND 0x0000FFFF
 EXIT

Related Instructions

INT, INTO, INT3

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M M M M M M M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Segment not
present, #NP
(selector)

X The return code segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

Stack, #SS
(selector) X The SS register was loaded with a non-null segment selector

and the segment was marked not present.

General protection,
#GP

X X X The target offset exceeded the code segment limit or was non-
canonical.

X

IOPL was less than 3 and one of the following conditions was
true:
• CR4.VME was 0.
• The effective operand size was 32-bit.
• Both the original EFLAGS.VIP and the new EFLAGS.IF

were set.
• The new EFLAGS.TF was set.

X IRETx was executed in long mode while EFLAGS.NT=1.

330 IRETx Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

General protection,
#GP
(selector)

X The return code selector was a null selector.

X The return stack selector was a null selector and the return
mode was non-64-bit mode or CPL was 3.

X The return code or stack descriptor exceeded the descriptor
table limit.

X The return code or stack selector’s TI bit was set but the LDT
selector was a null selector.

X The segment descriptor for the return code was not a code
segment.

X The RPL of the return code segment selector was less than
the CPL.

X
The return code segment was non-conforming and the
segment selector’s DPL was not equal to the RPL of the code
segment’s segment selector.

X
The return code segment was conforming and the segment
selector’s DPL was greater than the RPL of the code
segment’s segment selector.

X The segment descriptor for the return stack was not a writable
data segment.

X The stack segment descriptor DPL was not equal to the RPL
of the return code segment selector.

X The stack segment selector RPL was not equal to the RPL of
the return code segment selector.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Instruction Reference LAR 331

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads the access rights from the segment descriptor specified by a 16-bit source register or memory
operand into a specified 16-bit, 32-bit, or 64-bit general-purpose register and sets the zero (ZF) flag in
the rFLAGS register if successful. LAR clears the zero flag if the descriptor is invalid for any reason.

The LAR instruction checks that:

• the segment selector is not a null selector.
• the descriptor is within the GDT or LDT limit.
• the descriptor DPL is greater than or equal to both the CPL and RPL, or the segment is a

conforming code segment.
• the descriptor type is valid for the LAR instruction. Valid descriptor types are shown in the

following table. LDT and TSS descriptors in 64-bit mode, and call-gate descriptors in long mode,
are only valid if bits 12–8 of doubleword +12 are zero, as shown on page 111 of vol. 2 in Figure 4-
22.

If the segment descriptor passes these checks, the attributes are loaded into the destination general-
purpose register. If it does not, then the zero flag is cleared and the destination register is not modified.

When the operand size is 16 bits, access rights include the DPL and Type fields located in bytes 4 and
5 of the descriptor table entry. Before loading the access rights into the destination operand, the low
order word is masked with FF00H.

When the operand size is 32 or 64 bits, access rights include the DPL and type as well as the descriptor
type (S field), segment present (P flag), available to system (AVL flag), default operation size (D/B
flag), and granularity flags located in bytes 4–7 of the descriptor. Before being loaded into the
destination operand, the doubleword is masked with 00FF_FF00H.

LAR Load Access Rights Byte

Valid Descriptor Type Description

Legacy Mode Long Mode

All All All code and data descriptors

1 — Available 16-bit TSS

2 2 LDT

3 — Busy 16-bit TSS

4 — 16-bit call gate

5 — Task gate

9 9 Available 32-bit or 64-bit TSS

B B Busy 32-bit or 64-bit TSS

C C 32-bit or 64-bit call gate

332 LAR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-extended to 64
bits.

This instruction can only be executed in protected mode.

Related Instructions

ARPL, LSL, VERR, VERW

rFLAGS Affected

Exceptions

Mnemonic Opcode Description

LAR reg16, reg/mem16 0F 02 /r
Reads the GDT/LDT descriptor referenced by the 16-bit
source operand, masks the attributes with FF00h and saves
the result in the 16-bit destination register.

LAR reg32, reg/mem16 0F 02 /r
Reads the GDT/LDT descriptor referenced by the 16-bit
source operand, masks the attributes with 00FFFF00h and
saves the result in the 32-bit destination register.

LAR reg64, reg/mem16 0F 02 /r
Reads the GDT/LDT descriptor referenced by the 16-bit
source operand, masks the attributes with 00FFFF00h and
saves the result in the 64-bit destination register.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded the data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while
alignment checking was enabled.

Instruction Reference LGDT 333

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads the pseudo-descriptor specified by the source operand into the global descriptor table register
(GDTR). The pseudo-descriptor is a memory location containing the GDTR base and limit. In legacy
and compatibility mode, the pseudo-descriptor is 6 bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not used. The lower
two bytes specify the 16-bit limit and the third, fourth, and fifth bytes specify the 24-bit base address.
The high-order byte of the GDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper four bytes
specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit and the upper eight bytes specify a 64-bit
base address. In 64-bit mode, operand-size prefixes are ignored and the operand size is forced to 64-
bits; therefore, the pseudo-descriptor is always 10 bytes.

This instruction is only used in operating system software and must be executed at CPL 0. It is
typically executed once in real mode to initialize the processor before switching to protected mode.

LGDT is a serializing instruction.

Related Instructions

LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

Exceptions

LGDT Load Global Descriptor Table Register

Mnemonic Opcode Description

LGDT mem16:32 0F 01 /2 Loads mem16:32 into the global descriptor table register.

LGDT mem16:64 0F 01 /2 Loads mem16:64 into the global descriptor table register.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD X X X The operand was a register.

Stack, #SS X X A memory address exceeded the stack segment limit or
was non-canonical.

334 LGDT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

General protection,
#GP

X X A memory address exceeded the data segment limit or was
non-canonical.

X X CPL was not 0.
X The new GDT base address was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Instruction Reference LIDT 335

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads the pseudo-descriptor specified by the source operand into the interrupt descriptor table register
(IDTR). The pseudo-descriptor is a memory location containing the IDTR base and limit. In legacy
and compatibility mode, the pseudo-descriptor is six bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not used. The lower
two bytes specify the 16-bit limit and the third, fourth, and fifth bytes specify the 24-bit base address.
The high-order byte of the IDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper four bytes
specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit, and the upper eight bytes specify a 64-bit
base address. In 64-bit mode, operand-size prefixes are ignored and the operand size is forced to 64-
bits; therefore, the pseudo-descriptor is always 10 bytes.

This instruction is only used in operating system software and must be executed at CPL 0. It is
normally executed once in real mode to initialize the processor before switching to protected mode.

LIDT is a serializing instruction.

Related Instructions

LGDT, LLDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

Exceptions

LIDT Load Interrupt Descriptor Table Register

Mnemonic Opcode Description

LIDT mem16:32 0F 01 /3 Loads mem16:32 into the interrupt descriptor table register.

LIDT mem16:64 0F 01 /3 Loads mem16:64 into the interrupt descriptor table register.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD X X X The operand was a register.

Stack, #SS X X A memory address exceeded the stack segment limit or
was non-canonical.

336 LIDT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

General protection,
#GP

X X A memory address exceeded the data segment limit or was
non-canonical.

X X CPL was not 0.
X The new IDT base address was non-canonical.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Instruction Reference LLDT 337

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads the specified segment selector into the visible portion of the local descriptor table (LDT). The
processor uses the selector to locate the descriptor for the LDT in the global descriptor table. It then
loads this descriptor into the hidden portion of the LDTR.

If the source operand is a null selector, the LDTR is marked invalid and all references to descriptors in
the LDT will generate a general protection exception (#GP), except for the LAR, VERR, VERW or
LSL instructions.

In legacy and compatibility modes, the LDT descriptor is 8 bytes long and contains a 32-bit base
address.

In 64-bit mode, the LDT descriptor is 16-bytes long and contains a 64-bit base address. The LDT
descriptor type (02h) is redefined in 64-bit mode for use as the 16-byte LDT descriptor.

This instruction must be executed in protected mode. It is only provided for use by operating system
software at CPL 0.

LLDT is a serializing instruction.

Related Instructions

LGDT, LIDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

Exceptions

LLDT Load Local Descriptor Table Register

Mnemonic Opcode Description

LLDT
reg/mem16 0F 00 /2 Load the 16-bit segment selector into the local descriptor

table register and load the LDT descriptor from the GDT.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.
Segment not present,
#NP (selector) X The LDT descriptor was marked not present.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X CPL was not 0.
X A null data segment was used to reference memory.

338 LLDT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

General protection,
#GP
(selector)

X The source selector did not point into the GDT.
X The descriptor was beyond the GDT limit.
X The descriptor was not an LDT descriptor.

X The descriptor's extended attribute bits were not zero in 64-
bit mode.

X The new LDT base address was non-canonical.
Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Instruction Reference LMSW 339

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads the lower four bits of the 16-bit register or memory operand into bits 3–0 of the machine status
word in register CR0. Only the protection enabled (PE), monitor coprocessor (MP), emulation (EM),
and task switched (TS) bits of CR0 are modified. Additionally, LMSW can set CR0.PE, but cannot
clear it.

The LMSW instruction can be used only when the current privilege level is 0. It is only provided for
compatibility with early processors.

Use the MOV CR0 instruction to load all 32 or 64 bits of CR0.

Related Instructions

MOV (CRn), SMSW

rFLAGS Affected

None

Exceptions

LMSW Load Machine Status Word

Mnemonic Opcode Description

LMSW reg/mem16 0F 01 /6 Load the lower 4 bits of the source into the lower 4 bits of
CR0.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X A memory address exceeded a data segment limit or was
non-canonical.

X X CPL was not 0.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

340 LSL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Loads the segment limit from the segment descriptor specified by a 16-bit source register or memory
operand into a specified 16-bit, 32-bit, or 64-bit general-purpose register and sets the zero (ZF) flag in
the rFLAGS register if successful. LSL clears the zero flag if the descriptor is invalid for any reason.

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-extended to 64
bits.

The LSL instruction checks that:

• the segment selector is not a null selector.
• the descriptor is within the GDT or LDT limit.
• the descriptor DPL is greater than or equal to both the CPL and RPL, or the segment is a

conforming code segment.
• the descriptor type is valid for the LAR instruction. Valid descriptor types are shown in the

following table. LDT and TSS descriptors in 64-bit mode are only valid if bits 12–8 of doubleword
+12 are zero, as shown on Figure 4-22 on page 91 of Volume 2: System Programming.

If the segment selector passes these checks and the segment limit is loaded into the destination
general-purpose register, the instruction sets the zero flag of the rFLAGS register to 1. If the selector
does not pass the checks, then LSL clears the zero flag to 0 and does not modify the destination.

The instruction calculates the segment limit to 32 bits, taking the 20-bit limit and the granularity bit
into account. When the operand size is 16 bits, it truncates the upper 16 bits of the 32-bit adjusted
segment limit and loads the lower 16-bits into the target register.

LSL Load Segment Limit

Valid Descriptor Type Description

Legacy Mode Long Mode

— — All code and data descriptors

1 — Available 16-bit TSS

2 2 LDT

3 — Busy 16-bit TSS

9 9 Available 32-bit or 64-bit TSS

B B Busy 32-bit or 64-bit TSS

Mnemonic Opcode Description

LSL reg16, reg/mem16 0F 03 /r
Loads a 16-bit general-purpose register with the segment
limit for a selector specified in a 16-bit memory or register
operand.

Instruction Reference LSL 341

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

ARPL, LAR, VERR, VERW

rFLAGS Affected

Exceptions

LSL reg32, reg/mem16 0F 03 /r
Loads a 32-bit general-purpose register with the segment
limit for a selector specified in a 16-bit memory or register
operand.

LSL reg64, reg/mem16 0F 03 /r
Loads a 64-bit general-purpose register with the segment
limit for a selector specified in a 16-bit memory or register
operand.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

342 LTR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Loads the specified segment selector into the visible portion of the task register (TR). The processor
uses the selector to locate the descriptor for the TSS in the global descriptor table. It then loads this
descriptor into the hidden portion of TR. The TSS descriptor in the GDT is marked busy, but no task
switch is made.

If the source operand is null, a general protection exception (#GP) is generated.

In legacy and compatibility modes, the TSS descriptor is 8 bytes long and contains a 32-bit base
address.

In 64-bit mode, the instruction references a 64-bit descriptor to load a 64-bit base address. The TSS
type (09H) is redefined in 64-bit mode for use as the 16-byte TSS descriptor.

This instruction must be executed in protected mode when the current privilege level is 0. It is only
provided for use by operating system software.

The operand size attribute has no effect on this instruction.

LTR is a serializing instruction.

Related Instructions

LGDT, LIDT, LLDT, STR, SGDT, SIDT, SLDT

rFLAGS Affected

None

Exceptions

LTR Load Task Register

Mnemonic Opcode Description

LTR reg/mem16 0F 00 /3 Load the 16-bit segment selector into the task register and
load the TSS descriptor from the GDT.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.
Segment not present,
#NP (selector) X The TSS descriptor was marked not present.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

Instruction Reference LTR 343

24594—Rev. 3.16—September 2011 AMD64 Technology

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X CPL was not 0.
X A null data segment was used to reference memory.
X The new TSS selector was a null selector.

General protection,
#GP
(selector)

X The source selector did not point into the GDT.
X The descriptor was beyond the GDT limit.
X The descriptor was not an available TSS descriptor.

X The descriptor's extended attribute bits were not zero in 64-
bit mode.

X The new TSS base address was non-canonical.
Page fault, #PF X A page fault resulted from the execution of the instruction.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

344 MONITOR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Establishes a linear address range of memory for hardware to monitor and puts the processor in the
monitor event pending state. When in the monitor event pending state, the monitoring hardware
detects stores to the specified linear address range and causes the processor to exit the monitor event
pending state. The MWAIT instruction uses the state of the monitor hardware.

The address range should be a write-back memory type. Executing MONITOR on an address range for
a non-write-back memory type is not guaranteed to cause the processor to enter the monitor event
pending state. The size of the linear address range that is established by the MONITOR instruction can
be determined by CPUID function 0000_0005h.

The [rAX] register provides the effective address. The DS segment is the default segment used to
create the linear address. Segment overrides may be used with the MONITOR instruction.

The ECX register specifies optional extensions for the MONITOR instruction. There are currently no
extensions defined and setting any bits in ECX will result in a #GP exception. The ECX register
operand is implicitly 32-bits.

The EDX register specifies optional hints for the MONITOR instruction. There are currently no hints
defined and EDX is ignored by the processor. The EDX register operand is implicitly 32-bits.

The MONITOR instruction can be executed at CPL 0 and is allowed at CPL > 0
only if MSR C001_0015h[MonMwaitUserEn] = 1. When MSR C001_0015h[MonMwaitUserEn] = 0,
MONITOR generates #UD at CPL > 0. (See the appropriate version of the BIOS and Kernel
Developer's Guide for specific details on MSR C001_0015h.)

MONITOR performs the same segmentation and paging checks as a 1-byte read.

Support for the MONITOR instruction is indicated by ECX bit 3 (Monitor) as returned by CPUID
function 0000_0001h. Software must check the CPUID bit once per program or library initialization
before using the MONITOR instruction, or inconsistent behavior may result. Software designed to run
at CPL greater than 0 must also check for availability by testing whether executing MONITOR causes
a #UD exception.

The following pseudo-code shows typical usage of a MONITOR/MWAIT pair:
EAX = Linear_Address_to_Monitor;
ECX = 0; // Extensions
EDX = 0; // Hints

while (!matching_store_done){
 MONITOR EAX, ECX, EDX
 IF (!matching_store_done) {
 MWAIT EAX, ECX
 }
}

MONITOR Setup Monitor Address

Instruction Reference MONITOR 345

24594—Rev. 3.16—September 2011 AMD64 Technology

Related Instructions

MWAIT

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MONITOR 0F 01 C8 Establishes a linear address range to be monitored
by hardware and activates the monitor hardware.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The MONITOR/MWAIT instructions are not
supported, as indicated by ECX bit 3 (Monitor) as
returned by CPUID function 0000_0001h.

X X CPL was not zero and
MSR C001_0015[MonMwaitUserEn] = 0.

Stack, #SS X X X A memory address exceeded the stack segment limit
or was non-canonical.

General protection, #GP
X X X A memory address exceeded a data segment limit or

was non-canonical.
X X X ECX was non-zero.

X A null data segment was used to reference memory.

Page Fault, #PF X X A page fault resulted from the execution of the
instruction.

346 MOV (CRn) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Moves the contents of a 32-bit or 64-bit general-purpose register to a control register or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix. In non-64-bit
mode, the operand size is fixed at 32 bits and the upper 32 bits of the destination are forced to 0.

CR0 maintains the state of various control bits. CR2 and CR3 are used for page translation. CR4 holds
various feature enable bits. CR8 is used to prioritize external interrupts. CR1, CR5, CR6, CR7, and
CR9 through CR15 are all reserved and raise an undefined opcode exception (#UD) if referenced.

CR8 can be read and written in 64-bit mode, using a REX prefix. CR8 can be read and written in all
modes using a LOCK prefix instead of a REX prefix to specify the additional opcode bit. To verify
whether the LOCK prefix can be used in this way, check the status of ECX bit 4 returned by CPUID
function 8000_0001h.

CR8 can also be read and modified using the task priority register described in “System-Control
Registers” in Volume 2.

This instruction is always treated as a register-to-register (MOD = 11) instruction, regardless of the
encoding of the MOD field in the MODR/M byte.

MOV (CRn) is a privileged instruction and must always be executed at CPL = 0.

MOV (CRn) is a serializing instruction.

Related Instructions

CLTS, LMSW, SMSW

rFLAGS Affected

None

MOV (CRn) Move to/from Control Registers

Mnemonic Opcode Description

MOV CRn, reg32 0F 22 /r Move the contents of a 32-bit register to CRn

MOV CRn, reg64 0F 22 /r Move the contents of a 64-bit register to CRn

MOV reg32, CRn 0F 20 /r Move the contents of CRn to a 32-bit register.

MOV reg64, CRn 0F 20 /r Move the contents of CRn to a 64-bit register.

MOV CR8, reg32 F0 0F 22/r Move the contents of a 32-bit register to CR8.

MOV CR8, reg64 F0 0F 22/r Move the contents of a 64-bit register to CR8.

MOV reg32, CR8 F0 0F 20/r Move the contents of CR8 into a 32-bit register.

MOV reg64, CR8 F0 0F 20/r Move the contents of CR8 into a 64-bit register.

Instruction Reference MOV (CRn) 347

24594—Rev. 3.16—September 2011 AMD64 Technology

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid Instruction,
#UD

X X X An illegal control register was referenced (CR1, CR5–CR7,
CR9–CR15).

X X X
The use of the LOCK prefix to read CR8 is not supported, as
indicated by ECX bit 4 as returned by CPUID function
8000_0001h.

General protection,
#GP

X X CPL was not 0.
X X An attempt was made to set CR0.PG = 1 and CR0.PE = 0.
X X An attempt was made to set CR0.CD = 0 and CR0.NW = 1.

X X
Reserved bits were set in the page-directory pointers table
(used in the legacy extended physical addressing mode) and
the instruction modified CR0, CR3, or CR4.

X X An attempt was made to write 1 to any reserved bit in CR0,
CR3, CR4 or CR8.

X X
An attempt was made to set CR0.PG while long mode was
enabled (EFER.LME = 1), but paging address extensions
were disabled (CR4.PAE = 0).

X An attempt was made to clear CR4.PAE while long mode was
active (EFER.LMA = 1).

348 MOV (DRn) Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Moves the contents of a debug register into a 32-bit or 64-bit general-purpose register or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix. In non-64-bit
mode, the operand size is fixed at 32-bits and the upper 32 bits of the destination are forced to 0.

DR0 through DR3 are linear breakpoint address registers. DR6 is the debug status register and DR7 is
the debug control register. DR4 and DR5 are aliased to DR6 and DR7 if CR4.DE = 0, and are reserved
if CR4.DE = 1.

DR8 through DR15 are reserved and generate an undefined opcode exception if referenced.

These instructions are privileged and must be executed at CPL 0.

The MOV DRn,reg32 and MOV DRn,reg64 instructions are serializing instructions.

The MOV(DR) instruction is always treated as a register-to-register (MOD = 11) instruction,
regardless of the encoding of the MOD field in the MODR/M byte.

See “Debug and Performance Resources” in Volume 2 for details.

Related Instructions

None

rFLAGS Affected

None

MOV (DRn) Move to/from Debug Registers

Mnemonic Opcode Description

MOV reg32, DRn 0F 21 /r Move the contents of DRn to a 32-bit register.

MOV reg64, DRn 0F 21 /r Move the contents of DRn to a 64-bit register.

MOV DRn, reg32 0F 23 /r Move the contents of a 32-bit register to DRn.

MOV DRn, reg64 0F 23 /r Move the contents of a 64-bit register to DRn.

Instruction Reference MOV (DRn) 349

24594—Rev. 3.16—September 2011 AMD64 Technology

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Debug, #DB X X A debug register was referenced while the general detect
(GD) bit in DR7 was set.

Invalid opcode, #UD
X X DR4 or DR5 was referenced while the debug extensions

(DE) bit in CR4 was set.
X An illegal debug register (DR8–DR15) was referenced.

General protection,
#GP

X X CPL was not 0.

X A 1 was written to any of the upper 32 bits of DR6 or DR7 in
64-bit mode.

350 MWAIT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Used in conjunction with the MONITOR instruction to cause a processor to wait until a store occurs to
a specific linear address range from another processor. The previously executed MONITOR
instruction causes the processor to enter the monitor event pending state. The MWAIT instruction may
enter an implementation dependent power state until the monitor event pending state is exited. The
MWAIT instruction has the same effect on architectural state as the NOP instruction.

Events that cause an exit from the monitor event pending state include:

• A store from another processor matches the address range established by the MONITOR
instruction.

• Any unmasked interrupt, including INTR, NMI, SMI, INIT.
• RESET.
• Any far control transfer that occurs between the MONITOR and the MWAIT.

EAX specifies optional hints for the MWAIT instruction. There are currently no hints defined and all
bits should be 0. Setting a reserved bit in EAX is ignored by the processor.

ECX specifies optional extensions for the MWAIT instruction. The only extension currently defined is
ECX bit 0, which allows interrupts to wake MWAIT, even when eFLAGS.IF=0. Support for this
extension is indicated by CPUID. Setting any unsupported bit in ECX results in a #GP exception.

CPUID function 5 indicates support for extended features of MONITOR/MWAIT in ECX:

• ECX[0] indicates support for enumeration of MONITOR/MWAIT extensions.
• ECX[1] indicates that MWAIT can use ECX bit 0 to allow interrupts to cause an exit from the

monitor event pending state even when eFLAGS.IF=0.

The MWAIT instruction can be executed at CPL 0 and is allowed at CPL > 0 only if MSR
C001_0015h[MonMwaitUserEn] =1. When MSR C001_0015h[MonMwaitUserEn] is 0, MWAIT
generates #UD at CPL > 0. (See the appropriate version of the BIOS and Kernel Developer's Guide for
specific details on MSR C001_0015h.)

Support for the MWAIT instruction is indicated by ECX bit 3 (Monitor) as returned by CPUID
function 0000_0001h. Software MUST check the CPUID bit once per program or library initialization
before using the MWAIT instruction, or inconsistent behavior may result. Software designed to run at
CPL greater than 0 must also check for availability by testing whether executing MWAIT causes a
#UD exception.

The use of the MWAIT instruction is contingent upon the satisfaction of the following coding
requirements:

• MONITOR must precede the MWAIT and occur in the same loop.
• MWAIT must be conditionally executed only if the awaited store has not already occurred. (This

prevents a race condition between the MONITOR instruction arming the monitoring hardware and
the store intended to trigger the monitoring hardware.)

MWAIT Monitor Wait

Instruction Reference MWAIT 351

24594—Rev. 3.16—September 2011 AMD64 Technology

The following pseudo-code shows typical usage of a MONITOR/MWAIT pair:
EAX = Linear_Address_to_Monitor;
ECX = 0; // Extensions
EDX = 0; // Hints

while (!matching_store_done){
 MONITOR EAX, ECX, EDX
 IF (!matching_store_done) {
 MWAIT EAX, ECX
 }
}

Related Instructions

MONITOR

rFLAGS Affected

None

Exceptions

Mnemonic Opcode Description

MWAIT 0F 01 C9
Causes the processor to stop instruction execution
and enter an implementation-dependent optimized
state until occurrence of a class of events.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The MONITOR/MWAIT instructions are not supported,
as indicated by ECX bit 3 (Monitor) as returned by
CPUID function 0000_0001h.

X X CPL was not zero and
MSRC001_0015[MonMwaitUserEn] = 0.

General protection,
#GP X X X Unsupported extension bits were set in ECX

352 RDMSR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Loads the contents of a 64-bit model-specific register (MSR) specified in the ECX register into
registers EDX:EAX. The EDX register receives the high-order 32 bits and the EAX register receives
the low order bits. The RDMSR instruction ignores operand size; ECX always holds the MSR number,
and EDX:EAX holds the data. If a model-specific register has fewer than 64 bits, the unimplemented
bit positions loaded into the destination registers are undefined.

This instruction must be executed at a privilege level of 0 or a general protection exception (#GP) will
be raised. This exception is also generated if a reserved or unimplemented model-specific register is
specified in ECX.

Use the CPUID instruction to determine if this instruction is supported.

For more information about model-specific registers, see the documentation for various hardware
implementations and Volume 2: System Programming.

Related Instructions

WRMSR, RDTSC, RDPMC

rFLAGS Affected

None

Exceptions

RDMSR Read Model-Specific Register

Mnemonic Opcode Description

RDMSR 0F 32 Copy MSR specified by ECX into EDX:EAX.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X

The RDMSR instruction is not supported, as indicated by
EDX bit 5 returned by CPUID function 0000_0001h or function
8000_0001h.

General protection,
#GP

X X CPL was not 0.

X X The value in ECX specifies a reserved or unimplemented
MSR address.

Instruction Reference RDPMC 353

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads the contents of a 64-bit core performance counter register (PerfCtrn) or northbridge
performance counter specified in the ECX register into registers EDX:EAX. The EDX register
receives the high-order 32 bits and the EAX register receives the low order 32 bits. The RDPMC
instruction ignores operand size; ECX always holds the number of the performance counter to be read
and EDX:EAX returns the data.

The base architecture supports four core performance counters: PerfCtr0–3. Extensions to the
architecture increase the number of core performance counters to 6 (PerfCtr0–5) and add four
northbridge performance counters NB_PerfCtr0–3. Support for the core performance counters
PerfCtr4–5 is indicated by CPUID Fn8000_0001_ECX[PerfCtrExtCore] = 1. CPUID
Fn8000_0001_ECX[PerfCtrExtNB] = 1 indicates support for the four architecturally defined
northbridge performance counters.

To select a specific core or northbridge performance counter, specify the counter number, rather than
the performance counter MSR address. To access the northbridge performance counters, specify the
index of the counter plus 6.

Programs running at any privilege level can read performance monitor counters if the PCE flag in CR4
is set to 1; otherwise this instruction must be executed at a privilege level of 0.

This instruction is not serializing. Therefore, there is no guarantee that all instructions have completed
at the time the performance counter is read.

For more information about performance-counter registers, see the documentation for various
hardware implementations and “Performance Counters” in Volume 2.

Instruction Encoding

Related Instructions

RDMSR, WRMSR

rFLAGS Affected

None

RDPMC Read Performance-Monitoring Counter

Mnemonic Opcode Description

RDPMC 0F 33 Copy the performance monitor counter specified
by ECX into EDX:EAX.

354 RDPMC Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General Protection,
#GP

X X X The value in ECX specified an unimplemented performance
counter number.

X X CPL was not 0 and CR4.PCE = 0.

Instruction Reference RDTSC 355

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX.

The time-stamp counter (TSC) is contained in a 64-bit model-specific register (MSR). The processor
sets the counter to 0 upon reset and increments the counter every clock cycle. INIT does not modify the
TSC.

The high-order 32 bits are loaded into EDX, and the low-order 32 bits are loaded into the EAX
register. This instruction ignores operand size.

When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSC instruction can only be used at
privilege level 0. If the TSD flag is 0, this instruction can be used at any privilege level.

This instruction is not serializing. Therefore, there is no guarantee that all instructions have completed
at the time the time-stamp counter is read.

The behavior of the RDTSC instruction is implementation dependent. The TSC counts at a constant
rate, but may be affected by power management events (such as frequency changes), depending on the
processor implementation. If CPUID 8000_0007.edx[8] = 1, then the TSC rate is ensured to be
invariant across all P-States, C-States, and stop-grant transitions (such as STPCLK Throttling);
therefore, the TSC is suitable for use as a source of time. Consult the BIOS and kernel developer’s
guide for your AMD processor implementation for information concerning the effect of power
management on the TSC.

Related Instructions

RDTSCP, RDMSR, WRMSR

rFLAGS Affected

None

Exceptions

RDTSC Read Time-Stamp Counter

Mnemonic Opcode Description

RDTSC 0F 31 Copy the time-stamp counter into EDX:EAX.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD X X X
The RDTSC instruction is not supported, as indicated by
EDX bit 4 returned by CPUID function 0000_0001h or
function 8000_0001h.

General protection,
#GP X X CPL was not 0 and CR4.TSD = 1.

356 RDTSCP Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX, and loads the
value of TSC_AUX into ECX. This instruction ignores operand size.

The time-stamp counter is contained in a 64-bit model-specific register (MSR). The processor sets the
counter to 0 upon reset and increments the counter every clock cycle. INIT does not modify the TSC.

The high-order 32 bits are loaded into EDX, and the low-order 32 bits are loaded into the EAX
register.

The TSC_AUX value is contained in the low-order 32 bits of the TSC_AUX register (MSR address
C000_0103h). This MSR is initialized by privileged software to any meaningful value, such as a
processor ID, that software wants to associate with the returned TSC value.

When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSCP instruction can only be used
at privilege level 0. If the TSD flag is 0, this instruction can be used at any privilege level.

Unlike the RDTSC instruction, RDTSCP forces all older instructions to retire before reading the time-
stamp counter.

The behavior of the RDTSCP instruction is implementation dependent. The TSC counts at a constant
rate, but may be affected by power management events (such as frequency changes), depending on the
processor implementation. If CPUID 8000_0007.edx[8] = 1, then the TSC rate is ensured to be
invariant across all P-States, C-States, and stop-grant transitions (such as STPCLK Throttling);
therefore, the TSC is suitable for use as a source of time. Consult the BIOS and kernel developer’s
guide for your AMD processor implementation for information concerning the effect of power
management on the TSC.

Use the CPUID instruction to verify support for this instruction.

Related Instructions

RDTSC

rFLAGS Affected

None

RDTSCP Read Time-Stamp Counter
and Processor ID

Mnemonic Opcode Description

RDTSCP 0F 01 F9 Copy the time-stamp counter into EDX:EAX and
the TSC_AUX register into ECX.

Instruction Reference RDTSCP 357

24594—Rev. 3.16—September 2011 AMD64 Technology

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD X X X The RDTSCP instruction is not supported, as indicated by
EDX bit 27 returned by CPUID function 8000_0001h.

General protection,
#GP X X CPL was not 0 and CR4.TSD = 1.

358 RSM Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Resumes an operating system or application procedure previously interrupted by a system
management interrupt (SMI). The processor state is restored from the information saved when the SMI
was taken. The processor goes into a shutdown state if it detects invalid state information in the system
management mode (SMM) save area during RSM.

RSM will shut down if any of the following conditions are found in the save map (SSM):

• An illegal combination of flags in CR0 (CR0.PG = 1 and CR0.PE = 0, or CR0.NW = 1 and
CR0.CD = 0).

• A reserved bit in CR0, CR3, CR4, DR6, DR7, or the extended feature enable register (EFER) is set
to 1.

• The following bit combination occurs: EFER.LME = 1, CR0.PG = 1, CR4.PAE = 0.
• The following bit combination occurs: EFER.LME = 1, CR0.PG = 1, CR4.PAE = 1, CS.D = 1,

CS.L = 1.
• SMM revision field has been modified.

RSM cannot modify EFER.SVME. Attempts to do so are ignored.

When EFER.SVME is 1, RSM reloads the four PDPEs (through the incoming CR3) when returning to
a mode that has legacy PAE mode paging enabled.

When EFER.SVME is 1, the RSM instruction is permitted to return to paged real mode (i.e.,
CR0.PE=0 and CR0.PG=1).

The AMD64 architecture uses a new 64-bit SMM state-save memory image. This 64-bit save-state
map is used in all modes, regardless of mode. See “System-Management Mode” in Volume 2 for
details.

Related Instructions

None

RSM Resume from System Management Mode

Mnemonic Opcode Description

RSM 0F AA Resume operation of an interrupted program.

Instruction Reference RSM 359

24594—Rev. 3.16—September 2011 AMD64 Technology

rFLAGS Affected

All flags are restored from the state-save map (SSM).

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M M M M M M M M M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X The processor was not in System Management Mode (SMM).

360 SGDT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Stores the global descriptor table register (GDTR) into the destination operand. In legacy and
compatibility mode, the destination operand is 6 bytes; in 64-bit mode, it is 10 bytes. In all modes,
operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 4 bytes
specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 8 bytes
specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at any privilege
level.

Related Instructions

SIDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected

None

Exceptions

SGDT Store Global Descriptor Table Register

Mnemonic Opcode Description

SGDT mem16:32 0F 01 /0 Store global descriptor table register to memory.

SGDT mem16:64 0F 01 /0 Store global descriptor table register to memory.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X The operand was a register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference SIDT 361

24594—Rev. 3.16—September 2011 AMD64 Technology

Stores the interrupt descriptor table register (IDTR) in the destination operand. In legacy and
compatibility mode, the destination operand is 6 bytes; in 64-bit mode it is 10 bytes. In all modes,
operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 4 bytes
specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the upper 8 bytes
specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at any privilege
level.

Related Instructions

SGDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected

None

Exceptions

SIDT Store Interrupt Descriptor Table Register

Mnemonic Opcode Description

SIDT mem16:32 0F 01 /1 Store interrupt descriptor table register to memory.

SIDT mem16:64 0F 01 /1 Store interrupt descriptor table register to memory.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X The operand was a register.

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

362 SKINIT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Securely reinitializes the cpu, allowing for the startup of trusted software (such as a VMM). The code
to be executed after reinitialization can be verified based on a secure hash comparison. SKINIT takes
the physical base address of the SLB as its only input operand, in EAX. The SLB must be structured as
described in “Secure Loader Block” on page 477 of the AMD64 Architecture Programmer’s Manual
Volume 2: System Programming, order# 24593, and is assumed to contain the code for a Secure
Loader (SL).

This is a Secure Virtual Machine instruction. This instruction generates a #UD exception if SVM is
not enabled. See “Enabling SVM” on page 425 in AMD64 Architecture Programmer’s Manual
Volume 2: System Instructions, order# 24593.

Action
IF ((EFER.SVMEN == 0) && !(CPUID 8000_0001.ECX[SKINIT]) || (!PROTECTED_MODE))

 EXCEPTION [#UD] // This instruction can only be executed
 // in protected mode with SVM enabled.

IF (CPL != 0) // This instruction is only allowed at CPL 0.
 EXCEPTION [#GP]

Initialize processor state as for an INIT signal
CR0.PE = 1

CS.sel = 0x0008
CS.attr = 32-bit code, read/execute
CS.base = 0
CS.limit = 0xFFFFFFFF

SS.sel = 0x0010
SS.attr = 32-bit stack, read/write, expand up
SS.base = 0
SS.limit = 0xFFFFFFFF

EAX = EAX & 0xFFFF0000 // Form SLB base address.
EDX = family/model/stepping
ESP = EAX + 0x00010000 // Initial SL stack.
Clear GPRs other than EAX, EDX, ESP

EFER = 0
VM_CR.DPD = 1
VM_CR.R_INIT = 1
VM_CR.DIS_A20M = 1

SKINIT Secure Init and Jump with Attestation

Mnemonic Opcode Description

SKINIT EAX 0F 01 DE Secure initialization and jump, with attestation.

Instruction Reference SKINIT 363

24594—Rev. 3.16—September 2011 AMD64 Technology

Enable SL_DEV, to protect 64Kbyte of physical memory starting at
the physical address in EAX

GIF = 0

Read the SL length from offset 0x0002 in the SLB
Copy the SL image to the TPM for attestation

Read the SL entrypoint offset from offset 0x0000 in the SLB
Jump to the SL entrypoint, at EIP = EAX+entrypoint offset

Related Instructions

None.

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD
X

Secure Virtual Machine was not enabled (EFER.SVME=0)
and both of the following conditions were true:
• SVM-Lock is not available, as indicated by EDX bit 2

returned by CPUID function 8000_000Ah.
• DEV is not available, as indicated by ECX bit 12 returned

by CPUID function 8000_0001h.
X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

364 SLDT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Stores the local descriptor table (LDT) selector to a register or memory destination operand.

If the destination is a register, the selector is zero-extended into a 16-, 32-, or 64-bit general purpose
register, depending on operand size.

If the destination operand is a memory location, the segment selector is written to memory as a 16-bit
value, regardless of operand size.

This SLDT instruction can only be used in protected mode, but it can be executed at any privilege
level.

Related Instructions

SIDT, SGDT, STR, LIDT, LGDT, LLDT, LTR

rFLAGS Affected

None

Exceptions

SLDT Store Local Descriptor Table Register

Mnemonic Opcode Description

SLDT reg16 0F 00 /0 Store the segment selector from the local
descriptor table register to a 16-bit register.

SLDT reg32 0F 00 /0 Store the segment selector from the local
descriptor table register to a 32-bit register.

SLDT reg64 0F 00 /0 Store the segment selector from the local
descriptor table register to a 64-bit register.

SLDT mem16 0F 00 /0
Store the segment selector from the local
descriptor table register to a 16-bit memory
location.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Instruction Reference SLDT 365

24594—Rev. 3.16—September 2011 AMD64 Technology

Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

366 SMSW Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Stores the lower bits of the machine status word (CR0). The target can be a 16-, 32-, or 64-bit register
or a 16-bit memory operand.

This instruction is provided for compatibility with early processors.

This instruction can be used at any privilege level (CPL).

Related Instructions

LMSW, MOV (CRn)

rFLAGS Affected

None

Exceptions

SMSW Store Machine Status Word

Mnemonic Opcode Description

SMSW reg16 0F 01 /4 Store the low 16 bits of CR0 to a 16-bit register.

SMSW reg32 0F 01 /4 Store the low 32 bits of CR0 to a 32-bit register.

SMSW reg64 0F 01 /4 Store the entire 64-bit CR0 to a 64-bit register.

SMSW mem16 0F 01 /4 Store the low 16 bits of CR0 to memory.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X X X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference STI 367

24594—Rev. 3.16—September 2011 AMD64 Technology

Sets the interrupt flag (IF) in the rFLAGS register to 1, thereby allowing external interrupts received
on the INTR input. Interrupts received on the non-maskable interrupt (NMI) input are not affected by
this instruction.

In real mode, this instruction sets IF to 1.

In protected mode and virtual-8086-mode, this instruction is IOPL-sensitive. If the CPL is less than or
equal to the rFLAGS.IOPL field, the instruction sets IF to 1.

In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are enabled
(CR4.PVI = 1), then the instruction instead sets rFLAGS.VIF to 1. If none of these conditions apply,
the processor raises a general protection exception (#GP). For more information, see “Protected Mode
Virtual Interrupts” in Volume 2.

In virtual-8086 mode, if IOPL < 3 and the virtual-8086-mode extensions are enabled (CR4.VME = 1),
the STI instruction instead sets the virtual interrupt flag (rFLAGS.VIF) to 1.

If STI sets the IF flag and IF was initially clear, then interrupts are not enabled until after the
instruction following STI. Thus, if IF is 0, this code will not allow an INTR to happen:
STI
CLI

In the following sequence, INTR will be allowed to happen only after the NOP.
STI
NOP
CLI

If STI sets the VIF flag and VIP is already set, a #GP fault will be generated.

See “Virtual-8086 Mode Extensions” in Volume 2 for more information about IOPL-sensitive
instructions.

STI Set Interrupt Flag

Mnemonic Opcode Description

STI FB Set interrupt flag (IF) to 1.

368 STI Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Action

IF (CPL <= IOPL)
 RFLAGS.IF = 1

ELSIF (((VIRTUAL_MODE) && (CR4.VME = 1))
 || ((PROTECTED_MODE) && (CR4.PVI = 1) && (CPL = 3)))
 {
 IF (RFLAGS.VIP = 1)
 EXCEPTION[#GP(0)]
 RFLAGS.VIF = 1
 }
ELSE
 EXCEPTION[#GP(0)]

Related Instructions

CLI

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. M (modified) is either set to one or cleared to zero. Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP

X The CPL was greater than the IOPL and virtual-mode
extensions were not enabled (CR4.VME = 0).

X
The CPL was greater than the IOPL and either the CPL was
not 3 or protected-mode virtual interrupts were not enabled
(CR4.PVI = 0).

X X This instruction would set RFLAGS.VIF to 1 and
RFLAGS.VIP was already 1.

Instruction Reference STGI 369

24594—Rev. 3.16—September 2011 AMD64 Technology

Sets the global interrupt flag (GIF) to 1. While GIF is zero, all external interrupts are disabled.

This is a Secure Virtual Machine instruction. This instruction generates a #UD exception if SVM is
not enabled and ECX.SKINIT as returned by CPUID function 8000_0001 is cleared to 0. See
“Enabling SVM” on page 425 in AMD64 Architecture Programmer’s Manual Volume-2: System
Instructions, order# 24593.

Related Instructions

CLGI

rFLAGS Affected

None.

Exceptions

STGI Set Global Interrupt Flag

Mnemonic Opcode Description

STGI 0F 01 DC Sets the global interrupt flag (GIF).

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD
X

Secure Virtual Machine was not enabled (EFER.SVME=0)
and both of the following conditions were true:
• SVM-Lock is not available, as indicated by EDX bit 2

returned by CPUID function 8000_000Ah.
• DEV is not available, as indicated by ECX bit 12 returned

by CPUID function 8000_0001h.
X X Instruction is only recognized in protected mode.

General protection,
#GP X CPL was not zero.

370 STR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Stores the task register (TR) selector to a register or memory destination operand.

If the destination is a register, the selector is zero-extended into a 16-, 32-, or 64-bit general purpose
register, depending on the operand size.

If the destination is a memory location, the segment selector is written to memory as a 16-bit value,
regardless of operand size.

The STR instruction can only be used in protected mode, but it can be used at any privilege level.

Related Instructions

LGDT, LIDT, LLDT, LTR, SIDT, SGDT, SLDT

rFLAGS Affected

None

Exceptions

STR Store Task Register

Mnemonic Opcode Description

STR reg16 0F 00 /1 Store the segment selector from the task register to a 16-bit
general-purpose register.

STR reg32 0F 00 /1 Store the segment selector from the task register to a 32-bit
general-purpose register.

STR reg64 0F 00 /1 Store the segment selector from the task register to a 64-bit
general-purpose register.

STR mem16 0F 00 /1 Store the segment selector from the task register to a 16-bit
memory location.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference SWAPGS 371

24594—Rev. 3.16—September 2011 AMD64 Technology

Provides a fast method for system software to load a pointer to system data structures. SWAPGS can
be used upon entering system-software routines as a result of a SYSCALL instruction, an interrupt or
an exception. Prior to returning to application software, SWAPGS can be used to restore the
application data pointer that was replaced by the system data-structure pointer.

This instruction can only be executed in 64-bit mode. Executing SWAPGS in any other mode
generates an undefined opcode exception.

The SWAPGS instruction only exchanges the base-address value located in the KernelGSbase model-
specific register (MSR address C000_0102h) with the base-address value located in the hidden-
portion of the GS selector register (GS.base). This allows the system-kernel software to access kernel
data structures by using the GS segment-override prefix during memory references.

The address stored in the KernelGSbase MSR must be in canonical form. The WRMSR instruction
used to load the KernelGSbase MSR causes a general-protection exception if the address loaded is not
in canonical form. The SWAPGS instruction itself does not perform a canonical check.

This instruction is only valid in 64-bit mode at CPL 0. A general protection exception (#GP) is
generated if this instruction is executed at any other privilege level.

For additional information about this instruction, refer to “System-Management Instructions” in
Volume 2.

Examples

At a kernel entry point, the OS uses SwapGS to obtain a pointer to kernel data structures and
simultaneously save the user's GS base. Upon exit, it uses SwapGS to restore the user's GS base:
SystemCallEntryPoint:
SwapGS ; get kernel pointer, save user GSbase
mov gs:[SavedUserRSP], rsp ; save user's stack pointer
mov rsp, gs:[KernelStackPtr] ; set up kernel stack
push rax ; now save user GPRs on kernel stack
 . ; perform system service
 .
SwapGS ; restore user GS, save kernel pointer

Related Instructions

None

SWAPGS Swap GS Register with KernelGSbase MSR

Mnemonic Opcode Description

SWAPGS 0F 01 F8 Exchange GS base with KernelGSBase MSR.
(Invalid in legacy and compatibility modes.)

372 SWAPGS Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

None

Exceptions

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD X X X This instruction was executed in legacy or
compatibility mode.

General protection, #GP X CPL was not 0.

Instruction Reference SYSCALL 373

24594—Rev. 3.16—September 2011 AMD64 Technology

Transfers control to a fixed entry point in an operating system. It is designed for use by system and
application software implementing a flat-segment memory model.

The SYSCALL and SYSRET instructions are low-latency system call and return control-transfer
instructions, which assume that the operating system implements a flat-segment memory model. By
eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions), calls to and returns from the operating system are greatly
simplified. These instructions can be used in protected mode and are particularly well-suited for use in
64-bit mode, which requires implementation of a paged, flat-segment memory model.

This instruction has been optimized by reducing the number of checks and memory references that are
normally made so that a call or return takes considerably fewer clock cycles than the CALL FAR /RET
FAR instruction method.

It is assumed that the base, limit, and attributes of the Code Segment will remain flat for all processes
and for the operating system, and that only the current privilege level for the selector of the calling
process should be changed from a current privilege level of 3 to a new privilege level of 0. It is also
assumed (but not checked) that the RPL of the SYSCALL and SYSRET target selectors are set to 0
and 3, respectively.

SYSCALL sets the CPL to 0, regardless of the values of bits 33–32 of the STAR register. There are no
permission checks based on the CPL, real mode, or virtual-8086 mode. SYSCALL and SYSRET must
be enabled by setting EFER.SCE to 1.

It is the responsibility of the operating system to keep the descriptors in memory that correspond to the
CS and SS selectors loaded by the SYSCALL and SYSRET instructions consistent with the segment
base, limit, and attribute values forced by these instructions.

Legacy x86 Mode. In legacy x86 mode, when SYSCALL is executed, the EIP of the instruction
following the SYSCALL is copied into the ECX register. Bits 31–0 of the SYSCALL/SYSRET target
address register (STAR) are copied into the EIP register. (The STAR register is model-specific register
C000_0081h.)

New selectors are loaded, without permission checking (see above), as follows:

• Bits 47–32 of the STAR register specify the selector that is copied into the CS register.
• Bits 47–32 of the STAR register + 8 specify the selector that is copied into the SS register.
• The CS_base and the SS_base are both forced to zero.
• The CS_limit and the SS_limit are both forced to 4 Gbyte.
• The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.
• The SS segment attributes are set to read/write and expand-up with a 32-bit stack referenced by

ESP.

SYSCALL Fast System Call

374 SYSCALL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Long Mode. When long mode is activated, the behavior of the SYSCALL instruction depends on
whether the calling software is in 64-bit mode or compatibility mode. In 64-bit mode, SYSCALL
saves the RIP of the instruction following the SYSCALL into RCX and loads the new RIP from
LSTAR bits 63–0. (The LSTAR register is model-specific register C000_0082h.) In compatibility
mode, SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads the
new RIP from CSTAR bits 63–0. (The CSTAR register is model-specific register C000_0083h.)

New selectors are loaded, without permission checking (see above), as follows:

• Bits 47–32 of the STAR register specify the selector that is copied into the CS register.
• Bits 47–32 of the STAR register + 8 specify the selector that is copied into the SS register.
• The CS_base and the SS_base are both forced to zero.
• The CS_limit and the SS_limit are both forced to 4 Gbyte.
• The CS segment attributes are set to execute/read 64-bit code with a CPL of zero.
• The SS segment attributes are set to read/write and expand-up with a 64-bit stack referenced by

RSP.

The WRMSR instruction loads the target RIP into the LSTAR and CSTAR registers. If an RIP written
by WRMSR is not in canonical form, a general-protection exception (#GP) occurs.

How SYSCALL and SYSRET handle rFLAGS, depends on the processor’s operating mode.

In legacy mode, SYSCALL treats EFLAGS as follows:

• EFLAGS.IF is cleared to 0.
• EFLAGS.RF is cleared to 0.
• EFLAGS.VM is cleared to 0.

In long mode, SYSCALL treats RFLAGS as follows:

• The current value of RFLAGS is saved in R11.
• RFLAGS is masked using the value stored in SYSCALL_FLAG_MASK.
• RFLAGS.RF is cleared to 0.

For further details on the SYSCALL and SYSRET instructions and their associated MSR registers
(STAR, LSTAR, CSTAR, and SYSCALL_FLAG_MASK), see “Fast System Call and Return” in
Volume 2.

Mnemonic Opcode Description

SYSCALL 0F 05 Call operating system.

Instruction Reference SYSCALL 375

24594—Rev. 3.16—September 2011 AMD64 Technology

Action

// See “Pseudocode Definitions” on page 56.

SYSCALL_START:

 IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
 EXCEPTION [#UD]

 IF (LONG_MODE)
 SYSCALL_LONG_MODE
 ELSE // (LEGACY_MODE)
 SYSCALL_LEGACY_MODE

SYSCALL_LONG_MODE:

 RCX.q = next_RIP
 R11.q = RFLAGS // with rf cleared

 IF (64BIT_MODE)
 temp_RIP.q = MSR_LSTAR
 ELSE // (COMPATIBILITY_MODE)
 temp_RIP.q = MSR_CSTAR

 CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
 CS.attr = 64-bit code,dpl0 // Always switch to 64-bit mode in long mode.
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF

 SS.sel = MSR_STAR.SYSCALL_CS + 8
 SS.attr = 64-bit stack,dpl0
 SS.base = 0x00000000
 SS.limit = 0xFFFFFFFF

 RFLAGS = RFLAGS AND ~MSR_SFMASK
 RFLAGS.RF = 0

 CPL = 0

 RIP = temp_RIP
 EXIT

SYSCALL_LEGACY_MODE:

 RCX.d = next_RIP

 temp_RIP.d = MSR_STAR.EIP

 CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
 CS.attr = 32-bit code,dpl0 // Always switch to 32-bit mode in legacy mode.

376 SYSCALL Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF

 SS.sel = MSR_STAR.SYSCALL_CS + 8
 SS.attr = 32-bit stack,dpl0
 SS.base = 0x00000000
 SS.limit = 0xFFFFFFFF

 RFLAGS.VM,IF,RF=0

 CPL = 0

 RIP = temp_RIP
 EXIT

Related Instructions

SYSRET, SYSENTER, SYSEXIT

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M 0 0 M M M M M M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SYSCALL and SYSRET instructions are not
supported, as indicated by EDX bit 11 returned by
CPUID function 8000_0001h.

X X X
The system call extension bit (SCE) of the extended
feature enable register (EFER) is set to 0. (The
EFER register is MSR C000_0080h.)

Instruction Reference SYSENTER 377

24594—Rev. 3.16—September 2011 AMD64 Technology

Transfers control to a fixed entry point in an operating system. It is designed for use by system and
application software implementing a flat-segment memory model. This instruction is valid only in
legacy mode.

Three model-specific registers (MSRs) are used to specify the target address and stack pointers for the
SYSENTER instruction, as well as the CS and SS selectors of the called and returned procedures:

• MSR_SYSENTER_CS: Contains the CS selector of the called procedure. The SS selector is set to
MSR_SYSENTER_CS + 8.

• MSR_SYSENTER_ESP: Contains the called procedure’s stack pointer.
• MSR_SYSENTER_EIP: Contains the offset into the CS of the called procedure.

The hidden portions of the CS and SS segment registers are not loaded from the descriptor table as
they would be using a legacy x86 CALL instruction. Instead, the hidden portions are forced by the
processor to the following values:

• The CS and SS base values are forced to 0.
• The CS and SS limit values are forced to 4 Gbytes.
• The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.
• The SS segment attributes are set to read/write and expand-up with a 32-bit stack referenced by

ESP.

System software must create corresponding descriptor-table entries referenced by the new CS and SS
selectors that match the values described above.

The return EIP and application stack are not saved by this instruction. System software must explicitly
save that information.

An invalid-opcode exception occurs if this instruction is used in long mode. Software should use the
SYSCALL (and SYSRET) instructions in long mode. If SYSENTER is used in real mode, a #GP is
raised.

For additional information on this instruction, see “SYSENTER and SYSEXIT (Legacy Mode Only)”
in Volume 2.

Related Instructions

SYSCALL, SYSEXIT, SYSRET

SYSENTER System Call

Mnemonic Opcode Description

SYSENTER 0F 34 Call operating system.

378 SYSENTER Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0 0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The SYSENTER and SYSEXIT instructions are not
supported, as indicated by EDX bit 11 returned by
CPUID function 0000_0001h.

X This instruction is not recognized in long mode.

General protection, #GP
X This instruction is not recognized in real mode.

X X MSR_SYSENTER_CS was a null selector.

Instruction Reference SYSEXIT 379

24594—Rev. 3.16—September 2011 AMD64 Technology

Returns from the operating system to an application. It is a low-latency system return instruction
designed for use by system and application software implementing a flat-segment memory model.

This is a privileged instruction. The current privilege level must be zero to execute this instruction. An
invalid-opcode exception occurs if this instruction is used in long mode. Software should use the
SYSRET (and SYSCALL) instructions when running in long mode.

When a system procedure performs a SYSEXIT back to application software, the CS selector is
updated to point to the second descriptor entry after the SYSENTER CS value (MSR
SYSENTER_CS+16). The SS selector is updated to point to the third descriptor entry after the
SYSENTER CS value (MSR SYSENTER_CS+24). The CPL is forced to 3, as are the descriptor
privilege levels.

The hidden portions of the CS and SS segment registers are not loaded from the descriptor table as
they would be using a legacy x86 RET instruction. Instead, the hidden portions are forced by the
processor to the following values:

• The CS and SS base values are forced to 0.
• The CS and SS limit values are forced to 4 Gbytes.
• The CS segment attributes are set to 32-bit read/execute at CPL 3.
• The SS segment attributes are set to read/write and expand-up with a 32-bit stack referenced by

ESP.

System software must create corresponding descriptor-table entries referenced by the new CS and SS
selectors that match the values described above.

The following additional actions result from executing SYSEXIT:

• EIP is loaded from EDX.
• ESP is loaded from ECX.

System software must explicitly load the return address and application software-stack pointer into the
EDX and ECX registers prior to executing SYSEXIT.

For additional information on this instruction, see “SYSENTER and SYSEXIT (Legacy Mode Only)”
in Volume 2.

Related Instructions

SYSCALL, SYSENTER, SYSRET

SYSEXIT System Return

Mnemonic Opcode Description

SYSEXIT 0F 35 Return from operating system to application.

380 SYSEXIT Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

0

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD
X X X

The SYSENTER and SYSEXIT instructions are not
supported, as indicated by EDX bit 11 returned by
CPUID function 0000_0001h.

X This instruction is not recognized in long mode.

General protection, #GP
X X This instruction is only recognized in protected

mode.
X CPL was not 0.
X MSR_SYSENTER_CS was a null selector.

Instruction Reference SYSRET 381

24594—Rev. 3.16—September 2011 AMD64 Technology

Returns from the operating system to an application. It is a low-latency system return instruction
designed for use by system and application software implementing a flat segmentation memory model.

The SYSCALL and SYSRET instructions are low-latency system call and return control-transfer
instructions that assume that the operating system implements a flat-segment memory model. By
eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions), calls to and returns from the operating system are greatly
simplified. These instructions can be used in protected mode and are particularly well-suited for use in
64-bit mode, which requires implementation of a paged, flat-segment memory model.

This instruction has been optimized by reducing the number of checks and memory references that are
normally made so that a call or return takes substantially fewer internal clock cycles when compared to
the CALL/RET instruction method.

It is assumed that the base, limit, and attributes of the Code Segment will remain flat for all processes
and for the operating system, and that only the current privilege level for the selector of the calling
process should be changed from a current privilege level of 0 to a new privilege level of 3. It is also
assumed (but not checked) that the RPL of the SYSCALL and SYSRET target selectors are set to 0
and 3, respectively.

SYSRET sets the CPL to 3, regardless of the values of bits 49–48 of the star register. SYSRET can
only be executed in protected mode at CPL 0. SYSCALL and SYSRET must be enabled by setting
EFER.SCE to 1.

It is the responsibility of the operating system to keep the descriptors in memory that correspond to the
CS and SS selectors loaded by the SYSCALL and SYSRET instructions consistent with the segment
base, limit, and attribute values forced by these instructions.

When a system procedure performs a SYSRET back to application software, the CS selector is
updated from bits 63–50 of the STAR register (STAR.SYSRET_CS) as follows:

• If the return is to 32-bit mode (legacy or compatibility), CS is updated with the value of
STAR.SYSRET_CS.

• If the return is to 64-bit mode, CS is updated with the value of STAR.SYSRET_CS + 16.

In both cases, the CPL is forced to 3, effectively ignoring STAR bits 49–48. The SS selector is updated
to point to the next descriptor-table entry after the CS descriptor (STAR.SYSRET_CS + 8), and its
RPL is not forced to 3.

The hidden portions of the CS and SS segment registers are not loaded from the descriptor table as
they would be using a legacy x86 RET instruction. Instead, the hidden portions are forced by the
processor to the following values:

• The CS base value is forced to 0.
• The CS limit value is forced to 4 Gbytes.

SYSRET Fast System Return

382 SYSRET Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

• The CS segment attributes are set to execute-read 32 bits or 64 bits (see below).
• The SS segment base, limit, and attributes are not modified.

When SYSCALLed system software is running in 64-bit mode, it has been entered from either 64-bit
mode or compatibility mode. The corresponding SYSRET needs to know the mode to which it must
return. Executing SYSRET in non-64-bit mode or with a 16- or 32-bit operand size returns to 32-bit
mode with a 32-bit stack pointer. Executing SYSRET in 64-bit mode with a 64-bit operand size returns
to 64-bit mode with a 64-bit stack pointer.

The instruction pointer is updated with the return address based on the operating mode in which
SYSRET is executed:

• If returning to 64-bit mode, SYSRET loads RIP with the value of RCX.
• If returning to 32-bit mode, SYSRET loads EIP with the value of ECX.

How SYSRET handles RFLAGS depends on the processor’s operating mode:

• If executed in 64-bit mode, SYSRET loads the lower-32 RFLAGS bits from R11[31:0] and clears
the upper 32 RFLAGS bits.

• If executed in legacy mode or compatibility mode, SYSRET sets EFLAGS.IF.

For further details on the SYSCALL and SYSRET instructions and their associated MSR registers
(STAR, LSTAR, and CSTAR), see “Fast System Call and Return” in Volume 2.

Action
// See “Pseudocode Definitions” on page 56.

SYSRET_START:

 IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
 EXCEPTION [#UD]

 IF ((!PROTECTED_MODE) || (CPL != 0))
 EXCEPTION [#GP(0)] // SYSRET requires protected mode, cpl0

 IF (64BIT_MODE)
 SYSRET_64BIT_MODE
 ELSE // (!64BIT_MODE)
 SYSRET_NON_64BIT_MODE

SYSRET_64BIT_MODE:

 IF (OPERAND_SIZE = 64) // Return to 64-bit mode.
 {

Mnemonic Opcode Description

SYSRET 0F 07 Return from operating system.

Instruction Reference SYSRET 383

24594—Rev. 3.16—September 2011 AMD64 Technology

 CS.sel = (MSR_STAR.SYSRET_CS + 16) OR 3
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF
 CS.attr = 64-bit code,dpl3

 temp_RIP.q = RCX
 }
 ELSE // Return to 32-bit compatibility mode.
 {
 CS.sel = MSR_STAR.SYSRET_CS OR 3
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF
 CS.attr = 32-bit code,dpl3

 temp_RIP.d = RCX
 }

 SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed,
 // SS base, limit, attributes unchanged.

 RFLAGS.q = R11 // RF=0,VM=0
 CPL = 3

 RIP = temp_RIP
 EXIT

SYSRET_NON_64BIT_MODE:

 CS.sel = MSR_STAR.SYSRET_CS OR 3 // Return to 32-bit legacy protected mode.
 CS.base = 0x00000000
 CS.limit = 0xFFFFFFFF
 CS.attr = 32-bit code,dpl3

 temp_RIP.d = RCX

 SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed.
 // SS base, limit, attributes unchanged.
 RFLAGS.IF = 1
 CPL = 3

 RIP = temp_RIP
 EXIT

Related Instructions

SYSCALL, SYSENTER, SYSEXIT

384 SYSRET Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M M M M 0 M M M M M M M M M M M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode, #UD

X X X
The SYSCALL and SYSRET instructions are not
supported, as indicated by EDX bit 11 returned by
CPUID function 8000_0001h.

X X X
The system call extension bit (SCE) of the extended
feature enable register (EFER) is set to 0. (The
EFER register is MSR C000_0080h.)

General protection, #GP
X X This instruction is only recognized in protected

mode.
X CPL was not 0.

Instruction Reference UD2 385

24594—Rev. 3.16—September 2011 AMD64 Technology

Generates an invalid opcode exception. Unlike other undefined opcodes that may be defined as legal
instructions in the future, UD2 is guaranteed to stay undefined.

Related Instructions

None

rFLAGS Affected

None

Exceptions

UD2 Undefined Operation

Mnemonic Opcode Description

UD2 0F 0B Raise an invalid opcode exception.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X This instruction is not recognized.

386 VERR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Verifies whether a code or data segment specified by the segment selector in the 16-bit register or
memory operand is readable from the current privilege level. The zero flag (ZF) is set to 1 if the
specified segment is readable. Otherwise, ZF is cleared.

A segment is readable if all of the following apply:

• the selector is not a null selector.
• the descriptor is within the GDT or LDT limit.
• the segment is a data segment or readable code segment.
• the descriptor DPL is greater than or equal to both the CPL and RPL, or the segment is a

conforming code segment.

The processor does not recognize the VERR instruction in real or virtual-8086 mode.

Related Instructions

ARPL, LAR, LSL, VERW

rFLAGS Affected

Exceptions

VERR Verify Segment for Reads

Mnemonic Opcode Description

VERR reg/mem16 0F 00 /4 Set the zero flag (ZF) to 1 if the segment
selected can be read.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or is
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to reference memory.

Instruction Reference VERR 387

24594—Rev. 3.16—September 2011 AMD64 Technology

Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

388 VERW Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Verifies whether a data segment specified by the segment selector in the 16-bit register or memory
operand is writable from the current privilege level. The zero flag (ZF) is set to 1 if the specified
segment is writable. Otherwise, ZF is cleared.

A segment is writable if all of the following apply:

• the selector is not a null selector.
• the descriptor is within the GDT or LDT limit.
• the segment is a writable data segment.
• the descriptor DPL is greater than or equal to both the CPL and RPL.

The processor does not recognize the VERW instruction in real or virtual-8086 mode.

Related Instructions

ARPL, LAR, LSL, VERR

rFLAGS Affected

Exceptions

VERW Verify Segment for Write

Mnemonic Opcode Description

VERW reg/mem16 0F 00 /5 Set the zero flag (ZF) to 1 if the segment
selected can be written.

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags
are blank. Undefined flags are U.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X This instruction is only recognized in protected mode.

Stack, #SS X A memory address exceeded the stack segment limit or was
non-canonical.

General protection,
#GP

X A memory address exceeded a data segment limit or was
non-canonical.

X A null data segment was used to access memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check,
#AC X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference VMLOAD 389

24594—Rev. 3.16—September 2011 AMD64 Technology

Loads a subset of processor state from the VMCB specified by the system-physical address in the rAX
register. The portion of RAX used to form the address is determined by the effective address size.

The VMSAVE and VMLOAD instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to access, plus some
additional commonly-used state.

This is a Secure Virtual Machine instruction. This instruction generates a #UD exception if SVM is
not enabled. See “Enabling SVM” on page 425 in AMD64 Architecture Programmer’s Manual
Volume 2: System Instructions, order# 24593.

Action
IF ((MSR_EFER.SVME = 0) || (!PROTECTED_MODE))
 EXCEPTION [#UD] // This instruction can only be executed in protected
 // mode with SVM enabled

IF (CPL != 0) // This instruction is only allowed at CPL 0
 EXCEPTION [#GP]

IF (rAX contains an unsupported system-physical address)
 EXCEPTION [#GP]

Load from a VMCB at system-physical address rAX:
FS, GS, TR, LDTR (including all hidden state)
KernelGsBase
STAR, LSTAR, CSTAR, SFMASK
SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

Related Instructions

VMSAVE

rFLAGS Affected

None.

VMLOAD Load State from VMCB

Mnemonic Opcode Description

VMLOAD rAX 0F 01 DA Load additional state from VMCB.

390 VMLOAD Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD
X X X The SVM instructions are not supported as indicated by ECX

bit 2 as returned by CPUID function 8000_0001h.
X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X The instruction is only recognized in protected mode.

General protection,
#GP

X CPL was not zero.

X rAX referenced a physical address above the maximum
supported physical address.

X The address in rAX was not aligned on a 4Kbyte boundary.

Instruction Reference VMMCALL 391

24594—Rev. 3.16—September 2011 AMD64 Technology

Provides a mechanism for a guest to explicitly communicate with the VMM by generating a
#VMEXIT.

A non-intercepted VMMCALL unconditionally raises a #UD exception.

VMMCALL is not restricted to either protected mode or CPL zero.

This is a Secure Virtual Machine instruction. This instruction generates a #UD exception if SVM is
not enabled. See “Enabling SVM” on page 425 in AMD64 Architecture Programmer’s Manual
Volume 2: System Instructions, order# 24593.

Related Instructions

None.

rFLAGS Affected

None.

Exceptions

VMMCALL Call VMM

Mnemonic Opcode Description

VMMCALL 0F 01 D9 Explicit communication with the VMM.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD
X X X The SVM instructions are not supported as indicated by ECX

bit 2 as returned by CPUID function 8000_0001h.
X X X Secure Virtual Machine was not enabled (EFER.SVME=0).
X X X VMMCALL was not intercepted.

392 VMRUN Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Starts execution of a guest instruction stream. The physical address of the virtual machine control
block (VMCB) describing the guest is taken from the rAX register (the portion of RAX used to form
the address is determined by the effective address size). The physical address of the VMCB must be
aligned on a 4K-byte boundary.

VMRUN saves a subset of host processor state to the host state-save area specified by the physical
address in the VM_HSAVE_PA MSR. VMRUN then loads guest processor state (and control
information) from the VMCB at the physical address specified in rAX. The processor then executes
guest instructions until one of several intercept events (specified in the VMCB) is triggered. When an
intercept event occurs, the processor stores a snapshot of the guest state back into the VMCB, reloads
the host state, and continues execution of host code at the instruction following the VMRUN
instruction.

This is a Secure Virtual Machine instruction. This instruction generates a #UD exception if SVM is
not enabled. See “Enabling SVM” on page 425 in AMD64 Architecture Programmer’s Manual
Volume 2: System Instructions, order# 24593.

The VMRUN instruction is not supported in System Management Mode. Processor behavior resulting
from an attempt to execute this instruction from within the SMM handler is undefined.

Action
IF ((MSR_EFER.SVME = 0) || (!PROTECTED_MODE))
 EXCEPTION [#UD] // This instruction can only be executed in protected
 // mode with SVM enabled

IF (CPL != 0) // This instruction is only allowed at CPL 0
 EXCEPTION [#GP]

IF (rAX contains an unsupported physical address)
 EXCEPTION [#GP]

if (intercepted(VMRUN))
 #VMEXIT (VMRUN)
remember VMCB address (delivered in rAX) for next #VMEXIT
save host state to physical memory indicated in the VM_HSAVE_PA MSR:

ES.sel
CS.sel
SS.sel
DS.sel
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR0

VMRUN Run Virtual Machine

Mnemonic Opcode Description

VMRUN rAX 0F 01 D8 Performs a world-switch to guest.

Instruction Reference VMRUN 393

24594—Rev. 3.16—September 2011 AMD64 Technology

CR4
CR3
// host CR2 is not saved
RFLAGS
RIP
RSP
RAX

from the VMCB at physical address rAX, load control information:
 intercept vector
 TSC_OFFSET
 interrupt control (v_irq, v_intr_*, v_tpr)
 EVENTINJ field
 ASID

if (nested paging supported)
 NP_ENABLE
 if (NP_ENABLE = 1)

 nCR3

from the VMCB at physical address rAX, load guest state:
 ES.{base,limit,attr,sel}
 CS.{base,limit,attr,sel}
 SS.{base,limit,attr,sel}
 DS.{base,limit,attr,sel}
 GDTR.{base,limit}
 IDTR.{base,limit}
 EFER
 CR0
 CR4
 CR3
 CR2

if (NP_ENABLE = 1)
 gPAT // Leaves host hPAT register unchanged.

 RFLAGS
 RIP
 RSP
 RAX
 DR7
 DR6
 CPL // 0 for real mode, 3 for v86 mode, else as loaded.

INTERRUPT_SHADOW

if (LBR virtualization supported)
 LBR_VIRTUALIZATION_ENABLE
 if (LBR_VIRTUALIZATION_ENABLE=1)
 save LBR state to the host save area
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM

394 VMRUN Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

 LASTEXCP_TO
 load LBR state from the VMCB
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO

if (guest state consistency checks fail)
 #VMEXIT(INVALID)

Execute command stored in TLB_CONTROL.

GIF = 1 // allow interrupts in the guest
if (EVENTINJ.V)

cause exception/interrupt in guest
else

jump to first guest instruction

Upon #VMEXIT, the processor performs the following actions in order to return to the host execution
context:
GIF = 0
save guest state to VMCB:

ES.{base,limit,attr,sel}
CS.{base,limit,attr,sel}
SS.{base,limit,attr,sel}
DS.{base,limit,attr,sel}
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR4
CR3
CR2
CR0
if (nested paging enabled)
 gPAT
RFLAGS
RIP
RSP
RAX
DR7
DR6
CPL
INTERRUPT_SHADOW

save additional state and intercept information:
V_IRQ, V_TPR
EXITCODE
EXITINFO1
EXITINFO2
EXITINTINFO

clear EVENTINJ field in VMCB

Instruction Reference VMRUN 395

24594—Rev. 3.16—September 2011 AMD64 Technology

prepare for host mode by clearing internal processor state bits:
clear intercepts
clear v_irq
clear v_intr_masking
clear tsc_offset
disable nested paging
clear ASID to zero

reload host state
GDTR.{base,limit}
IDTR.{base,limit}
EFER
CR0
CR0.PE = 1 // saved copy of CR0.PE is ignored
CR4
CR3
if (host is in PAE paging mode)

 reloaded host PDPEs
// Do not reload host CR2 or PAT
RFLAGS
RIP
RSP
RAX
DR7 = “all disabled”
CPL = 0
ES.sel; reload segment descriptor from GDT
CS.sel; reload segment descriptor from GDT
SS.sel; reload segment descriptor from GDT
DS.sel; reload segment descriptor from GDT

if (LBR virtualization supported)
 LBR_VIRTUALIZATION_ENABLE
 if (LBR_VIRTUALIZATION_ENABLE=1)
 save LBR state to the VMCB:
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO
 load LBR state from the host save area:
 DBGCTL
 BR_FROM
 BR_TO
 LASTEXCP_FROM
 LASTEXCP_TO

if (illegal host state loaded, or exception while loading host state)
shutdown

else
execute first host instruction following the VMRUN

396 VMRUN Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Related Instructions

VMLOAD, VMSAVE.

rFLAGS Affected

None.

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD
X X X The SVM instructions are not supported as indicated by ECX

bit 2 as returned by CPUID function 8000_0001h.
X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X The instruction is only recognized in protected mode.

General protection,
#GP

X CPL was not zero.

X rAX referenced a physical address above the maximum
supported physical address.

X The address in rAX was not aligned on a 4Kbyte boundary.

Instruction Reference VMSAVE 397

24594—Rev. 3.16—September 2011 AMD64 Technology

Stores a subset of the processor state into the VMCB specified by the system-physical address in the
rAX register (the portion of RAX used to form the address is determined by the effective address size).

The VMSAVE and VMLOAD instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to access, plus some
additional commonly-used state.

This is a Secure Virtual Machine instruction. This instruction generates a #UD exception if SVM is
not enabled. See “Enabling SVM” on page 425 in AMD64 Architecture Programmer’s Manual
Volume 2: System Instructions, order# 24593.

Action
IF ((MSR_EFER.SVME = 0) || (!PROTECTED_MODE))
 EXCEPTION [#UD] // This instruction can only be executed in protected
 // mode with SVM enabled

IF (CPL != 0) // This instruction is only allowed at CPL 0
 EXCEPTION [#GP]

IF (rAX contains an unsupported system-physical address)
 EXCEPTION [#GP]

Store to a VMCB at system-physical address rAX:
FS, GS, TR, LDTR (including all hidden state)
KernelGsBase
STAR, LSTAR, CSTAR, SFMASK
SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

Related Instructions

VMLOAD

rFLAGS Affected

None.

VMSAVE Save State to VMCB

Mnemonic Opcode Description

VMSAVE rAX 0F 01 DB Save additional guest state to VMCB.

398 VMSAVE Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Exceptions

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode, #UD
X X X The SVM instructions are not supported as indicated by ECX

bit 2 as returned by CPUID function 8000_0001h.
X Secure Virtual Machine was not enabled (EFER.SVME=0).

X X The instruction is only recognized in protected mode.

General protection,
#GP

X CPL was not zero.

X rAX referenced a physical address above the maximum
supported physical address.

X The address in rAX was not aligned on a 4Kbyte boundary.

Instruction Reference WBINVD 399

24594—Rev. 3.16—September 2011 AMD64 Technology

Writes all modified cache lines in the internal caches back to main memory and invalidates (flushes)
internal caches. It then causes external caches to write back modified data to main memory; the
external caches are subsequently invalidated. After invalidating internal caches, the processor
proceeds immediately with the execution of the next instruction without waiting for external hardware
to invalidate its caches.

The INVD instruction can be used when cache coherence with memory is not important.

This instruction does not invalidate TLB caches.

This is a privileged instruction. The current privilege level of a procedure invalidating the processor’s
internal caches must be zero.

WBINVD is a serializing instruction.

Related Instructions

CLFLUSH, INVD

rFLAGS Affected

None

Exceptions

WBINVD Writeback and Invalidate Caches

Mnemonic Opcode Description

WBINVD 0F 09 Write modified cache lines to main memory, invalidate
internal caches, and trigger external cache flushes.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

General protection,
#GP X X CPL was not 0.

400 WRMSR Instruction Reference

AMD64 Technology 24594—Rev. 3.16—September 2011

Writes data to 64-bit model-specific registers (MSRs). These registers are widely used in
performance-monitoring and debugging applications, as well as testability and program execution
tracing.

This instruction writes the contents of the EDX:EAX register pair into a 64-bit model-specific register
specified in the ECX register. The 32 bits in the EDX register are mapped into the high-order bits of
the model-specific register and the 32 bits in EAX form the low-order 32 bits.

This instruction must be executed at a privilege level of 0 or a general protection fault #GP(0) will be
raised. This exception is also generated if an attempt is made to specify a reserved or unimplemented
model-specific register in ECX.

WRMSR is a serializing instruction.

The CPUID instruction can provide model information useful in determining the existence of a
particular MSR.

See Volume 2: System Programming, for more information about model-specific registers, machine
check architecture, performance monitoring and debug registers.

Related Instructions

RDMSR

rFLAGS Affected

None

Exceptions

WRMSR Write to Model-Specific Register

Mnemonic Opcode Description

WRMSR 0F 30 Write EDX:EAX to the MSR specified by ECX.

Exception Real
Virtual
8086

Protecte
d Cause of Exception

Invalid opcode,
#UD X X X The WRMSR instruction is not supported, as indicated by EDX

bit 5 returned by CPUID function 1 or 8000_0001h.

General protection,
#GP

X X CPL was not 0.

X X The value in ECX specifies a reserved or unimplemented
MSR address.

X X Writing 1 to any bit that must be zero (MBZ) in the MSR.

X X Writing a non-canonical value to a MSR that can only be
written with canonical values.

Opcode and Operand Encodings 401

24594—Rev. 3.16—September 2011 AMD64 Technology

Appendix A Opcode and Operand Encodings

This appendix specifies the opcode and operand encodings for each instruction in the AMD64
instruction set. As discussed in Chapter 1, “Instruction Encoding,” the basic operation and implied
operand type(s) of an instruction are encoded by the binary value of the opcode byte. The
correspondence between an opcode binary value and its meaning is provided by the opcode map.

Each opcode map has 256 entries and can encode up to 256 different operations. Since the AMD64
instruction set comprises more than 256 instructions, multiple opcode maps are utilized to encode the
instruction set. For each opcode map, values may be reserved or utilized for purposes other than
encoding an instruction operation. A particular opcode map is selected using the instruction encoding
syntax diagrammed in Figure 1-1 on page 2.

The following section provides a key to the notation used in the opcode maps to specify the implied
operand types.

Opcode-Syntax Notation

In the opcode maps which follow, each table entry represents a specific form of an instruction,
identifying the instruction by its mnemonic and listing the operand or operands peculiar to that
opcode. Each operand is represented either by a register mnemonic as defined in “Summary of
Registers and Data Types” on page 38 or by a special symbol that represents the operand and its
encoding in more generic terms.

These special symbols, used exclusively in the opcode maps, are composed of three parts

• an initial capital letter that represents the operand source / destination (register-based, memory-
based, or immediate) and how it is encoded in the instruction (part of the opcode, or in an
immediate, ModRM.reg, ModRM.{mod,r/m}, or VEX/XOP.vvvv field). For register-based
operands, the inital letter also specifies the register type (General-purpose, MMX, YMM/XMM,
debug, or control register).

• one or two letter modifier (in lowercase) that represents the data type (for example, byte, word,
quadword, packed single-precision floating-point vector).

• x, which indicates for an SSE instruction that the instruction supports both vector sizes (128 bits
and 256 bits). The specific vector size is encoded in the VEX/XOP.L field. L=0 indicates 128 bits
and L=1 indicates 256 bits.

402 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

The following list describes the meaning of each letter that is used in the first position of the operand
symbol:

A A far pointer encoded in the instruction. No ModRM byte in the instruction encoding.

C Control register specified by the ModRM.reg field.

D Debug register specified by the ModRM.reg field.

E General purpose register or memory operand specified by the r/m field of the ModRM byte. For
memory operands, the ModRM byte may be followed by a SIB byte to specify one of the indexed
register-indirect addressing forms.

F rFLAGS register.

G General purpose register specified by the ModRM.reg field.

H YMM or XMM register specified by the VEX/XOP.vvvv field.

I Immediate value encoded in the instruction.

J The instruction encoding includes a relative offset that is added to the rIP.

L YMM or XMM register specified using the most-significant 4 bits of an 8-bit immediate value.
In legacy or compatibility mode the most significant bit is ignored.

M A memory operand specified by the {mod, r/m}field of the ModRM byte. ModRM.mod ≠ 11b.

N 64-bit MMX register specified by the ModRM.r/m field. The ModRM.mod field must be 11b.

O The offset of an operand is encoded in the instruction. There is no ModRM byte in the instruction
encoding. Indexed register-indirect addressing using the SIB byte is not supported.

P 64-bit MMX register specified by the ModRM.reg field.

Q 64-bit MMX-register or memory operand specified by the {mod, r/m} field of the ModRM byte.
For memory operands, the ModRM byte may be followed by a SIB byte to specify one of the
indexed register-indirect addressing forms.

R General purpose register specified by the ModRM.r/m field. The ModRM.mod field must be
11b.

S Segment register specified by the ModRM.reg field.

U YMM/XMM register specified by the ModRM.r/m field. The ModRM.mod field must be 11b.

V YMM/XMM register specified by the ModRM.reg field.

W YMM/XMM register or memory operand specified by the {mod, r/m} field of the ModRM byte.
For memory operands, the ModRM byte may be followed by a SIB byte to specify one of the
indexed register-indirect addressing forms.

X A memory operand addressed by the DS.rSI registers. Used in string instructions.

Y A memory operand addressed by the ES.rDI registers. Used in string instructions.

The following list provides the key for the second part of the operand symbol:

Opcode and Operand Encodings 403

24594—Rev. 3.16—September 2011 AMD64 Technology

a Two 16-bit or 32-bit memory operands, depending on the effective operand size. Used in the
BOUND instruction.

b A byte, irrespective of the effective operand size.

c A byte or a word, depending on the effective operand size.

d A doubleword (32 bits), irrespective of the effective operand size.

do A double octword (256 bits), irrespective of the effective operand size.

o An octword (128 bits), irrespective of the effective operand size.

p A 32-bit or 48-bit far pointer, depending on the effective operand size.

pb Vector with byte-wide (8-bit) elements (packed byte).

pd A double-precision (64-bit) floating-point vector operand (packed double-precision).

pdw Vector composed of 32-bit doublewords.

ph A half-precision (16-bit) floating-point vector operand (packed half-precision)

pi Vector composed of 16-bit integers (packed integer).

pj Vector composed of 32-bit integers (packed double integer).

pk Vector composed of 8-bit integers (packed half-word integer).

pq Vector composed of 64-bit integers (packed quadword integer).

pqw Vector composed of 64-bit quadwords (packed quadword).

ps A single-precision floating-point vector operand (packed single-precision).

pw Vector composed of 16-bit words (packed word).

q A quadword (64 bits), irrespective of the effective operand size.

s A 6-byte or 10-byte pseudo-descriptor.

sd A scalar double-precision floating-point operand (scalar double).

si A scalar doubleword (32-bit) integer operand (scalar integer).

ss A scalar single-precision floating-point operand (scalar single).

v A word, doubleword, or quadword (in 64-bit mode), depending on the effective operand size.

w A word, irrespective of the effective operand size.

x Instruction supports both vector sizes (128 bits or 256 bits). Size is encoded using the
VEX/XOP.L field. (L=0: 128 bits; L=1: 256 bits). This symbol, when used, is appended to the ps
or pd symbol.

y A doubleword or quadword depending on effective operand size.

z A word if the effective operand size is 16 bits, or a doubleword if the effective operand size is 32
or 64 bits.

404 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

For some instructions, fields in the ModRM or SIB byte are used as encoding extensions. This is
indicated using the following notation:

/n A ModRM-byte reg field or SIB-byte base field, where n is a value between zero (binary 000)
and 7 (binary 111).

For SSE instructions that take scalar operands, VEX/XOP.L field is ignored.

A.1 Opcode Maps
In all of the following opcode maps, cells shaded grey represent reserved opcodes.

A.1.1 Legacy Opcode Maps

Primary Opcode Map. Tables A-1 and A-2 below show the primary opcode map (known in legacy
terminology as one-byte opcodes).

Table A-1 below shows those instructions for which the low nibble is in the range 0–7h. Table A-2 on
page 406 shows those instructions for which the low nibble is in the range 8–Fh. In both tables, the
rows show the full range (0–Fh) of the high nibble, and the columns show the specified range of the
low nibble.

Opcode and Operand Encodings 405

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-1. Primary Opcode Map (One-byte Opcodes), Low Nibble 0–7h

Nibble1 0 1 2 3 4 5 6 7

0 ADD
PUSH ES3 POP ES3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC
PUSH SS3 POP SS3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND
seg ES6 DAA3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR
seg SS6 AAA3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INC / REX prefix5

eAX eCX eDX eBX eSP eBP eSI eDI

5 PUSH
rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHA3

PUSHD3
POPA3

POPD3
BOUND 3

Gv, Ma

ARPL3

Ew, Gw
MOVSXD4

Gv, Ed

seg FS
prefix

seg GS
prefix

operand size
override

prefix

address
size override

prefix

7 JO Jb JNO Jb JB Jb JNB Jb JZ Jb JNZ Jb JBE Jb JNBE Jb

8 Group 12 TEST XCHG
Eb, Ib Ev, Iz Eb, Ib3 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9
XCHG

r8, rAX
NOP,PAUSE rCX/r9, rAX rDX/r10, rAX rBX/r11, rAX rSP/r12, rAX rBP/r13, rAX rSI/r14, rAX rDI/r15, rAX

A MOV MOVSB
Yb, Xb

MOVSW/D/Q
Yv, Xv

CMPSB
Xb, Yb

CMPSW/D/Q
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX

B
MOV

AL, Ib
r8b, Ib

CL, Ib
r9b, Ib

DL, Ib
r10b, Ib

BL, Ib
r11b, Ib

AH, Ib
r12b, Ib

CH, Ib
r13b, Ib

DH, Ib
r14b, Ib

BH, Ib
r15b, Ib

C
Group 22 RET near LES3 Gz, Mp LDS3 Gz, Mp Group 112

Eb, Ib Ev, Ib Iw VEX4 escape
prefix

VEX4 escape
prefix Eb, Ib Ev, Iz

D Group 22
AAM Ib3 AAD Ib3 invalid XLAT

XLATBEb, 1 Ev, 1 Eb, CL Ev, CL

E LOOPNE/NZ
Jb

LOOPE/Z
Jb LOOP Jb JrCXZ Jb

IN OUT
AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK Prefix INT1 REPNE
Prefix

REP / REPE
Prefix HLT CMC

Group 32

Eb Ev
Notes:
1. Rows in this table show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal).
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-6 on page 413 for details.
3. Invalid in 64-bit mode.
4. Valid only in 64-bit mode.
5. Used as REX prefixes in 64-bit mode.
6. This is a null prefix in 64-bit mode.

406 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Secondary Opcode Map. As described in “Encoding Syntax” on page 1, the escape code 0Fh
indicates the switch from the primary to the secondary opcode map. In legacy terminology, the
secondary opcode map is presented as a listing of “two-byte” opcodes where the first byte is 0Fh.
Tables A-3 and A-4 show the secondary opcode map.

Table A-2. Primary Opcode Map (One-byte Opcodes), Low Nibble 8–Fh

Nibble1 8 9 A B C D E F

0 OR PUSH
CS3

escape to
secondary

opcode mapEb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DS3

POP
DS3Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB
seg CS6 DAS3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP
seg DS6 AAS3

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DEC / REX prefix5

eAX eCX eDX eBX eSP eBP eSI eDI

5 POP
rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSH
Iz

IMUL
Gv, Ev, Iz

PUSH
Ib

IMUL
Gv, Ev, Ib

INSB
Yb, DX

INSW/D
Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS
OUTSW/D

DX, Xz

7 JS Jb JNS Jb JP Jb JNP Jb JL Jb JNL Jb JLE Jb JNLE Jb

8
MOV

LEA
Gv, M

MOV
Sw, Ew

Group 1a2

Eb, Gb Ev, Gv Gb, Eb Gv, Ev Mw/Rv, Sw XOP escape
prefix

9 CBW, CWDE
CDQE

CWD, CDQ,
CQO

CALL3

Ap
WAIT

FWAIT
PUSHF/D/Q

Fv
POPF/D/Q

Fv SAHF LAHF

A TEST STOSB
Yb, AL

STOSW/D/Q
Yv, rAX

LODSB
AL, Xb

LODSW/D/Q
rAX, Xv

SCASB
AL, Yb

SCASW/D/Q
rAX, YvAL, Ib rAX, Iz

B
MOV

rAX, Iv
r8, Iv

rCX, Iv
r9, Iv

rDX, Iv
r10, Iv

rBX, Iv
r11, Iv

rSP, Iv
r12, Iv

rBP, Iv
r13, Iv

rSI, Iv
r14, Iv

rDI, Iv
r15, Iv

C ENTER
Iw, Ib LEAVE

RET far
INT3 INT Ib INTO3 IRET, IRETD,

Iw IRETQ

D x87 instructions
see Table A-15 on page 425

E CALL Jz
JMP IN OUT

Jz Ap3 Jb AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD
Group 42 Group 52

Eb
Note:

1. Rows in this table show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal).
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-6 on page 413 for details.
3. Invalid in 64-bit mode.
4. Valid only in 64-bit mode.
5. Used as REX prefixes in 64-bit mode.
6. This is a null prefix in 64-bit mode.

Opcode and Operand Encodings 407

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-3 below shows those instructions for which the low nibble is in the range 0–7h. Table A-4 on
page 410 shows those instructions for which the low nibble is in the range 8–Fh. In both tables, the
rows show the full range (0–Fh) of the high nibble, and the columns show the specified range of the
low nibble. Note the added column labeled “prefix.”

For the secondary opcode map shown below, the legacy prefixes 66h, F2h, and F3 are repurposed to
provide additional opcode encoding space. For those rows that utilize them, the presence of a 66h,
F2h, or F3h prefix changes the operation or the operand types specified by the corresponding opcode
value.

As discussed in “Encoding Extensions Using the ModRM Byte” on page 413, some opcode values
represent a group of instructions. This is denoted in the map entry by “Group n”, where n = [1:17,P].
Instructions within a group are encoded by the reg field of the ModRM byte. These encodings are
specified in Table A-7 on page 415. For some opcodes, both the reg and the r/m field of the ModRM
byte are used to extend the encoding. See Table A-8 on page 416.

408 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0–7h
Prefix Nibble1 0 1 2 3 4 5 6 7

n/a 0 Group 62 Group 72 LAR
Gv, Ew

LSL
Gv, Ew SYSCALL CLTS SYSRET

none

1

MOVUPS
MOVLPS
Vq, Mq

MOVHLPS
Vq, Uq

MOVLPS
Mq, Vq

UNPCKLPS
Vps,Wps

UNPCKHPS
Vps,Wps

MOVHPS
Vps, Mq

MOVLHPS
Vps, Uq

MOVHPS
Mq, Vps

Vps, Wps Wps, Vps

F3 MOVSS MOVSLDUP
Vps, Wps

MOVSHDUP
Vps, WpsVss, Wss Wss, Vss

66 MOVUPD MOVLPD UNPCKLPD
Vpd, Wq

UNPCKHPD
Vpd, Wq

MOVHPD
Vpd, Wpd Wpd, Vpd Vsd, Mq Mq, Vsd Vsd, Mq Mq, Vsd

F2 MOVSD MOVDDUP
Vsd, WsdVsd, Wsd Wsd, Vsd

n/a 2 MOV
Rd/q, Cd/q Rd/q, Dd/q Cd/q, Rd/q Dd/q, Rd/q

n/a 3 WRMSR RDTSC RDMSR RDPMC SYSENTER3 SYSEXIT3

n/a 4 CMOVO
Gv, Ev

CMOVNO
Gv, Ev

CMOVB
Gv, Ev

CMOVNB
Gv, Ev

CMOVZ
Gv, Ev

CMOVNZ
Gv, Ev

CMOVBE
Gv, Ev

CMOVNBE
Gv, Ev

none

5

MOVMSKPS
Gd, Ups

SQRTPS
Vps, Wps

RSQRTPS
Vps, Wps

RCPPS
Vps, Wps

ANDPS
Vps, Wps

ANDNPS
Vps, Wps

ORPS
Vps, Wps

XORPS
Vps, Wps

F3 SQRTSS
Vss, Wss

RSQRTSS
Vss, Wss

RCPSS
Vss, Wss

66 MOVMSKPD
Gd, Upd

SQRTPD
Vpd, Wpd

ANDPD
Vpd, Wpd

ANDNPD
Vpd, Wpd

ORPD
Vpd, Wpd

XORPD
Vpd, Wpd

F2 SQRTSD
Vsd, Wsd

none

6

PUN-
PCKLBW

Pq, Qd

PUN-
PCKLWD

Pq, Qd

PUN-
PCKLDQ
Pq, Qd

PACKSSWB
Pq, Qq

PCMPGTB
Pq, Qq

PCMPGTW
Pq, Qq

PCMPGTD
Pq, Qq

PACKUSWB
Pq, Qq

F3

66
PUN-

PCKLBW
Vdq, Wq

PUN-
PCKLWD
Vdq, Wq

PUN-
PCKLDQ
Vdq, Wq

PACKSSWB
Vdq, Wdq

PCMPGTB
Vdq, Wdq

PCMPGTW
Vdq, Wdq

PCMPGTD
Vdq, Wdq

PACKUSWB
Vdq, Wdq

F2

none

7

PSHUFW
Pq, Qq, Ib Group 122 Group 132 Group 142 PCMPEQB

Pq, Qq
PCMPEQW

Pq, Qq
PCMPEQD

Pq, Qq EMMS

F3 PSHUFHW
Vq, Wq, Ib

66 PSHUFD
Vdq, Wdq, Ib Group 122 Group 132 Group 142 PCMPEQB

Vdq, Wdq
PCMPEQW
Vdq, Wdq

PCMPEQD
Vdq, Wdq

F2 PSHUFLW
Vq, Wq, Ib

Note:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 415 for details.
3. Invalid in long mode.

Opcode and Operand Encodings 409

24594—Rev. 3.16—September 2011 AMD64 Technology

n/a 8 JO Jz JNO Jz JB Jz JNB Jz JZ Jz JNZ Jz JBE Jz JNBE Jz

n/a 9 SETO Eb SETNO Eb SETB Eb SETNB Eb SETZ Eb SETNZ Eb SETBE Eb SETNBE Eb

n/a A PUSH FS POP FS CPUID BT Ev, Gv
SHLD

Ev, Gv, Ib Ev, Gv, CL

n/a B CMPXCHG
LSS Gz, Mp BTR Ev, Gv LFS Gz, Mp LGS Gz, Mp

MOVZX
Eb, Gb Ev, Gv Gv, Eb Gv, Ew

none

C

XADD CMPPS
Vps, Wps, Ib

MOVNTI
Md/q, Gd/q

PINSRW
Pq, Ew, Ib

PEXTRW
Gd, Nq, Ib

SHUFPS
Vps, Wps, Ib

Group 92

Mq

F3

Eb, Gb Ev, Gv

CMPSS
Vss, Wss, Ib

66 CMPPD
Vpd, Wpd, Ib

PINSRW
Vdq, Ew, Ib

PEXTRW
Gd, Udq, Ib

SHUFPD
Vpd, Wpd, Ib

F2 CMPSD
Vsd, Wsd, Ib

none

D

PSRLW
Pq, Qq

PSRLD
Pq, Qq

PSRLQ
Pq, Qq

PADDQ
Pq, Qq

PMULLW
Pq, Qq

PMOVMSKB
Gd, Nq

F3 MOVQ2DQ
Vdq, Nq

66 ADDSUBPD
Vpd, Wpd

PSRLW
Vdq, Wdq

PSRLD
Vdq, Wdq

PSRLQ
Vdq, Wdq

PADDQ
Vdq, Wdq

PMULLW
Vdq, Wdq

MOVQ
Wq, Vq

PMOVMSKB
Gd, Udq

F2 ADDSUBPS
Vps, Wps

MOVDQ2Q
Pq, Uq

none

E

PAVGB
Pq, Qq

PSRAW
Pq, Qq

PSRAD
Pq, Qq

PAVGW
Pq, Qq

PMULHUW
Pq, Qq

PMULHW
Pq, Qq

MOVNTQ
Mq, Pq

F3 CVTDQ2PD
Vpd, Wq

66 PAVGB
Vdq, Wdq

PSRAW
Vdq, Wdq

PSRAD
Vdq, Wdq

PAVGW
Vdq, Wdq

PMULHUW
Vdq, Wdq

PMULHW
Vdq, Wdq

CVTTPD2DQ
Vq, Wpd

MOVNTDQ
Mdq, Vdq

F2 CVTPD2DQ
Vq, Wpd

none

F

PSLLW
Pq, Qq

PSLLD
Pq, Qq

PSLLQ
Pq, Qq

PMULUDQ
Pq, Qq

PMADDWD
Pq, Qq

PSADBW
Pq, Qq

MASKMOVQ
Pq, Nq

F3

66 PSLLW
Vdq, Wdq

PSLLD
Vdq, Wdq

PSLLQ
Vdq, Wdq

PMULUDQ
Vdq, Wdq

PMADDWD
Vdq, Wdq

PSADBW
Vdq, Wdq

MASKMOVDQU
Vdq, Udq

F2 LDDQU
Vpd,Mdq

Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0–7h (continued)
Prefix Nibble1 0 1 2 3 4 5 6 7

Note:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 415 for details.
3. Invalid in long mode.

410 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh
Prefix Nibble1 8 9 A B C D E F

n/a 0

INVD WBINVD UD2 Group P2 FEMMS 3DNow!

PREFETCH

See
“3DNow!™
Opcodes”

on page 421

n/a 1 Group 162 NOP3 NOP3 NOP3 NOP3 NOP3 NOP3 NOP3

none

2

MOVAPS CVTPI2PS MOVNTPS CVTTPS2PI CVTPS2PI UCOMISS COMISS
Vps, Wps Wps, Vps Vps, Qq Mdq, Vps Pq, Wps Pq, Wps Vss, Wss Vps, Wps

F3 CVTSI2SS MOVNTSS CVTTSS2SI CVTSS2SI
Vss, Ed/q Md, Vss Gd/q, Wss Gd/q, Wss

66 MOVAPD CVTPI2PD MOVNTPD CVTTPD2PI CVTPD2PI UCOMISD COMISD
Vpd, Wpd Wpd, Vpd Vpd, Qq Mdq, Vpd Pq, Wpd Pq, Wpd Vsd, Wsd Vpd, Wsd

F2 CVTSI2SD MOVNTSD CVTTSD2SI CVTSD2SI
Vsd, Ed/q Mq, Vsd Gd/q, Wsd Gd/q, Wsd

n/a 3
Escape to

0F_38h
opcode map

Escape to
0F_3Ah

opcode map

n/a 4 CMOVS CMOVNS CMOVP CMOVNP CMOVL CMOVNL CMOVLE CMOVNLE
Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev

none

5

ADDPS MULPS CVTPS2PD CVTDQ2PS SUBPS MINPS DIVPS MAXPS
Vps, Wps Vps, Wps Vpd, Wps Vps, Wdq Vps, Wps Vps, Wps Vps, Wps Vps, Wps

F3 ADDSS MULSS CVTSS2SD CVTTPS2D
Q SUBSS MINSS DIVSS MAXSS

Vss, Wss Vss, Wss Vsd, Wss Vdq, Wps Vss, Wss Vss, Wss Vss, Wss Vss, Wss

66 ADDPD MULPD CVTPD2PS CVTPS2DQ SUBPD MINPD DIVPD MAXPD
Vpd, Wpd Vpd, Wpd Vps, Wpd Vdq, Wps Vpd, Wpd Vpd, Wpd Vpd, Wpd Vpd, Wpd

F2 ADDSD MULSD CVTSD2SS SUBSD MINSD DIVSD MAXSD
Vsd, Wsd Vsd, Wsd Vss, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd

none

6

PUNPCK-
HBW

PUNPCK-
HWD

PUNPCK-
HDQ PACKSSDW MOVD MOVQ

Pq, Qd Pq, Qd Pq, Qd Pq, Qq Pq, Ed/q Pq, Qq

F3 MOVDQU
Vdq, Wdq

66
PUNPCK-

HBW
PUNPCK-

HWD
PUNPCK-

HDQ PACKSSDW PUNPCK-
LQDQ

PUNPCK-
HQDQ MOVD MOVDQA

Vdq, Wq Vdq, Wq Vdq, Wq Vdq, Wdq Vdq, Wq Vdq, Wq Vdq, Ed/q Vdq, Wdq

F2

Note:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 415 for details.
3. This instruction takes a ModRM byte.

Opcode and Operand Encodings 411

24594—Rev. 3.16—September 2011 AMD64 Technology

none

7

MOVD MOVQ
Ed/q, Pd/q Qq, Pq

F3 MOVQ MOVDQU
Vq, Wq Wdq, Vdq

66 Group 172 EXTRQ HADDPD HSUBPD MOVD MOVDQA
Vdq, Uq Vpd,Wpd Vpd,Wpd Ed/q, Vd/q Wdq, Vdq

F2 INSERTQ INSERTQ HADDPS HSUBPS
Vdq,Uq,Ib,Ib Vdq, Udq Vps,Wps Vps,Wps

n/a 8 JS JNS JP JNP JL JNL JLE JNLE
Jz Jz Jz Jz Jz Jz Jz Jz

n/a 9 SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE
Eb Eb Eb Eb Eb Eb Eb Eb

n/a A PUSH POP RSM BTS SHRD Group 152 IMUL
GS GS Ev, Gv Ev, Gv, Ib Ev, Gv, CL Gv, Ev

none

B

Group 102 Group 82 BTC BSF BSR MOVSX
Ev, Ib Ev, Gv Gv, Ev Gv, Ev Gv, Eb Gv, Ew

F3 POPCNT TZCNT LZCNT
Gv, Ev Gv, Ev Gv, Ev

F2

n/a C BSWAP
rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

none

D

PSUBUSB PSUBUSW PMINUB PAND PADDUSB PADDUSW PMAXUB PANDN
Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq

F3

66 PSUBUSB PSUBUSW PMINUB PAND PADDUSB PADDUSW PMAXUB PANDN
Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq

F2

none

E

PSUBSB PSUBSW PMINSW POR PADDSB PADDSW PMAXSW PXOR
Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq

F3

66 PSUBSB PSUBSW PMINSW POR PADDSB PADDSW PMAXSW PXOR
Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq

F2

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh
Prefix Nibble1 8 9 A B C D E F

Note:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 415 for details.
3. This instruction takes a ModRM byte.

412 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc Instructions. Table A-5 shows
the rFLAGS condition codes specified by the low nibble in the opcode of the CMOVcc, Jcc, and
SETcc instructions.

none

F

PSUBB PSUBW PSUBD PSUBQ PADDB PADDW PADDD
Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq

F3

66 PSUBB PSUBW PSUBD PSUBQ PADDB PADDW PADDD
Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq

F2

Table A-5. rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc
Low Nibble of
Opcode (hex) rFLAGS Value cc Mnemonic Arithmetic

Type Condition(s)

0 OF = 1 O
Signed

Overflow
1 OF = 0 NO No Overflow
2 CF = 1 B, C, NAE

Unsigned

Below, Carry, Not Above or Equal
3 CF = 0 NB, NC, AE Not Below, No Carry, Above or Equal
4 ZF = 1 Z, E Zero, Equal
5 ZF = 0 NZ, NE Not Zero, Not Equal
6 CF = 1 or ZF = 1 BE, NA Below or Equal, Not Above
7 CF = 0 and ZF = 0 NBE, A Not Below or Equal, Above
8 SF = 1 S

Signed
Sign

9 SF = 0 NS Not Sign
A PF = 1 P, PE

n/a
Parity, Parity Even

B PF = 0 NP, PO Not Parity, Parity Odd
C (SF xor OF) = 1 L, NGE

Signed

Less than, Not Greater than or Equal to
D (SF xor OF) = 0 NL, GE Not Less than, Greater than or Equal to

E (SF xor OF) = 1
or ZF = 1 LE, NG Less than or Equal to, Not Greater than

F (SF xor OF) = 0
and ZF = 0 NLE, G Not Less than or Equal to, Greater than

Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8–Fh
Prefix Nibble1 8 9 A B C D E F

Note:
1. Rows show the high opcode nibble, columns show the low opcode nibble (both in hexadecimal). All opcodes in this

map are immediately preceeded in the instruction encoding by the escape byte 0Fh.
2. An opcode extension is specified using the reg field of the ModRM byte (ModRM bits [5:3]) which follows the opcode.

See Table A-7 on page 415 for details.
3. This instruction takes a ModRM byte.

Opcode and Operand Encodings 413

24594—Rev. 3.16—September 2011 AMD64 Technology

Encoding Extensions Using the ModRM Byte. The ModRM byte, which immediately
follows the opcode byte, is used in certain instruction encodings to provide additional opcode bits with
which to define the function of the instruction. ModRM bytes have three fields—mod, reg, and r/m, as
shown in Figure A-1.

Figure A-1. ModRM-Byte Fields

In most cases, the reg field (bits 5–3) provides the additional bits with which to extend the encodings
of the opcode byte. In the case of the x87 floating-point instructions, the entire ModRM byte is used to
extend the opcode encodings.

Table A-6 shows how the ModRM.reg field is used to extend the range of opcodes in the primary
opcode map. The opcode ranges are organized into groups of opcode extensions. The group number is
shown in the left-most column. These groups are referenced in the primary opcode map shown in
Table A-1 on page 405 and Table A-2 on page 406. An entry of “n.a.” in the Prefix column means that
prefixes are not applicable to the opcodes in that row. Prefixes only apply to certain 64-bit media and
SSE instructions.

Table A-7 on page 415 shows how the ModRM.reg field is used to extend the range of the opcodes in
the secondary opcode map.

The /0 through /7 notation for the ModRM reg field (bits [5:3]) in the tables below means that the
three-bit field contains a value from zero (000b) to 7 (111b).

Table A-6. ModRM.reg Extensions for the Primary Opcode Map1

Group
Number Prefix Opcode

ModRM reg Field
/0 /1 /2 /3 /4 /5 /6 /7

Group 1 n/a

80
ADD OR ADC SBB AND SUB XOR CMP

Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib

81
ADD OR ADC SBB AND SUB XOR CMP
Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz

82
ADD OR ADC SBB AND SUB XOR CMP

Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2 Eb, Ib2

83
ADD OR ADC SBB AND SUB XOR CMP
Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib

Note:
1. See Table A-7 on page 415 for ModRM extensions for the secondary (two-byte) ocode map.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.

513-325.eps

mod reg r/m ModRM
01234567Bits:

414 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Group 1a n/a 8F
POP
Ev

Group 2 n/a

C0
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR

Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib

C1
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR
Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib

D0
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR
Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1

D1
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR
Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1

D2
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR

Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL

D3
ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR

Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL

Group 3 n/a
F6

TEST
Eb,Ib

NOT NEG MUL IMUL DIV IDIV
Eb Eb Eb Eb Eb Eb

F7
TEST
Ev,Iz

NOT NEG MUL IMUL DIV IDIV
Ev Ev Ev Ev Ev Ev

Group 4 n/a FE
INC DEC
Eb Eb

Group 5 n/a FF
INC DEC CALL CALL JMP JMP PUSH
Ev Ev Ev Mp Ev Mp Ev

Group 11
n/a C6

MOV
Eb,Ib

n/a C7
MOV
Ev,Iz

Table A-6. ModRM.reg Extensions for the Primary Opcode Map1 (continued)
Group

Number Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Note:
1. See Table A-7 on page 415 for ModRM extensions for the secondary (two-byte) ocode map.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.

Opcode and Operand Encodings 415

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-7. ModRM.reg Extensions for the Secondary Opcode Map
Group

Number Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Group 6 n/a 00 SLDT
Mw/Rv

STR
Mw/Rv LLDT Ew LTR Ew VERR Ew VERW Ew

Group 7 n/a 01 SGDT
Ms

SIDT
Ms LGDT Ms LIDT Ms

SMSW Mw
/ Rv LMSW Ew

INVLPG
Mb

MONITOR1

MWAIT XCR1 SVM1 SWAPGS1

RDTSCP

Group 8 n/a BA BT Ev, Ib BTS Ev, Ib BTR Ev, Ib BTC Ev, Ib

Group 9 n/a C7

CMPXCH
G8BMq

CMPXCH
G16Mdq

Group 10 n/a B9

Group 12

none

71

PSRLW PSRAW PSLLW
Nq, Ib Nq, Ib Nq, Ib

66
PSRLW PSRAW PSLLW
Udq, Ib Udq, Ib Udq, Ib

F2, F3

Group 13

none

72

PSRLD PSRAD PSLLD
Nq, Ib Nq, Ib Nq, Ib

66
PSRLD PSRAD PSLLD
Udq, Ib Udq, Ib Udq, Ib

F2, F3

Group 14

none

73

PSRLQ PSLLQ
Nq, Ib Nq, Ib

66
PSRLQ PSRLDQ PSLLQ PSLLDQ
Udq, Ib Udq, Ib Udq, Ib Udq, Ib

F2, F3

Group 15
none

AE

FXSAVE
M

FXRSTOR
M

LDMXCSR
Md

STMXCSR
Md XSAVE M7

LFENCE5 MFENCE5 SFENCE5

XRSTOR
M6

XSAVE-
OPT M6

CLFLUSH
Mb6

66, F2,
F3

Note:
1. Opcode is extended further using the r/m field of the ModRM byte in conjunction with the reg field. See Table A-8

on page 416 for ModRM.r/m extensions of this opcode.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. ModRM.mod = 11b.
6. ModRM.mod ≠ 11b.
7. ModRM.mod ≠ 11b, ModRM.mod = 11b is an invalid encoding.

416 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Secondary Opcode Map, ModRM Extensions for Opcode 01h . Table A-8 below shows
the ModRM byte encodings for the 01h opcode. In the table the full ModRM byte is listed below the
instruction in hexadecimal. For all instructions shown, the ModRM byte is immediately preceeded by
the byte string {0Fh, 01h} in the instruction encoding.

0F_38h and 0F_3Ah Opcode Maps. The 0F_38h and 0F_3Ah opcode maps are used primarily
to encode the legacy SSE instructions. In legacy terminology, these maps are presented as three-byte
opcodes where the first two bytes are {0Fh, 38h} and {0Fh, 3Ah} respectively.

In these maps the legacy prefixes F2h and F3h are repurposed to provide additional opcode encoding
space. In rows [0:E] the legacy prefix 66h is also used to modify the opcode. However, in row F, 66h is
used as an operand-size override. See the CRC32 instruction as an example.

Group 16 n/a. 18
PREFETC

H
PREFETC

H
PREFETC

H
PREFETC

H NOP4 NOP4 NOP4 NOP4

NTA T0 T1 T2

Group 17
66

78

EXTRQ
Vdq, Ib, Ib

none,
F2, F3

Group P n/a. 0D
Prefetch Prefetch Prefetch Prefetch Prefetch Prefetch Prefetch Prefetch

Exclusive Modified Reserved4 Modified Reserved4 Reserved4 Reserved4 Reserved4

Table A-8. Opcode 01h ModRM Extensions

reg Field
ModRM.r/m Field

0 1 2 3 4 5 6 7

/1 MONITOR
(C8)

MWAIT
(C9)

/2 XGETBV
(D0)

XSETBV
(D1)

/3 VMRUN
(D8)

VMMCALL
(D9)

VMLOAD
(DA)

VMSAVE
(DB)

STGI
(DC)

CLGI
(DD)

SKINIT
(DE)

INVLPGA
(DF)

/7 SWAPGS
(F8)

RDTSCP
(F9)

ModRM.mod = 11b

Table A-7. ModRM.reg Extensions for the Secondary Opcode Map (continued)
Group

Number Prefix Opcode
ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Note:
1. Opcode is extended further using the r/m field of the ModRM byte in conjunction with the reg field. See Table A-8

on page 416 for ModRM.r/m extensions of this opcode.
2. Invalid in 64-bit mode.
3. This instruction takes a ModRM byte.
4. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
5. ModRM.mod = 11b.
6. ModRM.mod ≠ 11b.
7. ModRM.mod ≠ 11b, ModRM.mod = 11b is an invalid encoding.

Opcode and Operand Encodings 417

24594—Rev. 3.16—September 2011 AMD64 Technology

The 0F_38h opcode map is presented below in Tables A-9 and A-10. The 0F_3Ah opcode map is
presented in Tables A-11 and A-12.

418 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-9. 0F_38h Opcode Map, Low Nibble = [0h:7h]
Prefix Opcode x0h x1h x2h x3h x4h x5h x6h x7h

PSHUFB PHADDW PHADDD PHADDSW PMADDUBSW PHSUBW PHSUBD PHSUBSW
none Ppb, Qpb Ppi, Qpi Ppj, Qpj Ppi, Qpi Ppk, Qpk Ppi, Qpi Ppj, Qpj Ppi, Qpi

PSHUFB PHADDW PHADDD PHADDSW PMADDUBSW PHSUBW PHSUBD PHSUBSW
66h Vpb, Wpb Vpi, Wpi Vpj, Wpj Vpi, Wpi Vpk, Wpk Vpi, Wpi Vpj, Wpj Vpi, Wpi

none

PBLENDVB BLENDVPS BLENDVPD PTEST
66h Vpb, Wpb Vps, Wps Vpd, Wpd Vo, Wo

none

PMOVSXBW PMOVSXBD PMOVSXBQ PMOVSXWD PMOVSXWQ PMOVSXDQ
66h Vpi, Wpk Vpj, Wpk Vpq, Wpk Vpj, Wpi Vpq, Wpi Vpq, Wpj

none

PMOVZXBW PMOVZXBD PMOVZXBQ PMOVZXWD PMOVZXWQ PMOVZXDQ PCMPGTQ
66h Vpi, Wpk Vpj, Wpk Vpq, Wpk Vpj, Wpi Vpq, Wpi Vpq, Wpj Vpq, Wpq

none

PMULLD PHMINPOSUW
66h Vpj, Wpj Vpi, Wpi

. . . 5xh-Exh . . .
CRC32 CRC32

F2h Gy, Eb Gy, Ev

66h CRC32 CRC32
and Gy, Eb Gy, Ev
F2h

Fxh

0xh

1xh

2xh

3xh

4xh

Opcode and Operand Encodings 419

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-10. 0F_38h Opcode Map, Low Nibble = [8h:Fh]
Prefix Opcode x8h x9h xAh xBh xCh xDh xEh xFh

PSIGNB PSIGNW PSIGND PMULHRSW
Ppk, Qpk Ppi, Qpi Ppj, Qpj Ppi, Qpi

PSIGNB PSIGNW PSIGND PMULHRSW
Vpk, Wpk Vpi, Wpi Vpj, Wpj Vpi, Wpi

PABSB PABSW PABSD
Ppk, Qpk Ppi, Qpi Ppj, Qpj

PABSB PABSW PABSD
Vpk, Wpk Vpi, Wpi Vpj, Wpj

PMULDQ PCMPEQQ MOVNTDQA PACKUSDW
Vpq, Wpj Vpq, Wpq Vo, Mo Vpi, Wpj

PMINSB PMINSD PMINUW PMINUD PMAXSB PMAXSD PMAXUW PMAXUD
Vpk, pk Vpj, Wpj Vpi, Wpi Vpj, Wpj Vpk, Wpk Vpj, Wpj Vpi, Wpi Vpj, Wpj

4xh-Cxh . . .
AESIMC AESENC AESENCLAST AESDEC AESDECLAST
Vo, Wo Vo, Wo Vo, Wo Vo, Wo Vo, Wo

. . . Exh-Fxh . . .

0xh

3xh

Dxh

none

66h

none

66h

none

none

2xh

66h

1xh

66h

66h

420 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-11. 0F_3Ah Opcode Map, Low Nibble = [0h:7h]

Table A-12. 0F_3Ah Opcode Map, Low Nibble = [8h:Fh]

Prefix Opcode x0h x1h x2h x3h x4h x5h x6h x7h

PEXTRB PEXTRW PEXTRD EXTRACTPS
Mb, Vpk, Ib Mw, Vpw, Ib Ed, Vpj, Ib Md, Vps, Ib

PEXTRB PEXTRW PEXTRQ1 EXTRACTPS
Ry, Vpk, Ib Ry, Vpw, Ib Eq, Vpq, Ib Ry, Vps, Ib

PINSRB INSERTPS PINSRD
Vpk, Mb, Ib Vps, Md, Ib Vpj, Ed, Ib

PINSRB INSERTPS PINSRQ1

Vpk, Rb, Ib Vps, Uo, Ib Vpq, Eq, Ib

. . . 3xh . . .

DPPS DPPD MPSADBW PCLMULQDQ
Vps, Wps, Ib Vpd, Wpd, Ib Vpk, Wpk, Ib Vpq, Wpq, Ib

PCMPESTRM PCMPESTRI PCMPISTRM PCMPISTRI
Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib Vo, Wo, Ib

. . . 7xh-Exh . . .

Note 1: When REX prefix is present

none

66h

F2h

0xh

5xh

2xh

1xh

Fxh

6xh

4xh

n/a

none

66h

none

66h

none

66h

n/a

Prefix Opcode x8h x9h xAh xBh xCh xDh xEh xFh
PALIGNR

none Ppb, Qpb, Ib

ROUNDPS ROUNDPD ROUNDSS ROUNDSD BLENDPS BLENDPD PBLENDW PALIGNR
66h Vps, Wps, Ib Vpd, Wpd, Ib Vss, Wss, Ib Vsd, Wsd, Ib Vps, Wps, Ib Vpd, Wpd, Ib Vpw, Wpw, Ib Vpb, Wpb, Ib

. . . 1xh-Cxh . . .
AESKEYGENASSIST

66h Vo, Wo, Ib

. . . Fxh . . .

0xh

Dxh

Opcode and Operand Encodings 421

24594—Rev. 3.16—September 2011 AMD64 Technology

A.1.2 3DNow!™ Opcodes

The 64-bit media instructions include the MMX™ instructions and the AMD 3DNow!™ instructions.
The MMX instructions are encoded using two opcode bytes, as described in “Secondary Opcode Map”
on page 407.

The 3DNow! instructions are encoded using two 0Fh opcode bytes and an immediate byte that is
located at the last byte position of the instruction encoding. Thus, the format for 3DNow! instructions
is:

0Fh 0Fh [ModRM] [SIB] [displacement] imm8_opcode

Table A-13 and Table A-14 on page 423 show the immediate byte following the opcode bytes for
3DNow! instructions. In these tables, rows show the high nibble of the immediate byte, and columns
show the low nibble of the immediate byte. Table A-13 shows the immediate bytes whose low nibble
is in the range 0–7h. Table A-14 shows the same for immediate bytes whose low nibble is in the range
8–Fh.

Byte values shown as reserved in these tables have implementation-specific functions, which can
include an invalid-opcode exception.

422 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-13. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0–7h

Nibble1 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9 PFCMPGE PFMIN PFRCP PFRSQRT
Pq, Qq Pq, Qq Pq, Qq Pq, Qq

A PFCMPGT PFMAX PFRCPIT1 PFRSQIT1
Pq, Qq Pq, Qq Pq, Qq Pq, Qq

B PFCMPEQ PFMUL PFRCPIT2 PMULHRW
Pq, Qq Pq, Qq Pq, Qq Pq, Qq

C

D

E

F

Note:
1. All 3DNow!™ opcodes consist of two 0Fh bytes. This table shows the immediate byte for 3DNow! opcodes. Rows

show the high nibble of the immediate byte. Columns show the low nibble of the immediate byte.

Opcode and Operand Encodings 423

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-14. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8–Fh

Nibble1 8 9 A B C D E F

0 PI2FW PI2FD
Pq, Qq Pq, Qq

1 PF2IW PF2ID
Pq, Qq Pq, Qq

2

3

4

5

6

7

8 PFNACC PFPNACC
Pq, Qq Pq, Qq

9 PFSUB PFADD
Pq, Qq Pq, Qq

A PFSUBR PFACC
Pq, Qq Pq, Qq

B PSWAPD PAVGUSB
Pq, Qq Pq, Qq

C

D

E

F

Note:
1. All 3DNow!™ opcodes consist of two 0Fh bytes. This table shows the immediate byte for 3DNow! opcodes. Rows

show the high nibble of the immediate byte. Columns show the low nibble of the immediate byte.

424 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

A.1.3 x87 Encodings

All x87 instructions begin with an opcode byte in the range D8h to DFh, as shown in Table A-2 on
page 406. These opcodes are followed by a ModRM byte that further defines the opcode. Table A-15
shows both the opcode byte and the ModRM byte for each x87 instruction.

There are two significant ranges for the ModRM byte for x87 opcodes: 00–BFh and C0–FFh. When
the value of the ModRM byte falls within the first range, 00–BFh, the opcode uses only the reg field to
further define the opcode. When the value of the ModRM byte falls within the second range, C0–FFh,
the opcode uses the entire ModRM byte to further define the opcode.

Byte values shown as reserved or invalid in Table A-15 have implementation-specific functions,
which can include an invalid-opcode exception.

The basic instructions FNSTENV, FNSTCW, FNCLEX, FNINIT, FNSAVE, FNSTSW, and FNSTSW
do not check for possible floating point exceptions before operating. Utility versions of these
mnemonics are provided that insert an FWAIT (opcode 9B) before the corresponding non-waiting
instruction. These are FSTENV, FSTCW, FCLEX, FINIT, FSAVE, and FSTSW. For further
information on wait and non-waiting versions of these instructions, see their corresponding pages in
Volume 5.

Opcode and Operand Encodings 425

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-15. x87 Opcodes and ModRM Extensions

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

D8

!11

00–BF
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

mem32rea
l mem32real mem32real mem32real mem32real mem32rea

l mem32real mem32real

11

C0 C8 D0 D8 E0 E8 F0 F8
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0),
ST(0) ST(0), ST(0) ST(0), ST(0) ST(0), ST(0) ST(0), ST(0) ST(0),

ST(0) ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0),
ST(1) ST(0), ST(1) ST(0), ST(1) ST(0), ST(1) ST(0), ST(1) ST(0),

ST(1) ST(0), ST(1) ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0),
ST(2) ST(0), ST(2) ST(0), ST(2) ST(0), ST(2) ST(0), ST(2) ST(0),

ST(2) ST(0), ST(2) ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0),
ST(3) ST(0), ST(3) ST(0), ST(3) ST(0), ST(3) ST(0), ST(3) ST(0),

ST(3) ST(0), ST(3) ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0),
ST(4) ST(0), ST(4) ST(0), ST(4) ST(0), ST(4) ST(0), ST(4) ST(0),

ST(4) ST(0), ST(4) ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0),
ST(5) ST(0), ST(5) ST(0), ST(5) ST(0), ST(5) ST(0), ST(5) ST(0),

ST(5) ST(0), ST(5) ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0),
ST(6) ST(0), ST(6) ST(0), ST(6) ST(0), ST(6) ST(0), ST(6) ST(0),

ST(6) ST(0), ST(6) ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0),
ST(7) ST(0), ST(7) ST(0), ST(7) ST(0), ST(7) ST(0), ST(7) ST(0),

ST(7) ST(0), ST(7) ST(0), ST(7)

426 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

D9

!11

00–BF
FLD FST FSTP FLDENV FLDCW FNSTENV FNSTCW

mem32rea
l mem32real mem32real mem14/28en

v mem16 mem14/28en
v mem16

11

C0 C8 D0 D8 E0 E8 F0 F8
FLD FXCH FNOP reserved FCHS FLD1 F2XM1 FPREM

ST(0),
ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9
FLD FXCH invalid reserved FABS FLDL2T FYL2X FYL2XP1

ST(0),
ST(1) ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA
FLD FXCH invalid reserved invalid FLDL2E FPTAN FSQRT

ST(0),
ST(2) ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB
FLD FXCH invalid reserved invalid FLDPI FPATAN FSINCOS

ST(0),
ST(3) ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC
FLD FXCH invalid reserved FTST FLDLG2 FXTRACT FRNDINT

ST(0),
ST(4) ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD
FLD FXCH invalid reserved FXAM FLDLN2 FPREM1 FSCALE

ST(0),
ST(5) ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE
FLD FXCH invalid reserved invalid FLDZ FDECSTP FSIN

ST(0),
ST(6) ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF
FLD FXCH invalid reserved invalid invalid FINCSTP FCOS

ST(0),
ST(7) ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Opcode and Operand Encodings 427

24594—Rev. 3.16—September 2011 AMD64 Technology

DA

!11
00–BF

FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
mem32int mem32int mem32int mem32int mem32int mem32int mem32int mem32int

11

C0 C8 D0 D8 E0 E8 F0 F8
FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(0) ST(0), ST(0) ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9
FCMOVB FCMOVE FCMOVBE FCMOVU invalid FUCOMPP invalid invalid

ST(0),
ST(1) ST(0), ST(1) ST(0), ST(1) ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA
FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(2) ST(0), ST(2) ST(0), ST(2) ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB
FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(3) ST(0), ST(3) ST(0), ST(3) ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC
FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(4) ST(0), ST(4) ST(0), ST(4) ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD
FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(5) ST(0), ST(5) ST(0), ST(5) ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE
FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(6) ST(0), ST(6) ST(0), ST(6) ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF
FCMOVB FCMOVE FCMOVBE FCMOVU invalid invalid invalid invalid

ST(0),
ST(7) ST(0), ST(7) ST(0), ST(7) ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

428 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

DB

!11

00–BF
FILD FISTTP FIST FISTP invalid FLD invalid FSTP

mem32int mem32int mem32int mem32int mem80rea
l mem80real

11

C0 C8 D0 D8 E0 E8 F0 F8

FCMOVNB FCMOVNE FCMOVNB
E FCMOVNU reserved FUCOMI FCOMI invalid

ST(0),
ST(0) ST(0), ST(0) ST(0), ST(0) ST(0), ST(0) ST(0),

ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9

FCMOVNB FCMOVNE FCMOVNB
E FCMOVNU reserved FUCOMI FCOMI invalid

ST(0),
ST(1) ST(0), ST(1) ST(0), ST(1) ST(0), ST(1) ST(0),

ST(1) ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA

FCMOVNB FCMOVNE FCMOVNB
E FCMOVNU FNCLEX FUCOMI FCOMI invalid

ST(0),
ST(2) ST(0), ST(2) ST(0), ST(2) ST(0), ST(2) ST(0),

ST(2) ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB

FCMOVNB FCMOVNE FCMOVNB
E FCMOVNU FNINIT FUCOMI FCOMI invalid

ST(0),
ST(3) ST(0), ST(3) ST(0), ST(3) ST(0), ST(3) ST(0),

ST(3) ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC

FCMOVNB FCMOVNE FCMOVNB
E FCMOVNU reserved FUCOMI FCOMI invalid

ST(0),
ST(4) ST(0), ST(4) ST(0), ST(4) ST(0), ST(4) ST(0),

ST(4) ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD

FCMOVNB FCMOVNE FCMOVNB
E FCMOVNU invalid FUCOMI FCOMI invalid

ST(0),
ST(5) ST(0), ST(5) ST(0), ST(5) ST(0), ST(5) ST(0),

ST(5) ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE

FCMOVNB FCMOVNE FCMOVNB
E FCMOVNU invalid FUCOMI FCOMI invalid

ST(0),
ST(6) ST(0), ST(6) ST(0), ST(6) ST(0), ST(6) ST(0),

ST(6) ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF

FCMOVNB FCMOVNE FCMOVNB
E FCMOVNU invalid FUCOMI FCOMI invalid

ST(0),
ST(7) ST(0), ST(7) ST(0), ST(7) ST(0), ST(7) ST(0),

ST(7) ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Opcode and Operand Encodings 429

24594—Rev. 3.16—September 2011 AMD64 Technology

DC

!11

00–BF
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR

mem64rea
l mem64real mem64real mem64real mem64real mem64rea

l mem64real mem64real

11

C0 C8 D0 D8 E0 E8 F0 F8
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(0),
ST(0) ST(0), ST(0) ST(0), ST(0) ST(0),

ST(0) ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(1),
ST(0) ST(1), ST(0) ST(1), ST(0) ST(1),

ST(0) ST(1), ST(0) ST(1), ST(0)

C2 CA D2 DA E2 EA F2 FA
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(2),
ST(0) ST(2), ST(0) ST(2), ST(0) ST(2),

ST(0) ST(2), ST(0) ST(2), ST(0)

C3 CB D3 DB E3 EB F3 FB
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(3),
ST(0) ST(3), ST(0) ST(3), ST(0) ST(3),

ST(0) ST(3), ST(0) ST(3), ST(0)

C4 CC D4 DC E4 EC F4 FC
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(4),
ST(0) ST(4), ST(0) ST(4), ST(0) ST(4),

ST(0) ST(4), ST(0) ST(4), ST(0)

C5 CD D5 DD E5 ED F5 FD
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(5),
ST(0) ST(5), ST(0) ST(5), ST(0) ST(5),

ST(0) ST(5), ST(0) ST(5), ST(0)

C6 CE D6 DE E6 EE F6 FE
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(6),
ST(0) ST(6), ST(0) ST(6), ST(0) ST(6),

ST(0) ST(6), ST(0) ST(6), ST(0)

C7 CF D7 DF E7 EF F7 FF
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(7),
ST(0) ST(7), ST(0) ST(7), ST(0) ST(7),

ST(0) ST(7), ST(0) ST(7), ST(0)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

430 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

DD

!11

00–BF
FLD FISTTP FST FSTP FRSTOR invalid FNSAVE FNSTSW

mem64rea
l mem64int mem64real mem64real mem98/108e

nv
mem98/108e

nv mem16

11

C0 C8 D0 D8 E0 E8 F0 F8
FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(0) ST(0) ST(0) ST(0), ST(0) ST(0)
C1 C9 D1 D9 E1 E9 F1 F9

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(1) ST(1) ST(1) ST(1), ST(0) ST(1)
C2 CA D2 DA E2 EA F2 FA

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(2) ST(2) ST(2) ST(2), ST(0) ST(2)
C3 CB D3 DB E3 EB F3 FB

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(3) ST(3) ST(3) ST(3), ST(0) ST(3)
C4 CC D4 DC E4 EC F4 FC

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(4) ST(4) ST(4) ST(4), ST(0) ST(4)
C5 CD D5 DD E5 ED F5 FD

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(5) ST(5) ST(5) ST(5), ST(0) ST(5)
C6 CE D6 DE E6 EE F6 FE

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(6) ST(6) ST(6) ST(6), ST(0) ST(6)
C7 CF D7 DF E7 EF F7 FF

FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(7) ST(7) ST(7) ST(7), ST(0) ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Opcode and Operand Encodings 431

24594—Rev. 3.16—September 2011 AMD64 Technology

DE

!11
00–BF

FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
mem16int mem16int mem16int mem16int mem16int mem16int mem16int mem16int

11

C0 C8 D0 D8 E0 E8 F0 F8
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(0),
ST(0) ST(0), ST(0) ST(0), ST(0) ST(0),

ST(0) ST(0), ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9
FADDP FMULP reserved FCOMPP FSUBRP FSUBP FDIVRP FDIVP
ST(1),
ST(0) ST(1), ST(0) ST(1), ST(0) ST(1),

ST(0) ST(1), ST(0) ST(1), ST(0)

C2 CA D2 DA E2 EA F2 FA
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(2),
ST(0) ST(2), ST(0) ST(2), ST(0) ST(2),

ST(0) ST(2), ST(0) ST(2), ST(0)

C3 CB D3 DB E3 EB F3 FB
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(3),
ST(0) ST(3), ST(0) ST(3), ST(0) ST(3),

ST(0) ST(3), ST(0) ST(3), ST(0)

C4 CC D4 DC E4 EC F4 FC
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(4),
ST(0) ST(4), ST(0) ST(4), ST(0) ST(4),

ST(0) ST(4), ST(0) ST(4), ST(0)

C5 CD D5 DD E5 ED F5 FD
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(5),
ST(0) ST(5), ST(0) ST(5), ST(0) ST(5),

ST(0) ST(5), ST(0) ST(5), ST(0)

C6 CE D6 DE E6 EE F6 FE
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(6),
ST(0) ST(6), ST(0) ST(6), ST(0) ST(6),

ST(0) ST(6), ST(0) ST(6), ST(0)

C7 CF D7 DF E7 EF F7 FF
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(7),
ST(0) ST(7), ST(0) ST(7), ST(0) ST(7),

ST(0) ST(7), ST(0) ST(7), ST(0)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

432 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

DF

!11
00–BF

FILD FISTTP FIST FISTP FBLD FILD FBSTP FISTP
mem16int mem16int mem16int mem16int mem80dec mem64int mem80dec mem64int

11

C0 C8 D0 D8 E0 E8 F0 F8
reserved reserved reserved reserved FNSTSW FUCOMIP FCOMIP invalid

AX ST(0),
ST(0) ST(0), ST(0)

C1 C9 D1 D9 E1 E9 F1 F9
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(1) ST(0), ST(1)

C2 CA D2 DA E2 EA F2 FA
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(2) ST(0), ST(2)

C3 CB D3 DB E3 EB F3 FB
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(3) ST(0), ST(3)

C4 CC D4 DC E4 EC F4 FC
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(4) ST(0), ST(4)

C5 CD D5 DD E5 ED F5 FD
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(5) ST(0), ST(5)

C6 CE D6 DE E6 EE F6 FE
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(6) ST(0), ST(6)

C7 CF D7 DF E7 EF F7 FF
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid

ST(0),
ST(7) ST(0), ST(7)

Table A-15. x87 Opcodes and ModRM Extensions (continued)

Opcode
ModRM

mod
Field

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

Opcode and Operand Encodings 433

24594—Rev. 3.16—September 2011 AMD64 Technology

A.1.4 rFLAGS Condition Codes for x87 Opcodes

Table A-16 shows the rFLAGS condition codes specified by the opcode and ModRM bytes of the
FCMOVcc instructions.

A.1.5 Extended Instruction Opcode Maps

The following sections present the VEX and the XOP extended instruction opcode maps. The
VEX.map_select field of the three-byte VEX encoding escape sequence selects VEX opcode maps:
01h, 02h, or 03h. The two-byte VEX encoding escape sequence implicitly selects the VEX map 01h.

The XOP.map_select field selects between the three XOP maps: 08h, 09h or 0Ah.

VEX Opcode Maps. Tables A-17 – A-23 below present the VEX opcode maps and Table A-24 on
page 441 presents the VEX opcode groups.

Table A-16. rFLAGS Condition Codes for FCMOVcc

Opcode
(hex)

ModRM
mod
Field

ModRM
reg

Field
rFLAGS Value cc Mnemonic Condition

DA

11

000 CF = 1 B Below
001 ZF = 1 E Equal
010 CF = 1 or ZF = 1 BE Below or Equal
011 PF = 1 U Unordered

DB

000 CF = 0 NB Not Below
001 ZF = 0 NE Not Equal
010 CF = 0 and ZF = 0 NBE Not Below or Equal
011 PF = 0 NU Not Unordered

434 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-17. VEX Opcode Map 1, Low Nibble = [0h:7h]
VEX.pp Opcode x0h x1h x2h x3h x4h x5h x6h x7h

. . . 00h . . .
VMOVUPS2 VMOVUPS2 VMOVLPS VMOVLPS VUNPCKLPS2 VUNPCKHPS2 VMOVHPS VMOVHPS
Vpsx, Wpsx Wpsx, Vpsx Vps, Hps, Mq Mq, Vps Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vps, Hps, Mq Mq, Vps

VMOVHLPS VMOVLHPS
Vps, Hps, Ups Vps, Hps, Ups

VMOVUPD2 VMOVUPD2 VMOVLPD VMOVLPD VUNPCKLPD2 VUNPCKHPD2 VMOVHPD VMOVHPD
Vpdx, Wpdx Wpdx, Vpdx Vo, Ho, Mq Mq, Vo Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpd, Hpd, Mq Mq, Vpd

VMOVSS3 VMOVSS3 VMOVSLDUP2 VMOVSHDUP2

Vss, Md Md, Vss Vpsx, Wpsx Vpsx, Wpsx
VMOVSS VMOVSS

Vss, Hss, Uss Uss, Hss, Vss
VMOVSD3 VMOVSD3 VMOVDDUP
Vsd, Mq Mq, Vsd Vo, Wq (L=0)
VMOVSD VMOVSD Vdo, Wdo (L=1)

Vsd, Hsd, Usd Usd, Hsd, Vsd

. . . 2xh-4xh . . .
VMOVMSKPS2 VSQRTPS2 VRSQRTPS2 VRCPPS2 VANDPS2 VANDNPS2 VORPS2 VXORPS2

Gy, Upsx Vpsx, Wpsx Vpsx, Wpsx Vpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx

VMOVMSKPD2 VSQRTPD2 VANDPD2 VANDNPD2 VORPD2 VXORPD2

Gy, Updx Vpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx

VSQRTSS3 VRSQRTSS3 VRCPSS3

Vo, Ho, Wss Vo, Ho, Wss Vo, Ho, Wss

VSQRTSD3

Vo, Ho, Wsd

VPUNPCKLBW VPUNPCKLWD VPUNPCKLDQ VPACKSSWB VPCMPGTB VPCMPGTW VPCMPGTD VPACKUSWB
Vpb, Hpb, Wpb Vpb, Hpb, Wpb Vpdw, Hpdw, Wpdw Vpk, Hpi, Wpi Vpb, Hpk, Wpk Vpw, Hpi, Wpi Vpdw, Hpj, Wpj Vpk, Hpi, Wpi

VZEROUPPER (L=0)
VZEROALL (L=1)

VPSHUFD VEX group #12 VEX group #13 VEX group #14 VPCMPEQB VPCMPEQW VPCMPEQD
Vpdw, Wpdw, Ib Vpb, Hpk, Wpk Vpw, Hpi, Wpi Vpdw, Hpj, Wpj

VPSHUFHW
Vpw, Wpw, Ib

VPSHUFLW
Vpw, Wpw, Ib

. . . x8h - xBh . . .
VCMPccPS1 VSHUFPS2

Vpdw, Hps, Wps, Ib Vpsx, Hpsx, Wpsx, Ib

VCMPccPD1 VPINSRW VPEXTRW VSHUFPD2

Vpqw, Hpd, Wpd, Ib Vpw, Hpw, Mw, Ib Gw, Upw, Ib Vpdx, Hpdx, Wpdx, Ib
Vpw, Hpw, Rd, Ib

VCMPccSS1

Vd, Hss, Wss, Ib

VCMPccSD1

Vq, Hsd, Wsd, Ib

Note 1: The condition codes are: EQ, LT, LE, UNORD, NEQ, NLT, NLE, and ORD; encoded as [00:07h] using Ib.
VEX encoding adds: EQ_UQ, NGE, NGT, FALSE, NEQ_OQ, GE, GT, TRUE [08:0Fh];
EQ_OS, LT_OQ, LE_OQ, UNORD_S, NEQ_US, NLT_UQ, NLE_UQ, ORD_S [10h:17h]; and
EQ_US, NGE_UQ, NGT_UQ, FALSE_OS, NEQ_OS, GE_OQ, GT_OQ, TRUE_US [18:1Fh].

Note 2: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.
Note 3: Operands are scalars. VEX.L bit is ignored.

01

10

11

00

01

10

11

00

01

10

11

00

01

00

01

10

11

00

1xh

Cxh

7xh

6xh

5xh

Opcode and Operand Encodings 435

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-18. VEX Opcode Map 1, Low Nibble = [0h:7h] Continued
VEX.pp Opcode x0h x1h x2h x3h x4h x5h x6h x7h

VADDSUBPD2 VPSRLW VPSRLD VPSRLQ VPADDQ VPMULLW VMOVQ VPMOVMSKB
Vpdx, Hpdx, Wpdx Vpw, Hpw, Wo Vpdw, Hpdw, Wo Vpqw, Hpqw, Wo Vpq, Hpq, Wpq Vpi, Hpi, Wpi Wq, Vq Gy, Upb

(VEX.L=1)

VADDSUBPS2

Vpsx,Hpsx,Wpsx

VPAVGB VPSRAW VPSRAD VPAVGW VPMULHUW VPMULHW VCVTTPD2DQ2 VMOVNTDQ
Vpk, Hpk, Wpk Vpw, Hpw, Wo Vpdw, Hpdw, Wo Vpi, Hpi, Wpi Vpi, Hpi, Wpi Vpi, Hpi, Wpi Vpjx, Wpdx Mo, Vo (L=0)

Mdo, Vdo (L=1)
VCVTDQ2PD2

Vpdx, Wpjx

VCVTPD2DQ2

Vpjx, Wpdx

VPSLLW VPSLLD VPSLLQ VPMULUDQ VPMADDWD VPSADBW VMASKMOVDQU
Vpw, Hpw, Wo Vpdw, Hpdw, Wo Vpqw, Hpqw, Wo Vpq, Hpj, Wpj Vpj, Hpi, Wpi Vpi, Hpk, Wpk Vpb, Upb

VLDDQU
Vo, Mo (L=0)

Vdo, Mdo (L=1)
Note 1: The condition codes are: EQ, LT, LE, UNORD, NEQ, NLT, NLE, and ORD; encoded as [00:07h] using Ib.

VEX encoding adds: EQ_UQ, NGE, NGT, FALSE, NEQ_OQ, GE, GT, TRUE [08:0Fh];
EQ_OS, LT_OQ, LE_OQ, UNORD_S, NEQ_US, NLT_UQ, NLE_UQ, ORD_S [10h:17h]; and
EQ_US, NGE_UQ, NGT_UQ, FALSE_OS, NEQ_OS, GE_OQ, GT_OQ, TRUE_US [18:1Fh].

Note 2: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.
Note 3: Operands are scalars. VEX.L bit is ignored.

00

Exh

01

10

11

00

Fxh

01

10

11

00

Dxh

01

10

11

436 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-19. VEX Opcode Map 1, Low Nibble = [8h:Fh]
VEX.pp Opcode x8h x9h xAh xBh xCh xDh xEh xFh

. . . 0xh-1xh . . .
VMOVAPS1 VMOVAPS1 VMOVNTPS1 VUCOMISS2 VCOMISS2

Vpsx, Wpsx Wpsx, Vpsx Mpsx, Vpsx Vss, Wss Vss, Wss

VMOVAPD1 VMOVAPD1 VMOVNTPD1 VUCOMISD2 VCOMISD2

Vpdx, Wpdx Wpdx, Vpdx Mpdx, Vpdx Vsd, Wsd Vsd, Wsd

VCVTSI2SS2 VCVTTSS2SI2 VCVTSS2SI2

Vo, Ho, Ey Gy, Wss Gy, Wss

VCVTSI2SD2 VCVTTSD2SI2 VCVTSD2SI2

Vo, Ho, Ey Gy, Wsd Gy, Wsd

. . . 3xh-4xh . . .
VADDPS1 VMULPS1 VCVTPS2PD1 VCVTDQ2PS1 VSUBPS1 VMINPS1 VDIVPS1 VMAXPS1

Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpdx, Wpsx Vpsx, Wpjx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx

VADDPD1 VMULPD1 VCVTPD2PS1 VCVTPS2DQ1 VSUBPD1 VMINPD1 VDIVPD1 VMAXPD1

Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpsx, Wpdx Vpjx, Wpsx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx

VADDSS2 VMULSS2 VCVTSS2SD2 VCVTTPS2DQ1 VSUBSS2 VMINSS2 VDIVSS2 VMAXSS2

Vss, Hss, Wss Vss, Hss, Wss Vo, Ho, Wss Vpjx, Wpsx Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss

VADDSD2 VMULSD2 VCVTSD2SS2 VSUBSD2 VMINSD2 VDIVSD2 VMAXSD2

Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vo, Ho, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd

VPUNPCKHBW VPUNPCKHWD VPUNPCKHDQ VPACKSSDW VPUNPCKLQDQ VPUNPCKHQDQ VMOVD VMOVQ VMOVDQA1

Vpb, Hpb, Wpb Vpw, Hpw, Wpw Vpdw, Hpdw, Wpdw Vpi, Hpj, Wpj Vpqw, Hpqw, Wpqw Vpqw, Hpqw, Wpqw Vo, Ey Vpqwx, Wpqwx
(VEX.L=0)

VMOVDQU1

Vpqwx, Wpqwx

VHADDPD1 VHSUBPD1 VMOVD VMOVQ VMOVDQA1

Vpdx, Hpdx, Wpdx Vpdx, Hpdx, Wpdx Ey, Vo Wpqwx, Vpqwx
(VEX.L=1)
VMOVQ VMOVDQU1

Vq, Wq Wpqwx, Vpqwx
(VEX.L=0)

VHADDPS1 VHSUBPS1

Vpsx, Hpsx, Wpsx Vpsx, Hpsx, Wpsx

. . . 8xh-9xh . . .
VEX group #15

. . . Bxh-Cxh . . .

VPSUBUSB VPSUBUSW VPMINUB VPAND VPADDUSB VPADDUSW VPMAXUB VPANDN
Vpk, Hpk, Wpk Vpi, Hpi, Wpi Vpk, Hpk, Wpk Vo, Ho, Wo Vpk, Hpk, Wpk Vpi, Hpi, Wpi Vpk, Hpk, Wpk Vo, Ho, Wo

VPSUBSB VPSUBSW VPMINSW VPOR VPADDSB VPADDSW VPMAXSW VPXOR
Vpk, Hpk, Wpk Vpi, Hpi, Wpi Vpi, Hpi, Wpi Vo, Ho, Wo Vpk, Hpk, Wpk Vpi, Hpi, Wpi Vx,Hx,Wx Vo, Ho, Wo

UD
(AMD)

VPSUBB VPSUBW VPSUBD VPSUBQ VPADDB VPADDW VPADDD
Vpk, Hpk, Wpk Vpi, Hpi, Wpi Vpj, Hpj, Wpj Vpq, Hpq, Wpq Vpk, Hpk, Wpk Vpi, Hpi, Wpi Vx,Hx,Wx

Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.
Note 2: Operands are scalars. VEX.L bit is ignored.

01

00

01
Fxh

Axh

11

n/a

00

01

00

10

11

00

01

10

01

10

11

00

01

00

01

10

11

00

2xh

5xh

Dxh

Exh

6xh

7xh

Opcode and Operand Encodings 437

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-20. VEX Opcode Map 2, Low Nibble = [0h:7h]
VEX.pp Opcode x0h x1h x2h x3h x4h x5h x6h x7h

00

VPSHUFB VPHADDW VPHADDD VPHADDSW VPMADDUBSW VPHSUBW VPHSUBD VPHSUBSW
01 Vpb, Hpb, Wpb Vpi, Hpi, Wpi Vpj, Hpj, Wpj Vpi, Hpi, Wpi Vpi, Hpk, Wpk Vpi, Hpi, Wpi Vpj, Hpj, Wpj Vpi, Hpi, Wpi

00

VCVTPH2PS1 VPTEST1

01 Vpsx, Wphx Vx, Wx

00

VPMOVSXBW VPMOVSXBD VPMOVSXBQ VPMOVSXWD VPMOVSXWQ VPMOVSXDQ
01 Vpi, Wpk Vpj, Wpk Vpq, Wpk Vpj, Wpi Vpq, Wpi Vpq, Wpj

00

VPMOVZXBW VPMOVZXBD VPMOVZXBQ VPMOVZXWD VPMOVZXWQ VPMOVZXDQ VPCMPGTQ
01 Vpi, Wpk Vpj, Wpk Vpq, Wpk Vpj, Wpi Vpq, Wpi Vpq, Wpj Vx,Hx,Wx

00

VPMULLD VPHMINPOSUW
01 Vpj, Hpj, Wpj Vo, Wpi

... 5xh-8xh ...
2VFMADDSUB132- 3VFMSUBADD132-

PS1 Vx,Hx,Wx (W=0) PS1 Vx,Hx,Wx (W=0)
PD1 Vx,Hx,Wx (W=1) PD1 Vx,Hx,Wx (W=1)

VFMADDSUB213- VFMSUBADD213-
PS1 Vx,Hx,Wx (W=0) PS1 Vx,Hx,Wx (W=0)
PD1 Vx,Hx,Wx (W=1) PD1 Vx,Hx,Wx (W=1)

VFMADDSUB231- VFMSUBADD231-
PS1 Vx,Hx,Wx (W=0) PS1 Vx,Hx,Wx (W=0)
PD1 Vx,Hx,Wx (W=1) PD1 Vx,Hx,Wx (W=1)

... Cxh-Exh ...
ANDN BEXTR

Gy, By, Ey Gy, Ey, By

01

10

CRC32 CRC32
11 Gy, Eb Gy, Ev

11 CRC32 CRC32
AND Gy, Eb Gy, Ev
66h4

Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.
Note 2: For all VFMADDSUBnnnPS instructions, the data type is packed single-precision floating point.

For all VFMADDSUBnnnPD instructions, the data type is packed double-precision floating point.
Note 3: For all VFMSUBADDnnnPS instructions, the data type is packed single-precision floating point.

For all VFMSUBADDnnnPD instructions, the data type is packed double-precision floating point.
Note 4: Legacy prefix preceeds VEX prefix.

00

Fxh VEX group #17

01 9xh

01 Axh

01 Bxh

0xh

1xh

2xh

3xh

4xh

438 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-21. VEX Opcode Map 2, Low Nibble = [8h:Fh]
VEX.pp Opcode x8h x9h xAh xBh xCh xDh xEh xFh

VPSIGNB VPSIGNW VPSIGND VPMULHRSW VPERMILPS1 VPERMILPD1 VTESTPS1 VTESTPD1

Vpk, Hpk, Wpk Vpi, Hpi, Wpi Vpj, Hpj, Wpj Vpi, Hpi, Wpi Vpsx, Hpsx, Wpdwx Vpdx, Hpdx, Wpqwx Vpsx, Wpsx Vpdx, Wpdx

VBROADCASTSS1 VBROADCASTSD VBROADCASTF128 VPABSB VPABSW VPABSD
Vps, Mss Vpd, Msd Vdo, Mo Vpk, Wpk Vpi, Wpi Vpj, Wpj

(VEX.L=1) (VEX.L=1)

VPMULDQ VPCMPEQQ VMOVNTDQA VPACKUSDW VMASKMOVPS1 VMASKMOVPD1 VMASKMOVPS1 VMASKMOVPD1

Vpq, Hpj , Wpj Vpq, Hpq, Wpq Mo, Vo Vpi, Hpj, Wpj Vpsx, Hx, Mpsx Vpdx, Hx, Mpdx Mpsx, Hx, Vpsx Mpdx, Hx, Vpdx

VPMINSB VPMINSD VPMINUW VPMINUD VPMAXSB VPMAXSD VPMAXUW VPMAXUD
Vpk, Hpk, Wpk Vpj, Hpj, Wpj Vpi, Hpi, Wpi Vpj, Hpj, Wpj Vpk, Hpk, Wpk Vpj, Hpj, Wpj Vpi, Hpi, Wpi Vpj, Hpj, Wpj

. . . 4xh . . .

VBROADCASTI128
Vy, Mo

. . . 6xh-8xh . . .
3VFMADD132- VFMADD132- 4VFMSUB132- VFMSUB132- VFNMADD132- VFNMADD132- VFNMSUB132- VFNMSUB132-

PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0) PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0) PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0) PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0)
PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1) PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1) PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1) PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1)

VFMADD213- VFMADD213- VFMSUB213- VFMSUB213- VFNMADD213- VFNMADD213- VFNMSUB213- VFNMSUB213-
PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0) PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0) PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0) PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0)
PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1) PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1) PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1) PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1)

VFMADD231- VFMADD231- VFMSUB231- VFMSUB231- VFNMADD231- VFNMADD231- VFNMSUB231- VFNMSUB231-
PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0) PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0) PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0) PS1 Vx,Hx,Wx (W=0) SS2 Vo,Ho,Wd (W=0)
PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1) PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1) PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1) PD1 Vx,Hx,Wx (W=1) SD2 Vo,Ho,Wq (W=1)

. . . Cxh . . .
VAESIMC VAESENC VAESENCLAST VAESDEC VAESDECLAST
Vo, Wo Vo, Ho, Wo Vo, Ho, Wo Vo, Ho, Wo Vo, Ho, Wo

. . . Exh-Fxh . . .
Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.
Note 2: Operands are scalars. VEX.L bit is ignored.
Note 3: For all VFMADDnnnPS instructions, the data type is packed single-precision floating point.

For all VFMADDnnnPD instructions, the data type is packed double-precision floating point.
Note 4: For all VFMSUBnnnPS instructions, the data type is packed single-precision floating point.

For all VFMSUBnnnPD instructions, the data type is packed double-precision floating point.

01

01

01

01

01

01

00

01

00

00

01

00

01

00

0xh

1xh

2xh

3xh

Dxh

9xh

Axh

Bxh

5xh

Opcode and Operand Encodings 439

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-22. VEX Opcode Map 3, Low Nibble = [0h:7h]
VEX.pp Nibble x0h x1h x2h x3h x4h x5h x6h x7h

VPERMILPS VPERMILPD VPERM2F128
Vpsx, Wpsx, Ib Vpdx, Wpdx, Ib Vdo, Ho, Wo, Ib

(VEX.L=1)

VPEXTRB VPEXTRW VPEXTRD VEXTRACTPS
Mb, Vpb, Ib Mw, Vpw, Ib Ed, Vpdw, Ib Mss, Vps, Ib

VPEXTRB VPEXTRW VPEXTRQ VEXTRACTPS
Ry, Vpb, Ib Ry, Vpw, Ib Eq, Vpqw, Ib Rss, Vps, Ib

VPINSRB VINSERTPS VPINSRD (W=0)
Vpb, Hpb, Mb, Ib Vo,Ho,Md,Ib Vpdw, Hpdw, Ed, Ib

VPINSRB VINSERTPS VPINSRQ (W=1)
Vpb, Hpb, Rb, Ib Vo,Ho,Uo,Ib Vo, Ho, Eq, Ib

. . . 3xh . . .

VDPPS1 VDPPD VMPSADBW VPCLMULQDQ
Vpsx, Hpsx, Wpsx, Ib Vpd, Hpd, Wpd, Ib Vpi, Hpk, Wpk, Ib Vo, Hpq, Wpq, Ib

. . . 5xh . . .

VPCMPESTRM VPCMPESTRI VPCMPISTRM VPCMPISTRI
Vo,Wo,Ib Vo,Wo,Ib Vo,Wo,Ib Vo,Wo,Ib

. . . 7xh-Fxh . . .
Note 1: Supports both 128 bit and 256 bit vector sizes. Vector size is specified using the VEX.L bit. When L=0, size is 128 bits; when L=1, size is 256 bits.

00

01

01

00

01

00

01

00

01

00

6xh

0xh

1xh

2xh

4xh

440 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-23. VEX Opcode Map 3, Low Nibble = [8h:Fh]
VEX.pp Opcode x8h x9h xAh xBh xCh xDh xEh xFh

PALIGNR
Pq,Qq,Ib

VROUNDPS VROUNDPD VROUNDSS VROUNDSD VBLENDPS VBLENDPD VPBLENDW VPALIGNR
Vx,Wx,Ib Vx,Wx,Ib Vo,Ho,Wd,Ib Vo,Ho,Wq,Ib Vx,Hx,Wx,Ib Vx,Hx,Wx,Ib Vx,Hx,Wx,Ib Vx,Hx,Wx,Ib

VINSERTF128 VEXTRACTF128 VCVTPS2PH
Vy,Hy,Wo,Ib Wo,Vy,Ib Wph,Vps,Ib2

Wo,Vy,Ib

. . . 2xh-3xh . . .

VPERMILzz2PS2 VPERMILzz2PD2 VBLENDVPS VBLENDVPD VPBLENDVB
Vx,Hx,Wx,Lx,Ib (0) Vx,Hx,Wx,Lx,Ib (0) Vx,Hx,Wx,Lx Vx,Hx,Wx,Lx Vo,Ho,Wo,Lo
Vx,Hx,Lx,Wx,Ib (1) Vx,Hx,Lx,Wx,Ib (1)

(FMA4) (FMA4)

VFMADDSUBPS VFMADDSUBPD VFMSUBADDPS VFMSUBADDPD
Vx,Hx,Wx,Lx (W=0) Vx,Hx,Wx,Lx (W=0) Vx,Hx,Wx,Lx (W=0) Vx,Hx,Wx,Lx (W=0)
Vx,Hx,Lx,Wx (W=1) Vx,Hx,Lx,Wx (W=1) Vx,Hx,Lx,Wx (W=1) Vx,Hx,Lx,Wx (W=1)

(FMA4) (FMA4) (FMA4) (FMA4)
VFMADDSUBPS VFMADDSUBPD VFMSUBADDPS VFMSUBADDPD

Vx,Lx,Wx,Hx (W=0) Vx,Lx,Wx,Hx (W=0) Vx,Lx,Wx,Hx (W=0) Vx,Lx,Wx,Hx (W=0)
Vx,Lx,Hx,Wx (W=1) Vx,Lx,Hx,Wx (W=1) Vx,Lx,Hx,Wx (W=1) Vx,Lx,Hx,Wx (W=1)

(FMA) (FMA) (FMA) (FMA)

VFMADDPS VFMADDPD VFMADDSS VFMADDSD VFMSUBPS VFMSUBPD VFMSUBSS VFMSUBSD
Vx,Hx,Wx,Lx (W=0) Vx,Hx,Wx,Lx (W=0) Vo,Ho,Wd,Lo (W=0) Vo,Ho,Wq,Lo (W=0) Vx,Hx,Wx,Lx (W=0) Vx,Hx,Wx,Lx (W=0) Vo,Ho,Wd,Lo (W=0) Vo,Ho,Wq,Lo (W=0)
Vx,Hx,Lx,Wx (W=1) Vx,Hx,Lx,Wx (W=1) Vo,Ho,Lo,Wd (W=1) Vo,Ho,Lo,Wq (W=1) Vx,Hx,Lx,Wx (W=1) Vx,Hx,Lx,Wx (W=1) Vo,Ho,Lo,Wd (W=1) Vo,Ho,Lo,Wq (W=1)

(FMA4) (FMA4) (FMA4) (FMA4) (FMA4) (FMA4) (FMA4) (FMA4)
VFMADDPS VFMADDPD VFMADDSS VFMADDSD VFMSUBPS VFMSUBPD VFMSUBSS VFMSUBSD

Vx,Lx,Wx,Hx (W=0) Vx,Lx,Wx,Hx (W=0) Vo,Lo,Wd,Ho (W=0) Vo,Lo,Wq,Ho (W=0) Vx,Lx,Wx,Hx (W=0) Vx,Lx,Wx,Hx (W=0) Vo,Lo,Wd,Ho (W=0) Vo,Lo,Wq,Ho (W=0)
Vx,Lx,Hx,Wx (W=1) Vx,Lx,Hx,Wx (W=1) Vo,Lo,Ho,Wd (W=1) Vo,Lo,Ho,Wq (W=1) Vx,Lx,Hx,Wx (W=1) Vx,Lx,Hx,Wx (W=1) Vo,Lo,Ho,Wd (W=1) Vo,Lo,Ho,Wq (W=1)

(FMA) (FMA) (FMA) (FMA) (FMA) (FMA) (FMA) (FMA)

VFNMADDPS VFNMADDPD VFNMADDSS VFNMADDSD VFNMSUBPS VFNMSUBPD VFNMSUBSS VFNMSUBSD
Vx,Hx,Wx,Lx (W=0) Vx,Hx,Wx,Lx (W=0) Vo,Ho,Wd,Lo (W=0) Vo,Ho,Wq,Lo (W=0) Vx,Hx,Wx,Lx (W=0) Vx,Hx,Wx,Lx (W=0) Vo,Ho,Wd,Lo (W=0) Vo,Ho,Wq,Lo (W=0)
Vx,Hx,Lx,Wx (W=1) Vx,Hx,Lx,Wx (W=1) Vo,Ho,Lo,Wd (W=1) Vo,Ho,Lo,Wq (W=1) Vx,Hx,Lx,Wx (W=1) Vx,Hx,Lx,Wx (W=1) Vo,Ho,Lo,Wd (W=1) Vo,Ho,Lo,Wq (W=1)

(FMA4) (FMA4) (FMA4) (FMA4) (FMA4) (FMA4) (FMA4) (FMA4)
VFNMADDPS VFNMADDPD VFNMADDSS VFNMADDSD VFNMSUBPS VFNMSUBPD VFNMSUBSS VFNMSUBSD

Vx,Lx,Wx,Hx (W=0) Vx,Lx,Wx,Hx (W=0) Vo,Lo,Wd,Ho (W=0) Vo,Lo,Wq,Ho (W=0) Vx,Lx,Wx,Hx (W=0) Vx,Lx,Wx,Hx (W=0) Vo,Lo,Wd,Ho (W=0) Vo,Lo,Wq,Ho (W=0)
Vx,Lx,Hx,Wx (W=1) Vx,Lx,Hx,Wx (W=1) Vo,Lo,Ho,Wd (W=1) Vo,Lo,Ho,Wq (W=1) Vx,Lx,Hx,Wx (W=1) Vx,Lx,Hx,Wx (W=1) Vo,Lo,Ho,Wd (W=1) Vo,Lo,Ho,Wq (W=1)

(FMA) (FMA) (FMA) (FMA) (FMA) (FMA) (FMA) (FMA)

. . . 8xh-Cxh . . .
VAESKEYGEN-

ASSIST
Vo,Wo,Ib

. . . Exh-Fxh . . .
Note 1:
Note 2: The zero match codes are TD, TD (alias), MO, and MZ. They are encoded as the zzzz field of the Ib, using 0...3h.

01

01

01

00

01

01

01

00

01

01

00

00

01

00

01

00

Dxh

6xh

7xh

0xh

1xh

4xh

5xh

Opcode and Operand Encodings 441

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-24. VEX Opcode Groups

XOP Opcode Maps. Tables A-25 – A-30 below present the XOP opcode maps and Table A-31 on
page 443 presents the VEX opcode groups.

Table A-25. XOP Opcode Map 8h, Low Nibble = [0h:7h]

Number
VEX Map,
Opcode

VEX.pp xx000xxx xx001xxx xx010xxx xx011xxx xx100xxx xx101xxx xx110xxx xx111xxx

1 VPSRLW VPSRAW VPSLLW
71h Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib

1 VPSRLD VPSRAD VPSLLD
72h Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib

1 VPSRLQ VPSRLDQ VPSLLQ VPSLLDQ
73h Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib

1 VLDMXCSR Md VSTMXCSR Md
AEh

2 BLSR BLSMSK BLSI
F3h By,Ey By,Ey By,Ey

15

17

01

01

01

00

00

ModRM ByteGroup

12

13

14

XOP.pp Opcode x0h x1h x2h x3h x4h x5h x6h x7h

. . . 0xh-7xh . . .
PMACSSWW VPMACSSWD PMACSSDQL
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

VPMACSWW VPMACSWD VPMACSDQL
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

VPCMOV VPPERM VPMADCSSWD
Vx,Hx,Wx,Lx (W=0) Vo,Ho,Wo,Lo (W=0) Vo,Ho,Wo,Lo
Vx,Hx,Lx,Wx (W=1) Vo,Ho,Lo,Wo (W=1)

PMADCSWD
Vo,Ho,Wo,Lo

VPROTB VPROTW VPROTD VPROTQ
Vo,Wo,Ib Vo,Wo,Ib Vo,Wo,Ib Vo,Wo,Ib

. . . Dxh-Fxh . . .

00

00

00

00

00

Axh

8xh

9xh

Bxh

Cxh

442 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-26. XOP Opcode Map 8h, Low Nibble = [8h:Fh]

Table A-27. XOP Opcode Map 9h, Low Nibble = [0h:7h]

XOP.pp Opcode x8h x9h xAh xBh xCh xDh xEh xF

. . . 0xh-07xh . . .
VPMACSSDD VPMACSSDQH
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

VPMACSDD VPMACSDQH
Vo,Ho,Wo,Lo Vo,Ho,Wo,Lo

. . . Axh-Bxh . . .
VPCOMccB1 VPCOMccW1 VPCOMccD1 VPCOMccQ1

Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib

VPCOMccUB1 VPCOMccUW1 VPCOMccUD1 VPCOMccUQ1

Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib Vo,Ho,Wo,Ib

00

Note 1: The condition codes are LT, LE, GT, GE, EQ, NEQ, FALSE, and TRUE. They are encoded via Ib, using 00...07h.

Fxh

00

00

00

00

00

8xh

9xh

Cxh

Dxh

Exh

XOP.pp Opcode x0h x1h x2h x3h x4h x5h x6h x7h

. . . 2xh-7xh . . .
VFRCZPS VFRCZPD VFRCZSS VFRCZSD

Vx,Wx Vx,Wx Vo,Wo.d Vo,Wo.q

VPROTB VPROTW VPROTD VPROTQ VPSHLB VPSHLW VPSHLD VPSHLQ
Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0)
Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1)

. . . Axh-Bxh . . .
VPHADDBW VPHADDBD VPHADDBQ VPHADDWD VPHADDWQ

Vo,Wo Vo,Wo Vo,Wo Vo,Wo Vo,Wo

VPHADDUBWD VPHADDUBD VPHADDUBQ VPHADDUWD VPHADDUWQ
Vo,Wo Vo,Wo Vo,Wo Vo,Wo Vo,Wo

VPHSUBBW VPHSUBWD VPHSUBDQ
Vo,Wo Vo,Wo Vo,Wo

. . . Fxh . . .

Cxh

Dxh

Exh

0xh

1xh

8xh

9xh

XOP group #1 XOP group #2

XOP group #3

00

00

00

00

00

00

00

Opcode and Operand Encodings 443

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-28. XOP Opcode Map 9h, Low Nibble = [8h:Fh]

Table A-29. XOP Opcode Map Ah, Low Nibble = [0h:7h]

Table A-30. XOP Opcode Map Ah, Low Nibble = [8h:Fh]

Table A-31. XOP Opcode Groups

XOP.pp Opcode x8h x9h xAh xBh xCh xDh xEh xF

. . . 0xh-7xh . . .
VPSHAB VPSHAW VPSHAD VPSHAQ

Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0) Vo,Wo,Ho (W=0)
Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1) Vo,Ho,Wo (W=1)

. . . 9xh-Bxh . . .
VPHADDDQ

Vo,Wo

VPHADDUDQ
Vo,Wo

. . . Exh-Fxh . . .

00

00

00

8xh

Cxh

Dxh

XOP.pp Opcode x0h x1h x2h x3h x4h x5h x6h x7h

. . . 0xh . . .
BEXTR XOP group #4

Gy,Ey,Id

. . . 2xh-Fxh . . .

1xh00

XOP.pp Opcode x8h x9h xAh xBh xCh xDh xEh xFh

0xh-Fxhn/a

Opcodes Reserved

/0 /1 /2 /3 /4 /5 /6 /7
XOP BLCFILL BLSFILL BLCS TZMSK BLCIC BLSIC T1MSKC

9 By,Ey By,Ey By,Ey By,Ey By,Ey By,Ey By,Ey
01h
XOP BLCMSK BLCI

9 By,Ey By,Ey
02h
XOP LLWPCB SLWPCB

9 Ry Ry
12h
XOP LWPINS LWPVAL

A By,Ed,Id By,Ed,Id
12h

ModRM.reg

#1

#2

#3

#4

Group

444 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

A.2 Operand Encodings
Register and memory operands are encoded using the mode-register-memory (ModRM) and the scale-
index-base (SIB) bytes that follow the opcodes. In some instructions, the ModRM byte is followed by
an SIB byte, which defines the instruction’s memory-addressing mode for the complex-addressing
modes.

A.2.1 ModRM Operand References

Figure A-2 on page 444 shows the format of a ModRM byte. There are three fields—mod, reg, and
r/m. The reg field not only provides additional opcode bits—as described above beginning with
“Encoding Extensions Using the ModRM Byte” on page 413 and ending with “x87 Encodings” on
page 424—but is also used with the other two fields to specify operands. The mod and r/m fields are
used together with each other and, in 64-bit mode, with the REX.R and REX.B bits of the REX prefix,
to specify the location of the instruction’s operands and certain of the possible addressing modes
(specifically, the non-complex modes).

Figure A-2. ModRM-Byte Format

The two sections below describe the ModRM operand encodings, first for 16-bit references and then
for 32-bit and 64-bit references.

16-Bit Register and Memory References. Table A-32 shows the notation and encoding
conventions for register references using the ModRM reg field. This table is comparable to Table A-34
on page 447 but applies only when the address-size is 16-bit. Table A-33 on page 445 shows the
notation and encoding conventions for 16-bit memory references using the ModRM byte. This table is
comparable to Table A-35 on page 448.

513-305.eps

mod

REX.R bit of REX prefix can
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

reg r/m ModRM
01234567Bits:

Opcode and Operand Encodings 445

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-32. ModRM Register References, 16-Bit Addressing

Mnemonic
Notation

ModRM reg Field
/0 /1 /2 /3 /4 /5 /6 /7

reg8 AL CL DL BL AH CH DH BH
reg16 AX CX DX BX SP BP SI DI
reg32 EAX ECX EDX EBX ESP EBP ESI EDI
mmx MMX0 MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7
xmm XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7
sReg ES CS SS DS FS GS invalid invalid
cReg CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7
dReg DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7

Table A-33. ModRM Memory References, 16-Bit Addressing

Effective Address1

ModRM
mod
Field

(binary)

ModRM reg Field2 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

Complete ModRM Byte (hex)

[BX+SI]

00

00 08 10 18 20 28 30 38 000

[BX+DI] 01 09 11 19 21 29 31 39 001

[BP+SI] 02 0A 12 1A 22 2A 32 3A 010

[BP+DI] 03 0B 13 1B 23 2B 33 3B 011

[SI] 04 0C 14 1C 24 2C 34 3C 100

[DI] 05 0D 15 1D 25 2D 35 3D 101

[disp16] 06 0E 16 1E 26 2E 36 3E 110

[BX] 07 0F 17 1F 27 2F 37 3F 111

[BX+SI+disp8]

01

40 48 50 58 60 68 70 78 000

[BX+DI+disp8] 41 49 51 59 61 69 71 79 001

[BP+SI+disp8] 42 4A 52 5A 62 6A 72 7A 010

[BP+DI+disp8] 43 4B 53 5B 63 6B 73 7B 011

[SI+disp8] 44 4C 54 5C 64 6C 74 7C 100

[DI+disp8] 45 4D 55 5D 65 6D 75 7D 101

[BP+disp8] 46 4E 56 5E 66 6E 76 7E 110

[BX+disp8] 47 4F 57 5F 67 6F 77 7F 111

Note:
1. In these combinations, “disp8” and “disp16” indicate an 8-bit or 16-bit signed displacement.
2. See Table A-32 for complete specification of ModRM “reg” field.

446 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Register and Memory References for 32-Bit and 64-Bit Addressing. Table A-34 on
page 447 shows the encoding for 32-bit and 64-bit register references using the ModRM reg field. The
first nine rows of Table A-34 show references when the REX.R bit is cleared to 0, and the last nine
rows show references when the REX.R bit is set to 1. In this table, Mnemonic Notation means the
syntax notation shown in “Mnemonic Syntax” on page 52 for a register, and ModRM Notation (/r)
means the opcode-syntax notation shown in “Opcode Syntax” on page 55 for the register.

Table A-35 on page 448 shows the encoding for 32-bit and 64-bit memory references using the
ModRM byte. This table describes 32-bit and 64-bit addressing, with the REX.B bit set or cleared. The
Effective Address is shown in the two left-most columns, followed by the binary encoding of the
ModRM-byte mod field, followed by the eight possible hex values of the complete ModRM byte (one
value for each binary encoding of the ModRM-byte reg field), followed by the binary encoding of the
ModRM r/m field.

[BX+SI+disp16]

10

80 88 90 98 A0 A8 B0 B8 000

[BX+DI+disp16] 81 89 91 99 A1 A9 B1 B9 001

[BP+SI+disp16] 82 8A 92 9A A2 AA B2 BA 010

[BP+DI+disp16] 83 8B 93 9B A3 AB B3 BB 011

[SI+disp16] 84 8C 94 9C A4 AC B4 BC 100

[DI+disp16] 85 8D 95 9D A5 AD B5 BD 101

[BP+disp16] 86 8E 96 9E A6 AE B6 BE 110

[BX+disp16] 87 8F 97 9F A7 AF B7 BF 111

AL/AX/EAX/MMX0/XMM0

11

C0 C8 D0 D8 E0 E8 F0 F8 000

CL/CX/ECX/MMX1/XMM1 C1 C9 D1 D9 E1 E9 F1 F9 001

DL/DX/EDX/MMX2/XMM2 C2 CA D2 DA E2 EA F2 FA 010

BL/BX/EBX/MMX3/XMM3 C3 CB D3 DB E3 EB F3 FB 011

AH/SP/ESP/MMX4/XMM4 C4 CC D4 DC E4 EC F4 FC 100

CH/BP/EBP/MMX5/XMM5 C5 CD D5 DD E5 ED F5 FD 101

DH/SI/ESI/MMX6/XMM6 C6 CE D6 DE E6 EE F6 FE 110

BH/DI/EDI/MMX7/XMM7 C7 CF D7 DF E7 EF F7 FF 111

Table A-33. ModRM Memory References, 16-Bit Addressing (continued)

Effective Address1

ModRM
mod
Field

(binary)

ModRM reg Field2 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

Complete ModRM Byte (hex)

Note:
1. In these combinations, “disp8” and “disp16” indicate an 8-bit or 16-bit signed displacement.
2. See Table A-32 for complete specification of ModRM “reg” field.

Opcode and Operand Encodings 447

24594—Rev. 3.16—September 2011 AMD64 Technology

The /0 through /7 notation for the ModRM reg field (bits 5–3) means that the three-bit field contains a
value from zero (binary 000) to 7 (binary 111).

Table A-34. ModRM Register References, 32-Bit and 64-Bit Addressing

Mnemonic
Notation REX.R Bit

ModRM reg Field

/0 /1 /2 /3 /4 /5 /6 /7

reg8

0

AL CL DL BL AH/SPL CH/BPL DH/SIL BH/DIL

reg16 AX CX DX BX SP BP SI DI

reg32 EAX ECX EDX EBX ESP EBP ESI EDI

reg64 RAX RCX RDX RBX RSP RBP RSI RDI

mmx MMX0 MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7

xmm XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7

sReg ES CS SS DS FS GS invalid invalid

cReg CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

dReg DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7

reg8

1

R8B R9B R10B R11B R12B R13B R14B R15B

reg16 R8W R9W R10W R11W R12W R13W R14W R15W

reg32 R8D R9D R10D R11D R12D R13D R14D R15D

reg64 R8 R9 R10 R11 R12 R13 R14 R15

mmx MMX0 MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7

xmm XMM8 XMM9 XMM10 XMM11 XMM12 XMM13 XMM14 XMM15

sReg ES CS SS DS FS GS invalid invalid

cReg CR8 CR9 CR10 CR11 CR12 CR13 CR14 CR15

dReg DR8 DR9 DR10 DR11 DR12 DR13 DR14 DR15

448 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Table A-35. ModRM Memory References, 32-Bit and 64-Bit Addressing

Effective Address1
ModRM

mod
Field

(binary)

ModRM reg Field3 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

REX.B = 0 REX.B = 1 Complete ModRM Byte (hex)

[rAX] [r8]

00

00 08 10 18 20 28 30 38 000

[rCX] [r9] 01 09 11 19 21 29 31 39 001

[rDX] [r10] 02 0A 12 1A 22 2A 32 3A 010

[rBX] [r11] 03 0B 13 1B 23 2B 33 3B 011

[SIB]4 [SIB]4 04 0C 14 1C 24 2C 34 3C 100

[rIP+disp32] or [disp32]2
[rIP+disp32] or
[disp32]2

05 0D 15 1D 25 2D 35 3D 101

[rSI] [r14] 06 0E 16 1E 26 2E 36 3E 110

[rDI] [r15] 07 0F 17 1F 27 2F 37 3F 111

[rAX+disp8] [r8+disp8]

01

40 48 50 58 60 68 70 78 000

[rCX+disp8] [r9+disp8] 41 49 51 59 61 69 71 79 001

[rDX+disp8] [r10+disp8] 42 4A 52 5A 62 6A 72 7A 010

[rBX+disp8] [r11+disp8] 43 4B 53 5B 63 6B 73 7B 011

[SIB+disp8]4 [SIB+disp8]4 44 4C 54 5C 64 6C 74 7C 100

[rBP+disp8] [r13+disp8] 45 4D 55 5D 65 6D 75 7D 101

[rSI+disp8] [r14+disp8] 46 4E 56 5E 66 6E 76 7E 110

[rDI+disp8] [r15+disp8] 47 4F 57 5F 67 6F 77 7F 111

[rAX+disp32] [r8+disp32]

10

80 88 90 98 A0 A8 B0 B8 000

[rCX+disp32] [r9+disp32] 81 89 91 99 A1 A9 B1 B9 001

[rDX+disp32] [r10+disp32] 82 8A 92 9A A2 AA B2 BA 010

[rBX+disp32] [r11+disp32] 83 8B 93 9B A3 AB B3 BB 011

[SIB+disp32]4 [SIB+disp32]4 84 8C 94 9C A4 AC B4 BC 100

[rBP+disp32] [r13+disp32] 85 8D 95 9D A5 AD B5 BD 101

[rSI+disp32] [r14+disp32] 86 8E 96 9E A6 AE B6 BE 110

[rDI+disp32] [r15+disp32] 87 8F 97 9F A7 AF B7 BF 111

Note:
1. In these combinations, “disp8” and “disp32” indicate an 8-bit or 32-bit signed displacement.
2. In 64-bit mode, the effective address is [rIP+disp32]. In all other modes, the effective address is [disp32]. If the

address-size prefix is used in 64-bit mode to override 64-bit addressing, the [RIP+disp32] effective address is trun-
cated after computation to 32 bits.

3. See Table A-34 for complete specification of ModRM “reg” field.
4. An SIB byte follows the ModRM byte to identify the memory operand.

Opcode and Operand Encodings 449

24594—Rev. 3.16—September 2011 AMD64 Technology

A.2.2 SIB Operand References

Figure A-3 on page 450 shows the format of a scale-index-base (SIB) byte. Some instructions have an
SIB byte following their ModRM byte to define memory addressing for the complex-addressing
modes described in “Effective Addresses” in Volume 1. The SIB byte has three fields—scale, index,
and base—that define the scale factor, index-register number, and base-register number for 32-bit and
64-bit complex addressing modes. In 64-bit mode, the REX.B and REX.X bits extend the encoding of
the SIB byte’s base and index fields.

AL/rAX/MMX0/XMM0 r8/MMX0/XMM8

11

C0 C8 D0 D8 E0 E8 F0 F8 000

CL/rCX/MMX1/XMM1 r9/MMX1/XMM9 C1 C9 D1 D9 E1 E9 F1 F9 001

DL/rDX/MMX2/XMM2 r10/MMX2/XMM1
0 C2 CA D2 DA E2 EA F2 FA 010

BL/rBX/MMX3/XMM3 r11/MMX3/XMM1
1 C3 CB D3 DB E3 EB F3 FB 011

AH/SPL/rSP/MMX4/XM
M4

r12/MMX4/XMM1
2 C4 CC D4 DC E4 EC F4 FC 100

CH/BPL/rBP/MMX5/XM
M5

r13/MMX5/XMM1
3 C5 CD D5 DD E5 ED F5 FD 101

DH/SIL/rSI/MMX6/XMM
6

r14/MMX6/XMM1
4 C6 CE D6 DE E6 EE F6 FE 110

BH/DIL/rDI/MMX7/XMM
7

r15/MMX7/XMM1
5 C7 CF D7 DF E7 EF F7 FF 111

Table A-35. ModRM Memory References, 32-Bit and 64-Bit Addressing (continued)

Effective Address1
ModRM

mod
Field

(binary)

ModRM reg Field3 ModRM
r/m

Field
(binary)

/0 /1 /2 /3 /4 /5 /6 /7

REX.B = 0 REX.B = 1 Complete ModRM Byte (hex)

Note:
1. In these combinations, “disp8” and “disp32” indicate an 8-bit or 32-bit signed displacement.
2. In 64-bit mode, the effective address is [rIP+disp32]. In all other modes, the effective address is [disp32]. If the

address-size prefix is used in 64-bit mode to override 64-bit addressing, the [RIP+disp32] effective address is trun-
cated after computation to 32 bits.

3. See Table A-34 for complete specification of ModRM “reg” field.
4. An SIB byte follows the ModRM byte to identify the memory operand.

450 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

Figure A-3. SIB Byte Format

Table A-36 shows the encodings for the SIB byte’s base field, which specifies the base register for
addressing. Table A-37 on page 451 shows the encodings for the effective address referenced by a
complete SIB byte, including its scale and index fields. The /0 through /7 notation for the SIB base
field means that the three-bit field contains a value between zero (binary 000) and 7 (binary 111).

Table A-36. SIB base Field References

REX.B Bit ModRM mod Field
SIB base Field

/0 /1 /2 /3 /4 /5 /6 /7

0

00

rAX rCX rDX rBX rSP

disp32

rSI rDI01 rBP+disp8

10 rBP+disp32

1

00

r8 r9 r10 r11 r12

disp32

r14 r1501 r13+disp8

10 r13+disp32

513-306.eps

Bits:

scale index base SIB
01234567

REX.X bit of REX prefix can
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

Opcode and Operand Encodings 451

24594—Rev. 3.16—September 2011 AMD64 Technology

Table A-37. SIB Memory References

Effective Address SIB
scale
Field

SIB
index
Field

SIB base Field1

REX.B = 0: rAX rCX rDX rBX rSP
note

1
rSI rDI

REX.B = 1: r8 r9 r10 r11 r12
note

1
r14 r15

/0 /1 /2 /3 /4 /5 /6 /7

REX.X = 0 REX.X = 1 Complete SIB Byte (hex)

[rAX+base] [r8+base]

00

000 00 01 02 03 04 05 06 07

[rCX+base] [r9+base] 001 08 09 0A 0B 0C 0D 0E 0F

[rDX+base] [r10+base] 010 10 11 12 13 14 15 16 17

[rBX+base] [r11+base] 011 18 19 1A 1B 1C 1D 1E 1F

[base] [r12+base] 100 20 21 22 23 24 25 26 27

[rBP+base] [r13+base] 101 28 29 2A 2B 2C 2D 2E 2F

[rSI+base] [r14+base] 110 30 31 32 33 34 35 36 37

[rDI+base] [r15+base] 111 38 39 3A 3B 3C 3D 3E 3F

[rAX*2+base] [r8*2+base]

01

000 40 41 42 43 44 45 46 47

[rCX*2+base] [r9*2+base] 001 48 49 4A 4B 4C 4D 4E 4F

[rDX*2+base] [r10*2+base] 010 50 51 52 53 54 55 56 57

[rBX*2+base] [r11*2+base] 011 58 59 5A 5B 5C 5D 5E 5F

[base] [r12*2+base] 100 60 61 62 63 64 65 66 67

[rBP*2+base] [r13*2+base] 101 68 69 6A 6B 6C 6D 6E 6F

[rSI*2+base] [r14*2+base] 110 70 71 72 73 74 75 76 77

[rDI*2+base] [r15*2+base] 111 78 79 7A 7B 7C 7D 7E 7F

[rAX*4+base] [r8*4+base]

10

000 80 81 82 83 84 85 86 87

[rCX*4+base] [r9*4+base] 001 88 89 8A 8B 8C 8D 8E 8F

[rDX*4+base] [r10*4+base] 010 90 91 92 93 94 95 96 97

[rBX*4+base] [r11*4+base] 011 98 99 9A 9B 9C 9D 9E 9F

[base] [r12*4+base] 100 A0 A1 A2 A3 A4 A5 A6 A7

[rBP*4+base] [r13*4+base] 101 A8 A9 AA AB AC AD AE AF

[rSI*4+base] [r14*4+base] 110 B0 B1 B2 B3 B4 B5 B6 B7

[rDI*4+base] [r15*4+base] 111 B8 B9 BA BB BC BD BE BF

Note:
1. See Table A-36 on page 450 for complete specification of SIB “base” field.

452 Opcode and Operand Encodings

AMD64 Technology 24594—Rev. 3.16—September 2011

[rAX*8+base] [r8*8+base]

11

000 C0 C1 C2 C3 C4 C5 C6 C7

[rCX*8+base] [r9*8+base] 001 C8 C9 CA CB CC CD CE CF

[rDX*8+base] [r10*8+base] 010 D0 D1 D2 D3 D4 D5 D6 D7

[rBX*8+base] [r11*8+base] 011 D8 D9 DA DB DC DD DE DF

[base] [r12*8+base] 100 E0 E1 E2 E3 E4 E5 E6 E7

[rBP*8+base] [r13*8+base] 101 E8 E9 EA EB EC ED EE EF

[rSI*8+base] [r14*8+base] 110 F0 F1 F2 F3 F4 F5 F6 F7

[rDI*8+base] [r15*8+base] 111 F8 F9 FA FB FC FD FE FF

Table A-37. SIB Memory References (continued)

Effective Address SIB
scale
Field

SIB
index
Field

SIB base Field1

REX.B = 0: rAX rCX rDX rBX rSP
note

1
rSI rDI

REX.B = 1: r8 r9 r10 r11 r12
note

1
r14 r15

/0 /1 /2 /3 /4 /5 /6 /7

REX.X = 0 REX.X = 1 Complete SIB Byte (hex)

Note:
1. See Table A-36 on page 450 for complete specification of SIB “base” field.

General-Purpose Instructions in 64-Bit Mode 453

24594—Rev. 3.16—September 2011 AMD64 Technology

Appendix B General-Purpose Instructions in
64-Bit Mode

This appendix provides details of the general-purpose instructions in 64-bit mode and its differences
from legacy and compatibility modes. The appendix covers only the general-purpose instructions
(those described in Chapter 3, “General-Purpose Instruction Reference”). It does not cover the 128-
bit media, 64-bit media, or x87 floating-point instructions because those instructions are not affected
by 64-bit mode, other than in the access by such instructions to extended GPR and XMM registers
when using a REX prefix.

B.1 General Rules for 64-Bit Mode
In 64-bit mode, the following general rules apply to instructions and their operands:

• “Promoted to 64 Bit”: If an instruction’s operand size (16-bit or 32-bit) in legacy and
compatibility modes depends on the CS.D bit and the operand-size override prefix, then the
operand-size choices in 64-bit mode are extended from 16-bit and 32-bit to include 64 bits (with a
REX prefix), or the operand size is fixed at 64 bits. Such instructions are said to be “Promoted to
64 bits” in Table B-1. However, byte-operand opcodes of such instructions are not promoted.

• Byte-Operand Opcodes Not Promoted: As stated above in “Promoted to 64 Bit”, byte-operand
opcodes of promoted instructions are not promoted. Those opcodes continue to operate only on
bytes.

• Fixed Operand Size: If an instruction’s operand size is fixed in legacy mode (thus, independent of
CS.D and prefix overrides), that operand size is usually fixed at the same size in 64-bit mode. For
example, CPUID operates on 32-bit operands, irrespective of attempts to override the operand
size.

• Default Operand Size: The default operand size for most instructions is 32 bits, and a REX prefix
must be used to change the operand size to 64 bits. However, two groups of instructions default to
64-bit operand size and do not need a REX prefix: (1) near branches and (2) all instructions, except
far branches, that implicitly reference the RSP. See Table B-5 on page 481 for a list of all
instructions that default to 64-bit operand size.

• Zero-Extension of 32-Bit Results: Operations on 32-bit operands in 64-bit mode zero-extend the
high 32 bits of 64-bit GPR destination registers.

• No Extension of 8-Bit and 16-Bit Results: Operations on 8-bit and 16-bit operands in 64-bit
mode leave the high 56 or 48 bits, respectively, of 64-bit GPR destination registers unchanged.

• Shift and Rotate Counts: When the operand size is 64 bits, shifts and rotates use one additional
bit (6 bits total) to specify shift-count or rotate-count, allowing 64-bit shifts and rotates.

• Immediates: The maximum size of immediate operands is 32 bits, except that 64-bit immediates
can be MOVed into 64-bit GPRs. Immediates that are less than 64 bits are a maximum of 32 bits,
and are sign-extended to 64 bits during use.

454 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

• Displacements and Offsets: The maximum size of an address displacement or offset is 32 bits,
except that 64-bit offsets can be used by specific MOV opcodes that read or write AL or rAX.
Displacements and offsets that are less than 64 bits are a maximum of 32 bits, and are sign-
extended to 64 bits during use.

• Undefined High 32 Bits After Mode Change: The processor does not preserve the upper 32 bits
of the 64-bit GPRs across switches from 64-bit mode to compatibility or legacy modes. In
compatibility or legacy mode, the upper 32 bits of the GPRs are undefined and not accessible to
software.

B.2 Operation and Operand Size in 64-Bit Mode
Table B-1 lists the integer instructions, showing operand size in 64-bit mode and the state of the high
32 bits of destination registers when 32-bit operands are used. Opcodes, such as byte-operand versions
of several instructions, that do not appear in Table B-1 are covered by the general rules described in
“General Rules for 64-Bit Mode” on page 453.

Table B-1. Operations and Operands in 64-Bit Mode

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

AAA - ASCII Adjust after Addition
INVALID IN 64-BIT MODE (invalid-opcode exception)

37
AAD - ASCII Adjust AX before Division

INVALID IN 64-BIT MODE (invalid-opcode exception)
D5

AAM - ASCII Adjust AX after Multiply
INVALID IN 64-BIT MODE (invalid-opcode exception)

D4
AAS - ASCII Adjust AL after Subtraction

INVALID IN 64-BIT MODE (invalid-opcode exception)
3F

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 455

24594—Rev. 3.16—September 2011 AMD64 Technology

ADC—Add with Carry

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

11
13
15
81 /2
83 /2

ADD—Signed or Unsigned Add

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

01
03
05
81 /0
83 /0

AND—Logical AND

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

21
23
25
81 /4
83 /4

ARPL - Adjust Requestor Privilege Level
OPCODE USED as MOVSXD in 64-BIT MODE

63
BOUND - Check Array Against Bounds

INVALID IN 64-BIT MODE (invalid-opcode exception)
62

BSF—Bit Scan Forward Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.0F BC

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

456 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

BSR—Bit Scan Reverse Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.0F BD

BSWAP—Byte Swap Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Swap all 8 bytes
of a 64-bit GPR.0F C8 through 0F CF

BT—Bit Test
Promoted to
64 bits. 32 bits No GPR register results.0F A3

0F BA /4
BTC—Bit Test and Complement

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

0F BB
0F BA /7

BTR—Bit Test and Reset
Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

0F B3
0F BA /6

BTS—Bit Test and Set
Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

0F AB
0F BA /5

CALL—Procedure Call Near See “Near Branches in 64-Bit Mode” in Volume 1.

E8 Promoted to
64 bits. 64 bits Can’t encode.6

RIP = RIP + 32-
bit displacement
sign-extended to
64 bits.

FF /2 Promoted to
64 bits. 64 bits Can’t encode.6

RIP = 64-bit
offset from
register or
memory.

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 457

24594—Rev. 3.16—September 2011 AMD64 Technology

CALL—Procedure Call Far See “Branches to 64-Bit Offsets” in Volume 1.
9A INVALID IN 64-BIT MODE (invalid-opcode exception)

FF /3 Promoted to
64 bits. 32 bits

If selector points to a gate, then
RIP = 64-bit offset from gate, else
RIP = zero-extended 32-bit offset
from far pointer referenced in
instruction.

CBW, CWDE, CDQE—Convert Byte to
Word, Convert Word to Doubleword,
Convert Doubleword to Quadword

Promoted to
64 bits.

32 bits
(size of desti-
nation regis-

ter)

CWDE: Converts
word to
doubleword.
Zero-extends
EAX to RAX.

CDQE (new
mnemonic):
Converts
doubleword to
quadword.
RAX = sign-
extended EAX.

98

CDQ see CWD, CDQ, CQO
CDQE (new mnemonic) see CBW, CWDE, CDQE
CDWE see CBW, CWDE, CDQE
CLC—Clear Carry Flag Same as

legacy mode. Not relevant. No GPR register results.
F8

CLD—Clear Direction Flag Same as
legacy mode. Not relevant. No GPR register results.

FC
CLFLUSH—Cache Line Invalidate Same as

legacy mode. Not relevant. No GPR register results.
0F AE /7

CLGI—Clear Global Interrupt Same as
legacy mode Not relevant No GPR register results.

0F 01 DD
CLI—Clear Interrupt Flag Same as

legacy mode. Not relevant. No GPR register results.
FA

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

458 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

CLTS—Clear Task-Switched Flag in
CR0 Same as

legacy mode. Not relevant. No GPR register results.
0F 06

CMC—Complement Carry Flag Same as
legacy mode. Not relevant. No GPR register results.

F5
CMOVcc—Conditional Move

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.
This occurs even
if the condition is
false.

0F 40 through 0F 4F

CMP—Compare

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

39
3B
3D
81 /7
83 /7

CMPS, CMPSW, CMPSD, CMPSQ—
Compare Strings

Promoted to
64 bits. 32 bits

CMPSD:
Compare String
Doublewords.

See footnote5

CMPSQ (new
mnemonic):
Compare String
Quadwords

See footnote5
A7

CMPXCHG—Compare and Exchange Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.0F B1

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 459

24594—Rev. 3.16—September 2011 AMD64 Technology

CMPXCHG8B—Compare and
Exchange Eight Bytes

Same as
legacy mode. 32 bits.

Zero-extends
EDX and EAX to
64 bits.

CMPXCHG16B
(new mne-

monic): Com-
pare and

Exchange 16
Bytes.

0F C7 /1

CPUID—Processor Identification Same as
legacy mode.

Operand size
fixed at 32

bits.

Zero-extends 32-bit register results
to 64 bits. 0F A2

CQO (new mnemonic) see CWD, CDQ, CQO
CWD, CDQ, CQO—Convert Word to
Doubleword, Convert Doubleword to
Quadword, Convert Quadword to Double
Quadword

Promoted to
64 bits.

32 bits
(size of desti-
nation regis-

ter)

CDQ: Converts
doubleword to
quadword.
Sign-extends
EAX to EDX.
Zero-extends
EDX to RDX.
RAX is
unchanged.

CQO (new
mnemonic):
Converts
quadword to
double
quadword.
Sign-extends
RAX to RDX.
RAX is
unchanged.

99

DAA - Decimal Adjust AL after Addition
INVALID IN 64-BIT MODE (invalid-opcode exception)

27
DAS - Decimal Adjust AL after
Subtraction INVALID IN 64-BIT MODE (invalid-opcode exception)

2F

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

460 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

DEC—Decrement by 1
FF /1

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

48 through 4F OPCODE USED as REX PREFIX in 64-BIT MODE
DIV—Unsigned Divide

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX
contain a 64-bit
quotient (RAX)
and 64-bit
remainder
(RDX).

F7 /6

ENTER—Create Procedure Stack
Frame Promoted to

64 bits. 64 bits Can’t encode6

C8
HLT—Halt Same as

legacy mode. Not relevant. No GPR register results.
F4

IDIV—Signed Divide

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX
contain a 64-bit
quotient (RAX)
and 64-bit
remainder
(RDX).

F7 /7

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 461

24594—Rev. 3.16—September 2011 AMD64 Technology

IMUL - Signed Multiply

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX = RAX
* reg/mem64
(i.e., 128-bit
result)

F7 /5

0F AF reg64 = reg64 *
reg/mem64

69
reg64 =
reg/mem64 *
imm32

6B
reg64 =
reg/mem64 *
imm8

IN—Input From Port
Same as
legacy mode. 32 bits Zero-extends 32-bit register results

to 64 bits.E5
ED

INC—Increment by 1 Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.FF /0

40 through 47 OPCODE USED as REX PREFIX in 64-BIT MODE
INS, INSW, INSD—Input String

Same as
legacy mode. 32 bits

INSD: Input String Doublewords.
No GPR register results.

See footnote56D

INT n—Interrupt to Vector

Promoted to
64 bits. Not relevant. See “Long-Mode Interrupt Control

Transfers” in Volume 2.
CD

INT3—Interrupt to Debug Vector
CC

INTO - Interrupt to Overflow Vector
INVALID IN 64-BIT MODE (invalid-opcode exception)

CE

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

462 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

INVD—Invalidate Internal Caches Same as
legacy mode. Not relevant. No GPR register results.

0F 08
INVLPG—Invalidate TLB Entry Promoted to

64 bits. Not relevant. No GPR register results.
0F 01 /7

INVLPGA—Invalidate TLB Entry in a
Specified ASID

Same as
legacy mode. Not relevant. No GPR register results.

IRET, IRETD, IRETQ—Interrupt Return

Promoted to
64 bits. 32 bits

IRETD: Interrupt
Return
Doubleword.
See “Long-Mode
Interrupt Control
Transfers” in
Volume 2.

IRETQ (new
mnemonic):
Interrupt Return
Quadword.
See “Long-Mode
Interrupt Control
Transfers” in
Volume 2.

CF

Jcc—Jump Conditional See “Near Branches in 64-Bit Mode” in Volume 1.

70 through 7F

Promoted to
64 bits. 64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

0F 80 through 0F 8F

RIP = RIP + 32-
bit displacement
sign-extended to
64 bits.

JCXZ, JECXZ, JRCXZ—Jump on
CX/ECX/RCX Zero

Promoted to
64 bits. 64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

See footnote5
E3

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 463

24594—Rev. 3.16—September 2011 AMD64 Technology

JMP—Jump Near See “Near Branches in 64-Bit Mode” in Volume 1.

EB

Promoted to
64 bits. 64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

E9

RIP = RIP + 32-
bit displacement
sign-extended to
64 bits.

FF /4

RIP = 64-bit
offset from
register or
memory.

JMP—Jump Far See “Branches to 64-Bit Offsets” in Volume 1.
EA INVALID IN 64-BIT MODE (invalid-opcode exception)

FF /5 Promoted to
64 bits. 32 bits

If selector points to a gate, then
RIP = 64-bit offset from gate, else
RIP = zero-extended 32-bit offset
from far pointer referenced in
instruction.

LAHF - Load Status Flags into AH
Register Same as leg-

acy mode. Not relevant.
9F

LAR—Load Access Rights Byte Same as
legacy mode. 32 bits

Zero-extends 32-
bit register
results to 64 bits. 0F 02

LDS - Load DS Far Pointer
INVALID IN 64-BIT MODE (invalid-opcode exception)

C5

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

464 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

LEA—Load Effective Address Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.8D

LEAVE—Delete Procedure Stack Frame Promoted to
64 bits. 64 bits Can’t encode6

C9
LES - Load ES Far Pointer

INVALID IN 64-BIT MODE (invalid-opcode exception)
C4

LFENCE—Load Fence Same as
legacy mode. Not relevant. No GPR register results.

0F AE /5
LFS—Load FS Far Pointer Same as

legacy mode. 32 bits Zero-extends 32-bit register results
to 64 bits.0F B4

LGDT—Load Global Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.
Loads 8-byte base and 2-byte limit.

0F 01 /2
LGS—Load GS Far Pointer Same as

legacy mode. 32 bits Zero-extends 32-bit register results
to 64 bits.0F B5

LIDT—Load Interrupt Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.
Loads 8-byte base and 2-byte limit.

0F 01 /3
LLDT—Load Local Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 16

bits.

No GPR register results.
References 16-byte descriptor to
load 64-bit base.0F 00 /2

LMSW—Load Machine Status Word Same as
legacy mode.

Operand size
fixed at 16

bits.
No GPR register results.

0F 01 /6

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 465

24594—Rev. 3.16—September 2011 AMD64 Technology

LODS, LODSW, LODSD, LODSQ—
Load String

Promoted to
64 bits. 32 bits

LODSD: Load
String
Doublewords.
Zero-extends 32-
bit register
results to 64 bits.

See footnote5

LODSQ (new
mnemonic): Load
String
Quadwords.

See footnote5
AD

LOOP—Loop

Promoted to
64 bits. 64 bits Can’t encode.6

RIP = RIP + 8-bit
displacement
sign-extended to
64 bits.

See footnote5

E2
LOOPZ, LOOPE—Loop if Zero/Equal

E1
LOOPNZ, LOOPNE—Loop if Not
Zero/Equal

E0
LSL—Load Segment Limit Same as

legacy mode. 32 bits Zero-extends 32-bit register results
to 64 bits.0F 03

LSS —Load SS Segment Register Same as
legacy mode. 32 bits Zero-extends 32-bit register results

to 64 bits.0F B2
LTR—Load Task Register

Promoted to
64 bits.

Operand size
fixed at 16

bits.

No GPR register results.
References 16-byte descriptor to
load 64-bit base.0F 00 /3

LZCNT—Count Leading Zeros
F3 0F BD

Promoted to
64 bits. 32 bits Zero-extends 32-bit register results

to 64 bits.
MFENCE—Memory Fence Same as

legacy mode. Not relevant. No GPR register results.
0F AE /6

MONITOR—Setup Monitor Address
0F 01 C8

Same as
legacy mode.

Operand size
fixed at 32
bits.

No GPR register results.

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

466 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

MOV—Move

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

89
8B

C7
32-bit immediate
is sign-extended
to 64 bits.

B8 through BF 64-bit immediate.
A1 (moffset) Zero-extends 32-

bit register
results to 64 bits.
Memory offsets
are address-
sized and default
to 64 bits.

Memory offsets
are address-
sized and default
to 64 bits. A3 (moffset)

MOV—Move to/from Segment Registers

Same as
legacy mode.

32 bits Zero-extends 32-bit register results
to 64 bits.8C

8E
Operand size
fixed at 16
bits.

No GPR register results.

MOV(CRn)—Move to/from Control
Registers Promoted to

64 bits.

Operand size
fixed at 64

bits.

The high 32 bits of control registers
differ in their writability and reserved
status. See “System Resources” in
Volume 2 for details.

0F 22
0F 20

MOV(DRn)—Move to/from Debug
Registers Promoted to

64 bits.

Operand size
fixed at 64

bits.

The high 32 bits of debug registers
differ in their writability and reserved
status. See “Debug and
Performance Resources” in
Volume 2 for details.

0F 21

0F 23

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 467

24594—Rev. 3.16—September 2011 AMD64 Technology

MOVD—Move Doubleword or
Quadword

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.0F 6E

0F 7E
66 0F 6E Zero-extends 32-

bit register
results to 128
bits.

Zero-extends 64-
bit register
results to 128
bits.

66 0F 7E

MOVNTI—Move Non-Temporal
Doubleword Promoted to

64 bits. 32 bits No GPR register results.
0F C3

MOVS, MOVSW, MOVSD, MOVSQ—
Move String

Promoted to
64 bits. 32 bits

MOVSD: Move
String
Doublewords.

See footnote5

MOVSQ (new
mnemonic):
Move String
Quadwords.

See footnote5
A5

MOVSX—Move with Sign-Extend

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

0F BE
Sign-extends
byte to
quadword.

0F BF
Sign-extends
word to
quadword.

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

468 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

MOVSXD—Move with Sign-Extend
Doubleword

New
instruction,
available only
in 64-bit
mode. (In
other modes,
this opcode
is ARPL
instruction.)

32 bits
Zero-extends 32-
bit register
results to 64 bits.

Sign-extends
doubleword to
quadword.63

MOVZX—Move with Zero-Extend

Zero-extends 32-
bit register
results to 64 bits.

0F B6
Promoted to
64 bits. 32 bits

Zero-extends
byte to
quadword.

0F B7
Zero-extends
word to
quadword.

MUL—Multiply Unsigned
Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

RDX:RAX=RAX *
quadword in
register or
memory.

F7 /4

MWAIT—Monitor Wait
0F 01 C9

Same as
legacy mode.

Operand size
fixed at 32
bits.

No GPR register results.

NEG—Negate Two’s Complement Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.F7 /3

NOP—No Operation Same as
legacy mode. Not relevant. No GPR register results.

90
NOT—Negate One’s Complement Promoted to

64 bits. 32 bits
Zero-extends 32-
bit register
results to 64 bits.F7 /2

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 469

24594—Rev. 3.16—September 2011 AMD64 Technology

OR—Logical OR

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

09
0B
0D
81 /1
83 /1

OUT—Output to Port
Same as
legacy mode. 32 bits No GPR register results.E7

EF
OUTS, OUTSW, OUTSD—Output String

Same as
legacy mode. 32 bits

Writes doubleword to I/O port.
No GPR register results.

See footnote56F

PAUSE—Pause Same as
legacy mode. Not relevant. No GPR register results.

F3 90
POP—Pop Stack

Promoted to
64 bits. 64 bits Cannot encode6 No GPR register

results.8F /0
58 through 5F

POP—Pop (segment register from)
Stack Same as

legacy mode. 64 bits Cannot encode6 No GPR register
results.0F A1 (POP FS)

0F A9 (POP GS)
1F (POP DS)

INVALID IN 64-BIT MODE (invalid-opcode exception)07 (POP ES)
17 (POP SS)

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

470 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

POPA, POPAD—Pop All to GPR Words
or Doublewords INVALID IN 64-BIT MODE (invalid-opcode exception)

61
POPCNT—Bit Population Count

F3 0F B8
Promoted to
64 bits. 32 bits Zero-extends 32-bit register results

to 64 bits.

POPF, POPFD, POPFQ—Pop to
rFLAGS Word, Doublword, or Quadword

Promoted to
64 bits. 64 bits Cannot encode6

POPFQ (new
mnemonic): Pops
64 bits off stack,
writes low 32 bits
into EFLAGS and
zero-extends the
high 32 bits of
RFLAGS.

9D

PREFETCH—Prefetch L1 Data-Cache
Line Same as

legacy mode. Not relevant. No GPR register results.
0F 0D /0

PREFETCHlevel—Prefetch Data to
Cache Level level Same as

legacy mode. Not relevant. No GPR register results.
0F 18 /0-3

PREFETCHW—Prefetch L1 Data-Cache
Line for Write Same as

legacy mode. Not relevant. No GPR register results.
0F 0D /1

PUSH—Push onto Stack

Promoted to
64 bits. 64 bits Cannot encode6

FF /6
50 through 57
6A
68

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 471

24594—Rev. 3.16—September 2011 AMD64 Technology

PUSH—Push (segment register) onto
Stack Promoted to

64 bits. 64 bits Cannot encode6
0F A0 (PUSH FS)
0F A8 (PUSH GS)
0E (PUSH CS)

INVALID IN 64-BIT MODE (invalid-opcode exception)
1E (PUSH DS)
06 (PUSH ES)
16 (PUSH SS)

PUSHA, PUSHAD - Push All to GPR
Words or Doublewords INVALID IN 64-BIT MODE (invalid-opcode exception)

60
PUSHF, PUSHFD, PUSHFQ—Push
rFLAGS Word, Doubleword, or
Quadword onto Stack Promoted to

64 bits. 64 bits Cannot encode6

PUSHFQ (new
mnemonic):
Pushes the 64-bit
RFLAGS
register. 9C

RCL—Rotate Through Carry Left

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /2
D3 /2
C1 /2

RCR—Rotate Through Carry Right

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /3
D3 /3
C1 /3

RDMSR—Read Model-Specific Register
Same as
legacy mode. Not relevant.

RDX[31:0] contains MSR[63:32],
RAX[31:0] contains MSR[31:0].
Zero-extends 32-bit register results
to 64 bits.

0F 32

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

472 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

RDPMC—Read Performance-
Monitoring Counters Same as

legacy mode. Not relevant.

RDX[31:0] contains PMC[63:32],
RAX[31:0] contains PMC[31:0].
Zero-extends 32-bit register results
to 64 bits. 0F 33

RDTSC—Read Time-Stamp Counter
Same as
legacy mode. Not relevant.

RDX[31:0] contains TSC[63:32],
RAX[31:0] contains TSC[31:0].
Zero-extends 32-bit register results
to 64 bits.

0F 31

RDTSCP—Read Time-Stamp Counter
and Processor ID

Same as
legacy mode. Not relevant.

RDX[31:0] contains TSC[63:32],
RAX[31:0] contains TSC[31:0].
RCX[31:0] contains the TSC_AUX
MSR C000_0103h[31:0]. Zero-
extends 32-bit register results to 64
bits.

0F 01 F9

REP INS—Repeat Input String Same as
legacy mode. 32 bits

Reads doubleword I/O port.

See footnote5F3 6D
REP LODS—Repeat Load String

Promoted to
64 bits. 32 bits

Zero-extends
EAX to 64 bits.

See footnote5
See footnote5

F3 AD

REP MOVS—Repeat Move String Promoted to
64 bits. 32 bits

No GPR register results.

See footnote5F3 A5
REP OUTS—Repeat Output String to
Port Same as

legacy mode. 32 bits
Writes doubleword to I/O port.
No GPR register results.

See footnote5F3 6F

REP STOS—Repeat Store String Promoted to
64 bits. 32 bits

No GPR register results.

See footnote5F3 AB
REPx CMPS —Repeat Compare String Promoted to

64 bits. 32 bits
No GPR register results.

See footnote5F3 A7

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 473

24594—Rev. 3.16—September 2011 AMD64 Technology

REPx SCAS —Repeat Scan String Promoted to
64 bits. 32 bits

No GPR register results.

See footnote5F3 AF
RET—Return from Call Near See “Near Branches in 64-Bit Mode” in Volume 1.

C2 Promoted to
64 bits. 64 bits Cannot encode.6

No GPR register
results. C3

RET—Return from Call Far
Promoted to
64 bits. 32 bits

See “Control Transfers” in Volume 1
and “Control-Transfer Privilege
Checks” in Volume 2.

CB
CA

ROL—Rotate Left

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /0
D3 /0
C1 /0

ROR—Rotate Right

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /1
D3 /1
C1 /1

RSM—Resume from System
Management Mode

New SMM
state-save
area.

Not relevant. See “System-Management Mode” in
Volume 2.

0F AA
SAHF—Store AH into Flags Same as leg-

acy mode. Not relevant. No GPR register results.
9E

SAL—Shift Arithmetic Left

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /4
D3 /4
C1 /4

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

474 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

SAR—Shift Arithmetic Right

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /7
D3 /7
C1 /7

SBB—Subtract with Borrow

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

19
1B
1D
81 /3
83 /3

SCAS, SCASW, SCASD, SCASQ—
Scan String

Promoted to
64 bits. 32 bits

SCASD: Scan
String
Doublewords.
Zero-extends 32-
bit register
results to 64 bits.

See footnote5

SCASQ (new
mnemonic): Scan
String
Quadwords.

See footnote5
AF

SFENCE—Store Fence Same as
legacy mode. Not relevant. No GPR register results.

0F AE /7
SGDT—Store Global Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.
Stores 8-byte base and 2-byte limit.

0F 01 /0
SHL—Shift Left

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /4
D3 /4
C1 /4

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 475

24594—Rev. 3.16—September 2011 AMD64 Technology

SHLD—Shift Left Double
Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count. 0F A4
0F A5

SHR—Shift Right

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count.
D1 /5
D3 /5
C1 /5

SHRD—Shift Right Double
Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

Uses 6-bit count. 0F AC
0F AD

SIDT—Store Interrupt Descriptor Table
Register Promoted to

64 bits.

Operand size
fixed at 64

bits.

No GPR register results.
Stores 8-byte base and 2-byte limit.

0F 01 /1
SKINIT—Secure Init and Jump with
Attestation

0F 01 DE

Same as
legacy mode. Not relevant

Zero-extends 32-
bit register
results to 64 bits.

SLDT—Store Local Descriptor Table
Register Same as

legacy mode. 32 Zero-extends 2-byte LDT selector to
64 bits.

0F 00 /0
SMSW—Store Machine Status Word Same as

legacy mode. 32
Zero-extends 32-
bit register
results to 64 bits.

Stores 64-bit
machine status

word (CR0).0F 01 /4

STC—Set Carry Flag Same as
legacy mode. Not relevant. No GPR register results.

F9
STD—Set Direction Flag Same as

legacy mode. Not relevant. No GPR register results.
FD

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

476 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

STGI—Set Global Interrupt Flag Same as
legacy mode.

Not relevant.
No GPR register results.

0F 01 DC
STI - Set Interrupt Flag Same as

legacy mode. Not relevant. No GPR register results.
FB

STOS, STOSW, STOSD, STOSQ- Store
String

Promoted to
64 bits. 32 bits

STOSD: Store
String
Doublewords.

See footnote5

STOSQ (new
mnemonic):
Store String
Quadwords.

See footnote5
AB

STR—Store Task Register Same as
legacy mode. 32 Zero-extends 2-byte TR selector to

64 bits. 0F 00 /1
SUB—Subtract

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

29
2B
2D
81 /5
83 /5

SWAPGS—Swap GS Register with
KernelGSbase MSR

New
instruction,
available only
in 64-bit
mode. (In
other modes,
this opcode
is invalid.)

Not relevant. See “SWAPGS Instruction” in
Volume 2.

0F 01 /7

SYSCALL—Fast System Call Promoted to
64 bits. Not relevant. See “SYSCALL and SYSRET

Instructions” in Volume 2 for details.0F 05

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 477

24594—Rev. 3.16—September 2011 AMD64 Technology

SYSENTER—System Call
INVALID IN LONG MODE (invalid-opcode exception)

0F 34
SYSEXIT—System Return

INVALID IN LONG MODE (invalid-opcode exception)
0F 35

SYSRET—Fast System Return Promoted to
64 bits. 32 bits See “SYSCALL and SYSRET

Instructions” in Volume 2 for details.0F 07
TEST—Test Bits

Promoted to
64 bits. 32 bits No GPR register results.

85
A9
F7 /0

UD2—Undefined Operation Same as
legacy mode. Not relevant. No GPR register results.

0F 0B
VERR—Verify Segment for Reads Same as

legacy mode.

Operand size
fixed at 16

bits
No GPR register results.

0F 00 /4

VERW—Verify Segment for Writes Same as
legacy mode.

Operand size
fixed at 16

bits
No GPR register results.

0F 00 /5

VMLOAD—Load State from VMCB Same as
legacy mode. Not relevant. No GPR register results.

0F 01 DA
VMMCALL—Call VMM Same as

legacy mode. Not relevant. No GPR register results.
0F 01 D9

VMRUN—Run Virtual Machine Same as
legacy mode. Not relevant. No GPR register results.

0F 01 D8
VMSAVE—Save State to VMCB Same as

legacy mode. Not relevant. No GPR register results.
0F 01 DB

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

478 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

WAIT—Wait for Interrupt Same as
legacy mode. Not relevant. No GPR register results.

9B
WBINVD—Writeback and Invalidate All
Caches Same as

legacy mode. Not relevant. No GPR register results.
0F 09

WRMSR—Write to Model-Specific
Register Same as

legacy mode. Not relevant.
No GPR register results.
MSR[63:32] = RDX[31:0]
MSR[31:0] = RAX[31:0]0F 30

XADD—Exchange and Add Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.0F C1

XCHG—Exchange Register/Memory
with Register Promoted to

64 bits. 32 bits
Zero-extends 32-
bit register
results to 64 bits.87

90
XOR—Logical Exclusive OR

Promoted to
64 bits. 32 bits

Zero-extends 32-
bit register
results to 64 bits.

31
33
35
81 /6
83 /6

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and
Opcode (hex)1

Type of
Operation2

Default
Operand

Size3

For 32-Bit
Operand Size4

For 64-Bit
Operand Size4

Note:
1. See “General Rules for 64-Bit Mode” on page 453, for opcodes that do not appear in this table.
2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-

Bit Mode” on page 453 for definitions of “Promoted to 64 bits” and related topics.
3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults

to 64 bits. If the operand size is fixed, operand-size overrides are silently ignored.
4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result oper-

ands, not source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respec-
tively, of 64-bit destination registers unchanged. Immediates and branch displacements are sign-extended to 64
bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address
size, any pointer and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override
in 64-bit mode.

General-Purpose Instructions in 64-Bit Mode 479

24594—Rev. 3.16—September 2011 AMD64 Technology

B.3 Invalid and Reassigned Instructions in 64-Bit Mode
Table B-2 lists instructions that are illegal in 64-bit mode. Attempted use of these instructions
generates an invalid-opcode exception (#UD).

Table B-2. Invalid Instructions in 64-Bit Mode

Mnemonic Opcode
(hex) Description

AAA 37 ASCII Adjust After Addition
AAD D5 ASCII Adjust Before Division
AAM D4 ASCII Adjust After Multiply
AAS 3F ASCII Adjust After Subtraction
BOUND 62 Check Array Bounds
CALL (far) 9A Procedure Call Far (far absolute)
DAA 27 Decimal Adjust after Addition
DAS 2F Decimal Adjust after Subtraction
INTO CE Interrupt to Overflow Vector
JMP (far) EA Jump Far (absolute)
LDS C5 Load DS Far Pointer
LES C4 Load ES Far Pointer
POP DS 1F Pop Stack into DS Segment
POP ES 07 Pop Stack into ES Segment
POP SS 17 Pop Stack into SS Segment
POPA, POPAD 61 Pop All to GPR Words or Doublewords
PUSH CS 0E Push CS Segment Selector onto Stack
PUSH DS 1E Push DS Segment Selector onto Stack
PUSH ES 06 Push ES Segment Selector onto Stack
PUSH SS 16 Push SS Segment Selector onto Stack
PUSHA,
PUSHAD 60 Push All to GPR Words or Doublewords

Redundant Grp1 82 /2 Redundant encoding of group1 Eb,Ib
opcodes

SALC D6 Set AL According to CF

480 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

Table B-3 lists instructions that are reassigned to different functions in 64-bit mode. Attempted use of
these instructions generates the reassigned function.

Table B-4 lists instructions that are illegal in long mode. Attempted use of these instructions generates
an invalid-opcode exception (#UD).

B.4 Instructions with 64-Bit Default Operand Size
In 64-bit mode, two groups of instructions default to 64-bit operand size without the need for a REX
prefix:

• Near branches —CALL, Jcc, JrCX, JMP, LOOP, and RET.
• All instructions, except far branches, that implicitly reference the RSP—CALL, ENTER, LEAVE,

POP, PUSH, and RET (CALL and RET are in both groups of instructions).

Table B-5 lists these instructions.

Table B-3. Reassigned Instructions in 64-Bit Mode

Mnemonic Opcode
(hex) Description

ARPL 63
Opcode for MOVSXD instruction in 64-bit
mode. In all other modes, this is the Adjust
Requestor Privilege Level instruction opcode.

DEC and INC 40-4F REX prefixes in 64-bit mode. In all other
modes, decrement by 1 and increment by 1.

LDS C5 VEX Prefix. Introduces the VEX two-byte
instruction encoding escape sequence.

LES C4 VEX Prefix. Introduces the VEX three-byte
instruction encoding escape sequence.

Table B-4. Invalid Instructions in Long Mode

Mnemonic Opcode
(hex) Description

SYSENTER 0F 34 System Call
SYSEXIT 0F 35 System Return

General-Purpose Instructions in 64-Bit Mode 481

24594—Rev. 3.16—September 2011 AMD64 Technology

The 64-bit default operand size can be overridden to 16 bits using the 66h operand-size override.
However, it is not possible to override the operand size to 32 bits because there is no 32-bit operand-
size override prefix for 64-bit mode. See “Operand-Size Override Prefix” on page 7 for details.

B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode
In 64-bit mode, the legacy encodings for the 16 single-byte INC and DEC instructions (one for each of
the eight GPRs) are used to encode the REX prefix values, as described in “REX Prefix” on page 14.
Therefore, these single-byte opcodes for INC and DEC are not available in 64-bit mode, although they
are available in legacy and compatibility modes. The functionality of these INC and DEC instructions
is still available in 64-bit mode, however, using the ModRM forms of those instructions (opcodes FF/0
and FF/1).

Table B-5. Instructions Defaulting to 64-Bit Operand Size

Mnemonic Opcode
(hex)

Implicitly
Reference

RSP
Description

CALL E8, FF /2 yes Call Procedure Near
ENTER C8 yes Create Procedure Stack Frame
Jcc many no Jump Conditional Near
JMP E9, EB, FF /4 no Jump Near
LEAVE C9 yes Delete Procedure Stack Frame
LOOP E2 no Loop
LOOPcc E0, E1 no Loop Conditional
POP reg/mem 8F /0 yes Pop Stack (register or memory)
POP reg 58-5F yes Pop Stack (register)
POP FS 0F A1 yes Pop Stack into FS Segment Register
POP GS 0F A9 yes Pop Stack into GS Segment Register
POPF, POPFD, POPFQ 9D yes Pop to rFLAGS Word, Doubleword, or Quadword
PUSH imm8 6A yes Push onto Stack (sign-extended byte)
PUSH imm32 68 yes Push onto Stack (sign-extended doubleword)
PUSH reg/mem FF /6 yes Push onto Stack (register or memory)
PUSH reg 50-57 yes Push onto Stack (register)
PUSH FS 0F A0 yes Push FS Segment Register onto Stack
PUSH GS 0F A8 yes Push GS Segment Register onto Stack
PUSHF, PUSHFD,
PUSHFQ 9C yes Push rFLAGS Word, Doubleword, or Quadword

onto Stack
RET C2, C3 yes Return From Call (near)

482 General-Purpose Instructions in 64-Bit Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

B.6 NOP in 64-Bit Mode
Programs written for the legacy x86 architecture commonly use opcode 90h (the XCHG EAX, EAX
instruction) as a one-byte NOP. In 64-bit mode, the processor treats opcode 90h specially in order to
preserve this legacy NOP use. Without special handling in 64-bit mode, the instruction would not be a
true no-operation. Therefore, in 64-bit mode the processor treats XCHG EAX, EAX as a true NOP,
regardless of operand size.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction. Unless a
64-bit operand size is specified using a REX prefix byte, using the two byte form of XCHG to
exchange a register with itself will not result in a no-operation because the default operation size is 32
bits in 64-bit mode.

B.7 Segment Override Prefixes in 64-Bit Mode
In 64-bit mode, the CS, DS, ES, SS segment-override prefixes have no effect. These four prefixes are
no longer treated as segment-override prefixes in the context of multiple-prefix rules. Instead, they are
treated as null prefixes.

The FS and GS segment-override prefixes are treated as true segment-override prefixes in 64-bit
mode. Use of the FS and GS prefixes cause their respective segment bases to be added to the effective
address calculation. See “FS and GS Registers in 64-Bit Mode” in Volume 2 for details.

Differences Between Long Mode and Legacy Mode 483

24594—Rev. 3.16—September 2011 AMD64 Technology

Appendix C Differences Between Long Mode and
Legacy Mode

Table C-1 summarizes the major differences between 64-bit mode and legacy protected mode. The
third column indicates differences between 64-bit mode and legacy mode. The fourth column indicates
whether that difference also applies to compatibility mode.

Table C-1. Differences Between Long Mode and Legacy Mode

Type Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

Application
Programming

Addressing RIP-relative addressing available

no

Data and Address
Sizes

Default data size is 32 bits
REX Prefix toggles data size to 64 bits
Default address size is 64 bits
Address size prefix toggles address size to 32 bits

Instruction
Differences

Various opcodes are invalid or changed in 64-bit
mode (see Table B-2 on page 479 and Table B-3 on
page 480)
Various opcodes are invalid in long mode (see
Table B-4 on page 480) yes

MOV reg,imm32 becomes MOV reg,imm64 (with
REX operand size prefix)

no

REX is always enabled
Direct-offset forms of MOV to or from accumulator
become 64-bit offsets
MOVD extended to MOV 64 bits between MMX
registers and long GPRs (with REX operand-size
prefix)

484 Differences Between Long Mode and Legacy Mode

AMD64 Technology 24594—Rev. 3.16—September 2011

System
Programming

x86 Modes Real and virtual-8086 modes not supported yes
Task Switching Task switching not supported yes

Addressing
64-bit virtual addresses

yes4-level paging structures
PAE must always be enabled

Segmentation
CS, DS, ES, SS segment bases are ignored

noCS, DS, ES, FS, GS, SS segment limits are ignored
CS, DS, ES, SS Segment prefixes are ignored

Exception and
Interrupt Handling

All pushes are 8 bytes

yes

16-bit interrupt and trap gates are illegal
32-bit interrupt and trap gates are redefined as 64-bit
gates and are expanded to 16 bytes
SS is set to null on stack switch
SS:RSP is pushed unconditionally

Call Gates

All pushes are 8 bytes

yes
16-bit call gates are illegal
32-bit call gate type is redefined as 64-bit call gate
and is expanded to 16 bytes.
SS is set to null on stack switch

System-Descriptor
Registers

GDT, IDT, LDT, TR base registers expanded to 64
bits yes

System-Descriptor
Table Entries and
Pseudo-descriptors

LGDT and LIDT use expanded 10-byte pseudo-
descriptors. no
LLDT and LTR use expanded 16-byte table entries.

Table C-1. Differences Between Long Mode and Legacy Mode (continued)

Type Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

Instruction Subsets and CPUID Feature Sets 485

24594—Rev. 3.16—September 2011 AMD64 Technology

Appendix D Instruction Subsets and CPUID
Feature Sets

Table D-1 is an alphabetical list of the AMD64 instruction set, including the instructions from all five
of the instruction subsets that make up the entire AMD64 instruction-set architecture:

• Chapter 3, “General-Purpose Instruction Reference.”
• Chapter 4, “System Instruction Reference.”
• “Volume 4: 128-Bit and 256-Bit Media Instructions”.
• “64-Bit Media Instruction Reference” in Volume 5.
• “x87 Floating-Point Instruction Reference” in Volume 5.

Several instructions belong to—and are described in—multiple instruction subsets. Table D-1 shows
the minimum current privilege level (CPL) required to execute each instruction and the instruction
subset(s) to which the instruction belongs. For each instruction subset, the CPUID feature set(s) that
enables the instruction is shown.

D.1 Instruction Subsets
Figure D-1 on page 486 shows the relationship between the five instruction subsets and the CPUID
feature sets. Dashed-line polygons represent the instruction subsets. Circles represent the major
CPUID feature sets that enable various classes of instructions. (There are a few additional CPUID
feature sets, not shown, each of which apply to only a few instructions.)

The overlapping of the 128-bit and 64-bit media instruction subsets indicates that these subsets share
some common mnemonics. However, these common mnemonics either have distinct opcodes for each
subset or they take operands in both the MMX and XMM register sets.

The horizontal axis of Figure D-1 shows how the subsets and CPUID feature sets have evolved over
time.

486 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

Figure D-1. Instruction Subsets vs. CPUID Feature Sets

AMD 3DNow!™
Instructions

MMX™

x87 Instructions

Instructions

General-Purpose Instructions

x87 Instructions

System Instructions

AMD Extension
to

3DNow!™
Instructions

SSE
Instructions

SSE3
Instructions

128-Bit Media
Instructions

64-Bit Media
Instructions

Time of Introduction

Dashed-line boxes show instruction subsets.
Circles show major CPUID feature sets.
(Minor features sets are not shown.)

Basic

Instructions Long-Mode
Instructions

SSE4A
Instructions

AMD Extensions
to MMX™

Instructions

SVM
Instructions

SSE2
Instructions

Instruction Subsets and CPUID Feature Sets 487

24594—Rev. 3.16—September 2011 AMD64 Technology

D.2 CPUID Feature Sets
The CPUID feature sets shown in Figure D-1 and listed in Table D-1 on page 489 include:

• Basic Instructions—Instructions that are supported in all hardware implementations of the
AMD64 architecture, except that the following instructions are implemented only if their
associated CPUID function bit is set:
- CLFLUSH, indicated by EDX bit 19 of CPUID function 0000_0001h.
- CMPXCHG8B, indicated by EDX bit 8 of CPUID function 0000_0001h and function

8000_0001h.
- CMPXCHG16B, indicated by ECX bit 13 of CPUID function 0000_0001h.
- CMOVcc (conditional moves), indicated by EDX bit 15 of CPUID function 0000_0001h and

function 8000_0001h.
- RDMSR and WRMSR, indicated by EDX bit 5 of CPUID function 0000_0001h and function

8000_0001h.
- RDTSC, indicated by EDX bit 4 of CPUID function 0000_0001h and function 8000_0001h.
- RDTSCP, indicated by EDX bit 27 of CPUID function 8000_0001h.
- SYSCALL and SYSRET, indicated by EDX bit 11 of CPUID function 8000_0001h.
- SYSENTER and SYSEXIT, indicated by EDX bit 11 of CPUID function 0000_0001h.

• x87 Instructions—Legacy floating-point instructions that use the ST(0)–ST(7) stack registers
(FPR0–FPR7 physical registers) and are supported if the following bits are set:
- On-chip floating-point unit, indicated by EDX bit 0 of CPUID function 0000_0001h and

function 8000_0001h.
- FCMOVcc (conditional moves), indicated by EDX bit 15 of CPUID function 0000_0001h and

function 8000_0001h. This bit indicates support for x87 floating-point conditional moves
(FCMOVcc) whenever the On-Chip Floating-Point Unit bit (bit 0) is also set.

• MMX™ Instructions—Vector integer instructions that are implemented in the MMX instruction
set, use the MMX logical registers (FPR0–FPR7 physical registers), and are supported if the
following bit is set:
- MMX instructions, indicated by EDX bit 23 of CPUID function 0000_0001h and function

8000_0001h.
• AMD 3DNow!™ Instructions—Vector floating-point instructions that comprise the AMD

3DNow! technology, use the MMX logical registers (FPR0–FPR7 physical registers), and are
supported if the following bit is set:
- AMD 3DNow! instructions, indicated by EDX bit 31 of CPUID function 8000_0001h.

• AMD Extensions to MMX™ Instructions—Vector integer instructions that use the MMX registers
and are supported if the following bit is set:
- AMD extensions to MMX instructions, indicated by EDX bit 22 of CPUID function

8000_0001h.

488 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

• AMD Extensions to 3DNow!™ Instructions—Vector floating-point instructions that use the MMX
registers and are supported if the following bit is set:
- AMD extensions to 3DNow! instructions, indicated by EDX bit 30 of CPUID function

8000_0001h.
• SSE Instructions—Vector integer instructions that use the MMX registers, single-precision vector

and scalar floating-point instructions that use the XMM registers, plus other instructions for data-
type conversion, prefetching, cache control, and memory-access ordering. These instructions are
supported if the following bits are set:
- SSE, indicated by EDX bit 25 of CPUID function 0000_0001h.
- FXSAVE and FXRSTOR, indicated by EDX bit 24 of CPUID function 0000_0001h and

function 8000_0001h.
Several SSE opcodes are also implemented by the AMD Extensions to MMX™ Instructions.

• SSE2 Instructions—Vector and scalar integer and double-precision floating-point instructions that
use the XMM registers, plus other instructions for data-type conversion, cache control, and
memory-access ordering. These instructions are supported if the following bit is set:
- SSE2, indicated by EDX bit 26 of CPUID function 0000_0001h.
Several instructions originally implemented as MMX™ instructions are extended in the SSE2
instruction set to include opcodes that use XMM registers.

• SSE3 Instructions—Horizontal addition and subtraction of packed single-precision and double-
precision floating point values, simultaneous addition and subtraction of packed single-precision
and double-precision values, move with duplication, and floating-point-to-integer conversion.
These instructions are supported if the following bit is set:
- SSE3, indicated by ECX bit 0 of CPUID function 0000_0001h.

• SSE4A Instructions—The SSE4A instructions are EXTRQ, INSERTQ, MOVNTSD, and
MOVNTSS.
- SSE4A, indicated by ECX bit 6 of CPUID function 8000_0001h.

• Long-Mode Instructions—Instructions introduced by AMD with the AMD64 architecture. These
instructions are supported if the following bit is set:
- Long mode, indicated by EDX bit 29 of CPUID function 8000_0001h.

• SVM Instructions—Instructions introduced by AMD with the Secure Virtual Machine feature.
These instructions are supported if the following bit is set:
- SVM, indicated by ECX bit 2 of CPUID function 8000_0001h.

For complete details on the CPUID feature sets listed in Table D-1, see the CPUID Specification,
order# 25481.

Instruction Subsets and CPUID Feature Sets 489

24594—Rev. 3.16—September 2011 AMD64 Technology

D.3 Instruction List

Table D-1. Instruction Subsets and CPUID Feature Sets

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

AAA ASCII Adjust After Addition 3 Basic

AAD
ASCII Adjust Before
Division

3 Basic

AAM ASCII Adjust After Multiply 3 Basic

AAS
ASCII Adjust After
Subtraction

3 Basic

ADC Add with Carry 3 Basic
ADD Signed or Unsigned Add 3 Basic

ADDPD
Add Packed Double-
Precision Floating-Point

3 SSE2

ADDPS
Add Packed Single-
Precision Floating-Point

3 SSE

ADDSD
Add Scalar Double-
Precision Floating-Point

3 SSE2

ADDSS
Add Scalar Single-
Precision Floating-Point

3 SSE

ADDSUBPD
Add and Subtract Double-
Precision

3 SSE3

ADDSUBPS
Add and Subtract Single-
Precision

3 SSE3

AND Logical AND 3 Basic

ANDNPD
Logical Bitwise AND NOT
Packed Double-Precision
Floating-Point

3 SSE2

ANDNPS
Logical Bitwise AND NOT
Packed Single-Precision
Floating-Point

3 SSE

ANDPD
Logical Bitwise AND
Packed Double-Precision
Floating-Point

3 SSE2

ANDPS
Logical Bitwise AND
Packed Single-Precision
Floating-Point

3 SSE

ARPL
Adjust Requestor Privilege
Level

3 Basic

BOUND Check Array Bounds 3 Basic
Note:

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

490 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

BSF Bit Scan Forward 3 Basic
BSR Bit Scan Reverse 3 Basic
BSWAP Byte Swap 3 Basic
BT Bit Test 3 Basic
BTC Bit Test and Complement 3 Basic
BTR Bit Test and Reset 3 Basic
BTS Bit Test and Set 3 Basic
CALL Procedure Call 3 Basic
CBW Convert Byte to Word 3 Basic

CDQ
Convert Doubleword to
Quadword

3 Basic

CDQE
Convert Doubleword to
Quadword

3 Long Mode

CLC Clear Carry Flag 3 Basic
CLD Clear Direction Flag 3 Basic
CLFLUSH Cache Line Flush 3 CLFLUSH
CLGI Clear Global Interrupt Flag 0 SVM
CLI Clear Interrupt Flag 3 Basic

CLTS
Clear Task-Switched Flag
in CR0

0 Basic

CMC Complement Carry Flag 3 Basic
CMOVcc Conditional Move 3 CMOVcc
CMP Compare 3 Basic

CMPPD
Compare Packed Double-
Precision Floating-Point

3 SSE2

CMPPS
Compare Packed Single-
Precision Floating-Point

3 SSE

CMPS Compare Strings 3 Basic
CMPSB Compare Strings by Byte 3 Basic

CMPSD
Compare Strings by
Doubleword

3 Basic2

CMPSD
Compare Scalar Double-
Precision Floating-Point

3 SSE22

CMPSQ
Compare Strings by
Quadword

3 Long Mode

CMPSS
Compare Scalar Single-
Precision Floating-Point

3 SSE

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 491

24594—Rev. 3.16—September 2011 AMD64 Technology

CMPSW Compare Strings by Word 3 Basic
CMPXCHG Compare and Exchange 3 Basic

CMPXCHG8B
Compare and Exchange
Eight Bytes

3 CMPXCHG8B

CMPXCHG16B
Compare and Exchange
Sixteen Bytes

3 CMPXCHG16B

COMISD
Compare Ordered Scalar
Double-Precision Floating-
Point

3 SSE2

COMISS
Compare Ordered Scalar
Single-Precision Floating-
Point

3 SSE

CPUID Processor Identification 3 Basic

CQO
Convert Quadword to
Double Quadword

3 Long Mode

CVTDQ2PD

Convert Packed
Doubleword Integers to
Packed Double-Precision
Floating-Point

3 SSE2

CVTDQ2PS

Convert Packed
Doubleword Integers to
Packed Single-Precision
Floating-Point

3 SSE2

CVTPD2DQ

Convert Packed Double-
Precision Floating-Point to
Packed Doubleword
Integers

3 SSE2

CVTPD2PI

Convert Packed Double-
Precision Floating-Point to
Packed Doubleword
Integers

3 SSE2 SSE2

CVTPD2PS

Convert Packed Double-
Precision Floating-Point to
Packed Single-Precision
Floating-Point

3 SSE2

CVTPI2PD

Convert Packed
Doubleword Integers to
Packed Double-Precision
Floating-Point

3 SSE2 SSE2

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

492 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

CVTPI2PS

Convert Packed
Doubleword Integers to
Packed Single-Precision
Floating-Point

3 SSE SSE

CVTPS2DQ

Convert Packed Single-
Precision Floating-Point to
Packed Doubleword
Integers

3 SSE2

CVTPS2PD

Convert Packed Single-
Precision Floating-Point to
Packed Double-Precision
Floating-Point

3 SSE2

CVTPS2PI

Convert Packed Single-
Precision Floating-Point to
Packed Doubleword
Integers

3 SSE SSE

CVTSD2SI

Convert Scalar Double-
Precision Floating-Point to
Signed Doubleword or
Quadword Integer

3 SSE2

CVTSD2SS

Convert Scalar Double-
Precision Floating-Point to
Scalar Single-Precision
Floating-Point

3 SSE2

CVTSI2SD

Convert Signed
Doubleword or Quadword
Integer to Scalar Double-
Precision Floating-Point

3 SSE2

CVTSI2SS

Convert Signed
Doubleword or Quadword
Integer to Scalar Single-
Precision Floating-Point

3 SSE

CVTSS2SD

Convert Scalar Single-
Precision Floating-Point to
Scalar Double-Precision
Floating-Point

3 SSE2

CVTSS2SI

Convert Scalar Single-
Precision Floating-Point to
Signed Doubleword or
Quadword Integer

3 SSE

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 493

24594—Rev. 3.16—September 2011 AMD64 Technology

CVTTPD2DQ

Convert Packed Double-
Precision Floating-Point to
Packed Doubleword
Integers, Truncated

3 SSE2

CVTTPD2PI

Convert Packed Double-
Precision Floating-Point to
Packed Doubleword
Integers, Truncated

3 SSE2 SSE2

CVTTPS2DQ

Convert Packed Single-
Precision Floating-Point to
Packed Doubleword
Integers, Truncated

3 SSE2

CVTTPS2PI

Convert Packed Single-
Precision Floating-Point to
Packed Doubleword
Integers, Truncated

3 SSE SSE

CVTTSD2SI

Convert Scalar Double-
Precision Floating-Point to
Signed Doubleword or
Quadword Integer,
Truncated

3 SSE2

CVTTSS2SI

Convert Scalar Single-
Precision Floating-Point to
Signed Doubleword or
Quadword Integer,
Truncated

3 SSE

CWD
Convert Word to
Doubleword

3 Basic

CWDE
Convert Word to
Doubleword

3 Basic

DAA
Decimal Adjust after
Addition

3 Basic

DAS
Decimal Adjust after
Subtraction

3 Basic

DEC Decrement by 1 3 Basic
DIV Unsigned Divide 3 Basic

DIVPD
Divide Packed Double-
Precision Floating-Point

3 SSE2

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

494 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

DIVPS
Divide Packed Single-
Precision Floating-Point

3 SSE

DIVSD
Divide Scalar Double-
Precision Floating-Point

3 SSE2

DIVSS
Divide Scalar Single-
Precision Floating-Point

3 SSE

EMMS Enter/Exit Multimedia State 3 MMX™ MMX

ENTER
Create Procedure Stack
Frame

3 Basic

EXTRQ Extract Field From Register 3 SSE4A

F2XM1
Floating-Point Compute
2x–1

3 X87

FABS
Floating-Point Absolute
Value

3 X87

FADD Floating-Point Add 3 X87

FADDP
Floating-Point Add and
Pop

3 X87

FBLD
Floating-Point Load Binary-
Coded Decimal

3 X87

FBSTP
Floating-Point Store
Binary-Coded Decimal
Integer and Pop

3 X87

FCHS
Floating-Point Change
Sign

3 X87

FCLEX Floating-Point Clear Flags 3 X87

FCMOVB
Floating-Point Conditional
Move If Below

3
X87,

CMOVcc

FCMOVBE
Floating-Point Conditional
Move If Below or Equal

3
X87,

CMOVcc

FCMOVE
Floating-Point Conditional
Move If Equal

3
X87,

CMOVcc

FCMOVNB
Floating-Point Conditional
Move If Not Below

3
X87,

CMOVcc

FCMOVNBE
Floating-Point Conditional
Move If Not Below or Equal

3
X87,

CMOVcc

FCMOVNE
Floating-Point Conditional
Move If Not Equal

3
X87,

CMOVcc

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 495

24594—Rev. 3.16—September 2011 AMD64 Technology

FCMOVNU
Floating-Point Conditional
Move If Not Unordered

3
X87,

CMOVcc

FCMOVU
Floating-Point Conditional
Move If Unordered

3
X87,

CMOVcc
FCOM Floating-Point Compare 3 X87

FCOMI
Floating-Point Compare
and Set Flags

3 X87

FCOMIP
Floating-Point Compare
and Set Flags and Pop

3 X87

FCOMP
Floating-Point Compare
and Pop

3 X87

FCOMPP
Floating-Point Compare
and Pop Twice

3 X87

FCOS Floating-Point Cosine 3 X87

FDECSTP
Floating-Point Decrement
Stack-Top Pointer

3 X87

FDIV Floating-Point Divide 3 X87

FDIVP
Floating-Point Divide and
Pop

3 X87

FDIVR
Floating-Point Divide
Reverse

3 X87

FDIVRP
Floating-Point Divide
Reverse and Pop

3 X87

FEMMS
Fast Enter/Exit Multimedia
State

3 3DNow!™ 3DNow!

FFREE
Free Floating-Point
Register

3 X87

FIADD
Floating-Point Add Integer
to Stack Top

3 X87

FICOM
Floating-Point Integer
Compare

3 X87

FICOMP
Floating-Point Integer
Compare and Pop

3 X87

FIDIV
Floating-Point Integer
Divide

3 X87

FIDIVR
Floating-Point Integer
Divide Reverse

3 X87

FILD Floating-Point Load Integer 3 X87

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

496 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

FIMUL
Floating-Point Integer
Multiply

3 X87

FINCSTP
Floating-Point Increment
Stack-Top Pointer

3 X87

FINIT Floating-Point Initialize 3 X87

FIST
Floating-Point Integer
Store

3 X87

FISTP
Floating-Point Integer
Store and Pop

3 X87

FISTTP
Floating-Point Integer
Truncate and Store

3 SSE3

FISUB
Floating-Point Integer
Subtract

3 X87

FISUBR
Floating-Point Integer
Subtract Reverse

3 X87

FLD Floating-Point Load 3 X87
FLD1 Floating-Point Load +1.0 3 X87

FLDCW
Floating-Point Load x87
Control Word

3 X87

FLDENV
Floating-Point Load x87
Environment

3 X87

FLDL2E
Floating-Point Load
Log2 e 3 X87

FLDL2T
Floating-Point Load
Log2 10 3 X87

FLDLG2
Floating-Point Load Log10
2

3 X87

FLDLN2 Floating-Point Load Ln 2 3 X87
FLDPI Floating-Point Load Pi 3 X87
FLDZ Floating-Point Load +0.0 3 X87
FMUL Floating-Point Multiply 3 X87

FMULP
Floating-Point Multiply and
Pop

3 X87

FNCLEX
Floating-Point No-Wait
Clear Flags

3 X87

FNINIT
Floating-Point No-Wait
Initialize

3 X87

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 497

24594—Rev. 3.16—September 2011 AMD64 Technology

FNOP
Floating-Point No
Operation

3 X87

FNSAVE
Save No-Wait x87 and
MMX State

3 X87 X87

FNSTCW
Floating-Point No-Wait
Store x87 Control Word

3 X87

FNSTENV
Floating-Point No-Wait
Store x87 Environment

3 X87

FNSTSW
Floating-Point No-Wait
Store x87 Status Word

3 X87

FPATAN
Floating-Point Partial
Arctangent

3 X87

FPREM
Floating-Point Partial
Remainder

3 X87

FPREM1
Floating-Point Partial
Remainder

3 X87

FPTAN
Floating-Point Partial
Tangent

3 X87

FRNDINT
Floating-Point Round to
Integer

3 X87

FRSTOR
Restore x87 and MMX
State

3 X87 X87

FSAVE Save x87 and MMX State 3 X87 X87
FSCALE Floating-Point Scale 3 X87
FSIN Floating-Point Sine 3 X87

FSINCOS
Floating-Point Sine and
Cosine

3 X87

FSQRT Floating-Point Square Root 3 X87

FST
Floating-Point Store Stack
Top

3 X87

FSTCW
Floating-Point Store x87
Control Word

3 X87

FSTENV
Floating-Point Store x87
Environment

3 X87

FSTP
Floating-Point Store Stack
Top and Pop

3 X87

FSTSW
Floating-Point Store x87
Status Word

3 X87

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

498 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

FSUB Floating-Point Subtract 3 X87

FSUBP
Floating-Point Subtract and
Pop

3 X87

FSUBR
Floating-Point Subtract
Reverse

3 X87

FSUBRP
Floating-Point Subtract
Reverse and Pop

3 X87

FTST
Floating-Point Test with
Zero

3 X87

FUCOM
Floating-Point Unordered
Compare

3 X87

FUCOMI
Floating-Point Unordered
Compare and Set Flags

3 X87

FUCOMIP
Floating-Point Unordered
Compare and Set Flags
and Pop

3 X87

FUCOMP
Floating-Point Unordered
Compare and Pop

3 X87

FUCOMPP
Floating-Point Unordered
Compare and Pop Twice

3 X87

FWAIT
Wait for x87 Floating-Point
Exceptions

3 X87

FXAM Floating-Point Examine 3 X87
FXCH Floating-Point Exchange 3 X87

FXRSTOR
Restore XMM, MMX, and
x87 State

3
FXSAVE,

FXRSTOR
FXSAVE,

FXRSTOR
FXSAVE,

FXRSTOR

FXSAVE
Save XMM, MMX, and x87
State

3
FXSAVE,

FXRSTOR
FXSAVE,

FXRSTOR
FXSAVE,

FXRSTOR

FXTRACT
Floating-Point Extract
Exponent and Significand

3 X87

FYL2X Floating-Point y * log2x 3 X87

FYL2XP1
Floating-Point
y * log2(x +1)

3 X87

HADDPD
Horizontal Add Packed
Double

3 SSE3

HADDPS
Horizontal Add Packed
Single

3 SSE3

HLT Halt 0 Basic

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 499

24594—Rev. 3.16—September 2011 AMD64 Technology

HSUBPD
Horizontal Subtract Packed
Double

3 SSE3

HSUBPS
Horizontal Subtract Packed
Single

3 SSE3

IDIV Signed Divide 3 Basic
IMUL Signed Multiply 3 Basic
IN Input from Port 3 Basic
INC Increment by 1 3 Basic
INS Input String 3 Basic
INSB Input String Byte 3 Basic
INSD Input String Doubleword 3 Basic
INSERTQ Insert Field 3 SSE4A
INSW Input String Word 3 Basic
INT Interrupt to Vector 3 Basic
INT 3 Interrupt to Debug Vector 3 Basic

INTO
Interrupt to Overflow
Vector

3 Basic

INVD Invalidate Caches 0 Basic
INVLPG Invalidate TLB Entry 0 Basic

INVLPGA
Invalidate TLB Entry in a
Specified ASID

0 SVM

IRET Interrupt Return Word 3 Basic

IRETD
Interrupt Return
Doubleword

3 Basic

IRETQ Interrupt Return Quadword 3 Long Mode
Jcc Jump Condition 3 Basic
JCXZ Jump if CX Zero 3 Basic
JECXZ Jump if ECX Zero 3 Basic
JMP Jump 3 Basic
JRCXZ Jump if RCX Zero 3 Basic

LAHF
Load Status Flags into AH
Register

3 Basic

LAR Load Access Rights Byte 3 Basic

LDDQU
Load Unaligned Double
Quadword

3 SSE3

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

500 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

LDMXCSR
Load MXCSR
Control/Status Register

3 SSE

LDS Load DS Far Pointer 3 Basic
LEA Load Effective Address 3 Basic

LEAVE
Delete Procedure Stack
Frame

3 Basic

LES Load ES Far Pointer 3 Basic
LFENCE Load Fence 3 SSE2
LFS Load FS Far Pointer 3 Basic

LGDT
Load Global Descriptor
Table Register

0 Basic

LGS Load GS Far Pointer 3 Basic

LIDT
Load Interrupt Descriptor
Table Register

0 Basic

LLDT
Load Local Descriptor
Table Register

0 Basic

LMSW Load Machine Status Word 0 Basic
LODS Load String 3 Basic
LODSB Load String Byte 3 Basic
LODSD Load String Doubleword 3 Basic
LODSQ Load String Quadword 3 Long Mode
LODSW Load String Word 3 Basic
LOOP Loop 3 Basic
LOOPE Loop if Equal 3 Basic
LOOPNE Loop if Not Equal 3 Basic
LOOPNZ Loop if Not Zero 3 Basic
LOOPZ Loop if Zero 3 Basic
LSL Load Segment Limit 3 Basic
LSS Load SS Segment Register 3 Basic
LTR Load Task Register 0 Basic
LZCNT Count Leading Zeros 3 Basic

MASKMOVDQU
Masked Move Double
Quadword Unaligned

3 SSE2

MASKMOVQ Masked Move Quadword 3
SSE, MMX
Extensions

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 501

24594—Rev. 3.16—September 2011 AMD64 Technology

MAXPD
Maximum Packed Double-
Precision Floating-Point

3 SSE2

MAXPS
Maximum Packed Single-
Precision Floating-Point

3 SSE

MAXSD
Maximum Scalar Double-
Precision Floating-Point

3 SSE2

MAXSS
Maximum Scalar Single-
Precision Floating-Point

3 SSE

MFENCE Memory Fence 3 SSE2

MINPD
Minimum Packed Double-
Precision Floating-Point

3 SSE2

MINPS
Minimum Packed Single-
Precision Floating-Point

3 SSE

MINSD
Minimum Scalar Double-
Precision Floating-Point

3 SSE2

MINSS
Minimum Scalar Single-
Precision Floating-Point

3 SSE

MONITOR Setup Monitor Address 0 Basic
MOV Move 3 Basic

MOV CRn
Move to/from Control
Registers

0 Basic

MOV DRn
Move to/from Debug
Registers

0 Basic

MOVAPD
Move Aligned Packed
Double-Precision Floating-
Point

3 SSE2

MOVAPS
Move Aligned Packed
Single-Precision Floating-
Point

3 SSE

MOVD
Move Doubleword or
Quadword

3 MMX, SSE2 SSE2 MMX

MOVDDUP
Move Double-Precision
and Duplicate

3 SSE3

MOVDQ2Q
Move Quadword to
Quadword

3 SSE2 SSE2

MOVDQA
Move Aligned Double
Quadword

3 SSE2

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

502 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

MOVDQU
Move Unaligned Double
Quadword

3 SSE2

MOVHLPS
Move Packed Single-
Precision Floating-Point
High to Low

3 SSE

MOVHPD
Move High Packed
Double-Precision Floating-
Point

3 SSE2

MOVHPS
Move High Packed Single-
Precision Floating-Point

3 SSE

MOVLHPS
Move Packed Single-
Precision Floating-Point
Low to High

3 SSE

MOVLPD
Move Low Packed Double-
Precision Floating-Point

3 SSE2

MOVLPS
Move Low Packed Single-
Precision Floating-Point

3 SSE

MOVMSKPD
Extract Packed Double-
Precision Floating-Point
Sign Mask

3 SSE2 SSE2

MOVMSKPS
Extract Packed Single-
Precision Floating-Point
Sign Mask

3 SSE SSE

MOVNTDQ
Move Non-Temporal
Double Quadword

3 SSE2

MOVNTI
Move Non-Temporal
Doubleword or Quadword

3 SSE2

MOVNTPD
Move Non-Temporal
Packed Double-Precision
Floating-Point

3 SSE2

MOVNTPS
Move Non-Temporal
Packed Single-Precision
Floating-Point

3 SSE

MOVNTSD
Move Non-Temporal
Scalar Double-Precision
Floating-Point

3 SSE4A

MOVNTSS
Move Non-Temporal
Scalar Single-Precision
Floating-Point

3 SSE4A

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 503

24594—Rev. 3.16—September 2011 AMD64 Technology

MOVNTQ
Move Non-Temporal
Quadword

3
SSE, MMX
Extensions

MOVQ Move Quadword 3 SSE2 MMX

MOVQ2DQ
Move Quadword to
Quadword

3 SSE2 SSE2

MOVS Move String 3 Basic
MOVSB Move String Byte 3 Basic
MOVSD Move String Doubleword 3 Basic2

MOVSD
Move Scalar Double-
Precision Floating-Point

3 SSE22

MOVSHDUP
Move Single-Precision
High and Duplicate

3 SSE3

MOVSLDUP
Move Single-Precision Low
and Duplicate

3 SSE3

MOVSQ Move String Quadword 3 Long Mode

MOVSS
Move Scalar Single-
Precision Floating-Point

3 SSE

MOVSW Move String Word 3 Basic
MOVSX Move with Sign-Extend 3 Basic

MOVSXD
Move with Sign-Extend
Doubleword

3 Long Mode

MOVUPD
Move Unaligned Packed
Double-Precision Floating-
Point

3 SSE2

MOVUPS
Move Unaligned Packed
Single-Precision Floating-
Point

3 SSE

MOVZX Move with Zero-Extend 3 Basic
MUL Multiply Unsigned 3 Basic

MULPD
Multiply Packed Double-
Precision Floating-Point

3 SSE2

MULPS
Multiply Packed Single-
Precision Floating-Point

3 SSE

MULSD
Multiply Scalar Double-
Precision Floating-Point

3 SSE2

MULSS
Multiply Scalar Single-
Precision Floating-Point

3 SSE

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

504 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

MWAIT Monitor Wait 0 Basic

NEG
Two's Complement
Negation

3 Basic

NOP No Operation 3 Basic

NOT
One's Complement
Negation

3 Basic

OR Logical OR 3 Basic

ORPD
Logical Bitwise OR Packed
Double-Precision Floating-
Point

3 SSE2

ORPS
Logical Bitwise OR Packed
Single-Precision Floating-
Point

3 SSE

OUT Output to Port 3 Basic
OUTS Output String 3 Basic
OUTSB Output String Byte 3 Basic
OUTSD Output String Doubleword 3 Basic
OUTSW Output String Word 3 Basic

PACKSSDW
Pack with Saturation
Signed Doubleword to
Word

3 SSE2 MMX

PACKSSWB
Pack with Saturation
Signed Word to Byte

3 SSE2 MMX

PACKUSWB
Pack with Saturation
Signed Word to Unsigned
Byte

3 SSE2 MMX

PADDB Packed Add Bytes 3 SSE2 MMX
PADDD Packed Add Doublewords 3 SSE2 MMX
PADDQ Packed Add Quadwords 3 SSE2 SSE2

PADDSB
Packed Add Signed with
Saturation Bytes

3 SSE2 MMX

PADDSW
Packed Add Signed with
Saturation Words

3 SSE2 MMX

PADDUSB
Packed Add Unsigned with
Saturation Bytes

3 SSE2 MMX

PADDUSW
Packed Add Unsigned with
Saturation Words

3 SSE2 MMX

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 505

24594—Rev. 3.16—September 2011 AMD64 Technology

PADDW Packed Add Words 3 SSE2 MMX

PAND
Packed Logical Bitwise
AND

3 SSE2 MMX

PANDN
Packed Logical Bitwise
AND NOT

3 SSE2 MMX

PAVGB
Packed Average Unsigned
Bytes

3 SSE2
SSE, MMX
Extensions

PAVGUSB
Packed Average Unsigned
Bytes

3 3DNow!

PAVGW
Packed Average Unsigned
Words

3 SSE2
SSE, MMX
Extensions

PCMOV Vector Conditional Moves 3 SSE5

PCMPEQB
Packed Compare Equal
Bytes

3 SSE2 MMX

PCMPEQD
Packed Compare Equal
Doublewords

3 SSE2 MMX

PCMPEQW
Packed Compare Equal
Words

3 SSE2 MMX

PCMPGTB
Packed Compare Greater
Than Signed Bytes

3 SSE2 MMX

PCMPGTD
Packed Compare Greater
Than Signed Doublewords

3 SSE2 MMX

PCMPGTW
Packed Compare Greater
Than Signed Words

3 SSE2 MMX

PCOMB
Compare Vector Signed
Bytes

3 SSE5

PCOMD
Compare Vector Signed
Doublewords

3 SSE5

PCOMQ
Compare Vector Signed
Quadwords

3 SSE5

PCOMUB
Compare Vector Unsigned
Bytes

3 SSE5

PCOMUD
Compare Vector Unsigned
Doublewords

3 SSE5

PCOMUQ
Compare Vector Unsigned
Quadwords

3 SSE5

PCOMUW
Compare Vector Unsigned
Words

3 SSE5

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

506 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

PCOMW
Compare Vector Signed
Words

3 SSE5

PEXTRW Packed Extract Word 3 SSE2
SSE, MMX
Extensions

PF2ID
Packed Floating-Point to
Integer Doubleword
Conversion

3 3DNow!

PF2IW
Packed Floating-Point to
Integer Word Conversion

3
3DNow!

Extensions

PFACC
Packed Floating-Point
Accumulate

3 3DNow!

PFADD Packed Floating-Point Add 3 3DNow!

PFCMPEQ
Packed Floating-Point
Compare Equal

3 3DNow!

PFCMPGE
Packed Floating-Point
Compare Greater or Equal

3 3DNow!

PFCMPGT
Packed Floating-Point
Compare Greater Than

3 3DNow!

PFMAX
Packed Floating-Point
Maximum

3 3DNow!

PFMIN
Packed Floating-Point
Minimum

3 3DNow!

PFMUL
Packed Floating-Point
Multiply

3 3DNow!

PFNACC
Packed Floating-Point
Negative Accumulate

3
3DNow!

Extensions

PFPNACC
Packed Floating-Point
Positive-Negative
Accumulate

3
3DNow!

Extensions

PFRCP
Packed Floating-Point
Reciprocal Approximation

3 3DNow!

PFRCPIT1
Packed Floating-Point
Reciprocal, Iteration 1

3 3DNow!

PFRCPIT2
Packed Floating-Point
Reciprocal or Reciprocal
Square Root, Iteration 2

3 3DNow!

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 507

24594—Rev. 3.16—September 2011 AMD64 Technology

PFRSQIT1
Packed Floating-Point
Reciprocal Square Root,
Iteration 1

3 3DNow!

PFRSQRT
Packed Floating-Point
Reciprocal Square Root
Approximation

3 3DNow!

PFSUB
Packed Floating-Point
Subtract

3 3DNow!

PFSUBR
Packed Floating-Point
Subtract Reverse

3 3DNow!

PI2FD
Packed Integer to Floating-
Point Doubleword
Conversion

3 3DNow!

PI2FW
Packed Integer To
Floating-Point Word
Conversion

3
3DNow!

Extensions

PINSRW Packed Insert Word 3 SSE2
SSE, MMX
Extensions

PMACSDD

Packed Multiply
Accumulate Signed
Doubleword to Signed
Doubleword

PMACSDQH

Packed Multiply
Accumulate Signed High
Doubleword to Signed
Quadword

PMACSDQL

Packed Multiply
Accumulate Signed Low
Doubleword to Signed
Quadword

PMADDWD
Packed Multiply Words and
Add Doublewords

3 SSE2 MMX

PMAXSW
Packed Maximum Signed
Words

3 SSE2
SSE, MMX
Extensions

PMAXUB
Packed Maximum
Unsigned Bytes

3 SSE2
SSE, MMX
Extensions

PMINSW
Packed Minimum Signed
Words

3 SSE2
SSE, MMX
Extensions

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

508 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

PMINUB
Packed Minimum
Unsigned Bytes

3 SSE2
SSE, MMX
Extensions

PMOVMSKB Packed Move Mask Byte 3 SSE2
SSE, MMX
Extensions

PMULHRW
Packed Multiply High
Rounded Word

3 3DNow!

PMULHUW
Packed Multiply High
Unsigned Word

3 SSE2
SSE, MMX
Extensions

PMULHW
Packed Multiply High
Signed Word

3 SSE2 MMX

PMULLW
Packed Multiply Low
Signed Word

3 SSE2 MMX

PMULUDQ
Packed Multiply Unsigned
Doubleword and Store
Quadword

3 SSE2 SSE2

POP Pop Stack 3 Basic
POPA Pop All to GPR Words 3 Basic

POPAD
Pop All to GPR
Doublewords

3 Basic

POPCNT Bit Population Count 3 Basic
POPF Pop to FLAGS Word 3 Basic

POPFD
Pop to EFLAGS
Doubleword

3 Basic

POPFQ Pop to RFLAGS Quadword 3 Long Mode
POR Packed Logical Bitwise OR 3 SSE2 MMX

PREFETCH
Prefetch L1 Data-Cache
Line

3
3DNow!™,
Long Mode

PREFETCHlevel
Prefetch Data to Cache
Level level

3
SSE, MMX
Extensions

PREFETCHW
Prefetch L1 Data-Cache
Line for Write

3
3DNow!,

Long Mode

PSADBW
Packed Sum of Absolute
Differences of Bytes into a
Word

3 SSE2
SSE, MMX
Extensions

PSHUFD
Packed Shuffle
Doublewords

3 SSE2

PSHUFHW
Packed Shuffle High
Words

3 SSE2

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 509

24594—Rev. 3.16—September 2011 AMD64 Technology

PSHUFLW Packed Shuffle Low Words 3 SSE2

PSHUFW Packed Shuffle Words 3
SSE, MMX
Extensions

PSLLD
Packed Shift Left Logical
Doublewords

3 SSE2 MMX

PSLLDQ
Packed Shift Left Logical
Double Quadword

3 SSE2

PSLLQ
Packed Shift Left Logical
Quadwords

3 SSE2 MMX

PSLLW
Packed Shift Left Logical
Words

3 SSE2 MMX

PSRAD
Packed Shift Right
Arithmetic Doublewords

3 SSE2 MMX

PSRAW
Packed Shift Right
Arithmetic Words

3 SSE2 MMX

PSRLD
Packed Shift Right Logical
Doublewords

3 SSE2 MMX

PSRLDQ
Packed Shift Right Logical
Double Quadword

3 SSE2

PSRLQ
Packed Shift Right Logical
Quadwords

3 SSE2 MMX

PSRLW
Packed Shift Right Logical
Words

3 SSE2 MMX

PSUBB Packed Subtract Bytes 3 SSE2 MMX

PSUBD
Packed Subtract
Doublewords

3 SSE2 MMX

PSUBQ
Packed Subtract
Quadword

3 SSE2 SSE2

PSUBSB
Packed Subtract Signed
With Saturation Bytes

3 SSE2 MMX

PSUBSW
Packed Subtract Signed
with Saturation Words

3 SSE2 MMX

PSUBUSB
Packed Subtract Unsigned
and Saturate Bytes

3 SSE2 MMX

PSUBUSW
Packed Subtract Unsigned
and Saturate Words

3 SSE2 MMX

PSUBW Packed Subtract Words 3 SSE2 MMX

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

510 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

PSWAPD Packed Swap Doubleword 3
3DNow!

Extensions
PTESTt Predicate Test Register 3 SSE4.1

PUNPCKHBW
Unpack and Interleave
High Bytes

3 SSE2 MMX

PUNPCKHDQ
Unpack and Interleave
High Doublewords

3 SSE2 MMX

PUNPCKHQDQ
Unpack and Interleave
High Quadwords

3 SSE2

PUNPCKHWD
Unpack and Interleave
High Words

3 SSE2 MMX

PUNPCKLBW
Unpack and Interleave Low
Bytes

3 SSE2 MMX

PUNPCKLDQ
Unpack and Interleave Low
Doublewords

3 SSE2 MMX

PUNPCKLQDQ
Unpack and Interleave Low
Quadwords

3 SSE2

PUNPCKLWD
Unpack and Interleave Low
Words

3 SSE2 3DNow!

PUSH Push onto Stack 3 Basic

PUSHA
Push All GPR Words onto
Stack

3 Basic

PUSHAD
Push All GPR
Doublewords onto Stack

3 Basic

PUSHF
Push EFLAGS Word onto
Stack

3 Basic

PUSHFD
Push EFLAGS Doubleword
onto Stack

3 Basic

PUSHFQ
Push RFLAGS Quadword
onto Stack

3 Long Mode

PXOR
Packed Logical Bitwise
Exclusive OR

3 SSE2 MMX

RCL Rotate Through Carry Left 3 Basic

RCPPS
Reciprocal Packed Single-
Precision Floating-Point

3 SSE

RCPSS
Reciprocal Scalar Single-
Precision Floating-Point

3 SSE

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 511

24594—Rev. 3.16—September 2011 AMD64 Technology

RCR
Rotate Through Carry
Right

3 Basic

RDMSR
Read Model-Specific
Register

0
RDMSR,
WRMSR

RDPMC
Read Performance-
Monitoring Counter

3 Basic

RDTSC Read Time-Stamp Counter 3 TSC

RDTSCP
Read Time-Stamp Counter
and Processor ID

3 RDTSCP

RET Return from Call 3 Basic
ROL Rotate Left 3 Basic
ROR Rotate Right 3 Basic

ROUNDPD
Round Packed Double-
Precision Floating-Point

3 SSE4.1

ROUNDPS
Round Packed Single-
Precision Floating-Point

3 SSE4.1

ROUNDSD
Round Scalar Double-
Precision Floating-Point

3 SSE4.1

ROUNDSS
Round Scalar Single-
Precision Floating-Point

3 SSE4.1

RSM
Resume from System
Management Mode

3 Basic

RSQRTPS
Reciprocal Square Root
Packed Single-Precision
Floating-Point

3 SSE

RSQRTSS
Reciprocal Square Root
Scalar Single-Precision
Floating-Point

3 SSE

SAHF Store AH into Flags 3 Basic
SAL Shift Arithmetic Left 3 Basic
SAR Shift Arithmetic Right 3 Basic
SBB Subtract with Borrow 3 Basic
SCAS Scan String 3 Basic
SCASB Scan String as Bytes 3 Basic
SCASD Scan String as Doubleword 3 Basic
SCASQ Scan String as Quadword 3 Long Mode
SCASW Scan String as Words 3 Basic

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

512 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

SETcc Set Byte if Condition 3 Basic

SFENCE Store Fence 3
SSE,

MMX™
Extensions

SGDT
Store Global Descriptor
Table Register

3 Basic

SHL Shift Left 3 Basic
SHLD Shift Left Double 3 Basic
SHR Shift Right 3 Basic
SHRD Shift Right Double 3 Basic

SHUFPD
Shuffle Packed Double-
Precision Floating-Point

3 SSE2

SHUFPS
Shuffle Packed Single-
Precision Floating-Point

3 SSE

SIDT
Store Interrupt Descriptor
Table Register

3 Basic

SKINIT
Secure Init and Jump with
Attestation

0 SVM

SLDT
Store Local Descriptor
Table Register

3 Basic

SMSW
Store Machine Status
Word

3 Basic

SQRTPD
Square Root Packed
Double-Precision Floating-
Point

3 SSE2

SQRTPS
Square Root Packed
Single-Precision Floating-
Point

3 SSE

SQRTSD
Square Root Scalar
Double-Precision Floating-
Point

3 SSE2

SQRTSS
Square Root Scalar Single-
Precision Floating-Point

3 SSE

STC Set Carry Flag 3 Basic
STD Set Direction Flag 3 Basic
STGI Set Global Interrupt Flag 0 SVM
STI Set Interrupt Flag 3 Basic

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Subsets and CPUID Feature Sets 513

24594—Rev. 3.16—September 2011 AMD64 Technology

STMXCSR
Store MXCSR
Control/Status Register

3 SSE

STOS Store String 3 Basic
STOSB Store String Bytes 3 Basic
STOSD Store String Doublewords 3 Basic
STOSQ Store String Quadwords 3 Long Mode
STOSW Store String Words 3 Basic
STR Store Task Register 3 Basic
SUB Subtract 3 Basic

SUBPD
Subtract Packed Double-
Precision Floating-Point

3 SSE2

SUBPS
Subtract Packed Single-
Precision Floating-Point

3 SSE

SUBSD
Subtract Scalar Double-
Precision Floating-Point

3 SSE2

SUBSS
Subtract Scalar Single-
Precision Floating-Point

3 SSE

SWAPGS
Swap GS Register with
KernelGSbase MSR

0 Long Mode

SYSCALL Fast System Call 3
SYSCALL,
SYSRET

SYSENTER System Call 3
SYS-

ENTER,
SYSEXIT

SYSEXIT System Return 0
SYS-

ENTER,
SYSEXIT

SYSRET Fast System Return 0
SYSCALL,
SYSRET

TEST Test Bits 3 Basic

UCOMISD
Unordered Compare
Scalar Double-Precision
Floating-Point

3 SSE2

UCOMISS
Unordered Compare
Scalar Single-Precision
Floating-Point

3 SSE

UD2 Undefined Operation 3 Basic

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

514 Instruction Subsets and CPUID Feature Sets

AMD64 Technology 24594—Rev. 3.16—September 2011

UNPCKHPD
Unpack High Double-
Precision Floating-Point

3 SSE2

UNPCKHPS
Unpack High Single-
Precision Floating-Point

3 SSE

UNPCKLPD
Unpack Low Double-
Precision Floating-Point

3 SSE2

UNPCKLPS
Unpack Low Single-
Precision Floating-Point

3 SSE

VERR Verify Segment for Reads 3 Basic
VERW Verify Segment for Writes 3 Basic
VMLOAD Load State from VMCB 0 SVM
VMMCALL Call VMM 0 SVM
VMRUN Run Virtual Machine 0 SVM
VMSAVE Save State to VMCB 0 SVM

WAIT
Wait for x87 Floating-Point
Exceptions

3 X87

WBINVD
Writeback and Invalidate
Caches

0 Basic

WRMSR
Write to Model-Specific
Register

0
RDMSR,
WRMSR

XADD Exchange and Add 3 Basic
XCHG Exchange 3 Basic
XLAT Translate Table Index 3 Basic

XLATB
Translate Table Index (No
Operands)

3 Basic

XOR Exclusive OR 3 Basic

XORPD
Logical Bitwise Exclusive
OR Packed Double-
Precision Floating-Point

3 SSE2

XORPS
Logical Bitwise Exclusive
OR Packed Single-
Precision Floating-Point

3 SSE

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction
Instruction Subset

and CPUID Feature Set(s)1

Mnemonic Description CPL General-
Purpose

128-Bit
Media

64-Bit
Media x87 System

Note:
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of oper-

ands.

Instruction Effects on RFLAGS 515

24594—Rev. 3.16—September 2011 AMD64 Technology

Appendix E Instruction Effects on RFLAGS

The flags in the RFLAGS register are described in “Flags Register” in Volume 1 and “RFLAGS
Register” in Volume 2. Table E-1 summarizes the effect that instructions have on these flags. The
table includes all instructions that affect the flags. Instructions not shown have no effect on RFLAGS.

The following codes are used within the table:

• 0—The flag is always cleared to 0.
• 1—The flag is always set to 1.
• AH—The flag is loaded with value from AH register.
• Mod—The flag is modified, depending on the results of the instruction.
• Pop—The flag is loaded with value popped off of the stack.
• Tst—The flag is tested.
• U—The effect on the flag is undefined.
• Gray shaded cells indicate that the flag is not affected by the instruction.

Table E-1. Instruction Effects on RFLAGS

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number
ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13-12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

AAA
AAS U U U Tst

Mod U Mod

AAD
AAM Mod Mod U Mod UU

ADC Mod Mod Mod Mod Mod Tst
Mod

ADD Mod Mod Mod Mod Mod Mod
AND 0 Mod Mod U Mod 0
ARPL Mod
BSF
BSR U U Mod U U U

BT
BTC
BTR
BTS

U U U U U Mod

CLC 0
CLD 0
CLI Mod TST Mod

CMC Mod
CMOVcc Tst Tst Tst Tst Tst

CMP Mod Mod Mod Mod Mod Mod
CMPSx Mod Tst Mod Mod Mod Mod Mod

516 Instruction Effects on RFLAGS

AMD64 Technology 24594—Rev. 3.16—September 2011

CMPXCHG Mod Mod Mod Mod Mod Mod
CMPXCHG8B Mod

CMPXCHG16B Mod
COMISD
COMISS 0 0 Mod 0 Mod Mod

DAA
DAS U Mod Mod Tst

Mod Mod Tst
Mod

DEC Mod Mod Mod Mod Mod
DIV U U U U U U

FCMOVcc Tst Tst Tst
FCOMI

FCOMIP
FUCOMI

FUCOMIP

Mod Mod Mod

IDIV U U U U U U
IMUL Mod U U U U Mod
INC Mod Mod Mod Mod Mod
IN Tst

INSx Tst Tst
INT

INT 3 Mod Mod Tst
Mod 0 Mod Tst Mod 0

INTO Mod Tst
Mod 0 Mod Tst Tst Mod Mod

IRETx Pop Pop Pop Pop Tst
Pop Pop Tst

Pop
Tst
Pop Pop Pop Pop Pop Pop Pop Pop Pop Pop

Jcc Tst Tst Tst Tst Tst
LAR Mod

LODSx Tst
LOOPE

LOOPNE Tst

LSL Mod
LZCNT U U Mod U U Mod
MOVSx Tst

MUL Mod U U U U Mod
NEG Mod Mod Mod Mod Mod Mod
OR 0 Mod Mod U Mod 0

OUT Tst
OUTSx Tst Tst

POPCNT 0 0 Mod 0 0 0

POPFx Pop Tst Mod Pop Tst 0 Pop Tst
Pop Pop Pop Pop Pop Pop Pop Pop Pop Pop

Table E-1. Instruction Effects on RFLAGS (continued)

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number
ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13-12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

Instruction Effects on RFLAGS 517

24594—Rev. 3.16—September 2011 AMD64 Technology

RCL 1 Mod Tst
Mod

RCL count U Tst
Mod

RCR 1 Mod Tst
Mod

RCR count U Tst
Mod

ROL 1 Mod Mod
ROL count U Mod

ROR 1 Mod Mod
ROR count U Mod

RSM Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod
SAHF AH AH AH AH AH
SAL 1 Mod Mod Mod U Mod Mod

SAL count U Mod Mod U Mod Mod
SAR 1 Mod Mod Mod U Mod Mod

SAR count U Mod Mod U Mod Mod

SBB Mod Mod Mod Mod Mod Tst
Mod

SCASx Mod Tst Mod Mod Mod Mod Mod
SETcc Tst Tst Tst Tst Tst

SHLD 1
SHRD 1 Mod Mod Mod U Mod Mod

SHLD count
SHRD count U Mod Mod U Mod Mod

SHR 1 Mod Mod Mod U Mod Mod
SHR count U Mod Mod U Mod Mod

STC 1
STD 1
STI Mod Tst Mod

STOSx Tst
SUB Mod Mod Mod Mod Mod Mod

SYSCALL Mod Mod Mod Mod 0 0 Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod
SYSENTER 0 0 0

SYSRET Mod Mod Mod Mod 0 Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod Mod
TEST 0 Mod Mod U Mod 0

UCOMISD
UCOMISS 0 0 Mod 0 Mod Mod

Table E-1. Instruction Effects on RFLAGS (continued)

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number
ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13-12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

518 Instruction Effects on RFLAGS

AMD64 Technology 24594—Rev. 3.16—September 2011

VERR
VERW Mod

XADD Mod Mod Mod Mod Mod Mod
XOR 0 Mod Mod U Mod 0

Table E-1. Instruction Effects on RFLAGS (continued)

Instruction
Mnemonic

RFLAGS Mnemonic and Bit Number
ID
21

VIP
20

VIF
19

AC
18

VM
17

RF
16

NT
14

IOPL
13-12

OF
11

DF
10

IF
9

TF
8

SF
7

ZF
6

AF
4

PF
2

CF
0

Index 519

24594—Rev. 3.16—September 2011 AMD64 Technology

Symbols
#VMEXIT... 394

Numerics
0F38h opcode map... 416
16-bit mode.. xix
32-bit mode.. xix
64-bit mode.. xix

A
AAA... 69
AAD... 70
AAM .. 71
AAS ... 72
ADC... 73
ADD... 75
address size prefix ... 9, 25
addressing

byte registers.. 26
effective address........................... 445, 448, 449, 451
PC-relative... 24
RIP-relative ... xxiv, 24

AND... 77
ANDN .. 79
ARPL ... 312

B
base field.. 450, 451
BEXTR (immediate form) .. 83
BEXTR (register form) .. 81
biased exponent .. xix
BLCFILL.. 85
BLCI .. 87
BLCIC.. 89
BLCMSK.. 91
BLCS ... 93
BLSFILL .. 95
BLSI... 97
BLSIC .. 99
BLSMSK .. 101
BLSR ... 103
BOUND.. 105
BSF .. 107
BSR.. 108
BSWAP .. 109
BT.. 110
BTC ... 112
BTR ... 114

BTS .. 116
byte register addressing .. 26

C
CALL ... 15

far call ... 120
near call ... 118

CBW... 126
CDQ ... 127
CDQE... 126
CLC.. 128
CLD.. 129
CLFLUSH... 130
CLGI .. 314
CLI ... 315
CLTS .. 317
CMC... 132
CMOVcc... 133, 412
CMP ... 136
CMPSx ... 139
CMPXCHG... 141
CMPXCHG16B... 143
CMPXCHG8B... 143
commit.. xx
compatibility mode ... xix
condition codes

rFLAGS... 412, 433
count... 453
CPUID.. 145

extended functions .. 145
feature sets ... 487
standard functions... 145

CPUID instruction
testing for... 145

CQO ... 127
CRC32.. 147
CWD .. 127
CWDE .. 126

D
DAA... 149
DAS.. 150
data types

128-bit media ... 44
64-bit media ... 48
general-purpose .. 40
x87 .. 50

DEC... 16, 151, 481
direct referencing ... xx

Index

520 Index

AMD64 Technology 24594—Rev. 3.16—September 2011

displacements .. xx, 24
DIV .. 153
double quadword ... xx
doubleword ... xx

E
eAX–eSP register ... xxvi
effective address 445, 448, 449, 451
effective address size.. xx
effective operand size... xx
eFLAGS register... xxvi
eIP register ... xxvi
element ... xx
endian order ... xxviii, 4
ENTER.. 15, 155
exceptions ... xx, 51
exponent .. xix

F
FCMOVcc .. 433
flush .. xxi

G
general-purpose registers .. 38

H
HLT.. 318

I
IDIV... 157
IGN ... xxi
immediate operands .. 24, 453
IMUL ... 159
IN... 161
INC ... 16, 162, 481
index field ... 451
indirect .. xxi
INSB .. 164
INSD .. 164
instruction opcode.. 16
Instructions

SSE3 ... 488
SSE4A... 488

instructions
128-bit media ... 489
3DNow!™ ... 487
64-bit media... 489
effects on rFLAGS ... 515
encoding syntax.. 1
general-purpose... 67, 489
invalid in 64-bit mode... 479
invalid in long mode ... 480

MMX™... 487
origins ... 485
reassigned in 64-bit mode.................................... 480
SSE ... 488
SSE-2 .. 488
subsets ... 485
system .. 311, 489
x87 .. 487, 489

INSW.. 164
INSx ... 164
INT... 166
INT 3 .. 319
interrupt vectors ... 51
INTO .. 173
INVD.. 322
INVLPG ... 323
INVLPGA... 324
IRET... 325
IRETD .. 325
IRETQ .. 325

J
Jcc ... 15, 174, 412
JCXZ .. 178
JECXZ.. 178
JMP .. 15

far jump ... 181
near jump... 179

JRCXZ.. 178
JrCXZ... 15

L
LAHF ... 186
LAR.. 331
LDS.. 187
LEA.. 189
LEAVE ... 15, 191
legacy mode ... xxi
legacy x86 .. xxi
LES .. 187
LFENCE ... 192
LFS... 187
LGDT ... 15, 333
LGS.. 187
LIDT.. 15, 335, 337
LLDT.. 15, 337
LLWPCB .. 193
LMSW.. 339
LOCK prefix ... 11
LODSB... 196
LODSD... 196
LODSQ... 196

Index 521

24594—Rev. 3.16—September 2011 AMD64 Technology

LODSW.. 196
LODSx ... 196
long mode .. xxi
LOOP ... 15
LOOPcc.. 15
LOOPx ... 198
LSB.. xxii
lsb .. xxii
LSL .. 340
LSS .. 187
LTR ... 15, 342
LWPINS ... 200
LWPVAL .. 202
LZCNT... 204

M
mask... xxii
MBZ... xxii
MFENCE.. 206
mod field... 448
mode-register-memory (ModRM) 444
modes ... 483

16-bit.. xix
32-bit.. xix
64-bit... xix, 483
compatibility .. xix, 483
legacy... xxi
long... xxi, 483
protected... xxiii
real ... xxiii
virtual-8086 ... xxv

ModRM .. 444
ModRM byte............................... 17, 27, 413, 424, 444
moffset.. xxii
MONITOR.. 344
MOV .. 207
MOV (CRn) .. 346
MOV CR(n) .. 15
MOV DR(n).. 15
MOV(DRn)... 348
MOVD ... 210
MOVMSKPD.. 214
MOVMSKPS .. 216
MOVNTI .. 218
MOVSX ... 222
MOVSx .. 220
MOVSXD... 223
MOVZX ... 224
MSB... xxii
msb .. xxii
MSR.. xxvi
MUL .. 225

multimedia instructions .. xxii
MWAIT .. 350

N
NEG ... 227
NOP.. 229, 482
NOT ... 230
notation... 53

O
octword... xxii
offset... xxii, 24
one-byte opcodes ... 404
opcode .. 16

two-byte... 407
opcode map

0F38h .. 416
primary .. 404
secondary... 407

opcode maps.. 404
opcodes

3DNow!™ ... 421
group 1 .. 413
group 10 .. 415
group 11... 414
group 12 .. 415
group 13 .. 415
group 14 .. 415
group 15 .. 415
group 16 .. 416
group 17 .. 416
group 1a... 414
group 2 .. 414
group 3 .. 414
group 4 .. 414
group 5 .. 414
group 6 .. 415
group 7 .. 415
group 8 .. 415
group 9 .. 415
group P .. 416
groups.. 413
ModRM byte.. 413
one-byte... 404
x87 opcode map ... 424

operands
encodings... 444
immediate .. 24, 453
size... 7, 453, 454, 480

OR.. 231
OUT ... 233
OUTS ... 234
OUTSB... 234
OUTSD... 234

522 Index

AMD64 Technology 24594—Rev. 3.16—September 2011

OUTSW.. 234
overflow .. xxiii

P
packed ... xxiii
PAUSE ... 236
PC-relative addressing.. 24
POP.. 237
POP FS... 15
POP GS .. 15
POP reg .. 15
POP reg/mem .. 15
POPAD ... 239
POPAx.. 239
POPCNT... 240
POPF.. 242
POPFD ... 242
POPFQ .. 15, 242
PREFETCH .. 245
PREFETCHlevel ... 247
PREFETCHW... 245
prefix

REX .. 14
prefixes

address size.. 9, 25
LOCK ... 11
operand size ... 7
repeat .. 12
REX .. 25
segment ... 10

primary opcode map .. 404
processor feature identification (rFLAGS.ID) 145
processor vendor.. 146
protected mode ... xxiii
PUSH ... 249
PUSH FS .. 15
PUSH GS.. 15
PUSH imm32 .. 15
PUSH imm8.. 15
PUSH reg.. 15
PUSH reg/mem ... 15
PUSHA... 251
PUSHAD .. 251
PUSHF ... 252
PUSHFD... 252
PUSHFQ.. 15, 252

Q
quadword ... xxiii

R
r/m field .. 413

r8–r15 .. xxvi
rAX–rSP ... xxvii
RAZ... xxiii
RCL.. 254
RCR.. 256
RDMSR .. 352
RDPMC .. 353
RDTSC ... 355
RDTSCP ... 356
real address mode. See real mode
real mode ... xxiii
reg field... 413, 445, 447, 448
registers

eAX–eSP .. xxvi
eFLAGS ... xxvi
eIP.. xxvi
encodings... 26
general-purpose .. 38
MMX .. 48
r8–r15... xxvi
rAX–rSP .. xxvii
rFLAGS..................................... xxvii, 412, 433, 515
rIP ... xxvii
segment ... 40
system ... 41
x87 .. 50
XMM .. 43

relative ... xxiii
REPx prefixes.. 12
reserved ... xxiii
RET

far return .. 259
near return.. 258

RET (Near).. 15
revision history .. xv
REX prefix .. 14
REX prefixes ... 25, 444
REX.B bit .. 24, 56, 448, 450
REX.R bit ... 23, 447
REX.W bit .. 23
REX.X bit ... 23
rFLAGS conditions codes............................... 412, 433
rFLAGS register .. xxvii, 515
rIP register... xxvii
RIP-relative addressing.................................... xxiv, 24
ROL.. 263
ROR ... 265
rotate count.. 453
RSM ... 358
RSM instruction... 358

S
SAHF.. 267

Index 523

24594—Rev. 3.16—September 2011 AMD64 Technology

SAL.. 268
SAR ... 271
SBB.. 273
SBZ... xxiv
scale field.. 451
scale-index-base (SIB) ... 444
SCAS ... 275
SCASB ... 275
SCASD... 275
SCASQ... 275
SCASW .. 275
secondary opcode map ... 407
segment prefixes... 10, 482
segment registers ... 40
set.. xxiv
SETcc .. 277, 412
SFENCE ... 279
SGDT ... 360
shift count ... 453
SHL... 268, 280
SHLD ... 281
SHR ... 283
SHRD... 285
SIB... 444
SIB byte... 19, 27, 449
SIDT .. 361
SKINIT... 362
SLDT ... 364
SLWPCB .. 287
SMSW.. 366
SSE ... xxiv
SSE2 ... xxiv
SSE3 ... xxiv
STC.. 289
STD.. 290
STGI .. 369
STI ... 367
sticky bits... xxiv
STOS.. 291
STOSB ... 291
STOSD ... 291
STOSQ ... 291
STOSW .. 291
STR.. 370
SUB ... 293
SWAPGS .. 371
syntax ... 52
SYSCALL .. 373
SYSENTER .. 377
SYSEXIT.. 379
SYSRET ... 381

system data structures... 42

T
T1MSKC .. 295
TEST .. 297
three-byte prefix .. 29
TSS.. xxiv
two-byte opcode .. 407
two-byte prefix .. 32
TZCNT ... 299
TZMSK .. 301

U
UD2.. 385
underflow.. xxv

V
vector.. xxv
VERR ... 386
VERW .. 388
virtual-8086 mode.. xxv
VMLOAD... 389
VMMCALL .. 391
VMRUN ... 392
VMSAVE.. 397

W
WBINVD.. 399
WRMSR ... 400

X
XADD .. 303
XCHG... 305
XLAT.. 307
XLATB ... 307
XOR ... 308

Z
zero-extension ... 453

524 Index

AMD64 Technology 24594—Rev. 3.16—September 2011

	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Conventions and Definitions
	Notational Conventions
	Definitions
	Registers
	Endian Order

	Related Documents

	1 Instruction Encoding
	1.1 Instruction Encoding Overview
	1.1.1 Encoding Syntax
	1.1.2 Representation in Memory

	1.2 Instruction Prefixes
	1.2.1 Summary of Legacy Prefixes
	1.2.2 Operand-Size Override Prefix
	1.2.3 Address-Size Override Prefix
	1.2.4 Segment-Override Prefixes
	1.2.5 Lock Prefix
	1.2.6 Repeat Prefixes
	1.2.7 REX Prefix
	1.2.8 VEX and XOP Prefixes

	1.3 Opcode
	1.4 ModRM and SIB Bytes
	1.4.1 ModRM Byte Format
	1.4.2 SIB Byte Format
	1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes
	1.4.4 Operand Addressing in 64-bit Mode

	1.5 Displacement Bytes
	1.6 Immediate Bytes
	1.7 RIP-Relative Addressing
	1.7.1 Encoding
	1.7.2 REX Prefix and RIP-Relative Addressing
	1.7.3 Address-Size Prefix and RIP-Relative Addressing

	1.8 Encoding Considerations Using REX
	1.8.1 Byte-Register Addressing
	1.8.2 Special Encodings for Registers

	1.9 Encoding Using the VEX and XOP Prefixes
	1.9.1 Three-Byte Escape Sequences
	1.9.2 Two-Byte Escape Sequence

	2 Instruction Overview
	2.1 Instruction Subsets
	2.2 Reference-Page Format
	2.3 Summary of Registers and Data Types
	2.3.1 General-Purpose Instructions
	2.3.2 System Instructions
	2.3.3 SSE Instructions
	2.3.4 64-Bit Media Instructions
	2.3.5 x87 Floating-Point Instructions

	2.4 Summary of Exceptions
	2.5 Notation
	2.5.1 Mnemonic Syntax
	2.5.2 Opcode Syntax
	2.5.3 Pseudocode Definitions

	3 General-Purpose Instruction Reference
	AAA
	AAD
	AAM
	AAS
	ADC
	ADD
	AND
	ANDN
	BEXTR (register form)
	BEXTR (immediate form)
	BLCFILL
	BLCI
	BLCIC
	BLCMSK
	BLCS
	BLSFILL
	BLSI
	BLSIC
	BLSMSK
	BLSR
	BOUND
	BSF
	BSR
	BSWAP
	BT
	BTC
	BTR
	BTS
	CALL (Near)
	CALL (Far)
	CBW CWDE CDQE
	CWD CDQ CQO
	CLC
	CLD
	CLFLUSH
	CMC
	CMOVcc
	CMP
	CMPS CMPSB CMPSW CMPSD CMPSQ
	CMPXCHG
	CMPXCHG8B CMPXCHG16B
	CPUID
	Testing for the CPUID Instruction
	Standard Function 0 and Extended Function 8000_0000h

	CRC32
	DAA
	DAS
	DEC
	DIV
	ENTER
	IDIV
	IMUL
	IN
	INC
	INS INSB INSW INSD
	INT
	INTO
	Jcc
	JCXZ JECXZ JRCXZ
	JMP (Near)
	JMP (Far)
	LAHF
	LDS LES LFS LGS LSS
	LEA
	LEAVE
	LFENCE
	LLWPCB
	LODS LODSB LODSW LODSD LODSQ
	LOOP LOOPE LOOPNE LOOPNZ LOOPZ
	LWPINS
	LWPVAL
	LZCNT
	MFENCE
	MOV
	MOVD
	MOVMSKPD
	MOVMSKPS
	MOVNTI
	MOVS MOVSB MOVSW MOVSD MOVSQ
	MOVSX
	MOVSXD
	MOVZX
	MUL
	NEG
	NOP
	NOT
	OR
	OUT
	OUTS OUTSB OUTSW OUTSD
	PAUSE
	POP
	POPA POPAD
	POPCNT
	POPF POPFD POPFQ
	PREFETCH PREFETCHW
	PREFETCHlevel
	PUSH
	PUSHA PUSHAD
	PUSHF PUSHFD PUSHFQ
	RCL
	RCR
	RET (Near)
	RET (Far)
	ROL
	ROR
	SAHF
	SAL SHL
	SAR
	SBB
	SCAS SCASB SCASW SCASD SCASQ
	SETcc
	SFENCE
	SHL
	SHLD
	SHR
	SHRD
	SLWPCB
	STC
	STD
	STOS STOSB STOSW STOSD STOSQ
	SUB
	T1MSKC
	TEST
	TZCNT
	TZMSK
	XADD
	XCHG
	XLAT
	XLATB
	XOR

	4 System Instruction Reference
	ARPL
	CLGI
	CLI
	CLTS
	HLT
	INT 3
	INVD
	INVLPG
	INVLPGA
	IRET IRETD IRETQ
	LAR
	LGDT
	LIDT
	LLDT
	LMSW
	LSL
	LTR
	MONITOR
	MOV (CRn)
	MOV (DRn)
	MWAIT
	RDMSR
	RDPMC
	RDTSC
	RDTSCP
	RSM
	SGDT
	SIDT
	SKINIT
	SLDT
	SMSW
	STI
	STGI
	STR
	SWAPGS
	SYSCALL
	SYSENTER
	SYSEXIT
	SYSRET
	UD2
	VERR
	VERW
	VMLOAD
	VMMCALL
	VMRUN
	VMSAVE
	WBINVD
	WRMSR

	Appendix A Opcode and Operand Encodings
	A.1 Opcode Maps
	A.1.1 Legacy Opcode Maps
	Primary Opcode Map
	Secondary Opcode Map
	rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc Instructions
	Encoding Extensions Using the ModRM Byte
	Secondary Opcode Map, ModRM Extensions for Opcode 01h
	0F_38h and 0F_3Ah Opcode Maps

	A.1.2 3DNow!™ Opcodes
	A.1.3 x87 Encodings
	A.1.4 rFLAGS Condition Codes for x87 Opcodes
	A.1.5 Extended Instruction Opcode Maps
	VEX Opcode Maps
	XOP Opcode Maps

	A.2 Operand Encodings
	A.2.1 ModRM Operand References
	16-Bit Register and Memory References
	Register and Memory References for 32-Bit and 64-Bit Addressing

	A.2.2 SIB Operand References

	Appendix B General-Purpose Instructions in 64-Bit Mode
	B.1 General Rules for 64-Bit Mode
	B.2 Operation and Operand Size in 64-Bit Mode
	B.3 Invalid and Reassigned Instructions in 64-Bit Mode
	B.4 Instructions with 64-Bit Default Operand Size
	B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode
	B.6 NOP in 64-Bit Mode
	B.7 Segment Override Prefixes in 64-Bit Mode

	Appendix C Differences Between Long Mode and Legacy Mode
	Appendix D Instruction Subsets and CPUID Feature Sets
	D.1 Instruction Subsets
	D.2 CPUID Feature Sets
	D.3 Instruction List

	Appendix E Instruction Effects on RFLAGS
	Index

